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摘  要 

我們探討在矽半導體上參雜磷原子架構下的量子電腦內，如何使

用磷的電子自旋來當量子位元並做邏輯計算。我們採用脈衝序列控制

來實作 CNOT 量子邏輯閘，並透過 gradient ascent pulse engineering 

(GRAPE) 演算法來尋找量子邏輯閘的時間最佳化解。 

 首先我們使用 reduced Hamiltonian 來尋找脈衝式控制序列之時間

最佳解，其可控制的變數為電子與核子自旋的交互作用力(hyperfine A 

interactions) 和兩相鄰電子之間的交互作用力(exchange J interactions). 

我們嘗試不同的控制步數，並數值計算其錯誤率是否低於我們的要求。

我們發現，在時間為100݊ݏ, 控制步數為 30 個分段時，其錯誤率大

約為1.11 ൈ 10ିଵ଺. 接下來我們用完整的 Hamiltonian 來模擬先前找

到的時間最佳化之操作序列，我們發現錯誤率約為10ି଺, 小於量子計

算中容許的錯誤率閥值(10ିସ). 

使用 GRAPE 實作此 CNOT 邏輯閘的運作時間為100݊ݏ. 在同樣

的硬體上使用 globally controlled electron spin scheme來實作CNOT邏

輯閘需要297݊ݏ. 使用 GRAPE 比先前的方法約快了三倍。在我們的

構想中還有一大優勢，我們不需要很強的電子和電子交互作用力。在

我們的理論計算中最大的交互作用能量只需要J/h ൌ 20MHz,傳統上

該作用力需要10.2GHz. 先前若要達到如此強的作用力，兩個量子位

元約需間隔10nm, 但因為在我們的架構上不需要如此強的交互作用

力，我們可以把兩個量子位元的距離拉開到30nm, 如此有可能可以

解決當前製造技術上的難題。 
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Abstract 

We investigate how pulse-sequences and operation times of elementary quantum 

gates can be optimized for silicon-based donor electron spin quantum computer 

architecture, complementary to the original Kane's nuclear spin proposal. This 

gate-sequence-optimal or time-optimal quantum gate control in a quantum circuit 

is in addition to the more conventional concept of optimality in terms of the 

number of elementary gates needed in a quantum transformation.  

The optimal control method we use is the so-called gradient ascent pulse 

engineering (GRAPE) scheme. We focus on the high fidelity controlled-NOT 

(CNOT) gate and explicitly find the digitized control sequences by optimizing the 

effective, reduced donor electron spin Hamiltonian, with external controls over the 

hyperfine A and exchange J interactions. We first try different piecewise constant 

control steps and numerically calculate the fidelity (error) against the time needed 

to implement a CNOT gate with stopping criteria of error in the optimizer set to 

10�� in order to economize the simulation time. Here, the error is defined as 

1 � �, where � is fidelity. The error is less than 10�� for times longer than 

100�	, and it is found that 30 piecewise constant control steps for the CNOT gate 

operation will be sufficient to meet the required fidelity (error), and the 

performance would not be improved further with more steps.  

With operation time 
 � 100�	 and stopping criteria of error set to 10��
, 

we can find that the near time-optimal, high-fidelity CNOT gate control sequence 

has an error of 1.11 � 10��
. We then simulate the control sequences of the 

CNOT gate, obtained from reduced Hamiltonian simulations, with the full spin 

Hamiltonian. We find the error of about 10�
 which is below the error threshold 

required for fault-tolerant (10��) quantum computation. The CNOT gate operation 

time of 100�	 is 3 times faster than the globally controlled electron spin scheme 

of 297�	. One of the great advantages of this near optimal-time high fidelity 

CNOT gate is that the exchange interaction is not required to be strong (the 

maximum value is J/h � 20MHz compared to the typical value of 10.2GHz. 

This relaxes significantly the stringent distance constraint of two neighboring 

donor atoms of about 10nm as reported in the original Kane's proposal to be 

about 30nm which is within the reach of the current fabrication technology. 
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Chapter 1

Introduction

Thanks to quantum Shor’s algorithm [1, 2] and quantum Grover’s algorithm [3–5],

quantum computation has drawn much attention and interest in recent years. That

makes it possible to efficiently factorize semi-prime integers and that enables searches

within unsorted database . These algorithms are the key motivators for people to

develop controllable quantum systems to construct universal quantum gates [6] which

can be used to implement arbitrary unitary operations. Due to decoherence and lack

of precision in quantum control, the error rate can be defined as 1 − q, where the

quality q ≈ Fe−T/T2, F denotes the fidelity of a gate operation of duration T , and T2

is the pertinent overall decay time. One of the most important theoretical challenge

is how to make the device work fast enough to meet the error correction threshold.

The threshold for fault-tolerant quantum computation is estimated to be likely about

10−4. Since CNOT gate is conventionally the most important gate in the universal

gates, this work focuses on finding control parameter sequence in time optimal way for

a CNOT gate in Si:P based electron spin quantum computer architectures [7,8] where

the electron spin is defined as qubit. It’s also required that the error of applying the

control parameter sequence should be below the threshold for fault-tolerant quantum

1
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computation.

Up to now, there are different approaches in optimal operation time problems [9–

11]. One of these approaches uses the variational principle to find the optimal control

sequence with parameters which are continuous in time [9,10]. One of the constrains

of their theory is the total energy of the system they study is a finite constant value,

and they find the shortest path in time is the geodesic line in the Fubini-Study

manifold. It’s analogous to finding an optimal time path from one place to another

place with specific energy (constant speed) on a sphere by using variational principle,

and the result is the geodesic line on the sphere. The advantage of this approach

is that the optimal time could be calculated naturally by solving the differential

equation obtained by the variational method. However, analytical solutions of the

differential equations are hard to find for somewhat complicate systems. In addition,

the constrain of total energy has to be constant with total energy may not be practical

for real world systems. We nevertheless investigate the Controlled-Z gate for a model

Hamiltonian for quantum computation in Chapter 4.

Another approach called gradient ascent pulse engineering (GRAPE) [11] parti-

tions a given time into several equal time steps, and in each time step of the sequence,

the amplitudes of control parameters are constant. For a desired operation, we can

define the trace fidelity between the desired operation and the unitary operation from

the sequence. Since we can calculate the derivative of fidelity with respect to the con-

trol amplitudes in each step, we will be able to obtain, given the required fidelity, the

near time optimal control sequence numerically. The advantage of this approach is

that the constraint of a constant total energy is not required. It requires only that

the energy is smaller than some certain fixed value. It’s more flexible and practical

in real world systems - that is to say, we could turn all the control parameters in the

Hamiltonian off or turn them all on simultaneously. Although this method can not



3

obtain the optimal time formally, we can still optimize the fidelity in a given time. If

the fidelity does not meet the required threshold, we simply extend the time and opti-

mize the fidelity again and see if the fidelity is acceptable or not. The minimum time

sequence that meets the required fidelity (error) threshold is the near time-optimal

control sequence.

On the other hand, it has been shown that the gate fidelity of Kane’s QC is limited

primarily by the electron decoherence time where the typical gate operation timescale

was expected to be closer to O(µs) [12–14]. Some experiments [15] indicate that the

decoherence time for phosphorous donor electron spin in purified Si is considerably

longer than 60 ms at T = 4K. Since the quality is related to the operation time, a

considerable error may be still caused by the decoherence even though the fidelity in

an ideal case. In Ref. [16], a globally controlled electron spin quantum computing

scheme is proposed. In that proposal, the CNOT gate operation can be done around

296.8ns (in the paper [16], the indicated CNOT time is 148ns which is due to a factor

of 2 missing in the denominator of the σz term of their Hamiltonian). In addition

to the error from fidelity, the error rate from decoherence can be estimated to be

1− e−T/T2 = 5× 10−6 (by assuming F = 1), if the total error is around 1− q . 10−4,

then we can use error correction algorithms to correct the error.

Recently, the GRAPE algorithm has been applied to the coupled Josephson qubit

quantum computing architecture [17], and the numerically optimal control time for a

CNOT gate decompositions is found to be 55ps [18] instead of the 255ps in Ref. [17].

The GRAPE technique can be extended to pseudospin systems that have Hamiltonian

expressed with a closed Lie algebra, e.g., SU(2N) for a system of N qubits. Hence,

we will use the GRAPE algorithm to investigate the time-optimal CNOT gate in

the Kane’s quantum computing scheme and discuss the influence of noise that may

decrease fidelity.
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This thesis is organized as follows: Chapter 2 provides an overview of quantum

computing and the Kane’s quantum computer architecture. Chapter 3 describes the

background material of GRAPE algorithm that is useful in later parts. In Chapter 4,

we study the time-optimal unitary operation using the variational principle approach

for a model Hamiltonian for quantum computation. Specifically, we construct the

controlled-Z gate using the variational principle approach and canonical gate decom-

position method, respectively. Chapter 5 describes how to implement CNOT gate

using GRAPE algorithm, and discusses the results when the control gate voltages

are influenced by Gaussian noise. Finally, Chapter 6 summarizes the findings of this

thesis.



Chapter 2

The Si based Quantum Computer

and Quantum Computing

2.1 The architecture and the Hamiltonian

The architecture of the Kane’s Si-based quantum computer is schematically in Fig.

2.1. It is composed of 31P atoms doped in a array in a purified 28Si (I = 0) host where

each phosphorous has a nuclear spin (I = 1
2
) Because each 31P atom has five valence

electrons, as a first approximation, four of these electrons form covalent bounds with

neighboring Si atoms, and the fifth electron forms a hydrogen-like S-orbital structure

around each 31P+ atom with effective Bohr radius and bound state energy levels given

by

a∗B = ǫ
me

m∗
aB , (2.1)

En =
m∗

ǫ2me
EH

n , (2.2)

where ǫ = 11.7 is the static dielectric constant in Si, and the value of the effective

mass m∗ in Si is m∗ ≈ m∗
T = 0.2me (where me is the free elecrton mass, and m∗

T is the

5
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Figure 2.1 A schematic diagram of two qubits in Kane’s architecture con-
taining 31P donors and electrons in a Si host where A gate controls the
hyperfine coupling strength between electron and nuclei, and J gate controls
the electron-mediated coupling electrons.

transverse effective mass in Si). With the Bohr radius and the bound state energies for

a hydrogen atom : aB = 0.53Å and EH
n = −13.6eV/n2, we obtain effective a∗B ≈ 30Å

and E1 ≈ −20meV.

At sufficient low temperatures, the extra electron donor will only occupy the

lowest energy bound state so that the electron wave function will be 1s orbital and

concentrated at the donor nucleus, yielding a large hyperfine coupling energy. The

strength A of the contact hyperfine interaction is proportional to the value of the

electron probability density evaluated at the nucleus,

A =
8π

3
µBgnµn|ψ(0)|2 . (2.3)

If we apply a negative voltage on A gate, the wave function would be distorted

and repelled away from the nucleus, therefore reducing the strength of the hyperfine

interaction. The typical value for the hyperfine interaction is A = 1.21 × 10−7eV.

According to numerical calculations [19], it may be possible to vary the hyperfine

coupling by up to ≈ 50% before the donor electron is ionized.

Now, we apply an external magnetic field B0 to break the shallow donor electron

ground state two-fold spin degeneracy such that we can use the two level electron



2.1 The architecture and the Hamiltonian 7

spin system as qubits. The single-qubit Hamiltonian can be written as

H =
1

2
geµBB0σ

e
z −

1

2
gnµnB0σ

n
z + Aσ

e · σn , (2.4)

where the effective g-factor of an electron in Si is ge = 2, the g-factor for a 31P

nuclear spin is gn = 2.26, µB = 5.788 × 10−5eV/T is the electron magneton, and

µn = 3.152 × 10−8eV/T is the nuclear magneton. A typical value of B0 is 2.0T,

giving the Zeeman energy for the electron of 1
2
geµBB0 = 1.159× 10−4eV, and for the

nucleus of 1
2
gnµnB0 = 7.124 × 10−8eV. Under the influence of a constant magnetic

field B0, electrons and nucleus will undergo a Larmor precession around the Z axis.

The electron spin and nuclear spin may flip due to part of the terms of the hyperfine

interaction, Aσx ⊗ σx + Aσy ⊗ σy. Once the electron spin flips, the nuclear spin will

flip. Contrariwise, the electron spin will flips, once the nuclear spin flips. Because the

Zeeman energy of the electron spin is 1000 times larger than the Zeeman energy of

the nuclear spin and the energy conservation, the probabilities that the electron spin

and nuclear spin flip are very small. Therefor, if we initiate the nuclear spin in the

lowest energy orientation - spin up, we might change the effective Lamor precession

frequency of a selected electron through tuning the hyperfine interaction strength

achieved by applying a voltage on its surface of A gate. Since the energy difference

between the spin-up and spin-down state of the targeted electron could be controlled,

the qubit can be selectively addressed.

First, we diagonalize the Hamiltonian in Eq. (2.4) to analyze the energy levels of

the system. Through direct diagonization of this Hamiltonian, we obtain analytically
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the eigen-energies and eigen-states as follows :

E|↑e↑n〉
′ =

1

2
geµBB0 −

1

2
gnµnB0 + A , (2.5a)

E|↑e↓n〉
′ =

√

(
geµBB0 + gnµnB0

2
)2 + 4A2 − A , (2.5b)

E|↓e↑n〉
′ = −

√

(
geµBB0 + gnµnB0

2
)2 + 4A2 − A, (2.5c)

E|↓e↓n〉
′ = −1

2
geµBB0 +

1

2
gnµnB0 + A , (2.5d)

and

|↑e↑n〉′ = |↑e↑n〉 , (2.6a)

|↑e↓n〉′ = cos(
φ

2
) |↑e↓n〉 + sin(

φ

2
) |↓e↑n〉 , (2.6b)

|↓e↑n〉′ = − sin(
φ

2
) |↑e↓n〉 + cos(

φ

2
) |↓e↑n〉 , (2.6c)

|↓e↓n〉′ = |↓e↓n〉 , (2.6d)

where φ = tan−1
(

2A
1

2
geµBB0+ 1

2
gnµnB0

)

. Due to the hyperfine interaction, the eigen-

states are not in computational basis: |↑e↑n〉, |↑e↓n〉, |↓e↑n〉, and |↓e↓n〉. Yet the

typical hyperfine interaction 2A is about 500 times smaller than the Zeenman energy

1
2
geµBB0 + 1

2
gnµnB0, and we thus have φ ≈ 0. Therefore, we can treat these states

as approximatively splitting into electric and nuclear spin direct product states with

small energy perturbation from the hyperfine interaction. As we calculate the energy

states perturbatively by treating the hyperfine interaction A as a perturbation, or we
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Figure 2.2 Energy levels of the donor electron-nucleus system obtained by
using 2nd order approximation with magnetic field B and hyperfine coupling
A.

simply expand the result of Eq. (2.5) up to 2nd order, the following can be obtained

E|↑e↑n〉 =
1

2
geµBB0 −

1

2
gnµnB0 + A , (2.7a)

E|↑e↓n〉 =
1

2
geµBB0 +

1

2
gnµnB0 −A

+
2A2

1
2
geµBB0 + 1

2
gnµnB0

, (2.7b)

E|↓e↑n〉 = −1

2
geµBB0 −

1

2
gnµnB0 −A

− 2A2

1
2
geµBB0 + 1

2
gnµnB0

, (2.7c)

E|↓e↓n〉 = −1

2
geµBB0 +

1

2
gnµnB0 + A , (2.7d)

This is shown schematically in Fig. 2.2.

Since the eigen-states are not perfectly simply the spin-up and spin-down direct

product states, one might think that the hyperfine interaction would cause both

electron spin and the nuclear spin to flip. But it can be proven [20] that this effect is

minor, and in our full Hamiltonian simulation latter, it will be shown again that this

is the case.

In order to demonstrate the ability to perform quantum computation, we have
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to construct some universal gate, such as a CNOT gate and arbitrary single-qubit

operators. As a result, we apply an extra background rf field Bac, and we might

tune the hyperfine interaction to bring the selected electron qubits into resonance

and giving us the ability to control the qubits rotating between the spin-up and spin-

down states. Because it’s not easy to control and turn on and off the rf magnetic

field quickly at the precise times in an experiment, in this setup, we always let the rf

magnetic field be on. But it has been shown [16] that for typical parameters expected

for the Kane architecture, if the canonical scheme works, the energy difference due

to the hyperfine interaction must be large compared to the full width half maximum

(FWHM) of the resonance given by 4µBBac/~ which leads to small Bac field and

long gate operation time of 1.7µs. To solve this issue, they [16] introduce the global

addressing proposal.

In our scheme, we reserve the rf magnetic field to be always on, but we use the

GRAPE algorithm to find the optimal control parameter sequence. One might think

we could optimize the full Hamiltonian with Bac directly - in other words, to find a

control parameter sequence that leads to the desired unitary operation on the electron

spin, with the evolution of nuclear spin being from the spin-up state to spin-up state

again at the end of the operation. It has been discussed in the Ref. [11] that through

finding the optimal control parameters, it’s only possible to implement either a desired

unitary operation, or to implement an evolution from a specific state to another. As

a result, there exits a theoretical bottleneck to find a set of parameters that allows

both the implementation of a unitary operation on one part of the system and the

evolution of particular states in the other part of the system. In order to solve this

problem, we will introduce the reduced Hamiltonian approximated from assuming

the nuclear spins always to be up. Then we will be able to obtain a set of control

parameters by optimizing quantum gate operations using the reduced Hamiltonian.
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2.2 The reduced Hamiltonian for a single qubit

If we initialize the nuclear spin up and apply a dc magnetic field B0, then the energy

difference between electron spin up and down state from Eq. (2.7a) and Eq. (2.7c) is

given to 2nd order in A by

∆E(A) = geµBB0 + 2A+
2A2

1
2
geµBB0 + 1

2
gnµnB0

. (2.8)

By defining ω(A) = ∆E(A)/~, the effective Hamiltonian can be written as H =

(~/2)ωσe
z. The Hamiltonian with the rf Bac field, is then

H =
~ω

2
σz +

1

2
geµBBac(cosωactσx + sinωactσy) , (2.9)

where ωac is the angular frequency of rf magnetic field. It is much simpler to under-

stand the control processes, once we go into the frame rotating with the rf field. We

make the substitution,

ρ̃ = UrotρU
†
rot , (2.10)

where

Urot = e
i
2
ωacσzt . (2.11)

Inserting Eq. (2.10) and Eq. (2.11) into Liouville-Von Neumann equation, Eq. (3.3),

which will be described later, and with the identity e
i
2
ωacσzt(cosωactσx+sinωactσy)e

− i
2
ωacσzt =

σz, we have the reduced Hamiltonian in the rotating frame,

H̃ =
~

2
(ω(A) − ωac)σz +

1

2
geµBBacσx . (2.12)

We tune the angular frequency of rf magnetic field Bac to the electron spin resonance

frequency obtained when no voltage is applied to the corresponding A gate, that is

ωac = ω(A0). If we define ∆ω = ω(A)− ω(A0), then the qubits will effectively rotate
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around the x-axis when ∆ω = 0, or equivalently A = A0, and around an axis which

is slightly shifted with respect to this axis (when ∆ω 6= 0, or A 6= A0) described by

Eq. (2.12). The typical value of the energy difference due to the detuning of changing

the hyperfine interaction is (~/2)∆ω = −6.065 × 10−8eV.

2.3 Two-qubit system

The spins of two adjacent electrons can be coupled by the exchange energy J . The

donor electrons are comparatively loosely bound to the P donor allowing neighboring

electrons’ wave-functions to overlap. The strength of the exchange coupling can be

approximated using the Herring-Flicker approximation [21],

J(a∗, d) ≈ 1.6e2

~ǫa∗
(
d

a∗
)5/2 exp(−2

d

a∗
) , (2.13)

where ǫ is the dielectric constant of the semiconductor. The approximated formula

is valid when the inter-donor spacing, d, is much greater than the effective Bohr

radius, a∗. The exchange energy drops off exponentially, and it is thought of as a

short range interaction. If a positive voltage is applied on a J gate, the electron

wave-functions will be attracted toward the center, and the overlap will be increased,

therefore increasing the strength of exchange energy. Conversely, applying a negative

voltage will decrease the exchange energy. In a typical Kane quantum computer’s

scheme, the typical value of J is 4.23 × 10−5eV that requires the separation between

two neighboring donors is roughly about 100− 200Å that sets a stringent fabrication

condition to fabricate surface A and J gates within such a short distance. In the

globally addressing proposal [16], during the time (300ns) of CNOT operation, the J

gate is only on for 0.02ns with a value of 4.23× 10−5eV. In that proposal, the energy

scale of J is much larger than the energy splitting in the σz and σx terms, if there

is any slight noise on J gate when it’s supposed to be turned off, it will damage the
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reliability and fidelity of the computing. If one would like to avoid this situation, one

could increase the separation distance of two donors. However, this will increase the

operation time dramatically, since it is hard to perform the electron spin exchange

interaction and other interactions in parallel in the conventional gate decomposition

scheme. Another solution is using the robust controlled method [22] to correct the

error from the variations of exchange interaction, but it requires very long operation

time (751ns) for 2nd level corrected CNOT gate. In our scheme, we can numerically

calculate the optimal path. In other words, we can perform spin exchange interaction

and other interactions in parallel so that we can use a smaller exchange interaction

energy without increasing the operation time. Here, our maximum exchange energy

will be J ≈ 8.3× 10−8eV corresponding to a donor separation around 300Å in which

to fabricate surface gates is within the reach of the current fabrication technology.

This is one of the great advantages in our scheme. The Hamiltonian of the exchange

interaction can be written as

HJ = Jσ
1e · σ2e , (2.14)

Because the rotating operator Urot of Eq. (2.11) commutes with the exchange interac-

tion Hamiltonian HJ , the effective reduced two-qubit Hamiltonian with the exchange

interaction can be simply written as

H̃ =
~

2
∆ω1σ

1
z +

~

2
∆ω2σ

2
z +

1

2
geµBBac

(
σ1

x + σ2
x

)
+ Jσ

1e · σ2e . (2.15)

Finally, we can write down the full two-qubit Hamiltonian as

H = 1
2
geµBB0 (σ1e

z + σ2e
z ) − 1

2
gnµnB0 (σ1n

z + σ2n
z )

+1
2
geµBBac

(
cosωact(σ

1e
x + σ2e

x ) + sinωact(σ
1e
y + σ2e

y )
)

−1
2
gnµnBac

(
cosωact(σ

1n
x + σ2n

x ) + sinωact(σ
1n
y + σ2n

y )
)

+A1σ
1e · σ1n + A2σ

2e · σ2n + Jσ
1e · σ2e , (2.16)
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Table 2.1 Typical parameters used for numerical calculations.

Description Term Typical Value

Planck Constant ( h
2π

) ~ 6.58211889(26)× 10−16 eV s

Electron Mass me 9.10938188(72)× 10−31 kg

Proton Mass mn 1.67262158(13)× 10−27 kg

Elementary Charge e 1.602176462(63)× 10−19 C

Bohr Magneton ( e~

2me
) µB 5.788381749(43)× 10−5 eV T−1

Proton Bohr Magneton ( e~

2me
) µn 3.152451241× 10−8 eV T−1

Electron g-factor (2µeµB) ge 2.0023193043737(82)

Effective Proton g-factor in Si (2µeµB) gn 2.26

Unperturbed Hyperfine Interaction A0 1.211 × 10−7 eV

Minimum Varied Hyperfine Interaction Ap 0.606 × 10−7 eV

Constant Magnetic Field Strength B0 2.0 T

Electron Zeeman Energy (1
2
geµBB0) at B0 1.159018851× 10−4 eV

Nuclear Zeeman Energy (1
2
gnµnB0) at B0 7.124539805× 10−8 eV

Maximum Exchange Interaction J 8.3 × 10−8 eV

Energy Difference in Reduced Hamiltonian ~

2
ωσz −6.065 × 10−8 eV

which would be used in the simulation later.



Chapter 3

GRAPE algorithm

In this chapter, we will briefly introduce some background material of GRAPE algo-

rithm. Basically, the theoretical derivation follows Navin Khaneja’s work [11].

3.1 Density Matrix Formalism

For a closed quantum system, each possible microstate |ψi〉 obeys Schrödinger equa-

tion,

∂

∂t
|ψi〉 = − i

~
H |ψi〉, (3.1)

where H is the total Hamiltonian. The most general density matrix can be defined

as

ρ =
∑

i

Pi |ψi〉 〈ψi| , (3.2)

where the coefficients Pj are non-negative and add up to one. This represents a

statistical mixture of pure states. One can think of a mixed state as representing

a single system that the mixed state represents an ensemble of systems, i.e. a large

number of copies of the system in question, where Pj is the probability of the ensemble

being in the microstate |ψi〉. An ensemble is described by a pure state if every copy

15
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of the system in that ensemble is in the same state, i.e. it is a pure ensemble. Taking

the time derivative of ρ and inserting Eq. (3.1), we have

ρ̇ =
∑

i

Pi

(

|ψ̇i〉 〈ψi| + |ψi〉 〈ψ̇i|
)

=
∑

i

Pi

(

− i

~
H |ψi〉 〈ψi| +

i

~
|ψi〉 〈ψi|H

)

= − i

~

(

H
∑

i

Pi |ψi〉 〈ψi| −
∑

i

Pi |ψi〉 〈ψi|H
)

= − i

~
(Hρ− ρH)

= − i

~
[H, ρ], (3.3)

where Pi is time independent as we have mentioned before. Equation (3.3) is called

Liouville-Von Neumann equation of motion for the density matrix. Note that Liouville

equation is only valid when the system is closed, so it’s not valid for the subsystem of

a composite system whose subsystems have interaction to each other. The equation

can only describe the whole closed composite system which includes a subsystem in

which we are interested and the rest of the system.

3.2 Optimal Unitary transformations

Assume we have m control parameters and a chosen transfer time T discretized in

N equal steps of duration ∆t = T/N , then the time dependent Hamiltonian can be

written as

H(t) = H0 +

m∑

k=1

ukjHk , (3.4)

where ukj is the control amplitude of the kth control parameter during the time

between (j − 1)t and jt, and each kth parameter has an upper bound and a lower

bound. The state of the closed quantum system can be characterized by the density
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operator ρ(t) with an equation of motion of Liouville-von Neumann mentioned in

Eq. (3.3). Solving Eq. (3.3) with the Hamiltonian defined in Eq. (3.4) gives that the

final density operator at time t = T is

ρ(T ) = UN . . . U1ρ0U
†
1 . . . U

†
N , (3.5)

where the propagator during a time step j is given by

Uj(∆t) = exp

{

− i

~
∆t

(

H0 +
m∑

k=1

ukjHk

)}

, (3.6)

and the propagator at final time T is

UF = UN . . . U1 . (3.7)

To calculate Uj numerically, the irreducible (p, p) degree rational Padé approxima-

tion (see Appendix A and the Refs. [23, 24]) has been used for computing matrix

exponential.

Let us consider a problem to create a desired unitary operator UD in a given

time T by applying a pulse sequence u′kj. At first, we guess all of the parameters

ukj randomly and name the parameters as initial parameters such that at the final

time T , the unitary operator will be UF . Define a performance function Φ(UD, UF )

such that when UF is equal to UD up to an arbitrary phase factor exp(iφ), we have

Φ(UD, UF ) = 2N in a system of N qubits. Such function can be defined as

Φ(UD, UF ) = |Tr{U †
DUF}|2

= |Tr{U †
D . . . Uj+1
︸ ︷︷ ︸

B†
j

Uj . . . U1
︸ ︷︷ ︸

Fj

}|2

= Tr{B†
jFj}Tr{F †

jBj} , (3.8)

where Fj is the forward propagation such that the density operator is ρ(t) = Fjρ0F
†
j

at time t = j∆t, and Bj is the backward propagation such that the prime density
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operator ρ′(t) = Bjρ0B
†
j = U †

j+1 . . . U
†
NρDUN . . . Uj+1 at the same time t = j∆t, where

ρD is desired final state evolved from your input state ρ0. Since the initial trying

parameters are produced by guessing randomly, the performance function should not

be equal to 2N . But if we can know the derivative of Φ with respect to the control

amplitudes, ukj, we may use multi-dimesion optimization technique to find the control

parameters from the initial guessing parameters such that the performance function

is maximum, that is finding our desired control sequence. Using the standard formula

d

dx
eA(x) =

∫ 1

0

eτA(x) dA(x)

dx
e(1−τ)A(x)dτ , (3.9)

where A(x) is an operator, we have

dUj(∆t)

dukj

= − i

~
∆t

(∫ 1

0

Uj(∆tτ)HkUj(−∆tτ)dτ

)

Uj(∆t) ,

= − i

~
∆tH̄kUj(∆t) , (3.10)

where H̄k =
∫ 1

0
Uj(∆tτ)HkUj(−∆tτ)dτ .

For small ∆t (when ∆t ≪ || 1
~
(H0 +

∑m
k=1 ukjHk) ||−1 ), H̄k ≈ Hk. Take the

derivative Φ with respect to ukj with Eq. (3.10), we have

∂Φ

∂ukj

= Tr

[(

∂B†
j

∂ukj

)

Fj +B†
j

(
∂Fj

∂ukj

)]

Tr{F †
jBj} + c.c.

= −2Re

{
i

~
∆tTr{B†

jHkFj}Tr{F †
jBj}

}

,

where Bj = U †
j+1 . . . U

†
NUD, and Fj = Uj . . . U1.

Now, it becomes an optimization problem with constraints on the boundary which

limits the range of the control amplitudes. The optimizer we implemented here is the

spectral projected gradient method [25]. Since this algorithm is based on the gradient

ascent procedure, there is no guarantee that it will converge to a global maximum -

it may also converge to a local maximum. Nevertheless, we will try different guessed

initial control sequences to see if they all fall into the same converged point or not.
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3.3 Optimal Transfer between Hermitian density

operators

In previous section, we describe the case of implement a desired unitary operation.

In this section, let us consider a problem to create a transformation between initial

Hermitian density operator, ρ(0) at T = 0, and desired Hermitian density operator,

ρD, in a given time T by applying a pulse sequence u′kj. Using the same technique as

in the pervious section, we guess at first all of the parameters ukj randomly and name

the parameters as initial parameters such that at the final time T , the final density

operator will be ρF = ρ(T ) = UN . . . U1ρ0U
†
1 . . . U

†
N . The overlap of two Hermitian

operators ρF and ρD can be measured by the standard inner product, Tr{ρ†DρF}.

Therefore, we can define a performance function which is a real number as

Φ(ρD, ρF ) = Tr{ρ†DρF}

= Tr{ρ†DUN . . . U1ρ0U
†
1 . . . U

†
N}

= Tr{U †
j+1 . . . U

†
Nρ

†
DUN . . . Uj+1

︸ ︷︷ ︸

λ†
j

Uj . . . U1ρFU
†
1 . . . U

†
j

︸ ︷︷ ︸

ρj

}

= Tr{λ†jρj} , (3.11)

, where ρj is the density operator ρ(t) at time t = j∆t and λj is the backward

propagated target operator ρD at the same time t = j∆t.

Now, like the pervious section, if we know the derivative of Φ with respect to the

control amplitudes, ukj, we may optimize the performance function Φ(ρD, ρF ) ≈ 1.

For small ∆t (when ∆t ≪ || 1
~
(H0 +

∑m
k=1 ukjHk) ||−1 ), H̄k ≈ Hk. Take the

derivative Φ with respect to ukj with Eq. (3.10), we have

∂Φ

∂ukj
= Tr

{

λ†j

(
∂ρj

∂ukj

)}

= − i

~
∆tTr{λ†j [Hk, ρj]} , (3.12)
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where λj = Uj+1 . . . UNρ
†
DU

†
N . . . U

†
j+1, and ρj = Uj . . . U1ρFU

†
1 . . . U

†
j .

Finally, we can use an optimizer to find the parameters which maximum the

performance function. There are several different kinds of applications that transfer

between two hermitian density operators. For example, if we have two spin-down

qubits which we want to entangle them into a Bell state, we can implement it by

using the method of optimal transformation between Hermitian density operators

since we know the final density operator and initial density operator.



Chapter 4

Variational Principle Approach of

Time-Optimal Evolution

In contrast to the digitized time sequence of the control parameters found in the

GRAPE technique, the variational principle approach uses the variational principle to

find the time-optimal control sequence and parameters which are continuous in time.

In their first paper [9], Carlini et al. present a general framework for finding the time-

optimal evolution and the optimal Hamiltonian for a quantum system with a given

set of initial and final state. They find that the time-optimal solution to constrained

Hamiltonian (finite constant energy) is the geodesic equation for the Fubini-Study

metric on CP n−1. In other words, with the constrain of a finite constant total energy,

they find the shortest path in time is the geodesic line in the Fubini-Study manifold

and the time-optimal Hamiltonian is time-independent. It’s analogous to finding the

time-optimal path between two points with a specific energy on a sphere by using

variational principle, and the result is the geodesic line on the sphere with constant

speed.

In their second paper [10], Carlini et al. extend their previous work into finding the

21
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time-optimal realization of a target unitary operation using the variational principle.

The main concept here is that they replace the projective space representing quantum

state vectors with the space of unitary operators. In their first work [9], the time-

optimal realization depends on the initial and final states. However, most applications

in quantum computation need to implement a quantum gate - that is an unitary

operation; therefore, this extension is of great importance and more directly relevant

to subroutines in quantum computation.

In Sec. 4.1, we will derive the geodesic equation for the Fubini-Study metric on

CP n−1 in more detail than the original paper [9], and we will also give the solution

to the geodesic equation. In Sec. 4.2, we will basically follow the original paper [10]

to define an action principle for the time-optimal unitary operator, then derive the

fundamental equations of motion. In the last section of this chapter, Sec. 4.3, we

will implement the controlled-Z gate by using this time-optimal approach and using

the canonical decomposition approach, respectively. The controlled-Z gate is one of

the most important unitary operations for implementing quantum algorithms. In

particular, we can implement the CNOT gate from a controlled-Z gate conjugated

by I ⊗ H . Furthermore, one of the simplest ways to implement quantum Fourier

transformations (QFTs) uses multiple controlled-Z gates (see for example [6]). The

controlled-Z gate may be used in the construction of controlled-X and controlled-Y

gates. The reason why we only realize the time-opmtial controlled-Z gate instead

of CNOT gate here is that we encounter some difficulty in solving the equation of

motions analytically, and we will discuses it in this section. Finally, we will compare

the operation time between the time-optimal approach and the conventional canonical

decomposition approach.
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4.1 Time-optimal evolution between a given set of

initial and final states

The problem which we are going to study here is analogous to the classical brachis-

tochrone mechanic problem. In the classical brachistochrone problem, one has to

find the shape of the curve down which a bead sliding from rest and accelerated by

gravity will slip (without friction) from one point to another in the least time. The

brachistochrone problem was one of the earliest problems posed in the calculus of

variations. The time to travel from a point to another point is given by the integral

T =

∫
ds

v
, (4.1)

where the parameter s(t) specifies the length from initial point to the current posi-

tion x(t) of the particle, v is the speed of the current position defined by v = ds(t)
dt

=
√

2[E − V (x)]/m, where E is the conserved energy and V is the gravitational poten-

tial. Using the calculus of variations, the problem can be solved, and the solution is

a segment of a cycloid curve which does not depend on the body’s mass or on the

strength of the gravitational constant.

In the quantum version, one would like to find a time-dependent Hamiltonian

such that the state evolves from a given initial state |ψi〉 to a given final state |ψf〉

belonging to a n-dimensional Hilbert space in the least time. Here, the state |ψ(t)〉

and H(t) are dynamical variables, and the Lagrange in n-dimensional Hilbert space

can be defined as

L(ψ, ψ̇,H, φ, φ̇, λ) =

√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉

∆E
+

(

i

〈
d

dt
φ

∣
∣
∣
∣
ψ

〉

+ 〈φ |H |ψ〉 + c.c.

)

+ λ

(

TrH̃2

2
− ω2

)

, (4.2)

where P (t) = |ψ〉 〈ψ| is the projection operator, H̃ = H − (TrH)/n is the traceless
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part of the Hamiltonian, (∆E)2 = 〈ψ |H2 |ψ〉 − 〈ψ |H |ψ〉2 is the energy variance,

and ω is a given nonzero constant. The action can be defined as

S(ψ, ψ̇,H, φ, φ̇) =

∫

dtL(ψ, ψ̇,H, φ, φ̇, λ)

=

∫

dt





√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉

∆E
+

(

i

〈
d

dt
φ

∣
∣
∣
∣
ψ

〉

+ 〈φ |H |ψ〉 + c.c.

)

+ λ

(

TrH̃2

2
− ω2

)]

, (4.3)

where ψ, ψ̇, H , φ and φ̇ are the dynamic variables. The first term in the action,

Eq. (4.3), is interpreted as the time duration of the evolution expressed in terms of

the Fubini-Study line element ds2 = 〈dψ| (1 − P ) |dψ〉. The second term guarantees

that |ψ(t)〉 and H(t) obey the Schrödinger equation through the Lagrange multiplier

|φ(t)〉. The third term constrains the constant of the energy through the Lagrange

multiplier, λ. The finite energy constraint is necessary, otherwise one could rescale

the Hamiltonian such that the duration time is arbitrarily small.

The equations of motion satisfies the Euler equation,

∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (4.4)

Since L is symmetrical, as a result, we will obtain the same equation of motions by

the variation respect to 〈φ| or |φ〉. The variation of Eq. (4.2) respect to 〈φ| by using

Euler-Lagrange equation, Eq. (4.4), will gives us the Schrödinger Equation,

∂L

∂ 〈φ| −
d

dt

∂L

∂
〈

d
dt
φ
∣
∣

= 0

∴ H |ψ〉 − i
d

dt
|ψ〉 = 0 . (4.5)

The variation of Eq. (4.2) respect to λ leads to the constraint of Hamiltonian, finite
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constant energy,

∂L

∂λ
− d

dt

∂L

∂λ̇
= 0

∴
TrH̃2

2
= ω2 . (4.6)

The variation of Eq. (4.2) respect to 〈ψ| with Eq. (4.5) implies

∂L

∂ 〈ψ| −
d

dt

∂L

∂
〈

d
dt
ψ
∣
∣

= 0

∴ H |φ〉 − i

∣
∣
∣
∣

d

dt
φ

〉

+

(

∂

∂ 〈ψ| −
d

dt

∂

∂
〈

d
dt
ψ
∣
∣

)



√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉

∆E



 = 0 ,

where

∂

∂ 〈ψ|

√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉

∆E

=
−
〈

d
dt
ψ
∣
∣ψ
〉 ∣
∣ d
dt
ψ
〉

2∆E
√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉 −

∆E
(
〈ψ |H2 |ψ〉 − 〈H〉2

)−3/2
(H2 |ψ〉 − 2 〈H〉H |ψ〉)

2

=
−1

2(∆E)2
〈H〉H |ψ〉 − 1

2(∆E)2

(
H2 |ψ〉 − 2 〈H〉 |ψ〉

)

=
1

2(∆E)2

(
〈H〉H |ψ〉 −H2 |ψ〉

)
,

and

d

dt

∂

∂
〈

d
dt
ψ
∣
∣

√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉

∆E

=
d

dt




1

2∆E
√
〈

d
dt
ψ
∣
∣ (1 − P )

∣
∣ d
dt
ψ
〉(1 − P )

∣
∣
∣
∣

d

dt
ψ

〉




= − i

2

d

dt

(
1

(∆E)2
H |ψ〉 − 〈H〉 |ψ〉

)

= i

[
d

dt

(〈H〉 −H

2(∆E)2

)]

|ψ〉 + i

(〈H〉 −H

2(∆E)2

) ∣
∣
∣
∣

d

dt
ψ

〉

= i

[
d

dt

(〈H〉 −H

2(∆E)2

)]

|ψ〉 +

(〈H〉 −H

2(∆E)2

)

H |ψ〉 ;
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finally, we obtain

H |φ〉 − i
d

dt
|φ〉 + i

[
d

dt

(〈H〉 −H

2(∆E)2

)]

|ψ〉 = 0 . (4.7)

The variation with respect to H gives

{H,P } − 2 〈H〉P
2 (∆E)2 − λH̃ − (|ψ〉 〈φ| + |φ〉 〈ψ|) = 0 . (4.8)

Let’s take trace over Eq. (4.8). After use of Tr (|ψ〉 〈ψ|) = 1, TrH̃ = 0, and

Tr(HP ) = 〈H〉, we obtain

Tr(HP ) − 〈H〉Tr(P )

(∆E)2 − λTrH̃ − Tr (|ψ〉 〈φ| + |φ〉 〈ψ|)

= −Tr (|ψ〉 〈φ| + |φ〉 〈ψ|) ,

and therefore

Tr (|ψ〉 〈φ| + |φ〉 〈ψ|) = 0 . (4.9)

Substituting |ψ〉 and |φ〉 in Eq. (4.9) by |ψ〉 =
∑

iAi |i〉 and |φ〉 =
∑

j Bj |j〉, we have

∑

ij

AiB
∗
j |i〉 〈j| +

∑

ij

A∗
iBj |i〉 〈j| = 0

⇒
∑

ij

AiB
∗
j = −

∑

ij

A∗
iBj

∴ 〈ψ |φ〉 = −〈φ |ψ〉 ; (4.10)

thus, 〈ψ |φ〉 is purely imaginary.

The expectation value of Eq. (4.8) after using Eq. (4.10) gives
〈

ψ

∣
∣
∣
∣

{H,P } − 2 〈H〉P
2 (∆E)2

∣
∣
∣
∣
ψ

〉

− λ
〈

ψ
∣
∣
∣ H̃
∣
∣
∣ψ
〉

− (〈φ |ψ〉 + 〈ψ |φ〉)
︸ ︷︷ ︸

0

= 0

∴
〈

ψ
∣
∣
∣ H̃
∣
∣
∣ψ
〉

=
1

2λ(∆E)2
〈ψ | {H,P } − 2 〈H〉P |ψ〉

=
1

2λ(∆E)2
(〈H〉 + 〈H〉 − 〈H〉)

= 0 ; (4.11)
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finally, we get

〈

H̃
〉

= 〈H〉 − TrH

n
I = 0

∴ 〈H〉 =
TrH

n
I . (4.12)

Applying Eq. (4.8) to |ψ〉 and after using Eq. (4.10) and H̃ = H − 〈H〉, we have

{H,P } |ψ〉 − 2 〈H〉P |ψ〉
2 (∆E)2 − λH̃ |ψ〉 − (|ψ〉 〈φ |ψ〉 + |φ〉) = 0

∴ |φ〉 =
{H,P } |ψ〉 − 2 〈H〉P |ψ〉

2 (∆E)2 − λH̃ |ψ〉 − 〈φ |ψ〉 |ψ〉

=
H |ψ〉 − 〈H〉 |ψ〉

2 (∆E)2 − λH̃ |ψ〉 + 〈ψ |φ〉 |ψ〉

=

[(
1

2(∆E)2
− λ

)

H̃ + 〈ψ |φ〉
]

|ψ〉 . (4.13)

Using H̃ = H − TrH/n, Eq. (4.8) and Eq. (4.13), we have

{

H̃, P
}

= (H − TrH/n)P + P (H − TrH/n)

= {H,P } − 2 〈H〉P

= 2(∆E)2
(

λH̃ + |ψ〉 〈φ| + |φ〉 〈ψ|
)

= 2(∆E)2

(

λH̃ +

{

|ψ〉 〈ψ|,
(

1

2(∆E)2
− λ

)

H̃

})

=
{

H̃, P
}

+ 2λ(∆E)2H̃ − 2λ(∆E)2
{

H̃, P
}

∴ H̃ =
{

H̃, P
}

. (4.14)

Substituting Eq. (4.13) into Eq. (4.7) and using the properties that 〈ψ |φ〉 is constant
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in time and [H, H̃] = 0, we obtain

(H − i
d

dt
)

[(
1

2(∆E)2
− λ

)

H̃ + 〈ψ |φ〉
]

|ψ〉 + i

[
d

dt

(〈H〉 −H

2(∆E)2

)]

|ψ〉

=

[(
1

2(∆E)2
− λ

)

H̃ + 〈ψ |φ〉
]

H |ψ〉 − i

[
d

dt

(
1

2(∆E)2
− λ

)

H̃

]

|ψ〉

− i

[(
1

2(∆E)2
− λ

)

H̃ + 〈ψ |φ〉
]

d

dt
|ψ〉 + i

[

d

dt

(

H̃

2(∆E)2

)]

|ψ〉

=i

(
d

dt
λH̃

)

|ψ〉 = i

(
d

dt
λ

)

H̃ |ψ〉 + iλ

(
d

dt
H̃

)

|ψ〉 = 0 . (4.15)

Then multiplying 〈ψ| to Eq. (4.15), we have

(
d

dt
λ

)〈

ψ
∣
∣
∣ H̃
∣
∣
∣ψ
〉

+ λ

〈

ψ

∣
∣
∣
∣

(
d

dt
H̃

) ∣
∣
∣
∣
ψ

〉

= 0 . (4.16)

Let’s calculate the second term of Eq. (4.16) first. Using

d

dt
H̃ =

d

dt
H − d

dt
〈ψ|H|ψ〉 I

=
d

dt
H −

(

〈ψ̇|H|ψ〉 + 〈ψ|Ḣ|ψ〉 + 〈ψ|H|ψ̇〉
)

I

=
d

dt
H −

(

−i 〈ψ|H2|ψ〉 + 〈ψ|Ḣ|ψ〉 + i 〈ψ|H2|ψ〉
)

I

=
d

dt
H − 〈ψ|Ḣ|ψ〉 I , (4.17)

the second term of Eq. (4.16) can be written as

〈

ψ

∣
∣
∣
∣

(
d

dt
H̃

) ∣
∣
∣
∣
ψ

〉

=

〈

ψ

∣
∣
∣
∣

(
d

dt
H

)∣
∣
∣
∣
ψ

〉

− 〈ψ|Ḣ|ψ〉 〈ψ|ψ〉 I = 0 ,

and therefore Eq. (4.16) can be written as

(
d

dt
λ

)〈

ψ
∣
∣
∣ H̃
∣
∣
∣ψ
〉

= 0 . (4.18)

Eq. (4.18) implies that λ is constant in time, and finally, we have

(
d

dt
H̃

)

|ψ〉 = 0 . (4.19)
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Using Eq. (4.19), we can derive

d

dt
H̃ =

d

dt

(

H̃P + PH̃
)

=

(
d

dt
H

)

P + H̃

(
d

dt
P

)

+ P

(
d

dt
H

)

+

(
d

dt
P

)

H̃

= H̃
(

|ψ̇〉 〈ψ| + |ψ〉 〈ψ̇|
)

+
(

|ψ̇〉 〈ψ| + |ψ〉 〈ψ̇|
)

H̃

= iH̃H |ψ〉 〈ψ| − i |ψ〉 〈ψ|HH̃

= 0 , (4.20)

which implies H̃ is constant in time. Let’s introduce |ψ(t)〉 = exp
(

−i
∫ t

0
〈H〉dt

)

|ψ̃(t)〉,

as a result, we have H̃ |ψ̃(t)〉 = i ∂
∂t
|ψ̃(t)〉. Now, the Hamiltonian H̃ could be written

as

H̃ = H̃P + PH̃

= H̃P̃ + P̃ H̃

= i
(

| ˙̃
ψ〉 〈ψ̃| − |ψ̃〉 〈 ˙̃

ψ|
)

. (4.21)

Because 〈H̃〉 = 〈ψ̃|H̃|ψ̃〉 = 〈ψ̃| ∂
∂t
|ψ̃〉 = 0, the derivative | ∂

∂t
|ψ̃〉 is orthogonal to |ψ̃〉.

Since dH̃
dt

= 0, using Eq. (4.21), we have

(

dH̃

dt

)

|ψ̃〉 = i
(

| ¨̃ψ〉 〈ψ̃| + | ˙̃
ψ〉 〈 ˙̃

ψ| − | ˙̃
ψ〉 〈 ˙̃

ψ| − |ψ̃〉 〈 ¨̃
ψ|
)

|ψ̃〉

= i

(
d2

dt2
|ψ̃〉 − |ψ̃〉 〈 ¨̃

ψ|ψ̃〉
)

= i

(
d2

dt2
|ψ̃〉 − |ψ̃〉 〈ψ̃| ¨̃ψ〉

)

∴
(

1 − P̃
) d2

dt2
|ψ̃〉 = 0 , (4.22)
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where

〈 ¨̃
ψ|ψ̃〉 = −i

(
d

dt
〈ψ̃| H̃

)

|ψ̃〉

= −i
(

d

dt
〈ψ̃|
)

H̃ |ψ̃〉

= −〈ψ̃|H̃2|ψ̃〉 = 〈ψ̃| ¨̃ψ〉 .

Eq. (4.22) is the geodesic equation for the Fubini-Study metric on CP n−1. The

solution to Eq. (4.22) can be written as

|ψ̃(t)〉 = cosωt |ψ̃(0)〉 + sinωt |ψ̃⊥(0)〉 , (4.23)

where |ψ̃(0)〉 is the initial state - |ψ̃i〉, and |ψ̃⊥(0)〉 = 1
ω
| d
dt
ψ̃(0)〉 is a chosen state which

is normalized and orthogonal to |ψ̃(0)〉. Since |ψ̃⊥(0)〉 can be chosen, it’s reasonable

to suppose that our final state at time T - |ψ̃f(T )〉 is spanned by |ψ̃(0)〉 and |ψ̃⊥(0)〉;

that is

|ψ̃f (T )〉 = α |ψ̃(0)〉 +
√

1 − α2 |ψ̃⊥(0)〉 . (4.24)

Comparing the coefficients between Eq. (4.23) and Eq. (4.24), we find α = 〈ψ̃i|ψ̃f〉

and the optimal time - T = 1
ω

cos−1 | 〈ψ̃i|ψ̃f 〉 |. The whole Hamiltonian is given by

H(t) = H̃ + 〈H(t)〉, where 〈H(t)〉 is an arbitrary real function corresponding to the

degree of freedom.

4.2 Time-optimal realization of unitary operators

The realization of time-optimal unitary operation using the variational principle ap-

proach can be extended very naturally from the previous section. Carlini et al. replace

the projective space representing quantum state vectors with the space of unitary op-

erators. The known initial condition and final condition here are the identity matrix,
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and the final unitary operator which replace the initial state and the final state in

the previous section. As a result, this approach is more useful in quantum computa-

tion when the input may be unknown. The derivation of the equations of motion for

the unitary operation case is similar to that for the quantum state case. Therefore

, we will roughly derive the theory, and discuses the difficulty that the theory may

encounter.

Now, one would like to find a time dependent Hamiltonian such that the unitary

operator evolves from identity matrix, I, to a given unitary operator Uf which satisfies

the Schröding equation ,i d
dt
U(t) = H(t)U(t), and belongs to a SU(n) (modulo overall

phases) in the least time. Here, the unitary operator U(t) and H(t) are dynamical

variables, and the action and Lagrange can be defined as

S(U, U̇,H, Ḣ,Λ, Λ̇, λj, λ̇j) =

∫

dtLT + LS + LC , (4.25)

LT =

√〈
d
dt
U, (1 − PU) d

dt
U
〉

〈HU, (1 − PU)HU〉 , (4.26)

LS =

〈

Λ, i
dU

dt
U † −H

〉

, (4.27)

LC =
∑

j

λjfj(H) , (4.28)

where the Hilbert-Schmidt norm 〈A,B〉 = Tr(A†B) has been introduced, and the

projection operator is defined as PUA = 1
N

Tr(AU †)U . The Hermitian operator Λ(t)

and scalars λj(t) are Lagrange multipliers.

Since the derivation is similar to the quantum state version, we will merely go

through the important equations that we will use to implement controlled-Z gate in

the next subsection. The variation of LS respect to Λ will give us the Schrödinger

Equation,

i
d

dt
U(t) = H(t)U(t) . (4.29)
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The variation of action respect to H will give us

− (1 − P1)H

〈H, (1 − P1)H〉 − Λ + F = 0 , (4.30)

where F = ∂LC

∂H
and P1A = 1

N
(TrA)I. Note that PU(A) = (P1AU

†)U . With the

condition (1 − P1)(H) = H̃ , Eq. (4.30) can be rewritten as

Λ = F − H̃

TrH̃2
. (4.31)

Performing the variation of action respect to U and after some trivial calculations,

we get

D

[

LT

(1 − P1)(
dU
dt
U †)

〈
dU
dt
U †, (1 − P1)

(
dU
dt
U †
)〉 + iΛ

]

= 0 , (4.32)

where D[A] = d
dt
A+

[
A, dU

dt
U †
]
. Using Eq. (4.29), Eq. (4.31), and Eq. (4.32), we can

derive the quantum brachistochrone equation as

i
dF

dt
= [H,F ] . (4.33)

Assume that we have another constrain, the finite constant energy condition,

which can be written as

f(H) =
1

2
(TrH̃2 −Nω2) , (4.34)

where ω is a constant. The constraint part of the Lagrangian LC will have an extra

term, and can be written as

LC = λf(H) + L′
C , (4.35)

where λ is a Lagrange multiplier and L′
C is sum of the other constraints. Now, F =

λH̃ +F ′ where F =
∂L′

C

∂H
. If the constrains of the system are linear and homogeneous

in H̃,

L′
C = TrH̃F ′ , (4.36)
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where F ′ =
∑

j λjgj with gj ∈ SU(N), we have

TrgjH̃ = 0 . (4.37)

With the above conditions, Eq. (4.33) can be written as

d

dt
H̃ +

∑

j

gj
dλj

dt
= −i

∑

j

λj [H̃, gj] , (4.38)

where the Lagrange multipliers λj(t) and the Hamiltonian are still to be determined.

Once the differential equations, Eq. (4.38), have been solved, we can compare the co-

efficients between the desired unitary operation and the unitary operation constructed

from the solution of Eq. (4.38) to find the control sequences.

4.3 Compare the Controlled Z gate implemented

by the time-optimal approach and the canon-

ical decomposition respectively

The time-optimal approach using the variational principle has more geometric and

physical meaning than the others, and the optimal time can be obtained from solving

the differential equations. But in the differential equations of the motion, Eq. (4.38),

the only known conditions are the initial unitary operator, U(0) = I, and the final

U(T ) = Uf , and we need to use this conditions to find the time dependent parame-

ters, H(t), U(t), and the Lagrange multipliers λj(t). The typical numerical solvable

differential equation is that we know all the initial values of the dynamic parameters,

and thus we can numerically obtain the dynamic values at given time t. In the case

that we deal now, we don’t know the initial values of the Lagrange multipliers, λj(t),

and what’s worse, we do not know the time, T , at which the unitary operator will

evolve to Uf (T ).
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It seems that the only possible method to numerically solve the atypical differential

equations is to guess the initial values of λj(t) and the duration of the operation time,

T , then put into the differential equation to see if the guessing is correct. It turns

out that the numerical solution may be very difficult. On the other hand, if we can

analytically solve the differential equations, Eq. (4.38), we may compare the solution

U(t) of the given Hamiltonian with the desired gate operation to find out the dynamic

values and the optimal time. But it may still be a problem that the coupled differential

equations are often very complex and can not be solved analytically at most of time.

We have tried to solve the time-opmtial equations of motion of the Kane’s system,

but it’s too complex to find the analytical solution. As a result, we try to use the

system Hamiltonian which had been analytically solved [10]. The Hamiltonian has

this form:

H(t) = −
∑

j

Jj(t)σj ⊗ σj +B1(t)σz ⊗ I +B2(t)I ⊗ σz , (4.39)

which contains controllable anisotopic couplings and controllable local terms. Since

the generator of the system does not constitute a minimal generating set of the Lie

algebra SU(4), the system is not fully controllable; that is, we can not implement all of

the unitary operation in SU(4). Meanwhile, we have tried to add another terms such

that the system constitute a minimal generating set of the Lie algebra SU(4), but it

turns out that the equations are hard to solve analytically. This system can implement

the controlled-Z gate, and the controlled-Z gate is one of the most important unitary

operations for implementing quantum algorithms. In particular, we can implement

the CNOT gate from a controlled-Z gate conjugated by I ⊗H which is schematically

shown in Fig 4.1. Therefore, we will implement the controlled-Z gate using the time-

optimal variational principle approach in the following subsection 4.3.1, and using

the canonical decomposition approach in subsection 4.3.2. Finally, we will compare
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•
H Z H

Figure 4.1 Circuit diagram of the CNOT gate constructed by controlled Z
gate and Hadamard gate.

the results using these two approaches and give brief conclusion in subsection 4.3.3.

4.3.1 The time-optimal of the controlled Z gate using varia-

tional principle approach

The Hamiltonian in Eq. (4.39) can be written in computational basis as

H(t) =












−Jz +B+ 0 0 −J−
0 Jz +B− −J+ 0

0 −J+ Jz − B− 0

−J− 0 0 −Jz −B+












, (4.40)

where B± = B1(t) ± B2(t) and J±(t) = Jx(t) ± Jy(t). From Eqs. (4.36) and (4.37),

the physical Hamiltonian is guaranteed by

F ′ =
∑

j 6=k

λjkσj ⊗ σk +
∑

j=x,y

λ1
jσj ⊗ I + λ2

jI ⊗ σj , (4.41)
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where the λjk and λi
j are the Lagramge multipliers. As a result, we can write down

all the gj as

g1 = σ1 ⊗ σ2 , g2 = σ1 ⊗ σ3 , g3 = σ2 ⊗ σ1 ,

g4 = σ2 ⊗ σ3 , g5 = σ3 ⊗ σ1 , g6 = σ3 ⊗ σ2 ,

g7 = σx ⊗ I , g8 = σy ⊗ I ,

g9 = I ⊗ σx , g10 = I ⊗ σy . (4.42)

Inserting Eq. (4.42) and Eq. (4.40) into Eq. (4.38) and comparing the coefficients of

the generators of SU(4) on both sides, we find that λxy, λyz, and Jz are constant.

Then B± and J± can be solved, and the solution is

B±(t) = B0± cos 2(γ±t+ ψ±) ,

J±(t) = ∓B0∓ sin 2(γ∓t+ ψ∓) , (4.43)

where γ± = λxy ± λyx, B0± and ψ± are constant. Now, we have the time-depentant

Hamiltonian, and therefore we can solve the Schrödinger equation, Eq. (4.29), to

obtain the evolution of the unitary operator. After solving the Schrödinger equation,

the optimal unitary operator of the system will be given by

U(t) =












(α0+ + iαz+)eiJzt 0 0 (αy+ + iαx+)eiJzt

0 (α0− + iαz−)e−iJzt (αy− + iαx−)e−iJzt 0

0 (−αy− + iαx−)e−iJzt (α0− − iαz−)e−iJzt 0

(−αy+ + iαx+)eiJzt 0 0 (α0+ − iαz+)eiJzt












,

(4.44)
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where U(0) = 1 is chosen, and

Ω± =
√

B2
0± + γ2

± , (4.45)

α0±(t) = cos γ±t cos Ω±t+
γ±
Ω±

sin γ±t sin Ω±t , (4.46)

αz±(t) = −B0±

Ω±
sin Ω±t cos(γ±t+ 2ψ±) , (4.47)

αx±(t) = ±B0±

Ω±
sin Ω±t sin(γ±t+ 2ψ±) , (4.48)

αy±(t) = ±
(

sin γ±t cos Ω±t−
γ±
Ω±

cos γ±t sin Ω±t

)

. (4.49)

The controlled Z gate is defined in the computational basis by

UΛZ =












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1












, (4.50)

comparing the coefficients between Eq. (4.49) and Eq. (4.50), then we find that αx± =

αy± = 0 giving γ± = ψ± = 0 which imply from Eq. (4.43) that B± are constant of

time and J± are equal to zero. Eq. (4.44) can thus be written as

U(T ) =












ei(Jz−B0+)T 0 0 0

0 e−i(Jz+B0−)T 0 0

0 0 e−i(Jz−B0−)T 0

0 0 0 ei(Jz+B0+)T












. (4.51)

Supposing that at given time, T , U(T ) is equal to UΛZ up to a global phase - U(T ) =

eixUΛZ , we obtain the set of relation of parameters

(Jz − B0+)T = x , (4.52)

− (Jz +B0−)T = x+ 2nπ , (4.53)

− (Jz −B0−)T = x+ 2pπ , (4.54)

(Jz +B0+)T = x+ (2q + 1)π , (4.55)
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where n, p, and q are arbitrary integers and T is still to be determined. Solving

Eq. (4.52) to Eq. (4.55) , we obtain

JzT =
1

2
(q − n− p+

1

2
)π , (4.56)

x = −1

2
(n+ p− q − 1

2
)π , (4.57)

B+T = (q +
1

2
)π , (4.58)

B−T = (p− n)π . (4.59)

Since B+ = B1 +B2 and B− = B1 −B2, Eq. (4.58) and Eq. (4.59) can be written as

T =
1

2B1
(p+ q − n+

1

2
)π

T =
1

2B2

(q − p + n+
1

2
)π . (4.60)

The time-optimal duration TΛZ can then be found by minimizing Eq. (4.60). We find

the solution is p = q = n = 0. Using Eq. (4.56), we then have T = π
4B

and Jz = B,

where B1 = B2.

The Hamiltonian of the time-optimal evolution can be writes as

H = −Bσz ⊗ σz +Bσz ⊗ I +BI ⊗ σz , (4.61)

where the value of B is determined by the real physical system. Since the Hamiltonian

is time independent, the evolution of the unitary operator, Eq. (4.50), will be along

a geodesic curves on the SU(4) manifold endowed with the metric ds2
U .

4.3.2 The canonical decomposition of the controlled Z gate

The canonical decomposition [26,27] decomposes any two qubit unitary operator into

a product of four single qubit unitaries and one entangling unitary -

U = (V1 ⊗ V2)Ucan(V3 ⊗ V4) , (4.62)



4.3 Compare the Controlled Z gate implemented by the time-optimal approach and

the canonical decomposition respectively 39
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Ucan

V3

V2 V4

Figure 4.2 Circuit diagram of the canonical decomposition.

where V1, V2, V3, and V4 are single qubit unitaries, and Ucan is the two qubit inter-

action. The schematic diagram has been shown in Fig. 4.2. The Ucan only involves

three parameters, θx, θy, and θz:

Ucan = eiθxσx⊗σxeiθyσy⊗σyeiθzσz⊗σz , (4.63)

where the purely non-local terms - eiθxσx⊗σx , eiθyσy⊗σy , and eiθzσz⊗σz are known as the

interaction contents of the gate, and it’s not difficult to show that each of the terms

commute with each other.

In principle, each of the terms - eiθxσx⊗σx , eiθyσy⊗σy , and eiθzσz⊗σz can be interpreted

physically as a type of controlled rotation. For example [28],

eiθzσz⊗σz = cos θzI ⊗ I + i sin θzσz ⊗ σz

= cos θz(|0〉 〈0| + |1〉 〈1|) ⊗ I + i sin θz(|0〉 〈0| − |1〉 〈1|) ⊗ σz

= |0〉 〈0| ⊗ eiθzσz + |1〉 〈1| ⊗ e−iθzσz

=
(
I ⊗ eiθzσz

) (
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−i2θzσz

)

∴
(
I ⊗ e−iθzσz

)
eiθzσz⊗σz = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−i2θzσz

=












1 0 0 0

0 1 0 0

0 0 e−i2θz 0

0 0 0 ei2θz












. (4.64)
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As a result,
(
I ⊗ e−iθzσz

)
eiθzσz⊗σz is corresponding to an operation consisting of both

a controlled-Z and a phase rotation. Similarly, the other two terms have the same

physically meaning -

(
I ⊗ e−iθxσx

)
eiθxσx⊗σx = |x+〉 〈x+| ⊗ I + |x−〉 〈x−| ⊗ e−i2θxσx , (4.65)

(
I ⊗ e−iθyσy

)
eiθyσy⊗σy = |y+〉 〈y+| ⊗ I + |y−〉 〈y−| ⊗ e−i2θyσy . (4.66)

Since the controlled-Z rotation of angle θ is defined in the computational basis by

UΛZ(θ) =












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ












, (4.67)

we can define a controlled phase rotation -

UΛphase(θ) = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ eiθI

=












1 0 0 0

0 1 0 0

0 0 eiθ 0

0 0 0 eiθ












, (4.68)

together with Eq. (4.64) to construct controlled-Z rotation. Now controlled Z rotation

could be decomposed as

UΛZ(θ) =












1 0 0 0

0 1 0 0

0 0 ei 1

2
θ 0

0 0 0 ei 1

2
θ























1 0 0 0

0 1 0 0

0 0 e−i 1

2
θ 0

0 0 0 ei 1

2
θ












=
(

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ ei θ
2
I
)(

I ⊗ e−i θ
4
σz

)

ei θ
4
σz⊗σz . (4.69)
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In the case of controlled Z gate, θ = π, we have

UΛZ =












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1












=
(
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ ei π

2
I
) (
I ⊗ e−i π

4
σz
)
ei π

4
σz⊗σz

=











1 0

0 i




⊗






1 0

0 1











(

I ⊗Rz

(π

2

))

ei π
4
σz⊗σz

=
(

S ⊗ Rz

(π

2

))

ei π
4
σz⊗σz , (4.70)

where Rz(θ) is rotation operator around ẑ axis, defined by

Rz(θ) = e−i θ
2
σz = cos

θ

2
I − i sin

θ

2
σz , (4.71)

and S is the phase gate which can be constructed by

S =






1 0

0 i




 = ei π

4






e−i π
4 0

0 ei π
4




 = ei π

4Rz(
π

2
) . (4.72)

Therefore, Eq. (4.70) can be write as

UΛZ =
(
ei π

4
I ⊗ I

) (

Rz

(π

2

)

⊗ Rz

(π

2

))

ei π
4
σz⊗σz

=
(
e−i π

4
I ⊗ I

) (

Rz

(

−π
2

)

⊗Rz

(

−π
2

))

e−i π
4
σz⊗σz , (4.73)

where UΛZ = U †
ΛZ , and e−i π

4
I ⊗ I can be regarded as global phase which can be

ignored. The controlled Z gate is schematically shown in Fig. 4.3.

For purpose of comparing with the result of pervious subsection 4.3.1, suppose we

have a system with the following Hamiltonian,

H = −Jzσz ⊗ σz +B1σz ⊗ I +B2I ⊗ σz , (4.74)
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Figure 4.3 Circuit diagram of the controlled Z gate.

where the coupling strength Jz, B1, and B2 are controllable. For example, the single-

qubit Z rotation around ẑ axis of qubit 1 can be constructed by turning B1 on and

keeping Jz and B2 off, so H = B1σz ⊗ I, and

Rz(θ) = e−i θ
2
σz⊗I = e−i(2nπ−B1t)σz⊗I . (4.75)

We then find the duration of Z rotation is t = 2nπ− θ
2
, where n is an arbitrary integer.

The unitary gate e−iθσz⊗σz can be easily implemented by turning on H = −Jzσz ⊗ σz

and other terms off. We thus can find the duration is given by t = θ
Jz

. The two single

qubit operations Rz

(
−π

2

)
⊗ I and I ⊗ Rz

(
−π

2

)
could be computed in parallel. As a

result, the duration of controlled Z gate is T = π
4B

+ π
4J

.

4.3.3 Conclusion

In the time-optimal variational principle approach, we find that the total operation

time of a controlled-Z gate is T = π
4B

. On the other hand, we find the total operation

time using the canonical decomposition is T = π
4B

+ π
4J

. The variational principle

approach can find the optimal time very naturally and guaranteed that it’s the least

time. In this case, variational principle gives us the one step unitary operation. We

can turn on the coupling term Jz, B1, B2 at the same time, and set their strength

equal to each other,Jz = B1 = B2 = B. In the canonical decomposition, we have

two steps. In the first step, we perform the coupling interaction. In the second
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step, we perform the single-qubit Z-rotations. The canonical decomposition approach

has one extra step compared with the variational principle approach. Luckily, since

[eiθZ⊗Z , Rz(θ) ⊗ I] = 0, we can artificially combine the two steps into one step,

i.e. doing them altogether in parallel. With the choice of Jz = B, the controlled-

Z operation is exactly the same as the result of time-opmtial variational principle

approach. Although we can deliberately obtain the same result, the time-optimal

variational principle approach is more powerful. It guarantees that the evolution this

approach finds is the shortest path in time, and it’s not merely coincident.

The authors of the paper [10] point out that it’s possible and no conceptual dif-

ficulty in extending the variational methods to the more realistic case that we have

mention in Chapter 1 when similar constraints are given in terms of inequalities in-

stead of that the constraints are expressed as equality conditions. We have derive the

equations of the motion with the inequality constrains following the same concept,

but it turns out that the equations are too complex to find analytical solution.

Possible further work is to develop a numerical technique to the quantum brachis-

tochrone equations. We can then use the variation methods to find time-optimal gate

operations numerically for more complex system which can not be analytically solved.

The application of this method is we can evaluate the time-dependent Hamiltonian

and the evolution for a given final unitary operator by using a classical computer,

and perform this control sequence in the quantum experiment and computation.



Chapter 5

Optimal CNOT Gate

5.1 Control sequence obtained from reduced Hamil-

tonian

In this chapter, we investigate and find the digitized control sequence of the near

time-optimal, high-fidelity CNOT gate for the Silicon-based electron spin quantum

computing architecture discussed in Chapter 3. Since the rotating magnetic field is

always on in this scheme, electrons will undergo a rotation around the x-axis when

there are no voltages applied on A gates, i.e. ∆ω = 0 with an angular frequency of

Ω0 = geµBBac/~. While target electrons will perform particular unitary operation

within time t, every spectator qubit will rotate around the x-axis with an angle of

θx = 2π − Ω0t . (5.1)

If θx does not equal to 2nπ, where n is integral, another correction step will be

required for the spectator qubits. Therefore, it will be more convenient to choose the

44



5.1 Control sequence obtained from reduced Hamiltonian 45

70 80 90 100110

0.88

0.9

0.92

0.94

0.96

0.98

1

Time (ns)

T
ra

ce
 fi

de
lit

y 
( 

F tr
 )

(a)

70 80 90 100110
−10

−8

−6

−4

−2

0

Time (ns)

lo
g 10

( 
1−

F tr
 )

(b)

Figure 5.1 Fidelity versus time for implementing CNOT gate. (a) Gives
the trace fidelities against time, while (b) shows deviation log10(1 − Ftr) from
fidelities.

operation time,

t = 2nπ/Ω0

=
2n~π

geµBBac
(5.2)

such that there is no need for correction for spectator qubits. For a chosen time t,

a larger n will require a larger Bac field . Yet in the approximation of the reduced

Hamiltonian, we assume that the Bac filed is very small compared with dc magnetic

field B0. As a result, we chose n = 1 for higher fidelity in full Hamiltonian simulation.

We focus on the high fidelity controlled-NOT (CNOT) gate by optimizing the

effective, reduced donor electron spin Hamiltonian, with external controls over the

hyperfine A and exchange J interactions. We first try different piecewise constant

control steps and numerically calculate the fidelity (error) against the time needed

to implement a CNOT gate with stopping criteria of error in the optimizer set to
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10−9 in order to economize the simulation time. Here, the error is defined as 1 − F ,

where F is fidelity. For each trying value of time t, we divide the sequence into 30

piecewise steps, starting with initial control amplitudes ukj by assigning a random

value to every five point and using cubic spline to fill in the amplitudes ukj of the

intermediate time points. The values of the control amplitudes are constrained to be

within certain range in the parameter space. Fig. 5.1 shows the fidelity against time.

As shown in Fig. 5.1 (a), the error is less than 10−8 for times longer than 100ns,

and it is found that 30 piecewise constant control steps for the CNOT gate operation

will be sufficient to meet the required fidelity (error), and the performance would not

be improved further with more steps. With operation time t = 100ns and stopping

criteria of error set to 10−16, we can find that the near time-optimal, high-fidelity

CNOT gate control sequence has an error of 1.11 × 10−16. The sequence of controls

is schematically shown in Fig. 5.2.

5.2 Full Hamiltonian simulation

In this section, we simulate the control sequence of the CNOT gate for the full spin

Hamiltonian simulations, Eq. (2.16), and the control sequence is obtained from the

reduced Hamiltonian, Eq. (2.15), optimization. Define ǫ = 1
2
geµBB0 + 1

2
gnµnB0, and

solve Eq. (2.8), then we will have

A =
−ǫ+

√

ǫ2 + 4
[
A2

0 + ǫ
(

~

2
∆ω + A0

)]

2
. (5.3)

Using the full Hamiltonian, Eq. (2.16), and Eq. (5.3), we simulate the CNOT gate

numerically with initialized spin-up nuclear states and four different electron spin

basis states, |00〉e, |01〉e, |10〉e, and |11〉e where |0〉e means the electron spin is up.

The final reduced electron density matrix is defined as the composite density matrix
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Figure 5.2 Time optimal CNOT gate control sequence with 30 steps during
100ns. In the reduced Hamiltonian, we assume that the nuclei will always be
in spin-up state and the dynamics of nuclei have been frozen out. In (a) and
(b), the maximum energy difference of σz term from detuning the hyperfine
interaction is (1/2)~∆ω/h = ∆ω/4π = −14.7MHz. In (c), the maximum
electron-electron exchange energy is J/h = 20MHz.
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Figure 5.3 Numerical simulation of CNOT gate using full Hamiltonian in
the rotating frame with the different initial conditions where all the nucleus
are initially spin-up. During each time, we partial trace the density matrix
over the nuclear states and obtain reduce density matrix for the electrons.
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traced over all the nuclear spin states.

ρf
|ij〉e

= Trn

(

ρf
|ij〉e⊗|00〉n

)

, (5.4)

where the subscripts i and j in the equation stand for the spin basis states. Define

four projective measurement observable operators as

M00 = |00〉 〈00| , (5.5a)

M01 = |01〉 〈01| , (5.5b)

M10 = |10〉 〈10| , and (5.5c)

M11 = |11〉 〈11| , (5.5d)

where the sum of the four measurement operators equals the identity operator. The

probability of obtaining the result Mij of electrons with spin input state |kl〉e ⊗ |00〉n
is

P (|kl〉 → |ij〉) = Tr(Mijρ
f
|kl〉e

) . (5.6)

When the CNOT gate operation is finished, the errors of transition with the four

input states to their correspondingly expected output electron spin states are shown

in Table 5.1, where errors are defined as 1 − P . The evolutions of the states of the

CNOT gate are show in Fig. 5.3.

We find the errors of about 10−6 which is below the error threshold required for

fault-tolerant (10−4) quantum computation. Most of these errors result from the

accuracy of the second-order approximation and the assumption that the eigenstates

are the computational basis states. The CNOT gate operation time of 100ns is 3

times faster than the globally controlled electron spin scheme [16] of 297ns (in the

paper [16] the indicated CNOT time is 148ns which is due to a factor of 2 missing in

the denominator of the σz term of their Hamiltonian).
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Table 5.1 Summary of the CNOT gate fidelities and the probabilities that
the nuclear spins may flip after the CNOT gate operation.

Input State, Expected output The fidelity of The probability that

|kj〉 ⊗ |00〉n state, |ij〉 ⊗ |00〉n CNOT gatea nuclear spin may flipb

|00〉e ⊗ |00〉n |00〉e ⊗ |00〉n 1 − 1.80 × 10−8 1.57 × 10−7

|01〉e ⊗ |00〉n |01〉e ⊗ |00〉n 1 − 1.80 × 10−7 2.00 × 10−7

|10〉e ⊗ |00〉n |11〉e ⊗ |00〉n 1 − 1.92 × 10−6 1.93 × 10−6

|11〉e ⊗ |00〉n |10〉e ⊗ |00〉n 1 − 1.20 × 10−6 1.56 × 10−6

a The fidelity of CNOT gate operation corresponding to the four electron spin basis

input states, |kl〉, is defined by P (|kl〉 → |ij〉) in Eq. (5.8), where |ij〉 is the

excepted output state. Note that in Eq. (5.6), the output state is traced over all

the nuclear states first, and we obtain a reduce density matrix for the electron

spin states. Finally, we use the measurement operator to compute the fidelities.

b The probability that nuclear spin may flip after the CNOT gate operation is

computed by using Eq. (5.8). Here, we trace the total output density matrix over

the electron spin states, and use the reduced density matrix for the nuclear spin

states to compute the flipping probability.
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5.3 Reinitialize the nuclear spin

We have been utilizing the assumption that the eigenstates are the computational

basis state and therefore the nuclear spins will be always in spin-up states. However,

this is not the case in real operation – the nuclear spin actually changes its state

as time goes by. If the polarization of the nuclear spins are not perfectly spin-up

state, it will increase the error of the gate operations. Once the tolerance of error

goes above threshold often a series of gate operations, we may have to reinitialize

the nuclear spins. Define the final reduced nuclear density matrix as the composite

density matrix traced over all the electron spin states,

ρf
|φ〉n

= Tre

(

ρf
|ij〉e⊗|φ〉n

)

, (5.7)

where the subscript |φ〉n in the equation stands for the input nuclear state, which is

expected to be |00〉n. We can calculate the probability of the nuclear spin still being

in the spin-up state by

P (|00〉n) = Tr
(

M
(n)
00 ρ

f
|φ〉n

)

, (5.8)

where M
(n)
00 is the nuclear spin measurement operator. With the initialized nuclear

state - |φ〉n = |00〉n, the error probabilities that nuclear spins may flip after the CNOT

gate operation are shown in Table 5.1. The probabilities corresponding to the four

different input electron states are around around 10−6.

We investigate below how many gate operations can be allowed by the fault-

tolerant error threshold before we have to reinitialize the nuclear spin states. With the

initialized nuclear state and the four input computational basis states, i.e. |ij〉e⊗|00〉n,

we first perform a CNOT gate operation, then trace over the electron spin states, input

the same electron state |ij〉e, and then perform a CNOT gate again. If we repeat the

process for N times by simply inputing the same pure electron state |ij〉 but not
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Figure 5.4 (a) gives the errors and (b) gives the probabilities that nuclei
may be flipped due to the imperfect polarized nuclear spins caused by N
times of CNOT operation without reinitializing the nuclear spins.
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reinitializing the nuclear state, the errors of CNOT gate operation will accumulate.

The numerical result shown in Fig. 5.4 indicate that in the worst case - |10〉e, after

around 60 times of operations, the error sums up to 1.03 × 10−4 , above the fault-

tolerant threshold. The corresponding probability that nuclei may be flipped is up to

1.16 × 10−4. Therefore, in order to maintain high fidelity, one has to reinitialize the

nuclear spin right before about 60 times of operations.

5.4 The robust control over the AWGN channel

Since We apply voltage on the A and J gates to control the strength of hyperfine

interaction and exchange interaction, there might be some noise induced from the

thermal vibrations of atoms in the control circuits or the device’s limitation in ac-

curate control of the applied voltages. These uncertainties of the control parameters

will decrease the fidelity of a specific operation. In order to analyze the decreasing

of fidelity due to these uncertainties, we model the noise as additive white Gaussian

noise (AWGN). The AWGN channel model is a random function which can simulate

the noise due to thermal fluctuation in a circuit. It is a Gaussian white noise model

that has a constant spectral density (expressed as watts per hertz of bandwidth) and

a Gaussian distribution of amplitudes.

In engineering, signal-to-noise ratio (SNR) is often used to describe the amplitude

ratio between a signal (our control sequence) and the background noise :

SNR(dB) = 20 log10

(Asignal

Anoise

)

, (5.9)

where Anoise is defined as the root mean square (RMS) of the noise amplitudes in the

control sequence, and Asingle is defined as the maximum value of the signal amplitudes

in the control sequence. That is to say, for A gate, the Asignal = A0 = 1.21× 10−7eV,

and for J gate, Asignal = 8.3 × 10−8eV. The simulation results are shown in Fig. 5.5.
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Figure 5.5 (a) The error simulated with Gaussian noise for different values
of noises applied on A and J gates by using the full Hamiltonian. (b) The
contour plots of error defined as log10(1 − F ).



5.4 The robust control over the AWGN channel 55

The fault-tolerant error correction theory requires that the probability of introducing

an error in each gate to be below 1 × 10−4. To satisfy the error threshold, both the

noises of A and J gates have to be larger than 55dB, meaning that Anoise/Asignal has

to be smaller than 1.78 × 10−3. Therefore, the variations of the control parameters

are around ±0.2% - achievable with modern electronic devices.



Chapter 6

Conclusions

We have investigated how pulse-sequences and operation times of elementary quantum

gates can be optimized for silicon-based donor electron spin quantum computer archi-

tecture [8,16], complementary to the original Kane’s nuclear spin proposal [7,13,14].

This gate-sequence-optimal or time-optimal quantum gate control in a quantum cir-

cuit is in addition to the more conventional concept of optimality in terms of the

number of elementary gates needed in a quantum transformation. The optimal

control method we use is the so-called gradient ascent pulse engineering (GRAPE)

scheme [11, 18]. We focus on the high fidelity controlled-NOT (CNOT) gate and ex-

plicitly find the digitized control sequences by optimizing the effective, reduced donor

electron spin Hamiltonian, with external controls over the hyperfine A and exchange

J interactions.

With operation time t = 100ns and stopping criteria of error set to 10−16, we

find that the near time-optimal, high-fidelity CNOT gate control sequence has an

error of 1.11 × 10−16. We then simulate the control sequences of the CNOT gate,

obtained from reduced Hamiltonian simulations, with the full spin Hamiltonian. We

find the error of about 10−6 which is below the error threshold required for fault-
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tolerant (10−4) quantum computation. The CNOT gate operation time of 100ns is

3 times faster than the globally controlled electron spin scheme [16] of 297ns (in the

paper [16] the indicated CNOT time is 148ns which is due to a factor of 2 missing in

the denominator of the σz term of their Hamiltonian). One of the great advantages

of this near optimal-time high fidelity CNOT gate is that the exchange interaction

is not required to be strong (the maximum value is J/h = 20MHz compared to the

typical value of 10.2GHz in [7, 13, 14, 16]). This relaxes significantly the stringent

distance constraint of two neighboring donor atoms of about 10nm as reported in the

original Kane’s proposal [7] to be about 30nm which is within the reach of the current

fabrication technology.

We have also studied the time-optimal unitary operation using the variational

principle approach for a model Hamiltonian for quantum computation. Specifically,

we construct the controlled-Z gate using this approach and canonical gate decom-

position method, respectively. We find that the variational approach can give the

optimal gate control sequence and operation time. Although the canonical decom-

position method in this simple example can combine two steps of operations into a

single step, the amplitudes of the controlled parameters in this approach do not have

any relation. If we set the amplitudes of all the control parameters to be the same as

given in the variational principle approach, we then find the canonical decomposition

method could in this case also give the same results.

Unlike traditional decomposition method that decomposes gate operation into

several single qubit operation and some interaction operation between qubits, this

concept of the time-optimal control approaches (such as GRAPE and the variational

principle approaches) is in a sense more like parallel computing. As a result, the

more complex gate operation it is applied, the more time one may save, especially

for those that could not be simply decomposed using the tradition method. So the
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time-optimal control approaches maybe proven useful in implementing quantum gate

operations in real quantum computing experiments in the future.
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Appendix A

Computing Matrix Exponentials

A.1 Introduction

Evaluating the exponential of a matrix is an important problem that arises in physics,

mathematics and engineering. For example, in quantum theory, a central problem

consists in solving the ODE of Schrödinger equation,

∂

∂t
|ψ〉 = − i

~
H |ψ〉 , (A.1)

where H is a hermitian matrix and |ψ〉 is a complex vector. If the Hamiltonian, H is

time independent, the solution for Eq. (A.1) is given by

|ψf〉 = exp

(

− i

~
Ht

)

|ψi〉 , (A.2)

where |ψf〉 is the final state, and |ψi〉 is the initial state.

There are several methods to compute matrix exponential. Methods involving

approximation theory, differential equations, the matrix eigenvalues, and the matrix

characteristic polynomial have been proposed.
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A.2 Computed by Taylor Series Expansion

A direct way to define the matrix exponential exp(At) where t is a real number is

undoubtedly through the exponential power series expansion,

eAt = I +

∞∑

n=1

(At)n

n!
, (A.3)

whose convergence is guaranteed for any square matrix A. If we momentarily ignore

the efficiency, we can simply sum up the series until adding another term which does

not alter the numbers stored in computer. That is, if

Tk(At) =
k∑

n=0

(At)n

n!
, (A.4)

, then we can find k such that

‖Tk(At) − Tk+1(At)‖ 6 δ , (A.5)

where δ is some prescribed error tolerance. Concern over where to truncate the series

is of importance if efficiency is being considered. Unfortunately, such an algorithm is

know to be inefficiency even in the scalar case, and there are lots of papers [24, 29]

concerning the truncation error of Taylor series. As a result, directly summing up all

Taylor series seems not work very well.

A.3 Computed by Diagonalization of the Matrix

For most physicists, another instinctive method is to diagonalize the matrix A, such

that

A = V DV −1 , (A.6)

then using the power series definition of etA implies

etA = V etDV −1 , (A.7)
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where V is the matrix whose columns are eigenvectors of A, D = diag(λ1, ..., λn), and

λn are the eigenvalues of A. The exponential of tD is very easy to compute and we

have a satisfactory build-in routine in lots of computer languages for computing the

exponential of a scalar,

etD = diag(eλ1t, ..., eλnt) . (A.8)

The difficulty with this approach is not find the eigenvalues of the matrix A in itself,

but occurs when A does not have a complete set of linearly independent eigenvectors.

In this case, A is defective and there is no invertible matrix of V , therefore, the

algorithm will break down. In real computing world, the difficulties occur even when

A is nearly defective. Define the condition number as cond(V ) = ‖V ‖‖V −1‖. While

A is nearly defective, then cond(V ) will be very large. The errors of computing etA,

including the roundoff errors from the eigenvalues computation, may be magnified

by cond(V ). As a result, the computed exponential of a matrix will most likely be

inaccurate when cond(V ) is very large. An example had been demonstrated in this

paper [24].

A.4 Computed by Padé Approximation

The most easy method for computing eAt numerically might be Taylor series, but we

have discussed that this approach is inefficiency and not accurate. A Padé approxima-

tion often gives better result of a given function - eAt here than truncating its Taylor

series, and it may still work where the Taylor series does not converge well. Since it is

defined as a rational function which is a ratio of polynomial series, it can be calculated

numerically easily. Therefore, Padé approximations are used extensively in computer

calculation. A Padé approximation approximates a function in only one variable, an
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approximation of a function in two variables is called a Chisholm approximation, and

in multiple variables is called a Canterbury approximation.

A Padé rational approximation to f(x) is the quotient of two polynomials Np/q(x)

and Dp/q(x) of degrees p and q respectively. This is so-called (p,q)-degree type Padé

approximation. We use the notation Rp/q(x) to denote this quotient:

Rp/q(x) =
Np/q(x)

Dp/q(x)
, (A.9)

where x is a scalar. If x is a matrix - A, the quotient is defined as

Rp/q(A) =
[
Dp/q(A)

]−1
Np/q(A) . (A.10)

The polynomials used in Eq. (A.10) are

Np/q(A) = n0I + n1A+ n2A
2 + ... + npA

p , (A.11)

and

Dp/q(A) = I + d1A+ d2A
2 + ...+ dqA

q . (A.12)

In the case q = 0, the approximation will reduce to the Taylor (Maclaurin) expansion

for f(A). There are p+1 unknown coefficients in Np/q(A), and q unknown coefficients

in Dp/q(A), hence the rational function Rp/q(A) has p + q + 1 unknown coefficients.

Assume that f(A) is analytic and has the Maclaurin expansion,

f(A) = a0I + a1A+ a2A
2 + ... + akA

k + ... , (A.13)

then Rp/q(A) is said to be a Padé approximation to the series f(A). Since the highest

possible oder of nonzero derivative of Rp/q(A) is p + q, that is

∂k

∂Ak
Rp/q(A) = 0 , ∀k > p+ q + 1 , (A.14)
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as a result, the first p+ q derivatives of f(A) and Rp/q(A) are to agree at A = 0,

∂k

∂Ak
Rp/q(A)

∣
∣
∣
∣
A=0

=
∂k

∂Ak
f(A)

∣
∣
∣
∣
A=0

, k = 0, 1, ..., p+ q . (A.15)

Eq. (A.15) implies that,

Rp/q(A) − f(A) =

∞∑

k=p+q+1

c′kx
k. (A.16)

Multiply Dp/q on Eq. (A.16) giving

Dp/q(A)f(A) −Np/q(A) = Dp/q

∞∑

k=p+q+1

c′kx
k

=
∞∑

k=p+q+1

ckx
k , (A.17)

and we obtain
p
∑

i=0

niA
i −
(

I +

q
∑

i=1

diAi

)(
∞∑

i=0

aiA
i

)

=
∞∑

k=p+q+1

ckx
k . (A.18)

When the left side of Eq. (A.18) is multiplied out out and the coefficients of the power

of Ai are set equal to zero for i = 0, 1, ..., p + q, the result is a system of p + q + 1

linear equations:

a0 − n0 = 0

d1a0 + a1 − n1 = 0

d2a0 + d1a1 + a2 − n2 = 0

...
...

...

dqap−q + dq−1ap−q+1 + · · ·+ ap − np = 0 , (A.19)

and

dqap−q+1 + dq−1ap−q+2 + · · ·+ d1ap + ap+1 = 0

dqap−q+2 + dq−1ap−q+3 + · · ·+ d1ap+1 + ap+2 = 0

...
...

...

dqap + dq−1ap+1 + · · · + d1ap+q−1 + ap+q = 0 . (A.20)



A.4 Computed by Padé Approximation 68

The q equations in Eq. (A.20) involve only the unknowns d1, d2, · · · , dq, and have

to be solved first. Then the equations in Eq. (A.19) are used successively to find

n0, n1, · · · , np.

Go back to our original problem, and setting f(A) as eA gives us,

an =
1

n!
. (A.21)

Solving Eq. (A.19) and Eq. (A.20) together with Eq. (A.24) gives us,

Np/q =

p
∑

i=0

(p+ q − i)!p!

(p+ q)!i!(p− i)!
Ai , (A.22)

and

Dp/q =

q
∑

i=0

(p+ q − i)!q!

(p+ q)!i!(q − i)!
(−A)i . (A.23)

It has been discussed that there are several reasons [24] why the diagonal approxi-

mants (p = q) are preferred over the off diagonal approximants (p 6= q) for stability

and economy of computation. For p = q, we have n0 = 1, ni = ni−1
p+1−i

(2p+1−i)i
, and

di = (−1)ini. As noted in Sidje’s thesis [30] , Eq. (A.10) can be written as the

following irreducible form for economical computing reason,

Rp/p =







1 + 2
(
∑p/2

i=0 n2iA
2i − A

∑p/2−1
i=0 n2i+1A

2i
)−1 (

A
∑p/2−1

i=0 n2i+1A
2i
)

if p is even ,

−1 − 2
(

A
∑(p−1)/2

i=0 n2i+1A
2i −∑(p−1)/2

i=0 n2iA
2i
)−1 (∑(p−1)/2

i=0 n2iA
2i
)

if p is odd .

(A.24)

Since Padé approximation is only accurate near the origin so that the approximation

of exp(A) is not valid, when ‖A‖ is too large. Fortunately, this problem will be solved

when we introduce so-called scaling and squaring’ technology [23, 24]. We make use

of the exponential property

exp(A) =
[
exp

(
2−sA

)]2s

≈
[
Rp/p

(
2−sA

)]2s

, (A.25)
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where s is chosen such that ‖2−sA‖ 6 1/2. The idea is to choose s to be a nature

number for which M = exp (2−sA) can be reliably and efficiently computed, and

then to compute the result exp(A) = M2s

by repeated squaring. Because the result

is evaluated by repeated squaring the exponential of scaled matrix, the drawback

of this algorithm may come from the fact that if s ≫ 1, then the roundoff errors

may be large. The error analysis discussed in these papers [23, 24] has shown that if

‖2−sA‖ 6 1/2 then

[
Rp/p

(
2−sA

)]2s

= exp(A+ E) , (A.26)

where

‖E‖
‖A‖ 6

(p!)2

((2p)!(2p+ 1)!

(
1

2

)2p−3

≈







0.34 × 10−15 (p = 6)

0.11 × 10−18 (p = 7)

0.27 × 10−22 (p = 8)

. (A.27)

Therefore, a value of p = 6 is generally satisfactory for computer computing while

using double precision.

A.5 Matrix Exponential Source Code

In this section, we will show the source code of matrix exponential in Listing A.1 which

is implemented based on irreducible (p, p)-degree Padé approximation described in

the previous section and Fortran source code of Expokit software package [23]. Our

source code is written by C++, and we take the advantage of Boost C++ Libraries

which have a lots of useful Basic Linear Algebra routines (uBLAS). Our source code

is released under GPLv2, its later version, or Boost Software License Version 1.0.
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Listing A.1 Matrix Exponential C++ Source Code� �

/∗ expm . hpp

∗ Implement matrix e x ponen t i a l us ing pade approximation .

∗

∗ Copyright ( c ) 2007

∗ Tsai , Dung−Bang

∗

∗ Department o f Physics ,

∗ Nat iona l Taiwan Unive r s i t y .

∗ Version : v0 .5

∗

∗ expm pad computes the matrix e x ponen t i a l exp (H) f o r

∗ genera l matrixs , i n c l ud i n g complex and r e a l matr ix s

∗ us ing the i r r e d u c i b l e (p , p ) degree r a t i o n a l Pade

∗ approximation to the e xponen t i a l

∗ exp ( z ) = r ( z ) = (+/−)( I+2∗(Q( z )/P( z ) ) ) .

∗

∗ Usage :

∗ U = expm pad (H)

∗ U = expm pad (H, t ) ,

∗ U = expm pad (H, t , p ) ,

∗ where t i s a r e a l number which i s d e f a u l t s e t to 1 .0

∗ such t ha t U=exp ( t ∗H) , and p i s i n t e r n a l l y s e t to 6

∗ ( recommended and g e r e r a l l y s a t i s f a c t o r y ) .

∗

∗ Licenses : GPLv2 , i t s l a t e r vers ion ,
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∗ or Boost Sof tware License Version 1 . 0 .

∗/

#ifndef BOOST UBLAS EXPM

#define BOOST UBLAS EXPM

#include <boost /numeric/ ublas / vec to r . hpp>

#include <boost /numeric/ ublas /matrix . hpp>

#include <boost /numeric/ ublas / lu . hpp>

#include <boost /numeric/ ublas / t r a i t s . hpp>

namespace boost { namespace numeric { namespace ublas {

template<typename MATRIX> MATRIX expm pad (

const MATRIX &H, typename t yp e t r a i t s<

typename MATRIX : : va lue type>

: : r e a l t yp e t = 1 . 0 ,

const int p = 6)

{

typedef typename MATRIX : : va lue type va lue type ;

typedef typename MATRIX : : s i z e t yp e s i z e t yp e ;

typedef typename t yp e t r a i t s<va lue type>

: : r e a l t yp e r e a l v a l u e t yp e ;

a s s e r t (H. s i z e 1 ( ) == H. s i z e 2 ( ) ) ;

a s s e r t (p >= 1 ) ;

const s i z e t yp e n = H. s i z e 1 ( ) ;

const i d ent i ty mat r ix<va lue type> I (n ) ;
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matrix<va lue type> U(n , n ) ,H2(n , n ) ,P(n , n ) ,Q(n , n ) ;

r e a l v a l u e t yp e norm = 0 . 0 ;

// Calcuate Pade c o e f f i c i e n t s

vector<r e a l va l u e t ype> c (p+1);

c (0)=1;

for ( s i z e t yp e i = 0 ; i < p ; ++i )

c ( i +1) = c ( i ) ∗ ( ( p − i ) / ( ( i + 1 . 0 ) ∗ ( 2 . 0 ∗ p − i ) ) ) ;

// Calcuate the i n f i n t y norm of H, which i s de f ined

// as the l a r g e s t row sum of a matrix

for ( s i z e t yp e i =0; i<n ; ++i ) {

r e a l v a l u e t yp e temp = 0 . 0 ;

for ( s i z e t yp e j = 0 ; j < n ; j++)

temp += std : : abs (H( i , j ) ) ;

norm = t ∗ std : : max<r e a l va l u e t ype >(norm , temp ) ;

}

// I f norm = 0 , and a l l H e lements are not NaN or

// i n f i n i t y but zero , then U shou ld be i d e n t i t y .

i f (norm == 0 . 0 ) {

bool a l l H a r e z e r o = true ;

for ( s i z e t yp e i = 0 ; i < n ; i++)

for ( s i z e t yp e j = 0 ; j < n ; j++)

i f ( H( i , j ) != va lue type ( 0 . 0 ) )

a l l H a r e z e r o = fa l se ;

i f ( a l l H a r e z e r o == true ) return I ;

// Some error happens , H has e lements

// which are NaN or i n f i n i t y .
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std : : cer r<<”Nul l input e r r o r in the template expm pad .\n” ;

std : : cout << ”Nul l INPUT : ” << H <<”\n” ;

e x i t ( 0 ) ;

}

// Sca l ing , seek s such t ha t | | H∗2ˆ(−s ) | | < 1/2 ,

// and s e t s c a l e = 2ˆ(−s )

int s = 0 ;

r e a l v a l u e t yp e s c a l e = 1 . 0 ;

i f (norm > 0 . 5 ) {

s = std : : max<int>(0 , static cast<int>

( ( l og (norm) / log ( 2 . 0 ) + 2 . 0 ) ) ) ;

s c a l e /= r e a l v a l u e t yp e ( std : : pow( 2 . 0 , s ) ) ;

U. a s s i gn ( ( s c a l e ∗ t ) ∗ H) ;

// Here U i s used as temp va lue due to t h a t H i s cons t

}

else

U. a s s i gn (H) ;

// Horner e va l ua t i on o f the i r r e d u c i b l e f r a c t i on ,

// I n i t i a l i s e P ( numerator ) and Q ( denominator )

H2 . a s s i gn ( prod (U, U) ) ;

Q. a s s i gn ( c (p)∗ I ) ;

P . a s s i gn ( c (p−1)∗ I ) ;

s i z e t yp e odd = 1 ;

for ( s i z e t yp e k = p − 1 ; k > 0 ; −−k ) {

( odd == 1 ) ?
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( Q = ( prod (Q, H2) + c (k−1) ∗ I ) ) :

( P = ( prod (P, H2) + c (k−1) ∗ I ) ) ;

odd = 1 − odd ;

}

( odd == 1 ) ? ( Q = prod (Q, U) ) : ( P = prod (P, U) ) ;

Q −= P;

// Since in ub las , t h e re i s no matrix i n v e r s i on template ,

// I s imply use the bu i l d−in LU decompostion package

// in ub las , and back s u b s t i t u t e by myse l f .

// Implement Matrix Inve r s i on

permutation matrix<s i z e t ype> pm(n ) ;

int r e s = l u f a c t o r i z e (Q, pm) ;

i f ( r e s != 0) {

std : : c e r r << ”Matrix i nve r s i on e r r o r

in the template expm pad .\n” ;

e x i t ( 0 ) ;

}

// H2 i s not needed anymore , so i t i s

// temporary used as i d e n t i t y matrix f o r s u b s t i t u t i n g .

H2 . a s s i gn ( I ) ;

l u s u b s t i t u t e (Q, pm, H2 ) ;

( odd == 1) ?

( U. a s s i gn ( −( I + r e a l v a l u e t yp e ( 2 . 0 ) ∗ prod (H2 , P) ) ) ) :

( U. a s s i gn ( I + r e a l v a l u e t yp e ( 2 . 0 ) ∗ prod (H2 , P) ) ) ;

// Squaring
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for ( s i z e t yp e i = 0 ; i < s ; ++i )

U = ( prod (U,U) ) ;

return U;

}

}}}

#endif

� �
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