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Abstract 

In this paper, we discuss the problems of change point detection. There 

are some classical methods for change point detection, such as the 

cumulative sum (CUSUM) procedure. However, when utilizing CUSUM, 

we must be sure about the model of the data before detecting. 

We here introduce a new method to detect the change points by using 

Hilbert-Huang Transformation (HHT) to devise a new algorithm. This new 

method (called the HHT test in this paper) has the advantage that no model 

assumptions are required. Moreover, in some cases the HHT test performs 

better than the CUSUM test, and has better simulation results. In the end, 

an empirical study of the volatility change based on S&P 500 is also given 

for illustration. 

    

 

 

 

 

KEY WORDS: Arbitrage detection, change point detection, 

Hilbert-Huang transformation, volatility, stock prices. 

 



 

 
 

IV 

�������� 

 ������� � 	 �
 � �  � � � � � �� � � �� �  � �

� � � � � � � � � � � � � �� the cumulative sum (CUSUM) 

procedure ! " �# $ %  CUSUM &�� � ' ( � ) &* + , � � -

. � � / � 0 1 2 3 4 5 �6 $ 7 � � # � � - ' ( 8 9 : ; < = > ?

@  

 # A �� � B C � � D � � �E % F � �  � � �G H I ( 8 9 :

; < J > ? @ D � � �$ % K 
 L M N O - P Q R  (HHT) �6 � D �

�( � � S T �  the HHT test)�I U V 8 9 : ; < W X ? @�G H �# Y

Z [ \ ] ^ _ � ` � � �  CUSUM < a  b / �� � G B C � Z c d

e f g � h i �� � j 8 k l m n . o p q r s &�  S&P 500 t 5 ;  

the HHT test�G H u � I v � w x   

 

 

 

 

 

� � �� � �� � �� � �  : � � � 	� � � 	� � � 	� � � 	 



� �  � 	� �  � 	� �  � 	� �  � 	 



� � � �� � � �� � � �� � � � - � � �� � �� � �� � � 



� � �� � �� � �� � � 



� �� �� �� �  



 

 
 

V 

Contents 

1 Introduction                                             1 

1.1 background…………………………………………………………..1 

1.2 Previous Studies in Change Point Detection ………………….…….2 

1.3 Use Hilbert-Huang Transformation on Change Point detection….....5 

1.3.1 Hilbert-Huang Transformation………………………….....……....6 

1.3.2 The process of Hilbert-Huang Transformation………………..…...7 

2 Change Point detection: Volatility Change                   10 

2.1 Volatility Change in Normal Distribution Models…………...….…10 

2.2 Volatility Change in Geometric Brownian Motion Models……..…13 

2.3 Volatility Change in Markov Switch Models……………………....16 

2.4 A Brief Summary……………………………………………….......19 

3 Change Point detection: The Change of the mean             20 

3.1 The Change of the Mean in Normal Distribution Models………….20 

3.2 The Change of the Mean in Brownian Motion Models…………….22 

3.3 A Brief Summary………………………………………….…….…..27 

4 Empirical Study                                         28 

4.1 Volatility Change Data (Subprime mortgage crisis in 2007)….…....28 

4.1.1 Using Stock price directly………...................................................28 

4.1.2 Using Log return of stock price…………………….……………..32 



 

 
 

VI 

4.2 Volatility Change Data (Dot-com bubble in 2000)…………........…….36 

4.3 A Brief Summary………………………………...………………….…40 

5 Conclusions and Further Researches                          41 

5.1 Conclusions…………………………………………………..………..41 

5.2 Further Researches…………………………………………………….43 

6 References                                                44 

 
 
 
       
 
 
 
 
 
 

 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 



 

 
 

- 1 - 

1 Introduction   

1.1 Background                                                    

In stock market, people always pursue the goal of finding change points 

promptly. These changes may come from the alteration of company policies 

or from the recession of the economy. We hope to detect the changes as soon 

as they appear. There is already a term to describe these problems: change 

points detection or arbitrage detection. 

Many results, such as the CUSUM test, exist in the change point 

detection in previous studies. The first result can be found in Page (1954) 

who constructed classical CUSUM test. This test provides a widely accepted 

procedure to detect change points.  

 However, there are still some problems in the classical procedure, the 

CUSUM test. For example, it is necessary to ascertain the distribution of the 

data. Without the distribution of the data, the CUSUM test can not be 

implemented. Therefore we introduce a new method on the change point 

detection: the Hilbert-Huang Transformation test (the HHT test), which had 

already been used extensively in other fields. For example, there are many 

studies in geophysics, structural safety, and operating research. However, the 

HHT is rarely applied in finance. We here try to use the HHT on some 

finance problems, because many financial data are nonlinear, non-stationary 
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time series with unknown models, which is exactly what the HHT can 

analyze.  

 This paper is organized as follows. In chapter 1, we introduce a new 

method (called the HHT test in this paper) to detect the change points. [In 

chapter 2, we describe some cases the HHT test performs better than the 

CUSUM test, and has better simulation results. In chapter 3, we find some 

weakness of the HHT test in the change of the mean. In chapter 4, an 

empirical study of the volatility change based on S&P 500 is also given for 

illustration. 

 

1.2 Previous Studies in Change Point Detection  

  Consider an infinite sequence of observation: 1x , 2x , 3x , …, ix , …. 

These variables represent the stock price at time i . At some unknown time 

v , either the company altered its policy or it was the beginning of a period of 

economic recession, like the dot-com bubble in 2000. These kind of events 

have a common characteristic: transferring the whole structure of the market. 

In other words, the distribution of the time series changes parameters, like 

the mean or the variance. Therefore, what we seek is a stopping rule T  

which detects the change promptly.      

   When mentioning change point detection, the CUSUM test cannot be left 
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unnoticed. We will use the above assumption to explain the idea of CUSUM. 

First, 1x , 2x , 3x ,…, 1vx −  are independent and identically distributed with 

the probability density function 0f , whereas vx , 1vx + ,.... are independent 

and identically distributed with the probability density function 1f , for some 

v >1. 

   Let iP  denote the probability as the change from 0f  to 1f  occurs at 

the i th observation; ( )iE T  denotes the expectation of a stopping rule T  

when the change occurs at time i . If i = 0, there is no change. A stopping 

rule τ  can be described as: 

Minimize  

1
sup ( 1| )v

v
E v vτ τ

≥
− + ≥  

subject to  

0E Bτ ≥  
 

for some given (large) constant B. 

   A special method to solve the above problem is the following. 

Assume 1x , … nx  have been observed. 

 
Consider for 1 v n≤ ≤  

1 1 0: ,..., ~v vH x x f−  ; 1 1, ,..., ~v v nx x x f+  

against 
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0 1 0: ,..., ~nH x x f . 
 
 
Then the log likelihood ratio statistic can be written down: 

00
max( ) minn k n kk nk n

s s s s
≤ ≤≤ ≤

− = −  

where 

1

1 0

( )
log[ ]

( )

n
j

n
j j

f x
S

f x=

=� . 

 
Then we can get a stopping rule : 

{ }0
inf : ( min )n kk n

n s s bτ
≤ ≤

= − ≥ . 
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1.3 The Use of Hilbert-Huang on Transformation on Change 

Point Detection 

The HHT was used to analyze data in two ways. The first one is using 

the whole time-frequency-amplitude plot. This is the classical way to utilize 

the HHT. Its advantage is that we can collect the information from all of the 

data; however, the disadvantage of the classical method is its being less 

sensitive than method two.  

The second way is using a part of the time-frequency-amplitude plot. 

This method is a new application of the HHT. In this way, we focus on the 

high frequency part while detecting volatility change, since high frequency 

means short period. Hence the long period part, which is useless in detecting 

volatility change, can be omitted. 

By using the above methods we have several simulation studies. The 

first simulation study analyzes the time series from normal distribution 

which represents the basic model. Following, we analyze the time series 

from Brownian Motion Models and Geometric Brownian Motion Models 

which are close to real financial data. The last simulation study analyzes the 

time series from Markov Switch Models. Unlike the previous models, in this 

one we can not know when the distribution of the data will change. 

Therefore it is sure that the HHT test can detect the change points even 
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though the change timing is unknown. 

1.3.1 Hilbert-Huang Transformation 

A new instrument on change point detection, the Hilbert-Huang 

Transformation (HHT), has already been extensively used in engineering. 

Here are some reasons why we choose the HHT instead of other spectrum 

analysis methods, such as Fourier Transformation and Wavelet 

Transformation. 

First, the HHT can be utilized on nonlinear, non-stationary time series. 

Although Fourier Transformation has a wide application on spectrum 

analysis, it only can be used on the stationary time data; Wavelet 

Transformation can be applied on non-stationary data, but it is impotent on 

nonlinear data. However, financial data are usually nonlinear and 

non-stationary time series. Therefore, the HHT becomes the first choice. 

Second, although Fourier Transformation is useful on spectrum analysis, 

it can only transform a function from time domain into frequency domain. In 

other words, we can not know the frequency at the specific timing. 

�  Fourier Transformation Hilbert-Huang 
Transformation 

Symbol ( )F �  ( )H �  

Transformation 
of Domain 

From Time domain to 
frequency domain 

From time domain to time 
and frequency domain 

Function ( ( )) ( )F X t A ω=  ( ( )) ( , )H X t A t ω=  
Table 1-1 
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Third, compared to Wavelet Transformation, the HHT is more precise. 

In Huang (1996), the time-frequency-amplitude plots from Hilbert-Huang 

Transformation can show more details than Wavelet Transformation. 

 

1.3.2 The Process of Hilbert-Huang Transformation 

I.�Empirical Mode Decomposition (EMD) 

1. Let ( )X t  denote a time series, identify local maxima and local 

minima of ( )X t , and then connect all the local maxima by a 

cubic spline line named the upper envelope. Repeat the above 

process for local minima to produce the lower envelope. 

max( )t  denotes the upper envelope and min( )t  denotes the 

lower envelope. Let their mean be  

1

[max( ) min( )]
( )

2
t t

M t
+= ,  

and the difference between the data and 1( )M t  is 

1 1( ) ( ) ( )X t M t H t− = . 

2. Repeat step 1 to obtain ( )jM t , ( )jH t : 

1 2 2( ) ( ) ( )H t M t H t− = , 
� 
� 
� 

1( ) ( ) ( )k k kH t M t H t− − = ,  



 

 
 

- 8 - 

and let 1( ) ( )kH t C t= , 

when 
2

1
2

1 1

[ ( ) ( )]
( )

T
k k

k
t k

H t H t
SD

H t
−

= −

−=�  is smaller than a 

predetermined value (about 0.2~0.3 in Huang (1998)). 

3. Let 1 1( ) ( ) ( )X t C t R t− = , and do the above procedure again. 

       We can obtain 2 ( )C t , 3( )C t , �etc. 

     4. Let ( )jC t  be the Intrinsic Mode Functions (IMFs). 

 
Figure 1-1: An example of IMFs 

II. Hilbert Transformation 

1. Apply the Hilbert Transformation to each IMFs  

Hilbert Transformation: 



 

 
 

- 9 - 

( )1
( ) j

j

C s
Y t PV ds

t sπ

∞

−∞

=
−� . 

Here, PV  indicates the principal value of the singular integral. 
 

2. The analytic signal is defined as 
( )( ) ( ) ( ) ( ) ji t

j j j jZ t C t iY t A t e θ= + = , 
where  

2 2( ) [ ( ) ( )]j j jA t C t Y t= + , 
and  

( )
( ) arctan( )

( )
j

j
j

Y t
t

C t
θ = . 

 
Here, ( )jA t  is the instantaneous amplitude, and ( )j tθ  is the 

phase function, so the instantaneous frequency is  

( )
( ) j

j

d t
t

dt

θ
ω = . 

3. The original time series can be expressed as following, 

1

( ) ( )exp ( )
n

j j
j

X t A t i t dtω
=

� �
� �= ℜ� �	 


� �
� � , 

where ℜ  denotes the real part of the number. 

4. The above equation represents the amplitudes to be contoured 

on the frequency-time plane. This frequency-time distribution 

of the amplitude is designated as “Hilbert amplitude spectrum”, 

( , )A t ω , or simply “Hilbert spectrum.” 
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2 Change Point detection: Volatility Change 

2.1 Volatility Change in Normal Distribution Models 

 

Figure 2-1: Figure 2-1 (1) to Figure 2-1 (14) are Hilbert spectra. Figure 2-1 (15) is the 
plot of mean of maxima in Hilbert spectra. Figure 2-1(16) is the original data. 
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The essential model is described as the following.  

Our model: 

1x , 2x , 3x  … 100x ~ 2
1(0, )N σ  

101x , 102x , 103x  … nx ~ 2
2(0, )N σ  

 
   After executing the HHT, the difference between “time from 1 to 100” 

and “From t=1 to 110” can be observed in Figure 2-1. There is a “peak” in 

the plot of “From t=1 to 110.” The appearance of the peak is rational, 

because of the change of the magnified volatility. In engineering, the 

volatility change can be treated as amplitude change. Therefore, if the 

maximum amplitudes of the plots are “large enough,” then the change is 

called to be detected. Now the problem is how to define “large enough.” 

Here we adopt the idea of change point detection problem. In this idea, the 

null hypothesis is that ix ~ 2
1(0, )N σ  for all i , and the expectation of 

stopping rule in our detection method can be as large as B  in CUSUM. In 

practice, we (can) find that B  is approximately 800. In other words, we can 

define our stopping rule as following: 

' inf{ }M bτ = >  
 

Where M  is the mean of the three maximum amplitudes in the Hilbert 

spectra (to avoid the extreme value ),  
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subject to 

0[ ']E Bτ > . 

 
 Compared with CUSUM, we obtain the following result. 
 ����������	�
���
���������������� ����
�����������������	�
��

����	��� �!" ��#��	$!%�
����
����������������	&
�
����	�'�'�()��	*!%�
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2.2 Volatility Change in Geometric Brownian Motion Models 

 

Figure 2-2: Figure 2-2 (1) to Figure 2-2 (14) are Hilbert spectra. Figure 2-12(15) is the 
means of maxima in Hilbert spectra. Figure 2-1(16) is the original data. 
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After detecting change points in normal distribution, we apply the HHT 

test to Geometric Brownian Motion Models (GBM), which is always used to 

describe stock prices. In option pricing problems, modeling stock prices by 

Geometric Brownian Motion Models has a well-known problem: the implied 

volatility is not a constant. In practice, stock prices also have the volatility 

clustering property. Here we do not seek to reduce the inaccuracy. On the 

contrary, we pursue to detect the volatility clustering. 

    First of all, assume   

 1x , 2x , 3x  … 100x ~ 1( 0.08, )GBM r σ σ= =  

101x , 102x , 103x  … nx ~ 2( 0.08, )GBM r σ σ= =  

 
In other words, 

2( 0.5 ) ( )
1

r t W t
i ix x e σ σ− ∆ + ∆

−=  

 
   Where ( )W t∆  is Standard Brownian Motion. Let 1x =100, and then we 

can use the above model to generate 1x , 2x , 3x  …, etc. After generating 

all ix , we let 100i iy x= −  for all i  to reduce the influence of the start 

point. In this model, we could focus on high frequency parts of 

time-frequency-amplitude plots, because high frequency means short period. 

The larger σ  implies the larger amplitude of the short period part. 

Therefore we focus on the frequency from 0.375 to 0.5, in other words, in 



 

 
 

- 15 - 

the period from 2 to 2.7 days. In Figure 2-2, we can not see the difference 

directly from the Hilbert amplitude spectrum, but in Figure 2-2 (15) we can 

see the mean of maximum amplitude touch 0.5 after t>100. We use the same 

idea to make a criterion, and we have: 

@�A�B�C�D�E�FG�HF�I�B�J�K�I�K�J�L M�J�F�N�N�K�C�D�J�K�OPE�FGQJ�A�E
@�R�S"R�O#J�E*S%J

M�J�FN�NK�C�D�J�K�O�E�F�GQJ�A�E�T�TVUWJ�E*S%J

S%K�D�OXBYG[Z%F�O]\�^�_`J�F�\a^ b b�^ cd b�\a^ e�f
S%K�D�OXBYG[Z%F�O]\�^�_`J�F�\a^ g _�\�^ ch_ _ic�j�^ f�c
S%K�DOXBVG[Z%F�O]\�^�_`J�F�\a^[_�c bd b*k�\�^ c�d
S%K�D�OXBYG[Z%F�Ol\a^[_`J�F�\a^�_ig�c gm_nko^ bg c�dh_p^ gh_
S%K�DOXBVG[Z%F�O]\�^�_`J�F�\a^[__ e�k�g�^ f e�e�b�^ g�k
S%K�D�OXBYG[Z%F�Ol\a^[_`J�F�\a^�_�\�c f�e�ea^ b�j f�\�ga^ j
S%K�D�OXBYG[Z%F�O]\�^�_`J�F�\a^�_ j*c�b�^ k�e jpk�\�^ c�c

Table 2-2 

The result is similar to section 2-1. the HHT performs better than 

CUSUM, when  σ  changes slightly.  
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2.3 Volatility Change in Markov Switch Models 

The simulation study here analyzes the time series from Markov Switch 

Models. Unlike the previous models, in this one we can not know when the 

distribution of the data will change. Therefore it is sure that the HHT test can 

detect the change points even though the change timing is unknown. 

The Markov Switch model can be described as: 

1tt S t tY Yα ε−= + , 

and 
2~ ( 0, )

tt SN uε σ= , 
where 

{1, 2}tS ∈ , 
 

represent two states. In state 1, let 

1 0.1α = , 

1 0.1σ = . 

In state 2, let 

2 0.1α = , 

2σ σ= . 

Let the transition matrix be 

0.99 0.01
0.001 0.999

p
� �

=  �
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Figure 2-3: Figure 2-3 (1) to Figure 2-3 (14) are Hilbert spectra. Figure 2-3 (14) is the 
means of maxima in Hilbert spectra. Figure 2-3 (15) is the state of the data. Figure 2-3 
(16) is the original data. 
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The result of Markov Switch Models is the following: 

q�r�s�t�uv&w�x�y�wz[s�{�|�z�|�{�} ~�{�w���|�t�u�{�|���v�w�x�{�r�v
�&��� {�vp�%{

�%|�u��XsYx[�%w��l�a�[�`{�w��a� �
38.8

�%|�u��XsYx[�%w��l�a�[�`{�w��a� �
180.4

�%|�u��XsYx[�%w��]�����`{�w����[�i�
431.0

�%|�u��XsYx��%w�l�����`{�w��a���i���
549.7

�%|�u��XsYx[�%w��]�����`{�w����[���
666.3

�%|�u��XsYx��%w�l�����`{�w��a�������
770.1

�%|�u��XsYx[�%w��l�a�[�`{�w��a���
889.5 

Table 2-3 

From the above table we can still find the good characteristic of the HHT 

test. Although we can not detect fast in large change, the increasing of 

stopping times is getting slow. 
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2.4 A Brief Summary 

 In volatility change, we can find a detection rule from the ideas of the 

HHT. The HHT is a method to decompose a time series, and can produce 

Hilbert spectra which are time-frequency-amplitude plots. The plots can be 

used to determine whether the volatility changes or not. In detecting 

volatility change, what we focus on is the amplitude change. The stopping 

rule is that the maxima of the amplitude are larger than a constant b subject 

to small type 1 error. In other words, the expectation of stopping time must 

be larger than a constant B in null hypothesis. Here we adopt B=800 which 

is usually utilized in practice. Then the criterion b can be produced subject to 

B=800.  

 In the result of the HHT test and the CUSUM test, we can find that as 

the change becomes minor, both the stopping time of the HHT test and the 

CUSUM test increase. However the increasing speed is different between 

the two tests. The stopping time of CUSUM test increases faster than that of 

the HHT test. 

   Therefore, the HHT test performs better than the CUSUM test when the 

change is slight.  
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3 Change Point detection: Mean Change                                      

3.1 Mean Change in Normal Distribution Models 

 

Figure 3-1:  Figure 3-1 (1) to Figure 3-1 (14) are Hilbert spectra. Figure 3-1 (15) is 
the means of maxima in Hilbert spectra. Figure 3-1 (16) is the original data. 
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The change of the mean is an important topic in finance. It represents 

the trend of the stock prices. Let us start from the essential model: the 

normal distribution.  

Let 

1x , 2x , 3x  … 100x ~ 2
1( , 1)N u u σ= = , 

101x , 102x , 103x  … nx ~ 2
2( , 1)N u u σ= = . 

 q�r�s�t�uv&w�x���v*s�t
Stopping time 
of
{�r�v ����� {�v$�%{ Stopping time ofq���~�����{�v*�%{

��v*s�tPx[�%w��]��{�wP� �n��� � ��� ���
��v*s�tPx[�%w��]��{�w�� ����� � ���a� �*�
��v*s�tPx[�%w��]��{�w��a� � ������ � ���a� ��
��v*s�tPx[�%w��]��{�w��a� ��� ������� � �����o� ��

Table 3-1 
     The stopping time of the HHT test is increasing faster than that of the 

CUSUM test. This means that the HHT test is weak in detecting the change 

of the mean. Reviewing the procedure of the HHT may explain the reason. It 

treats the low frequent IMFs as unimportant components. However, in the 

change of the mean, low frequent IMFs represent the trend of the data. 

Therefore, the results of the HHT test in the change of the mean can not 

satisfy us. 

   



3.2 Mean Change in Brownian Motion Models 

 

 

Figure 3-2:  Figure 3-2 (1) to Figure 3-2 (14) are Hilbert spectra. Figure 3-2 (15) is 
the means of the maxima in Hilbert spectra. Figure 3-2 (16) is the original data. 
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 After the unsatisfying results in section 3.1, we try another model, the 

Brownian Motion Mode, which cumulates the value of u . 

The model we use is: 

1x , 2x , 3x  … 100x ~ 2
1( , 1)BM u u σ= =  

101x , 102x , 103x  … nx ~ 2
2( , 1)BM u u σ= =  

 
  

In Figure 3-2 (15), we find that when the value of the time series 

decreases, the amplitude of mean of maximum will increase; when the time 

series start to increase (the change point), the amplitude of mean of 

maximum will stop changing. We can not find a good criterion for the 

phenomenon, so we can detect visually. 

   Figure 3-3 
 In Figure 3-3, we can observe that after around t=110 the value stops 

increasing. Conservatively, we choose t=118 to be the stopping time. 
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Figure 3-4 

In Figure 3-4, we find the same phenomenon, and we detect the change 

on t=127.  

 

 
Figure 3-5 

In Figure 3-5, we can detect the change at t=137, and we find another 

special phenomenon, which is when 2u  becomes smaller, the “shake” after 

the change point becomes larger. 
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Figure 3-6 

In Figure 3-6, we can detect the change at t=176, and the range of the 

special phenomenon, the “shake”, increases from 70~80 to 90~120. 

 
Figure 3-7 

In Figure 3-7, we can not detect by eyes any more. In the case of 

1 2 0u u⋅ > , the means of maximum continue increasing. We should analyze 

the data 1i ix x −−  instead in this case. 

 



 

 
 

- 26 - 

 
�������������� ��*��� ¡�¢���£�£�¤�����¢�¤� P�

���Q¢�����¥�¥V¦)¢��p§%¢
¨ ��©%�� ]ª�«`¢��P¬ «�
¨ ��©%�� ]ª�«`¢���« ¬�®
¨ ��©%�� ]ª�«`¢���¯a° ± ²*®
¨ ��©%�� ]ª�«`¢���¯ ®�³
¨ ��©%�� lª�«`¢���ª´¯�° ± µp�������¢m¶��¢��$µ�¢

Table 3-2 

In the above table we can see the HHT test performs well in the case when 

1 2 0u u⋅ ≤ . However, It is useless in the case when 1 2 0u u⋅ > . 
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3.3 A Brief Summary 

 In this section, we discuss the problem of the change of the mean. 

Unfortunately, the HHT test does not have any good performance in this 

case.  

 In normal distribution models, the HHT test loses its good characteristic 

mentioned in chapter 2, which is that the stopping time increases slowly 

when the change is slight. Therefore, the HHT test can not perform better 

than the CUSUM test under such condition.  

 In Brownian motion models, it is hard to find a good criterion to detect 

the change, but we still can find some phenomena in plots of means of 

maxima. When time series starts to change, the value of the mean of maxima 

will stop at the same level; when 2u  is small, the “shake” of the amplitude 

of mean of maximum will increase. However, this detection rule is useless 

while 1 2 0u u⋅ > .   

 The reason that explains the weakness of the HHT test about detecting 

the change of the mean may be the procedure of the HHT, which focuses on 

high frequent parts but neglects the change of the trend.   
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4 Empirical Studies                                            

This section discusses the empirical studies of the HHT test. The 

CUSUM test can not be applied here, because we do not have any model 

assumptions of the S&P 500 index. On the contrary, when utilizing the HHT 

test, we do not need any assumptions, and the empirical studies of the HHT 

test lead us to a good conclusion.  

 

4.1 Volatility Change Data (Subprime Mortgage Crisis in 2007) 

4.1.1 Using Stock Prices Directly 

Let us use our new method on empirical studies. In 2007, the global 

market faced a serious crisis, and suffered an unprecedented credit risk. At 

the same time, stock prices underwent acute vibration. This event is a good 

example for us to test our new method. First, extracting from the S&P 500 

index from 1/3/2006 to 4/9/2008, we have 570 daily data. Second, we use 

the data of VIX index, which is the implied volatility form S&P 500 to check 

our result. When we apply our new method to detect change points, is it 

efficient? If a change does exit, how quickly can we detect it?   
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Figure 4-1: Figure 4-1 (1) to Figure 4-1 (13) are Hilbert spectra. Figure 4-1 (14) is 

the means of the maxima in Hilbert spectra. Figure 4-1 (15) is the vix index. Figure 4-1 
(16) is the S&P 500 index. 
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In Figure 4-1 (16), S&P500 index has an acute vibration after t=400. 

The same phenomenon can be found in Figure 4-1 (15), the VIX index. After 

t=400, VIX index are all approximately larger than 20%  

Figure 4-1 (15) 
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Figure 4-1 (14) 
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Table 4-1 
 

Table 4-1 tells us that the change points can be detected efficiently 

exclusive of Event 1. After detecting, the changes of volatility in Event 2 and 

Event 3 still continue for 20 days and 53 days respectively. 

Only a minority of indexes has its own implied volatility index. The 

S&P 500 index is one of them, and the implied volatility index is called VIX. 

Some markets do not have big enough option trading volume. Therefore the 

new method can be utilized on these markets. We can regard trading options 
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as trading the volatility. Accordingly, in the market with low option trading 

volume, when we detect the increase of the volatility, the prices of options 

are probably undervalued. Contrarily, when the volatility decreases, the 

prices of options are possibly overvalued. 

 
 
 

 

 

 

 

 

 

 

4.1.2 Using Log Return of Stock Prices     

In this section, the log returns of stock prices are analyzed. The use of 

the log returns of stock prices can make us focus on the volatility change 

without the influence of the trend. Therefore, analyzing the log returns of 

data yields better results than analyzing the original data does. Figure 4-2 

(16) is the log return of S&P500 index from 1/3/2006 to 4/9/2008. 
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Figure 4-2: Figure 4-2 (1) to Figure 4-2 (13) are Hilbert spectra. Figure 4-2 (14) is the 
means of the maxima in Hilbert spectra. Figure 4-2 (15) is the VIX index. Figure 4-2 (16) 
is the log return of S&P 500 index. 
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Figure 4-2(15) 

Figure 4-2(14)  
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Table 4-2 

From Figure 4-2 (14) and Table 4-2 the results of the detection show 

that the method in 4.1.2 can detect the changes faster then in 4.1.1. Therefore 

we can make investment decisions more promptly by applying the results in 

4.1.2. 

All the three results of events in this section are better than in 4.1.1. In 

event 1, stopping time = 43 when using the data of S&P500 index directly, 

however, we have stopping time = 9 here. In event 2, stopping time = 10 in 

4.1.1 contrasts with stopping time = 4 here. Only in event 3 the stopping 

time=16 in 4.1.1 is almost the same as stopping time=15 in this section. It 

means that by using our detection results we can react more quickly to the 

change of the volatility.  
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4.2 Volatility Change Data (Dot-com Bubble in 2000) 

 Another economic recession in 2000 is considered here. In 1998~2000 

stock prices of dot-com companies rose fast. However, most dot-com 

companies had not even made a profit yet. Hence, after irrational investors 

spent all the wealth they had buying shares, the stock prices of dot-com 

companies began to fall , and were accompanied by the rise of the volatility.  

We adopt the data of S&P 500 index from 7/3/2000 to 12/31/2001, 

including 374 daily prices. Because of the better results when analyzing log 

return of data in 4.1, we prefer log return of data here.   
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Figure 4-3: Figure 4-3 (1) to Figure 4-3 (13) are Hilbert spectra. Figure 4-3 (14) is 

the means of the maxima in Hilbert spectra. Figure 4-3 (15) is the VIX index. Figure 4-3 
(16) is the log return of S&P 500 index. 
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Figure 4-3 (15) 

Figure 4-3 (14) 
Here we try to find the change points by sight. The conclusion is Table 

4-3. 
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Table 4-3: The stopping times of the HHT test in the dot-com bubble. 

In Event 1, because the change is from around 16% to 30%, the 

stopping time is short. In Event 2 and 3, the change is from around 20% to 

30%, so the stopping time is longer than in event 1, but still quite small  

when compared to the length of duration of the change. In other words, the 

HHT test can detect the change points promptly so we can make investment 

decisions before the changes finish in the Dot-com bubble case.  
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4.3 A Brief Summary 

In empirical study, we get two conclusions. First of all, the new method, 

the HHT test, is useful on empirical data. In both the subprime mortgage 

crisis and the dot-com bubble, we can detect the change points correctly and 

quickly. In subprime mortgage crisis, we can find three events in which the 

volatility changes form under 20% to above 20%. We can detect all the 

changes promptly in subprime mortgage crisis. In dot-com bubble, there 

exist four events and all of them can be detected quickly, too. The results we 

get in both subprime mortgage crisis and dot-com bubble are great. 

Second, because of shorter stopping time, using the log return of data is 

better than using the original data. The reason is that in log return of data, we 

can focus on the volatility change without the influence of the trend. 
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5 Conclusions and Further Researches 

5.1 Conclusions 

In this paper we obtain four conclusions. 

First of all, we introduce a new method to change point detection. 

This method can be utilized without any model assumptions.  

The Hilbert-Huang Transformation (HHT) can produce Hilbert spectra 

which represents frequency-time distribution of the amplitude. By utilizing 

high frequency parts of Hilbert spectra, we can devise the HHT test. 

Moreover, this test can be applied without model assumptions. In the classic 

method of change point detection, the CUSUM test, we need to know the 

distribution of the data before and after change to compute the log likelihood 

ratio statistic. The above information is needless in the HHT test.     

Second, the HHT test performs better than the CUSUM test in 

some cases. 

In chapter 2, although the CUSUM test performs well in large change 

problems, the HHT test is a good choice to handle those cases with slight 

change. Therefore, if facing the problem of slight change, we can consider 

the HHT test first. 

Third, in practice, we still obtain good results. 

In chapter 4, we review the data of dot-com bubble in 2000 and 
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subprime mortgage crisis in 2007 respectively. Both of the two financial 

crises are well-known and extensively influential. The HHT test can detect 

these two crises promptly and efficiently, and we can even make a profit 

from the successful detection. 

Fourth, the advantage and disadvantage of the HHT test. 

In chapter 3, we can learn the characteristics of the HHT test. When 

detecting the change of the mean, it yields a mediocre result. Although the 

HHT test is sensitive to volatility change, it is insensitive to the change of 

the mean. 

In this paper, we know some features of the new method, the HHT test. 

It is a good method to deal with the volatility change problems, but has some 

baffles when facing the changes of the mean. These imperfect parts of the 

HHT test remain to be solved. 
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5.2 Further Researches 

The evidence presented above indicates that there are some persuasive 

reasons for preferring the HHT test in some cases. Therefore, we indicate 

some open problems here. 

First, some strict proof of the HHT test surpassing the CUSUM needs 

to be provided. Because the HHT does not have theoretical bases, the proof 

may be the hardest part of the further research. 

Second, why does the HHT test yield better results of detection of 

volatility change? Why is it insensitive when dealing with the change of the 

mean? All of above problems need to be solved 

Third, can we utilize the HHT test in other fields? We have a good 

conclusion in finance, so the next step should be doing some research on 

other kinds of data. 

Fourth, how can we settle the weakness of the HHT test in mean change? 

The HHT test may have some limits congenitally in mean change case. 

However, if there are some means that can overcome the obstacles of this 

weakness, then the HHT test could become a comprehensive method for 

change point detection. 
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