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摘要

現今許多密碼系統的安全性, 是以橢圓曲線離散對數問題 (ECDLP) 的困難度為基礎。 這

些密碼系統的安全性, 通常取決於曲線的選擇。 在這篇論文中, 我們對現在針對橢圓曲線

離散對數問題的攻擊法做一個整理, 找出弱曲線的條件, 也提出一些安全曲線應該有的條

件。 另外, 我們也會討論一些其他的攻擊法, 這些攻擊法對 ECDLP 是失敗的。

關鍵字: 橢圓曲線密碼學; 橢圓曲線離散對數; 弱曲線; 索引演算; 離散對數。
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Abstract

The elliptic curve discrete logarithm problem (ECDLP) forms the basis of
numerous cryptosystems today. The security of these cryptosystems usually
depends on the choice of curves. In this thesis, we give a summary of recent
attacks on the ECDLP, find the criteria of weak curves, and suggest the con-
ditions that a secure curve should have. We will also discuss some attacks
which works on the DLP but may fail to the ECDLP.

Key words: elliptic curve cryptography; elliptic curve discrete logarithm;
weak curve; index calculus; discrete logarithm.
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1 Introduction

The discrete logarithm problem (DLP) in an abelian group G is that given two

elements α and β in G, we want to find an integer k such that β = αk. Provided

that such k exists, we denote k = logαβ. In particular, a discrete logarithm problem

on an elliptic curve group is called an elliptic curve discrete logarithm problem

(ECDLP). The difficulty of the ECDLP depends on the choice of the curve and

the base field. Therefore, it is important to use a good curve in an elliptic curve

cryptosystem. In this thesis, we give a summary of recent attacks on the ECDLP

to find the criteria of weak curves and weak base fields. Except for the brute force

attack, recent cryptanalysis on the ECDLP can be roughly categorized into two

classes: general attacks and isomorphism attacks.

The baby step, giant step method [31] can be used to solve the DLP in any

finite abelian group, thus it solves the ECDLP as well. However, it has space and

time complexity O(
√

n) where n is the order of the base point P . By using some

random walks, Pollard [25] reduced the space to a constant amount and maintained

the time complexity O(
√

n). Therefore, we can circumvent the Pollard method by

a sufficiently large n. Pohlig and Hellman [24] also noticed that to solve the DLP in

a finite abelian group G one needs only to solve the DLP in subgroups of a prime

power order of G. The original DLP is then solved by using the Chinese Remainder

Theorem (CRT). Our choice of curves can be reduced to a simple case: the curve

has a base point P whose order n is a prime larger than 2163.

If G is a group of prime order n, G and 〈P 〉 are both cyclic, hence isomorphic. The

main idea of the isomorphism attack is to find an efficiently computable isomorphism

from 〈P 〉 to G. If there exist subexponential-time (or faster) algorithms to the DLP
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in G, we can reduce the ECDLP to the DLP on G. The known isomorphism attacks

are the following.

• The attack on anomalous curves (the elliptic curves with prime order p), due to

Smart [35], Satoh and Araki [26], uses lifting and p-adic logarithm to reduce

the ECDLP defined over prime field Fp to the DLP in F+
p . The discrete

logarithm can be solved efficiently by using the extended Euclidean algorithm.

This method has been generalized by Semaev [29] to the case that an elliptic

curve group which has a subgroup of prime order p.

• The Weil and Tate pairing attacks both establish an isomorphism from 〈P 〉

to the subgroup μn of Fql for some integer l, where q = p or q = 2m. The

former attack was developed by Menezes, Okamoto and Vanstone (MOV) [20]

with an additional constraint n � (q − 1), and the latter attack was developed

by Frey and Rück [4] without this additional constraint. The ECDLP can be

reduced to the DLP in F ∗
ql where there exists subexponential-time algorithms.

• Gaudry, Hess and Smart (GHS) [9] proposed an efficient algorithm that reduces

ECDLP instances in E(F2m), the elliptic curve defined over a binary field,

to instances of the hyperelliptic curve discrete logarithm problem (HCDLP).

Menezes and Qu [19] further showed that GHS attack fail to all cryptographi-

cally interesting elliptic curves over F2m for all prime m ∈ [160, 600]. Maurer,

Menezes and Teske [17] completed the analysis of the GHS attack by identi-

fying and enumerating the isomorphism classes of the elliptic curves over F2m

for composite m ∈ [160, 600].

To avoid the above attacks, one needs to compute the order of the elliptic curve

group. There is a polynomial-time algorithm proposed by Schoof [27] to do this.
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This method is improved by Atkins and Elkis [1].

The remainder of this thesis is organized as follows. In Section 2, we review

the general attacks and set up some basic requirements of the curve. In section 3,

we introduce the isomorphism attacks which is useful on some special curves. In

section 4, we give an introduction to the index method, xedni method and their

failure on ECDLP. We will also introduce a new idea which transforms the original

ECDLP to a system of polynomial equations. In section 5, we give a summary of

the weak curves and certain base fields which should not be used in an elliptic curve

cryptosystem.
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2 General Attacks on the ECDLP

The following notations will be used throughout this article.

Fp the finite field of p elements, where p is a prime.

F2m the finite field of 2m elements, also called binary field.

Fq the finite field of q elements.

E(K) the elliptic curve group defined over a field K, given by points on

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, where ai ∈ K,

together with point at infinity ∞.

N the order of E(K)

n the order of the base point P ∈ E(K)

E[n] the set of points of order dividing n with coordinates in the

algebraic closure K.

The elliptic curve discrete logarithm problem is that given Q ∈ 〈P 〉, to find an

integer k such that Q = kP ∈ E(K). Note that we only concern about the cases

that the base field K is Fp or F2m , since they are widely used in practice.

2.1 Baby Step, Giant Step

Shanks [31] developed a method which requires approximately
√

N steps and
√

N

storage. Given a point P on an elliptic curve group, it is easy to compute its inverse.

With this in mind, the algorithm is modified as follows.

1. Choose an integer s ≥ √
N and compute sP

2. Calculate the x-coordinate of iP for 0 ≤ i < s/2 and store them as a list.

3. Compute the points Q− jsP for j = 0, 1, ..., s until the x-coordinate of one of

them matches a point from the list. Set i = i0 and j = j0 for this match.
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4. Using the y-coordinate to decide Q − j0sP = i0P or Q − j0sP = −i0P .

5. If Q − j0sP = i0P , we have k ≡ i0 + j0s (mod N).

If Q − j0sP = −i0P , we have k ≡ −i0 + j0s (mod N).

The above algorithm requires approximately
√

N/2 steps and
√

N/2 storage. There-

fore we would like to choose the size N (usually with the same size as the key) of

E(K) is larger than 2224 bits in comparison with 22048 which is the key size rec-

ommended for public-key schemes such as RSA. In practical implementation N is

selected to be greater than 2160.

To apply BSGS, although we have mentioned that the order of the elliptic curve

group N = |E(Fq)| can be computed by Schoof algorithm [27], we do not need to

know the exact order N . The reason is that there is an upper bound of N by Hasse’s

theorem, so the number s can be chosen by satisfying s2 ≥ q + 1 + 2
√

q. Notice also

that although our discussion here is on N , a similar discussion on the order n of the

base point P gives the same result.

2.2 The Pollard Method

2.2.1 Pollard’s ρ Method

The main idea behind the Pollard method is to find distinct pairs (a′, b′) and (a, b)

modulo n such that a′P + b′Q = aP + bQ. Then (a′ − a)P = (b− b′)Q = (b− b′)kP

implies

k = logP Q ≡ (a′ − a)(b − b′)−1 (mod n),

provided (b − b′)−1 exists.

At first glance, randomly selecting the pairs takes about
√

πn/2 ≈ 1.2533
√

n

as the expected number of iterations to find a collision according to the birthday
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paradox. It takes also 3
√

πn/2 ≈ 3.7599
√

n storage, Pollard’s method gives roughly

the same expected time, but needs very little storage.

The subgroup 〈P 〉 of E(K) is first partitioned into three subsets S1, S2, S3 of

roughly the same size by using the partition function H. We write H(X) = j if

X ∈ Sj. The idea of Pollard is to use an iterating function f to find a collision. The

iterating function f : 〈P 〉 → 〈P 〉 is defined by

f(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X + Q if H(X) = 1

2X if H(X) = 2

X + P if H(X) = 3

If we start at a point X1 = a1P + b1Q, we can generate a sequence of points

recursively by Xi+1 = f(Xi). Then two integer sequences {ai} and {bi} satisfying

Xi+1 = ai+1P + bi+1Q for i ≥ 0 can be computed by

ai+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ai (mod n) if H(Xi) = 1

2ai (mod n) if H(Xi) = 2

ai + 1 (mod n) if H(Xi) = 3

bi+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bi + 1 (mod n) if H(Xi) = 1

2bi (mod n) if H(Xi) = 2

bi (mod n) if H(Xi) = 3

We store the pair (X1, X2) and iteratively compute pairs (Xi, X2i) until Xi = X2i

for some i. Since 〈P 〉 is finite, this collision does happen. Hence we have a relation

aiP + biQ = a2iP + b2iQ, which means (ai − a2i)P = (b2i − bi)Q = (b2i − bi)kP .

Therefore

k = logP Q ≡ (ai − a2i)(b2i − bi)
−1(mod n)

when b2i − bi is relative prime to n.
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We summarize the Pollard’s ρ method [25] to the ECDLP as follows.

1. Select a partition function H : 〈P 〉 → {1, 2, 3}.

2. Select a1, b1 ∈ [0, n − 1] and compute the initial point X1 = a1P + b1Q.

3. Repeat

(a) Compute Xi+1 = f(Xi) and X2i+2 = f(f(X2i)).

(b) Compute ai, bi, a2i and b2i.

until Xi = X2i.

4. If bi = b2i then go back to 2, else compute k ≡ (ai − a2i)(b2i − bi)
−1 (mod n)

Gallant, Lambert and Vanstone [6] and Wiener and Zuccherato [38] indepen-

dently discovered the method to speed Pollard’s method by using automorphisms.

The main idea is to reduce the size of the set in the Pollard method, then the time

required to find a collision is less.

Suppose ψ : 〈P 〉 → 〈P 〉 is an automorphism which can be computed efficiently.

Since 〈P 〉 is finite, ψ is finite of order t. That is, t is the smallest number such that

ψt(R) = R for all R ∈ 〈P 〉. We then use this automorphism to define an equivalence

relation ∼ on 〈P 〉 by

R1 ∼ R2 if and only if R1 = ψj(R2) for some j ∈ [0, t − 1].

The only difficulty is to construct a random walk which is well defined among the

equivalence classes. We may choose a representative which has the minimal x-

coordinate in each equivalence class (with ties broken by selecting the point with

a smaller y-coordinate), denoted by R. Then an iterating function g defined by

g(R) = f(R) is modified from f to be well-defined on these representatives.
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Since ψ is an automorphism, we have ψ(P ) = λP for some λ ∈ [0, n−1]. Suppose

we know this integer λ, then ψ(R) = λR for all R ∈ 〈P 〉. Thus, if we start at a point

X1 = a1P + b1Q, it will be easy to compute the representative X1 of equivalence

class which contains X1. Namely, if X1 = ψj(X1) = aP + bQ for some integer j,

then a ≡ λja1 (mod n) and b ≡ λjb1 (mod n) [12].

Now g can be used as the iterating function on the representatives of equivalence

classes with roughly n/t elements. Set the initial point X ′
1 = X1 and apply the

Pollard method with X ′
i+1 = g(X ′

i) for i ≥ 1, then the expect number of iterations

to find a collision is about
√

nπ/2t.

We close this section by some examples which shows the security may be affected

by this method.

Example 2.1. Suppose p ≡ 1 (mod 3) is a prime, then there exists an element

β ∈ Fp of order 3. For the elliptic curve E : y2 = x3 + b defined over Fp, the map

φ : E(Fp) → E(Fp) defined by

φ(x, y) = (βx,−y) and φ(∞) = ∞

is an endomorphism of order 6. For a prime field of size 2160, we require a work of

√
nπ

2t
=

√
πn

2 · 6 ≈ 279

to solve an ECDLP. The security reduced one bit in comparison with 280 of the

ordinary Pollard method.

Example 2.2. Consider the Koblitz curves (anomalous binary curve) defined over

F2m of the form y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1}. The Frobenius map

φ : E(F2m) → E(F2m) defined by

φ(x, y) = (x2, y2) and φ(∞) = ∞
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is an endomorphism of order m. This method can reduce the security of the Koblitz

curve over F2163 by an effort of approximately

√
nπ

2m
=

√
πn

2 · 163
≈ 277

to break the ECDLP, rather than approximately 281 of the ordinary Pollard method.

2.2.2 Pollard’s λ Method

Pollard [25] also describes another λ-method which can be parallelized to solve an

ECDLP. With a little more information than usual, he finds a collision by keeping

track of two kangaroos. Each kangaroo is a random walk using the same iterating

function but starting at different initial points [36]. One is called the tame kangaroo

and another is the wild kangaroo. The main idea is to use the tame kangaroo to set

up some traps to catch the wild kangaroo. Once the wild kangaroo falls into a trap

set up by the tame kangaroo, it will then follow the footprints of the tame kangaroo.

Eventually, the ECDLP is solved.

The following is a small variant of the Pollard method from [1]. As in the ρ-

method, first we select a partition function H from 〈P 〉 → {1, 2, . . . , L} where L is

usually around 16. Let S = {M1,M2, . . . ,ML}. Each jump of a kangaroo depends

on the point from which the kangaroo jumps and in a distance that is randomly

selected from the set S. A natural choice of Mj may be of the form

Mj = sjP + tjQ

where sj, tj are randomly selected from [0, n − 1].

Our iteration function f : 〈P 〉 → 〈P 〉 is then defined by

f(X) = X + Mj where H(X) = j.

9



So, if Xi = aiP +biQ, then it will be easy to compute Xi+1 = f(Xi) = ai+1P +bi+1Q

where

Xi+1 = Xi + Mj with H(Xi) = j

ai+1 = ai + sj (mod n)

bi+1 = bi + tj (mod n)

The remaining problem is that if we start with the tame kangaroo at T1 =

a1P +b1Q and the wild kangaroo at W1 = a′
1P +b′1Q, we must store all the computed

points Ti+1 = f(Ti) and Wi+1 = f(Wi) until a collision is found. This requires O(
√

n)

storage. How do we find a collision without using too much storage? An idea is to

use the distinguishing property. A point is called distinguished if it satisfies some

property which can be tested easily, such as the last digit of its x-coordinate being

zero. We just look for the collision point which is distinguished. The algorithm is

summarized as follows.

1. Select a partition function H : 〈P 〉 → {1, 2, . . . , L}.

2. Construct S = {M1, M2, . . . , ML}

3. Select a1, b1 ∈ [0, n − 1] and compute the initial point T1 = a1P + b1Q.

4. Select a′
1, b

′
1 ∈ [0, n − 1] and compute the initial point W1 = a′

1P + b′1Q.

5. Repeat

(a) If Ti or Wi is distinguished then store (ai, bi, Ti) or (a′
i, b

′
i, T

′
i )

(b) Compute Ti+1 = f(Ti) and Wi+1 = f(Wi)).

(c) Compute ai+1, bi+1, a
′
i+1 and b′i+1.

until the processor stores some distinguished point Y for the second time. Let

(c, d, Y ) and (c′, d′, Y ) be the two triples associated with Y .
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6. If d = d′ then go back to 3, else compute k ≡ (c − c′)(d − d′)−1 (mod n)

Note that the above algorithm can be easily parallelized if we compute the tame

and the wild kangaroo in different processors. Whenever a processor encounters

a distinguished point, it transmits the point to a central server which stores it in

a sorted list. In addition, starting with more than two initial points gives more

kangaroos. Then it will be faster to find a collision. In fact, if we have u processors,

this yields a speedup of factor u. Let θ be the proportion of points in 〈P 〉 with this

distinguishing property. One expects the random walk taking another 1/θ steps in

the worst case before a collision occurs. So the expect number of finding a collision

of distinguished point is

1

u

√
nπ

2
+

1

θ
.

Remark 2.3. The above algorithm is a generalization of the Pollard method. In the

original Pollard method, he assumes that k ∈ [a, b] ⊂ [0, n − 1] such that b − a is

a fairly manageable quantity. The tame kangaroo is chosen to start at bP , wild

kangaroo is chosen to start at Q, and H = �log2(b − a)�. Another choice of the

iterating function is also available.

2.3 Pohlig-Hellman Attack

If the order of P can be factorized by

n =
∏

i

pei
i

where pi are small primes such that the Pollard’s method works in attacking the

ECDLP of E(Fpi
). The idea of Pohlig and Hellman [24] attack is to find k (mod

pei
i ), then use the CRT to combine these results to obtain k (mod n). We will write

11



k in expansion of base pi as

k = k0 + k1pi + . . . + kei−1p
ei−1
i (mod pei

i ),

then k (mod pei
i ) is evaluated by successively determining k0, k1, . . . , kei−1.

1. Compute n
pi

P .

2. Compute Q0 = n
pi

Q

3. Solve the discrete logarithm k0 of Q0 to the base n
pi

P by the Pollard method.

4. If ei = 1, stop. Otherwise, continue.

5. From j = 1, let Qj = Qj−1 − kj−1p
j−1
i P .

6. Solve the discrete logarithm kj of n

pj+1
i

Qj to the base n
pi

P by the Pollard

method.

7. Repeat until j = ei − 1.

Then k ≡ k0 + k1pi + . . . + kei−1p
ei−1
i (mod pei). We can check the above algorithm

by

n

pi

Q =
n

pi

kP ≡ n

pi

(k0 + k1pi + . . . + kei−1p
ei−1
i )P

≡ k0
n

pi

P + (k1 + . . . + kei−1p
ei−2
i )nP

≡ k0
n

pi

P (mod pei
i ).

Therefore we have indeed found k0 in the algorithm. It is similar to ki for i =

1, . . . , ei − 1.

It is obvious that the Pohlig-Hellman attack works well if the prime factors pi

of n are small. If there is a large prime number dividing n ≥ 2160, then the Pollard
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method can not work, which implies that the Pohlig-Hellman attack is of little use.

For this reason, if a cryptosystem is based on the ECDLP, we would like to choose

the order of the elliptic curve group contains a large (≥ 2160) prime factor.

We close this section with an easy example which can be found in [1]. It solves

the ECDLP by Pohlig-Hellam attack combined with the Pollard method.

Example 2.4. Consider the elliptic curve E : y2 = x3 + 71x + 602 defined over the

finite field F1009, then N = 1060 = 22 · 5 · 53. We want to find k such that Q = kP ,

where P = (1, 237) and Q = (190, 271), with the order of P is 530. First we use the

reduction of Pohlig and Hellman to compute k modulo 2, 5 and 53.

• k (mod 2). Compute the points

(530/2)P = 265P = (50, 0) and Q0 = (530/2)Q = 265Q = (50, 0),

then solve Q0 to the base of (530/2)P . It is clearly k ≡ 1 (mod 2).

• k (mod 3). Compute the points

(530/5)P = 106P = (639, 160) and Q0 = (530/5)Q = 106Q = (639, 849),

then solve Q0 to the base of (530/5)P . We can see that Q0 = −(530/5)P ,

which means k ≡ −1 ≡ 4 (mod 5).

• k (mod 53). Compute the points

P ′ = (530/53)P = 10P = (32, 737) and Q0 = (530/53)Q = 10Q = (592, 97),

then solve Q0 to the base of (530/5)P . First we select a partition function

H : E(F1009) −→ {1, 2, 3}.

(x, y) �→ x(mod 3) + 1

13



Construct the set S as

M1 = 2P ′ + 0Q0 = (8, 623),

M2 = 1P ′ + 1Q0 = (654, 118),

M3 = 3P ′ + 4Q0 = (555, 82).

Now we set T1 = 1P ′ + 0Q0 and W1 = 0P ′ + 1Q0. Since H(T1) = 3 and

H(W1) = 2, we obtain

T2 = f(T1) = T1 + M3 = 4P ′ + 4Q0 = (200, 357),

W2 = f(W1) = W1 + M2 = 1P ′ + 2Q0 = (817, 136).

All Ti and Wi can be computed in the same way. After collecting enough

Ti and Wi, we have found that the tame kangaroo has crossed its own path

7P ′ + 8Q0 = T3 = T6 = 12P ′ + 9Q0. We get k ≡ −5 ≡ 48 (mod 53).

After using the Chinese Reminder theorem with the above conclusion, we know that

k ≡ 368 (mod 530).
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3 Isomorphism Attacks on the ECDLP

3.1 Attacks on Anomalous Curves

An elliptic curve defined over a prime field E(Fp) is called anomalous if |E(Fp)| =

p, which implies that E(Fp) is isomorphic to F+
p , the additive group of Fp. The

problem is how to define an isomorphism which can be computed efficiently. In

1997, Smart [35], Satoh, Araki [26] and Semaev [29] proposed three different attacks

on anomalous curves independently. Each attack gives an isomorphism from E(Fp)

to F+
p , which can be used to reduce an ECDLP on E(Fp) to a DLP on F+

p . Then a

DLP on F+
p can be solved efficiently by using the extended Euclidean algorithm. In

this section, we will introduce the methods presented by Smart and Semaev which

gives a running time O(log p), and demonstrate an easy example.

3.1.1 Smart’s Method

Smart’s idea [35] is to use the standard logarithm map for the subgroup of the

elliptic curve group defined over the field of p-adic number Qp. Suppose E(Fp) is an

anomalous elliptic curve defined over the field Fp. Given P,Q ∈ E(Fp). We want to

find k such that Q = kP . In order to apply the standard logarithm map, first we

need to lift P and Q to the points P̃ and Q̃ on Ẽ(Q).

Definition 3.1. Suppose R is a ring and I ⊆ R is an ideal with
⋂

i I
i = {0}. Let

Iν be given. A sequence {an} ⊆ R is a Cauchy sequence, if there exists some l ∈ N

such that

ai − aj ∈ Iν whenever i, j ≥ l.

The ring R is complete with respect to I, if every Cauchy sequence of I converges.

The lifting process can be done by the following lemma.
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Lemma 3.2 (Hensel’s Lemma). Let R be a ring which is complete with respect to

some ideal I ⊂ R, and let F (w) ∈ R[w] be a polynomial. Suppose that a ∈ R

satisfies (for some integer i ≥ 1)

F (a) ∈ I i and F ′(a) ∈ R∗.

Then for any α ∈ R satisfying α ≡ F ′(a) (mod I), the sequence {wn} with

w0 =, wm+1 = wm − F (wm)/α for m ≥ 1

converges to an element b ∈ R satisfying

F (b) = 0 and b ≡ a (mod I i)

If R is an integral domain, then these conditions determine b uniquely.

Proof. ( [32], IV.1)

After lifting the points to the elliptic curve Ẽ(Qp), the next step is to construct

the isomorphism from E(Fp) to F+
p . Define the reduction map π : Ẽ(Qp) → E(Fp)

by π(x, y) = (x, y) (mod p). Assume the elliptic curve Ẽ(Qp) has good reduction at

p, that is, the reduction map reduces Ẽ(Qp) to a nonsingular curve E(Fp). The set

of points in Ẽ(Qp) which reduce modulo p to points of E(Fp) is denoted by Ẽ0(Qp),

and the set of points in Ẽ(Qp) which reduce to zero is denoted by Ẽ1(Qp). We have

the following theorem.

Theorem 3.3. There are exact sequences of abelian groups

0 → Ẽ1(Qp) → Ẽ0(Qp) → E(Fp) → 0

0 → Ẽ2(Qp) → Ẽ1(Qp) → F+
p → 0

where Ẽ2(Qp) = {P̃ ∈ Ẽ(Qp)|v(xP̃ ) ≤ −4} and v(xP̃ ) is the p-adic valuation of the

x-coordinate of P .
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Proof. The maps in the first exact sequence are the reduction modulo p. Their proof

can be found in [32] VII.2.

Since E(Fp) ∼= F+
p , the above theorem gives us the following isomorphism,

E(Fp) ∼= Ẽ0(Qp)/Ẽ1(Qp) ∼= Ẽ1(Qp)/Ẽ2(Qp) ∼= F+
p .

We start with the points P̃ , Q̃ ∈ Ẽ0(Qp), then compute P̃1 = pP̃ and Q̃1 = pQ̃.

We will get P̃1, Q̃1 ∈ Ẽ1(Qp), since π(pP̃ ) = pπ(P̃ ) = ∞. Now we can apply the

logarithm

ϑp(x, y) = p−1−x

y
(mod p)

to the points P̃1, Q̃1 when they are not in Ẽ2(Qp). The algorithm is as follows.

1. Lift the points P,Q ∈ E(Fp) to the points P̃ , Q̃ ∈ Ẽ(Qp) by Hensel’s lemma.

2. Compute P̃1 = pP̃ and Q̃1 = pQ̃.

3. If P̃1 ∈ Ẽ2(Qp), then choose new Ẽ, P̃ , Q̃ and try again. Otherwise, compute

k ≡ ϑp(P̃1)/ϑp(Q̃1) (mod p).

Let’s check why it works. Let R̃ = kP̃ − Q̃. We have

∞ = kP − Q = π(kP̃ − Q̃) = π(R̃)

This means R̃ ∈ Ẽ1(Qp). Therefore ϑp(R̃) is defined and ϑp(pR̃) = pϑp(R̃) ≡ 0

(mod p). Consequently,

kϑp(P̃1) − ϑp(Q̃1) = kϑp(pP̃ ) − ϑp(pQ̃)

= ϑp(kpP̃ − pQ̃) = ϑp(pR̃) ≡ 0 (mod p)

⇒ k ≡ ϑp(Q̃1)

ϑp(P̃1)
(mod p).
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Notice that the non-trivial parts are the computations of P̃1 and Q̃1, which take

O(log p) operations.

The above algorithm shows that we need only concern the numbers modulo p2.

We will write O(pi) to represent a rational number of the form piz with vp(z) ≥ 0

when it doest not have any ambiguity.

Example 3.4. Consider an elliptic curve E : y2 = x3 + 39x2 + x + 41 over F43, we

want to solve an ECDLP

Q = (10, 36) = kP = k(0, 16)

The group can be easily verified to have order 43, so it is an anomalous curve. Now

P and Q are lifted by Hensel’s lemma.

P̃ = (0, 16 + 20 · 43 + O(432))

Q̃ = (10, 36 + 40 · 43 + O(432))

We then need to compute P̃1 and Q̃1.

P̃1 = (38 · 43−2 + O(43−1), 41 · 43−3 + O(43−2))

Q̃1 = (24 · 43−2 + O(43−1), 35 · 43−3 + O(43−2))

Therefore,

ϑp(P̃1) = 19 (mod 43) and ϑp(Q̃1) = 3 (mod 43).

Consequently,

k ≡ ϑp(Q̃1)

ϑp(P̃1)
≡ 19

3
≡ 16 (mod 43).

3.1.2 Semaev’s Method

Semaev constructs an isomorphism different from Smart’s. He uses the functions

defined on an elliptic curve to derive an isomorphism. In order to proceed, we first
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briefly give an introduction to divisors which can be found in any standard textbook

such as [32], [37] and [16] (for the case of hyperelliptic curve).

Definition 3.5. A divisor is a formal sum of points in E(K), abbreviated as E,

D =
∑
S∈E

nS[S],

where nS = 0 for all but finitely many points S. The degree of D is the integer

deg(D) =
∑

nS,

and the sum of D is the sum of all the points in D

sum(D) =
∑

nSS.

The collection of all divisors, denoted by Div(E), forms a group with operation of

formal sum. Its subgroup of elements of degree 0 is denoted by Div0(E).

Since y2−x3−ax−b is irreducible over K for some a, b ∈ K, the ideal (y2−x3−

ax− b) is a prime ideal. So the quotient ring K[x, y]/(y2−x3−ax− b) is an integral

domain. We then consider its field of quotient, denoted by K(x, y). A function on

E is a rational function f(x, y) ∈ K(x, y) defined for at least one point in E(K). We

denote these functions by K(E), a similar notation to K(E). A function f is said

to have a zero or a pole at a point P if it takes the value 0 or ∞ at P respectively.

Suppose uP is a function which takes the value 0 or ∞ at P . It can be shown that

every f can be written in the form f = us
P g with s ∈ Z and g(P ) is neither 0 nor

∞, so we have the following definition.

Definition 3.6. Suppose f is written in the form f = us
P g with s ∈ Z and g(P ) �=

0,∞. Define the order of f at P by

ordP (f) = s.
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The divisor of f is defined by

div(f) =
∑
P∈E

ordP (f)[P ].

A divisor D is principal if there is some function f such that div(f) = D.

A useful property that we will frequently use is the following.

Proposition 3.7. Let D be a divisor on E with deg(D) = 0, then D is principal if

and only if sum(D) = ∞.

Now we focus on the Semaev’s method. Semaev’s method can be used not only

in an elliptic curve group of order p but also in a subgroup (the subgroup generated

by P ) of an elliptic curve group of order p. Since there is nothing to do in a subgroup

of order 2, we assume p > 2. We only concern that the elliptic curve group defined

over a prime field contains a subgroup of order p.

The main idea behind this method is to use the notation of a derivative. Suppose

f is a rational function in Fq(E), the definition of the derivative of f is the formal

derivative of f just as the techniques we have learned in a calculus course. This

gives the following definition.

Definition 3.8. Suppose f ∈ Fq(E). The derivative of f respect to x is defined by

f ′ =
df

dx
+

df

dy

dy

dx
,

where df
dx

and df
dy

are ordinary derivative with respect to x and y, and

dy

dx
=

3x2 + a

2y
.

Suppose DQ is a divisor with sum which equals Q, and fQ is the function such

that div(fQ) = pDQ. Assume n = |〈P 〉| = p, then the following theorem establishes

the isomorphic embedding between 〈P 〉 and F+
q . This can be found in [29].
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Theorem 3.9. Suppose R ∈ 〈P 〉 − {∞} is a point which is not in the support of

DQ (points in DQ with nonzero coefficient) for any point Q ∈ 〈P 〉. Define

φ : 〈P 〉 → F+
q

Q �→ f ′
Q

fQ

(R)

Then the value φ(Q) is well defined. The map φ is an isomorphic embedding of 〈P 〉

into the additive of Fq.

Proof. Let D′
Q be another divisor representing Q. There is a function g such that

div(g) = DQ −D′
Q. If div(f) = pD′

Q, then cgpf = fQ for some constant c. We have

f ′
Q

fQ

=
(cgpf)′

cgpf
= p

gp−1g′f
gpf

+
gpf ′

gpf
=

f ′

f
.

So φ(Q) is well defined.

Now we show that φ is a homomorphism. Let Q1, Q2 ∈ 〈P 〉 and div(fQi
) = pDQi

for i = 1, 2. Notice that DQ1 +DQ2 is a divisor with sum which is equal to Q1 +Q2,

so we can take DQ1+Q2 = DQ1 + DQ2 . This implies

div(fQ1+Q2) = pDQ1+Q2 = pDQ1 + pDQ2 = div(fQ1fQ2),

so the functions fQ1+Q2 and fQ1 , fQ2 are equal up to a multiplicative constant. Con-

sequently,

f ′
Q1+Q2

fQ1+Q2

=
(fQ1fQ2)

′

(fQ1fQ2)
=

f ′
Q1

fQ2

fQ1fQ2

+
fQ1f

′
Q2

fQ1fQ2

=
f ′

Q1

fQ1

+
f ′

Q2

fQ2

implies φ is a homomorphism. Besides, φ is injective which follows from the assump-

tion that R is not in the support of DQ for any Q ∈ 〈P 〉.

In order to find k such that Q = kP , we compute φ(Q) and φ(P ). The discrete

logarithm k can be computed by k = φ(Q)φ(P )−1 in Fq.
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3.2 MOV Attack

MOV attack, named after Menezes, Okamoto and Vanstone, solves the ECDLP by

using the Weil pairing en to construct an isomorphism from 〈P 〉 to μn, where μn

is the set of n-th roots of unity. Notice that there exists a subexponential-time

algorithm for DLP on a multiplicative group of a finite field. If we can choose some

l such that μn is contained in Fql , then solving an ECDLP is equivalent to solving

a DLP on F ∗
ql . In order to proceed, we introduce some important theorems. A

complete discussion can be found in [20]. The following theorem that can be found

in ( [28], 4.2) determines whether or not an elliptic curve of a certain order exists.

Theorem 3.10. There exists an elliptic curve of order N = q + 1 − a over Fq if

and only if the following conditions hold:

• a �≡ 0 (mod p) and a2 ≤ 4q.

• m is odd and one of the following holds.

1. a = 0.

2. a2 = 2q and p = 2.

3. a2 = 3q and p = 3.

• m is even and one of the following holds:

1. a2 = 4q.

2. a2 = q and p �≡ 1 (mod 3).

3. a = 0 and p �≡ 1 (mod 4).

An elliptic curve E(Fq) is supersingular if p divides a. From the preceding result,

we deduce that E(Fq) is supersingular if and only if a2 = 0, q, 2q, 3q, 4q. Our goal is
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to show that this attack works when the elliptic curve is supersingular or the trace

a = 2. We will use the Weil pairing to derive the isomorphism between 〈P 〉 and μn.

The following theorem describes the existence of the Weil pairing and some related

properties.

Theorem 3.11. Suppose p is a prime. If n is relative prime to p, then there is a

map

en : E[n] × E[n] → μn

called the Weil pairing, which satisfies the following properties:

1. Identity: For all P ∈ E[n], en(P, P ) = 1.

2. Alternation: For all P1, P2 ∈ E[n], en(P1, P2) = en(P2, P
−1
1 ).

3. Bilinearity: For all P1, P2, and P3 ∈ E[n]

en(P1 + P2, P3) = en(P1, P3)en(P2, P3)

en(P1, P2 + P3) = en(P1, P2)en(P1, P3)

4. Non-degeneracy: If P1 ∈ E[n] and en(P1, P2) = 1 for all P2 ∈ E[n], then

P1 = ∞. If P2 ∈ E[n] and en(P1, P2) = 1 for all P1 ∈ E[n], then P2 = ∞

5. If E[n] ⊆ E(Fql), then μn ⊆ F ∗
ql.

Proof. ( [32], III.8)

The MOV attack can only applied under some constraints. The following propo-

sition provides necessary and sufficient conditions.

Proposition 3.12. Let E be an elliptic curve over Fq. Let n be a prime such that

n | N , E[n] �⊆ E(Fq), and n � q(q − 1). Then

E[n] ⊆ E(Fql) if and only if ql ≡ 1 (mod n)
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Proof. [37] P.155.

The set E[n] is partitioned into cosets of 〈P 〉 by the following lemma.

Lemma 3.13. Let E(Fq) be an elliptic curve such that E[n] ⊆ E(Fq), where n is

relative prime to p. Let P ∈ E[n] be a point of order n. Then for all P1, P2 ∈ E[n], P1

and P2 are in the same coset of 〈P 〉 within E[n] if and only if en(P, P1) = en(P, P2).

We are ready to introduce the algorithm of the MOV attack. The following is

from [20].

1. Choose smallest integer l such that E[n] ⊆ E(Fql).

2. Find R ∈ E[n] such that α = en(P,R) has order n.

3. Compute β = en(Q,R).

4. Compute k, the discrete logarithm of β to the base α in Fql , that is k = logαβ.

It is not difficult to show that E[n] ∼= Zn ⊕Zn when gcd(n, p) = 1. This implies

E[n] is finite. The existence of l follows from the fact that all points in E[n] have

coordinate in F q =
⋃

i≥1 Fpi . Suppose n � q − 1. We can use Proposition 3.12 to

determine the integer l such that n | ql − 1 in Step 1.

In Step 2, we need to check the existence of the point R.

Theorem 3.14. There exists R ∈ E[n] such that en(P,R) is a primitive n-th root

of unity for all P ∈ E[n].

The choice of R is modified as following. Choose a random point R1 ∈ E(Fql),

and compute the order M of R1. Let d = gcd(M,n) and let R = (M/d)R1. Then R

has order d, which divides n, so R ∈ E[n]. This will give k (mod d). We repeat this
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process until the least common multiple of the various d’s is n, then we can use the

Chinese Remainder Theorem to compute k (mod n).

The above modification works well since d �= 1 occurs very often. By the funda-

mental theorem of finite abelian groups, we know that E(Fql) ∼= Zn1 ⊕Zn2 for some

integer n1, n2 where n1|n2. Since n2 is the largest possible order of an element in

E(Fql), we get n|n2. Let {T1, T2} be a basis of E(Fql) where the order of T1 is n1

and the order of T2 is n2. We have R1 = a1T1 + a2T2. Suppose se is a power of a

prime dividing n, then sf divides n2 with some integer f ≥ e. If s � a2, we have sf

divides M . We can show this by dividing M by sf , which implies M = sfq1 + r for

some quotient q1 and 0 ≤ r < sf . Thus,

MR1 = ∞ ⇒ M(a1T1 + a2T2) = ∞ ⇒ Ma2T2 = ∞

⇒ (sfq1 + r)a2T2 = ∞

⇒ sf |n2|(sfq1 + r)a2

Since s � a2, we have r = 0 and sf |M . As a result, se divides gcd(M,n). Since the

probability that s � a2 is 1 − 1/s, the probability of d �= 1 is as high as that the full

power se is in d.

The isomorphism between 〈P 〉 and μn in Step 4 is from the following theorem.

Theorem 3.15. Suppose f : 〈P 〉 → μn is defined by f(Q) = en(Q,R) for those

R ∈ E[n] in Step 2, then f is a group isomorphism.

Proof. The reason why f is a homomorphism follows from the bilinearity of the Weil

pairing. The existence of R ∈ E[n] such that en(Q,R) is a primitive n-th root of

unity implies that f is surjective. Since 〈P 〉 and μn are both of order n, we have f

is injective. Therefore f is an isomorphism.
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Notice that the computation of the Weil pairing can be done in a probabilistic

polynomial-time algorithm proposed by Miller [23]. The MOV attack then can be

carried out in probabilistic subexponential-time. We will introduce the computation

of the pairings in the appendix.

3.3 Tate Pairing Attack

Frey and Rück [4] showed that in some situations, the Tate pairing can be used

to solve the ECDLP. This method is similar to the MOV attack which uses some

kind of pairing to reduce the ECDLP to the DLP on Fql . The Tate pairing attack is

generally faster than the MOV attack. The following theorem describes the existence

of the Tate-Lichtenbaum Pairing. We can use it to construct an isomorphism from

〈P 〉 to μn.

Theorem 3.16. Let E be an elliptic curve over Fq. Suppose n is an integer such

that n|q − 1. Let E(Fq)[n] denote the elements of E(Fq) of order dividing n, and let

μn = {x ∈ F ∗
q |xn = 1}. Assume E(Fq) contains an element of order n. Then there

exist non-degenerate bilinear maps

〈·, ·〉n : E(Fq)[n] × E(Fq)/nE(Fq) → F ∗
q /(F ∗

q )n

and

τn : E(Fq)[n] × E(Fq)/nE(Fq) → μn

Proof. The construction of the first pairing can be found in [37] 11.3. Since F ∗
q

is cyclic of order q − 1, the (q − 1)/n-th power map gives an isomorphism from

F ∗
q /(F ∗

q )n to μn. Therefore, the second pairing is defined by

τn(S, T ) = 〈S, T 〉(q−1)/n
n .
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The second pairing in this theorem is called the modified Tate-Lichtenbaum

pairing. We will use this modified Tate-Lichtenbaum pairing τn since it gives a

definite answer instead of a coset in F ∗
q mod n-th powers. We will also write τn(S, T +

nE(Fq)) as τn(S, T ). Now we are ready to construct an isomorphism from 〈P 〉 to

μn. First, we need the following lemma.

Lemma 3.17. Let n be a prime with n|q−1, n|N , and n2 � N . Let P be a generator

of E(Fq)[n], then τn(P, P ) is a primitive n-th root of unity.

To compute k such that Q = kP , we have

τn(P,Q) = τn(P, kP ) = τn(P, P )k.

This determines k (mod n) by lemma 3.17. All computations can be done in F ∗
q .

In comparison to the MOV attack, we can see that the Tate pairing attack does

not need the constraint n � q − 1, which is necessary in the MOV attack such that

E[n] ⊆ E(Fql) for some l. In other words, the Tate pairing attack only needs one

point of order n, rather than all of E[n], to be in E(Fql). Therefore, if n|q−1, we can

apply the Tate pairing attack. If n � q− 1, choose l such that n|ql − 1, we can apply

both the MOV attack and the Tate pairing attack as long as l is not too large. Now

we turn to the case of the supersingular curves. Recall that E(Fq) is supersingular

if and only if a2 = 0, q, 2q, 3q, 4q. By Hasse’s theorem and the Lagrange theorem,

we have.

• If a = 0, then n|q + 1. We can take l = 2 such that

q2 − 1 = (q + 1)(q − 1) ≡ 0 (mod n).

• If a2 = q, then n|q + 1 ∓√
q. We can take l = 3 such that

q3 − 1 = (q − 1)(q + 1 −√
q)(q + 1 +

√
q) ≡ 0 (mod n).
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• If a2 = 2q, then n|q + 1 ∓√
2q. We can take l = 4 such that

q4 − 1 = (q + 1)(q − 1)(q + 1 +
√

2q)(q + 1 −
√

2q) ≡ 0 (mod n).

• If a2 = 3q, then n|q + 1 ∓√
3q. We can take l = 6 such that

q6 − 1 = (q + 1)(q − 1)(q2 + q + 1)(q + 1 +
√

3q)(q + 1 −
√

3q) ≡ 0 (mod n).

• If a2 = 4q, then n|q + 1 ∓ 2
√

q. We can take l = 1, since

(q − 1)2 = (q + 1 + 2
√

q)(q + 1 − 2
√

q) ≡ 0(mod n).

This implies q − 1 ≡ (mod n).

We can always take l ≤ 6 in these cases, so the supersingular curves is not secure

under the MOV and the Tate pairing attack.

We close this section with an easy example.

Example 3.18. Consider the elliptic curve E : y2 = x3 + 16x + 27 over the field

F29. An element of order 7 is given by P = (21, 24). We want to solve the ECDLP.

Q = (9, 1) = kP = k(21, 24).

Let DP = [P ] − [∞] and let DQ = [Q + R] − [R], where R = (13, 5). We apply

Miller’s algorithm to compute

τ7(P,Q) = 〈P,Q〉(29−1)/7
7 = (−2)4 ≡ 16 (mod 29).

A similar calculation shows

τ7(P, P ) = 〈P, P 〉(29−1)/7
7 = 84 ≡ 7 (mod 29).

Consequently

τ7(P, P )k = τ7(P,Q) ⇒ 7k ≡ 16 (mod 29).

We get k ≡ 5 (mod 7). The detail of the computation can be found in the appendix.
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3.4 Weil Descent

The Weil descent method applies to elliptic curves over the field extensions Fqs over

Fq for some s > 1, where q is a prime or prime power. Although it also works for the

field of odd characteristic, we will only concern the case of characteristic two. This

method was first proposed by Frey [5], then Galbraith and Smart [7] detailed that

how this method might apply to the ECDLP. Finally, the GHS attack, named after

Gaudry, Hess and Smart [9], gave a complete description of reducing the ECDLP to

the discrete logarithm problem on a Jacobian of a hyperelliptic curve over Fq. Since

there exist subexponential-time algorithms to solve the DLPs in high-genus curves,

this gives a possible method against the ECDLP. First, we give some definitions.

Definition 3.19. A hyperelliptic curve C of genus g over Fq is defined by a non-

singular equation

v2 + h(u)v = f(u),

where h, f ∈ Fq[u], deg(f) = 2g + 1, and deg(h) ≤ g.

The definitions of divisors and rational functions on a hyperelliptic curve are

similar to the definitions on an elliptic curve as we have mentioned in section 3.1.2.

Definition 3.20. Let Div0(C) be the set of all divisors of degree 0 of a hyperelliptic

curve. The set of all principal divisors, denoted by Pic(C), is a subgroup of Div0(C).

The Jacobian J of C is defined by J(C) = Div0(C)/P ic(C).

Suppose Fqs is a field extension of Fq, where q = 2l for some integers s and l.

We assume the curve given by

E : y2 + xy = x3 + ax2 + b where a ∈ {0, 1}, b ∈ F ∗
qs .
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This kind of curves is called the Koblitz curves, which is widely used in elliptic curve

cryptosystems. We will focus on these curves, but remark that it can be extended

to general cases.

The first step is to construct the Weil restriction of scalars of E(Fqs). Choose a

basis of Fqs over Fq. Since x, y, and b belong to Fqs , we can write them in expansions

of this basis. After substituting into the original Weierstrass equation and equating

the coefficient of each term of the basis, we obtain s equations with 2s variables

over Fq. These s equations form an affine variety of dimension s over Fq, denoted

by WFqs/Fq . The variety WFqs/Fq is then intersected with s − 1 chosen hyperplanes

to get a hyperelliptic curve C with genus g over Fq.

In addition, the GHS attack constructs an explicit group homomorphism form

E(Fqs) to J(C). Now we can translate the ECDLP to the DLP on J(C). However,

this method only works for a significant proportion of all elliptic curves over Fqs . It

depends on the resulting genus g of the curve C. If g is too small, the Jacobian J(C)

contains no subgroup of order n. If g is too large, the computations in J(C) will be

an infeasible work. The following theorem determines g. Define σ : Fqs → Fqs be

the q-th power Frobenius automorphism.

Theorem 3.21. (Gaudry, Hess, and Smart [9]) The genus of C is equal to either

2m−1 or 2m−1 − 1, where m is derived as follows. Let bi = σi(b), then m is given by

m = m(b) = dimF2(SpanF2
{(1, b1/2

0 ), . . . , (1, b
1/2
s−1)}

There are some algorithms which can be used to solve the DLP on J(C) such

as the Pollard method [25], the Gaudry’s algorithm [11], and Enge and Gaudry’s

algorithm [3]. We remark that the GHS attack is successful if the genus g of C is

small enough so that either Gaudry’s algorithm, or Enge and Gaudry’s algorithm
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is more efficient than the Pollard method. After comparing their expected running

time, we say that the GHS attack fails if qg ≥ 21024 or g = 1. For the case q = 2,

these conditions translate to m ≥ 11 or m = 1.

Menezes and Qu [19] proved that the smallest value m(b) in Theorem 3.21 is

M(s) = ords(2) + 1 where ords(2) is the multiplicative order of 2 modulo s. They

found M(s) ≥ 17 for all primes s ∈ [160, 600] when q = 2. Consequently, the GHS

attack is infeasible for all elliptic curves defined over F2s , where s is a prime in the

range of 160 ≤ s ≤ 600.

An isogeny is a rational map between curves E1 and E2 such that |E1| = |E2|.

Galbraith, Hess, and Smart [10] extended the GHS attack by using isogenies. We

call it the generalized GHS attack. If the resulting value m(b) of a curve E over F2s

is large, the idea is to find an isogenous curve E ′ which has small value m. Then

the ECDLP on E can be mapped to the ECDLP on E ′, and the ECDLP on E ′ can

be solved by GHS attack. The authors not only gave how these isogenies can be

constructed but also showed that Fq7 is weak under the generalized GHS attack.

Further analysis of the GHS attack has been done by looking over the finite fields

suggested in many standards. Jacobson, Menezes, and Stein [15] examined the field

extension F2155 over F5 and concluded that only 233 of 2156 isomorphism classes of

elliptic curves can be attacked by this strategy. The probability of finding one curve

threaten by the GHS attack is rather small. However, the generalized GHS attack

increases this probability from 1/2122 to 1/252. We call a field F2s partially weak if

the ECDLP can be solved faster than the Pollard method for only a non-negligible

proportion of all elliptic curves. So, the field F2155 should be considered weak.

Finally, Menezes and Teske [18] concluded that the fields F25l and F26l are weak.
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The fields F23l , F27l , and F28l for some l are partially weak under the generalized

GHS attack.
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4 Other Attacks

In this section, we discuss the index calculus method and the xedni calculus method

which both fail to solve the ECDLP. However, there are interesting ideas beyond

them, so we give a brief introduction to them. In the third part of this section, we

introduce the idea of summation polynomial. The author establishes a connection

between the operations in the elliptic curve group and explicit modular multivariate

polynomial equations. These ideas give us some new thoughts for further research.

4.1 Index Calculus on the ECDLP

It is well known that the discrete logarithm problem in the multiplicative group

F ∗
p of a finite field can be solved in subexponential time using the index calculus

method, which has been discovered in 1920’s. Miller [22] noticed that it is better

to use the elliptic curve group instead of F ∗
p in a cryptosystem, since the index

calculus method is extremely unlikely able to solve the ECDLP. The main reasons

are “rank/height obstruction” and “lifting obstruction”. The first one is the problem

of finding an elliptic curve with large number of small rational points. The second

one is the problem of lifting a point in E(Fp) to a point in E(Q). We remark that the

lifting here can be thought as a lifting into the p-adic integer Zp, then applying the

reduction modulo map. We will introduce the index calculus attack on the ECDLP

and discuss why it fails, which comes from Silverman’s work [33].

1. Choose an elliptic curve E(Q) which reduces to E(Fp). It has a large number

of independent rational points, say P̃1, P̃2, . . . , P̃r ∈ E(Q).

2. Compute the multiples P, 2P, 3P . . . in E(Fp). For each j, try to lift jP to a

rational point ˜jP in E(Q). That is, jP ≡ ˜jP (mod p). If this is successful,
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then write ˜jP as a linear combination

˜jP =
r∑

i=1

niP̃i in E(Q).

Reducing the coordinates of the points modulo p yields a desired relation

jP =
r∑

i=1

niPi in E(Fp).

3. After r of the jP ’s have been lifted, we have r linear equations

j =
r∑

i=1

ni logP (Pi).

Each logP (Pi) can be solved by these r linear equations.

4. Try to lift Q,Q+P,Q+2P,Q+3P, . . . , to E(Q). We say that Q+ jP is lifted

to T̃j ∈ E(Q). Write

T̃j =
r∑

i=1

miP̃i in E(Q)

Then

logP Q + j =
r∑

i=1

mi logP (Pi) in E(Fp)

implies that we can recover the desired value of logP Q by these logP (Pi).

The above algorithm works well if we can find a lifting elliptic curve E(Q) which

has a lot of independent points with small number of bits need to write down for

the coordinates. Unfortunately, Silverman and Suzuki in [33] gave an analysis which

showed that this kind of curves is rare. This is the first rank/height obstruction we

have mentioned above. Now we turn our discussion to the elliptic curve over Q. Let

the number r in the above algorithm be the rank of the elliptic curve E(Q). Recall

that the height of a rational number t/s ∈ Q is defined by H(t/s) = max(|t|, |s|).

The canonical height of a point P ∈ E(Q) is then defined by

ĥ(P ) =
1

2
lim

n→∞
1

n2
log H(xnP ),
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with associated inner product for P,Q ∈ E(Q)

〈P,Q〉 =
1

2
(ĥ(P + Q) − ĥ(P ) − ĥ(Q)).

Suppose N(E,B) is the number of points with bounded height B in E(Q). This

value is estimated by counting the lattice points in Rr relative to the canonical

height inner product. Under some reasonable assumption, based on the data from

Mestre [21], the result follows [33].

Heuristic Bound. Based on the numerical data contained in [21] and the

above theoretical analysis, it appears to be possible to use Mestre’s method to produce

elliptic curves E(Q) so that the number of rational points

N(E,B) = #{P ∈ E(Q)|H(xP ) ≤ B}

in E(Q) grows like

N(E,B) ≈ 1√
πr

(
20πe log B

r · log |Δ|
)r/2

,

where Δ is the discriminant of the minimal Weierstrass equation. Further, it is

probably not possible to find elliptic curves such that N(E,B) grows significantly

faster than this rate.

It is impossible to get N(E,B) large unless one chooses

log B � r log |Δ|

in this formula. If we make r large, then the value of B is also enormous. It does

not help us solving an ECDLP, since we want B to be small and N(E,B) to be

large.
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Silverman and Suzuki further estimated the quantity log |Δ| by some exper-

iments. They chose an elliptic curve over a fixed finite field and use Mestre’s

method [21] to look for lifts of this curve. Finally, they looked for independent

integral points on the ones having small discriminant among all lifts. After observ-

ing the relevant data, they had an approximation on log |Δ| which grows linearly

in both log p and r log r. Under the assumption of N(E,B) ≥ p/210, they found

that the value of r minimizes the lower bound. If p ≥ 2160, the rank r is 180 such

that the lower bound B ≥ 27830.74 ≈ p48.94. Note that no curves of rank ≥ 24 are

currently known [33]. Another explanation can be found in [13]. We will introduce

it at the end of the next section.

Even if we have a curve with large number of independent points of bounded

height, how do we lift a point in E(Fp) to a point in E(Q)? A natural choice is to

lift points p-adically. That is, lift mod p2 first, then lift mod p3, etc. However we

have p possible lifts at each step but do not know which leads to an actual point in

E(Q). To check all the possibilities is clearly an infeasible task. This is the lifting

obstruction we have mentioned. Even if there is another method for lifting, the

numbers involved are so large that it seems unlikely that the lifting problem has a

practical solution. These problems cause the failure of the index calculus method

to the ECDLP.

4.2 Xedni Calculus on the ECDLP

The index calculus method fails to solve an ECDLP because of the height/rank

obstruction and the lifting obstruction. Silverman presented a new attack in [34]

which avoid these two obstructions. Instead of lifting the elliptic curve E(Fp) and

the related points jP , his idea is to lift the points first, then construct an elliptic
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curve E(Q) which passes through these points. That is why it is called the ”xedni

calculus” method. Eventually, the lifting problem becomes a linear algebra problem.

However, this attack later been proved not practical [14] in solving the ECDLP by

a work group at the University of Waterloo. In this section, we will introduce it for

a complete overview of all possible attacks, then explain the reason of its failure.

Suppose P1, P2, . . . , Pr ∈ E(Fp) are of the form Pi = siP − tiQ, where si, ti are

randomly chosen in [1, n − 1] for i = 1, . . . , r. We can also choose Q1, . . . , Qr with

integer coordinates by using projective coordinates such that P1, P2, . . . , Pr are the

reduction modulo p points of Q1, . . . , Qr. Our main goal is to construct an elliptic

curve E(Q) passing through Q1, . . . , Qr. If the points Q1, . . . , Qr are dependent,

there is a nontrivial relation

n1Q1 + n2Q2 + . . . + nrQr = ∞

for some nonzero ni. By taking modulo p, we get

(n1(t1P − s1Q)) + (n1(t1P − s1Q)) + . . . + (nr(trP − srQ)) = ∞.

That is,
∑r

i=1 nitiP =
∑r

i=1 nisiQ =
∑r

i=1 nisi(kP ). Consequently,

k ≡
∑

niti/
∑

nisi (mod n).

The key point to this method is the dependence of the lifting points Q1, . . . , Qr.

Silverman introduces a method related to a conjecture called the Birch-Swinnerton-

Dyer Conjecture. If we write Nl = |E(Fl)| = l + 1 − al where l is a prime and al is

the trace related to l, the conjecture comes from the idea of measuring the number

of points Nl as l varies. One forms the product

∏
l

l

Nl

=
∏

l

l

l + 1 − al

=
1

1 − al · l−1 + l · l−2
,
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which is formally equal to the value of the Euler product L(E, s) at s = 1 (see [32],

P.362). This conjecture states that L(E, s) vanishes at s = 1 if and only if the rank

of the group E(Q) is positive. In addition, the rank is equal to the order of the zero

at s = 1. Even some of important partial results have been proved in support of this

fundamental conjecture; it remains a very difficult unsolved problem in its general

form [14].

If we expect the rank of an elliptic curve E(Q) being large, so is the order of zero

at s = 1. It would be reasonable to expect that the first few terms of this product

are small. Thus, the first few numbers Nl are large. Mestre [21] applies this idea

to generate curves with large rank, but Silverman uses it in an opposite way. He

expects |E(Fl)| being as small as possible such that |E(Fl)| = l + 1 − �2√l� for the

first few primes l. The resulting rank of E(Q) is smaller than the expected rank.

We hope that this will increase the dependence of the lifting points. We call it the

reverse Mestre conditions.

The problem of constructing this elliptic curve over Q will be a linear algebra

problem. We consider a general cubic curve which can be determined by no more

than 9 points in projective coordinates. For any set of r triples Pi = [xi, yi, zi], define

an r-by-10 matrix B = B(P1, . . . , Pr) of cubic monomials.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3
1 x2

1y1 x1y
2
1 y3

1 x2
1z1 x1y1z1 y2

1z1 x1z
2
1 y1z

2
1 z3

1

x3
2 x2

2y2 x2y
2
2 y3

2 x2
2z2 x2y2z2 y2

2z2 x2z
2
2 y2z

2
2 z3

2

...
. . . . . .

...

x3
r x2

ryr xry
2
r y3

r x2
rzr xryrzr y2

rzr xrz
2
r yrz

2
r z3

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the coefficient of the cubic curve can be found by computing the kernel

of the matrix B. The associated cubic curve will be of the form

u1x
3 + u2x

2y + u3xy2 + u4y
3 + u5x

2z + u6xyz + u7y
2z + u8xz2 + u9yz2 + u10z

3 = 0.
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Now we give a summary of the xedni calculus algorithm [34]. The optional steps

are omitted.

Step 1. Choose an integer r with 2 ≤ r ≤ 9 and an integer M which is a product of

small primes l ∈ [7, 100]. We shall assume p � M . The integer r is the number

of points to be lifted.

Step 2. Choose r points PM,i = [xM,i, yM,i, zM,i] for 1 ≤ i ≤ r, where the coordi-

nates are integers. These points satisfy:

• The first four points are [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1].

• For every prime l|M , the matrix B = B(PM,1, . . . , PM,r) has the maximal

rank modulo l.

These points PM,i can be found by choosing Pl,i for each l|M , then we use

the Chinese Remainder Theorem. Also choose a mod-M coefficient vector

(uM,1, . . . , uM,10) that is in the kernel of the matrix B such that the reducing

modulo l curve E(Fl) has fewest points for each l|M . We will get a cubic curve

with coefficients uM,i.

Step 3. Choose r random pairs of integers (si, ti) satisfying 1 ≤ si, ti ≤ n for

i = 1, . . . , r. Compute the points Pp,i by Pp,i = siP − tiQ ∈ E(Fp).

Step 4. Make a change of variable so that the first four points of Pp,i become

Pp,1 = [1, 0, 0], Pp,2 = [0, 1, 0], Pp,3 = [0, 0, 1] and Pp,4 = [1, 1, 1]. In this case

up,i for i = 1, . . . , r are the coefficients of the resulting equation for E(Fp).

Step 5. Use the Chinese Remainder Theorem to find u′
1, . . . , u

′
10 satisfying

u′
i ≡ up,i (mod p) and u′

i ≡ uM,i (mod M)
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for i = 1, . . . , r.

Step 6. Lift the chosen points to P2(Q). In other words, choose points Pi =

[xi, yi, zi] for i = 1, . . . , r with integer coordinate satisfying

Pi ≡ Pp,i (mod p) and Pi ≡ PM,i (mod M).

In particular, P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1], and P4 = [1, 1, 1].

Step 7. Form the matrix B(P1, . . . , Pr) by using the r points Pi in Step 6. Find a

solution u = (u1, u2, . . . , un) such that Bu = 0 and ui ≡ u′
i (mod Mp). Let Cu

denote the associated cubic curve.

Step 8. Make a change of coordinates to put Cu into standard minimal Weierstrass

form with the point P1 = [1, 0, 0] the point at infinity. Write the resulting

equation as

Eu : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with a1, . . . , a6 ∈ Z, and let Q1, Q2, . . . , Qr denote the image under this change

of variable.

Step 9. Test the points Q1, . . . , Qr for the dependence. This process can be done

by using the Descent Method or the Height Method (see [34]). If they are

independent, return to Step 2 or 3.

Step 10. Compute

s =
r∑

i=1

nisi and t =
r∑

i=1

niti,

then logP Q ≡ s−1t (mod n), provided it exists. Otherwise, return to Step 2

or Step 3.
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Jacobson, Koblitz, Silverman, Stein, and Teske [14] combined the theoretical and

empirical points of view to show that the xedni calculus is impractical for p in the

range used in elliptic curve cryptography today. On the theoretical side the main

idea is the following:

Lemma 4.1. Assume that log |Δ| ≥ C1 maxi=1,...,r ĥ(Pi) for the lifted curves in the

xedni algorithm, where Δ is the discriminant of the lifted curve, Pi are the lifted

points, ĥ is the canonical logarithmic height, and C1 is a positive absolute constant.

Then, under Lang’s conjecture, if the lifted points are dependent, then they satisfy a

nontrivial relation with coefficients bounded from above by an absolute constant C2.

This lemma is proved by directly counting the number of points of the subgroup

which is spanned by the lifted points P1, . . . , Pr. The canonical logarithmic height

of the points in this subgroup are bounded above by some constant B. Followed by

a conjecture of Lang which states that there exists a positive absolute constant C3

such that for all non-torsion points S, we have

m = min ĥ(S) > C3 log |Δ|.

Consequently, the constant C2 can be found by the following inequality

C2 ≥ Tc(r − 1)
(r

2

)r−1

(C1)(C3)
−(r−1)/2

where T ≤ 16 and c is a function related to r. Since 1 ≤ r ≤ 9, we can determine

an absolute constant C2.

If there is any relation among the lifted points P1, . . . , Pr, then these points can be

reduced modulo p to get a relation of the original points Pp,1, . . . , Pp,r with the same

coefficients. Hence, if the coefficients of the relation of the lifted points are bounded

by some constant C2, then so is true for the original points. Thus, if those original
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points Pp,i do not satisfy any relation with coefficients less than the upper bound

in the lemma, then the lifted points will be independent regardless how we use the

reverse Mestre conditions. Therefore, the probability of success of the xedni calculus

is less than the probability of the original points Pp,1, . . . , Pp,r satisfying a relation

with coefficients bounded by C2. Consider the map from r-tuples of integers less

than the absolute value of C2 to E(Fp) given by (n1, . . . , nr) �→ n1Pp,1 + . . .+nrPp,r.

The image is a set of ≈ (2C2)
r randomly distributed points. The probability that

the image contains ∞ is approximately (2C2)
r/p. This proves the following theorem

with C0 = (2C2)
r.

Theorem 4.2. Under certain plausible assumptions, there exists an absolute con-

stant C0 such that the probability of success of the xedni algorithm in finding a

discrete logarithm on an elliptic curve over Fp is less than C0/p.

The quantity C0 determines whether the xedni calculus is successful or failed,

so we need to examine the constant C0. Jacobson, Koblitz, Silverman, Stein, and

Teske [14] estimated C0 under some reasonable assumption which is related to the

number r and the coefficients of the curve. They derived the following result.
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r rough value for C0

2 104

3 1012

4 1023

5 1038

6 1054

7 1065

8 1084

9 10100

Since p ≈ 1050 in practical elliptic curve cryptosystems, this result rules out the use

of the algorithm with r ≤ 5. For the case r = 6, 7, 8, 9, the authors took some exper-

iments whose purpose is to see which parameter has an impact on the probability

of dependence. They found that these theoretical bounds are far too generous. Fur-

thermore, in the absence of other considerations, the reverse Mestre conditions do

increase the likelihood of dependence. Unfortunately, they also cause the discrimi-

nant increase, and this makes the probability of a dependence decrease. This means

the net effect of the reverse Mestre condition is doing more harm than help [14].

Another explanation is given by M. D. Huang, K. Kueh, and K. S. Tan [13] who

made a easier description of Theorem 4.2. Suppose D is the minimal discriminant of

the lifted curves E(Q). The probability of success of the xedni calculus is bounded

by

2O(r3)(h/ log |D|)O(r2)

p

where the lifted points are P0, . . . , Pr in 〈P 〉 with the canonical heights bounded by

h. In order to achieve a subexponential running time O(ec(log p)1/2(log log p)1/2
), it is
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necessary that r2 log h > c′ log p for some constant c′. Even if we allow the lifted

points with height about ec(log p)1/2(log log p)1/2
, the number of r + 1 lifted points still

needs to be at least in the order of (log p)1/4 as p grows. This is true regardless how

we use the reverse Mestre’s conditions. In addition, we require the number of lifted

points being at most 9. So the probability of success tends to zero asymptotically.

Hence, the xedni calculus cannot work in subexponential time asymptotically.

For the index calculus, the fact that the rank of E(Q) need to grow at least

(log p)1/4 as p grows is already a difficulty which leads to failure.

4.3 Semaev’s Summation Polynomials

The main idea behind the Semaev’s summation polynomials [30] is to construct some

explicit modular multivariate polynomial equations which are related to the summa-

tions of an elliptic curve group. Once these modular multivariate polynomial equa-

tions can be solved with bounded solutions in polynomial time or subexponential-

time, we can collect some relations. The ECDLP can be solved by the reduction of

these relations. Let E : y2 = x3 +ax+b be an elliptic curve defined over a field K of

characteristic not equal to 2, 3. We give the definition of the summation polynomial.

Definition 4.3. For any natural number l ≥ 2, a polynomial fl = fl(X1, X2, . . . , Xl)

in l variables is called a summation polynomial if it satisfies the following prop-

erty. Let x1, x2, . . . , xl ∈ K, then fl(x1, x2, . . . , xl) = 0 if and only if there exist

y1, y2, . . . , yl ∈ K such that (xi, yi) ∈ E(K). Furthermore,

(x1, y1) + (x2, y2) + . . . + (xl, yl) = ∞

is in the group E(K).

The following theorem constructs the summation polynomials and lists some
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properties.

Theorem 4.4. The polynomial fl may be defined by f2(X1, X2) = X1 − X2,

f3(X1, X2, X3) = (X1 − X2)
2X2

3 − 2((X1 + X2)(X1X2 + a) + 2b)X3

+((X1X2 − a)2 − 4b(X1 + X2)),

and fl(X1, X2, . . . , Xl) = ResX(fl−j(X1, . . . , Xl−j−1, X), fj+2(Xl−j, . . . , Xl, X)) for

any l ≥ 4 and l − 3 ≥ j ≥ 1.

Furthermore, the polynomial fl is symmetric of degree 2l−2 in each variable Xi

for any l ≥ 3.

The polynomial fl is absolutely irreducible and

fl(X1, X2, . . . , Xl) = f 2
l−1(X1, . . . , Xl−1)X

2l−2

l + . . .

for any l ≥ 3.

Proof. See [30]

Now we turn to an ECDLP in E(Fp), where E is given by E : y2 = x3 + ax + b

over Fp. We fix some natural number l ≥ 2. Randomly choose u, v such that

R = (x, y) = uP + vQ in E(Fp), then substitute x into the summation polynomial

fl+1. We get a modular equation

fl+1(X1, . . . , Xl, x) ≡ 0 (mod p)

in variables X1, . . . , Xl. The author claimed that very likely this equation has a

solution x1, x2, . . . , xl, where xi are integers bounded by p1/l+δ for some δ > 0 or xi

are rational numbers with the numerator and the denominator bounded by p1/(2l)+δ.

If there is an algorithm which solves this equation, it implies that we can find a
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relation

(x1, y1) + (x2, y2) + . . . + (xl, yl) = uP + vQ

for some y1, y2, . . . , yl in Fp or Fp2 . We then combine this relation with another

relation

(x1, y1) + (x2, y2) + . . . + (xl′ , yl′) = ∞

which comes from another summation polynomial

fl′(X1, X2, . . . , Xl′) ≡ 0 (mod p)

for some l′ ≥ l, provided its solutions bounded by p1/l+δ. Collect these relations as

many as we can, then apply the Gaussian elimination (or other possible reductions)

to these relations until the left hand side of the points equal to ∞. We obtain the

relation ∞ = u′P + v′Q for some u′, v′ ∈ [1, n−1]. This gives the discrete logarithm

k ≡ (−u′)(v′)−1 (mod n).

It needs about p1/l+δ nontrivial solutions to find the logarithm. If finding a

bounded solution to the summation polynomial fl requires tp,l operations, then the

complexity of the discrete logarithm problem in E(Fp) is roughly

tp,lp
1/l+δ + p2/l+2δ

operations [30].

This idea gives some possibility that solving an ECDLP is faster than the Pol-

lard’s method. The main problem is to solve the explicit modulo multivariate poly-

nomial equations with bounded solutions. However, the author did not explain

how to solve this kind of equations. Although we have some methods to solve sys-

tems of multivariate equations, such as the computation of Gröbner basis or the XL
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method for sparse equations, we cannot apply these methods since we have only

one equation. Suppose the elliptic curve is defined over the finite field Fpl for some

Fpl
∼= F [t]/(f(t)) where f is an irreducible polynomial of degree l. The situation

becomes easy since we can write the x-coordinate of R = uP + vQ in the form of

x = x0 + x1t + . . . + xl−1t
l−1. Substituting it into the summation polynomial fl+1,

we have

fl+1(X1, X2, . . . , Xl, x) = 0.

We rewrite it as an equation of polynomials in t with reducing modulo f(t), then

the equation becomes
l−1∑
i=0

φi(X1, X2, . . . , Xl)t
i = 0

for some polynomials φi. Each coefficient of ti equals to 0, so we have l equations

in l variables. This might gives solutions to fl+1 ≡ 0 (mod p). The author expected

that it is a polynomial time or a subexponential-time algorithm which yields a good

time complexity in solving an ECDLP [30].

4.4 Further Results

P. Gaudry [8] proposed an index calculus algorithm to the discrete logarithm prob-

lem on general abelian varieties by using summation polynomials to simplify calcu-

lations. He applied his method to the Weil restriction of the elliptic curves and the

hyperelliptic curves over small degree extension fields. He got a smaller complexity

than Pollard’s method.

Claus Diem [2] further showed that an ECDLP can be solved if one can de-

cide whether certain systems of multivariate quadratic polynomial equations have

a solution in the algebraic closure of the underlying field K. The main idea is the

natural correspondence between the operations in E(K) and the operations in other
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algebraic structure.

Let P1, P2 ∈ E(K). If P1 + P2 = R, there exists a function f ∈ K(E) such that

div(f) = [P1] + [P2] − [R] − [∞] ∈ Div0(E) by Property 3.7. It is equivalent that

there exists a function f which satisfies

f ∈ L([R] + [∞] − [P1] − [P2]) ⊂ K(E)

and

f−1 ∈ L([P1] + [P2] − [R] − [∞]) ⊂ K(E)

where L(D) is the Riemann-Roch space corresponding to some D ∈ Div(E). Let

t = (log2 n) + 1 and let s be an integer with 3 ≤ s ≤ t − 2 . By the above property,

we obtain a bijection between

{
e ∈ 0, 1{0,...,t−1}|

t−1∑
i=0

ei2
iP = Q ∧ |e| = s

}

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ∈ L([Q] + (s − 1)[∞])

f ∈ K(E)∗/K∗ ∧

f−1 ∈ L(
∑t−1

i=0[2
iP ] − [Q] − (s − 1)[∞])

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

where |e| =
∑t−1

i=0 ei. By the Riemann-Roch Theorem, the space L(D) is a K-vector

space, so we can write the functions f and f−1 in the linear combination of the

related basis respectively.

Finally, let K(E) = K(X)[Y ] where Y satisfies an equation of degree 2 over

the rational function field, expand “everything” with respect to the basis 1, Y , and

compare the coefficients of the polynomials of the basis with respect to L(D). We

will have a system of quadratic equations with t − 1 unknowns. The number of

equations depends on the polynomials’ degree of the basis of Riemann-Roch spaces.
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Once one can find a solution to the system, one can construct the class f ∈

K(E)∗/K∗ corresponding to the solution and check whether f has a zero at 2iP for

i = 0, 1, . . . , t−1. Then the corresponding tuple e ∈ {0, 1}{0,...,t−1} with (
∑t−1

i=0 ei2
i) ·

P = Q can be derived. Therefore, we can solve the ECDLP if we can solve the

above quadratic systems.

We observe that the original ECDLP in the research has been transformed into

a problem of solving multivariate polynomial equations. This means some thoughts

behind the elliptic curve cryptography, a public key cryptography, is getting close

to the multivariate polynomial equations which often appears in the symmetric key

cryptography. Further research may lead to the construction of these systems of

multivariate polynomials. It requires finding an algebraic structure which is related

to the operations on an elliptic curve with a computable basis. Another way may lead

to a deeper study of the algorithms of solving these systems, such as the computation

of Gröbner basis, the implementation of the F4, F5 algorithms or the XL algorithm.
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5 Conclusions

After looking back the possible methods to solve an ECDLP in modern elliptic curve

cryptography, we conclude some criteria. In order to have a difficult ECDLP, the

parameter of an elliptic curve should be chosen to satisfy the following properties.

Assume

N = |E(Fq)| = n · s

where n is the order of the base point P , then we have the following criteria.

• n should be a prime

• n ≥ 2160

• n �= p

• n should not divide ql − 1 for l ≤ 30

• q should be a large prime or a prime power of two

Since there exist efficiently computable endomorphisms to decrease the security of an

ECDLP by constructing an equivalence relation among E(Fq), this reduction should

be taken into account. For example, we have mentioned Koblitz curves and other

special type of curves (Example 2.1). Therefore, we need to choose the parameters

carefully in order to reach the desired security.

On the opposite side, we conclude the criteria of weak curves and weak fields.

• If n is not a prime, we can reduce to ECDLPs of subgroups of 〈P 〉.

• If n < 2160, the ECDLP can be solved by Pollard’s method.

• The elliptic curve is prime-field-anomalous.
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• If n = p, the ECDLP can be solved by Semaev’s method.

• The elliptic curve is supersingular.

• If n divide ql − 1 for some l ≤ 30, we can apply the pairing attacks.

• The base field of the form F25l or F26l for some l is weak under generalized

GHS attack.

• The base field of the form F23l , F27l , or F28l for some l is partially weak under

the generalized GHS attack.

To choose a situation where the ECDLP is hard, we should avoid these weak curves

and base fields.
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A Computation of the Parings

In this appendix, we briefly introduce a method used to compute the Weil pairing

and the Tate-Lichtenbaum pairing. This algorithm is presented by Miller [23]. The

following theorem gives us a way to compute the Weil pairing.

Theorem A.1. Let S, T ∈ E[n]. Suppose that DS and DT are divisors of degree 0

with no points in common. Let fS and fT be functions such that

div(fS) = nDS and div(fT ) = nDT .

Then the Weil pairing is given by

en(S, T ) =
fT (DS)

fS(DT )
.

Choose DS = [S] − [∞], DT = [T + R] − [R], for some R ∈ (K). We have

en(S, T ) =
fS(R)fT (S)

fS(T + R)fT (∞)
.

Suppose g is a function such that div(g) = nDS. We can calculate the Tate-

Lichetenbaum pairing in section 3.3 as

〈S, T 〉n = g(DT ) =
g(T + R)

g(R)
∈ F ∗

q

for any point R ∈ E(Fq). Therefore, computing these pairings both involve evalu-

ating f(Q1)/f(Q2) for some Q1, Q2, where f is a function depending on P .

Now we are ready to introduce Miller’s algorithm. Our goal is to find f such

that div(f) = nDP and to compute f(DQ). Write DP = [P + R1] − [R1] and

DQ = [Q + R2]− [R2] = [Q1]− [Q2], for some R1, R2 ∈ E(K). We want to compute

f(DQ) = f(Q1)/f(Q2). First, we introduce the divisors

Dj = j[P + R1] − j[R1] − [jP ] + [∞]
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for all j < n. Since sum(Dj) = ∞ and deg(Dj) = 0, we can find a function fj such

that div(fj) = Dj. Let vj = fj(Q1)/fj(Q2). The idea behind the algorithm is to

compute all the vj associated with Dj where j is a power of two. Accumulate these

vj until we find vn. We will have

div(fn) = n[P + R1] − n[R1] − [nP ] + [∞] = n[P + R1] − n[R1].

Consequently, the function fn will be the function we want to find. This leads to

f(DQ) = vn =
fn(Q1)

fn(Q2)
.

The algorithm is as follows.

1. Write n = (nt−1, . . . , n2, n0)2 in base 2.

2. Let j = 0, s = 1 and f0 = 1. Compute f1 by the divisor D1 = [P + R]− [P ]−

[R] + [∞].

3. Compute v0, v1.

4. For i from 0 to t − 1 do

• If ni = 1, then compute vj ← vj+s and change j to j + s.

• compute vs ← v2s and change s to 2s.

5. Output vn = fn(Q1)/fn(Q2).

The only part we did not explain is the computation of vj+s when we have already

known vj and vs. This process can also be used to compute v2s. Let ax + by + c = 0

be the line through jP and sP , and let x + d = 0 be the vertical line through

(j + s)P . We obtain

div(ax + by + c) = [jP ] + [sP ] + [−(jP + sP )] − 3[∞]

div(x + d) = [jP + sP ] + [−(jP + sP )] − 2[∞].
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So,

div

(
ax + by + c

x + d

)
= [jP ] + [sP ] − [jP + sP ] − [∞].

Therefore,

div(fj+s) = Dj+s = (j + s)[P + R1] − (j + s)[R1] − [(j + s)P ] + [∞]

= Dj + Ds + div

(
ax + by + c

x + d

)

= div(fj) + div(fs) + div

(
f

ax + by + c

x + d

)

= div

(
fjfs

ax + by + c

x + d

)

This means fj+s = fjfs(ax + by + c)/(x + d) up to some constant multiple. Finally,

vj+s =
fj+s(Q1)

fj+s(Q2)
= vjvs

(ax + by + c)/(x + d)|(x,y)=Q1

(ax + by + c)/(x + d)|(x,y)=Q2

.

Example A.2. Consider the elliptic curve E : y2 = x3 + 16x + 27 over the finite

field F29 in example 3.17. Let P = (21, 24) and Q = (9, 1). We want to compute

〈P,Q〉7. Choose R1 = ∞ and R2 = (13, 5), then DP = [(21, 24)] − [∞] and DQ =

[(8, 0)] − [13, 5].

1. 7 = (1, 1, 1)2.

2. Let j = 0, s = 1, and f0 = 1. It is clearly f1 = 1.

3. Compute v0 = 1 and v1 = 1.

4. Since n0 = 1, compute vj+s = v1 = 1 and change j to 1. Compute v2s = v2 = 1

and change s to 2.

5. Since n1 = 1, compute vj+s = v3 = 27 by v1 and v2. Change j to 3. Compute

v2s = v4 = 7 and change s to 4.
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6. Since n2 = 1, compute vj+s = v7 = (−2) (mod 29).

7. Output v7

So τn(P,Q) ≡ (−2)4 ≡ 16 (mod 29). A similar computation shows

τn(P, P ) ≡ 7 (mod 29)
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