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Abstract

We investigate how pulse-sequences and operatiestof elementary quantum
gates can be optimized for silicon-based donortreecspin quantum computer
architecture, complementary to the original Kamaiglear spin proposal. This
gate-sequence-optimal or time-optimal quantum gatgrol in a quantum circuit
is in addition to the more conventional conceptoptimality in terms of the
number of elementary gates needed in a quantursfaramation.

The optimal control method we use is the so-cafieadient ascent pulse
engineering (GRAPE) scheme. We focus on the higklify controlled-NOT
(CNOT) gate and explicitly find the digitized cooitisequences by optimizing the
effective, reduced donor electron spin Hamiltoniaith external controls over the
hyperfineA and exchangé interactions. We first try different piecewise stant
control steps and numerically calculate the figiel@rror) against the time needed
to implement a CNOT gate with stopping criteriaeofor in the optimizer set to
1072 in order to economize the simulation time. Hehe error is defined as
1—F, whereF is fidelity. The error is less tham0~8 for times longer than
100ns, and it is found that 30 piecewise constant corstieps for the CNOT gate
operation will be sufficient to meet the requiremlefity (error), and the
performance would not be improved further with msteps.

With operation timet = 100ns and stopping criteria of error set t®~1°,
we can find that the near time-optimal, high-fidelCNOT gate control sequence
has an error ofl.11 x 10716, We then simulate the control sequences of the
CNOT gate, obtained from reduced Hamiltonian sirtnomhes, with the full spin
Hamiltonian. We find the error of about0~® which is below the error threshold
required for fault-toleranti0~*) quantum computation. The CNOT gate operation
time of 100ns is 3 times faster than the globally controlledclen spin scheme
of 297ns. One of the great advantages of this near optimmed- high fidelity
CNOT gate is that the exchange interaction is meofuired to be strong (the
maximum value is]/h = 20MHz compared to the typical value df0.2GHz.
This relaxes significantly the stringent distanansiraint of two neighboring
donor atoms of aboutOnm as reported in the original Kane's proposal to be
about 30nm which is within the reach of the current fabrioatitechnology.
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Chapter 1

Introduction

Thanks to quantum Shor’s algorithm [1,2] and quantum Grover’s algorithm [3-5],
quantum computation has drawn much attention and interest in recent years. That
makes it possible to efficiently factorize semi-prime integers and that enables searches
within unsorted database . These algorithms are the key motivators for people to
develop controllable quantum systems to construct universal quantum gates [6] which
can be used to implement arbitrary unitary operations. Due to decoherence and lack
of precision in quantum control, the error rate can be defined as 1 — ¢, where the
quality ¢ ~ Fe~T/"2 | F' denotes the fidelity of a gate operation of duration T, and T
is the pertinent overall decay time. One of the most important theoretical challenge
is how to make the device work fast enough to meet the error correction threshold.
The threshold for fault-tolerant quantum computation is estimated to be likely about
10~*. Since CNOT gate is conventionally the most important gate in the universal
gates, this work focuses on finding control parameter sequence in time optimal way for
a CNOT gate in Si:P based electron spin quantum computer architectures [7,8] where
the electron spin is defined as qubit. It’s also required that the error of applying the

control parameter sequence should be below the threshold for fault-tolerant quantum



computation.

Up to now, there are different approaches in optimal operation time problems [9-
11]. One of these approaches uses the variational principle to find the optimal control
sequence with parameters which are continuous in time [9,10]. One of the constrains
of their theory is the total energy of the system they study is a finite constant value,
and they find the shortest path in time is the geodesic line in the Fubini-Study
manifold. It’s analogous to finding an optimal time path from one place to another
place with specific energy (constant speed) on a sphere by using variational principle,
and the result is the geodesic line on the sphere. The advantage of this approach
is that the optimal time could be calculated naturally by solving the differential
equation obtained by the variational method. However, analytical solutions of the
differential equations are hard to find for somewhat complicate systems. In addition,
the constrain of total energy has to be constant with total energy may not be practical
for real world systems. We nevertheless investigate the Controlled-Z gate for a model
Hamiltonian for quantum computation in Chapter 4.

Another approach called gradient ascent pulse engineering (GRAPE) [11] parti-
tions a given time into several equal time steps, and in each time step of the sequence,
the amplitudes of control parameters are constant. For a desired operation, we can
define the trace fidelity between the desired operation and the unitary operation from
the sequence. Since we can calculate the derivative of fidelity with respect to the con-
trol amplitudes in each step, we will be able to obtain, given the required fidelity, the
near time optimal control sequence numerically. The advantage of this approach is
that the constraint of a constant total energy is not required. It requires only that
the energy is smaller than some certain fixed value. It’s more flexible and practical
in real world systems - that is to say, we could turn all the control parameters in the

Hamiltonian off or turn them all on simultaneously. Although this method can not



obtain the optimal time formally, we can still optimize the fidelity in a given time. If
the fidelity does not meet the required threshold, we simply extend the time and opti-
mize the fidelity again and see if the fidelity is acceptable or not. The minimum time
sequence that meets the required fidelity (error) threshold is the near time-optimal
control sequence.

On the other hand, it has been shown that the gate fidelity of Kane’s QC is limited
primarily by the electron decoherence time where the typical gate operation timescale
was expected to be closer to O(us) [12-14]. Some experiments [15] indicate that the
decoherence time for phosphorous donor electron spin in purified Si is considerably
longer than 60 ms at 17" = 4K. Since the quality is related to the operation time, a
considerable error may be still caused by the decoherence even though the fidelity in
an ideal case. In Ref. [16], a globally controlled electron spin quantum computing
scheme is proposed. In that proposal, the CNOT gate operation can be done around
296.8ns (in the paper [16], the indicated CNOT time is 148ns which is due to a factor
of 2 missing in the denominator of the o, term of their Hamiltonian). In addition
to the error from fidelity, the error rate from decoherence can be estimated to be
1 —e /" = 5% 107 (by assuming F' = 1), if the total error is around 1 —¢q < 1074,
then we can use error correction algorithms to correct the error.

Recently, the GRAPE algorithm has been applied to the coupled Josephson qubit
quantum computing architecture [17], and the numerically optimal control time for a
CNOT gate decompositions is found to be 55ps [18] instead of the 255ps in Ref. [17].
The GRAPE technique can be extended to pseudospin systems that have Hamiltonian
expressed with a closed Lie algebra, e.g., SU(2V) for a system of N qubits. Hence,
we will use the GRAPE algorithm to investigate the time-optimal CNOT gate in
the Kane’s quantum computing scheme and discuss the influence of noise that may

decrease fidelity.



This thesis is organized as follows: Chapter 2 provides an overview of quantum
computing and the Kane’s quantum computer architecture. Chapter 3 describes the
background material of GRAPE algorithm that is useful in later parts. In Chapter 4,
we study the time-optimal unitary operation using the variational principle approach
for a model Hamiltonian for quantum computation. Specifically, we construct the
controlled-Z gate using the variational principle approach and canonical gate decom-
position method, respectively. Chapter 5 describes how to implement CNOT gate
using GRAPE algorithm, and discusses the results when the control gate voltages
are influenced by Gaussian noise. Finally, Chapter 6 summarizes the findings of this

thesis.



Chapter 2

The Si based Quantum Computer

and Quantum Computing

2.1 The architecture and the Hamiltonian

The architecture of the Kane’s Si-based quantum computer is schematically in Fig.
2.1. Tt is composed of 3P atoms doped in a array in a purified 8Si (I = 0) host where
each phosphorous has a nuclear spin (I = %) Because each 3!'P atom has five valence
electrons, as a first approximation, four of these electrons form covalent bounds with
neighboring Si atoms, and the fifth electron forms a hydrogen-like S-orbital structure

around each 3'P* atom with effective Bohr radius and bound state energy levels given

by
m
= c 2.1
ap em*a’B7 ( )
m*
E, = EH 2.2
et (2.2)

where ¢ = 11.7 is the static dielectric constant in Si, and the value of the effective

mass m* in Siis m* &~ m} = 0.2m, (where m, is the free elecrton mass, and m/. is the

bt
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Figure 2.1 A schematic diagram of two qubits in Kane’s architecture con-

taining 'P donors and electrons in a Si host where A gate controls the

hyperfine coupling strength between electron and nuclei, and J gate controls

the electron-mediated coupling electrons.
transverse effective mass in Si). With the Bohr radius and the bound state energies for
a hydrogen atom : ap = 0.534 and E = —13.6eV/n?, we obtain effective a’; ~ 30A
and B, ~ —20meV.

At sufficient low temperatures, the extra electron donor will only occupy the
lowest energy bound state so that the electron wave function will be 1s orbital and
concentrated at the donor nucleus, yielding a large hyperfine coupling energy. The
strength A of the contact hyperfine interaction is proportional to the value of the

electron probability density evaluated at the nucleus,

8w

If we apply a negative voltage on A gate, the wave function would be distorted
and repelled away from the nucleus, therefore reducing the strength of the hyperfine
interaction. The typical value for the hyperfine interaction is A = 1.21 x 10~ "eV.
According to numerical calculations [19], it may be possible to vary the hyperfine
coupling by up to ~ 50% before the donor electron is ionized.

Now, we apply an external magnetic field By to break the shallow donor electron

ground state two-fold spin degeneracy such that we can use the two level electron
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spin system as qubits. The single-qubit Hamiltonian can be written as

1 1
H = 5%#33005 — §gnMnBocTZ + Ao - o™, (2.4)

where the effective g-factor of an electron in Si is g. = 2, the g-factor for a P
nuclear spin is g, = 2.26, up = 5.788 x 107°eV/T is the electron magneton, and
tn = 3.152 x 1078V /T is the nuclear magneton. A typical value of By is 2.0T,
giving the Zeeman energy for the electron of % gettpBy = 1.159 x 10~%eV, and for the
nucleus of %gnunBO = 7.124 x 1078%eV. Under the influence of a constant magnetic
field By, electrons and nucleus will undergo a Larmor precession around the 7 axis.
The electron spin and nuclear spin may flip due to part of the terms of the hyperfine
interaction, Ao, ® 0, + Ao, ® 0,. Once the electron spin flips, the nuclear spin will
flip. Contrariwise, the electron spin will flips, once the nuclear spin flips. Because the
Zeeman energy of the electron spin is 1000 times larger than the Zeeman energy of
the nuclear spin and the energy conservation, the probabilities that the electron spin
and nuclear spin flip are very small. Therefor, if we initiate the nuclear spin in the
lowest energy orientation - spin up, we might change the effective Lamor precession
frequency of a selected electron through tuning the hyperfine interaction strength
achieved by applying a voltage on its surface of A gate. Since the energy difference
between the spin-up and spin-down state of the targeted electron could be controlled,
the qubit can be selectively addressed.

First, we diagonalize the Hamiltonian in Eq. (2.4) to analyze the energy levels of

the system. Through direct diagonization of this Hamiltonian, we obtain analytically
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the eigen-energies and eigen-states as follows :

By = %geMBBO - %gn,unBO +A, (2.5a)
Ep Ly = \/ (ge“BBogg"“"Bo)uw—A, (2.5h)
By = _\/(geMBBO;gnMnBO)2+4A2_A’ (2.50)
By = —%ge,uBBo + %gn,unBo +A, (2.5d)
and
Teln) = [TeTa) (2.6a)
el = cos(2) 1L +sin(2) |11 (2.60)
ety = —sin(E) 1eba) +eos(D) 111 (2.60)
leln) = Ileln) (2.6d)
where ¢ = tan™! (%geuB Bff%gnun Bo)' Due to the hyperfine interaction, the eigen-

states are not in computational basis: [TcTn), |[Teln)s [leTn), and |leln). Yet the
typical hyperfine interaction 2A is about 500 times smaller than the Zeenman energy
%geuBBo + %gn,unBo, and we thus have ¢ ~ 0. Therefore, we can treat these states
as approximatively splitting into electric and nuclear spin direct product states with
small energy perturbation from the hyperfine interaction. As we calculate the energy

states perturbatively by treating the hyperfine interaction A as a perturbation, or we
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Figure 2.2 Energy levels of the donor electron-nucleus system obtained by
using 2nd order approximation with magnetic field B and hyperfine coupling
A.

simply expand the result of Eq. (2.5) up to 2nd order, the following can be obtained

1 1
Bty = QQeMBBO - §gnMnBO + A, (2.7a)
1 1
Eteny = 59et5Bo + 59nttnBo — A
2A?
1 1 ) (27b)
596”330 + Egn,unBO
1 1
E|leTn> = _§g€MBBO - égnMnBO - A
2A?
1 1 ) (27C)
Ege:LLBBO + EQnMnBO
1 1
By = _§geMBBO + anMnBo + A, (2.7d)

This is shown schematically in Fig. 2.2.

Since the eigen-states are not perfectly simply the spin-up and spin-down direct
product states, one might think that the hyperfine interaction would cause both
electron spin and the nuclear spin to flip. But it can be proven [20] that this effect is
minor, and in our full Hamiltonian simulation latter, it will be shown again that this
is the case.

In order to demonstrate the ability to perform quantum computation, we have
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to construct some universal gate, such as a CNOT gate and arbitrary single-qubit
operators. As a result, we apply an extra background rf field B,., and we might
tune the hyperfine interaction to bring the selected electron qubits into resonance
and giving us the ability to control the qubits rotating between the spin-up and spin-
down states. Because it’s not easy to control and turn on and off the rf magnetic
field quickly at the precise times in an experiment, in this setup, we always let the rf
magnetic field be on. But it has been shown [16] that for typical parameters expected
for the Kane architecture, if the canonical scheme works, the energy difference due
to the hyperfine interaction must be large compared to the full width half maximum
(FWHM) of the resonance given by 4upB,./h which leads to small B,. field and
long gate operation time of 1.7us. To solve this issue, they [16] introduce the global
addressing proposal.

In our scheme, we reserve the rf magnetic field to be always on, but we use the
GRAPE algorithm to find the optimal control parameter sequence. One might think
we could optimize the full Hamiltonian with B,. directly - in other words, to find a
control parameter sequence that leads to the desired unitary operation on the electron
spin, with the evolution of nuclear spin being from the spin-up state to spin-up state
again at the end of the operation. It has been discussed in the Ref. [11] that through
finding the optimal control parameters, it’s only possible to implement either a desired
unitary operation, or to implement an evolution from a specific state to another. As
a result, there exits a theoretical bottleneck to find a set of parameters that allows
both the implementation of a unitary operation on one part of the system and the
evolution of particular states in the other part of the system. In order to solve this
problem, we will introduce the reduced Hamiltonian approximated from assuming
the nuclear spins always to be up. Then we will be able to obtain a set of control

parameters by optimizing quantum gate operations using the reduced Hamiltonian.
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2.2 The reduced Hamiltonian for a single qubit

If we initialize the nuclear spin up and apply a dc magnetic field By, then the energy
difference between electron spin up and down state from Eq. (2.7a) and Eq. (2.7¢) is

given to 2nd order in A by

2A?
AFE(A) = gepupBy +2A + . 2.8
( ) po %ge,uBBO+%gnMnBO ( )
By defining w(A) = AE(A)/h, the effective Hamiltonian can be written as H =

(h/2)wot. The Hamiltonian with the rf B, field, is then

hw 1
H = 50 + igeuBBac(cos WaclTy + sinwgctoy) | (2.9)

where wy, is the angular frequency of rf magnetic field. It is much simpler to under-
stand the control processes, once we go into the frame rotating with the rf field. We

make the substitution,

p=UratpUlyy | (2.10)
where

U,y = e29ecct (2.11)

Inserting Eq. (2.10) and Eq. (2.11) into Liouville-Von Neumann equation, Eq. (3.3),
which will be described later, and with the identity e%“’a“’zt(cos Waetop+sin wactay)e’%”“"zt =

0., we have the reduced Hamiltonian in the rotating frame,

-~ 1
H = 5(@(A) = Wae)o= + 59eptpBacos - (2.12)

We tune the angular frequency of rf magnetic field B,. to the electron spin resonance
frequency obtained when no voltage is applied to the corresponding A gate, that is

Wae = w(Ap). If we define Aw = w(A) — w(Ayp), then the qubits will effectively rotate
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around the x-axis when Aw = 0, or equivalently A = Aj, and around an axis which
is slightly shifted with respect to this axis (when Aw # 0, or A # Ap) described by
Eq. (2.12). The typical value of the energy difference due to the detuning of changing

the hyperfine interaction is (h/2)Aw = —6.065 x 10~ %eV.

2.3 Two-qubit system

The spins of two adjacent electrons can be coupled by the exchange energy J. The
donor electrons are comparatively loosely bound to the P donor allowing neighboring
electrons” wave-functions to overlap. The strength of the exchange coupling can be
approximated using the Herring-Flicker approximation [21],

1.6e2 d
%(5)5/2 eXp(—QE) : (2.13)

J(a*, d) ~
where € is the dielectric constant of the semiconductor. The approximated formula
is valid when the inter-donor spacing, d, is much greater than the effective Bohr
radius, a*. The exchange energy drops off exponentially, and it is thought of as a
short range interaction. If a positive voltage is applied on a J gate, the electron
wave-functions will be attracted toward the center, and the overlap will be increased,
therefore increasing the strength of exchange energy. Conversely, applying a negative
voltage will decrease the exchange energy. In a typical Kane quantum computer’s
scheme, the typical value of J is 4.23 x 10~°eV that requires the separation between
two neighboring donors is roughly about 100 — 200A that sets a stringent fabrication
condition to fabricate surface A and J gates within such a short distance. In the
globally addressing proposal [16], during the time (300ns) of CNOT operation, the J
gate is only on for 0.02ns with a value of 4.23 x 10~%eV. In that proposal, the energy

scale of J is much larger than the energy splitting in the o, and o, terms, if there

is any slight noise on J gate when it’s supposed to be turned off, it will damage the
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reliability and fidelity of the computing. If one would like to avoid this situation, one
could increase the separation distance of two donors. However, this will increase the
operation time dramatically, since it is hard to perform the electron spin exchange
interaction and other interactions in parallel in the conventional gate decomposition
scheme. Another solution is using the robust controlled method [22] to correct the
error from the variations of exchange interaction, but it requires very long operation
time (751ns) for 2nd level corrected CNOT gate. In our scheme, we can numerically
calculate the optimal path. In other words, we can perform spin exchange interaction
and other interactions in parallel so that we can use a smaller exchange interaction
energy without increasing the operation time. Here, our maximum exchange energy
will be J &~ 8.3 x 10~8¢V corresponding to a donor separation around 300A in which
to fabricate surface gates is within the reach of the current fabrication technology.
This is one of the great advantages in our scheme. The Hamiltonian of the exchange

interaction can be written as
H;=Jo' o, (2.14)

Because the rotating operator U,.,; of Eq. (2.11) commutes with the exchange interac-
tion Hamiltonian H, the effective reduced two-qubit Hamiltonian with the exchange

interaction can be simply written as

-~ h h 1
H= §Aw10; + §Aw20§ + §geuBBac (on+02) +Jo' o™ (2.15)

Finally, we can write down the full two-qubit Hamiltonian as

H = %geMBBO (U;e + Oge) - %gnMnBO (U;n + Uzn)
459118 Bac (€08 Wact (04 + 02°) + sin wgct (0,7 + 02°))
— 2 gnttn Bac (cOSwoct (0" + 02") + sinwget (01" + o27))

+A01 ! + Ayo? - 0" + Jol¢ - o | (2.16)
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Table 2.1 Typical parameters used for numerical calculations.

Description Term Typical Value
Planck Constant (4%) h 6.58211889(26) x 1076 eV s
Electron Mass Me 9.10938188(72) x 107! kg
Proton Mass My 1.67262158(13) x 10727 kg
Elementary Charge e 1.602176462(63) x 107 C
Bohr Magneton (in) pup  5.788381749(43) x 1075 eV T!
Proton Bohr Magneton (Qii) L, 3.152451241 x 1078 eV T~!
Electron g-factor (2pte/tp) Je 2.0023193043737(82)
Effective Proton g-factor in Si (2pepip) Gn 2.26
Unperturbed Hyperfine Interaction Ao 1.211 x 1077 eV
Minimum Varied Hyperfine Interaction A, 0.606 x 10~ eV
Constant Magnetic Field Strength By 20T
Electron Zeeman Energy (%ge,uBBo) at By 1.159018851 x 1074 eV
Nuclear Zeeman Energy (3¢n/t,Bo) at By 7.124539805 x 1078 eV
Maximum Exchange Interaction J 8.3 x 1078 eV
Energy Difference in Reduced Hamiltonian Zwo, —6.065 x 1078 eV

which would be used in the simulation later.



Chapter 3

GRAPE algorithm

In this chapter, we will briefly introduce some background material of GRAPE algo-

rithm. Basically, the theoretical derivation follows Navin Khaneja’s work [11].

3.1 Density Matrix Formalism

For a closed quantum system, each possible microstate [1;) obeys Schrodinger equa-
tion,

0 1

— ) = —=H |4,), 3.1

1) =~ H |) (31)
where H is the total Hamiltonian. The most general density matrix can be defined

as

p= ZB ) (Wil (3.2)

where the coefficients P; are non-negative and add up to one. This represents a
statistical mixture of pure states. One can think of a mixed state as representing
a single system that the mixed state represents an ensemble of systems, i.e. a large
number of copies of the system in question, where P; is the probability of the ensemble

being in the microstate [1;). An ensemble is described by a pure state if every copy
15



3.2 Optimal Unitary transformations 16

of the system in that ensemble is in the same state, i.e. it is a pure ensemble. Taking

the time derivative of p and inserting Eq. (3.1), we have
p=D7 P (I (il + i) (3
= SR (= i+ 1 i )

_ _% (HZPZWJJ (¥i] — ZPi |03) <¢i|H>
_ ! (Hp— pH)

= __[Hap]v (33)

where P; is time independent as we have mentioned before. Equation (3.3) is called
Liouville-Von Neumann equation of motion for the density matrix. Note that Liouville
equation is only valid when the system is closed, so it’s not valid for the subsystem of
a composite system whose subsystems have interaction to each other. The equation
can only describe the whole closed composite system which includes a subsystem in

which we are interested and the rest of the system.

3.2 Optimal Unitary transformations

Assume we have m control parameters and a chosen transfer time 7" discretized in
N equal steps of duration At = T'/N, then the time dependent Hamiltonian can be
written as

k=1

where uy; is the control amplitude of the kth control parameter during the time
between (j — 1)t and jt, and each kth parameter has an upper bound and a lower

bound. The state of the closed quantum system can be characterized by the density
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operator p(t) with an equation of motion of Liouville-von Neumann mentioned in
Eq. (3.3). Solving Eq. (3.3) with the Hamiltonian defined in Eq. (3.4) gives that the

final density operator at time t =T is
p(T)=Uy.. . UpU... UL (3.5)

where the propagator during a time step j is given by

U]<At) = exXp {—%At (Ho + iuk]Hk> } s (36)

k=1

and the propagator at final time T is
Up=Uy...Up. (3.7)

To calculate U; numerically, the irreducible (p,p) degree rational Padé approxima-
tion (see Appendix A and the Refs. [23,24]) has been used for computing matrix
exponential.

Let us consider a problem to create a desired unitary operator Up in a given
time T by applying a pulse sequence uj;. At first, we guess all of the parameters
uy; randomly and name the parameters as initial parameters such that at the final
time 7', the unitary operator will be Ug. Define a performance function ®(Up, Ur)
such that when Uy is equal to Up up to an arbitrary phase factor exp(i¢), we have

®(Up,Ur) = 2" in a system of N qubits. Such function can be defined as

®(Up.Ur) = |T{ULUF}’

= |Te{UL ... U U; .. Uy}
Aq_/ﬁ/_/
BJ. J

= T{BIF}Tv{F/B;}, (3.8)

where F} is the forward propagation such that the density operator is p(t) = F; ponT

at time ¢t = jAt, and B; is the backward propagation such that the prime density
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operator p/(t) = ijOB]T = U]Tle o U]TvaUN ... Uj41 at the same time ¢ = jAt, where
pp is desired final state evolved from your input state py. Since the initial trying
parameters are produced by guessing randomly, the performance function should not
be equal to 2V. But if we can know the derivative of ® with respect to the control
amplitudes, ux;, we may use multi-dimesion optimization technique to find the control
parameters from the initial guessing parameters such that the performance function

is maximum, that is finding our desired control sequence. Using the standard formula

1
ieA(x) _ / oTA() dA(x)eu_T)A(a:)dT (3.9)
dz 0 dz ’
where A(z) is an operator, we have
dU; (At ' !
L IC ORIV ( / Uj(AtT)HkUj(—AtT)dT) U (At)
dUk;j h 0
- —%AtﬁkUJ(At) , (3.10)

where H), = fol U;(AtT)H U (—Atr)dr.
For small At (when At < || (Ho+ Y0 uriHy) |7t ), Hy ~ Hy. Take the

derivative ¢ with respect to uy; with Eq. (3.10), we have

OB! OF.
J I BT J
(8%‘) e (5’%)

- —2Re{%AtTr{B}Hij}Tr{FJTBj}} ,

0P
8ukj

Tr{FjTBj} +c.c.

= Tr

where B; = U/, ...U\Up, and F; =U;...Uy.

Now, it becomes an optimization problem with constraints on the boundary which
limits the range of the control amplitudes. The optimizer we implemented here is the
spectral projected gradient method [25]. Since this algorithm is based on the gradient
ascent procedure, there is no guarantee that it will converge to a global maximum -
it may also converge to a local maximum. Nevertheless, we will try different guessed

initial control sequences to see if they all fall into the same converged point or not.
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3.3 Optimal Transfer between Hermitian density
operators

In previous section, we describe the case of implement a desired unitary operation.
In this section, let us consider a problem to create a transformation between initial
Hermitian density operator, p(0) at 7' = 0, and desired Hermitian density operator,
pp, in a given time 7" by applying a pulse sequence uﬁcj. Using the same technique as
in the pervious section, we guess at first all of the parameters u;; randomly and name
the parameters as initial parameters such that at the final time 7', the final density
operator will be pp = p(T) = Uy ... UlpoUlT o U]TV. The overlap of two Hermitian
operators pp and pp can be measured by the standard inner product, Tr{,o;)pp}.

Therefore, we can define a performance function which is a real number as

®(pp,pr) = Tr{phpr}
= Te{phUx...UipoUf ... UL}

= Tr{UJTH...U}Vp})UN...Uj+£yj...U1pFUf...UT}

-~

,\; Pj
= Tr{\lp;}, (3.11)
, where p; is the density operator p(t) at time t = jAt and A; is the backward
propagated target operator pp at the same time ¢ = jA¢Z.
Now, like the pervious section, if we know the derivative of ® with respect to the
control amplitudes, uy;, we may optimize the performance function ®(pp, pr) =~ 1.
For small At (when At < |3 (Ho+ Y0 uriHy) |7t ), Hy ~ Hy. Take the

derivative ¢ with respect to uy; with Eq. (3.10), we have

o® i 9pi
Qug; Tr{/\j <3ukj> }

1
= —ﬁAtTT{A; [Hi, pjl} (3.12)
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where \; = Ujy1 ... UnphUk .. UL, and p; = U; ... UrprpUf ... UL

Finally, we can use an optimizer to find the parameters which maximum the
performance function. There are several different kinds of applications that transfer
between two hermitian density operators. For example, if we have two spin-down
qubits which we want to entangle them into a Bell state, we can implement it by

using the method of optimal transformation between Hermitian density operators

since we know the final density operator and initial density operator.



Chapter 4

Variational Principle Approach of

Time-Optimal Evolution

In contrast to the digitized time sequence of the control parameters found in the
GRAPE technique, the variational principle approach uses the variational principle to
find the time-optimal control sequence and parameters which are continuous in time.
In their first paper [9], Carlini et al. present a general framework for finding the time-
optimal evolution and the optimal Hamiltonian for a quantum system with a given
set of initial and final state. They find that the time-optimal solution to constrained
Hamiltonian (finite constant energy) is the geodesic equation for the Fubini-Study
metric on CP"~!. In other words, with the constrain of a finite constant total energy,
they find the shortest path in time is the geodesic line in the Fubini-Study manifold
and the time-optimal Hamiltonian is time-independent. It’s analogous to finding the
time-optimal path between two points with a specific energy on a sphere by using
variational principle, and the result is the geodesic line on the sphere with constant
speed.

In their second paper [10], Carlini et al. extend their previous work into finding the

21
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time-optimal realization of a target unitary operation using the variational principle.
The main concept here is that they replace the projective space representing quantum
state vectors with the space of unitary operators. In their first work [9], the time-
optimal realization depends on the initial and final states. However, most applications
in quantum computation need to implement a quantum gate - that is an unitary
operation; therefore, this extension is of great importance and more directly relevant
to subroutines in quantum computation.

In Sec. 4.1, we will derive the geodesic equation for the Fubini-Study metric on
CP" ! in more detail than the original paper [9], and we will also give the solution
to the geodesic equation. In Sec. 4.2, we will basically follow the original paper [10]
to define an action principle for the time-optimal unitary operator, then derive the
fundamental equations of motion. In the last section of this chapter, Sec. 4.3, we
will implement the controlled-Z gate by using this time-optimal approach and using
the canonical decomposition approach, respectively. The controlled-Z gate is one of
the most important unitary operations for implementing quantum algorithms. In
particular, we can implement the CNOT gate from a controlled-Z gate conjugated
by I ® H. Furthermore, one of the simplest ways to implement quantum Fourier
transformations (QFTs) uses multiple controlled-Z gates (see for example [6]). The
controlled-Z gate may be used in the construction of controlled-X and controlled-Y
gates. The reason why we only realize the time-opmtial controlled-Z gate instead
of CNOT gate here is that we encounter some difficulty in solving the equation of
motions analytically, and we will discuses it in this section. Finally, we will compare
the operation time between the time-optimal approach and the conventional canonical

decomposition approach.
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4.1 Time-optimal evolution between a given set of
initial and final states

The problem which we are going to study here is analogous to the classical brachis-
tochrone mechanic problem. In the classical brachistochrone problem, one has to
find the shape of the curve down which a bead sliding from rest and accelerated by
gravity will slip (without friction) from one point to another in the least time. The
brachistochrone problem was one of the earliest problems posed in the calculus of

variations. The time to travel from a point to another point is given by the integral

ro [& (4.1)

v

where the parameter s(t) specifies the length from initial point to the current posi-

tion z(t) of the particle, v is the speed of the current position defined by v = dil—(tt) =

V/2[E — V(z)]/m, where E is the conserved energy and V is the gravitational poten-
tial. Using the calculus of variations, the problem can be solved, and the solution is
a segment of a cycloid curve which does not depend on the body’s mass or on the
strength of the gravitational constant.

In the quantum version, one would like to find a time-dependent Hamiltonian
such that the state evolves from a given initial state |1;) to a given final state |¢y)
belonging to a n-dimensional Hilbert space in the least time. Here, the state |¢(t))
and H(t) are dynamical variables, and the Lagrange in n-dimensional Hilbert space

can be defined as

L(, v, H, ¢, 6, \) :\/%1/’! <1ATEP) [&v) + (z <%¢> ' w> + (¢ | H | ) + c.c.)

TrH?
+)\< r2 —w2> , (4.2)

where P(t) = |[¢) (/] is the projection operator, H = H — (TrH)/n is the traceless
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part of the Hamiltonian, (AE)? = (| H?|4) — (¢ | H |4)” is the energy variance,

and w is a given nonzero constant. The action can be defined as

Sy, H, 6, &) = / AL, H, 6, 6,

_ /dt \/<%W (Z;P) ) + <i<%¢’w> + (| H| ) +C.c.)
+ A (Trm —w2>
2

) (4.3)
where 1, 1, H, ¢ and ¢ are the dynamic variables. The first term in the action,

Eq. (4.3), is interpreted as the time duration of the evolution expressed in terms of
the Fubini-Study line element ds? = (dt| (1 — P) |dv). The second term guarantees
that |¢(t)) and H(t) obey the Schrodinger equation through the Lagrange multiplier
|¢(t)). The third term constrains the constant of the energy through the Lagrange
multiplier, A. The finite energy constraint is necessary, otherwise one could rescale
the Hamiltonian such that the duration time is arbitrarily small.

The equations of motion satisfies the Euler equation,
it § B (4.4)

Since L is symmetrical, as a result, we will obtain the same equation of motions by
the variation respect to (¢| or |¢). The variation of Eq. (4.2) respect to (¢| by using

Euler-Lagrange equation, Eq. (4.4), will gives us the Schrédinger Equation,

oL d oL
d(¢l dta(del
d
CH ) =i ) =0 (4.5)

The variation of Eq. (4.2) respect to A leads to the constraint of Hamiltonian, finite
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constant energy,

ax  dtgn

TrH?
r2 =, (4.6)

The variation of Eq. (4.2) respect to (¢| with Eq. (4.5) implies

oL d oL
d(w|  dto(Ly|

d o d 9 \/<%¢}(1—PH%¢>
&¢>+<a<w\ _&a<%w}) ( AE =0,
where

o \(Eel (- P)|de)

SH|p) —d

0 (Y AFE
(Sl gy AE (@[ |Y) - () (1 g) — 2 (1) H|v)
20B,/($0](1- P) [ 40) 2
—1 1

= sapp Y~ 58y (H? [v) — 2 (H) [4b))

((H) H [¢p) = H* [4)))

2(AE)?

and

a0 JEula-P)[Le)
dt o (Ly| AE

- % (QAE\/<(i¢1(1 ~ P)[5¢) o jﬂ}>)
— 28 (- 01
S ()
B o (G
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finally, we obtain

d |d [(H)—H
— N —_— _— = . 4.
Hg) = i< 10) + {dt ( N )} ) =0 (4.7)
The variation with respect to H gives

{H,P}—-2(H)P
2 (AE)?
Let’s take trace over Eq. (4.8). After use of Tr(|¢) (¢|) = 1, TrH = 0, and

— AH — () (6] + [8) (¢]) = 0. (4.8)

Tr(HP) = (H), we obtain
Tr(HP) — (H) Tr(P)
(AE)

= =Tr (|9) (o +|9) (&) ,

— ATYH — Tr ([4) (6] + [8) (1]

and therefore

Tr (|¢) (0] + 10) (¢]) = 0. (4.9)

Substituting |¢) and [¢) in Eq. (4.9) by [¢) = >, A; |i) and |¢) = >, B;j), we have
> ABI) (il + Y ATB; i) (i =0
ij ij
=Y AB;=-) AB;
ij ij

Sl o) =—(o]¥) ; (4.10)

thus, (1| ¢) is purely imaginary.

The expectation value of Eq. (4.8) after using Eq. (4.10) gives

(v

{H’Z(}A‘Eiﬁmp\w>—A@\ﬁf\w}—g<¢|w>§<w|¢>z=0
(0| 0) = siaE WHHPY =200 P 1Y)

1
T 2MAEL)2

((H) + (H) = (H))
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finally, we get

I. (4.12)

Applying Eq. (4.8) to 1) and after using Eq. (4.10) and H = H — (H), we have

{H,P}lp)—2(H) Py

2(AE)’ = M [¥) = ([¥) (6] ¥) +1¢)) =

{H P}y 2<H>P|¢>

— M [1h) — (¢ | ) [)

o) = 2 (M)

) —

2(
_ H) = (H) |¢)
2 (AE)?

(a2 A+ wla]w (4.13)

Using i = H — TrH/n, Eq. (4.8) and Eq. (4.13), we have

— M [¢) + (¢ | §) [)

{ i,p } — (H —TeH/n) P+ P (H — TvH/n)
—{H,PY—2(H)\P
= 2AE) (M +[6) (] + 19) (1))

~ 2087 (A4 {1 0l (57— A) 1))

{FI,P}+2)\(AE) H — 2\(AE)? {

o H= { FI,P} . (4.14)

Substituting Eq. (4.13) into Eq. (4.7) and using the properties that (1 | ¢) is constant
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in time and [H, H] = 0, we obtain
i) |(seagm - ) o+ wla| i |5 (S0 )
TN AU PR Y i

~i|(5app - Y) HH @10 g1+

=i () =i () o) +ia () 1) =0, (.15

Then multiplying (| to Eq. (4.15), we have

(%A) <¢)ﬁ‘¢>+A<¢‘<%ﬁ)'w>:0- (4.16)

Let’s calculate the second term of Eq. (4.16) first. Using

~+

Sit= Sn
= CH (<w|H|w> (V) + (WA ) 1
= SH (i G HP ) + () + i () ) T
= SH— (lHW)]T, (4.17)

the second term of Eq. (4.16) can be written as

(o] (377) |w) = (o] (55 [ ) - wlimop ey 1=

and therefore Eq. (4.16) can be written as

() olals) o o

Eq. (4.18) implies that A is constant in time, and finally, we have

(%ﬁ) ) =0 (4.19)
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Using Eq. (4.19), we can derive

Eﬁ:di(ﬁmpﬁ)

dt
((iH) P+ H (;tp) + P (iH) - (%P) H
= 1 (19) @1+ 1) @) + (1) @l + 1) )
— i H |) (] =i [) (] H

—0, (4.20)

which implies H is constant in time. Let’s introduce |1(t)) = exp ( fo dt) (1)),
as a result, we have H |¢)(1)) = i l)(t)). Now, the Hamiltonian H could be written

as

H=HP+ PH

— HP + PH

i (19) (@1 = 19) () - (4:21)

Because (f]) = (Y|H[Y) = <1/~1|%|@Z~)) = 0, the derivative |%|@Z~)> is orthogonal to |t)).

Since 91 = 0, using Eq. (4.21), we have

- (1-P) 5 1d) =0, (4.22)
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where
(1) = —i (5 1) 19)
AN -
——i (5 @) #16)
— — () = (1)

Eq. (4.22) is the geodesic equation for the Fubini-Study metric on CP""!. The

solution to Eq. (4.22) can be written as

[(t)) = coswt [(0)) + sinwt |1, (0)) | (4.23)

where [)(0)) is the initial state - [¢);), and [, (0)) = 1 |%1/~1(0)> is a chosen state which
is normalized and orthogonal to |1)(0)). Since |, (0)) can be chosen, it’s reasonable
to suppose that our final state at time 7' - |¢;(T')) is spanned by [¢(0)) and |4, (0));

that is
[0(T)) = o [1h(0)) + V1 — a2 [, (0)) . (4.24)

Comparing the coefficients between Eq. (4.23) and Eq. (4.24), we find a = (i;]¢;)
and the optimal time - 7' = < cos™! | (4i|1¢)|. The whole Hamiltonian is given by
H(t) = H + (H(t)), where (H(t)) is an arbitrary real function corresponding to the

degree of freedom.

4.2 Time-optimal realization of unitary operators

The realization of time-optimal unitary operation using the variational principle ap-
proach can be extended very naturally from the previous section. Carlini et al. replace
the projective space representing quantum state vectors with the space of unitary op-

erators. The known initial condition and final condition here are the identity matrix,
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and the final unitary operator which replace the initial state and the final state in
the previous section. As a result, this approach is more useful in quantum computa-
tion when the input may be unknown. The derivation of the equations of motion for
the unitary operation case is similar to that for the quantum state case. Therefore
, we will roughly derive the theory, and discuses the difficulty that the theory may
encounter.

Now, one would like to find a time dependent Hamiltonian such that the unitary
operator evolves from identity matrix, /, to a given unitary operator Uy which satisfies
the Schroding equation ,iLU(t) = H(t)U(t), and belongs to a SU(n) (modulo overall
phases) in the least time. Here, the unitary operator U(t) and H(t) are dynamical

variables, and the action and Lagrange can be defined as

S(U, U, H, H, A, A\, ) = /dtLT +Ls+ Lc (4.25)
U, (1 - Py)dU
Lr il (1= P)U) , (4.26)
Lg = <A,¢@UT — H> , (4.27)
dt
Lo =) Afi(H) (4.28)

where the Hilbert-Schmidt norm (A, B) = Tr(A"B) has been introduced, and the
projection operator is defined as PyA = +Tr(AUT)U. The Hermitian operator A(t)
and scalars \;(t) are Lagrange multipliers.

Since the derivation is similar to the quantum state version, we will merely go
through the important equations that we will use to implement controlled-Z gate in
the next subsection. The variation of Lg respect to A will give us the Schrodinger

Equation,

iU = HOU) . (4.29)
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The variation of action respect to H will give us

~ <I£1(1‘_P}3§H> A+ F=0, (4.30)

where F' = 95¢ and PiA = L(TrA)l. Note that Py(A) = (PLAUT)U. With the

oH

condition (1 — P)(H) = H, Eq. (4.30) can be rewritten as

H

A=F— — .
Tr H?

(4.31)

Performing the variation of action respect to U and after some trivial calculations,
we get

(1—P)(GU")
T (- By (B07)

D LN =0, (4.32)

where D[A] = $ A+ [A, 9UUT]. Using Eq. (4.29), Eq. (4.31), and Eq. (4.32), we can

' dt
derive the quantum brachistochrone equation as

dF

iy =, F]. (4.33)

Assume that we have another constrain, the finite constant energy condition,

which can be written as
1 2 2
f(H) = é(TrH — Nw?) | (4.34)

where w is a constant. The constraint part of the Lagrangian Lo will have an extra

term, and can be written as
Le =MNf(H)+ L, (4.35)

where )\ is a Lagrange multiplier and L, is sum of the other constraints. Now, F' =
MH + F' where F = aLC If the constrains of the system are linear and homogeneous

in H,

L, =TtHF", (4.36)
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where F' =} . A;g; with g; € SU(N), we have

Trg;H =0 . (4.37)
With the above conditions, Eq. (4.33) can be written as
d - dA; : ~
Friai Zgjd—tj =—iy Nl[H.g], (4.38)
J J

where the Lagrange multipliers \;(¢) and the Hamiltonian are still to be determined.
Once the differential equations, Eq. (4.38), have been solved, we can compare the co-
efficients between the desired unitary operation and the unitary operation constructed

from the solution of Eq. (4.38) to find the control sequences.

4.3 Compare the Controlled Z gate implemented
by the time-optimal approach and the canon-
ical decomposition respectively

The time-optimal approach using the variational principle has more geometric and
physical meaning than the others, and the optimal time can be obtained from solving
the differential equations. But in the differential equations of the motion, Eq. (4.38),
the only known conditions are the initial unitary operator, U(0) = I, and the final
U(T) = Uy, and we need to use this conditions to find the time dependent parame-
ters, H(t), U(t), and the Lagrange multipliers A;(¢). The typical numerical solvable
differential equation is that we know all the initial values of the dynamic parameters,
and thus we can numerically obtain the dynamic values at given time ¢. In the case
that we deal now, we don’t know the initial values of the Lagrange multipliers, A;(¢),
and what’s worse, we do not know the time, 7', at which the unitary operator will

evolve to Us(T).
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It seems that the only possible method to numerically solve the atypical differential
equations is to guess the initial values of \;(¢) and the duration of the operation time,
T, then put into the differential equation to see if the guessing is correct. It turns
out that the numerical solution may be very difficult. On the other hand, if we can
analytically solve the differential equations, Eq. (4.38), we may compare the solution
U(t) of the given Hamiltonian with the desired gate operation to find out the dynamic
values and the optimal time. But it may still be a problem that the coupled differential
equations are often very complex and can not be solved analytically at most of time.

We have tried to solve the time-opmtial equations of motion of the Kane’s system,
but it’s too complex to find the analytical solution. As a result, we try to use the
system Hamiltonian which had been analytically solved [10]. The Hamiltonian has

this form:
H(t)=-Y J(t)o; @ 0;+ Bi(t)o. @ I + By() ] @ 0. , (4.39)
J

which contains controllable anisotopic couplings and controllable local terms. Since
the generator of the system does not constitute a minimal generating set of the Lie
algebra SU(4), the system is not fully controllable; that is, we can not implement all of
the unitary operation in SU(4). Meanwhile, we have tried to add another terms such
that the system constitute a minimal generating set of the Lie algebra SU(4), but it
turns out that the equations are hard to solve analytically. This system can implement
the controlled-Z gate, and the controlled-Z gate is one of the most important unitary
operations for implementing quantum algorithms. In particular, we can implement
the CNOT gate from a controlled-Z gate conjugated by [ ® H which is schematically
shown in Fig 4.1. Therefore, we will implement the controlled-Z gate using the time-
optimal variational principle approach in the following subsection 4.3.1, and using

the canonical decomposition approach in subsection 4.3.2. Finally, we will compare
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Figure 4.1 Circuit diagram of the CNOT gate constructed by controlled Z
gate and Hadamard gate.

the results using these two approaches and give brief conclusion in subsection 4.3.3.

4.3.1 The time-optimal of the controlled Z gate using varia-

tional principle approach

The Hamiltonian in Eq. (4.39) can be written in computational basis as

~J.+B, 0 0 —J
0 J.+B.  —J, 0
H(t) = , (4.40)
0 ~J, J.—DB_ 0
—J 0 0 —J.—B.

where By = By(t) £ By(t) and Ji(t) = J.(t) £ J,(t). From Eqgs. (4.36) and (4.37),

the physical Hamiltonian is guaranteed by

F'=> M\poj®@0c+ > Moy @I+ X0, (4.41)

J#k Jj=z,y
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where the \j; and )\é are the Lagramge multipliers. As a result, we can write down

all the g; as

g1 =01 ® oy, go =01 ® 03, gz =02 @01,
gs = 02 ® 03, g5 = 03 Q071 , g = 03 @ 09,
g7:a$®[7 ggzO'y@[,

g =1®0;, go=1®0,. (4.42)

Inserting Eq. (4.42) and Eq. (4.40) into Eq. (4.38) and comparing the coefficients of

the generators of SU(4) on both sides, we find that A,,, A,., and J, are constant.

Ty Yz

Then B4 and Jy can be solved, and the solution is

Bi(t) = Boj: COS 2(’)/:|:t + 'QZ):I:) s

Jo(t) = FBog sin 2(yxt + 1b5) | (4.43)

where 74 = Ay & A\yz, Box and ¥4 are constant. Now, we have the time-depentant
Hamiltonian, and therefore we can solve the Schrodinger equation, Eq. (4.29), to
obtain the evolution of the unitary operator. After solving the Schrodinger equation,

the optimal unitary operator of the system will be given by

(OéOJr + 'i()éz+)€ijzt 0 0 (Oéer + iam+)€iJzt
0 ag_ +ic,_)e ¥ (o + oy, )e 0
o < e e i)
0 (—ay— +ia,_)e " (ap- —ia,_)e "=t 0
(—ayy + iy et 0 0 (oy — i,y )et’=t

(4.44)
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where U(0) = 1 is chosen, and
Qp =/Bj: +%, (4.45)
ap+(t) = cos vyt cos Qut + g—i sin 4t sin Q4.t (4.46)
-
Bo+ .
a,+(t) = —q Sin Qtcos(yat + 21y ), (4.47)
+
B
s (t) = :i:QLi sin Qptsin(yet 4 2¢4) , (4.48)
-
aue(t) ==+ <sin Yyt cosQqt — gz—i cos Y4t sin Qit) ) (4.49)
-
The controlled Z gate is defined in the computational basis by
100 O
010 0
Urz = , (4.50)
001 0
000 —1

comparing the coefficients between Eq. (4.49) and Eq. (4.50), then we find that a4+ =

ayy = 0 giving 74 = ¢4 = 0 which imply from Eq. (4.43) that By are constant of

time and J. are equal to zero. Eq. (4.44) can thus be written as

e!(J=Bo)T 0 0 0
0 e (=B )T 0 0
u(r) =
0 0 e (== Bo )T 0
0 0 0 ¢!z Boe )T

(4.51)

Supposing that at given time, 7', U(T) is equal to Upz up to a global phase - U(T) =

e Uy, we obtain the set of relation of parameters
(J,— By )T ==z,
—(J, + By )T =z + 2nm
— (J. = By )T =+ 2pr,

(J. + Bor)T = 2+ (2q+ D,

(4.52)
(4.53)
(4.54)

(4.55)
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where n, p, and ¢ are arbitrary integers and 7 is still to be determined. Solving

Eq. (4.52) to Eq. (4.55) , we obtain

1 1
JZT:§(q—n—p+§)7T, (4.56)
= —rntp—g—2) (4.57)
- 2 p q 2 ™, .
1
BT =(qg+3)m, (4.58)
B.T=(p—n)r. (4.59)

Since By = By + By and B_ = By — By, Eq. (4.58) and Eq. (4.59) can be written as

1 1
(p+g—n+3)m

T=—
2B, 2
T = ! ( + +1) (4.60)
—232(] p+n 27r. .

The time-optimal duration Tz can then be found by minimizing Eq. (4.60). We find
the solution is p = ¢ = n = 0. Using Eq. (4.56), we then have T' = ;% and J, = B,
where B; = B,.

The Hamiltonian of the time-optimal evolution can be writes as
H=-Bo.,®o0,+Bo,®I1+BlI®o,, (4.61)

where the value of B is determined by the real physical system. Since the Hamiltonian
is time independent, the evolution of the unitary operator, Eq. (4.50), will be along

a geodesic curves on the SU(4) manifold endowed with the metric ds?.

4.3.2 The canonical decomposition of the controlled Z gate

The canonical decomposition [26,27] decomposes any two qubit unitary operator into

a product of four single qubit unitaries and one entangling unitary -

U= (Vi ®Va)Uean(Vz @ V), (4.62)
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—W Vs -
— Ucan —
— Vi -

Figure 4.2 Circuit diagram of the canonical decomposition.

where Vi, V5, V3, and Vj are single qubit unitaries, and UL, is the two qubit inter-
action. The schematic diagram has been shown in Fig. 4.2. The U.,, only involves
three parameters, 0,, 6,, and 0.:

10,0, R0 i@yUy@Uy eiezgz®0'z

Uean = € e , (4.63)

where the purely non-local terms - /=299 ¢ifyov®oy and ¢:9:99: are known as the
interaction contents of the gate, and it’s not difficult to show that each of the terms
commute with each other.
In principle, each of the terms - ¢0=02®7 i0yov®0y and 929:99: can be interpreted
physically as a type of controlled rotation. For example [28],
020289 — 0301 @ [ +isinb,o. @ o,
= cos6.(|0) (O] + |1) (1]) ® I + isin6.(|0) (0] — [1) (1]) ® 0.
= 10) (0] ® €% + 1) (1] © e

= (I ®e™7) (|0) (0] @ I + [1) (1] @ e~™%=)

- ([ ® efwzaz) ewzoz®oz — ‘0> <0‘ ® [ 4 ‘1> <1‘ ® 671’29202

10 0 0

- . (4.64)
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As a result, (I ® e*i(’Z"Z) ¢'920:29= is corresponding to an operation consisting of both
a controlled-Z and a phase rotation. Similarly, the other two terms have the same
physically meaning -

(I @ e "e0e) @ = |z ) (| @ I + |2_) (z_| @ e 2= | (4.65)

(T®e o) efrv®w = |y ) (y | @ T+ |y_) (y—| @ e~ 20w . (4.66)

Since the controlled-Z rotation of angle # is defined in the computational basis by

1 00 O
010 0
Unz(0) = , (4.67)
001 0
000 €%

we can define a controlled phase rotation -

Usphasel6) = 10) (0] @ T + [1) (1] @ "

10 0 0
01 0 0

= | , (4.68)
0 0 €7 0
00 0 ¢

together with Eq. (4.64) to construct controlled-Z rotation. Now controlled Z rotation

could be decomposed as

10 0 0 10 0 0
01 0 0 01 0 0
Unz(0) = . .
0 0 2 0 0 0 e 22 0
00 0 ei3f 00 0 e

- (|0) O ®I+1) (1o e@'31> (I ® e*i%%) o8 (4.69)
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In the case of controlled Z gate, # = 7, we have

1 00 O

01 0 0
Urz =

0O 0 1 0

00 0 -1

= (10) (0] ® I + 1) (1] @ €'37) (I @ e~i57) eifo=0-

10 10 NN
(e (o] Joem e
0 ¢ 01

™

= (son. (3

))erioen, (4.70)
where R,(0) is rotation operator around Z axis, defined by
- 0 0
R.(8) = 5% = cos 5[ —isin 2% (4.71)

and S is the phase gate which can be constructed by
.7 - T
S = = e's ' = eZ4RZ(§) . (4.72)

Therefore, Eq. (4.70) can be write as

= ¢80 (1. (5) o (5))

2
= (el (R (-5) e R (=5)) e Tmo (4.73)
where Upy = U/T\Z, and e i’ @ I can be regarded as global phase which can be

ignored. The controlled Z gate is schematically shown in Fig. 4.3.
For purpose of comparing with the result of pervious subsection 4.3.1, suppose we

have a system with the following Hamiltonian,

H=—-J,0.,®0,+Bio,1+ BI R0, , (4.74)
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s

— 1 0,Q0,

Figure 4.3 Circuit diagram of the controlled 7 gate.

where the coupling strength J,, B, and By are controllable. For example, the single-
qubit Z rotation around Z axis of qubit 1 can be constructed by turning B; on and

keeping J, and Bs off, so H = Bio, ® I, and
Rz<9) — e*igaz®l _ e*i(QnﬂfBlt)UZ(@I ) (475)

We then find the duration of Z rotation is ¢t = 2nm — g, where n is an arbitrary integer.
The unitary gate e~%7:®% can be easily implemented by turning on H = —.J,0, ® 0,
and other terms off. We thus can find the duration is given by ¢t = Ji. The two single

qubit operations R, (—g) ® I and I ® R, (—g) could be computed in parallel. As a

™ ™

result, the duration of controlled Z gate is T'= /5 + 5.

4.3.3 Conclusion

In the time-optimal variational principle approach, we find that the total operation

time of a controlled-Z gate is T' = 5. On the other hand, we find the total operation

T
4B

time using the canonical decomposition is 7" = + 17. The variational principle
approach can find the optimal time very naturally and guaranteed that it’s the least
time. In this case, variational principle gives us the one step unitary operation. We
can turn on the coupling term J,, By, By at the same time, and set their strength
equal to each other,J, = B; = By = B. In the canonical decomposition, we have

two steps. In the first step, we perform the coupling interaction. In the second
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step, we perform the single-qubit Z-rotations. The canonical decomposition approach
has one extra step compared with the variational principle approach. Luckily, since
[e?2®Z R_(0) ® I] = 0, we can artificially combine the two steps into one step,
i.e. doing them altogether in parallel. With the choice of J, = B, the controlled-
7, operation is exactly the same as the result of time-opmtial variational principle
approach. Although we can deliberately obtain the same result, the time-optimal
variational principle approach is more powerful. It guarantees that the evolution this
approach finds is the shortest path in time, and it’s not merely coincident.

The authors of the paper [10] point out that it’s possible and no conceptual dif-
ficulty in extending the variational methods to the more realistic case that we have
mention in Chapter 1 when similar constraints are given in terms of inequalities in-
stead of that the constraints are expressed as equality conditions. We have derive the
equations of the motion with the inequality constrains following the same concept,
but it turns out that the equations are too complex to find analytical solution.

Possible further work is to develop a numerical technique to the quantum brachis-
tochrone equations. We can then use the variation methods to find time-optimal gate
operations numerically for more complex system which can not be analytically solved.
The application of this method is we can evaluate the time-dependent Hamiltonian
and the evolution for a given final unitary operator by using a classical computer,

and perform this control sequence in the quantum experiment and computation.



Chapter 5

Optimal CNOT Gate

5.1 Control sequence obtained from reduced Hamil-
tonian

In this chapter, we investigate and find the digitized control sequence of the near
time-optimal, high-fidelity CNOT gate for the Silicon-based electron spin quantum
computing architecture discussed in Chapter 3. Since the rotating magnetic field is
always on in this scheme, electrons will undergo a rotation around the x-axis when
there are no voltages applied on A gates, i.e. Aw = 0 with an angular frequency of
Qo = geptpBac/h. While target electrons will perform particular unitary operation

within time ¢, every spectator qubit will rotate around the x-axis with an angle of
0, =21 — Qpt . (5.1)

If 6, does not equal to 2nm, where n is integral, another correction step will be

required for the spectator qubits. Therefore, it will be more convenient to choose the

44
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Figure 5.1 Fidelity versus time for implementing CNOT gate. (a) Gives
the trace fidelities against time, while (b) shows deviation log,,(1 — F},) from
fidelities.

operation time,

t = 2nmw/Q

2nh
o (5.2)
ge,uBBac

such that there is no need for correction for spectator qubits. For a chosen time t,
a larger n will require a larger B,. field . Yet in the approximation of the reduced
Hamiltonian, we assume that the B, filed is very small compared with dc magnetic
field By. As a result, we chose n = 1 for higher fidelity in full Hamiltonian simulation.

We focus on the high fidelity controlled-NOT (CNOT) gate by optimizing the
effective, reduced donor electron spin Hamiltonian, with external controls over the
hyperfine A and exchange J interactions. We first try different piecewise constant
control steps and numerically calculate the fidelity (error) against the time needed

to implement a CNOT gate with stopping criteria of error in the optimizer set to
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107 in order to economize the simulation time. Here, the error is defined as 1 — F,
where F' is fidelity. For each trying value of time ¢, we divide the sequence into 30
piecewise steps, starting with initial control amplitudes u;; by assigning a random
value to every five point and using cubic spline to fill in the amplitudes u; of the
intermediate time points. The values of the control amplitudes are constrained to be
within certain range in the parameter space. Fig. 5.1 shows the fidelity against time.
As shown in Fig. 5.1 (a), the error is less than 107 for times longer than 100ns,
and it is found that 30 piecewise constant control steps for the CNOT gate operation
will be sufficient to meet the required fidelity (error), and the performance would not
be improved further with more steps. With operation time ¢ = 100ns and stopping
criteria of error set to 107!, we can find that the near time-optimal, high-fidelity
CNOT gate control sequence has an error of 1.11 x 107¢. The sequence of controls

is schematically shown in Fig. 5.2.

5.2 Full Hamiltonian simulation

In this section, we simulate the control sequence of the CNOT gate for the full spin
Hamiltonian simulations, Eq. (2.16), and the control sequence is obtained from the
reduced Hamiltonian, Eq. (2.15), optimization. Define € = %geuBBo + %gnunBo, and

solve Eq. (2.8), then we will have

et %z +A[AZ + e (BAw+ Ay)]
. .

A= (5.3)

Using the full Hamiltonian, Eq. (2.16), and Eq. (5.3), we simulate the CNOT gate
numerically with initialized spin-up nuclear states and four different electron spin

basis states, |00),, |01),, |10),, and [11)_, where |0), means the electron spin is up.

e’

The final reduced electron density matrix is defined as the composite density matrix
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(a) Detuning the hyperfine interaction of 1st qubit
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(b) Detuning the hyperfine interaction of 2nd qubit
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Figure 5.2 Time optimal CNOT gate control sequence with 30 steps during
100ns. In the reduced Hamiltonian, we assume that the nuclei will always be
in spin-up state and the dynamics of nuclei have been frozen out. In (a) and
(b), the maximum energy difference of o, term from detuning the hyperfine
interaction is (1/2)hAw/h = Aw/4m = —14.7MHz. In (c), the maximum
electron-electron exchange energy is J/h = 20MHz.
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(a) |00 > to |00 > transition (b) |01 > to |01 > transition
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Figure 5.3 Numerical simulation of CNOT gate using full Hamiltonian in
the rotating frame with the different initial conditions where all the nucleus
are initially spin-up. During each time, we partial trace the density matrix
over the nuclear states and obtain reduce density matrix for the electrons.
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traced over all the nuclear spin states.

N f
Py, = Ttn (p\ij)e®|00)n) ; (5.4)

where the subscripts 7 and j in the equation stand for the spin basis states. Define

four projective measurement observable operators as

My = [00)(00] , (5.52)
My = [01)(01] (5.5b)
My = [10)(10] , and (5.5¢)
My = [11)(11] | (5.5d)

where the sum of the four measurement operators equals the identity operator. The
probability of obtaining the result M;; of electrons with spin input state |kl), ® (00),,

P(|kl) = [ij)) = Te(Myplyy, ) - (5.6)

When the CNOT gate operation is finished, the errors of transition with the four
input states to their correspondingly expected output electron spin states are shown
in Table 5.1, where errors are defined as 1 — P. The evolutions of the states of the
CNOT gate are show in Fig. 5.3.

We find the errors of about 107 which is below the error threshold required for
fault-tolerant (10~%) quantum computation. Most of these errors result from the
accuracy of the second-order approximation and the assumption that the eigenstates
are the computational basis states. The CNOT gate operation time of 100ns is 3
times faster than the globally controlled electron spin scheme [16] of 297ns (in the
paper [16] the indicated CNOT time is 148ns which is due to a factor of 2 missing in

the denominator of the o, term of their Hamiltonian).
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Table 5.1 Summary of the CNOT gate fidelities and the probabilities that
the nuclear spins may flip after the CNOT gate operation.

Input State, Expected output  The fidelity of The probability that
|kj) ©100), state, |ij) ® |00),  CNOT gate® nuclear spin may flip”
100), ® |00),, |00), ® |00),, 1—1.80x 1078 1.57 x 1077
|01), ® |00),, |01), ® |00),, 1—1.80x 1077 2.00 x 1077
110), ® |00),, |11), ® |00),, 1—1.92x107° 1.93 x 1076
111), ® |00),, |10), ® |00),, 1-1.20x107° 1.56 x 1076

& The fidelity of CNOT gate operation corresponding to the four electron spin basis
input states, |kl), is defined by P(|kl) — |ij)) in Eq. (5.8), where |ij) is the
excepted output state. Note that in Eq. (5.6), the output state is traced over all
the nuclear states first, and we obtain a reduce density matrix for the electron
spin states. Finally, we use the measurement operator to compute the fidelities.

> The probability that nuclear spin may flip after the CNOT gate operation is
computed by using Eq. (5.8). Here, we trace the total output density matrix over
the electron spin states, and use the reduced density matrix for the nuclear spin

states to compute the flipping probability.
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5.3 Reinitialize the nuclear spin

We have been utilizing the assumption that the eigenstates are the computational
basis state and therefore the nuclear spins will be always in spin-up states. However,
this is not the case in real operation — the nuclear spin actually changes its state
as time goes by. If the polarization of the nuclear spins are not perfectly spin-up
state, it will increase the error of the gate operations. Once the tolerance of error
goes above threshold often a series of gate operations, we may have to reinitialize
the nuclear spins. Define the final reduced nuclear density matrix as the composite

density matrix traced over all the electron spin states,

o f
Plgy, = TTe (plz’j>e®|¢>n) ) (5.7)

where the subscript |¢), in the equation stands for the input nuclear state, which is
expected to be [00), . We can calculate the probability of the nuclear spin still being

in the spin-up state by

P(l00),,) = Tr (M5 e, ) . (5.8)

where Még ) is the nuclear spin measurement operator. With the initialized nuclear
state - [¢), = ]00), , the error probabilities that nuclear spins may flip after the CNOT
gate operation are shown in Table 5.1. The probabilities corresponding to the four
different input electron states are around around 1076,

We investigate below how many gate operations can be allowed by the fault-
tolerant error threshold before we have to reinitialize the nuclear spin states. With the
initialized nuclear state and the four input computational basis states, i.e. |ij),®]00),,
we first perform a CNOT gate operation, then trace over the electron spin states, input
the same electron state |ij),, and then perform a CNOT gate again. If we repeat the

process for N times by simply inputing the same pure electron state |ij) but not
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(a) The errors of CNOT gate
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(b) The probabilities that the nuclear spins may be flipped
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Figure 5.4 (a) gives the errors and (b) gives the probabilities that nuclei
may be flipped due to the imperfect polarized nuclear spins caused by N
times of CNOT operation without reinitializing the nuclear spins.
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reinitializing the nuclear state, the errors of CNOT gate operation will accumulate.
The numerical result shown in Fig. 5.4 indicate that in the worst case - [10),, after
around 60 times of operations, the error sums up to 1.03 x 10~* | above the fault-
tolerant threshold. The corresponding probability that nuclei may be flipped is up to
1.16 x 10~*. Therefore, in order to maintain high fidelity, one has to reinitialize the

nuclear spin right before about 60 times of operations.

5.4 The robust control over the AWGN channel

Since We apply voltage on the A and J gates to control the strength of hyperfine
interaction and exchange interaction, there might be some noise induced from the
thermal vibrations of atoms in the control circuits or the device’s limitation in ac-
curate control of the applied voltages. These uncertainties of the control parameters
will decrease the fidelity of a specific operation. In order to analyze the decreasing
of fidelity due to these uncertainties, we model the noise as additive white Gaussian
noise (AWGN). The AWGN channel model is a random function which can simulate
the noise due to thermal fluctuation in a circuit. It is a Gaussian white noise model
that has a constant spectral density (expressed as watts per hertz of bandwidth) and
a Gaussian distribution of amplitudes.

In engineering, signal-to-noise ratio (SNR) is often used to describe the amplitude

ratio between a signal (our control sequence) and the background noise :

SNR(dB) = 201log, (“jf@“l) : (5.9)

where A5 is defined as the root mean square (RMS) of the noise amplitudes in the
control sequence, and Ay, g is defined as the maximum value of the signal amplitudes
in the control sequence. That is to say, for A gate, the Aggna = Ao = 1.21 x 10~ "eV,

and for J gate, Agigna = 8.3 X 107%eV. The simulation results are shown in Fig. 5.5.
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Figure 5.5 (a) The error simulated with Gaussian noise for different values
of noises applied on A and J gates by using the full Hamiltonian. (b) The
contour plots of error defined as log;,(1 — F').
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The fault-tolerant error correction theory requires that the probability of introducing
an error in each gate to be below 1 x 10~%. To satisfy the error threshold, both the
noises of A and J gates have to be larger than 55dB, meaning that A,,sise/ Asigna has
to be smaller than 1.78 x 1073. Therefore, the variations of the control parameters

are around +0.2% - achievable with modern electronic devices.



Chapter 6

Conclusions

We have investigated how pulse-sequences and operation times of elementary quantum
gates can be optimized for silicon-based donor electron spin quantum computer archi-
tecture [8,16], complementary to the original Kane’s nuclear spin proposal [7,13,14].
This gate-sequence-optimal or time-optimal quantum gate control in a quantum cir-
cuit is in addition to the more conventional concept of optimality in terms of the
number of elementary gates needed in a quantum transformation. The optimal
control method we use is the so-called gradient ascent pulse engineering (GRAPE)
scheme [11,18]. We focus on the high fidelity controlled-NOT (CNOT) gate and ex-
plicitly find the digitized control sequences by optimizing the effective, reduced donor
electron spin Hamiltonian, with external controls over the hyperfine A and exchange
J interactions.

With operation time ¢ = 100ns and stopping criteria of error set to 1071¢, we
find that the near time-optimal, high-fidelity CNOT gate control sequence has an
error of 1.11 x 10716, We then simulate the control sequences of the CNOT gate,
obtained from reduced Hamiltonian simulations, with the full spin Hamiltonian. We

find the error of about 107% which is below the error threshold required for fault-

o6
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tolerant (10~%1) quantum computation. The CNOT gate operation time of 100ns is
3 times faster than the globally controlled electron spin scheme [16] of 297ns (in the
paper [16] the indicated CNOT time is 148ns which is due to a factor of 2 missing in
the denominator of the o, term of their Hamiltonian). One of the great advantages
of this near optimal-time high fidelity CNOT gate is that the exchange interaction
is not required to be strong (the maximum value is J/h = 20MHz compared to the
typical value of 10.2GHz in [7,13,14,16]). This relaxes significantly the stringent
distance constraint of two neighboring donor atoms of about 10nm as reported in the
original Kane’s proposal [7] to be about 30nm which is within the reach of the current
fabrication technology.

We have also studied the time-optimal unitary operation using the variational
principle approach for a model Hamiltonian for quantum computation. Specifically,
we construct the controlled-Z gate using this approach and canonical gate decom-
position method, respectively. We find that the variational approach can give the
optimal gate control sequence and operation time. Although the canonical decom-
position method in this simple example can combine two steps of operations into a
single step, the amplitudes of the controlled parameters in this approach do not have
any relation. If we set the amplitudes of all the control parameters to be the same as
given in the variational principle approach, we then find the canonical decomposition
method could in this case also give the same results.

Unlike traditional decomposition method that decomposes gate operation into
several single qubit operation and some interaction operation between qubits, this
concept of the time-optimal control approaches (such as GRAPE and the variational
principle approaches) is in a sense more like parallel computing. As a result, the
more complex gate operation it is applied, the more time one may save, especially

for those that could not be simply decomposed using the tradition method. So the
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time-optimal control approaches maybe proven useful in implementing quantum gate

operations in real quantum computing experiments in the future.
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Appendix A

Computing Matrix Exponentials

A.1 Introduction

Evaluating the exponential of a matrix is an important problem that arises in physics,
mathematics and engineering. For example, in quantum theory, a central problem

consists in solving the ODE of Schrodinger equation,

S o) =~ H ) | (A1)

where H is a hermitian matrix and |¢) is a complex vector. If the Hamiltonian, H is

time independent, the solution for Eq. (A.1) is given by

o) = exp (=1t ) (A2)

where |t);) is the final state, and |¢;) is the initial state.
There are several methods to compute matrix exponential. Methods involving
approximation theory, differential equations, the matrix eigenvalues, and the matrix

characteristic polynomial have been proposed.

63
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A.2 Computed by Taylor Series Expansion

A direct way to define the matrix exponential exp(At) where t is a real number is

undoubtedly through the exponential power series expansion,

AT i (A" (A.3)

n!
whose convergence is guaranteed for any square matrix A. If we momentarily ignore
the efficiency, we can simply sum up the series until adding another term which does

not alter the numbers stored in computer. That is, if

k
At)"
Tian =S U (A4)
, then we can find k such that
ITx(AL) — Ten(AD)] <6 (A5)

where § is some prescribed error tolerance. Concern over where to truncate the series
is of importance if efficiency is being considered. Unfortunately, such an algorithm is
know to be inefficiency even in the scalar case, and there are lots of papers [24,29]
concerning the truncation error of Taylor series. As a result, directly summing up all

Taylor series seems not work very well.

A.3 Computed by Diagonalization of the Matrix

For most physicists, another instinctive method is to diagonalize the matrix A, such

that
A=VDV~, (A.6)
then using the power series definition of e/ implies

e =velPy-l (A7)
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where V' is the matrix whose columns are eigenvectors of A, D = diag(Ay, ..., A,), and
A, are the eigenvalues of A. The exponential of ¢D is very easy to compute and we
have a satisfactory build-in routine in lots of computer languages for computing the

exponential of a scalar,
P = diag(eM?, ..., eM") . (A.8)

The difficulty with this approach is not find the eigenvalues of the matrix A in itself,
but occurs when A does not have a complete set of linearly independent eigenvectors.
In this case, A is defective and there is no invertible matrix of V', therefore, the
algorithm will break down. In real computing world, the difficulties occur even when
A is nearly defective. Define the condition number as cond(V) = [|[V||||V~!||. While
A is nearly defective, then cond (V') will be very large. The errors of computing e,
including the roundoff errors from the eigenvalues computation, may be magnified
by cond(V). As a result, the computed exponential of a matrix will most likely be
inaccurate when cond(V) is very large. An example had been demonstrated in this

paper [24].

A.4 Computed by Padé Approximation

The most easy method for computing e* numerically might be Taylor series, but we
have discussed that this approach is inefficiency and not accurate. A Padé approxima-
tion often gives better result of a given function - e¢ here than truncating its Taylor
series, and it may still work where the Taylor series does not converge well. Since it is
defined as a rational function which is a ratio of polynomial series, it can be calculated
numerically easily. Therefore, Padé approximations are used extensively in computer

calculation. A Padé approximation approximates a function in only one variable, an
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approximation of a function in two variables is called a Chisholm approximation, and
in multiple variables is called a Canterbury approximation.

A Padé rational approximation to f(z) is the quotient of two polynomials N, /4 (x)
and D, /() of degrees p and ¢ respectively. This is so-called (p,q)-degree type Padé

approximation. We use the notation R,/ (x) to denote this quotient:

Rp/q<x> = gz—izgi; ) (A.9)

where x is a scalar. If x is a matrix - A, the quotient is defined as
Ryya(A) = [Dyjal )] NyyolA) (A.10)
The polynomials used in Eq. (A.10) are
Npjo(A) = nol + ni A+ ngA* + ...+ n, AP, (A.11)
and
Dpjg(A) =1+ diA+ doA” + ... + d A% . (A.12)

In the case ¢ = 0, the approximation will reduce to the Taylor (Maclaurin) expansion
for f(A). There are p+1 unknown coefficients in N, ,,(A), and ¢ unknown coeflicients
in D,/4(A), hence the rational function R,/,(A) has p 4+ ¢ + 1 unknown coefficients.

Assume that f(A) is analytic and has the Maclaurin expansion,
f(A) = apl + a1 A+ asA® + ... + ap A + .. (A.13)

then R,/,(A) is said to be a Padé approximation to the series f(A). Since the highest
possible oder of nonzero derivative of R, /,(A) is p + ¢, that is

ak
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as a result, the first p + ¢ derivatives of f(A) and R,/,(A) are to agree at A =0,

o o
— A = —f(A k=0,1,.. ) Al
aAkRP/Q( )A:() 6A’“ ( )A:0 ’ 07 ) >p+q ( 5)
Eq. (A.15) implies that,
Ryg(A) = f(A) = Y dat. (A.16)
k=p+q+1
Multiply D,/, on Eq. (A.16) giving
Dypsq(A)f(A) = Npjg(A) = Dpyq Z cz”
k=p+q+1
= Z cra® (A.17)
k=p+q+1
and we obtain
P ‘ q 0o ' 00
i=0 i=1 i=0 k=p+q+1

When the left side of Eq. (A.18) is multiplied out out and the coefficients of the power
of A® are set equal to zero for i = 0,1,...,p + ¢, the result is a system of p + ¢ + 1
linear equations:
ag —Ng = 0
d1a0+a1 —ny = 0

d2a0+d1a1 +as —no = 0

dytp—g +dg1ap_gi1 +---+a,—n, = 0, (A.19)
and
dgtp—gi1+ dg—10p—gi2+ -+ diap+apr = 0
dgp_gyo +dg_1ap_qy3+ -+ diapr +ape = 0

dqap —f- dq_lap+1 —f- s —I— dlap+q_1 —I— ap+q = 0 . (AQO)
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The ¢ equations in Eq. (A.20) involve only the unknowns dy,ds, - - ,d,, and have
to be solved first. Then the equations in Eq. (A.19) are used successively to find
No, N1, -, Ny

Go back to our original problem, and setting f(A) as e? gives us,

ap = ! : (A.21)

ol

Solving Eq. (A.19) and Eq. (A.20) together with Eq. (A.24) gives us,

fqg—i)pl
=2 =t 422
and
d —4)lq! 4
Do =3 5 gt A 42

It has been discussed that there are several reasons [24] why the diagonal approxi-

mants (p = q) are preferred over the off diagonal approximants (p # ¢q) for stability

o _p+l—i
i1 pr1—iyi

d; = (—1)'n;. As noted in Sidje’s thesis [30] , Eq. (A.10) can be written as the

and

and economy of computation. For p = ¢, we have ng = 1, n; =

following irreducible form for economical computing reason,

4

) N\ L )
1+2 (Zfﬁ) g A% — A gy AQZ) (A S g A2’>
if pis even ,
Bopo = (r-1)/2 1)/ N7 (12 -
—1-2 (A Ziio Tl2z'+11422 - Ziio nZiAQZ) (Ziio n2iA21>
\ if pisodd.
(A.24)

Since Padé approximation is only accurate near the origin so that the approximation
of exp(A) is not valid, when || A|| is too large. Fortunately, this problem will be solved
when we introduce so-called scaling and squaring’ technology [23,24]. We make use

of the exponential property

exp(A) = [exp (Z_SA)]QS ~ [Rp/p (Z_SA)]QS : (A.25)
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where s is chosen such that ||[27°A|| < 1/2. The idea is to choose s to be a nature
number for which M = exp (27°A) can be reliably and efficiently computed, and
then to compute the result exp(A) = M?" by repeated squaring. Because the result
is evaluated by repeated squaring the exponential of scaled matrix, the drawback
of this algorithm may come from the fact that if s > 1, then the roundoff errors
may be large. The error analysis discussed in these papers [23,24] has shown that if

127°Al| < 1/2 then
Ry (27°4)]% = exp(A + E) | (A.26)

where

0.34 x 10715 (p =6)
1Bl _ @’ (1

IA] ~ ((2p)!(2p + 1)! 5) AN 011 x 107 (p=T7) - (A.27)

027 x 1072 (p =28)

Therefore, a value of p = 6 is generally satisfactory for computer computing while

using double precision.

A.5 Matrix Exponential Source Code

In this section, we will show the source code of matrix exponential in Listing A.1 which
is implemented based on irreducible (p,p)-degree Padé approximation described in
the previous section and Fortran source code of Expokit software package [23]. Our
source code is written by C++, and we take the advantage of Boost C++ Libraries
which have a lots of useful Basic Linear Algebra routines (uBLAS). Our source code

is released under GPLv2, its later version, or Boost Software License Version 1.0.
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Listing A.1 Matrix Exponential C++ Source Code

/* expm.hpp

* Implement matriz exponential using pade approximation.
*

x  Copyright (c) 2007

x  Tsair, Dung—Bang

*

x  Department of Physics,

x* National Taiwan University .

*  Version : v0.5

x expm_pad computes the matriz exponential exp(H) for
x general matrizs, including complex and real matrizs
x wusing the irreducible (p,p) degree rational Pade

x approximation to the exponential

v eap(z) = r(z) = (+/=)( I+2:(Q(2)/P(2))).

*
x  Usage

* = expm_pad(H)

* = expm_pad (H, t),

* U= expm_pad(H, t, p),
x where t is a real number which is default set to 1.0
x such that U=exzp(txH), and p is internally set to 6

x  (recommended and gererally satisfactory).

x Licenses : GPLv2, its later wversion,
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* or Boost Software License Version 1.0.

*/

#ifndef BOOST_.UBLAS_EXPM_

#define BOOST_UBLAS_EXPM_

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/lu.hpp>

#include <boost/numeric/ublas/traits.hpp>

namespace boost { namespace numeric { namespace ublas {

template<typename MATRIX> MATRIX expm_pad (
const MATRIX &H, typename type_traits<
typename MATRIX:: value_type>
c:real_type t = 1.0,

const int p = 6)

typedef typename MATRIX:: value_type value_type;
typedef typename MATRIX:: size_type size_type;
typedef typename type_traits<value_type>

c:real_type real_value_type;
assert (H.sizel () = H.size2 ());
assert (p >= 1);

const size_type n = H.sizel ();

const identity_matrix<value_type> I(n);

I
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matrix<value_type> U(n,n),H2(n,n) ,P(n,n) ,Q(n,n);
real_value_type norm = 0.0;
// Calcuate Pade coefficients
vector<real_value_type> c(p+1);
c(0)=1;
for (size_type 1 = 0; i < p; ++i)
c(i+l) = c(i) = ((p—1)/((i + 1.0) * (2.0 *x p — i)));
// Calcuate the infinty norm of H, which is defined
// as the largest row sum of a matrizc
for (size_type i=0; i<n; 4++i) {
real_value_type temp = 0.0;
for (size_type j = 0; j < n; j++)
temp += std::abs(H(i, j));
norm = t * std::max<real_value_type >(norm, temp);
}
// If norm = 0, and all H elements are not NaN or
// infinity but zero, then U should be identity.
if (norm = 0.0) {
bool all_H_are_zero = true;
for (size_type i = 0; i < n; i++)
for (size_type j = 0; j < n; j++)
if( H(i,j) !'= value_type(0.0) )
all_H_are_zero = false;
if( all_H_are_zero = true ) return I
// Some error happens, H has elements

// which are NaN or infinity.
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std :: cerr<<” Null_.input_error._in._the_template _expm_pad.\n";
std :: cout << ”"Null.INPUT.:.” << H <<”\n”;
exit (0);
}
// Scaling, seek s such that || Hx2"(—s) || < 1/2,
// and set scale = 2°(—s)
int s = 0;
real_value_type scale = 1.0;
if (norm > 0.5) {
s = std ::max<int >(0, static_cast<int>
((log(norm) / log(2.0) + 2.0)));
scale /= real_value_type(std::pow (2.0, s));
U. assign ((scale % t) % H);

// Here U is used as temp value due to that H is const

}

else
U.assign(H);
// Horner evaluation of the irreducible fraction ,
// Initialise P (numerator) and @ (denominator)
H2. assign ( prod(U, U) );
Q.assign( c(p)xI );
P.assign( c(p—1)xI );
size_type odd = 1;
for( size_-type k =p — 1; k > 0; —k) {
(odd =1 ) 7
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( Q= ( prod(Q, H2) 4+ c(k=1) = T ) )
( P=( prod(P, H2) + c(k—1) = T ) ) ;
odd = 1 — odd;
}
(odd=1) 7?7 (Q=prod(Q, U) ) : ( P =prod(P, U) );
Q—=PF;
// Since in wublas, there is mo matriz inversion template
// I simply use the build—in LU decompostion package

// in wublas, and back substitute by myself.

// Implement Matriz Inversion
permutation_matrix<size_type> pm(n);
int res = lu_factorize (Q, pm);
if( res !=0) {

std :: cerr << ”"Matrix_inversion._error

uuuuuuuuuuuuuuuuuuuuuuuu in_the._.template _expm_pad.\n”;

// H2 is not needed anymore, so it is
// temporary used as identity matriz for substituting.
H2.assign(1);
lu_substitute (Q, pm, H2);
(odd = 1) 7
( U.assign( —(I + real_value_type(2.0) % prod(H2, P)))

// Squaring

( U.assign( I + real_value_type(2.0) * prod(H2, P) ) );
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for (size_type i = 0; 1 < s; ++i)
U = (prod(U,U));
return U;
}
123
#endif
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