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In this thesis, without demosaicing process, a new and efficient edge detector is
presented for color mosaic images. Combining the Prewitt mask-pair and the lu-
minance estimation technique for mosaic images, the required mask-pair for edge
detection on the input mosaic image is derived first. Then, a novel edge detector for
mosaic images is presented. Our proposed edge detector has the similar resulting
edge map when compared with the indirect approach which first applies the demo-
saicing process to the input mosaic image; and then runs the Prewitt edge detector
on the demosaiced full color image. Based on some test mosaic images, experimen-
tal results demonstrate that the average execution-time improvement ratio of our
proposed edge detector over the indirect approach is about 48%. Our proposed
results can also be applied to the other masks, e.g. the Sobel mask-pair and the
Marr-Hildreth mask, for edge detection. Finally, the application to design a new

line detection algorithm on mosaic images is investigated.

Keywords: Color filter array (CFA), Demosaicing algorithm, Digital cameras, Edge

detection, Line detection, Mosaic images.
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INTRODUCTION

Recently, digital cameras have become more and more popular. In order to econo-
mize the hardware cost, instead of using three CCD/CMOS sensors, most current
digital cameras capture a color image with a single sensor array based on the Bayer
color filter array (CFA) [3]. Based on the Bayer CFA structure, each pixel in the
image has only one of the three primary colors, and this kind of images is called
the mosaic image. The depiction of the Bayer CFA structure is illustrated in Fig.
1.1. Because the G (green) color channel is the most important factor to determine
the luminance of the color image, half of the pixels in the Bayer CFA structure are
assigned to the G channel to increase the image quality for the human visual system.
The R (red) and B (blue) color channels, which share the other half pixels in the
Bayer CFA structure, are considered as the chrominance signals.

In the past several years, although several edge detectors [9, 14, 15, 18, 24,
26, 29, 31, 32, 33, 34| have been developed for full color images successfully, they
cannot work well on mosaic images. Straightforwardly, when we want to perform
edge detection on a mosaic image, we first adopt any one of existing demosaicing
methods [1, 6, 7, 10, 11, 12, 17, 19, 20, 21, 22, 25, 30, 35, 36, 37, 38, 39] to the mosaic
image, and then we perform edge detection on the demosaiced full color image to
obtain the resultant edge map. Instead of using such an indirect approach, the main

motivations of this thesis are two-fold: (1) presenting a new and efficient direct



Fig. 1.1: The Bayer CFA structure.

approach to perform edge detection on color mosaic images directly; (2) investigating
the application to design a new line detection on color mosaic images directly.

In this thesis, without demosaiéiﬁg process, a new and efficient edge detector
is presented for color mosaic images. Combining the Prewitt mask-pair [27] and
the luminance estimation technique .fbr mlé)saltlilc imégés 2], the required mask-pair
for detecting edges on mosaic images I‘direcﬂf is deri{/ed first. Then, our proposed
edge detector is presented. To the bést of our kndwledge, this is the first time that
such a novel edge detector on the color mosaic image domain is proposed. Based
on some test mosaic images, experimental results demonstrate that our proposed
edge detector has about 48% execution-time improvement ratio and has the similar
resulting edge map when compared with the indirect approach. Our proposed results
can be applied to the other masks, e.g. the Sobel mask-pair [16] and the Marr-
Hildreth mask [23], for edge detection to speed up the computation. Finally, the
application to design a new line detection algorithm on mosaic images is investigated.

The remainder of this thesis is organized as follows. In Chapter 2, combining
the Prewitt mask-pair and the luminance estimation technique, our proposed edge
detector for color mosaic images is presented, and then the utilizations to Sobel
mask-pair and Marr-Hildreth mask are discussed. In Chapter 3, the application to

design a novel line detection algorithm on mosaic images is investigated. In Chapter



4, some experiments are carried out to demonstrate the computation-saving advan-
tage of our proposed edge detector on mosaic images. Some concluding remarks are

addressed in Chapter 5.
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PROPOSED EDGE DETECTOR

FOR COLOR MOSAIC IMAGES

This chapter presents our proposed edge detector for color mosaic images. We first
introduce the luminance estimation technique [2] which will be combined with the
Prewitt mask-pair to derive two required masks for edge detection on mosaic images
directly. The applications to the other masks, e.g. the Sobel mask-pair and the
Marr-Hildreth mask also investigated. The main contribution of our proposed edge
detector is that it has the similar resulting edge map as the one by using the indirect
approach: first apply the demosaicing algorithm to the input mosaic image and then
run the Prewitt edge detector on the demosaiced full color image, but has about

48% execution-time implement ratio.

2.1 The Luminance Estimation Technique for Mo-

saic Images

In this section, the luminance estimation technique for mosaic images is introduced.

The luminance of a pixel with color value (R, G, B) is defined as L = $(2G + R+ B)
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Fig. 2.1: The 3 x 3 single symmetric convolution mask.

(a) (b) () (d)
Fig. 2.2: Four possible cases of 3 x 3 mosaic subimages. (a) Case 1. (b) Case 2. (c)

Case 3. (d) Case 4.

and its derivation is shown in Appen{:lix 1. The luminance of the pixel located at
position (i, 7) is denoted by L(i,jj; the R, GI, and B color components located at
position (7, ) of the mosaic image are denoted by 1" (i, 5), 19,(i,7), and I® (i, 7),

respectively, where i denotes the vertical axis and j denotes the horizontal axis (see
Fig. 1.1).

In order to estimate the luminance of the pixel at (7, 7) in the mosaic image, a
3 x 3 symmetric convolution mask as shown in Fig. 2.1 is used. Within a small
smooth region of the mosaic image, the color values of R, G, and B components
approximate to three different constants, i.e. I’ (i,7) = R., 1%,(i,j) = G,, and
I (i,7) & B.. We consider all possible four cases of the 3 x 3 mosaic subimage,
and they are illustrated in Fig. 2.2(a)-(d), respectively. Because the 3 x 3 mask
in Fig. 2.1 is symmetric, we only need to consider Case 1 and Case 2 in Fig. 2.2.
First, each R channel of Case 1 and Case 2 is considered. After running the mask

of Fig. 2.1 on the two 3 x 3 mosaic subimages of Fig. 2.2(a) and Fig. 2.2(b), we

have 4cR. = 2bR.. By the same argument, for the B channel, we have aB,. = 2bB..
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Fig. 2.3: The 3 x 3 luminance estimation mask.

For normalizing the sum of nine coefficients in the mask, let a + 4b + 4c = 1. From
4c = 2b, a = 2b, and a + 4b + 4c = 1, it yields a = ;11, b= %, and ¢ = 1—16. Thus, the
luminance estimation mask can be determined and it is shown in Fig. 2.3. After
running the the luminance estimation mask of Fig. 2.3 on the 3 x 3 mosaic subimage

centered at position (4, j), the luminance L(i,j) can be obtained by
4 )
I’nc;o(i 7 17] - ]-) 2 InC:Lo(Z i 1aj + ]')
+IS G+ 1,7 — D)+ IS, (i +1,5+1)

L. j) = 14 IS, (=11, 3) + 15,0 +1,5) (2.1)
+2

+[ncz’o(i7j =5 1) = Igo(iaj S 1)

+AI5, (3, )
\
where

I (m,n) if mis odd and n is even

Iy, (m,n) = I9 (m,n) if (m+n) is even

b . . .
\ ID (m,n) if mis even and n is odd

2.2 Proposed Prewitt- and Luminance Estimation-

based Edge Detector

In this section, combining the Prewitt mask-pair and the luminance estimation

technique, our proposed novel edge detector for mosaic images is presented.



(a) (b)
Fig. 2.4: The 3 x 3 Prewitt mask-pair. (a) The horizontal mask. (b) The vertical

mask.

Before presenting our proposed Prewitt- and luminance estimation-based (PL-
based) edge detector, for completeness, we first introduce the Prewitt edge detector
[27] for the luminance map. The 3 x 3 Prewitt mask-pair is illustrated in Fig. 2.4. It
is known that given a luminance map, the luminance of the pixel located at position
(1,7) is denoted by L(7, j). After running the Prewitt horizontal and vertical masks
on the 3 x 3 luminance submap centered at position (4, 7), the horizontal response

AH(i,7) and the vertical response AV (7, j) are given by

AH (i) = | {L(z’—1,j+1)+L(i,j+1)+L<i+1’j+1)} \
\_{L(i—1,j—1)+L(i,j—1)+L(i+1,j_1)] o

AV(i. ) = [L@+LJ_D+L@+Lﬁ+L@+Lj+U] N
_[L(i—1,j—1)+L(i—1,j)+L(i—1,j+1)1 }

\

In order to make the Prewitt edge detector feasible for mosaic images to ex-
tract more accurate edge information, the luminance estimation technique could be
plugged into the Prewitt edge detector. Combining Eq. (2.1) and Eq. (2.2), the

two kernel responses used in our proposed edge detector for mosaic images can be



obtained by the following derivations:

AH(i, j) =

—{L@—Lj—D+L@j—D+L@+Lj—D

(

[L@—Lj+D+L@j+U+L@+Lj+D

)

I (i —2,5+2)+ IS, (i +2,5 +2)
_Igo(2 - 27] - 2) - Iﬁ;o(z + 27] - 2)

IC (i =2, +1)+ IS, (i+2,5+1)
+2
_Igo(l - 27] - 1) - Igo(l + 27] - 1)

IS (i—1,7+2)+I5,(i+ 1,7 +2)
+3

_[rgo(z - ]-7] — 2) - Igo(l + 17] - 2)

+4 Incw(i?j = 2) P [go(iaj i 2) :|

I’ncw(i Ty 17] sy 1) i ],S:;O(’L - 1aj + 1)
+6 -
_Igo(i i 17.] i 1) 1K Irgo(Z -+ 17.7 - 1)

+8 Irgo(ihj s 1) = [Tgo(iaj T 1) :|

(2.3)



{ LaG+1,j—1)+Li+1,5)+LGE+1,j+1)
AV (i, j) =

_{L(i—1,j—1)+L(i—1,j)+L(i—1,j+1)
4 3\

IS, (42,5 —2) + I5, (i + 2,5 +2)

_[go(z - 27] - 2) - chlo(Z - 27] + 2)

Igo(l—i_ 17] - 2) +Incw(l+ 17j+2>
+2
—IC (i—1,7—2)— IS (i—1,j+2
| ol = L7 =2) = I (i = 1,7 +2) | (2.4)
1 IS (i+2,j -1+ IS (i+2,5+1)
= ! +3
16 10 (=25~ 1) —IC,(i—2,j+1)

+4 |: ‘[7?;0(@—1—2 j) 120(2—27.]) :|
{IO o0+ — D IS, G+, + 1)
4

_]C< 1]_1) Irgo(l_laj_Fl)

+8 Iol+1] _Igo(l_l7j>:|

\

By Eq. (2.3) and Eq. (2.

/

the PL-based mask-pair can be followed easily. For
saving computational effort, the coefficients in the derived mask—pair are normalized
to integers, and the normalized PL-based mask-pair for mosaic images is depicted
in Fig. 2.5.

After running the above proposed PL-based mask-pair on the 5x 5 mosaic subim-
age centered at position (7, ), the horizontal response AH (i, 7) and the vertical re-
sponse AV (7, j) can be obtained. Based on the values of AH (4, j) and AV (4, 7), the

gradient magnitude VG M (7, j) and the direction of variation 6(i, j) can be computed

by VGM (i,7) = \/[AH(i,5)]2 + [AV (i, j)]? and 0(i, j) = tan™! AV(J) respectively.

AH(i,5)°

Finally, the obtained VGM (i, j) and 0(i, j) can be used to detect edges on mosaic
images directly. If the value of VG M (i, j) is larger than the specified threshold, the
pixel at location (7, j) in the mosaic image is treated as an edge pixel with direction

0(i, j); otherwise it is a non—edge pixel.
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(a) (b)
Fig. 2.5: The normalized PL-based mask-pair for mosaic images. (a) The horizontal

mask. (b) The vertical mask.

-1 01 -1-2 -1
2102 0 0 O
-110 1 1121

(a) (b)
Fig. 2.6: The 3 x 3 Sobel mask-pair, (a) The horizontal mask. (b) The vertical

mask.
2.3 Applications to derive Sobel Mask-pair and

Marr-Hildreth Mask for Mosaic Images

Following the results of the last section, the derivations to Sobel mask-pair [16]
and Marr-Hildreth mask [23] for mosaic images are presented in this section. We
first present the combination of the Sobel mask-pair and the luminance estimation
technique, and then the combination of the Marr-Hildreth mask and the luminance
estimation technique is presented.

By the same argument of the Prewitt mask-pair, after running the Sobel mask-

pair as shown in Fig. 2.6 on the 3 X 3 luminance submap centered at position (i, 7),

10



the horizontal response AH (i, 7) and the vertical response AV (i, j) are given by

AH (i) {L(i_1aj+1)+2L(i,j+1)+L(i+1,j+1)}
1,]) =
\_[LQ_LJ—U+QL@J—D+L@+Lj—U}
AV(i.) {L(i—l—l,j—l)+2L(i+1,j)+L(i+l,j—|—1)}
1,7) =
_{L(i—1,j—1)+2L(i—1,j)—|—L(i_1,j+1)}

\

\

)

Vs

(2.5)

Then, combining Eq. (2.1) and Eq. (2.5), the Sobel- and luminance estimation-

based (SL-based) mask-pair can be obtained by the following derivations:

[L@—Lj+D+2M@j+U+L@+Lj+D}
AH(i,j) =

—{L(z‘—1,j—1)~|—2L(z’,j—1)+L(z’+1,j—1)}

( \

IC (i 2, j 279G (i 1 2,5+ 2)

—IC (i =25 —2) IS (1 +2,5 — 2)

IC (i =2+ 1)+ IS, (i + 2,5+ 1)
+2
_Igo(Z - 27.] - 1) - ]rg()(Z + 27.] - 1)
X ICGi—1,j+2)+1S,(i+1,j+2)
— ! +4
16 _Igo(z_la.]_2)_1200—1_17.]_2)

+6 [go(iﬁj + 2) - Ir%o(ihj - 2) :|

Igo(i - 1aj + ]-) + Igo(z + ]-7.] + 1)
+8

_[r%’o(Z - 17] - 1) - IT%O<Z + 17] - 1)

T2 I+ 1) = 15,0, = 1) }

11
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Fig. 2.7: The normalized SL-based mask-pair. (a) The horizontal mask. (b) The

vertical mask.

AV(i,j) = [L@+Lj_”+ﬂL“+Lﬁ+L@+Lj+n}

—{Lu—Lj—U+ﬂL@—Lﬁ+L@—Lj+D}

Inqo(i & 2a] I 2) + I’rgo(l + 2)] + 2)

_[7%0(2 Y 27] o 2) | [rgo(2 T 27] + 2)

]go(i +1,5—2)+ ]T(;ZO(Z' +1,5+2)
+2
_]'nc;o(Z - ]-7.] - 2) - ]720(@ - 1a] + 2)
] IS (i+2,7— 1)+ 15 (i+2,j+1)
-~ ¢ +4
16 _120(1_27‘7_ 1) _‘[T%O(Z_27j+]'>

+6 |: Ir%o(z—i_zuj) _Incw(@ - 27]) :|

IS+ 1,5 — 1)+ 1I5,(i4+1,7+1)
+8
_Irgo@ - 17] - 1) - Igo(Z - 17] + 1)

+12 |: Inqo(z+ 17]) - [ﬂc:w(Z - 17]) :|
\ J

Further, we normalize the coefficients in the derived SL-based masks. The normal-
ized horizontal mask and vertical mask are illustrated in Fig. 2.7.
Besides the Prewitt mask and the Sobel mask, the Marr-Hildreth mask is also a

well-known edge detector and the 11 x 11 Marr-Hildreth mask is illustrated in Fig.

12
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0 0 -1 -8 -31 47 | 31 -8 -1 0 0

0 -1 220 | -165 | -539 | <778 | -539 | -165 | -20 -1 0

0 -8 | -165 |-1099 | -2463 | -2707 | -2463 | -1099 | -165 | -8 0

-1 S31 | -539 |-2463 | O | 6065 | O | -2463| -539 | -31 -1

-1 -47 | -T18 | -2707 | 6065 |20012| 6065 | -2707 | -778 | -47 -1
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0 -8 | -165 |-1099 | -2463 | -2707 | -2463 | -1099 | -165 | -8 0

0 -1 220 | -165 | -539 | <778 | -539 | -165 | -20 -1 0
0 0 -1 -8 31| 47 | 31 -8 -1 0 0
0 0 0 0 -1 -1 -1 0 0 0 0

Fig. 2.8: The 11 x 11 Marr-Hildreth mask.

2.8. The response A?2M H (i, j) can be obtained by running the 11 x 11 Marr-Hildreth
mask on the 11 x 11 luminance submap centered at location (i, 7), too. Following the
same way mentioned above, the luminance estimation technique could be plugged
into the Marr-Hildreth edge detector; and then by normalizing the coefficients in
the derived mask. The normalized Marr-Hildreth- and luminance estimation-based
(MHL-based) mask is illustrated in Fig. 2.9.

After running the MHL-based mask on the 13 x 13 mosaic subimage, the response
A?MH (i,7) can be obtained. When the zero-crossing condition, i.e. A*MH (i —
L) x A2MH(i+1,5) <0or A2MH(i,7—1) x A2MH(i,j+ 1) < 0, happens and
the absolute value of the relevant difference, i.e. |A2MH(i—1,5)— A*MH(i+1, )|
or |A2MH (i, —1)—A*MH (i, j+1)], is larger than the specific threshold, the pixel
at location (7, ) in the mosaic image can be treated as an edge pixel; otherwise it

is a non—edge pixel.

13
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Fig. 2.9: The normalized MHL-based mask.

14




\'n_lv
G

3 ﬁ’[

PROPOSED LINE DETECTION
ALGORITHM FOR COLOR

MOSAIC IMAGES

In this chapter, our proposed novel line detection algorithm, which uses the edge
map obtained in Chapter 2 to be the input image, is presented. Our proposed line
detection algorithm consists of the following four steps, namely the initialization, the

candidate line determination, the voting process, and the true line determination.

Stage 1: (Initialization)

We have set of edge pixels E = {e,, = (im, Jm)|m € {1,2,..., N}} where
én = (in,jn) denotes the n-th edge pixel in the set E and the edge pixel
en locates at the position (i, j,); IV denotes the number of the edge pixels
in the set . Then, the failure counter is denoted by C and it is initially
set to zero. Three thresholds, Ti;, T, and T}; are used where Ty, denote
the repeating times of the alternative binary search test which will be
presented in Step 2; Ty denotes the number of successive failures that we

can tolerate; T} denotes the least edge pixels which a true line should
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Stage 2:

Stage 3:

Stage 4:

include. Moreover, the voting set Vi is used to collect the edge pixels

which are on the candidate line €€, and it is set to V> = (), initially.

(The candidate line determination)

First, two edge pixels e, = (i,,J,) and e, = (i, j,) are randomly picked
out form the set £ and then e?y is set to be an initial line. Then, the
alternative binary search test is used to determine whether the initial line
€26y is a candidate line or not. Fig. 3.1 illustrates the depiction of the
alternative binary search test. After picking e, = (i, j,) and e, = (iy, jy)
out, the pixel ¢1(1) = (i1(1), j11)), which is the midpoint of the line segment
(% h%), is examined whether it is an edge

€zy, 1. (l11), ) = ,

pixel or not. If ;) is an edge pixel, the two points f51) and (), which

are the midpoints of the line segments e, (1) and t,(1)e,, respectively, are
examined whether they are all edge pixels.. If the above condition holds,
the four points £3(1)-t314) are picked to examine. The alternative binary
search test is repeated until the repeating times are over the threshold Ty;.
Then, the line ex<—e>y is determined to be a candidate line and go to Step 3.
Otherwise, the line ¢,¢, is not a candidate line and perform Cy = C; + 1.

If C; > T}, then stop; otherwise, go to Step 2.

(The voting process)

Bresenham’s line algorithm [4] is utilized to plot the path eze, and to
determine which edge pixels in the edge map is on e,e,. If the edge pixel
ey = (iy, ju) is on the plotted path &,¢,, we add e, = (i,, j,) into the voting

set ‘/6‘_,73.627 i.e. ‘/é—z—ez = {ev = (’iv,jv)| €y € E, €y O the line (ex—ey)}

(The true line determination)

If the number of edge pixels in the voting set Viz, is greater than or equal

to the threshold Ty, i.e. |Vi| > Ty, the candidate line e e, is a true line.

We take the edge pixels in the voting set Vi out of E, i.e. B = F—Veo»

exey”

Then, set Viz = ) and Cy = 0; go to Step 2. Otherwise, e €, is viewed

16
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Fig. 3.1: The depiction of the alternative binary search test.

as a false line and perform Cy = Cy + 1. If C; > T}, then stop; otherwise,

set Vizez = () and go to Step 2.
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EXPERIMENTAL RESULTS

In this chapter, based on some test images, experimental results demonstrate that
our proposed edge detector to detect edges on mosaic images directly has the similar
edge detection effect but has better time performance when compared with the
indirect approach. Besides, some experiments are carried out to demonstrate the
computation-saving benefit of our proposed line detection algorithm when running
it on the edge map obtained by our proposed edge detector for mosaic images.
For convenience, the indirect approach which uses color Prewitt edge detector is
called the indirect Prewitt-based approach, so as that of the indirect Sobel-based
approach and the indirect Marr-Hildreth-based approach. The concerned algorithms
are implemented on the IBM compatible computer with Intel Core 2 Duo CPU @
1.6GHz and 1GB RAM. The operating system used is MS-Windows XP and the
program developing environment is Borland C++ Builder 6.0. Our program has
been uploaded in [43].

Figs. 4.1(a)—(d) illustrate the four color test images, namely Lady image, Sail-
boats image, Window image, and House image, respectively, for the mosaic edge
detection. In our experiments, the four color test images are first down-sampled to
obtain the mosaic images as shown in Figs. 4.2(a)—(d), respectively.

Figs. 4.3(a)-(d) and Figs. 4.3(e)—(h) illustrate the resultant edge maps ob-

tained by running the indirect Prewitt-based approach and our proposed PL-based
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Fig. 4.1: The four color test images for the mosaic edge detection. (a) Lady image.

(b) Sailboats image. (¢) Window image. (d) House image

(a) (b) | (c) (d)

Fig. 4.2: The down-sampled mosaic images. (a) mosaic Lady image. (b) mosaic

Sailboats image. (c) mosaic Window image. (d) mosaic House image

edge detector, respectively, on four test mosaic images as shown in Fig. 4.2. As
a postprocessing, the nonmaxima suppression rule [5] is adopted in the implemen-
tation. The resultant edge maps obtained by the indirect Sobel-based approach
and our proposed SL-based edge detector are illustrated in Figs. 4.4(a)—(d) and
Figs. 4.4(e)—(h), respectively. Figs. 4.5(a)—(d) and Figs. 4.5(e)—(h) illustrate the
resultant edge maps obtained by the indirect Marr-Hildreth-based approach and
ourproposed MHL-based edge detector, respectively. Table 4.1 demonstrates the
average execution-time required in the indirect edge detection approach and our

proposed direct approach for four test mosaic images where the time unit is second.
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% 4.1: The average execution-time required in the indirect approach and our pro-

posed approach for four test mosaic images.

Indirect approach | Our proposed approach | Improvement ratio

Prewitt 0.226(s) 0.118(s) A47.79%
Sobel 0.240(s) 0.118(s) 50.83%
Marr-Hildreth 1.289(s) 0.586(s) 54.54%

According to Figs. 4.3-4.5 and Table 4.1, experimental results demonstrate that
our proposed edge detector to detect edges on mosaic image directly has the similar
edge detection results when compared with the indirect approach; however, the av-
erage execution-time improvement-ratios of our proposed PL-based, SL-based, and
MHL-based edge detectors over the corresponding indirect approaches are 47.79%,
50.83%, and 54.54%, respectively:

Further, some line detection results are given to demonstrate that our proposed
line detection algorithm has better computational performance when compared with
Standard Hough transform (SHT) [13, 28], Randomized Hough transform (RHT)
[40, 41], and Randomized line detection algorithm (RLD) [8]. Figs. 4.6(a)—(c)
illustrate the three color test images, namely Subsailboats image, Grating windows
image, and Road image, respectively, for the line detection. Among the three test
images, Fig. 4.6(a) is the subimage cut from Fig. 4.1(b) because it has more line
patterns. In our experiments, the three color test images are first down-sampled to
obtain the mosaic images, and then running our proposed SL-based edge detector

on the mosaic images. Figs. 4.7(a)—(c) illustrate the obtained edge maps.

For the three edge maps in Figs. 4.7(a)—(c), after running SHT, RHT, RLD
and our proposed line detection algorithm, the resulting detected lines are shown

in Figs. 4.8-4.10, respectively. For three test mosaic images, Table 4.2 illustrates
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% 4.2: The execution-time comparison among the four concerned line detection

algorithms for three test mosaic images.

Algorithm SHT RHT RLD | Proposed

Subsailboats image 0.143(s) | 0.126(s) | 0.072(s) | 0.064(s)

Grating windows image | 0.137(s) | 0.114(s) | 0.088(s) | 0.060(s)

Road image 0.136(s) | 0.106(s) | 0.046(s) | 0.027(s)

Average 0.139(s) | 0.115(s) | 0.069(s) | 0.050(s)

the execution-time comparison among the four concerned line detection algorithms.
From Table 4.2, the average execution-time of SHT, RHT, RLD, and our pro-
posed algorithm are 0.139s, 0.115s, 0.069s, and 0.050s, respectively. In average,
the execution-time improvement ratio of our proposed algorithm over SHT, RHT,
and RLD are 64.03% (21320050 5 100%), 56.52% (= SE25E%0 x 100%), and 27.54%

(= 20090050 » 100%), respectively.

Finally, according to the above experimentations and discussions, it is observed
that our proposed edge detector for mosaic images has better computational per-
formance than the indirect approach and our proposed line detection algorithm has
the best computational performance among the four concerned line detection algo-

rithms. Thus, combining the proposed edge detector and the proposed line detection

algorithm is the most efficient approach to detect the lines from mosaic images.
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Fig. 4.3: The resultant edge maps. The resultant edge maps obtained by running
the indirect Prewitt-based approach on the mosaic images. (a) For Lady image. (b)
For Sailboats image. (c) For Window image. (d) For House image. The resultant
edge maps obtained by running the proposed PL-based edge detector on the mosaic
images. (e) For Lady image. (f) For Sailboats image. (g) For Window image. (h)

For House image.
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Fig. 4.4: The resultant edge maps. The resultant edge maps obtained by running
the indirect Sobel-based approach on the mosaic images. (a) For Lady image. (b)
For Sailboats image. (c) For Window image. (d) For House image. The resultant
edge maps obtained by running the proposed SL-based edge detector on the mosaic
images. (e) For Lady image. (f) For Sailboats image. (g) For Window image. (h)

For House image.
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Fig. 4.5: The resultant edge maps. The resultant edge maps obtained by running
the indirect Marr-Hildreth-based approach on the mosaic images. (a) For Lady
image. (b) For Sailboats image. (c) For Window image. (d) For House image. The
resultant edge maps obtained by running the proposed MHL-based edge detector on
the mosaic images. (e) For Lady image. (f) For Sailboats image. (g) For Window

image. (h) For House image.
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(a) (b) ()
Fig. 4.6: The three test images for line detection. (a) Subsailboats image. (b)

Grating windows image. (c) Road image.

(a) (b) (c)

Fig. 4.7: The obtained edge maps obtained by running the proposed SL-based edge

detector on the mosaic images. (a) For Subsailboats image. (b) For Grating windows

image. (c) For Road image.
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() (d)

Fig. 4.8: For Subsailboats image, the resulting detected lines obtained by using (a)

SHT, (b) RHT, (¢) RLD, and (d) our proposed line detection algorithm.
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() (d)

Fig. 4.9: For Grating windows image, the resulting detected lines obtained by using

(a) SHT, (b) RHT, (c) RLD, and (d) our proposed line detection algorithm.
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Fig. 4.10: For Road image, the resulting detected lines obtained by using (a) SHT,

(b) RHT, (c¢) RLD, and (d) our proposed line detection algorithm.
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CONCLUSIONS

Without demosaicing process, a new and efficient edge detector has been presented
for color mosaic images directly. Combining the Prewitt mask-pair and the lumi-
nance estimation technique for mosaic images, the mask-pair for edge detection on
the input mosaic image is derived first. Then, a novel edge detection algorithm for
mosaic images is proposed. Experimental results demonstrate that the proposed
edge detector to detect edges on mosaic images directly has the similar edge de-
tection results when compared with the indirect approach which first applies the
demosaicing process to the input mosaic image, and then runs the Prewitt edge
detector on the demosaiced full color image; however, the average execution-time
improvement-ratio of our proposed edge detector over the indirect approach is about
48%. Our proposed results can be applied to the other masks, e.g. the Sobel mask-
pair and the Marr-Hildreth mask, for edge detection. Finally, the application to
design a new line detection algorithm on mosaic images is investigated. Based on
some test images, our proposed line detection algorithm has better computational
performance when compared with SHT [13, 28], RHT [40, 41], and RLD [8]. Thus,
according to the experimentations and discussions, combining the proposed edge
detector and the proposed line detection algorithm is the most efficient approach to

detect the lines from mosaic images.
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APPENDIX 1: THE

DERIVATION FOR

LUMINANCE ESTIMATION

First, let the luminance be defined as L = aG + 8B + vR where «, (3, and 7 are
real numbers and a + 3 4+ v = 1. According to the four possible cases of the 3 x 3

mosaic subimage (see Fig. 2.2), we have the following four equations.

(

aB + 4bG + 4¢cR = oG + B+ YR
aR + 4bG + 4cB = oG + 3B + 4R

(a+4c)G+20(B+ R)=aG+ B +9R

a+f+y=1
\

Then, rewriting the above equations yields

”

(4b—a)G+ (a—B)B+ (4c—7)R=0
(4b— )G + (4 — B)B + (a — 7)R =0

(a+4c—a)G+ (2b—[B)B+ (2b—~v)R =0

a+fB+v=1
\

After solving the above equations, it yields a = %, and 0 = v = i. Thus, the

luminance is defined as L = 1(2G + B + R).
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