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頻 寬 是 很 稀 少 且 珍 貴 的 資 源 。為 了 增 進 頻 寬 使 用 效 率， 解 決

原 先 使 用 方 法 的 低 效 率 ， 感 知 無 線 電 ( cognitive radio)以 及 動 態 頻 譜

分 配 ( d y n a m i c  s p e c t r u m  a l l o c a t i o n )的 概 念 被 提 了 出 來 。 在 此 篇 論

文 ， 我 們 考 慮 一 個 由 單一 mobile network operator (MNO) 以及眾多有著不同類

別(type)的 mobile virtual network operators (MVNOs) 組成的無線網路。我們以下提供

一個由兩個階段組成的開放式動態頻寬交易模型來讓  MNO 將頻寬販賣給 

MVNOs。 

這個開放式動態頻寬交易模型的第一個階段的目的是在一連串MNO與MVNOs的

互動中，去找到參與的MVNOs的購買意願或者他們的類別，並且計算出要被販賣的頻

寬的最佳價目表。計算最佳價目表的同時也會考慮到MVNOs的需求價格函數以及效用

函數。最重要的是，最佳價目表必須滿足誘因相符性(incentive compatible, IC) 以及個

體理性(individually rational, IR)的限制。前者確保了為某個類別的MVNO設計的數量-

價格組能給該MVNO帶來最大的效用；後者確保了為其設計的數量-價格組可以給其非

零的效用。我們同時也提供了一個將連續的最佳價目表轉成離散形式，以提供一個比

較容易閱讀的格式；此時每個MVNO都會去選擇最靠近其在連續最佳價目表中類別的

數量-價格組。在反覆進行的互動收斂且停止之後，如果全部的需求超出了可以提供的

頻寬，那麼此模型就會使用背包問題的解法來將頻寬分配給一部分的MVNOs，已使得

分配出去的頻寬不會超出可提通頻寬的限制。最後，我們用一個例子來說明這個開放

式動態頻寬交易模型是如何運作的。  
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The wireless spectrum is a limited resource. The concepts of cognitive radio and dynamic 

spectrum allocation (DSA) have been considered as a possible mechanism to improve the 

efficiency of bandwidth usage and solve the bandwidth deficiency problem. In this work, 

we consider a wireless network access environment comprised of a mobile network operator 

(MNO) and a distribution of different types of mobile virtual network operators (MVNOs). 

We propose an open dynamic bandwidth trading model that comprises of two phases. The 

goal of the phase one is to find out the distribution of the buying preferences or types of the 

participating MVNOs through a sequence of interactive rounds and compute the optimal 

price schedule for the unused bandwidth for sale. The derivation of the optimal price 

schedule also considers the demand and utility functions of the MVNOs. Most importantly, 

the optimal price schedule satisfies the incentive compatible (IC) and the individually 

rational (IR) constraints. The former ensures that the quantity-price pair designed for 

MVNO of a specific type will choose the pair that maximizes its utility; while the latter 

assures that the pairs cause non-negative utility. We also give an algorithm to convert the 
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continuous optimal price schedule to a discrete one so as to provide a simple easy-to-read 

format for MVNOs’ selection while ensuring that individual type of MVNOs will choose 

the pair whose corresponding utility value is closest to the value in the original function. 

After the iterative process converges and terminates, if the total number of bandwidth 

requests exceeds the total capacity constraint, the process proceeds to address the finite 

capacity constraint by solving a bounded knapsack problem for final bandwidth allocation. 

Lastly, an example is provided to explain how the proposed open dynamic bandwidth 

trading process with optimal incentive-compatible price schedule is derived. 

 

 
keywords： dynamic spectrum sharing; incentive-compatible pricing; bandwidth trading; 

optimal price schedule; finite bandwidth sharing   
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Chapter 1 Introduction 

Since spectrum is a limited and therefore precious resource, how to achieve efficient 

and fair spectrum sharing and allocation among different demand groups is an important 

issue. Traditional spectrum allocation schemes adopt the long-term lease business model, 

which assigns different wireless technologies with a static amount of bandwidth to different 

frequency band in order to prevent interference between them. A study sponsored by the US 

Federal Communications Commission observed that the traditional fixed spectrum 

assignment model, which results in over-allocation of spectrum to some operators and 

applications as well as inefficient bandwidth usage, is unable to meet the growth in demand 

arising from today’s wireless technologies [1].  

One possible way to overcome the above limitations is to allow periodic trading of 

dynamic unused bandwidth by licensed spectrum owners, who sublet their surplus resources 

to service providers that need bandwidth for a short period. In this work, we consider a 

wireless network access environment comprised of a mobile network operator (MNO) and 

various mobile virtual network operators (MVNOs) of different buying preferences or types. 

It is assumed that an MNO is a telecommunications company that owns a frequency license 

and mobile infrastructure, and also provides services for mobile phone subscribers. An 

MVNO is a company that provides mobile phone/network services, but it does not have a 

frequency license or a mobile infrastructure. However, it does have access to a niche market, 

which an MNO finds hard to enter. The spectrum owner (MNO) periodically offers its 
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unused bandwidth on the open market for short-term lease to MVNOs that need extra 

bandwidth to meet their service needs and business goals.  

In dynamic bandwidth trading, how to allocate and price bandwidth among different 

demand groups of potential buyers are two fundamental issues. To address the issues, we 

propose an open dynamic bandwidth trading model that comprises of two phases. The goal 

of the phase one is to find out the type distribution of the participating MVNOs through a 

sequence of interactive rounds between an MNO and MVNOs. In each round, the MNO 

first revises its estimate of the distribution of the types of the participating MVNOs based 

on their selections submitted in the previous round. It then re-computes the optimal price 

schedule and announces it to the MVNOs for a new round of selection. The derivation of 

the optimal price schedule considers the distribution of the types of MVNOs as well as their 

demand and utility functions. The optimal price schedule comprises a number of pairs, each 

representing the optimal bandwidth quantity and the associated price designed especially for 

a type θ MVNO. Since the schedule is computed based on the assumption that all MVNOs 

are rational, each MVNO will select the quantity-price pair designed for its type in order to 

maximize its utility function, and the profit of the resource owner (MNO).  

Through each round of interaction, the MNO learns more about the MVNOs that are 

interested in purchasing extra bandwidth. As a result, the MNO revises its estimate of the 

cumulative distribution function of the types of MVNOs to derive the optimal price schedule 

for the sale of the unused bandwidth. We also present an algorithm to convert the continuous 
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optimal price schedule to a discrete form so as to provide a simple easy-to-read format for 

MVNOs’ selection. In the second phase, we consider the finite capacity constraint in 

bandwidth trading. After the process converges and terminates, if the total demand for 

bandwidth exceeds the total capacity, we resolve the bandwidth contention problem by 

mapping it to a bounded knapsack problem. 

The proposed open dynamic bandwidth trading model creates a win-win situation for 

the profit-maximizing MNO and individual MVNOs that need extra bandwidth. We believe 

the model achieves better spectrum utilization and meets the business goals of MNOs and 

MVNOs.  

The remainder of the paper is organized as follows. Chapter 2 contains a review of 

related works. In Chapter 3, the system model of the buyers (MVNOs) and the seller (MNO) 

engaged in open dynamic bandwidth trading is given. In Chapter 4, we present the 

derivation of the continuous optimal price schedule, and the algorithm to convert the 

continuous optimal schedule to a discrete form to provide a simple easy-to-read format for 

MVNOs’ selection. In Chapter 5, the proposed open dynamic interactive bandwidth trading 

process of the MNO and MVNOs is described in detail. We also provide an example to 

illustrate the key designs of the proposed open dynamic bandwidth trading process. Chapter 

6 contains some concluding remarks. 
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Chapter 2 Related Work 

A number of system models have been proposed for bandwidth allocation and pricing 

in wireless environments. They address the problem by considering different combinations 

of service providers, customers, and government regulations. Moreover, they use various 

concepts, such as auction [2][3][4], game theory [5][6][7][8], or economic analysis [9][10], 

to tackle the problem. In these works, spectrum/bandwidth buyers are typically modeled by 

using some simple parameters, e.g., the maximum budget or the maximum amount of 

money that buyers are willing to pay for a certain amount of bandwidth. In this work, we 

model the behavior of an MVNO by its type, demand curve and utility function to capture 

the essential characteristics of a potential bandwidth buyer. 

Among all the methods used for spectrum management, auction is the most popular 

approach. For example, under the method proposed in [2], a spectrum manager periodically 

auctions short-term spectrum licenses to multiple CDMA network operators with the goal of 

maximizing revenue. Each operator determines its own price based on the amount that users 

are willing to bid. In [3], two auction mechanisms are proposed for spectrum sharing by a 

number of users based on the signal to interference-plus-noise ratio (SINR) and received 

power. The authors of [4] introduce a spectrum auction framework that formulates 

conflict-free spectrum allocation between users as an optimization problem. They also 

discuss the tradeoffs between the auctioneer’s revenue and fairness to buyers under different 

pricing strategies. The main drawback of the auction approach is that it is time-consuming 
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and it may incur high operating costs. It is also known for its unfavorable spectrum 

utilization [5]. 

Another popular approach uses game theory to solve the spectrum allocation and 

pricing problem. In [5], the authors consider the problem of spectrum sharing between a 

primary user who is eligible to access a licensed radio spectrum and a number of secondary 

users who have no access rights to the licensed spectrum. The problem is formulated as a 

Cournot game in which a pricing function is used to constrain secondary users from 

requesting excess spectrum. It is assumed that the total spare spectrum available for 

allocation is not finite, which is rather unrealistic. In [6], the authors consider the same 

problem with multiple primary and secondary users. Two different games are used to model 

the behavior of each type of users. The interaction between the games is that the spectrum 

and price offered by the primary users will affect the equilibrium of the secondary users’ 

game. It continues until both of them reach equilibrium. In [7], a framework is developed to 

model the competition between multiple network operators for customers and the available 

spectrum as a non-cooperative game under the regulation of a spectrum policy server. The 

main disadvantage of this approach is that there is no real mediator in practice, so the 

players need to propose individual strategies iteratively to reach equilibrium; hence, the 

convergence period is often long.  

There are also approaches that consider the price when allocating spectrum to users 

with different demands. In [9], the authors consider how a service provider sets the 
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spectrum price to maximize profits and how users decide the amount of spectrum to 

purchase. They apply economic analysis techniques in a monopoly market to determine the 

optimum price for the service provider. The approach in [10] uses game theory to study 

demand-responsive pricing for radio resource management where multiple access points 

compete for users.  

It is widely recognized that user satisfaction is an important factor that must be 

considered in the provision of services. Indeed, some works regard user satisfaction as the 

primary consideration rather than revenue-maximization. In [11], the authors propose a 

model of user satisfaction in which the requested QoS and the price paid are considered in 

radio resource management. Based on their model, the authors of [7] study how customers 

choose a network operator for service when multiple operators compete with each other. In 

contrast to the above works, we use a non-linear optimal price schedule to discriminate 

between different types of MVNOs. We propose an open dynamic trading model in which, 

through each round of interaction, the MNO learns more about the distribution of the types 

of the potential buyer MVNOs so to derive the optimal price schedule that will maximize its 

expected return. 
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Chapter 3 System Model 

There are two kinds of players in the proposed dynamic bandwidth trading model: 

buyers (multiple MVNOs) and the seller (the MNO). The MNO only owns one product, i.e., 

surplus bandwidth, with a constant marginal cost c. Based on that cost, c, and its knowledge 

of the distribution of the types of buyer MVNOs, the MNO will publish an optimal price 

schedule for the MVNOs’ selection which is specially designed so that an MVNO based on 

its type will choose the quantity-price pair that maximizes its utility. 

3.1 MVNO: the Buyer 

We assume there are different buying preferences or types of MVNOs and use the 

parameter θ, which is bounded by [θL, θU], to describe them. A type θ MVNO’s preference is 

represented by the utility function, which follows the standard consumer surplus approach: 

 TdxxpTbU
b

 0 );();,(  ,                          (1) 

where b is the amount of bandwidth purchased, T is the total price paid, and p(x; θ) is the 

demand price function of a type θ MVNO. The integration of the demand price function 

gives the total price the buyer is willing to pay for the total number of units of bandwidth b. 

We also assume that there exists an efficient consumption level for which the demand price 

exceeds the marginal cost for type θ MVNOs, denoted by be(θ). We make two other 

assumptions: 
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Assumption 1. For all feasible θ, (1) the demand price function p(b; θ) is non-increasing in 

b and non-negative1; (2) be(θ) ≥ 0 and p(b; θ) is decreasing in b for b ≤ be(θ), and p(b; θ) 

≥ c if and only if b ≤ be(θ); and (3) p(b; θ) is twice continuously differentiable. 

Assumption 2. Higher levels of θ are associated with higher demand. That is, p(b; θ) is 

strictly increasing in θ whenever p(b; θ) is positive. 

It is assumed that MVNOs use the utility functions to measure and evaluate the price 

schedule announced by the MNO, and that each MVNO will choose the quantity-price pair 

that maximizes its utility. If more than one pair yields the same maximal utility, we assume 

that the MVNO will choose the one with the largest amount of bandwidth. 

Let the types of MVNOs follow a continuous distribution represented by the cumulative 

distribution function (CDF) F(θ). It is assumed that the population of MVNOs are drawn 

independently according to F(θ). We also make the following assumption: 

Assumption 3. The cumulative distribution function for θ, F(θ), is a strictly increasing, 

continuously differentiable function on the interval [θL, θU] with F(θL) = 1 – F(θU) = 0. 

3.2 MNO: the Seller 

We assume that the demand price functions, p(b; θ), and the utility functions, U(b, T; 

θ), for all θ are known to the MNO because they can be obtained by analyzing historical 

information. However, the MNO does not know the exact types of the MVNOs participating 

in the trading. 

                                                       
1 The non-increasing property might not be suitable for scarce resources. Although the spectrum is scarce, we still consider this property 
in our work. 
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The MNO’s objective is to construct and publish a price schedule (S) of pairs <bs, Ts> 

that maximizes its profit. If an MVNO chooses a pair s of S, it will receive bs and pay for a 

total of Ts. In the next section, we explain how to derive the optimal price schedule such that 

each type of MVNO will choose the pair designed for it, and that pair will give the MVNO 

the maximal utility. First, we define the MNO’s profit or "return" as follows: 

 bcTR ˆˆˆ  .                                (2) 

Let N(b; θ) denote the social surplus generated by the sale of a type θ MVNO, i.e., 

  
b

cbdxbpbN
0

);();(  .                           (3) 

The utility of a type θ MVNO that chooses pair <b, T> is defined as the social surplus N(b; 

θ) less the MNO’s profit R, i.e., 

  
b

RbNRcbdxxpRbU
0

);();();,(  .                   (4) 

Two properties are important to the MNO in the construction of the optimal price 

schedule. First, the MNO must ensure that the schedule contains a specific quantity-price 

pair for each type of MVNO. Second, the MVNOs are rational, meaning every type θ 

MVNO will only choose the pair <b(θ), T(θ)> designed for it, and that pair will give the 

MVNO the maximal utility. That is, the price schedule will satisfy the following two 

constraints [12]. 

C1: [Incentive Compatibility (IC)]: for each θ,  

  ULvvTvbUTbU  ,),);(),(());(),((  .                (5) 

C2: [Individually Rational (IR)]: for each θ,  
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 0));(),((  TbU .                           (6) 

The IC constraint ensures that the pair <b(θ), T(θ)> designed for the type θ MVNO is the 

pair that would maximize its utility; while the IR constraint ensures that the pair <b(θ), 

T(θ)> causes non-negative utility. Given a price schedule S that satisfies the two constraints, 

every type θ MVNO will choose the pair <b(θ), T(θ)>. Such a quantity-based price schedule 

is described as incentive compatible. An incentive-compatible quantity-based price schedule 

is said to be optimal for a subinterval [θL, θU] if it yields profits for the MNO that are at 

least as high as any other incentive-compatible quantity-based price schedule designed 

exclusively for customers in the range [θL, θU][12]. 
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Chapter 4 Optimal Price Schedule 

In this section, we explain how to construct the optimal price schedule, S*, of pairs 

<(bs
*, Ts

*)> that will maximize the MNO’s profit and satisfy the IC and IR constraints. We 

adopt the method in [13], which satisfies the self-selection constraints. Both the 

self-selection and the IC constraints require that each type of MVNO will be more satisfied 

with the quantity-price pair designed for it than with a pair designed for any other type of 

MVNOs. For example, consider n different types of MVNO, θ1 < θ2 < ... < θn. The optimal 

price schedule {<b(θ), T(θ)>} that satisfies the self-selection constraints has two necessary 

properties. The first property is that b(θ) is a non-decreasing function. Let us consider any 

two neighboring types of MVNOs, θi and θi+1, and assume that the pair <b(θi), T(θi)> 

designed for θi is known. Then, the pair <b(θi+1), T(θi+1)> designed for θi+1 should be the 

same as the pair <b(θi), T(θi)>; otherwise, it should be located on or below the indifference 

curve of type θi+1 through <b(θi), T(θi)> to prevent the higher type θi+1 from switching to 

the pair designed for the lower type θi. Moreover, the pair <b(θi+1), T(θi+1)> should be 

located on or above the indifference curve of the type θi through <b(θi), T(θi)> to prevent 

the lower type θi from switching to the pair designed for the higher type θi+1. Hence, we 

have b(θi+1) ≥ b(θi) for any two neighboring types, so b(θ) is a non-decreasing function.  

The second property is called the "local downward" constraint:  

 niTbUTbU iiiiii ,,2),);(),(());(),(( 11    ,                (7) 

which implies that the lowest type would yield zero utility, i.e.,  
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 0);0,0());(),(( 1111   UTbU .                      (8) 

The local downward constraint is the only self-selection constraint that is binding.  

The two properties are sufficient to ensure that all self-selection constraints will be 

satisfied. That is, if the price schedule satisfies the two properties, then it will also satisfy 

the self-selection constraints. Consider two neighboring types of MVNOs, θi and θi+1 with 

the known pair <b(θi), T(θi)> designed for θi. The local downward constraint makes the pair 

<b(θi+1), T(θi+1)> locate on the indifference curve of θi+1 through <b(θi), T(θi)>. Since the 

indifference curve of θi+1 is steeper than that of θi and the non-decreasing property implies 

that b(θi+1) should be equal to or greater than b(θi), the pair <b(θi+1), T(θi+1)> is above the 

indifference curve of θi and U(b(θi+1), T(θi+1); θi) < U(b(θi), T(θi); θi). Therefore, the lower 

type θi would not switch to the pair designed for the higher type θi+1.  

With <b(θ), p(θ)> optimal for each type θ MVNO, we can write the maximized utility 

as 

 )());(()(*  RbNU  .                         (9) 

According to Assumptions 1 and 2 and the "local downward" constraint, a type θ MVNO 

would derive no extra advantage by choosing the offers for the MVNOs with lower types 

than θ. Thus, we have 

  





 


L

dxxxb
N

bNR ));(());(()( .                   (10) 

Therefore, the expectation of R(θ) is calculated as follows: 
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


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

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 )());(());((][ .                 (11) 

After integration by parts, we have [13]: 

  






 



 U

L

dF
F

F
b

N
bNRE










 )(

)('

)(1
));(());((][ .              (12) 

Let I(b(θ); θ) denote the terms in the brackets. Then, we can rewrite (12) as follows: 

 
U

L

dFbIRE



 )());((][ .                     (13) 

The goal of the MNO is to find the optimal price schedule that maximizes its expected 

return. The derivation of the optimal price schedule involves two steps. First is to find the 

optimal bandwidth {b*(θ)} that would maximize the expected return. Note that the optimal 

price schedule must satisfy the self-selection constraints. It has been proved that, for any 

non-decreasing function b(θ) on [θL, θU], there exists a unique return function, R(θ), as 

given in (10) such that <b(θ), R(θ)> satisfies all the self-selection constraints and U*(θL) = 0, 

which is the maximal utility designed for the lowest potential buyer θL[13]. The following 

two assumptions are made to ensure that the non-decreasing price elasticity property of b(θ) 

does not offer random pairs of a schedule, and for convenience in the choice of 

parameterization of θ.  

Assumption 4. Demand elasticity is non-decreasing in the demand price, i.e., 

 0













b

p

p

b


.                        (14) 

Assumption 5. The second-derivative of the demand price function with respect to θ is 

non-positive, 
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

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

bp .                             (15) 

After obtaining b*(θ), in the second step we substitute b*(θ) for b(θ) in (10) to obtain R*(θ). 

We also obtain the optimal price T*(θ) as follows: 

 )()()( ***  cbRT  .                       (16) 

In the following, we explain how to derive the optimal price schedule in details. 

4.1 Optimal Bandwidth Quantity 

Finding the maximum expected return in (13) involves maximizing I(b(θ); θ) for all 

feasible θ. That is, if b*(θ) maximizes I(b(θ); θ) for all feasible θ, b*(θ) would also 

maximize the expected return. We prove the above statement by contradiction. Suppose that 

b*(θ) maximizes I(b(θ); θ) and there exists a b**(θ) such that b**(θ) yields a higher expected 

return than b*(θ). Since b**(θ) will yield a higher expected return and the expected return is 

the integration of I(b**(θ); θ), then I(b**(θ); θ) should be greater than I(b*(θ); θ) at some 

point. This means that there would exist at least one point, say θa, such that I(b**(θa); θa) > 

I(b*(θa); θa). We can prove this easily because if I(b**(θ); θ) ≤ I(b*(θ); θ) for all feasible θ, 

the integration of I(b**(θ); θ) would be smaller than that of I(b*(θ); θ). As we have I(b**(θa); 

θa) ≤ I(b*(θa); θa) for all feasible θ, it would not be possible for the expected return from 

b**(θ) to be greater than that from b*(θ). Therefore, b**(θa) cannot exist. 

Given Assumptions 1, 2, 3, 4, and 5, we know the b*(θ) that solves );(max bI
b

 must be 

non-decreasing. Suppose b*(θ) maximizes I(b; θ) for all feasible θ. Then, b*(θ) should 

satisfy the following equation: 
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  ULb
b

I  ,,0));(( * 

 .                        (17) 

Note that we assume the b(θ)s in the published price schedule are non-negative. To convert 

b*(θ) to a non-negative function, let b0(θ) be the optimal bandwidth function for all feasible 

θ. We eliminate the negative part of b0(θ) to obtain the optimal bandwidth quantity function 

b*(θ). Specifically, b0(θ) is computed by the following equation: 

  ULb
b

I  ,,0));(( 0 

 .                     (18) 

We also have 

  ULbb  ,)},(,0max{)( 0*  .                   (19) 

4.2 Optimal Price 

The optimal price function is computed by substituting b*(θ) for b(θ) in (10), i.e., 

 UL
L

dxxxb
N

bNR 






,,));(());(()( *** 




  .             (20) 

The function gives the optimal return (profit) R*(θ) derived by selling b*(θ) units of 

bandwidth to a type θ MVNO. We also have the following optimal price function T*(θ): 

  ULcbRT  ,),()()( ***  .                    (21) 

Finally, we have the optimal price schedule S*, which comprises a number of pairs {<b*(θ), 

T*(θ)>}, each representing the optimal bandwidth quantity and the associated price designed 

especially for a type θ MVNO. 

4.3 Discrete Price Schedule 

Thus far, we have assumed that the demand price functions and the type distribution 

functions of MVNOs are all continuous, and the resulting optimal price schedule is a pair of 
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continuous functions of the MVNO type. Although the continuous forms are convenient for 

deriving the model and the optimal price schedule, in practice, the units of bandwidth are 

usually sold in a discrete format. Here, we will convert the continuous optimal price 

schedule to a discrete form. Assume K different quantity-price pairs are selected from the 

continuous optimal price schedule such that the resulting expected return is as high as 

possible. K is assumed to be defined by the MNO's policy. Let the resulting discrete price 

schedule be denoted by *
disS  = {  )

~
(),

~
( **

kk Tb  , k = 1 ~ K}. Given *
disS , it is obvious that 

a type k
~  MVNO will choose the pair  )

~
(),

~
( **

kk Tb  . Next, we examine the types 

within the range of k
~  and 1

~
k . Consider a θ in )

~
,

~
( 1kk  . Let us compute the difference 

in the utility of choosing either pair, i.e., 

 ));
~

(),
~

(());
~

(),
~

(( 1
*

1
***   kkkk TbUTbU .             (22) 

Differentiating (22) with respect to θ, we have 

 






)

~
(

)
~

(

1
*

*
);(

k

k

b

b
dxxp







.                       (23) 

Since p(b; θ) is increasing in θ and b*(θ) is non-decreasing, the derivative of the utility 

difference in (22) is negative, and the utility difference is decreasing in θ. That is, when θ 

moves outside the range of k
~  and 1

~
k , the utility obtained by choosing  )

~
(),

~
( **

kk Tb   

would be higher until at type 
bk  or type 

ak )1(   the utility derived by choosing either

 )
~

(),
~

( **
kk Tb   or   )

~
(),

~
( 1

*
1

*
kk Tb   would become the same. Thereafter, the types 

between ]
~

,[ 1)1(  kk a
  will choose the pair 

bk  that yields a higher utility than selecting

 )
~

(),
~

( **
kk Tb  . Here, we assume that if two possible price pairs render the same utility, an 
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MVNO would choose the one with greater amount of bandwidth. Hence, type 
bk  will 

choose   )
~

(),
~

( 1
*

1
*

kk Tb   instead of  )
~

(),
~

( **
kk Tb  . For the types in the subintervals 

)
~

,[ 1L  and ],
~

( KK  , the pairs  )
~

(),
~

( 1
*

1
*  Tb  and  )

~
(),

~
( **

KK Tb   will be chosen, 

respectively. In summary, we assume that the discrete price schedule contains K pairs of 

bandwidth quantity and the associated price, and we want to determine which K pairs in the 

continuous optimal price schedule will maximize the expected return. The K pairs 

correspond to the K types (points) of MVNOs, which in turn divide the type distribution 

range [θL, θU] into K mutually exclusive subintervals, denoted by ),[ 11 ba
 , ),[ 22 ba

 , ..., 

),[ 11 ba KK   , ],[
ba KK  , La

 1 and UKb
  . The selection of the set },..,1,

~
{ Kkk   has 

the property ));
~

(),
~

(( **
bkkk TbU  = ));

~
(),

~
(( )1(1

*
1

*
akkk TbU   , k = 1 ~ K–1. Thus, the 

problem can be formulated by solving the following non-linear optimization problem. 

   



K

k
kkkk ab

FFcbT
1

** )()()
~

()
~

(max                    (24) 

s.t.  

 La
 1                              (25) 

 UKb
                                (26) 

 1,...,1,1  Kk
ba kk                         (27) 

1...,,1),);
~

(),
~

(());
~

(),
~

(( )1(1
*

1
***   KkTbUTbU

ab kkkkkk               (28) 

 1~1,
~~

1   Kkkk                      (29) 

 Kk
ba kkk ~1,

~
                        (30) 

 }0)(|min{
~ *
1   b                           (31) 
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(*                       (32) 

In the formulation, we know that when the k
~ ’s are determined, the ranges of the  

K intervals are also determined, i.e., },...,1),,{[ Kk
ba kk   based on the constraint 

));
~

(),
~

(( **
bkkk TbU  = ));

~
(),

~
(( )1(1

*
1

*
akkk TbU   . Here, the boundaries are presented as 

implicit functions that are parts of the constraints.  

Moreover, we would like the )
~

(*
kb  s to be integral values. Note that, in non-linear 

(mixed) integer programming problems, the integer property should only be applied to 

decision variables. However, in the formulation proposed above, the integer property is 

applied to )
~

(*
kb  , not k

~ . We therefore make a conversion as follows. We convert the price 

function T*(θ) to T*(b) by T*(b) = T*(b*-1(b)) where b*-1(b) is the inverse function of b*(θ). 

The problem then becomes the problem of selecting K different quantities, kb
~ , k = 1 ~ K, 

from a finite set   }&)(0|{ * Νbbbb U    such that the expected return 

  



K

k
kkkk ab

FFbcbT
1

* )()(
~

)
~

(   is maximized. We thus formulate the problem as a non-linear 

mixed integer problem. Since the problem is a combinatorial optimization problem, once 

kb
~ s have been decided, the expected return can be obtained in constant time. In addition, the 

problem can be solved in polynomial time  ))(( * K
UbO   by examining all possible 

combinations,         )1)()...(1)()()((
!

1)( ***
*











Kbbb

KK

b
UUU

U 
 given a constant K. 

Fig. 1 shows the K subintervals of the type distribution range. An example of utility 

values is also depicted to show that for the MVNOs of the types in the range of 
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~
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kk Tb   will result in a higher utility than 
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Figure 1 The K subintervals in the determination of the discrete price schedule and the illustration of the utility 

values in price pair selection. 
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Chapter 5 Open Dynamic Bandwidth Trading Model 

In the previous sections, we focused on how the MNO computes the optimal price 

schedule based on the demand price function of MVNOs, p(b;θ); the marginal cost of 

bandwidth, c; and the type distribution function of the MVNO, F(θ). It is assumed that the 

information is based on the MNO’s knowledge or estimation of the market. If any of the 

estimates are not accurate, the published price schedule may not give the maximum 

expected return. Moreover, the MNO does not know the exact population of buyers, but it 

does know the estimate of the type distribution function. In this section, we present an open 

dynamic bandwidth trading model, which comprises of two phases. The goal of phase one 

is to find out the distribution of the type of the potential buyer MVNOs who remain in the 

process. It is implemented as a sequence of interaction rounds between the MNO and the 

MVNOs. And, it is a learning-and-revising process. Through each round of interaction, the 

MNO learns more about the number and the type of the MVNOs based on their selection 

submissions. The MNO then revises its estimate of the type distribution of the MVNOs who 

remain in the process and computes a new optimal price schedule. At the beginning of a 

round, the MNO publishes an optimal price schedule based on its current knowledge of the 

participating MVNOs. Each MVNO then chooses the pair that maximizes its utility and 

submits the selection to the MNO. Note that, an MVNO may choose to leave the dynamic 

trading process by not submitting its selection of the price pair; however, once it leaves, it 

cannot re-join the process. The rule guarantees the convergence of the process. We also 
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assume that the MNO can estimate the costs accurately. For the MVNOs’ demand price 

functions, there always exist non-neglected estimation errors. Here, we assume they are 

accurate. 

The phase one of the open interactive dynamic bandwidth trading process emphasizes 

continuous learning by the MNO so as to discover the true distribution of the types of the 

buyers. Initially, the MNO has the estimate F(1)(θ) derived from the historical information. 

Based on that estimate, it computes the initial optimal price schedule S*(1), converts it to the 

discrete form )1*(
disS and announces it to the MVNOs. Let the selections of the MVNOs 

submitted to the MNO be denoted by R(1). 

5.1 Re-estimation of MVNO Type Distribution 

After the MNO receives all the selections R(i) at the end of the ith round, let the total 

number of MVNOs who chose the pair )(** )
~

(),
~

( i
kk Tb    be denoted by )(i

kn  and 

)(

1

)( i
K

k

i
k Nn 



, NN i )( , where N is the total population of potential buyer MVNOs estimated 

by the MNO initially. We use Pearson's chi-square test [14] to determine if the distribution 

of the types of MVNOs based on R(i) differs from the MNO’s current estimate. Let the value 

of the test-statistic is 

 

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2)()(
2 )(

 ,                        (33) 

where )(i
kE  is the number of MVNOs expected to choose pair k, which is computed as 
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follows: 

 ))()(( )()()()(
abk k

i
k

iii FFNE   .                    (34) 

The value of 2  is checked against the value of 2
critical . If 22

critical  , the observed 

frequency fits the estimated distribution and the MNO can proceed to solve the capacity 

constraint problem. Otherwise, the MNO will use the observed data to re-estimate the 

distribution of the types of the currently participating MVNOs.2 

5.2 Estimation of F(i)(θ) from R(i) 

To derive an estimate of F(i)(θ) from R(i), the maximum likelihood estimation (MLE) 

method [15] is used. We first make an estimate of the underlying statistical model )(ˆ )( iF . 

Given the price schedule )*(i
disS = { )(** )

~
(),

~
( i

kk Tb   , k = 1 ~ K}, the likelihood function is 

as follows: 
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ab
FF

1
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))(ˆ)(ˆ(  .                      (35) 

By differentiating the likelihood function with respect to each parameter and equating it to 0, 

we can obtain the estimates of the parameters that govern the statistical model.  

Since only the MVNOs that participated in the previous round are allowed to remain in 

                                                       
2  Note that to use the chi-square goodness of fit test properly, the expected frequency in 

each category should be at least five. If any frequency is less than 5, it should be combined 

with an adjacent category. However, combining categories may have unintended 

consequences, e.g., there may only be one category left. 
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the interactive trading process, we know that the number of MVNOs participating in each 

round will not increase as the process continues. This ensures that the population of 

participating MVNOs will converge after a finite number of iterations. 

Two‐phase Open Dynamic Bandwidth Trading 
Process

1

Ground Knowledge: p(b; θ), F(θ), c
MNO

Compute continuous optimal 
price schedule

MVNOs

• Each selects a 
quantity-price pair 
that maximizes its 
utility
• Submit selections 

Allocate bandwidth and 
charge MVNOs subject to 
finite capacity constraint

reject

})
~

(),
~

({ **)(*  kk
i

dis TbS 

)(iR

)(* iS

Compute discrete price
schedule )(* i

disS

Estimate Fi(θ)

Perform Pearson’s Chi-square 
test

pass

 

Figure 2. Flowchart of the open dynamic bandwidth trading process 

 

5.3 Capacity Constraint 

According to the Pearson’s chi-square test when the observed frequency of the types of 

the participating MVNOs fits the estimated distribution, the first phase terminates. The 

bandwidth trading process proceeds to the second phase to resolve the finite capacity 
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constraint. Note that the previous derivation of the price schedule was based on the 

assumption that the amount of unused bandwidth for sale was infinite. However, in practice, 

it is typically finite. Therefore, if the total bandwidth requested is greater than the total 

capacity B, we need to decide how to allocate the bandwidth to the buyer MVNOs given the 

finite capacity constraint. Otherwise, each MVNO who participated in the final round of the 

phase one will be satisfied with the amount as stated in the submission; and the MNO will 

charge them based on the discrete price schedule published in the final round. 

If it is not possible to satisfy all the requests because of the finite capacity constraint, 

we map the bandwidth allocation problem to the bounded knapsack problem, where the size 

of the knapsack is the spectrum capacity B and the items are the MVNOs that remain in the 

final round. The weights and values of the items are the quantities and returns in the final 

discrete price schedule )*( final
disS = {  )

~
(),

~
( **

kk Tb  , k = 1 ~ K}; and the copies of each 

bandwidth-price category of items are { )( final
kn }, )(

1

)( final
K

k

final
k Nn 



. The problem is 

formulated as:  
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s.t. 
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Fig. 2 shows the flowchart of the trading model and the interaction between the MNO and 
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the MVNOs. 

 

5.4 Example 

In this section, we provide an example to illustrate the key components of the proposed 

open dynamic bandwidth trading process. First, we assume that the distribution of the types 

of MVNOs follows a uniform distribution in the range [0, 1], i.e., F(θ) = θ,  and the 

demand price function is as follows: 
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Let the distribution of MVNOs that will join the open trading process follow a triangular 

distribution F(θ | 0, 1, ω = 0.9), i.e., 
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In addition, assume that ten MVNOs will join the process initially. The types of MVNOs are 

generated by using the inversion method [16]. First, we randomly generate ten values from 

the uniform distribution U(0, 1) denoted by Ui, i = 1, …10, and substitute them in the 

following equation to obtain the types of MVNOs that follow the triangular distribution: 
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The distribution of the ten participating MVNOs is shown in Fig. 3.  



26 
 

First, let us consider the case where the MNO has perfect information about the 

MVNOs and its initial estimate of the type distribution function is exactly the true 

distribution, i.e., a uniform distribution in the range [0, 1], which means F(θ) = θ. Note that 

in the proposed process the MNO re-estimates the distribution of the types of the 

participating MVNOs in each round based on the selection submissions regardless of the 

initial assumption about the type of distribution. Here, it is assumed that the marginal cost c 

is fixed (c = 10). 

A. Optimal Price Schedule 

Based on (3), (12), and (13), we first compute the I(b; θ) of the expected return as 

follows: 
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Figure 3. Distribution of the ten MVNOs that join the open dynamic bandwidth trading process initially 

 

Then, we compute the optimal bandwidth allocation function b*(θ) 
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Based on (20) and (21), the optimal price function T*(θ) is derived as follows 

5001200400)()()( 2***   cbRT  .                 (43) 

In addition, the continuous optimal price schedule is computed as follows: 
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B. Discrete Price Schedule 

Assume the size K of the discrete tabular price schedule is six. Using the method 

described in Section 4.3, we derive the discrete price schedule from the continuous optimal 

price schedule. The resulting discrete tabular price schedule is shown in Table I. 
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TABLE I. THE DISCRETE PRICE SCHEDULE AND THE TYPE SUBINTERVALS IN THE FIRST ROUND 

Bandwidth Price k
~

 ak  
bk  

0.0 0.00 0.5000 0.0000 0.5500

4.0 76.00 0.6000 0.5500 0.6375

7.0 127.75 0.6750 0.6375 0.7125

10.0 175.00 0.7500 0.7125 0.8000

14.0 231.00 0.8500 0.8000 0.9000

18.0 279.00 0.9500 0.9000 1.0000

 

C. Quantity-Price Selection 

Based on the IR and IC constraints, each MVNO chooses the quantity-price pair that 

maximizes its utility, as given in (1). For instance, for MVNO6 (θ = 0.72), the utilities 

corresponding to the six pairs in the published price schedule table are 0, 13.6, 18.55, 19, 

12.6 and -1.8, respectively. MVNO6 will choose the fourth pair <10, 175>, which is exactly 

the one that the MNO designs for the types of MVNOs that fall in the range 0.7125 ≤ θ < 

0.8. For MVNO1 (θ = 0.06), the utilities are 0, -39.2, -73.85, -113, -168.28, and -216.28 

respectively. In this case, the pair <0, 0> will be chosen by MVNO1, which is again the one 

designed for it. So do the remaining MVNOs. 

D. Hypothesis Testing 

We assume that all ten MVNOs respond in the first round. Table II shows the expected 
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and observed frequencies of the six price pairs. The MNO performs hypothesis testing to 

determine if the current estimate of the type distribution function needs to be revised. Here, 

the chi-square value computed is 16.26, the degree of freedom is 5, and the critical 

chi-square value is 11.07 with p-value = 0.05. Since 16.26 > 11.07, the null hypothesis "The 

observed data and the estimated data are from the same distribution," is rejected, and the 

type distribution function is re-computed. 

TABLE II. The FREQUNCY TABLE AFTER THE FIRST ROUND 

Quantity 0 4 7 10 14 18 

Price 0 76 127.75 175 231 279 

Expected 

frequency 

5.5 0.875 0.75 0.875 1 1 

Observed 

frequency 

3 0 2 4 0 1 

 

E. Estimation of MVNO Type Distribution 

After the computation, the likelihood function is formulated as  3)]0()55.0([ FF 

2)]6375.0()7125.0([ FF  4)]7125.0()8.0([ FF  )]9.0()1([ FF  , where F(θ) is the triangular distribution F(θ 

| 0, 1, ω). Differentiating the function with respect to c and equating it to 0, we have ω= 0.9. 

The new estimate of the distribution is F(θ | 0, 1, ω), ω= 0.9. The MNO then computes the 

new optimal price schedule as follows: 
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The corresponding discrete price schedule as shown in Table III is announced and the 

process enters the second round. 

In the second round, MVNO1 (θ = 0.06), MVNO2 (θ = 0.37) and MVNO3 (θ = 0.48) 

still choose the pair <0, 0>, which means they do not want to purchase any bandwidth. 

Assume they therefore decide to leave the process. We also consider the situation where, for 

no obvious reason, MVNO7 (θ = 0.73) decides to leave the process as well in this round. 

Here, we wish to show that the proposed process and the associated schemes are able to 

quickly adapt the estimate of the type distribution function according to the MVNOs who 

remain in the process in the computation of the optimal price schedule that maximizes the 

MNO’s expected return. 

TABLE III. THE DISCRETE PRICE SCHEDULE AND THE TYPE SUBINTERVALS IN THE SECOND ROUND 

Bandwidth Price k
~

 ak  
bk  

0.0 0.00 0.5477 0.0000 0.5824

4.0 78.59 0.6184 0.5824 0.6571

8.0 147.16 0.6971 0.6571 0.7287
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11.0 192.38 0.7609 0.7287 0.7945

14.0 232.55 0.8287 0.7945 0.8641

17.0 267.89 0.9000 0.8641 1.0000

 

After the second round, six MVNOs remain in the process of the type values 0.65, 0.67, 

0.72, 0.74, 0.75, and 0.92. According to the model, the 2nd round submissions are as follows: 

<4, 78.59>, <8, 147.16>, <8, 147.16>, <11, 192.38>, <11, 192.38>, and <17, 267.89>. 

Table IV shows the expected and observed frequencies of the 6 sub-intervals. 

TABLE IV. FREQUENCY TABLE AFTER THE SECOND ROUND 

Quantity 0 4 8 11 14 17 

Price 0 78.59 147.16 192.38 232.55 267.89 

Expected 

frequency 

2.26 0.62 0.66 0.67 0.77 1.02 

Observed 

frequency 

0 1 2 2 0 1 

 

After hypothesis testing, the chi-square value is 8.63, which is less than the critical value 

11.07. Thus, the observed data and the estimated data are deemed to be from the same 

distribution. The iterative part of the process terminates and the process proceeds to the 

second phased of bandwidth allocation subject to the finite capacity constraint. 
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F. Bandwidth Allocation 

At the end of the first phase, the amount of bandwidths requested by the final 

remaining MVNOs are as follows: <MVNO1, MVNO2, MVNO3, MVNO4, MVNO5, 

MVNO6, MVNO7,, MVNO8, MVNO9, MVNO10> = <-, -, -, 4, 8, 8, -, 11, 11, 17>, where 

“-“ means no selection because the corresponding MVNO has left the dynamic trading 

process. Here, the total amount requested is 59. We assume that the bandwidth capacity B is 

30, which is less than the total demand. Thus, the knapsack problem is formulated to resolve 

the bandwidth allocation problem. The final allocation is as follows: <-, -, -, 4 (reject), 8 

(accept), 8 (reject), -, 11 (accept), 11 (accept), 17 (reject)>. That is, only the requests from 

MVNOs of θ = 0.67, 0.74, 0.75 are accepted The total return is 231.9, and the bandwidth 

used is 30. 

 

 

  



33 
 

Chapter 6 Conclusion 

In this paper, we propose an open interactive dynamic bandwidth trading model to 

resolve the problem of how an MNO prices and sells bandwidth to MVNOs of different  

buying preferences.. The model comprised of two phases. In phase one, through a sequence 

of interaction rounds the MNO accurately estimates the distribution of the types of the 

participating MVNOs and accordingly computes the optimal price schedule that satisfies the 

incentive compatible, individually rational and self-selection constraints. That is, an MVNO 

with a specific type of distribution will always select the quantity-price pair that the MNO 

designed for it. To achieve effective bandwidth sharing and utilization, we consider each 

MVNO’s bandwidth request and willingness to pay as well as the expected return for the 

resource owner, i.e., the MNO. Although the continuous forms are convenient for deriving 

the model and the optimal price schedule, in practice, the units of bandwidth are usually 

sold in a discrete format. We present an algorithm to convert the continuous optimal price 

schedule to a discrete form. It is also designed to ensure that a specific type of MVNO will 

choose the pair whose corresponding utility value is closest to the value in the original 

function. After the iterative process converges and terminates, if the total number of 

bandwidth requests exceeds the total capacity constraint, the process proceeds to address the 

finite capacity constraint by solving a bounded knapsack problem for final bandwidth 

allocation. 
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Finally, we provide an example of show the derivation of the optimal price schedule 

and the final bandwidth allocation. It also shows that the proposed model and the associated 

mechanisms can quickly adapt its estimate of the type distribution function of the 

participating MVNOs and converges to produce the final optimal price schedule. 
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