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THESIS ABSTRACT

Optimal Pricing for Dynamic Bandwidth Trading with

Incomplete Information

By Ming-Lung Lu
DEPARTMENT OF IMFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY
AUGUST 2011
ADVISOR : Yeali S. Sun, Ph.D

The wireless spectrum is a limited resource. The concepts of cognitive radio and dynamic
spectrum allocation (DSA) have been considered as a possible mechanism to improve the
efficiency of bandwidth usage and solve the bandwidth deficiency problem. In this work,
we consider a wireless network access environment comprised of a mobile network operator
(MNO) and a distribution of different types of mobile virtual network operators (MVNOs).
We propose an open dynamic bandwidth trading model that comprises of two phases. The
goal of the phase one is to find out the distribution of the buying preferences or types of the
participating MVNOs through a sequence of interactive rounds and compute the optimal
price schedule for the unused bandwidth for sale. The derivation of the optimal price
schedule also considers the demand and utility functions of the MVNOs. Most importantly,
the optimal price schedule satisfies the incentive compatible (IC) and the individually
rational (IR) constraints. The former ensures that the quantity-price pair designed for
MVNO of a specific type will choose the pair that maximizes its utility; while the latter

assures that the pairs cause non-negative utility. We also give an algorithm to convert the
v



continuous optimal price schedule to a discrete one so as to provide a simple easy-to-read
format for MVNOs’ selection while ensuring that individual type of MVNOs will choose
the pair whose corresponding utility value is closest to the value in the original function.
After the iterative process converges and terminates, if the total number of bandwidth
requests exceeds the total capacity constraint, the process proceeds to address the finite
capacity constraint by solving a bounded knapsack problem for final bandwidth allocation.
Lastly, an example is provided to explain how the proposed open dynamic bandwidth

trading process with optimal incentive-compatible price schedule is derived.

keywords : dynamic spectrum sharing; incentive-compatible pricing; bandwidth trading;

optimal price schedule; finite bandwidth sharing
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Chapter 1 Introduction

Since spectrum is a limited and therefore precious resource, how to achieve efficient
and fair spectrum sharing and allocation among different demand groups is an important
issue. Traditional spectrum allocation schemes adopt the long-term lease business model,
which assigns different wireless technologies with a static amount of bandwidth to different
frequency band in order to prevent interference between them. A study sponsored by the US
Federal Communications Commission observed that the traditional fixed spectrum
assignment model, which results in over-allocation of spectrum to some operators and
applications as well as inefficient bandwidth usage, is unable to meet the growth in demand
arising from today’s wireless technologies [1].

One possible way to overcome the above limitations is to allow periodic trading of
dynamic unused bandwidth by licensed spectrum owners, who sublet their surplus resources
to service providers that need bandwidth for a short period. In this work, we consider a
wireless network access environment comprised of a mobile network operator (MNO) and
various mobile virtual network operators (MVNOs) of different buying preferences or types.
It is assumed that an MNO is a telecommunications company that owns a frequency license
and mobile infrastructure, and also provides services for mobile phone subscribers. An
MVNO is a company that provides mobile phone/network services, but it does not have a
frequency license or a mobile infrastructure. However, it does have access to a niche market,

which an MNO finds hard to enter. The spectrum owner (MNO) periodically offers its
1



unused bandwidth on the open market for short-term lease to MVNOs that need extra

bandwidth to meet their service needs and business goals.

In dynamic bandwidth trading, how to allocate and price bandwidth among different

demand groups of potential buyers are two fundamental issues. To address the issues, we

propose an open dynamic bandwidth trading model that comprises of two phases. The goal

of the phase one is to find out the type distribution of the participating MVNOs through a

sequence of interactive rounds between an MNO and MVNOs. In each round, the MNO

first revises its estimate of the distribution of the types of the participating MVNOs based

on their selections submitted in the previous round. It then re-computes the optimal price

schedule and announces it to the MVNOs for a new round of selection. The derivation of

the optimal price schedule considers the distribution of the types of MVNOs as well as their

demand and utility functions. The optimal price schedule comprises a number of pairs, each

representing the optimal bandwidth quantity and the associated price designed especially for

a type 8 MVNO. Since the schedule is computed based on the assumption that all MVNOs

are rational, each MVNO will select the quantity-price pair designed for its type in order to

maximize its utility function, and the profit of the resource owner (MNO).

Through each round of interaction, the MNO learns more about the MVNOs that are

interested in purchasing extra bandwidth. As a result, the MNO revises its estimate of the

cumulative distribution function of the types of MVNOs to derive the optimal price schedule

for the sale of the unused bandwidth. We also present an algorithm to convert the continuous
2



optimal price schedule to a discrete form so as to provide a simple easy-to-read format for

MVNOs’ selection. In the second phase, we consider the finite capacity constraint in

bandwidth trading. After the process converges and terminates, if the total demand for

bandwidth exceeds the total capacity, we resolve the bandwidth contention problem by

mapping it to a bounded knapsack problem.

The proposed open dynamic bandwidth trading model creates a win-win situation for

the profit-maximizing MNO and individual MVNOs that need extra bandwidth. We believe

the model achieves better spectrum utilization and meets the business goals of MNOs and

MVNO:s.

The remainder of the paper is organized as follows. Chapter 2 contains a review of

related works. In Chapter 3, the system model of the buyers (MVNOs) and the seller (MNO)

engaged in open dynamic bandwidth trading is given. In Chapter 4, we present the

derivation of the continuous optimal price schedule, and the algorithm to convert the

continuous optimal schedule to a discrete form to provide a simple easy-to-read format for

MVNOs’ selection. In Chapter 5, the proposed open dynamic interactive bandwidth trading

process of the MNO and MVNOs is described in detail. We also provide an example to

illustrate the key designs of the proposed open dynamic bandwidth trading process. Chapter

6 contains some concluding remarks.



Chapter 2 Related Work

A number of system models have been proposed for bandwidth allocation and pricing
in wireless environments. They address the problem by considering different combinations
of service providers, customers, and government regulations. Moreover, they use various
concepts, such as auction [2][3][4], game theory [5][6][7][8], or economic analysis [9][10],
to tackle the problem. In these works, spectrum/bandwidth buyers are typically modeled by
using some simple parameters, e.g., the maximum budget or the maximum amount of
money that buyers are willing to pay for a certain amount of bandwidth. In this work, we
model the behavior of an MVNO by its type, demand curve and utility function to capture
the essential characteristics of a potential bandwidth buyer.

Among all the methods used for spectrum management, auction is the most popular
approach. For example, under the method proposed in [2], a spectrum manager periodically
auctions short-term spectrum licenses to multiple CDMA network operators with the goal of
maximizing revenue. Each operator determines its own price based on the amount that users
are willing to bid. In [3], two auction mechanisms are proposed for spectrum sharing by a
number of users based on the signal to interference-plus-noise ratio (SINR) and received
power. The authors of [4] introduce a spectrum auction framework that formulates
conflict-free spectrum allocation between users as an optimization problem. They also
discuss the tradeoffs between the auctioneer’s revenue and fairness to buyers under different

pricing strategies. The main drawback of the auction approach is that it is time-consuming
4



and it may incur high operating costs. It is also known for its unfavorable spectrum

utilization [5].

Another popular approach uses game theory to solve the spectrum allocation and

pricing problem. In [5], the authors consider the problem of spectrum sharing between a

primary user who is eligible to access a licensed radio spectrum and a number of secondary

users who have no access rights to the licensed spectrum. The problem is formulated as a

Cournot game in which a pricing function is used to constrain secondary users from

requesting excess spectrum. It is assumed that the total spare spectrum available for

allocation is not finite, which is rather unrealistic. In [6], the authors consider the same

problem with multiple primary and secondary users. Two different games are used to model

the behavior of each type of users. The interaction between the games is that the spectrum

b

and price offered by the primary users will affect the equilibrium of the secondary users

game. It continues until both of them reach equilibrium. In [7], a framework is developed to

model the competition between multiple network operators for customers and the available

spectrum as a non-cooperative game under the regulation of a spectrum policy server. The

main disadvantage of this approach is that there is no real mediator in practice, so the

players need to propose individual strategies iteratively to reach equilibrium; hence, the

convergence period is often long.

There are also approaches that consider the price when allocating spectrum to users

with different demands. In [9], the authors consider how a service provider sets the
5



spectrum price to maximize profits and how users decide the amount of spectrum to

purchase. They apply economic analysis techniques in a monopoly market to determine the

optimum price for the service provider. The approach in [10] uses game theory to study

demand-responsive pricing for radio resource management where multiple access points

compete for users.

It is widely recognized that user satisfaction is an important factor that must be

considered in the provision of services. Indeed, some works regard user satisfaction as the

primary consideration rather than revenue-maximization. In [11], the authors propose a

model of user satisfaction in which the requested QoS and the price paid are considered in

radio resource management. Based on their model, the authors of [7] study how customers

choose a network operator for service when multiple operators compete with each other. In

contrast to the above works, we use a non-linear optimal price schedule to discriminate

between different types of MVNOs. We propose an open dynamic trading model in which,

through each round of interaction, the MNO learns more about the distribution of the types

of the potential buyer MVNOs so to derive the optimal price schedule that will maximize its

expected return.



Chapter 3 System Model

There are two kinds of players in the proposed dynamic bandwidth trading model:
buyers (multiple MVNOs) and the seller (the MNO). The MNO only owns one product, i.e.,
surplus bandwidth, with a constant marginal cost ¢. Based on that cost, ¢, and its knowledge
of the distribution of the types of buyer MVNOs, the MNO will publish an optimal price
schedule for the MVNOs’ selection which is specially designed so that an MVNO based on
its type will choose the quantity-price pair that maximizes its utility.

3.1 MVNO: the Buyer

We assume there are different buying preferences or types of MVNOs and use the
parameter 6, which is bounded by [6;, 8y], to describe them. A type 8 MVNO'’s preference is
represented by the utility function, which follows the standard consumer surplus approach:

U, T;0) = j(j’p(x; Odx—T, (1)
where b is the amount of bandwidth purchased, 7 is the total price paid, and p(x,; 6) is the
demand price function of a type # MVNO. The integration of the demand price function
gives the total price the buyer is willing to pay for the total number of units of bandwidth b.
We also assume that there exists an efficient consumption level for which the demand price
exceeds the marginal cost for type § MVNOs, denoted by 5°(@). We make two other

assumptions:



Assumption 1. For all feasible 6, (1) the demand price function p(b,; 6) is non-increasing in

b and non-negative'; (2) b°(0) > 0 and p(b; 0) is decreasing in b for b < b°(6), and p(b, 6)

> cif and only if b < b°(6); and (3) p(b, 6) is twice continuously differentiable.

Assumption 2. Higher levels of 0 are associated with higher demand. That is, p(b, 0) is
strictly increasing in 6 whenever p(b, ) is positive.

It is assumed that MVNOs use the utility functions to measure and evaluate the price
schedule announced by the MNO, and that each MVNO will choose the quantity-price pair
that maximizes its utility. If more than one pair yields the same maximal utility, we assume
that the MVNO will choose the one with the largest amount of bandwidth.

Let the types of MVNOs follow a continuous distribution represented by the cumulative
distribution function (CDF) F(6). It is assumed that the population of MVNOs are drawn
independently according to F(6). We also make the following assumption:

Assumption 3. The cumulative distribution function for 6, F(0), is a strictly increasing,

continuously differentiable function on the interval [6;, 8y] with F(6,) =1 — F(6y) = 0.
3.2 MNO: the Seller

We assume that the demand price functions, p(b, 6), and the utility functions, U(b, T
), for all @ are known to the MNO because they can be obtained by analyzing historical
information. However, the MNO does not know the exact types of the MVNOs participating

in the trading.

' The non-increasing property might not be suitable for scarce resources. Although the spectrum is scarce, we still consider this property
in our work.

8



The MNOQO’s objective is to construct and publish a price schedule (S) of pairs <b,, To>
that maximizes its profit. If an MVNO chooses a pair s of S, it will receive b; and pay for a
total of 7. In the next section, we explain how to derive the optimal price schedule such that
each type of MVNO will choose the pair designed for it, and that pair will give the MVNO
the maximal utility. First, we define the MNQO’s profit or "return" as follows:
R=T-cbh. 2)
Let N(b; 6) denote the social surplus generated by the sale of a type § MVNO, i.e.,
N(b;0) = jobp(b; O)dx—cb . (3)
The utility of a type # MVNO that chooses pair <b, 7> is defined as the social surplus N(b;
) less the MNQ’s profit R, i.e.,
U(b,R;0) = pr(x; 0)dx—cb—R=N(b,0)-R. 4)
Two properties are important to the MNO in the construction of the optimal price
schedule. First, the MNO must ensure that the schedule contains a specific quantity-price
pair for each type of MVNO. Second, the MVNOs are rational, meaning every type €
MVNO will only choose the pair <b(6), T(8)> designed for it, and that pair will give the
MVNO the maximal utility. That is, the price schedule will satisfy the following two
constraints [12].
C1: [Incentive Compatibility (IC)]: for each 6,
U(b(0),T();0) > U (b(v),T(v);6), Vveld,,0,]. (5)

C2: [Individually Rational (IR)]: for each 6,
9



Ub(©6),T(0),0)=0. (6)

The IC constraint ensures that the pair <b(@), T(6)> designed for the type § MVNO is the

pair that would maximize its utility; while the IR constraint ensures that the pair <b(0),

T(8)> causes non-negative utility. Given a price schedule S that satisfies the two constraints,

every type 8§ MVNO will choose the pair <b(@), T(6)>. Such a quantity-based price schedule

is described as incentive compatible. An incentive-compatible quantity-based price schedule

is said to be optimal for a subinterval [, 8y] if it yields profits for the MNO that are at

least as high as any other incentive-compatible quantity-based price schedule designed

exclusively for customers in the range [0, 6u][12].

10



Chapter 4 Optimal Price Schedule

In this section, we explain how to construct the optimal price schedule, S°, of pairs
<(bs", T,")> that will maximize the MNO’s profit and satisfy the IC and IR constraints. We
adopt the method in [13], which satisfies the self-selection constraints. Both the
self-selection and the IC constraints require that each type of MVNO will be more satisfied
with the quantity-price pair designed for it than with a pair designed for any other type of
MVNQOs. For example, consider n different types of MVNO, 8; < 6, < ... < 6,. The optimal
price schedule {<b(0), T(6)>} that satisfies the self-selection constraints has two necessary
properties. The first property is that b(6) is a non-decreasing function. Let us consider any
two neighboring types of MVNOs, 6; and 6;;, and assume that the pair <b(8,), T(6,)>
designed for 6; is known. Then, the pair <b(;+;), T(6;+;)> designed for 6;.; should be the
same as the pair <b(¥,), T(6,)>; otherwise, it should be located on or below the indifference
curve of type 6;+; through <b(@,), T(6;)> to prevent the higher type 6;;; from switching to
the pair designed for the lower type 6;. Moreover, the pair <b(@;:;), T(6;+;)> should be
located on or above the indifference curve of the type 6; through <b(8,), T(6,)> to prevent
the lower type 6; from switching to the pair designed for the higher type 6;:;. Hence, we
have b(6;+;) > b(8;) for any two neighboring types, so b(8) is a non-decreasing function.

The second property is called the "local downward" constraint:

Ub(8,),7(6,),6,) =Ub(6; 1), T(0,.1):6,), i=2,....n, (7)

which implies that the lowest type would yield zero utility, i.e.,
11



U(b(6,),7T(6,);6,)=U(0,0;6,)=0. (8)
The local downward constraint is the only self-selection constraint that is binding.

The two properties are sufficient to ensure that all self-selection constraints will be
satisfied. That is, if the price schedule satisfies the two properties, then it will also satisfy
the self-selection constraints. Consider two neighboring types of MVNOs, 6; and 6,,; with
the known pair <b(8,), T(6;)> designed for ;. The local downward constraint makes the pair
<b(6;+1), T(6:+;)> locate on the indifference curve of 6;.; through <b(6,), T(6,)>. Since the
indifference curve of ,; is steeper than that of 6; and the non-decreasing property implies
that b(6;+;) should be equal to or greater than b(8;), the pair <b(b;:;), T(6;+;)> is above the
indifference curve of 6; and U(b(@;+;), T(6:+1); 6;) < U(b(B,), T(6,); 6;). Therefore, the lower
type 6; would not switch to the pair designed for the higher type 6;+;.

With <b(6), p(8)> optimal for each type 8 MVNO, we can write the maximized utility
as

U™ ()= N(b(6);0)~R(6) . )
According to Assumptions 1 and 2 and the "local downward" constraint, a type § MVNO
would derive no extra advantage by choosing the offers for the MVNOs with lower types
than 6. Thus, we have
6 ON

RO) = N®©O):0) - [} S0 (b(xy (10)

Therefore, the expectation of R(6) is calculated as follows:

12



BR)= [ [N(b(@);é?) -J, Z—Z(b(x);x)dx}dF(H) . (11)

After integration by parts, we have [13]:

1-F(0)
F'(0)

E[R]= JZU {N (b(0);0) —Z—];(b(ﬁ); ) }dF 0. (12)
Let I(b(0), 6) denote the terms in the brackets. Then, we can rewrite (12) as follows:
E[R]= j: 1(b(6):0)dF (6) . (13)
The goal of the MNO is to find the optimal price schedule that maximizes its expected
return. The derivation of the optimal price schedule involves two steps. First is to find the
optimal bandwidth {»"(6)} that would maximize the expected return. Note that the optimal
price schedule must satisfy the self-selection constraints. It has been proved that, for any
non-decreasing function b(¢) on [6;, O], there exists a unique return function, R(6), as
given in (10) such that <b(8), R(9)> satisfies all the self-selection constraints and U’ (6,) = 0,
which is the maximal utility designed for the lowest potential buyer §;[13]. The following
two assumptions are made to ensure that the non-decreasing price elasticity property of b(6)
does not offer random pairs of a schedule, and for convenience in the choice of

parameterization of 6.

Assumption 4. Demand elasticity is non-decreasing in the demand price, i.e.,

i(‘_ba_f”jso. (14)
o0\ p ob

Assumption 5. The second-derivative of the demand price function with respect to 6 is

non-positive,

13
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After obtaining 5" (0), in the second step we substitute 5" (6) for b(9) in (10) to obtain R’ (0).
We also obtain the optimal price 7' () as follows:
T (@)=R"(0)+cb"(6). (16)

In the following, we explain how to derive the optimal price schedule in details.
4.1 Optimal Bandwidth Quantity

Finding the maximum expected return in (13) involves maximizing I(b(6); 6) for all
feasible 6. That is, if »'(9) maximizes I(b(9); 6) for all feasible 0, b'(9) would also
maximize the expected return. We prove the above statement by contradiction. Suppose that
b’ () maximizes I(b(8); 0) and there exists a b~ (0) such that b (6) yields a higher expected
return than b'(6). Since b () will yield a higher expected return and the expected return is
the integration of I(b" (9); 6), then I(b" (9); 0) should be greater than I(b'(6); 6) at some
point. This means that there would exist at least one point, say 6,, such that (6" (6,); 6.) >
I(b"(8.); 6,). We can prove this easily because if (" (0); 6) < I(b"(0); 6) for all feasible 6,
the integration of /(5" (0); 6) would be smaller than that of I(b"(6); ). As we have I(b™ (8,);
0,) < I(b"(0.); 0,) for all feasible 0, it would not be possible for the expected return from
b™*(0) to be greater than that from b"(0). Therefore, b" (6,) cannot exist.

Given Assumptions 1, 2, 3, 4, and 5, we know the b*(H) that solves max I(b;0) must be
non-decreasing. Suppose b’ () maximizes I(b; 6) for all feasible 6. Then, b'(9) should

satisfy the following equation:
14



%(b*(e);e)zo, voelo,,o,]. (17)
Note that we assume the b(0)s in the published price schedule are non-negative. To convert
b’(0) to a non-negative function, let 5°(9) be the optimal bandwidth function for all feasible
6. We eliminate the negative part of 5°(0) to obtain the optimal bandwidth quantity function
b’ (0). Specifically, °(6) is computed by the following equation:
%(b“(e);e)zo, voelo,.o,]. (18)
We also have
b"(0) = max{0,b°(0)}, VOelo,.0,]. (19)
4.2 Optimal Price
The optimal price function is computed by substituting 5 (6) for b(9) in (10), i.c.,
R (0)=N(b"(6);0) - j: Z—Z (b"(x);x)dx, VOel6,,0,]. (20)
The function gives the optimal return (profit) R'(9) derived by selling b"(0) units of
bandwidth to a type 8 MVNO. We also have the following optimal price function 7" (6):
T"(0)=R"(0)+cb"(0), YOe|0,.6,]. (@2))
Finally, we have the optimal price schedule S°, which comprises a number of pairs {<b (6),
T"(0)>}, each representing the optimal bandwidth quantity and the associated price designed
especially for a type § MVNO.
4.3 Discrete Price Schedule

Thus far, we have assumed that the demand price functions and the type distribution

functions of MVNOs are all continuous, and the resulting optimal price schedule is a pair of
15



continuous functions of the MVNO type. Although the continuous forms are convenient for
deriving the model and the optimal price schedule, in practice, the units of bandwidth are
usually sold in a discrete format. Here, we will convert the continuous optimal price
schedule to a discrete form. Assume K different quantity-price pairs are selected from the
continuous optimal price schedule such that the resulting expected return is as high as
possible. K is assumed to be defined by the MNQO's policy. Let the resulting discrete price
schedule be denoted by S, = {<b(6,),7"(6,)>,k=1~K}. Given S, itis obvious that
a type 6, MVNO will choose the pair <b'(6,),7"(6,)>. Next, we examine the types
within the range of 6§, and 6,,,. Consider a 6 in (4,.6,,,). Let us compute the difference
in the utility of choosing either pair, i.e.,

U® @) (0:);:0) UM G T (8111):6) - (22)
Differentiating (22) with respect to 6, we have

b*(§k+l) 5 .
—J‘b*@) gp(x, A)dx . (23)
Since p(b; 0) is increasing in 0 and b'() is non-decreasing, the derivative of the utility
difference in (22) is negative, and the utility difference is decreasing in . That is, when 6

moves outside the range of 6, and 6,,,, the utility obtained by choosing <b"(,).T"(6,) >

would be higher until at type 6, or type 6,, the utility derived by choosing either

<b"(6,).T"(8,)> or <b"(6,,).T (6,,,)> would become the same. Thereafter, the types

between [H(M)aﬁ,m] will choose the pair ¢, that yields a higher utility than selecting

<b"(8,),T"(8,) > . Here, we assume that if two possible price pairs render the same utility, an
16



MVNO would choose the one with greater amount of bandwidth. Hence, type ¢, will

choose <b (G441).T (64)> instead of <b"(8,).7°(,)>. For the types in the subintervals
[6,.0,) and (8,01, the pairs <b (6).T (8)> and <b (Fx).T (6x)> will be chosen,
respectively. In summary, we assume that the discrete price schedule contains K pairs of
bandwidth quantity and the associated price, and we want to determine which K pairs in the
continuous optimal price schedule will maximize the expected return. The K pairs

correspond to the K types (points) of MVNOs, which in turn divide the type distribution

range [0, Oy] into K mutually exclusive subintervals, denoted by [6, .6,), [6.6,), s
[0k, .0k,)> [0k .0k 1, 6, =6 and 6y =6, . The selection of the set {0,, k=1,,K} has
the property U (6,). T"(6,):0;,) =U®b (Gs1)s T (G511):0ury,)» k = 1 ~ K-I. Thus, the

problem can be formulated by solving the following non-linear optimization problem.

max é(T*@) —cb' G)NF )~ F6,) (24)
s.t.
6, =6, (25)
O, =0y (26)
Ot =0, k=1..K-1 27)
UG (0. T"0,):0,) =Ub G- T" G): Otry): k=1, K1 (28)
0, <6, k=1~K-1 (29)
O, <0, <0,. k=1~K (30)
6, =min{0|b"(6) >0} (31)

17



b'(6,)eN, Vk=1~K (32)
In the formulation, we know that when the 6, ’s are determined, the ranges of the
K intervals are also determined, i.e., {6, .6, )k =1,...,K} based on the constraint
UG (6,). T"(6,):6,) =U®B (G1), T (B,1):04+1), ) - Here, the boundaries are presented as
implicit functions that are parts of the constraints.

Moreover, we would like the 5°(,)s to be integral values. Note that, in non-linear
(mixed) integer programming problems, the integer property should only be applied to
decision variables. However, in the formulation proposed above, the integer property is
applied to 5°(6,), not 6, . We therefore make a conversion as follows. We convert the price
function 77(6) to T'(b) by T'(b) = T (b (b)) where b~(b) is the inverse function of b"(6).
The problem then becomes the problem of selecting K different quantities, b,, k = I ~ K,
from a finite set {p|0<hH< \_b*(HU)J&b eN} such that the expected return
i(T*(Ek)—cl;k XF(Hkb)—F(Hka )) is maximized. We thus formulate the problem as a non-linear
k=1
mixed integer problem. Since the problem is a combinatorial optimization problem, once
b, s have been decided, the expected return can be obtained in constant time. In addition, the
problem can be solved in polynomial time O(\_b*(eU)K _b by examining all possible
combinations, (Lb *(EU)J] = %(Lb*(eU) J)(Lb*(eU)J— 1)...(Lb*(9U)J—K +1) given a constant K.

Fig. 1 shows the K subintervals of the type distribution range. An example of utility

values is also depicted to show that for the MVNOs of the types in the range of

18



[04+1),-Ors1) Selecting the pair <b°(6,,).7"(6,.,)> will result in a higher utility than

selecting the other pair <5"(6,),7"(6,)> .

UGB (6,,,),T"(6,,,):0)

U®b'(6,),T"(6,):6)

Utility
(V)
7 O | Gy Ok
L ) [ i : ) - FTvpe(e)
0,=6_ 6, .. 6 O =), Qr), - Ok 6 =6,

Figure 1 The K subintervals in the determination of the discrete price schedule and the illustration of the utility

values in price pair selection.
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Chapter S Open Dynamic Bandwidth Trading Model

In the previous sections, we focused on how the MNO computes the optimal price
schedule based on the demand price function of MVNOs, p(b,;6); the marginal cost of
bandwidth, ¢; and the type distribution function of the MVNO, F(6). It is assumed that the
information is based on the MNO’s knowledge or estimation of the market. If any of the
estimates are not accurate, the published price schedule may not give the maximum
expected return. Moreover, the MNO does not know the exact population of buyers, but it
does know the estimate of the type distribution function. In this section, we present an open
dynamic bandwidth trading model, which comprises of two phases. The goal of phase one
is to find out the distribution of the type of the potential buyer MVNOs who remain in the
process. It is implemented as a sequence of interaction rounds between the MNO and the
MVNOs. And, it is a learning-and-revising process. Through each round of interaction, the
MNO learns more about the number and the type of the MVNOs based on their selection
submissions. The MNO then revises its estimate of the type distribution of the MVNOs who
remain in the process and computes a new optimal price schedule. At the beginning of a
round, the MNO publishes an optimal price schedule based on its current knowledge of the
participating MVNOs. Each MVNO then chooses the pair that maximizes its utility and
submits the selection to the MNO. Note that, an MVNO may choose to leave the dynamic
trading process by not submitting its selection of the price pair; however, once it leaves, it

cannot re-join the process. The rule guarantees the convergence of the process. We also
20



assume that the MNO can estimate the costs accurately. For the MVNOs’ demand price
functions, there always exist non-neglected estimation errors. Here, we assume they are

accurate.

The phase one of the open interactive dynamic bandwidth trading process emphasizes
continuous learning by the MNO so as to discover the true distribution of the types of the
buyers. Initially, the MNO has the estimate F/”(0) derived from the historical information.
Based on that estimate, it computes the initial optimal price schedule S converts it to the
discrete form S"and announces it to the MVNOs. Let the selections of the MVNOs

submitted to the MNO be denoted by R”.

5.1 Re-estimation of MVNO Type Distribution

After the MNO receives all the selections R” at the end of the i™ round, let the total

number of MVNOs who chose the pair <b°(6,),7°(6,)>” be denoted by » and
in}j) =N®, N9 <N, where N is the total population of potential buyer MVNOs estimated
k=1

by the MNO initially. We use Pearson's chi-square test [14] to determine if the distribution
of the types of MVNOs based on R differs from the MNO’s current estimate. Let the value

of the test-statistic is

K (i) (i)\2
(" —Ep”)
k=1 Ek

where E{” is the number of MVNOs expected to choose pair k, which is computed as
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follows:

EV=ND-(FO@,)-F"6,) . (34)
The value of y* is checked against the value of z2... . If »*<x2..., the observed
frequency fits the estimated distribution and the MNO can proceed to solve the capacity
constraint problem. Otherwise, the MNO will use the observed data to re-estimate the

distribution of the types of the currently participating MVNOs.*

5.2 Estimation of F”() from R?

To derive an estimate of F(0) from R"”, the maximum likelihood estimation (MLE)
method [15] is used. We first make an estimate of the underlying statistical model F© ().
Given the price schedule S;"={ <b°(@,).7°(6,)>", k = 1 ~ K}, the likelihood function is
as follows:

K

[T1E@,)-F@ ™ . (35)
k=1

By differentiating the likelihood function with respect to each parameter and equating it to 0,

we can obtain the estimates of the parameters that govern the statistical model.

Since only the MVNOs that participated in the previous round are allowed to remain in

% Note that to use the chi-square goodness of fit test properly, the expected frequency in
each category should be at least five. If any frequency is less than 5, it should be combined
with an adjacent category. However, combining categories may have unintended

consequences, e.g., there may only be one category left.
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the interactive trading process, we know that the number of MVNOs participating in each
round will not increase as the process continues. This ensures that the population of

participating MVNOs will converge after a finite number of iterations.

Two-phase Open Dynamic Bandwidth Trading

Process
MNO MVNOs
Ground Knowledge: p(b; 0), F(0), c
v
—>{ Estimate Fi(0) ‘
v
Compute continuous optimal *(i) * o *
price schedule §*® Sais- =1< b0, T (0) >}
v
Compute discrete price 1 * Eac}_l Sele?ts a _
schedule S; (@) quantity-price pair
v (/) | |that maximizes its
reject , . R o
i | | Perform Pearson’s Chi-square / utility
test e Submit selections
l pass
Allocate bandwidth and
charge MVNOs subject to
finite capacity constraint 1

Figure 2. Flowchart of the open dynamic bandwidth trading process

5.3 Capacity Constraint

According to the Pearson’s chi-square test when the observed frequency of the types of
the participating MVNOs fits the estimated distribution, the first phase terminates. The

bandwidth trading process proceeds to the second phase to resolve the finite capacity
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constraint. Note that the previous derivation of the price schedule was based on the
assumption that the amount of unused bandwidth for sale was infinite. However, in practice,
it is typically finite. Therefore, if the total bandwidth requested is greater than the total
capacity B, we need to decide how to allocate the bandwidth to the buyer MVNOs given the
finite capacity constraint. Otherwise, each MVNO who participated in the final round of the
phase one will be satisfied with the amount as stated in the submission; and the MNO will

charge them based on the discrete price schedule published in the final round.

If it is not possible to satisfy all the requests because of the finite capacity constraint,
we map the bandwidth allocation problem to the bounded knapsack problem, where the size
of the knapsack is the spectrum capacity B and the items are the MVNOs that remain in the
final round. The weights and values of the items are the quantities and returns in the final
discrete price schedule S,\"= {<p"(,),T7°(6,)>, k = 1 ~ K}; and the copies of each

~ K ~
bandwidth-price category of items are { ™}, > ni/ =NV"D  The problem is

k=1

formulated as:

K
max ZR*(gk)xk (36)

k=1

s.t.

K
>0 (0)x, <B, x,€{0,1,....n} (37)

k=1

Fig. 2 shows the flowchart of the trading model and the interaction between the MNO and
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the MVNOs.

5.4 Example

In this section, we provide an example to illustrate the key components of the proposed
open dynamic bandwidth trading process. First, we assume that the distribution of the types
of MVNOs follows a uniform distribution in the range [0, 1], i.e., F(68) = 6, and the

demand price function is as follows:

10+200-b, b<10+200

b;0) = o 38
PO {0, b>10+200 ©8)

Let the distribution of MVNOs that will join the open trading process follow a triangular

distribution F(0 | 0, 1, ® = 0.9), 1.e.,

2
0—, 0<0<w
F(0) = GO . (39)
1—M, w<0<1
1-w

In addition, assume that ten MVNOs will join the process initially. The types of MVNOs are
generated by using the inversion method [16]. First, we randomly generate ten values from
the uniform distribution U(0, 1) denoted by U;, i = 1, ...10, and substitute them in the

following equation to obtain the types of MVNOs that follow the triangular distribution:

" :F_I(Ui):{ JeU,, 0<U, < F(e) o)

1-J(-e)1-U)), F(e)<U;<1

The distribution of the ten participating MVNOs is shown in Fig. 3.
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First, let us consider the case where the MNO has perfect information about the
MVNOs and its initial estimate of the type distribution function is exactly the true
distribution, i.e., a uniform distribution in the range [0, 1], which means F(6) = 6. Note that
in the proposed process the MNO re-estimates the distribution of the types of the
participating MVNOs in each round based on the selection submissions regardless of the
initial assumption about the type of distribution. Here, it is assumed that the marginal cost ¢
is fixed (c = 10).

A. Optimal Price Schedule
Based on (3), (12), and (13), we first compute the /(b; 6) of the expected return as

follows:

(201;97%1;2)4(201;)(170), b<10+200 (1)
(50+2000 +2000% —10b) — (200 + 4000)(1- ), b >10+200

1(b;0) =
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7

MVNO, (0.72)

NO,, (0.92)

o MVNO; (0.67)

0.4

MVNO, (0.65)

0.3

MVNO; (0.48)

Cumulative Probability

0.1

MVNO, (0.06)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09

Type 0

Figure 3. Distribution of the ten MVNOs that join the open dynamic bandwidth trading process initially

Then, we compute the optimal bandwidth allocation function 5" ()

0, 0<0.5

b () = mS ) {400—20 0505

Based on (20) and (21), the optimal price function 7" (6) is derived as follows
T"(0)=R"(0) +cb" (0) =—4006> +12000 — 500 .
In addition, the continuous optimal price schedule is computed as follows:

<0,0>, b<0.5

<b"(O),T"(0)>= 5 )
<400 - 20, — 4000% +12000 — 500 >, b>0.5

B. Discrete Price Schedule

(42)

(43)

(44)

Assume the size K of the discrete tabular price schedule is six. Using the method

described in Section 4.3, we derive the discrete price schedule from the continuous optimal

price schedule. The resulting discrete tabular price schedule is shown in Table 1.
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TABLE I. THE DISCRETE PRICE SCHEDULE AND THE TYPE SUBINTERVALS IN THE FIRST ROUND

Bandwidth | Price Hk eka gk

b

0.0 0.00 | 0.5000 | 0.0000 | 0.5500

4.0 76.00 | 0.6000 | 0.5500 | 0.6375

7.0 | 127.75 | 0.6750 | 0.6375 | 0.7125

10.0 | 175.00 | 0.7500 | 0.7125 | 0.8000

14.0 | 231.00 | 0.8500 | 0.8000 | 0.9000

18.0 | 279.00 | 0.9500 | 0.9000 | 1.0000

C. Quantity-Price Selection

Based on the IR and IC constraints, each MVNO chooses the quantity-price pair that
maximizes its utility, as given in (1). For instance, for MVNOg (6 = 0.72), the utilities
corresponding to the six pairs in the published price schedule table are 0, 13.6, 18.55, 19,
12.6 and -1.8, respectively. MVNOg will choose the fourth pair <10, 175>, which is exactly
the one that the MNO designs for the types of MVNOs that fall in the range 0.7125 < 4 <
0.8. For MVNO; (€ = 0.06), the utilities are 0, -39.2, -73.85, -113, -168.28, and -216.28
respectively. In this case, the pair <0, 0> will be chosen by MVNO,, which is again the one
designed for it. So do the remaining MVNOs.
D. Hypothesis Testing

We assume that all ten MVNOs respond in the first round. Table II shows the expected
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and observed frequencies of the six price pairs. The MNO performs hypothesis testing to
determine if the current estimate of the type distribution function needs to be revised. Here,
the chi-square value computed is 16.26, the degree of freedom is 5, and the critical
chi-square value is 11.07 with p-value = 0.05. Since 16.26 > 11.07, the null hypothesis "The
observed data and the estimated data are from the same distribution," is rejected, and the

type distribution function is re-computed.

TABLE II. The FREQUNCY TABLE AFTER THE FIRST ROUND

Quantity 0 4 7 10 14 18
Price 0 76 1275556175 231 279
Expected

5 0.875 0.75 0.875 1 1
frequency
Observed

3 0 2 4 0 1
frequency

E. Estimation of MVNO Type Distribution

After the computation, the likelihood function is formulated as  [F(0.55)-F(0)
[F(0.7125) - F(0.6375)] [F(0.8)— F(0.7125)]* [F(1)- F(0.9)], Where F(6) is the triangular distribution F(8
| 0, I, w). Differentiating the function with respect to ¢ and equating it to 0, we have w=0.9.
The new estimate of the distribution is F(@ | 0, 1, w), = 0.9. The MNO then computes the

new optimal price schedule as follows:
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0, 0<0<403
2_
b'(0)= 30‘99 9, J03<6<09 (45)
300-10, 09<6<1

0, 0<0<+03
(3000% —90)(1 + l) +180In6
. 0
r(0)= 3007 _9)2 V03<6<09 . (46)
—901n0.3—%,
20

—1500% + 6000 — 240 +90In2.7, 0.9<6<1

The corresponding discrete price schedule as shown in Table III is announced and the
process enters the second round.

In the second round, MVNO; (6 = 0.06), MVNO, (€ = 0.37) and MVNOs; (8 = 0.48)
still choose the pair <0, 0>, which means they do not want to purchase any bandwidth.
Assume they therefore decide to leave the process. We also consider the situation where, for
no obvious reason, MVNO; (8 = 0.73) decides to leave the process as well in this round.
Here, we wish to show that the proposed process and the associated schemes are able to
quickly adapt the estimate of the type distribution function according to the MVNOs who
remain in the process in the computation of the optimal price schedule that maximizes the

MNO’s expected return.

TABLE III. THE DISCRETE PRICE SCHEDULE AND THE TYPE SUBINTERVALS IN THE SECOND ROUND

Bandwidth | Price o k eka ak,]

0.0 0.00 | 0.5477 | 0.0000 | 0.5824

4.0 78.59 | 0.6184 | 0.5824 | 0.6571

8.0 | 147.16 | 0.6971 | 0.6571 | 0.7287
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11.0 | 192.38 | 0.7609 | 0.7287 | 0.7945

14.0 | 232.55 | 0.8287 | 0.7945 | 0.8641

17.0 | 267.89 | 0.9000 | 0.8641 | 1.0000

After the second round, six MVNOs remain in the process of the type values 0.65, 0.67,
0.72, 0.74, 0.75, and 0.92. According to the model, the 2" round submissions are as follows:
<4, 78.59>, <8, 147.16>, <8, 147.16>, <11, 192.38>, <11, 192.38>, and <17, 267.89>.

Table IV shows the expected and observed frequencies of the 6 sub-intervals.

TABLE IV. FREQUENCY TABLE AFTER THE SECOND ROUND

Quantity 0 4 8 11 14 17
Price 0 78.59 | 147.16 | 192.38 | 232.55 | 267.89
Expected

2.26 0.62 0.66 0.67 0.77 1.02
frequency
Observed

0 1 2 2 0 1
frequency

After hypothesis testing, the chi-square value is 8.63, which is less than the critical value

11.07. Thus, the observed data and the estimated data are deemed to be from the same

distribution. The iterative part of the process terminates and the process proceeds to the

second phased of bandwidth allocation subject to the finite capacity constraint.
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F.  Bandwidth Allocation

At the end of the first phase, the amount of bandwidths requested by the final
remaining MVNOs are as follows: <MVNO;, MVNO,, MVNO;, MVNO,;, MVNOs,
MVNOg, MVNO7,, MVNOg, MVNQOy, MVNO¢> = <-, -, -, 4, 8, 8, -, 11, 11, 17>, where
“-“ means no selection because the corresponding MVNO has left the dynamic trading
process. Here, the total amount requested is 59. We assume that the bandwidth capacity B is
30, which is less than the total demand. Thus, the knapsack problem is formulated to resolve
the bandwidth allocation problem. The final allocation is as follows: <-, -, -, 4 (reject), 8
(accept), 8 (reject), -, 11 (accept), 11 (accept), 17 (reject)>. That is, only the requests from

MVNOs of 6 = 0.67, 0.74, 0.75 are accepted The total return is 231.9, and the bandwidth

used 1s 30.
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Chapter 6 Conclusion

In this paper, we propose an open interactive dynamic bandwidth trading model to
resolve the problem of how an MNO prices and sells bandwidth to MVNOs of different
buying preferences.. The model comprised of two phases. In phase one, through a sequence
of interaction rounds the MNO accurately estimates the distribution of the types of the
participating MVNOs and accordingly computes the optimal price schedule that satisfies the
incentive compatible, individually rational and self-selection constraints. That is, an MVNO
with a specific type of distribution will always select the quantity-price pair that the MNO
designed for it. To achieve effective bandwidth sharing and utilization, we consider each
MVNO’s bandwidth request and willingness to pay as well as the expected return for the
resource owner, i.e., the MNO. Although the continuous forms are convenient for deriving
the model and the optimal price schedule, in practice, the units of bandwidth are usually
sold in a discrete format. We present an algorithm to convert the continuous optimal price
schedule to a discrete form. It is also designed to ensure that a specific type of MVNO will
choose the pair whose corresponding utility value is closest to the value in the original
function. After the iterative process converges and terminates, if the total number of
bandwidth requests exceeds the total capacity constraint, the process proceeds to address the
finite capacity constraint by solving a bounded knapsack problem for final bandwidth

allocation.
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Finally, we provide an example of show the derivation of the optimal price schedule

and the final bandwidth allocation. It also shows that the proposed model and the associated

mechanisms can quickly adapt its estimate of the type distribution function of the

participating MVNOs and converges to produce the final optimal price schedule.
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