Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘述元zh_TW
dc.contributor.advisorShu-Yuan Panen
dc.contributor.author林冠廷zh_TW
dc.contributor.authorKuan-Ting Linen
dc.date.accessioned2025-09-24T16:35:52Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationAbdallah, A. M., Jat, H. S., Choudhary, M., Abdelaty, E. F., Sharma, P. C., & Jat, M. L. (2021). Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091681
Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services - A global review. Geoderma, 262, 101-111. https://doi.org/10.1016/j.geoderma.2015.08.009
Ahammad, R., Tomscha, S. A., Gergel, S. E., Baudron, F., Duriaux-Chavarría, J.-Y., Foli, S., Gumbo, D., Rowland, D., van Vianen, J., & Sunderland, T. C. H. (2024). Do provisioning ecosystem services change along gradients of increasing agricultural production? Landscape Ecology, 39(1), 5. https://doi.org/10.1007/s10980-024-01794-3
Akiyama, H., Yamamoto, A., Uchida, Y., Hoshino, Y. T., Tago, K., Wang, Y., & Hayatsu, M. (2020). Effect of low C/N crop residue input on N2O, NO, and CH4 fluxes from Andosol and Fluvisol fields. Science of The Total Environment, 713, 136677. https://doi.org/10.1016/j.scitotenv.2020.136677
Anselin, L. (2010). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L., & Rey, S. J. (2014). Modern spatial econometrics in practice: A guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC.
Arowolo, A. O., Deng, X., Olatunji, O. A., & Obayelu, A. E. (2018). Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci Total Environ, 636, 597-609. https://doi.org/10.1016/j.scitotenv.2018.04.277
Arunrat, N., Sereenonchai, S., & Wang, C. (2021). Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. J Environ Manage, 289, 112458. https://doi.org/10.1016/j.jenvman.2021.112458
Arunyawat, S., & Shrestha, R. P. (2016). Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability, 8(8). https://doi.org/10.3390/su8080768
Aryal, K., Maraseni, T., & Apan, A. (2023). Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas. Ecosystem Services, 59, 101503. https://doi.org/10.1016/j.ecoser.2022.101503
Augustin, C., & Cihacek, L. J. (2016). Relationships Between Soil Carbon and Soil Texture in the Northern Great Plains. Soil Science, 181(8). https://doi.org/10.1097/SS.0000000000000173
Ayompe, L. M., Schaafsma, M., & Egoh, B. N. (2021). Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. Journal of Cleaner Production, 278, 123914. https://doi.org/10.1016/j.jclepro.2020.123914
Bagnall, D. K., Morgan, C. L. S., Cope, M., Bean, G. M., Cappellazzi, S., Greub, K., Liptzin, D., Norris, C. L., Rieke, E., Tracy, P., Aberle, E., Ashworth, A., Bañuelos Tavarez, O., Bary, A., Baumhardt, R. L., Borbón Gracia, A., Brainard, D., Brennan, J., Briones Reyes, D.,…Honeycutt, C. W. (2022). Carbon‐sensitive pedotransfer functions for plant available water. Soil Science Society of America Journal, 86(3), 612-629. https://doi.org/10.1002/saj2.20395
Bagstad, K. J., Semmens, D. J., Waage, S., & Winthrop, R. (2013). A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services, 5, 27-39. https://doi.org/10.1016/j.ecoser.2013.07.004
Basche, A. D., & DeLonge, M. S. (2019). Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS One, 14(9), e0215702. https://doi.org/10.1371/journal.pone.0215702
Bateman, I. J., & Mace, G. M. (2020). The natural capital framework for sustainably efficient and equitable decision making. Nature Sustainability, 3(10), 776-783. https://doi.org/10.1038/s41893-020-0552-3
Beillouin, D., Ben-Ari, T., Malezieux, E., Seufert, V., & Makowski, D. (2021). Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol, 27(19), 4697-4710. https://doi.org/10.1111/gcb.15747
Blanco-Canqui, H., & Wortmann, C. S. (2020). Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil and Tillage Research, 198, 104534. https://doi.org/10.1016/j.still.2019.104534
Blanco‐Canqui, H. (2021). Does biochar improve all soil ecosystem services? GCB Bioenergy, 13(2), 291-304. https://doi.org/10.1111/gcbb.12783
Burkhard, B., Kroll, F., Müller, F., & Windhorst, W. (2009). Landscapes' capacities to provide ecosystem services - A concept for land-cover based assessments. Landscape Online, 15. https://doi.org/10.3097/LO.200915
Burkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21, 17-29. https://doi.org/10.1016/j.ecolind.2011.06.019
Cai, T., Luo, X., Fan, L., Han, J., & Zhang, X. (2022). The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020. Land, 11(12). https://doi.org/10.3390/land11122294
Cai, T. Y., Luo, X. Y., Fan, L. Y., Han, J., & Zhang, X. H. (2022). The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000-2020. Land, 11(12), 2294. https://doi.org/10.3390/land11122294
Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., Staffilani, F., & Tarocco, P. (2016). A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma, 261, 190-203. https://doi.org/10.1016/j.geoderma.2015.07.013
Campagne, C. S., Roche, P. K., & Salles, J.-M. (2018). Looking into Pandora’s Box: Ecosystem disservices assessment and correlations with ecosystem services. Ecosystem Services, 30, 126-136. https://doi.org/10.1016/j.ecoser.2018.02.005
Cao, Y., Cao, Y., Li, G., Tian, Y., Fang, X., Li, Y., & Tan, Y. (2020). Linking ecosystem services trade-offs, bundles and hotspot identification with cropland management in the coastal Hangzhou Bay area of China. Land Use Policy, 97, 104689. https://doi.org/10.1016/j.landusepol.2020.104689
CAPMI. (2023). Recycling and processing of remaining earth and stone resources from construction projects, information exchange and total quantity control plan. Construction of Surplus Earthwork Information Service Center. Retrieved 2023/11/30 from https://www.soilmove.tw/downloads/report/111%E5%B9%B4%E5%BA%A6%E3%80%8C%E7%87%9F%E5%BB%BA%E5%B7%A5%E7%A8%8B%E5%89%A9%E9%A4%98%E5%9C%9F%E7%9F%B3%E6%96%B9%E8%B3%87%E6%BA%90%E5%9B%9E%E6%94%B6%E8%99%95%E7%90%86%E8%88%87%E8%B3%87%E8%A8%8A%E4%BA%A4%E6%B5%81%E5%8F%8A%E7%B8%BD%E9%87%8F%E7%AE%A1%E5%88%B6%E8%A8%88%E7%95%AB%E3%80%8D%E4%B8%8B%E8%BC%89.pdf
CGIARSystemOrganization. (2015). Join the 4 per 1000 initiative Soil for food security and climate change. CGIAR System Organization. Retrieved 12/8 from https://www.4p1000.org/
Chang, C.-T., Shih, Y.-T., Lee, L.-C., Lee, J.-Y., Lee, T.-Y., Lin, T.-C., & Huang, J.-C. (2020). Effects of Land Cover and Atmospheric Input on Nutrient Budget in Subtropical Mountainous Rivers, Northeastern Taiwan. Water, 12(10). https://doi.org/10.3390/w12102800
Chang, C.-T., Song, C.-E., Lee, L.-C., Chan, S.-C., Liao, C.-S., Liou, Y.-S., Chiang, J.-M., Wang, S.-F., & Huang, J.-C. (2021). Influence of landscape mosaic structure on nitrate and phosphate discharges: An island-wide assessment in subtropical mountainous Taiwan. Landscape and Urban Planning, 207, 104017. https://doi.org/10.1016/j.landurbplan.2020.104017
Chang, H.-S., & Chen, J.-T. (2020). The Analysis of Illegal Factories Handling Approaches' Effect on Ecosystem Services- A Case Study of Changhua County, Taiwan [農地未登記工廠處理方案之生態系統服務影響分析-以彰化縣為例]. Journal of Architecture(114), 41-60. https://doi.org/10.3966/101632122020120114003
Chen, C.-F., & Lin, J.-Y. (2016). Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustainable Environment Research, 26(3), 124-130. https://doi.org/10.1016/j.serj.2016.04.007
Chen, K.-L., Kong, W.-H., Chen, C.-C., & Liou, J.-L. (2021). Evaluating Benefits of Eco-Agriculture: The Cases of Farms along Taiwan’s East Coast in Yilan and Hualien. Sustainability, 13(19). https://doi.org/10.3390/su131910889
Chen, Y.-C. (2020). System dynamics evaluation of household water use behavior and associated greenhouse gas emissions and environmental costs: A case study of Taipei city. Journal of Water Process Engineering, 37, 101409. https://doi.org/10.1016/j.jwpe.2020.101409
Chiang, L.-C., Liao, C.-J., Lu, C.-M., & Wang, Y.-C. (2021). Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment, 193(8), 520. https://doi.org/10.1007/s10661-021-09283-9
Cong, W., Sun, X., Guo, H., & Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112, 106089. https://doi.org/10.1016/j.ecolind.2020.106089
Corrochano-Monsalve, M., Bozal-Leorri, A., Sánchez, C., González-Murua, C., & Estavillo, J.-M. (2021). Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. Journal of Cleaner Production, 289, 125701. https://doi.org/10.1016/j.jclepro.2020.125701
Costanza, R. (2020). Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosystem Services, 43, 101096. https://doi.org/10.1016/j.ecoser.2020.101096
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
CWA. CWA Observation Data Inquire Service. Central Weather Administration, Taiwan. Retrieved 2024/1/25 from https://codis.cwa.gov.tw/
Dai, C., Liu, Y., Wang, T., Li, Z., & Zhou, Y. (2018). Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agricultural Water Management, 210, 41-48. https://doi.org/10.1016/j.agwat.2018.07.032
Dardonville, M., Legrand, B., Clivot, H., Bernardin, C., Bockstaller, C., & Therond, O. (2022). Assessment of ecosystem services and natural capital dynamics in agroecosystems. Ecosystem Services, 54, 101415. https://doi.org/10.1016/j.ecoser.2022.101415
Das, M., Das, A., Seikh, S., & Pandey, R. (2022). Nexus between indigenous ecological knowledge and ecosystem services: A socio-ecological analysis for sustainable ecosystem management. Environmental Science and Pollution Research, 29(41), 61561-61578. https://doi.org/10.1007/s11356-021-15605-8
Ding, T., Chen, J., Fang, L., Ji, J., & Fang, Z. (2023). Urban ecosystem services supply-demand assessment from the perspective of the water-energy-food nexus. Sustainable Cities and Society, 90, 104401. https://doi.org/10.1016/j.scs.2023.104401
Dou, H., Li, X., Li, S., Dang, D., Li, X., Lyu, X., Li, M., & Liu, S. (2020). Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. Journal of Cleaner Production, 256, 120444. https://doi.org/10.1016/j.jclepro.2020.120444
Drakou, E. G., Crossman, N. D., Willemen, L., Burkhard, B., Palomo, I., Maes, J., & Peedell, S. (2015). A visualization and data-sharing tool for ecosystem service maps: Lessons learnt, challenges and the way forward. Ecosystem Services, 13, 134-140. https://doi.org/10.1016/j.ecoser.2014.12.002
Drobnik, T., Greiner, L., Keller, A., & Grét-Regamey, A. (2018). Soil quality indicators - From soil functions to ecosystem services. Ecological Indicators, 94, 151-169. https://doi.org/10.1016/j.ecolind.2018.06.052
Du, J., Gong, Y., Xi, X., Liu, C., Qian, C., & Ye, B. (2024). The study on the spatiotemporal changes in tradeoffs and synergies of ecosystem services and response to land use/land cover changes in the region around Taihu Lake. Heliyon, 10(13). https://doi.org/10.1016/j.heliyon.2024.e33375
Du, W. C., & Xia, X. H. (2018). How does urbanization affect GHG emissions? A cross-country panel threshold data analysis. Applied Energy, 229, 872-883. https://doi.org/10.1016/j.apenergy.2018.08.050
Ellili-Bargaoui, Y., Walter, C., Lemercier, B., & Michot, D. (2021). Assessment of six soil ecosystem services by coupling simulation modelling and field measurement of soil properties. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107211
Ellis, J. (2021, April 29, 2021). EU to launch carbon farming framework by end-2021 following two-year study. AgFunderNews. https://agfundernews.com/carbon-farming-eu-framework-by-end-2021-following-two-year-study.html
EU. (2019). Natural Capital Accounting: Overview and Progress in the European Union. https://ec.europa.eu/environment/nature/capital_accounting/pdf/MAES_INCA_2018_report_FINAL-fpub.pdf
Fan, F., Henriksen, C. B., & Porter, J. (2016). Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input. Ecosystem Services, 22, 117-127. https://doi.org/10.1016/j.ecoser.2016.10.007
FAO. (2012). Mainstreaming climate-smart agriculture into a broader landscape approach. 2nd Global Conference Agriculture Food Security Climate Change,
FAO. (2014). The water-energy-food nexus: A new approach in support of food security and sustainable agriculture.
FAO. (2017). A Literature review on frameworks and methods for measuring and monitoring sustainable agriculture (Global Strategy to improve agricultural and rural statistics, Issue. FAO. https://openknowledge.fao.org/handle/20.500.14283/ca6417en
FAO. (2018). Transforming Food and Agriculture to Achieve the SDGs: 20 interconnected actions to guide decision-makers (Technical Reference Document, Issue. www.fao.org/3/CA1647EN/ca1647en.pdf
FAO. (2021). FAOSTAT Land Use (https://www.fao.org/faostat/en/#data/RL
FAO, G., IPCC, ITPS, UNCCD - SPI interface, WMO. (2017). Proceedings of the Global Symposium on Soil Organic Carbon 2017. Global Symposium on Soil Organic Carbon, Rome, Italy.
Fu, B. J., Su, C. H., Wei, Y. P., Willett, I. R., Lü, Y. H., & Liu, G. H. (2010). Double counting in ecosystem services valuation: causes and countermeasures. Ecological Research, 26(1), 1-14. https://doi.org/10.1007/s11284-010-0766-3
Gaglio, M., Muresan, A. N., Sebastiani, A., Cavicchi, D., Fano, E. A., & Castaldelli, G. (2023). A “reserve” of regulating services: The importance of a remnant protected forest for human well-being in the Po delta (Italy). Ecological Modelling, 484, 110485. https://doi.org/10.1016/j.ecolmodel.2023.110485
Gogoi, B., Borah, N., Baishya, A., Nath, D. J., Dutta, S., Das, R., Bhattacharyya, D., Sharma, K. K., Valente, D., & Petrosillo, I. (2021). Enhancing soil ecosystem services through sustainable integrated nutrient management in double rice-cropping system of North-East India. Ecological Indicators, 132, 108262. https://doi.org/10.1016/j.ecolind.2021.108262
Gomes, E., Banos, A., Abrantes, P., Rocha, J., Kristensen, S. B. P., & Busck, A. (2019). Agricultural land fragmentation analysis in a peri-urban context: From the past into the future. Ecological Indicators, 97, 380-388. https://doi.org/10.1016/j.ecolind.2018.10.025
Gordon, L. J., Finlayson, C. M., & Falkenmark, M. (2010). Managing water in agriculture for food production and other ecosystem services. Agricultural Water Management, 97(4), 512-519. https://doi.org/10.1016/j.agwat.2009.03.017
Government, C. C. (2021). Spatial Planning in Chiayi County. Chiayi County Government. Retrieved 2024/08/01 from https://ws-tm.cyhg.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMTMzMC9yZWxmaWxlLzExMzg4LzIwNjcwNC9jYjhmYTY2Yy02NTkzLTRjNDItYWIyZi0xZjhhODU3MmIwMWQucGRm&n=MjAyMTA0Mjhf5ZiJ576p57ij5ZyL5Zyf6KiI55Wr5rOV5a6a5aCx5ZGK5pu4LnBkZg%3d%3d
Greiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69, 224-237. https://doi.org/10.1016/j.landusepol.2017.06.025
Grondard, N., Hein, L., & Van Bussel, L. G. J. (2021). Ecosystem accounting to support the Common Agricultural Policy. Ecological Indicators, 131, 108157. https://doi.org/10.1016/j.ecolind.2021.108157
Haines-Young, R., & Potschin, M. (2018). Common international classification of ecosystem services (CICES), Version 5.1: Guidance on the application of the revised structure. Fabis Consulting Ltd. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf
Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34. https://doi.org/10.1016/j.envdev.2020.100527
Heal, K., Bartosova, A., Hipsey, M., Chen, X., Buytaert, W., Li, H.-Y., McGrane, S., Gupta, A., & Cudennec, C. (2021). Water quality: the missing dimension of water in the water–energy–food nexus. Hydrological Sciences Journal, 66(5), 745-758. https://doi.org/10.1080/02626667.2020.1859114
Hein, L., Remme, R. P., Schenau, S., Bogaart, P. W., Lof, M. E., & Horlings, E. (2020). Ecosystem accounting in the Netherlands. Ecosystem Services, 44, 101118. https://doi.org/10.1016/j.ecoser.2020.101118
Hou, Y., Ding, S., Chen, W., Li, B., Burkhard, B., Bicking, S., & Müller, F. (2020). Ecosystem service potential, flow, demand and their spatial associations: a comparison of the nutrient retention service between a human- and a nature-dominated watershed. Science of The Total Environment, 748, 141341. https://doi.org/10.1016/j.scitotenv.2020.141341
Hsu, C.-H., Cheng, F.-Y., Chen, C.-L., Wu, D.-H., Chen, T.-Y., Liao, K.-F., Lay, W.-L., & Zhang, Y.-T. (2023). A high-resolution inventory of ammonia emissions from agricultural fertilizer application and crop residue in Taiwan. Atmospheric Environment, 309, 119920. https://doi.org/10.1016/j.atmosenv.2023.119920
Hu, T., Wu, J., & Li, W. (2019). Assessing relationships of ecosystem services on multi-scale: A case study of soil erosion control and water yield in the Pearl River Delta. Ecological Indicators, 99, 193-202. https://doi.org/10.1016/j.ecolind.2018.11.066
Huang, S.-L., Lee, Y.-C., Budd, W. W., & Yang, M.-C. (2012). Analysis of Changes in Farm Pond Network Connectivity in the Peri-Urban Landscape of the Taoyuan Area, Taiwan. Environmental Management, 49(4), 915-928. https://doi.org/10.1007/s00267-012-9824-7
Huang, T., & Yu, D. (2021). Water-soil conservation services dynamic and its implication for landscape management in a fragile semiarid landscape. Ecological Indicators, 130. https://doi.org/10.1016/j.ecolind.2021.108150
Huang, W., Hashimoto, S., Yoshida, T., Saito, O., & Taki, K. (2021). A nature-based approach to mitigate flood risk and improve ecosystem services in Shiga, Japan. Ecosystem Services, 50, 101309. https://doi.org/10.1016/j.ecoser.2021.101309
Hurni, H., Giger, M., Liniger, H., Mekdaschi Studer, R., Messerli, P., Portner, B., Schwilch, G., Wolfgramm, B., & Breu, T. (2015). Soils, agriculture and food security: the interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability, 15, 25-34. https://doi.org/10.1016/j.cosust.2015.07.009
ICAP. (2022). EU Emissions Trading System (EU ETS). International Carbon Action Partnership (ICAP). Retrieved 2023/11/01 from https://icapcarbonaction.com/system/files/ets_pdfs/icap-etsmap-factsheet-43.pdf
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. I. secretariat.
IPBES. (2024). Summary for Policymakers of the Thematic Assessment Report on the Interlinkages among Biodiversity, Water, Food and Health of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. I. secretariat.
ITPS, F. (2021). Recarbonizing global soils: A technical manual of recommended sustainable soil management. https://doi.org/10.4060/cb6595en
Jiang, C., Li, D., Wang, D., & Zhang, L. (2016). Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecological Indicators, 66, 199-211. https://doi.org/10.1016/j.ecolind.2016.01.051
Jiang, L., Wang, Z. Z., Zuo, Q. T., & Du, H. H. (2023). Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. Journal of Cleaner Production, 397, 136485. https://doi.org/10.1016/j.jclepro.2023.136485
Jien, S.-H., Chen, C.-N., Dabo, L. M., Tfwala, S. S., & Kunene, N. H. (2023). Impact assessment of land use and land cover change on soil erosion at Laonung watershed in Taiwan. Environmental Earth Sciences, 82(24). https://doi.org/10.1007/s12665-023-11287-2
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
Ke, Y.-L., & Huang, W.-C. (2016). Evaluation of Treatment Efficiency for Agriculture Non-point Source Pollution in Reservoir Watershed Using InVEST Model. J. Chin. Soil Water Conserv., 48(2), 1733-1747.
Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Science of The Total Environment, 547, 137-147. https://doi.org/10.1016/j.scitotenv.2015.12.127
Kiran, K., Pal, S., Chand, P., & Kandpal, A. (2023). Carbon sequestration potential of sustainable agricultural practices to mitigate climate change in Indian agriculture: A meta-analysis. Sustainable Production and Consumption, 35, 697-708. https://doi.org/10.1016/j.spc.2022.12.015
La Notte, A. (2022). Ecologically Intermediate and Economically Final: The Role of the Ecosystem Services Framework in Measuring Sustainability in Agri-Food Systems. Land, 11(1). https://doi.org/10.3390/land11010084
Lai, T.-Y., Salminen, J., Jäppinen, J.-P., Koljonen, S., Mononen, L., Nieminen, E., Vihervaara, P., & Oinonen, S. (2018). Bridging the gap between ecosystem service indicators and ecosystem accounting in Finland. Ecological Modelling, 377, 51-65. https://doi.org/10.1016/j.ecolmodel.2018.03.006
Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112(5), 3265-3277. https://doi.org/10.1002/agj2.20282
Lang, Y., Song, W., & Zhang, Y. (2017). Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Physics and Chemistry of the Earth, Parts A/B/C, 101, 102-111. https://doi.org/10.1016/j.pce.2017.06.003
Lee, C.-Y. (2017). Soil and water conservation manual [水土保持手冊]. Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan.
Lee, Y.-C., & Huang, S.-L. (2018). Spatial emergy analysis of agricultural landscape change: Does fragmentation matter? Ecological Indicators, 93, 975-985. https://doi.org/10.1016/j.ecolind.2018.05.067
Lei, C. (2025). Evaluating coupled influences of slope class and land use change on water quality using single and composite indices in an agricultural basin. Catena, 248. https://doi.org/10.1016/j.catena.2024.108584
Li, B., Wang, W., & Wang, Y. (2020). Identifying the relationships among multiple ecosystem services. Journal of Arid Environments, 183, 104265. https://doi.org/10.1016/j.jaridenv.2020.104265
Li, M., Zheng, P., & Pan, W. (2022). Spatial-Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in Fujian. Sustainability, 14(5). https://doi.org/10.3390/su14053086
Li, R. D., Li, R. N., Zheng, H., Yang, Y. Z., & Ouyang, Z. Y. (2020). Quantifying Ecosystem Service Trade-Offs to Inform Spatial Identification of Forest Restoration. Forests, 11(5), 563. https://doi.org/10.3390/f11050563
Li, T., Lü, Y., Fu, B., Hu, W., & Comber, A. J. (2019). Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecological Indicators, 99, 332-342. https://doi.org/10.1016/j.ecolind.2018.12.041
Li, Y., Liu, W., Feng, Q., Zhu, M., Yang, L., & Zhang, J. (2022). Quantitative Assessment for the Spatiotemporal Changes of Ecosystem Services, Tradeoff–Synergy Relationships and Drivers in the Semi-Arid Regions of China. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010239
Li, Z., Deng, X., Jin, G., Mohmmed, A., & Arowolo, A. O. (2020). Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Science of The Total Environment, 707, 136032. https://doi.org/10.1016/j.scitotenv.2019.136032
Liang, J., Li, S., Li, X., Li, X., Liu, Q., Meng, Q., Lin, A., & Li, J. (2021). Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279, 123851. https://doi.org/10.1016/j.jclepro.2020.123851
Limb, B. J., Quinn, J. C., Johnson, A., Sowby, R. B., & Thomas, E. (2024). The potential of carbon markets to accelerate green infrastructure based water quality trading. Communications Earth & Environment, 5(1), 185. https://doi.org/10.1038/s43247-024-01359-x
Lin, K.-T., Pan, S.-Y., Yuan, M.-H., Guo, H.-Y., & Huang, Y.-C. (2024). Quantifying and monetarizing cropland ecosystem services towards sustainable soil management. Ecological Indicators, 159, 111751. https://doi.org/10.1016/j.ecolind.2024.111751
Lin, K.-T., Pan, S.-Y., Yuan, M.-H., Zhang, Y.-T., & Guo, H.-Y. (2025). Synergies between rice production security and soil-related ecosystem services: From field observations to policy implementations. Agricultural Systems, 224, 104256. https://doi.org/10.1016/j.agsy.2024.104256
Liou, Y.-A., Nguyen, Q.-V., Hoang, D.-V., & Tran, D.-P. (2022). Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan. Progress in Earth and Planetary Science, 9(1). https://doi.org/10.1186/s40645-022-00512-4
Liu, C., Wang, S., Zhu, E., Jia, J., Zhao, Y., & Feng, X. (2021). Long-term drainage induces divergent changes of soil organic carbon contents but enhances microbial carbon accumulation in fen and bog. Geoderma, 404, 115343. https://doi.org/10.1016/j.geoderma.2021.115343
Liu, S., Hu, N., Zhang, J., & Lv, Z. (2018). Spatiotemporal change of carbon storage in the Loess Plateau of northern Shaanxi, based on the InVEST Model. Sciences in Cold and Arid Regions, 10(3), 240-250. https://doi.org/10.3724/SP.J.1226.2018.00240
Liu, T., Guo, L., Cao, C., Tan, W., & Li, C. (2021). Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter. Agriculture, Ecosystems & Environment, 319, 107548. https://doi.org/10.1016/j.agee.2021.107548
Lyu, R., Clarke, K. C., Zhang, J., Feng, J., Jia, X., & Li, J. (2019). Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Applied Geography, 108, 64-73. https://doi.org/10.1016/j.apgeog.2019.05.003
Ma, G., & Wang, S. (2015). Temporal and spatial distribution changing characteristics of exogenous pollution load into Dianchi Lake, Southwest of China. Environmental Earth Sciences, 74(5), 3781-3793. https://doi.org/10.1007/s12665-015-4721-z
Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M., Barredo, J., Grizzeti, B., Cardoso, A., Somma, F., & Petersen, J. (2016). Mapping and assessing the condition of Europe’s ecosystems: Progress and challenges.
Maes J, T. A., Erhard M, Grizzetti B, Barredo JI, Paracchini ML, Condé S, Somma F, Orgiazzi A, Jones A, Zulian A, Vallecilo S, Petersen JE, Marquardt D, Kovacevic V, Abdul Malak D, Marin AI, Czúcz B, Mauri A, Loffler P, BastrupBirk A, Biala K, Christiansen T, Werner B. (2018). Mapping and Assessment of Ecosystems and their Services: An analytical framework for ecosystem condition. P. o. o. t. E. Union.
Maes, J., Teller, A., Erhard, M., Liquete, C., Braat, L., Berry, P., Egoh, B., Puydarrieux, P., Fiorina, C., & Santos, F. (2013). Mapping and assessment of ecosystems and their services: An analytical framework for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020. (Vol. 5). https://doi.org/10.2779/12398.
Maes, J., Teller, A., Erhard, M., Murphy, P., Paracchini, M. L., Barredo, J. I., Grizzetti, B., Cardoso, A., Somma, F., & Petersen, J. E. (2014). Mapping and Assessment of Ecosystems and their Services: Indicators for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020.
Maes, J., Teller, A., Erhard, M., Conde, S., Vallecillo Rodriguez, S., Barredo Cano, J.I., Paracchini, M., Abdul Malak, D., Trombetti, M., Vigiak, O., Zulian, G., Addamo, A., Grizzetti, B., Somma, F., Hagyo, A., Vogt, P., Polce, C., Jones, A., Marin, A., Ivits, E., Mauri, A., Rega, C., Czucz, B., Ceccherini, G., Pisoni, E., Ceglar, A., De Palma, P., Cerrani, I., Meroni, M., Caudullo, G., Lugato, E., Vogt, J., Spinoni, J., Cammalleri, C., Bastrup-Birk, A., San-Miguel-Ayanz, J., San Román, S., Kristensen, P., Christiansen, T., Zal, N., De Roo, A., De Jesus Cardoso, A., Pistocchi, A., Del Barrio Alvarellos, I., Tsiamis, K., Gervasini, E., Deriu, I., La Notte, A., Abad Viñas, R., Vizzarri, M., Camia, A., Robert, N., Kakoulaki, G., Garcia Bendito, E., Panagos, P., Ballabio, C., Scarpa, S., Montanarella, L., Orgiazzi, A., Fernandez Ugalde, O. and Santos-Martín, F. (2020). Mapping and Assessment of Ecosystems and their Services: An EU ecosystem assessment.
Maia Da Rocha, S., Zulian, G., Maes, J., & Martijn, T. (2015). Mapping and assessment of urban ecosystems and their services. Publications Office of the European Union. https://doi.org/10.2788/638737
Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., García Franco, N., Díaz-Pereira, E., Montoya, I., & de Vente, J. (2020). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187, 104352. https://doi.org/10.1016/j.catena.2019.104352
McCuen, R. H. (2017). Hydrologic Analysis and Design (4 ed.). Hoboken, NJ : Pearson Higher Education, Inc.
Medcalf, K. (2012). Spatial framework for assessing evidence needs for operational ecosystem approaches. Joint Nature Conservation Committee.
Meraj, G., Singh, S. K., Kanga, S., & Islam, M. N. (2022). Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: a review. Modeling Earth Systems and Environment, 8(1), 15-34. https://doi.org/10.1007/s40808-021-01131-6
Meulen, S. M., Linda & Bartkowski, Bartosz & Hagemann, Nina & Arrüe, José & Playán, Enrique & Herrero, Juan & Plaza-Bonilla, Daniel & Álvaro-Fuentes, Jorge & Sànchez, Marta & Lopatka, Artur & Siebielec, Grzegorz & Verboven, Jan & Cleen, Margot & Staes, Jan & Boekhold, Sandra & Goidts, Esther & Creamer, Rachel & Alberico, Simonetta & Innamorati, Angelo. (2018). Mapping and Assessment of Ecosystems and their Services: Soil ecosystems. . https://www.researchgate.net/publication/323856002_Mapping_and_Assessment_of_Ecosystems_and_their_Services_Soil_ecosystems
Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: Current State and Trends. I. Press.
Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69(1), 39-47. https://doi.org/10.1111/ejss.12475
MOA. (1959). Hillside soil survey report: Yunlin and Chiayi.
MOA. (2023). Taiwan Agricultural Yearbook 2022 [農業統計年報111年(112/10)]. Ministry of Agriculture, Taiwan. (2023/10)
MOE. (2024). The National Inventory Report of the Republic of China (Taiwan) [2024中華民國國家溫室氣體排放清冊報告]. Ministry of Environment.
MOI. (2022). Code for Design of Urban Roads and Auxiliary Works. Retrieved 2023/12/23 from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070156
MOST. (2021). Scientific highlights of IPCC Sixth Assessment Report on Climate Change and Taiwan Climate Change Review Update Report. https://tccip.ncdr.nat.gov.tw/upload/data_document/20210810135326.pdf
Mouttaki, I., Bagdanaviciute, I., Maanan, M., Erraiss, M., Rhinane, H., & Maanan, M. (2022). Classifying and Mapping Cultural Ecosystem Services Using Artificial Intelligence and Social Media Data. Wetlands, 42(7), 86. https://doi.org/10.1007/s13157-022-01616-9
Mukhopadhyay, A., Hati, J. P., Acharyya, R., Pal, I., Tuladhar, N., & Habel, M. (2025). Global trends in using the InVEST model suite and related research: A systematic review. Ecohydrology & Hydrobiology, 25(2), 389-405. https://doi.org/10.1016/j.ecohyd.2024.06.002
Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., Malcolm, T. R., & Ricketts, T. H. (2008). Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences, 105(28), 9495-9500. https://doi.org/10.1073/pnas.0707823105
Nayak, A. K., Shahid, M., Nayak, A. D., Dhal, B., Moharana, K. C., Mondal, B., Tripathi, R., Mohapatra, S. D., Bhattacharyya, P., Jambhulkar, N. N., Shukla, A. K., Fitton, N., Smith, P., & Pathak, H. (2019a). Assessment of ecosystem services of rice farms in eastern India. Ecological Processes, 8(1). https://doi.org/10.1186/s13717-019-0189-1
Nayak, A. K., Shahid, M., Nayak, A. D., Dhal, B., Moharana, K. C., Mondal, B., Tripathi, R., Mohapatra, S. D., Bhattacharyya, P., Jambhulkar, N. N., Shukla, A. K., Fitton, N., Smith, P., & Pathak, H. (2019b). Assessment of ecosystem services of rice farms in eastern India. Ecological Processes, 8(1), 1-16. https://doi.org/10.1186/s13717-019-0189-1
NCAVES, & MAIA. (2022). Monetary valuation of ecosystem services and ecosystem assets for ecosystem accounting: Interim Version 1st edition.
Nel, L., Boeni, A. F., Prohászka, V. J., Szilágyi, A., Kovács, E. T., Pásztor, L., & Centeri, C. (2022). InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability, 14(16), 9808. https://doi.org/10.3390/su14169808
Nel, L., Boeni, A. F., Prohászka, V. J., Szilágyi, A., Tormáné Kovács, E., Pásztor, L., & Centeri, C. (2022). InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability, 14(16). https://doi.org/10.3390/su14169808
Nguyen, T. H., Cook, M., Field, J. L., Khuc, Q. V., & Paustian, K. (2018). High-resolution trade-off analysis and optimization of ecosystem services and disservices in agricultural landscapes. Environmental Modelling & Software, 107, 105-118. https://doi.org/10.1016/j.envsoft.2018.06.006
Nowosad, J., & Stepinski, T. F. (2018). Spatial association between regionalizations using the information-theoretical V-measure. International Journal of Geographical Information Science, 32(12), 2386-2401. https://doi.org/10.1080/13658816.2018.1511794
Obst, C., Hein, L., & Edens, B. (2016). National Accounting and the Valuation of Ecosystem Assets and Their Services. Environmental and Resource Economics, 64(1), 1-23. https://doi.org/10.1007/s10640-015-9921-1
Ochoa, V., & Urbina-Cardona, N. (2017). Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosystem Services, 26, 155-169. https://doi.org/10.1016/j.ecoser.2017.06.011
Omar, M. E. D., & Nangia, V. (2023). On-farm water energy food carbon-footprint nexus index for quantitative assessment of integrated resources management for wheat farming in Egypt. Water-Energy Nexus, 6, 122-130. https://doi.org/10.1016/j.wen.2023.09.002
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 187, 87-105. https://doi.org/10.1016/j.agee.2013.10.010
Palomo-Campesino, S., González, J. A., & García-Llorente, M. (2018). Exploring the Connections between Agroecological Practices and Ecosystem Services: A Systematic Literature Review. Sustainability, 10(12), 4339. https://doi.org/10.3390/su10124339
Pan, B. T.-C., & Kao, J.-J. (2021). Comparison of indices for evaluating building green values based on greenhouse gas emission reductions. Ecological Indicators, 122, 107228. https://doi.org/10.1016/j.ecolind.2020.107228
Pan, S.-Y., He, K.-H., Lin, K.-T., Fan, C., & Chang, C.-T. (2022). Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science, 5(1). https://doi.org/10.1038/s41612-022-00265-3
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., & Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development, 29(3), 471-484. https://doi.org/10.1002/ldr.2879
Pasut, C., Tang, F. H. M., Hamilton, D., Riley, W. J., & Maggi, F. (2021). Spatiotemporal Assessment of GHG Emissions and Nutrient Sequestration Linked to Agronutrient Runoff in Global Wetlands. Global Biogeochemical Cycles, 35(4). https://doi.org/10.1029/2020gb006816
Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7-13. https://doi.org/10.1016/j.coesh.2017.12.003
Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond B Biol Sci, 365(1554), 2959-2971. https://doi.org/10.1098/rstb.2010.0143
Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., Hirsch, P. R., & Goulding, K. W. T. (2011). Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36, S72-S87. https://doi.org/10.1016/j.foodpol.2010.11.025
Prest, B. C., Rennert, K., Newell, R. G., & Wingenroth, J. (2022). Social Cost of Carbon Explorer. Retrieved 2023/1/16 from https://www.rff.org/publications/data-tools/scc-explorer/
Project, N. C. (2024). InVEST 3.14.1 User's Guide. Natural Capital Project. Retrieved 2024/08/01 from https://naturalcapitalproject.stanford.edu/software/invest
Qiu, M., Van de Voorde, T., Li, T., Yuan, C., & Yin, G. (2021). Spatiotemporal variation of agroecosystem service trade-offs and its driving factors across different climate zones. Ecological Indicators, 130, 108154. https://doi.org/10.1016/j.ecolind.2021.108154
Rennert, K., Prest, B. C., Pizer, W. A., Newell, R. G., Anthoff, D., Kingdon, C., Rennels, L., Cooke, R., Raftery, A. E., & Ševčíková, H. (2022). The social cost of carbon: advances in long-term probabilistic projections of population, GDP, emissions, and discount rates. Brookings Papers on Economic Activity, 2021(2), 223-305. https://doi.org/10.1353/eca.2022.0003
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Samir, K. C., Leimbach, M., Jiang, L. W., Kram, T., Rao, S., Emmerling, J.,…Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change-Human and Policy Dimensions, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T., & Eshel, G. (2019). Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci Total Environ, 648, 1484-1491. https://doi.org/10.1016/j.scitotenv.2018.08.259
Robinson, D. A., Panagos, P., Borrelli, P., Jones, A., Montanarella, L., Tye, A., & Obst, C. G. (2017). Soil natural capital in europe; a framework for state and change assessment. Scientific Reports, 7(1), 6706. https://doi.org/10.1038/s41598-017-06819-3
Rolo, V., Roces-Diaz, J. V., Torralba, M., Kay, S., Fagerholm, N., Aviron, S., Burgess, P., Crous-Duran, J., Ferreiro-Dominguez, N., Graves, A., Hartel, T., Mantzanas, K., Mosquera-Losada, M. R., Palma, J. H. N., Sidiropoulou, A., Szerencsits, E., Viaud, V., Herzog, F., Plieninger, T., & Moreno, G. (2021). Mixtures of forest and agroforestry alleviate trade-offs between ecosystem services in European rural landscapes. Ecosystem Services, 50, 101318. https://doi.org/10.1016/j.ecoser.2021.101318
Sahle, M., Saito, O., Fürst, C., & Yeshitela, K. (2019). Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Science of The Total Environment, 646, 573-586. https://doi.org/10.1016/j.scitotenv.2018.07.347
Schäckermann, J., Mandelik, Y., Weiss, N., von Wehrden, H., & Klein, A.-M. (2015). Natural habitat does not mediate vertebrate seed predation as an ecosystem dis-service to agriculture. Journal of Applied Ecology, 52(2), 291-299. https://doi.org/10.1111/1365-2664.12402
Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C., & O’hUallachain, D. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy, 38, 45-58. https://doi.org/10.1016/j.envsci.2013.10.002
Shackleton, C. M., Ruwanza, S., Sinasson Sanni, G. K., Bennett, S., De Lacy, P., Modipa, R., Mtati, N., Sachikonye, M., & Thondhlana, G. (2016). Unpacking Pandora’s Box: Understanding and Categorising Ecosystem Disservices for Environmental Management and Human Wellbeing. Ecosystems, 19(4), 587-600. https://doi.org/10.1007/s10021-015-9952-z
Shah, S. M., Liu, G., Yang, Q., Wang, X., Casazza, M., Agostinho, F., Lombardi, G. V., & Giannetti, B. F. (2019). Emergy-based valuation of agriculture ecosystem services and dis-services. Journal of Cleaner Production, 239, 118019. https://doi.org/10.1016/j.jclepro.2019.118019
Shao, Y., Xiao, Y., & Sang, W. (2022). Land use trade-offs and synergies based on temporal and spatial patterns of ecosystem services in South China. Ecological Indicators, 143, 109335. https://doi.org/10.1016/j.ecolind.2022.109335
Sharma, R., Nehren, U., Rahman, S. A., Meyer, M., Rimal, B., Aria Seta, G., & Baral, H. (2018). Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land, 7(2). https://doi.org/10.3390/land7020057
Song, B., Robinson, G. M., & Bardsley, D. K. (2020). Measuring Multifunctional Agricultural Landscapes. Land, 9(8). https://doi.org/10.3390/land9080260
Stavi, I., Bel, G., & Zaady, E. (2016). Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for Sustainable Development, 36(2), 32. https://doi.org/10.1007/s13593-016-0368-8
Suarez, A., & Gwozdz, W. (2023). On the relation between monocultures and ecosystem services in the Global South: A review. Biological Conservation, 278. https://doi.org/10.1016/j.biocon.2022.109870
Sun, Y., Hao, R., Qiao, J., & Xue, H. (2020). Function zoning and spatial management of small watersheds based on ecosystem disservice bundles. Journal of Cleaner Production, 255, 120285. https://doi.org/10.1016/j.jclepro.2020.120285
Swinton, S. M., Lupi, F., Robertson, G. P., & Hamilton, S. K. (2007). Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecological Economics, 64(2), 245-252. https://doi.org/10.1016/j.ecolecon.2007.09.020
Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., van der Heijden, M. G. A., Liebman, M., & Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv, 6(45). https://doi.org/10.1126/sciadv.aba1715
Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., van der Heijden, M. G. A., Liebman, M., & Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6(45), eaba1715. https://doi.org/10.1126/sciadv.aba1715
Tan, Z. X., Lal, R., Smeck, N. E., & Calhoun, F. G. (2004). Relationships between surface soil organic carbon pool and site variables. Geoderma, 121(3), 187-195. https://doi.org/10.1016/j.geoderma.2003.11.003
TEEB. (2010). The economics of ecosystems and biodiversity: ecological and economic foundations. Earthscan.
TEEB. (2018). TEEB for Agriculture & Food: Scientific and Economic Foundations.
Tsai, H.-W., & Lee, Y.-C. (2023). Effects of land use change and crop rotation practices on farmland ecosystem service valuation. Ecological Indicators, 155, 110998. https://doi.org/10.1016/j.ecolind.2023.110998
Tsai, H.-W., & Lee, Y.-C. (2024). Will changing land use and cropping practices affect resource use efficiency and environmental sustainability of agricultural systems? A hierarchical emergy assessment approach. Ecological Indicators, 160, 111933. https://doi.org/10.1016/j.ecolind.2024.111933
UN, EC, FAO, IMF, OECD, & Bank, T. W. (2021). System of Environmental-Economic Accounting—Ecosystem Accounting. White cover publication, pre-edited text subject to official editing. . United Nations. https://doi.org/10.5089/9789212591834.069
Varyvoda, Y., & Taren, D. (2022). Considering Ecosystem Services in Food System Resilience. Int J Environ Res Public Health, 19(6). https://doi.org/10.3390/ijerph19063652
Villarino, S. H., Studdert, G. A., & Laterra, P. (2019). How does soil organic carbon mediate trade-offs between ecosystem services and agricultural production? Ecological Indicators, 103, 280-288. https://doi.org/10.1016/j.ecolind.2019.04.027
Wang, L., Zheng, H., Wen, Z., Liu, L., Robinson, B. E., Li, R., Li, C., & Kong, L. (2019). Ecosystem service synergies/trade-offs informing the supply-demand match of ecosystem services: Framework and application. Ecosystem Services, 37, 100939. https://doi.org/10.1016/j.ecoser.2019.100939
Watson, S. C. L., Newton, A. C., Ridding, L. E., Evans, P. M., Brand, S., McCracken, M., Gosal, A. S., & Bullock, J. M. (2021). Does agricultural intensification cause tipping points in ecosystem services? Landscape Ecology, 36(12), 3473-3491. https://doi.org/10.1007/s10980-021-01321-8
Whelan, C. J., Şekercioğlu, Ç. H., & Wenny, D. G. (2015). Why birds matter: from economic ornithology to ecosystem services. Journal of Ornithology, 156(1), 227-238. https://doi.org/10.1007/s10336-015-1229-y
Wittwer, R. A., Bender, S. F., Hartman, K., Hydbom, S., Lima, R. A. A., Loaiza, V., Nemecek, T., Oehl, F., Olsson, P. A., Petchey, O., Prechsl, U. E., Schlaeppi, K., Scholten, T., Seitz, S., Six, J., & van der Heijden, M. G. A. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34), eabg6995. https://doi.org/10.1126/sciadv.abg6995
Wu, S., Li, B. V., & Li, S. (2021). Classifying ecosystem disservices and valuating their effects - a case study of Beijing, China. Ecological Indicators, 129, 107977. https://doi.org/10.1016/j.ecolind.2021.107977
WWF. (2021). Recommendations Paper: Achieving a 1.5°C future requires a food systems approach. https://wwfint.awsassets.panda.org/downloads/wwf_cop26_food_policy_recommendations.pdf
Xiang, H. X., Zhang, J., Mao, D. H., Wang, Z. M., Qiu, Z. Q., & Yan, H. Q. (2022). Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecological Indicators, 134, 108501. https://doi.org/10.1016/j.ecolind.2021.108501
Xie, G., Zhang, C., Zhen, L., & Zhang, L. (2017). Dynamic changes in the value of China’s ecosystem services. Ecosystem Services, 26, 146-154. https://doi.org/10.1016/j.ecoser.2017.06.010
Xie, G. D., Zhang, C. X., Zhen, L., & Zhang, L. M. (2017). Dynamic changes in the value of China's ecosystem services. Ecosystem Services, 26, 146-154. https://doi.org/10.1016/j.ecoser.2017.06.010
Xu, S., Liu, Y., Wang, X., & Zhang, G. (2017). Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Sci Total Environ, 598, 297-306. https://doi.org/10.1016/j.scitotenv.2017.04.009
Yang, S. L., Bai, Y., Alatalo, J. M., Wang, H. M., Jiang, B., Liu, G., & Chen, J. Y. (2021). Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. Journal of Cleaner Production, 286, 125316. https://doi.org/10.1016/j.jclepro.2020.125316
Yin, D., Yu, H., Shi, Y., Zhao, M., Zhang, J., & Li, X. (2023). Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. Journal of Cleaner Production, 384, 135469. https://doi.org/10.1016/j.jclepro.2022.135469
Yin, Y., Li, G., Xia, Y., Wu, M., Huang, M., Zhai, L., Fan, X., Zhou, J., Kong, X., Zhang, F., & Riaz, M. (2024). How to effectively reduce sloping farmland nutrient loss and soil erosions in the Three Gorges Reservoir area. Agricultural Water Management, 304, 109084. https://doi.org/10.1016/j.agwat.2024.109084
Yuan, M.-H., & Lo, S.-L. (2020). Ecosystem services and sustainable development: Perspectives from the food-energy-water Nexus. Ecosystem Services, 46. https://doi.org/10.1016/j.ecoser.2020.101217
Yuan, Y., Bai, Z., Zhang, J., & Huang, Y. (2023). Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. Journal of Environmental Management, 325, 116591. https://doi.org/10.1016/j.jenvman.2022.116591
Yuan, Y., Xu, G., Shen, N., Nie, Z., Li, H., Zhang, L., Gong, Y., He, Y., Ma, X., Zhang, H., Zhu, J., Duan, J., & Xu, P. (2022a). Valuation of Ecosystem Services for the Sustainable Development of Hani Terraces: A Rice-Fish-Duck Integrated Farming Model. Int J Environ Res Public Health, 19(14), 8549. https://doi.org/10.3390/ijerph19148549
Yuan, Y., Xu, G., Shen, N., Nie, Z., Li, H., Zhang, L., Gong, Y., He, Y., Ma, X., Zhang, H., Zhu, J., Duan, J., & Xu, P. (2022b). Valuation of Ecosystem Services for the Sustainable Development of Hani Terraces: A Rice-Fish-Duck Integrated Farming Model. Int J Environ Res Public Health, 19(14). https://doi.org/10.3390/ijerph19148549
Zhang, D., Min, Q. W., Liu, M. C., & Cheng, S. K. (2012). Ecosystem service tradeoff between traditional and modern agriculture: a case study in Congjiang County, Guizhou Province, China. Frontiers of Environmental Science & Engineering, 6(5), 743-752. https://doi.org/10.1007/s11783-011-0385-4
Zhang, J., Guo, W., Cheng, C., Tang, Z., & Qi, L. (2022). Trade-offs and driving factors of multiple ecosystem services and bundles under spatiotemporal changes in the Danjiangkou Basin, China. Ecological Indicators, 144, 109550. https://doi.org/10.1016/j.ecolind.2022.109550
Zhang, J., Wang, Y., Sun, J., Zhang, Y., Wang, D., Chen, J., & Liang, E. (2023). Trade-offs and synergies of ecosystem services and their threshold effects in the largest tableland of the Loess Plateau. Global Ecology and Conservation, 48. https://doi.org/10.1016/j.gecco.2023.e02706
Zhang, Q., Sun, X., Ma, J., & Xu, S. (2022). Scale effects on the relationships of water-related ecosystem services in Guangdong Province, China. Journal of Hydrology: Regional Studies, 44, 101278. https://doi.org/10.1016/j.ejrh.2022.101278
Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics, 64(2), 253-260. https://doi.org/10.1016/j.ecolecon.2007.02.024
Zhang, X., Yao, G. L., Vishwakarma, S., Dalin, C., Komarek, A. M., Kanter, D. R., Davis, K. F., Pfeifer, K., Zhao, J., Zou, T., D'Odorico, P., Folberth, C., Rodriguez, F. G., Fanzo, J., Rosa, L., Dennison, W., Musumba, M., Heyman, A., & Davidson, E. A. (2021). Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 4(9), 1262-1277. https://doi.org/10.1016/j.oneear.2021.08.015
Zhen, H., Gao, W., Yuan, K., Ju, X., & Qiao, Y. (2021). Internalizing externalities through net ecosystem service analysis–A case study of greenhouse vegetable farms in Beijing. Ecosystem Services, 50, 101323. https://doi.org/10.1016/j.ecoser.2021.101323
Zhong, L., Wang, J., Zhang, X., & Ying, L. (2020). Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. Journal of Cleaner Production, 264, 121412. https://doi.org/10.1016/j.jclepro.2020.121412
Zhou, Y., Chen, M., Tang, Z., & Mei, Z. (2021). Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustainable Cities and Society, 66. https://doi.org/10.1016/j.scs.2020.102701
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100131-
dc.description.abstract農業生態環境的維護對於農地永續管理至為重要。農地蘊含豐富的土壤資源,不僅提供作物生產,對碳、水、養分等關鍵生態循環系統也發揮重要的功能。然而,農地資源也受到都市化發展的壓力威脅,許多農地被轉作工商業土地利用,這顯示了農業的生態環境效益被低估。為解決這種低估問題,生態系服務(ES)概念提供了全面性的框架來評估農業為社會帶來的多元福祉,除了傳統經濟所重視之糧食供給服務,農業生態系透過土壤資源還提供碳固存、水質淨化和養分保留等過程關鍵的調節服務。因此,從生態系服務觀點評估農地能更全面地理解其真實價值,進而更永續的管理農地。
儘管生態系服務概念具備此等潛力,土壤資源所提供的更廣泛調節服務卻缺乏系統性的量化與貨幣化;過去生態系服務評估並未廣泛整合到國家環境經濟核算框架中,例如環境經濟核算系統–生態系核算(SEEA-EA)框架;農業生態系服務的空間分布也較少繪製,這項資訊對於地方農民與決策者在永續農地資源管理決策上至為重要;此外,傳統評估常多關注於正面服務,卻忽略了農業的負面影響,即生態系負服務(EDS),這對於農業永續性的平衡視角至關重要。因此,系統性評估土壤資源提供的農地生態系服務,分析生態系服務的地圖,並與國家核算框架接軌,同時涵蓋正面效益與負面服務,是本文擬解決之重要挑戰。
為此,本論文進行農地土壤的生態系服務評估研究,以土壤資源為基礎選擇生態系服務指標,選擇其最終服務,避免傳統雙重計算問題,以呈現農地對人類福祉而非作物產量的貢獻。分析指標包含:作物供給、土壤碳儲存、水量調節、營養鹽(氮與磷)保留、以及水土保持等,並回答以下主要問題:(一)如何在生態系核算框架下量化和評估農業生態系服務,以促進永續土壤管理;(二)稻米生產安全與土壤相關之生態系服務之間存在哪些協同作用,以及如何轉化為有效的政策。(三)如何在農業景觀中全面評估正面與負面服務,並以水-能源-食物鏈結(WEF nexus)視角提升永續性。
(一)以生態系核算架構量化農地土壤資源的生態系服務
本研究首先綜合現地調查資料與InVEST模型,建立一套空間明確、具物理與貨幣量化的評估方法,並依據SEEA-EA框架、以台灣雲林縣為研究區域,編製生態系核算帳戶,包含生態系範圍、生態系條件狀態、生態系服務的物理與貨幣流量、以及生態系資產價值等帳戶。研究結果顯示,平原農地生態系占了當地將近一半的範圍(47 %),其土壤條件狀態具有高pH值、陽離子交換能力、有機質與鉀、銅、鋅含量等特性。在生態系服務帳戶中,繪製了當地生態系服務空間差異,並比較現地調查與模型評估結果,無論是作物供給或碳儲存服務,現地資料皆提供較高精度的空間分布資訊。平原耕地在作物供給、水量調節、營養鹽(氮與磷)保留等調節服務表現優異,在碳儲存與水土保持則略遜其他土地利用。在貨幣估值方面,以模型估算每公頃年均生態系服務價值為40,472美元,現地資料則為45,853美元,相差約13%。其中調節服務占比97%,供給服務僅3%。其中當地的平原農地每年對水量調節與營養鹽保留的貢獻分別高達約4億與12億美元。在整體生態系資產方面,總值估計為1,281億美元,其中平原農地貢獻了高達約908億美元。整體而言,本研究透過繪製生態系服務地圖,凸顯了土壤調節功能的關鍵價值及其對平原農地的重要性,有助於支持農地在土地利用規劃的價值與地方實施永續土壤管理。同時,本研究也凸顯生態系核算帳戶的編製成果的重要性,支持將生態系服務納入台灣的環境與經濟帳。
(二)稻米供給安全與土壤相關生態系服務的關聯研究
本研究聚焦於彰化地區,以稻米產量、生態系的調節服務、以及土壤屬性間的關係為核心,探討生態系服務與糧食安全間的關聯。其關聯研究為透過相關性分析與雙變量莫蘭指數(bivariate Moran’s I),來評估生產與調節服務間、土壤屬性與調節服務之間的關聯性;最後並計算整體的生態系服務價值,透過經濟價值評估計算整體的生態系服務,並利用局部的莫蘭指數(Anselin Local Moran’s I)進行生態系服務聚類與異常分析,以提供地區永續農業策略。研究結果顯示,當地每公頃耕地的生態系服務年均貢獻為:稻米供給服務9.99 ± 4.08公噸、碳儲存服務34.86 ± 8.80公噸、水量調節服務3,659 ± 749立方公尺、營養鹽保留5.10 ± 4.43公斤氮與2.00 ± 1.03公斤磷、水土保持66.52 ± 46.09公噸等。稻米供給與多數調節服務呈正相關,顯示健康土壤功能對穩定糧食生產的重要性。水量調節與營養鹽保留間亦有中至高度正相關,可能受流域特性影響。粗質土壤具有排水限制,則有利於提升碳儲存服務表現。生態系服務的每年價值約為每公頃37,678.81美元,以碳儲存服務與營養鹽保留貢獻最大。聚類與異常分析結果可瞭解農業生態系服務的熱點區域,可做為優先實施永續農業管理的區域。總體而言,本研究突顯土壤性質與調節服務之間的密切關聯,並且支持稻米生產,為農業綠色環境支付和在不同地區推廣永續農業措施提供了見解。未來應進一步提升作物、土壤與管理行為的空間與時間解析度,並結合衛星遙測提升分析精度。
(三)以糧食-能源-水資源鏈結架構探討農業生態系的正面與負面服務
本研究聚焦於將生態系負面服務納入農業永續評估,解決傳統糧食-能源-水資源鏈結研究僅聚焦生態系正面服務的限制,並納入水質層面作為評估指標。研究量化了生態系正面與負面服務,並分析土地利用對其的影響、兩者間的協同與權衡關係,以及透過聚類分析辨識生態系服務組合型態。研究結果顯示生態系服務的空間分析,生態系正面服務的每公頃中位數為:作物供給服務892美元、水量調節服務16,023.34立方公尺、營養鹽保留服務39.60公斤、碳儲存服務626.91公噸二氧化碳當量(CO2e),以及水土保持6,048.08公噸。負面服務的中位數為:營養鹽流失11.41公斤、溫室氣體排放5.97公噸CO2e,以及水土流失1.13公噸。與土地利用的分析結果顯示,生態系的正面與負面服務在農業區與森林區間呈現明顯差異:如坡地果園的營養鹽流失與水土保持值較高,而都市與平原耕地的溫室氣體排放值亦較高。調節服務之間具有明顯的正向協同作用,而負面服務與作物供給或營養鹽保留間則呈現顯著的權衡關係。聚類分析將研究區域分為三大類型:山區型、農業型與都市型:山區型具高調節服務,但坡地農業也導致顯著的水質相關負面服務(如營養鹽流失與水土流失);農業型地區具有高作物供給與營養鹽保留服務,但也伴隨較高的營養鹽流失與溫室氣體排放;都市型地區則呈現高度溫室氣體排放與中等作物供給服務,尤以城鎮周圍的郊區最為明顯。這些分析結果顯示將生態系負向服務與水質指標納入糧食-能源-水資源鏈結框架可提升農業永續性,將能發展出更具地方適應性的管理策略,並建議在坡地地區加強農地使用管制、平原農地優化施肥管理,以降低負向服務,維持關鍵的生態系服務功能。
zh_TW
dc.description.abstractThe sustainable management of farmland environments fundamentally relies on the robust maintenance of their inherent ecosystems. Farmlands, with their rich soil resources, offer a multitude of vital benefits far beyond mere crop production. These lands are, in fact, integral to crucial carbon, water, and nutrient cycles, acting as essential natural regulators. However, these farmland resources are increasingly threatened by mounting pressures from rapid urbanization, which frequently converts productive agricultural land into industrial or commercial uses. This prevalent trend suggests that the multifaceted ecological benefits of agriculture are often severely underestimated in land-use decisions.
To address this undervaluation, the ecosystem services (ES) concept provides a powerful framework for comprehensively assessing the diverse benefits agriculture confers upon society. Beyond supplying food, agricultural ecosystems provide crucial regulating services that deliver societal benefits through processes like carbon sequestration, water purification, and nutrient retention. Evaluating farmland through an ES lens offers a holistic understanding of its true value, thereby promoting more sustainable land use management. Despite this potential, the broader regulating services provided by soil resources have lacked systematic quantification and monetization. Additionally, ES assessments have not been consistently integrated into national environmental-economic accounting frameworks like the System of Environmental-Economic Accounting – Ecosystem Accounts (SEEA-EA), and the spatial heterogeneity of ES provision has often been overlooked. A further limitation is the traditional focus on only positive benefits, neglecting crucial negative impacts, or ecosystem disservices (EDS), which are vital for a balanced perspective on agricultural sustainability.
Therefore, the three integrated studies in this dissertation aim to address these challenges by systematically assessing farmland ES, encompassing both benefits and disservices, providing insights into spatial variations, and aligning with national accounting frameworks. The dissertation selected ES indicators as final services presenting the contribution of farmland to human well-being rather than crop yield. The analysis includes crop provisioning (CP), carbon storage (CS), water retention (WR), nutrient retention (NR), and soil conservation (SR) as indicators. The research is driven by the following key questions: (1) How can agricultural ES be accurately quantified and valued within an ecosystem accounting framework to promote sustainable soil management? (2) What are the synergies between rice production and soil-related ES, and how can these relationships inform effective policy? (3) How can both positive and negative services be comprehensively assessed within agricultural landscapes, and how can this be integrated into a Water-Energy-Food (WEF) nexus perspective for enhanced sustainability?
1. Quantifying Farmland Ecosystem Services under an Ecosystem Accounting Framework
The study, conducted in Yunlin County, Taiwan, addressed limitations in cropland ES assessment by developing a spatially explicit, physically, and monetarily quantified valuation method that integrates detailed field survey data with the InVEST model. We compiled comprehensive ecosystem accounts under the SEEA-EA framework.
Ecosystem extent and condition accounts revealed plain farmland constitutes nearly half (47.13%) of the overall ecosystem, predominantly as paddy and dry fields, characterized by high pH values and elevated levels of cation exchange capacity (CEC), organic matter, potassium, copper, and zinc. While both field data and model outputs for CP and CS showed varying values, field data consistently provided a more accurate spatial distribution. Importantly, plain croplands demonstrated superior performance in CP, NR, nitrogen retention (NRN), and phosphorus retention (NRP) compared to other ecosystems, though they exhibited lower values for CS and SR. These visualized outputs can inform sustainable management practice analysis and integrate into regional strategic planning. Economic valuation underscored the profound contribution from regulating services in plain cropland. Our modeling approach estimated total ES flow value at US$40,472 per hectare per year, while field-data observations yielded a significantly higher US$45,853 per hectare per year (13% difference). Regulating services consistently accounted for over 85% of total ES flow value, with provisioning services comprising only 12%. Plain farmland played a particularly vital role, contributing substantially to CS (US$1,078 million/year) and NRN and NRP (US$1,240 million/year) across the county. Finally, the total economic value of ecosystem assets was estimated at US$128 billion, with plain farmland contributing a substantial US$91 billion, underscoring the critical regulatory value embedded in its soil resources.
Overall, the results underscore the critical value of soil regulating functions in plain farmlands. Through ES mapping, this research provides a basis for valuing farmland in land-use planning and for implementing sustainable soil management practices locally. This comprehensive assessment, which is consistent with the SEEA-EA framework, provides vital insights for sustainable agricultural practices and informed land management.
2. Synergies of Rice Production and Soil-Related ES
The study aimed to deepen our understanding of the intricate connections linking ES, food security, and soil characteristics within agroecosystems, particularly in Taiwan's prominent rice-cultivating region of Changhua. The study investigated the interplay among ESs, crop output, and soil conditions through correlation analysis and spatial associations using bivariate Moran's I to inform sustainable food production. We also monetized and analyzed the clustering of ESs using Anselin Local Moran's I to identify spatial prioritization for promoting sustainable farming.
The evaluation of ESs resulted in the following annual physical contributions per hectare of cropland: 9.99 tonnes of rice (CP), 34.86 tonnes of carbon (CS), 3,659 cubic meters of water (WR), 5.10 kilograms of nitrogen and 2.00 kilograms of phosphorus (NR), and 66.52 ± 46.09 tonnes of soil (SR). Relationship analysis indicated CP exhibited a positive correlation with most regulating ESs, underscoring the significance of preserving soil regulating services for robust food security. Furthermore, WR showed a positively moderate to strong relationship with NR services in both cropland-only areas and the broader study area, potentially influenced by differences in river basin characteristics. Correlation analysis also demonstrated soils with coarse textures and low drainage capacity improved CS. Ultimately, the economic analysis estimated the total annual ES value to be approximately US$37,678.81 per hectare, with CS and NR representing the largest contributing components. Hotspot and outlier detection identified key areas and highlighted varied ES features across the study site, offering crucial insights for promoting sustainable farming methods.
In summary, these findings highlight the critical role of soil in supporting regulating services, underscoring the need to conserve soil ES to maintain rice productivity and ensure ecological sustainability. The result also provides insights for green payment policies and the promotion of sustainable agricultural practices. While assessment accuracy is currently limited by spatiotemporal resolution of data concerning crops, soil, and management practices, future advancements in satellite remote sensing could significantly improve data precision, enhancing result quality across both time and space.
3. Ecosystem Services and Disservices in the Agricultural Landscapes from a Water-Energy-Food Nexus Perspective
The third study extended the understanding of agricultural sustainability by incorporating both ES and often-overlooked ecosystem disservices within the Water-Energy-Food (WEF) nexus framework. While the WEF nexus primarily focuses on ES, it typically overlooks EDS and crucial aspects like water quality. This study quantified both ES and EDS using local surveys and data, analyzed influences from land use on ES, the relationship between ES and EDS, and the pattern of ES bundles using cluster analysis.
The study resulted in the median values per hectare for ES: crop provisioning (US$892.00), water yield (16,023.34 m3), nutrient retention (39.60 kg), carbon storage (626.91 Mt-CO2e),and soil retention (6,048.08 tonnes). For EDS, median values were: nutrient export (11.41kg), greenhouse gas emissions (5.97 Mt-CO2e), and soil erosion (1.13 tonnes). Correlation analysis revealed positive synergies within regulating ES but trade-offs between EDS and crop provisioning or nutrient retention. Cluster analysis identified three distinct types of ES bundles across mountainous, agricultural, and urban areas. Agricultural towns featured high crop provisioning and nutrient retention but also emitted some greenhouse gases. Mountainous towns regulated ES but exhibited nutrient export and soil erosion. Urban towns emitted significant volumes of greenhouse gases but supported moderate crop provisioning. This study critically demonstrated that EDS and water quality considerations must be explicitly included in the WEF nexus framework to genuinely enhance agricultural sustainability and inform local management. It recommends increasing land use regulations in areas with steep gradients and optimizing fertilization practices on plains to mitigate EDS and maintain essential ES.

Keywords: ecosystem service, ecosystem accounting, soil health, water-energy-food nexus, ecosystem disservice
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:35:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:35:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Dissertation Approval from the Oral Defense Committee i
Declaration ii
Acknowledgement iii
摘要 iv
Abstract vii
Table of Contents xi
List of Figures xiv
List of Tables xviii
List of Abbreviations xix
Chapter 1. Introductions 1
1.1 Valuing Cropland Ecosystem Services by Integrating Soil Resources for Sustainable Soil Management and Ecosystem Accounting 4
1.2 Interconnection among Food Security, Ecosystem Service, and Soil Property 6
1.3 Incorporation of Ecosystem Services and Disservices from Water-Energy-Food Nexus Perspective 8
1.4 Research Objectives 10
Chapter 2. Literature Reviews 11
2.1 Classification and the spatial analysis of ecosystem services 11
2.2 Concept of agricultural ES from the soil perspective 13
2.3 Ecosystem Modeling Tools for Assessing Agricultural ES 16
2.4 Sustainable agriculture policy and environmental-friendly farming practices 18
2.5 Application of natural capital and ecosystem accounting 21
2.6 Summary 24
Chapter 3. Materials and Methods 25
3.1 Research Flowchart 25
3.2 Study area 27
3.3 Evaluation of the ecosystem service for agricultural landscape 29
3.4 Quantification of the Agricultural ES under Ecosystem Accounting 45
3.5 Evaluation of the synergies and trade-offs among food security, soil property, and ecosystem services 50
3.6 Incorporation of ecosystem services and disservices from water-energy-food nexus perspective 52
Chapter 4. Agricultural Ecosystem Services under Ecosystem Accounting Framework 55
4.1 Ecosystem extent and condition accounts 55
4.2 Mapping of physical ES by incorporating field data with InVEST 58
4.3 Monetarization of spatial ES 66
4.4 Monetary ES flow and ecosystem asset accounts based on SEEA-EA 71
4.5 Insight to Land Management, Soil Management and Ecosystem Accounting 72
4.6 Summary 75
Chapter 5. Synergies of Rice Production Security and Soil-Related Ecosystem Services 77
5.1 Analysis of ecosystem conditions 77
5.2 Mapping of the ES 78
5.3 Relationship analysis between Ecosystem Services and Soil Properties 84
5.4 Monetarization and Clustering of ES 89
5.5 Discussions 91
5.6 Summary 96
Chapter 6. Ecosystem Services and Disservices in the Agricultural Landscapes from a Water-Energy-Food Nexus Perspective 98
6.1 Spatial analysis of individual ES and EDS 98
6.2 Land use characteristic for ES at the county level 100
6.3 Interactions Between ES and EDS at the County Scale 101
6.4 Bundles of ES and EDS within clusters 103
6.5 Discussion 105
6.6 Summary 112
Chapter 7. Implication for Evaluating Farmland and Resource Nexus Synergies 114
7.1 Nexus and synergies of farmland resource 114
7.2 Policy Implementation and Applications 115
Chapter 8. Conclusions and Recommendations 118
References 123
Appendix 141
Appendix A. 1. Methodological Details for Data Processing and Valuation 141
Appendix A. 2. Mapping of ecosystem services by incorporating field data with InVEST 148
Appendix A. 3. Farmland ecosystem services result with the all three cases 151
Appendix A. 4. Ecosystem conditions in Changhua 154
Appendix A. 5. Supplementary of relationship analysis between ES and soil property in Changhua 155
Appendix A. 6. Ecosystem service value and cluster analysis in Changhua 158
-
dc.language.isoen-
dc.subject生態系核算zh_TW
dc.subject生態系服務zh_TW
dc.subject生態系負向服務zh_TW
dc.subject糧食-能源-水資源鏈結zh_TW
dc.subject土壤健康zh_TW
dc.subjectsoil healthen
dc.subjectwater-energy-food nexusen
dc.subjectecosystem disserviceen
dc.subjectecosystem accountingen
dc.subjectecosystem serviceen
dc.title生態系服務與核算模型評估農地與資源鏈結zh_TW
dc.titleEcosystem Services and Accounting Models for Evaluating Farmland and Resource Nexusen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林裕彬;范致豪;胡明哲;溫在弘;袁美華zh_TW
dc.contributor.oralexamcommitteeYu-Pin Lin;Chihhao Fan;Ming-Che Hu;Tzai-Hung Wen;Mei-Hua Yuanen
dc.subject.keyword生態系服務,生態系核算,土壤健康,糧食-能源-水資源鏈結,生態系負向服務,zh_TW
dc.subject.keywordecosystem service,ecosystem accounting,soil health,water-energy-food nexus,ecosystem disservice,en
dc.relation.page159-
dc.identifier.doi10.6342/NTU202504208-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved