Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復zh_TW
dc.contributor.advisorCheng-Fu Chouen
dc.contributor.author蔡欣翰zh_TW
dc.contributor.authorHsin-Han Tsaien
dc.date.accessioned2025-09-24T16:36:28Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationC. Adrie, A. Cariou, B. Mourvillier, I. Laurent, H. Dabbane, F. Hantala, A. Rhaoui, M. Thuong, and M. Monchi. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the ohca score. European heart journal, 27(23):2840–2845, 2006.
R. Ahmad, S. Lumley, and Y. C. Lau. Null-please: A new `futility score'in the management of survivors of out-of-hospital cardiac arrest. Resuscitation, 106:e83, 2016.
T. Alam, C. F. Ahmed, S. A. Zahin, M. A. H. Khan, and M. T. Islam. An effective ensemble method for multi-class classification and regression for imbalanced data. In Advances in Data Mining. Applications and Theoretical Aspects: 18th Industrial Conference, ICDM 2018, New York, NY, USA, July 11-12, 2018, Proceedings 18, pages 59–74. Springer, 2018.
S. A. Amacher, R. Blatter, M. Briel, C. Appenzeller-Herzog, C. Bohren, C. Becker, K. Beck, S. Gross, K. Tisljar, R. Sutter, et al. Predicting neurological outcome in adult patients with cardiac arrest: systematic review and meta-analysis of prediction model performance. Critical Care, 26(1):382, 2022.
J. E. Bray, J.-T. Grasner, J. P. Nolan, T. Iwami, M. E. Ong, J. Finn, B. McNally, Z. Nehme, C. Sasson, J. Tijssen, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: 2024 update of the utstein out-of-hospital cardiac arrest registry template. Circulation, 150(9):e203–e223, 2024.
J. Carlier, F. Le Goff, D. Pouliquen, E. Bliaux, S. Bioux, E. Gerardin, Y. Cruypen- inck, S. Segobin, A. Savouré, and O. Martinaud. Evaluation of the cognitive out- come after out-of-hospital cardiac arrest: the role of thalamus. European Journal of Neuroscience, 57(11):1892–1912, 2023.
C.-Y. Cheng, I.-M. Chiu, W.-H. Zeng, C.-M. Tsai, and C.-H. R. Lin. Machine learn- ing models for survival and neurological outcome prediction of out-of-hospital cardiac arrest patients. BioMed Research International, 2021(1):9590131, 2021.
S.P.Choi,K.N.Park,H.K.Park,J.Y.Kim,C.S.Youn,K.J.Ahn,andH.W.Yim. Diffusion-weighted magnetic resonance imaging for predicting the clinical outcome of comatose survivors after cardiac arrest: a cohort study. Critical care, 14(1):R17, 2010.
C. Cristia, M.-L. Ho, S. Levy, L. W. Andersen, S. M. Perman, T. Giberson, J. D. Salciccioli, B. Z. Saindon, M. N. Cocchi, and M. W. Donnino. The association between a quantitative computed tomography (ct) measurement of cerebral edema and outcomes in post-cardiac arrest—a validation study. Resuscitation, 85(10):1348– 1353, 2014.
Y. Hannawi, J. Muschelli, M. Mulder, M. Sharrock, C. Storm, C. Leithner, C. M. Crainiceanu, and R. D. Stevens. Postcardiac arrest neurological prognostication with quantitative regional cerebral densitometry. Resuscitation, 154:101–109, 2020.
U. Hanning, P. B. Sporns, P. Lebiedz, T. Niederstadt, T. Zoubi, R. Schmidt, S. Knecht, W. Heindel, and A. Kemmling. Automated assessment of early hypoxic brain edema in non-enhanced ct predicts outcome in patients after cardiac arrest. Resuscitation, 104:91–94, 2016.
F. Hessulf, D. L. Bhatt, J. Engdahl, P. Lundgren, E. Omerovic, A. Rawshani, E. Helleryd, C. Dworeck, H. Friberg, B. Redfors, et al. Predicting survival and neurological outcome in out-of-hospital cardiac arrest using machine learning: the scars model. EBioMedicine, 89, 2023.
Y. Hirano, Y. Kondo, K. Sueyoshi, K. Okamoto, and H. Tanaka. Early outcome pre- diction for out-of-hospital cardiac arrest with initial shockable rhythm using machine learning models. Resuscitation, 158:49–56, 2021.
N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. Tabpfn: A transformer that solves small tabular classification problems in a second. In International Conference on Learning Representations 2023, 2023.
N. Hollmann, S. Müller, L. Purucker, A. Krishnakumar, M. Körfer, S. B. Hoo, R. T. Schirrmeister, and F. Hutter. Accurate predictions on small data with a tabular foundation model. Nature, 637(8045):319–326, 2025.
S.-C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, and M. P. Lungren. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital medicine, 3(1):136, 2020.
M. Kenda, M. Scheel, A. Kemmling, N. Aalberts, C. Guettler, K. J. Streitberger, C. Storm, C. J. Ploner, and C. Leithner. Automated assessment of brain ct after cardiac arrest—an observational derivation/validation cohort study. Critical Care Medicine, 49(12):e1212–e1222, 2021.
T. J. Kim, J. Suh, S.-H. Park, Y. Kim, and S.-B. Ko. System for predicting neurological outcomes following cardiac arrest based on clinical predictors using a machine learning method: The neurological outcomes after cardiac arrest method. Neurocritical Care, pages 1–10, 2025.
M. Lang, M. Kenda, M. Scheel, J. Martola, M. Wheeler, S. Owen, M. Johnsson, M. Annborn, J. Dankiewicz, N. Deye, et al. Radiological signs of hypoxic-ischaemic encephalopathy on head computed tomography for prediction of poor functional out- come after cardiac arrest–a prospective observational cohort study. Resuscitation, page 110675, 2025.
J.B.Lascarrou,W.Bougouin,J.Chelly,J.Bourenne,C.Daubin,O.Lesieur,P.Asfar, G. Colin, M. Paul, N. Chudeau, et al. Prospective comparison of prognostic scores for prediction of outcome after out-of-hospital cardiac arrest: results of the afterrosc1 multicentric study. Annals of Intensive Care, 13(1):100, 2023.
C. Liu, J. Elmer, D. Arefan, M. Pease, and S. Wu. Interpretable machine learn- ing model for imaging-based outcome prediction after cardiac arrest. Resuscitation, 191:109894, 2023.
S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30, 2017.
C. Maupain, W. Bougouin, L. Lamhaut, N. Deye, J.-L. Diehl, G. Geri, M.-C. Perier, F. Beganton, E. Marijon, X. Jouven, et al. The cahp (cardiac arrest hospital prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. European heart journal, 37(42):3222–3228, 2016.
M. Mlynash, D. M. Campbell, E. M. Leproust, N. J. Fischbein, R. Bammer, I. Eyngorn, A. W. Hsia, M. Moseley, and C. A. Wijman. Temporal and spatial profile of brain diffusion-weighted mri after cardiac arrest. Stroke, 41(8):1665–1672, 2010.
N. S. Molinski, M. Kenda, C. Leithner, J. Nee, C. Storm, M. Scheel, and A. Med- deb. Deep learning-enabled detection of hypoxic–ischemic encephalopathy after cardiac arrest in ct scans: a comparative study of 2d and 3d approaches. Frontiers in Neuroscience, 18:1245791, 2024.
R. Naik, I. Mandal, and D. A. Gorog. Scoring systems to predict survival or neurological recovery after out-of-hospital cardiac arrest. European Cardiology Review, 17:e20, 2022.
M. Nishikimi, N. Matsuda, K. Matsui, K. Takahashi, T. Ejima, K. Liu, T. Ogura, M. Higashi, H. Umino, G. Makishi, et al. A novel scoring system for predict- ing the neurologic prognosis prior to the initiation of induced hypothermia in cases of post-cardiac arrest syndrome: the cast score. Scandinavian journal of trauma, resuscitation and emergency medicine, 25:1–9, 2017.
N. Nishioka, D. Kobayashi, T. Kiguchi, T. Irisawa, T. Yamada, K. Yoshiya, C. Park, T. Nishimura, T. Ishibe, Y. Yagi, et al. Development and validation of early prediction for neurological outcome at 90 days after return of spontaneous circulation in out- of-hospital cardiac arrest. Resuscitation, 168:142–150, 2021.
N. Nishioka, T. Yamada, S. Nakao, K. Yoshiya, C. Park, T. Nishimura, T. Ishibe, K. Yamakawa, T. Kiguchi, M. Kishimoto, et al. External validation of updated pre- diction models for neurological outcomes at 90 days in patients with out-of-hospital cardiac arrest. Journal of the American Heart Association, 13(9):e033824, 2024.
K. Oishi, A. Faria, H. Jiang, X. Li, K. Akhter, J. Zhang, J. T. Hsu, M. I. Miller, P. C. van Zijl, M. Albert, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer’s disease participants. Neuroimage, 46(2):486–499, 2009.
K. Oishi, A. Faria, and S. Mori. Jhu-mni-ss atlas. https://www.slicer.org/publications/item/view/1883, 05 2010.
V. Pey, E. Doumard, M. Komorowski, A. Rouget, C. Delmas, F. Vardon-Bounes, M. Poette, V. Ratineau, C. Dray, I. Ader, et al. A locally optimised machine learning approach to early prognostication of long-term neurological outcomes after out-of- hospital cardiac arrest. Digital Health, 10:20552076241234746, 2024.
A. Rawshani, F. Hessulf, J. Deminger, P. Sultanian, V. Gupta, P. Lundgren, M. Mo- hammed, M. A. Alchay, T. Siöland, E. Gryska, et al. Prediction of neurologic out- come after out-of-hospital cardiac arrest: An interpretable approach with machine learning. Resuscitation, 202:110359, 2024.
A. M. Reza. Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38(1):35–44, 2004.
K. J. Streitberger, C. Endisch, C. J. Ploner, R. Stevens, M. Scheel, M. Kenda, C. Storm, and C. Leithner. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest. Resuscitation, 145:8–14, 2019.
M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR, 2017.
M. T. Torbey, M. Selim, J. Knorr, C. Bigelow, and L. Recht. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke, 31(9):2163–2167, 2000.
H.Tsai,C.-Y.Chi,L.-W.Wang,Y.-J.Su,Y.-F.Chen,M.-S.Tsai,C.-H.Wang,C.Hsu, C.-H. Huang, and W. Wang. Outcome prediction of cardiac arrest with automatically computed gray-white matter ratio on computed tomography images. Critical Care, 28(1):118, 2024.
T. Tsuchida, K. Ono, K. Maekawa, T. Wada, K. Katabami, T. Yoshida, and M. Hayakawa. Simultaneous external validation of various cardiac arrest prognostic scores: a single-center retrospective study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 29:1–8, 2021.
Z. Wang, A. M. Kulpanowski, W. A. Copen, E. S. Rosenthal, J. A. Dodelson, D. E. McCrory, B. L. Edlow, W. T. Kimberly, E. Amorim, M. Westover, et al. Automated detection of severe cerebral edema using explainable deep transfer learning after hypoxic ischemic brain injury. Resuscitation, page 110652, 2025.
C.S.Youn,K.N.Park,J.Y.Kim,C.W.Callaway,S.P.Choi,J.C.Rittenberger,S.H. Kim, S. H. Oh, and Y. M. Kim. Repeated diffusion weighted imaging in comatose cardiac arrest patients with therapeutic hypothermia. Resuscitation, 96:1–8, 2015.
G. B. Young and E. AlThenayan. Ultra-early mri in assessment of neurological prognosis in cardiac arrest survivors. Resuscitation, 88:A9–A10, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100134-
dc.description.abstract院外心跳停止(Out-of-hospital cardiac arrest, OHCA)患者即使接受積極的復甦治療,出院時仍常伴隨不良的神經學預後,主要原因為缺氧性缺血性腦病變 (hypoxic–ischemic encephalopathy)。若能在早期辨識出無法恢復意識的患者,對臨床決策至關重要。然而,目前多數研究僅依賴電子病歷(Electronic Medical Records, EMR)資料,例如基本人口學特徵、急救相關變數與實驗室數據,鮮少納入影像資料,尤其針對多模態融合的研究更為稀少。因此,本研究旨在建構一 個多模態預測架構,分別以聯合融合(joint fusion)與後期融合(late fusion)策略,同時整合 EMR 與頭部電腦斷層影像(Head CT, HCT),以提升預測準確性。
本研究為回溯性分析,納入於心跳自主恢復(Return of Spontaneous Circu- lation, ROSC)後 12 小時內接受腦部 CT 掃描之 OHCA 患者。主要預後指標為 出院時的神經功能表現,良好預後定義為大腦表現分類(Cerebral Performance Category, CPC)為 1 或 2,不良預後則為 CPC 為 3、4 或 5。我們改良先前提出的 灰白質比例(Gray–White Matter Ratio, GWR)計算方法,包含兩階段影像對位流程與應用對比強化(CLAHE)後的 K-means 分群,以提升灰白質分辨能力。在 HCT 建模方面,本研究使用兩種深度學習架構:基於卷積神經網路的 ResNet50 與 基於 Transformer 的 Vision Transformer (ViT)。此外,我們將 GWR 納入 EMR 資料 中,並應用了基於 Transformer 的表格基礎模型 TabPFN。最終,透過 joint fusion 與 late fusion 策略整合 HCT 與 EMR 流程,建構多模態預測模型。
本研究共納入三間醫院的資料,分別為台大醫院(NTUH, N=834)、台大新竹分院(NTUH-HC, N=130)與台大雲林分院(NTUH-YL, N=178)。我們在 NTUH 資料進行訓練與驗證,並以 NTUH-YL 與 NTUH-HC 作為外部測試集。改 良後之 GWR 方法在所有資料集皆達到較佳的 AUC 表現(NTUH: 0.79 vs. 0.77; NTUH-YL: 0.82 vs. 0.78;NTUH-HC: 0.88 vs. 0.82),顯示其改良效益。
在單模態模型中,與傳統機器學習方法相比,ViT 與 TabPFN 皆展現出最佳表現,分別在 NTUH、NTUH-YL 與 NTUH-HC 的 AUC 為:ViT:0.88、0.83、 0.89;TabPFN:0.86、0.79、0.81。將 GWR 納入 EMR 後,模型表現進一步提升, 此方法亦可視為 early fusion 的多模態模型(Early-GWR2stage-TabPFN 於 NTUH、 NTUH-YL 與 NTUH-HC 的 AUC 分別為 0.89、0.84 與 0.88)。
在所有模型中表現最佳者為 Late-ViT-TabPFN,其於 NTUH、NTUH-YL 與 NTUH-HC 的 AUC 分別為 0.92(95% CI: 0.86–0.97)、0.87(95% CI: 0.80–0.94) 與 0.95(95% CI: 0.90–0.98)。當特異度設定為 95% 時,其於雲林與新竹分院資料集中的敏感度分別達到 0.56 與 0.59。此外,透過可解釋性方法(如 SHAP 和 Integrated Gradients)視覺化多模態模型的影像輸入,可發現模型聚焦於與 GWR 計算相關之腦區(如 PU 與 PIC),以及枕葉與大腦皮質區域,與先前研究結果一致,提升模型解釋性與可信度。
本研究所提出之 ViT 模型展現出優異的神經學預後預測能力,突顯在進行目 標溫控治療(Targeted Temperature Management, TTM)前,影像資料於早期預測中之價值。整體而言,多模態模型於所有評估中皆優於單模態與 early fusion 模型,顯示在臨床預後預測領域中,多模態整合方法的重要性與應用潛力,為未來研究之重要方向。
zh_TW
dc.description.abstractOut-of-hospital cardiac arrest (OHCA) patients often experience poor neurological outcomes at discharge, even after receiving active resuscitation. The primary cause is hypoxic–ischemic encephalopathy. Early identification of patients who are unlikely to regain consciousness is crucial for clinical decision-making. However, most existing studies rely solely on electronic medical record (EMR) data—such as demographic information, prehospital variables, and laboratory results—while imaging data are rarely incorporated. In particular, studies involving multimodal fusion remain scarce. This study aims to develop a multimodal predictive framework that integrates EMR and head CT (HCT) data using joint and late fusion strategies to improve predictive accuracy.
This retrospective study included OHCA patients who underwent brain CT scanning within 12 hours after return of spontaneous circulation (ROSC). The primary outcome was the neurological status at hospital discharge, with a favorable outcome defined as a Cerebral Performance Category (CPC) score of 1 or 2, and a poor outcome defined as CPC scores of 3, 4, or 5. We improved a previously proposed method for calculating the gray–white matter ratio (GWR) by introducing a two-stage image registration process and applying contrast-limited adaptive histogram equalization (CLAHE) followed by K- means clustering to better differentiate gray and white matter.
For HCT modeling, we adopted two deep learning architectures: ResNet50, based on convolutional neural networks, and Vision Transformer (ViT), based on the Transformer framework. Additionally, GWR was incorporated into EMR features to build early fusion models, and we evaluated a Transformer-based tabular foundation model, TabPFN. Finally, we developed multimodal models by combining EMR and HCT features using both joint and late fusion strategies.
The study included data from three hospitals: National Taiwan University Hospital (NTUH, N = 834), NTUH-Hsinchu Branch (NTUH-HC, N = 130), and NTUH-Yunlin Branch (NTUH-YL, N = 178). Model training and evaluation were performed on the NTUH cohort, while NTUH-YL and NTUH-HC were used as external test sets. The improved GWR method outperformed the previous version in all datasets (AUC: NTUH 0.79 vs. 0.77; NTUH-YL 0.82 vs. 0.78; NTUH-HC 0.88 vs. 0.82), confirming its enhancement.
Among unimodal models, ViT and TabPFN achieved the best performance when compared with traditional machine learning methods. ViT achieved AUCs of 0.88, 0.83, and 0.89 in the NTUH, NTUH-YL, and NTUH-HC cohorts, respectively, while TabPFN achieved 0.86, 0.79, and 0.81. Incorporating GWR into EMR features (i.e., Early-GWR2stage-TabPFN) further improved model performance (AUCs: 0.89, 0.84, and 0.88), demonstrating the benefits of early fusion.
The best-performing multimodal model was Late-ViT-TabPFN, which achieved AUCs of 0.92 (95% CI: 0.86–0.97), 0.87 (95% CI: 0.80–0.94), and 0.95 (95% CI: 0.90–0.98) in the NTUH, NTUH-YL, and NTUH-HC cohorts, respectively. When setting specificity at 95%, this model achieved sensitivities of 0.56 and 0.59 in NTUH-YL and NTUH-HC, respectively. Interpretation of the multimodal model using Integrated Gradients revealed that important brain regions—such as the putamen (PU), posterior limb of the internal capsule (PIC), occipital lobe, and cortex—were consistent with prior findings, enhancing the credibility of the model.
The ViT-based HCT model demonstrated strong performance in predicting neurological outcomes, highlighting the value of incorporating imaging data for early prognosis before targeted temperature management (TTM). Overall, multimodal models outperformed both unimodal and early fusion models in all evaluations, underscoring the increasing importance and practical value of multimodal approaches in clinical outcome prediction and establishing a promising direction for future research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:36:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:36:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract ix
Contents xiii
List of Figures xvii
List of Tables xxi
Denotation xxiii
Chapter 1 Introduction 1
Chapter 2 Related Works 5
2.1 Outcome Prediction in OHCA Patients 5
2.2 Automated GWR Measurement 7
2.3 TabPFN 7
2.4 Fusion Strategies of Multimodality 8
Chapter 3 Method 11
3.1 Study Design 11
3.1.1 Study population 11
3.1.2 Study goal 12
3.2 Data 13
3.2.1 Patient data acquisition and outcome measurement 13
3.2.2 Data preprocessing 14
3.2.3 Data partitions and imbalance control 16
3.3 Automated GWR Acquisition 17
3.3.1 GWR calculation formulas 17
3.3.2 Improved automated GWR calculation method 18
3.4 Model 20
3.4.1 Overview 20
3.4.2 HCT Pipeline 21
3.4.3 EMR Pipeline 22
3.4.4 Multimodal Pipeline 24
3.5 Training and Evaluation 24
3.5.1 Procedures 24
3.5.2 Performance metrics 25
3.5.3 Model explainability 26
3.5.4 Statistical analysis 27
3.5.5 Hardware and software 27
Chapter 4 Results 29
4.1 Data 29
4.1.1 Patient inclusion criteria and outcomes 29
4.1.2 Baseline characteristics and resuscitation variables of patients 31
4.2 Model Performance 33
4.2.1 Improved Automated GWR Calculation (GWR2stage) Compared to Automated_s 35
4.2.2 Performance of Single-Modality Models 37
4.2.3 Performance of Multi-Modality Models 43
4.2.4 Performance under 75%, 90%, and 95% specificity condition 45
4.3 Model Explainability 46
Chapter 5 Discussion 51
Chapter 6 Conclusion 55
References 57
Appendix A — Supplementary Figures 65
A.1 Figures 65
Appendix B — Supplementary Tables 71
B.1 Tables 71
-
dc.language.isoen-
dc.subject頭部電腦斷層zh_TW
dc.subject灰白質比例zh_TW
dc.subject缺氧缺血性腦病變zh_TW
dc.subject院外心跳停止zh_TW
dc.subject重新建立自發性循環zh_TW
dc.subject臨床醫療決策zh_TW
dc.subject多模態模型zh_TW
dc.subjectOut‐of‐hospital cardiac arresten
dc.subjectGray‐white matter ratioen
dc.subjectHypoxic‐ischemic encephalopathyen
dc.subjectMultimodal modelen
dc.subjectClinical decision makingen
dc.subjectReturn of spontaneous circulationen
dc.subjectHead computered tomographyen
dc.title使用多模態資料的深度學習架構以早期預測院外心跳停止患者的神經學預後zh_TW
dc.titleDeep Learning Framework Using Multimodal Data to Early Predict Neurological Outcomes in OHCA Patientsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor王偉仲zh_TW
dc.contributor.coadvisorWeichung Wangen
dc.contributor.oralexamcommittee黃建華;李明穗;楊鈞澔;許哲瑜zh_TW
dc.contributor.oralexamcommitteeChien-Hua Huang;Ming-Sui Lee;Chun-Hao Yang;Cheyu Hsuen
dc.subject.keyword頭部電腦斷層,灰白質比例,缺氧缺血性腦病變,院外心跳停止,重新建立自發性循環,臨床醫療決策,多模態模型,zh_TW
dc.subject.keywordHead computered tomography,Gray‐white matter ratio,Hypoxic‐ischemic encephalopathy,Out‐of‐hospital cardiac arrest,Return of spontaneous circulation,Clinical decision making,Multimodal model,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202502309-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved