Web Services Search and Composition by
Combining Web 2.0 and Semantic Web Technology

National Taiwan University

July 18, 2008

THESIS ABSTRACT
GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Yang, Te-Wei Month/Year: June, 2008
Advisor: Tsay, Yih-Kuen

Web Services Search and Composition by
Combining Web 2.0 and Semantic Web Technology

Web Services which are specific functionalities and can be combined to meet a partic-
ular user’s needs have become a mature technology in the past few years. However, the
discovery and search mechanism provided by UDDI based on keyword matching may lead
to an ambiguous answer. It is a challenge to target the suiting Web services precisely.
Semantic Web technology provides another.option for service matching. It enables a
service profile to be described according to its funetionalities in OWL, which is based on
Description Logics. Recently, résearchers are dedicated on studying Semantic Web tech-
nology as a primary tool for entoldgy-based WebiServices searching and invocation. With
help of precise semantics description, Web Services are able to be utilized automatically.

Under such a Semantic :‘Web'" seapehwmechamism, Wel “Services profile and domain
ontology are both described by Descripti;_n Lpgics. However, potential users often do
not have any knowledge about Descr1p1;1o fes. That ereates a huge gap and critically
imposes high entrance barriers for thq e51des omtology maintenance is another im-
portant issue for Semantic Web appli tlons _Ontology maintenance is a time-consuming
job. Ontology maintenance is usuall§ controlled by assmall group of people. But it has
several drawbacks: (1) the addition ¢an betime-eonsuming and lack of completion and
(2) the ontology maintainer read the concept 1n. the different manner from how potential
user does. Accordingly, sometinies concepts*become obsolete by the time they enter the
ontology. In the long run, ontology maintenance cannot be ignored especially in such a
Semantic Web application.

In this thesis, we proposed: (1) an open system architecture to lower the entrance
barriers of Semantic Web applications, (2) a practical approach to ontology maintenance,
and (3) a new prototype system. The Traveller was implemented based on our ontology-
based architecture and related methodologies. With the service composition and execu-
tion architecture, the user is able to find suiting Web Services, invoke services by defining
BPEL4WS, and participate in collaborative ontology maintenance without knowing any
Semantic languages.

Keywords: AJAX, BPEL, BPEL4WS, Description Logics, Ontology, OWL, Seman-

tic Web, Semantic Web application, Semantic Web Service, Service Execution, SWRL,
Web Services, Web 2.0, Protégé,

1

Contents

1__Introductionl 1
(1.1 Background| o 1
(1.2 Motivation and Objectives| 2
(.3 Thesis Outlinel. 4

2_Related Workl 5
2.1 Web Services| 5

[2.1.1 Web Service Descrlp’qmm U&nguag@}(WSDLM 6
P12 UDDI . r e~ 8

AP ~ 9

10

) 10

2.2.2 Web Service 11
223 OWL-S . .. 12
2.2.4 Modeling Onto 14

[2.3 Service Matching and i 16
P.3.1 Service Matching . + . . =5 16
2-32 Service Ranking: 18

2.4 Web Services Compﬁslthﬁjg- 5 20
2.5 Related Projects . . Z‘_’.:.- S J,-"'. . M 20
2.5.1 SATINE Project] . .= T T L e 20
[2.5.2 BEuropean Semantlc Systems Inltlatlve (ESSD)| 21
2.50.3 FON Architecturelo o 23

3__Preliminaries| 25

[3.1 Description Logics| 25

[3.1.1 Description Logics Syntax and Semantics| 27
B2TOWI. . . . o 30
[3.3 Semantic Web Rule Language: SWRL| 31

.31 SWREL Editorl 31
[3.4 Quantitative Relations| 00000 32
3.5 Web Service Description Language(WSDL)[. 36
3.6 Web Services Business Process FExecution |

| Language(WS-BPEL)|. 38
(3.7 Web 2.0 Technology|. 39

111

[4 Service Composition and Execution Based on Semantic Technology] 41
4.1 Overview of Web Services Composition Architecture Based on Semantic |
| Technologyl 41
[4.1.1 Web Services Composition| 42
[4.1.2 Design of Web Services Composition Architecture Based on Seman- |

| tic Technology|.o 46
[4.2 Service Composer| 52
[4.2.1 Design of the Service Composer| 52
[4.2.2 Architecture of the Service Composer| 54

4.3 Knowledge Base Management System|. 58
[4.3.1 Design of the Knowledge Base Management System| 58
[4.3.2 Architecture of the Knowledge Base System| 58

4.4 Ontology Modeling| 62
[4.4.1 Service Composition Mechanism|. 67
[4.4.2 Service Execution Based on Semantic Technologyl 69

4.5 Constraint Handlingl 69
Mb.1 Constraints 70
H.5.2_Time Constraind gl e 71
4.5.3 Value Partitionls. . =0, . .-:-"'."EI.' 72

(.6 Ontology Maintenance| -3 73
[4.6.1 Wiki-supperted O y Engin 73
[4.6.2 'The Model of:0Ontology Maturi 75
4.6.3 Wiki Com.mu‘ﬂftv Component 76
&mea&&m&uﬂml}i 79
[4.7.1 Design of the Sexvice XT 79
M.7.2_Architecta Servicelfixeciit 79
[4.7.3 Development of |1 i 81

[> Implementation - The"'Itrayell 85
[5.1 The System Design| . iy 85
[0.2 Service Description| . ' "f- Lo 87
[5.2.1 'lrip Requlrement Descrlpt'lonl 88
[5.2.2 Service Advertisement Description| 89

(5.3 Implementation of the Traveller| 90
[5.3.1 Implementation of the Service Composer|{ 92
[5.3.2 Implementation ot the Knowledge Base Management System| . . . 94

[>.4 Ontology Designl 97
[>.4.1 The Tourism Domain Ontologies| 97
[5.4.2 The Spot Ontology| 97
[5.4.3 The Requirement Ontology| 100
[5.4.4 'The Advertisement Ontology| 103

(5.5 Constraint Checkingl 106
B.5.1 Time Constraints 108
[5.5.2 Budget Constraints| 110

H.6 Constraint Ruleso oo 112
Hh.6.1 PAL Rules.o 112

v

List of Figures

(.1 Web Services Architecturel 2
2.1 Web Services Architecturelo oL 6
2.2 WGSDL Binding Example]o 00000000 7
2.3 Relation between UDDI data structures|. 9
2.4 Top level of the Service Ontology| 13
[3.1 Architecture ot a knowledge representation system based on Description |
Logics|o TR o . - e e e e e e 26
3.2 The SWRL Editor in P;rotegej_(% - .=__;;=;"-";:'; e e 33
[3.3 Relationship betweenabVXRL and Ontolo e 34
&= I~ N
4.1 Web Services Con}p(_)smlo 47
.2 Architecture of the Sé-t ce 3 54
1.3 Architecture of the Knowledge-B: fem 59
M4 Requirement Model ' g - The { roach . « . 64
{5 Requirement Exam The TBox Appro ‘ 65
[4.6 Ontology Design of:the Ar tec@ - q |
and Common On'folog}yd, A8 . -5 . 0L Ry S 66
i 12N \‘ 67
s q“: " 71
[4.9 The ValuePartition Ontblggyl .. Y * e 72
10_Architecture of the Service ExecuionModuld 81
{4.11 Lite-cycle of the Business Process Execution Languagel 84
(5.1 The Implementation of the Service Composer| 94
[>.2 The Implementation of the Knowledge Base Management System| 96
[>.3 The Tourism Ontology Designl 98
(5.4 Design of the Spot Ontology (Part)|, 99
(5.5 The Ching Jing Farm Service Profile| 100
(5.6 The Requirement Ontology in the Travellerf 102
[>.7 'The Requirement Example in the Traveller|. 103
[>.8 The Requirement Concept Definition in the Traveller| 104
(5.9 The Trip Requirement of the scanrio in the Travellerf 105
[5.10 The Advertisement Ontology in the Traveller| 106
[5.11 The Advertisement Example in the Traveller. 107
[>.12 The Advertisement Concept Definiton in the Traveller{ 108
[>.13 The Trip Package Examplel. o000 109

vi

[>.14 Constraint Handling and Checking in the Implementation System|
[5.15 Relationship between leqb000 and leqb00 in the ValuePartition Ontology|

vil

List of Tables

2.1 Comparison between WoMO and OWL-S|. 15
[3.1 Description Logics Concept Constructors| 28
[3.2 Terminological and Assertional Axioms| 29
[3.3 Abstract Syntax of SWRL| 32
[3.4 Semantics of Quantitative Concepts| 34
[3.5 Semantics of Quantitative Relations| 36
(5.1 91

viil

Chapter 1

Introduction

1.1 Background

Web Services which are specific functionalities and can be combined to meet a particular
user’s needs have become a mature technology in the past few years. Service Oriented
Architecture(SOA) [4]provides a distribufed, léosely coupled, and open standard archi-
tecture which is able to create a platform—indepeﬁd’eht mechanism over the Internet,
combine services together anci' Téuse tHém to ach'ieve buéin’ess applications. Aside from
Service Oriented Architecture, W3C has c?;@_l@pbd several related standards to support
Web Service, such as Simple Objéet A cess.-[Protocol (SOAP) [11], Web Service Descrip-
tion Language (WSDL) [15], Unlver$ Descrlptlon Dlscovery, Integration (UDDI) [2],
and Web Services Business Process Executlon Lang_uage (WS-BPEL) [§]. SOAP is a
communication protocol adapted in | Web' Sarviées today. Through XML-based message
communication, applications are able to exchange information in a decentralized, dis-
tributed, and heterogenous environment. Using WSDL, a user can locate Web Services
and invoke any of its publicly available function. UDDI enable businesses to publish
service lists and have them to be found on the Internet. In other word, UDDI provides a
platform-independent service registry for businesses worldwide. The role of WS-BPEL is
to define a specific Web Services by composing a set of existing services. Figure|l.1|shows
that the basic architecture of Web Services involves three main roles: service provider,

service registry, and service requestor.

Service Provider

Publish, Unpublish, Update Invoke

Discover, View

Service Broker / Registry Service Requestor

Figure 1.1: Web Services Architecture

1.2 Motivation and Objectives

o

Just as previous stated, Web Services dé\;éloplﬁeﬁt is continually booming. However, the
discovery and search mechanism bfoﬁded by UDDI l;éié-ed on keyword matching may lead
to an ambiguous answer. It-is*a Chall'é—n‘ge to target the Sultlng Web services precisely.
Keyword search mechanism is not an g cwﬂ?__mﬁthqdology, because there may be different
meanings to a single keyword and cel e a;ﬁuled s%earch outcome. Therefore, we try to
combine Semantic Web and Web Ser ices tecEnoldgi together which means Web Services
description written in XML forma,t caL be annotL ed w1th semantics. By this method,
search machines like computers are able to unders—tand the exact semantic of Web Service,
and find out the best description that matehes'the user’s need. There are many researches
on the Semantic Web Services. They try to use expressive Description Languages, such
as Description Logics [9] to equip service profile with semantics. Description Language,
which is a formal logic-based system and developed to conceptualize knowledge and to
model Ontology, has extended many Ontology languages applied in Sematic Web Service,
such as RDF [35], DAML+OIL [25], and Web Ontology Language (OWL) [18]. Recently,
researchers are dedicated on studying Semantic Web technology as a primary tool for
ontology-based Web Services searching and invocation rather than keyword-based search

mechanism. With help of precise semantics description, Web Services are able to be

utilized automatically.

Under such Semantic Web mechanism, Description Logics play an important role.
Web Services profile, domain ontology are both described by Description Logics. Our
matching scheme also relate with Description Logics. However, potential users often do
not have any knowledge about that [44]. It creates a huge gap and critically imposes high
entrance barriers for Semantic Web applications. Ontologies in Semantic application need
constant updates and maintenance so that they correctly represent the real world. But it
is a time-consuming job for those administrators. The managements of ontology need to
be more efficient and more organized so that computers can use those plentiful and correct
ontologies in reasoning tasks to deduce the right results. In the traditional approach,
ontology maintenance is controlled by a small group of people. But the fact shows that
small group constructs the ontology for a bigger group has several drawbacks: (1) the
addition can be time-consuming and lack of eempletion (2) the ontology maintainer read
the concept in the different mannerfrom liow potential user does. Accordingly, sometimes
concepts become obsolete by the‘timedthey enter the:gﬁhtology. In the long run, ontology
maintenance cannot be ignoréd especially in such a Semaﬁtie Web applications.

The goal of this thesis is to propose ahem archltecture based our previous architecture

of "automatic service composition anﬁ’ex ution Ifor Web Serviges” [57]. In our previous
Lsues f-rom c‘@sual users’ perspective and adminis-

architecture, we have identified somei i
trators’ perspective. We wantito pl"tb\%lde new fe@ﬂures that not only make our system
more friendly for casual users-and also for admmlstrators In new architecture, we want
to create a open environment where every user participates in update and maintenance.
We implement a new prototype system called the Traveller, which acts as a trip planner
on the Internet that handles the customer’s tourism requirements. By combining Web
2.0 technology [46], such as community and mashups, the entrance barrier of Semantic
Web applications will be lower.

In this thesis, we proposed: (1) an open system architecture to lower the entrance
barriers of Semantic Web applications, (2) a practical approach to ontology maintenance,
and (3) a new prototype system. The Traveller was implemented based on our ontology-
based architecture and related methodologies. With the new service composition and
execution architecture, the user is able to find suiting Web Services, invoke services

by defining BPEL4WS, and participate in collaborative ontology maintenance without

knowing any Semantic languages.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

e In Chapter[2] we introduce the development of the Web Services and Semantic Web
in recent years. Then we review some related researches about Semantic-based ser-
vice matching and service ranking. Besides, composition of Semantic Web Services
and ontologies modeling of Time and Value are discussed with some relevant papers.
In the end of chapter 2| we introduce Web 2.0 technology and some ongoing projects
related to our thesis, such as SATINE [22] which is a travel domain project based
on Semantic Web Services, European Semantic Systems Initiative (ESSI) which

dominates six projects specialized in certain aspects of Semantic Web services.
; =

e In Chapter [3, we mtroduce basic notations and ax10ms about Description Logic,
basic inference problems in Desﬁ‘lptlon Loglcs Otherw1se Web Ontology Lan-
guage (OWL), an entology langqagﬁemalnftlc Web Rule Language (SWRL) [26],
which extends OWL axiomsto s*u porii Spemﬁc tules, and other related Web Service

standard: WSDL and WS- BPEIL willbe mtlfoduced
i 1

{) !
e Chapter [] explains service compos1t10n and exdetition based on semantic technolo-
gies. The relationships between reqmrements and advertisements are described.
The architecture of ontology are detailed. We also proposed a classification of con-

straints and their handling approaches. Besides, the service execution module is

proposed and explained in this chapter.

e Chapter [p] describes the prototype system, the Traveller, which is applied in tourism
domain. The ontologies modelling of the system and interactions among compo-

nents in the system will be represented in detail.

e Chapter [6] summaries the contributions of this thesis, and its future direction for

further research.

Chapter 2

Related Work

In this chapter, We will review related works about the Web Service, Semantic Web
Service, some researches in modeling Ontology, several papers about service matching

and ranking, and related projects working recently.

2.1 Web Services

Web Services is a software sys:tem designed to support computers interaction over a dis-
tributed system environment.By access‘i:ﬁg'}:eﬁ{eﬁ service; it allows different applications
|
from different sources to communicat%eLWit'-ﬁ;/aCh' other without time-consuming custom
Il 1§

coding. In the following, We/will intlto ncenhin ai‘chitectlire components.

| 1 1
e Service Provider: A service proyvider implements the service and make it available

on the Internet by publishing its scrvice deseriptions to the service registry.

e Service Requester: A service requester utilizes an existing Web Services by

searching service registry and invoking qualified services.

e Service Registry: A service registry serves as a service broker, which performs a

matching scheme and sends qualified service descriptions back.

In order to ensure service interoperability. Every component in Web Services architec-
ture exchanges message with Simple Object Access Protocol(SOAP) which is XML-based
communication standard. Service profiles are described by Web Service Description Lan-

guage(WSDL), and are stored at Universal Description, Discovery, Integration(UDDI)

Registry where Service Requester search for their Web Service. Finally, Service Re-
quester make a remote procedure calls(RPCs) to invoke the business function on the

Service Provider. Figure 2.1 shows how Web Services Architecture work.

e
Service Broker

(UDDI Registry)

3. Bind

4, Invoke

Service Requester Service Provider

4_‘,
=5

Figure 2.1& Web Services Afghitgcture

P
| | i !
\ | |

| 1 5
| ,-“-“'-_'m il I
== — i':r',;

2.1.1 Web Service Deserip ioq@ar@uage(WSDL)

N
WSDL is an XML document dgscrib HF; a Web Seﬁr\/ice. WSDL document has two types

of elements: Abstract and Coﬁ‘c;i'ete._ The Absﬁ;act part, which is also known as
interface definition, describes what data"vtypés an:d message format should be used, what
functions are supported by the service. The Concrete part describes how the service will
be used over network and where the service locates. In the Concrete part, services are
well implemented in details, some implementation specifications are defined here

A service interface definition, which is reusable, describes a service in terms of message
format and its operations. A service implementation definition provides actual implemen-
tation details, such as access points and service provider information.

The Abstract part definition includes four elements, Types, Message, PortType,
and Binding.

1. Types, defines primitive data types used to form messages. WSDL prefers XML-

Schema as the canonical type system.

2. Message, defines the name and content of the request/response messages, which
are the parameters of operations. Message element will be removed in WSDL2.0

[15], since message types can be directly defined in Types element.

3. PortType, renamed as Interface in WSDL2.0, is a named set of operations in-

volved.

4. Binding, defines message format and protocol details for operations and messages

defined by a particular portType(Interface). Figure introduces the concept of

service binding.

The Concrete part definition includes two elements, Port and Service.

1. Port, renamed as Endpoint in WSDL2.0, describes the access point of service

when perform data transmission:s * g
‘ = A

2. Service, a collection of relatiéd endpoints, Gefimes ‘the address for invoking the

specified service. b If“'_"\' N

| Ni=.Q) |
ilf‘--‘ -:.': |||

’ =
Servicel Service2 Service3
= 2] @ z v = =
—E JE _E _E = B - E - E
£E 5z %E SE £E Sk £z
]] =
o o 5 5 8 E

®
®
°

o

e

Binding] Binding2 Binding4 Binding5 Ce . Rinding6
Binding3 [_— S
/.’ Interface2 Interfaced
Interface] Interface3

Figure 2.2: WSDL Binding Example

2.1.2 UDDI

WSDL has defined a standard for service description and service accessing. However, the
user still needs a central registry that stores service profiles and provide service discovery
in a efficient way. That’s the functionality UDDI supply for. UDDI was developed by
IBM, Microsoft, and Ariba. It defines a explicit specification for service discovery and
service publishing, and solidifies the integration of Web Service.

UDDTI’s registration information consists of four data structure types including busi-
nessEntity, businessService, bindingTemplate, and tModel. Figure describes

the relations between these data structures.

e businessEntity: The businessEntity structure represents all known information
about a business or entity that publishes information about the entity and what

services it offers.

e businessService: The busingssService struetire describes services provided by a

specified businessEntity; includingservice narne, service key, and service description.

e bindingTemplate: The bmdmgTeMe structure, swhich was included in busi-

nessService, provide support folr eteﬂmmng a ‘technical entry point or optionally

support remotely hosted Servmés , 3:
L |3
e tModel: The tModel struc’cufe hias two main uses. One is defining the technical

specification and the other is defining an-abstract namespace reference.

There are three general categories which are the way how UDDI stores service infor-

mation.

e White Pages: White pages provide basic contact information about a company,
such as the business name, address and contact information. White pages also
provide unique business identifiers, such as domain name. In short, white pages
allow customers and partners to discover business services based upon business

identification.

e Yellow Pages: Yellow pages describe a business service using different catego-

rizations (“taxonomies” in UDDI terminology). This information allows others to

8

businessEntity; [ntormation about the party who
publishes information about 2 service

tMuodel; Descriptions of specifications
husiness Entities contain of services or taxonomies. Basis for
businessServices techmcal finerprints

binding Templates contain references o
N tMudels. These references designate the
busincssService: Descriptive interfiace specifications for a service
tnformation about a particular tamily
of technical services

businessServices contain
binding Templates

binding Template: Technical
information aboul o service entry point
and comstruction specifications

Figure 2.3: Relation between UDDI data structures

discover business services based upon its categorization, such as being in the man-
il SIS
ufacturing or software dev_?l_dpr}lemf_,,.busiges_s:' i

AT e - "

o P

e Green Pages: Greq.n page's

UDDI are not hrm{ced to,descrl 1n eb Services, but any business
i L]

ne—bé‘sed services, for example
g

H l-

' L
amfplay.l an important role as a service

As we mentioned in last chapt'ef:;f

service type offered _by a
call center service. f

—ar

broker, but we do not consider UED,'[s}keyword bﬁséd search as a good approach. Be-
cause different semantics may be referring to the same word, Keyword-based may cause
ambiguous results sometimes. In our approach, we prefer semantic can be embedded into

the search system, make service description more clear and more articulate.

2.1.3 SOAP

SOAP provides the definition of the XML-based information which can be used for ex-
changing structured and typed information between peers in a decentralized, distributed
environment. SOAP message is formally specified as an XML Information Set called
XML Infoset, which provides an abstract description of its contents. However, SOAP

provides the framework by which application-specific information may be conveyed in an

extensible manner. SOAP is mainly used for performing remote procedure calls (RPCs)
transported via HT'TP. Unlike other RPC technologies, such as CORBA, JAVA RMI and
DCOM, SOAP messages are entirely written in XML. Therefore, services can be invoked

without platform limitations.

2.2 Semantic Web

Semantic Web, which is brought up by Time Berners-Lee, is considered as a next gen-
eration of World Wide Web. Tim Berners-Lee issued the call for the Semantic Web,
because he found that HTML, the syntax of the Web, did not include enough meaning.
He suggested a syntax that could capture the meaning expressed in our daily live in a way
that computers could process. Therefore, the goal of Semantic Web is to make data over
network understandable and accessible to human and machines.Under such mechanism,
we can imagine that business.process camvbe indtiated by people and then proceed on its
own. All the tasks within the process would be intéfactions between machines, without
human participation. The otiier advaﬁfage it biings is trhe'— improvement of service dis-

covery. By semantic-embedded service dessfigptlbn, a service broker can match services

|

according to their functionalities. Thﬁez]eforq in thls sectlon we introduce two standards

of Semantic Web. 7 k
S |

11
i.

2.2.1 Resource Descrip‘ﬁibn ,Framerwoifrk(RDF)

Resource Description Framework (RDF)is designed by World Wide Web Consortium
(W3C). The original idea is establish a standard of metadata model but which has come
to be used as a general method of modeling information, through a variety of syntax
formats. The RDF metadata model is based upon the idea of making statements about
resources in the form of subject-predicate-object expressions. In the other word, RDF
can express the relationship between two terms, like Apples are a type of fruit; Homer is
the father of Bart. By putting all relationships together, we can construct an ontology.
Because of RDF’s simple data model and ability to model disparate concepts, it has not
only led to its increasing use in knowledge management applications but also animated

the expand of Semantic Web activity.

10

2.2.2 Web Service Modeling Ontology(WSMO)

In order to create a Web Service Modeling Ontology [51], which is abbreviated to WSMO,
for describing abundant Semantic of Web Service. The ESSI [] WSMO group works
for explicit standardization in Semantic Web Services language, and try to use a com-
mon architecture to represent the standard of Semantic Web Service. The architecture
called Web Service Modeling Framework(WSMF') consists of four different main elements:
Ontologies that provide the terminology used by other components in WSMF, Goal
Repositories that define the user’s problems that should be solved by Web Services;
Web Services descriptions that define various aspects of Web Services in detail; and
Mediators which are responsible for interoperability problems in connecting heteroge-
neous datum, processes, and protocols between WSMF elements.

which provide the conceptual model for semantically accomplishing the functions of
Web Services including automatic Web Sefvices"ﬁublishing, Web Service discovering, Web
Services composition, and sexecution, the group airriS’et developing the language called
Web Services Modeling Language (WSML) thaf formalizes) the Web Services Modeling
Ontology (WSMO) and focusing on & fram-ework called Web Services Modeling Frame-
work (WSMF) that develops a fundal ent:;e;ec{ltlon environment.

Detailed descriptions about these& mponents' are as follows
i i |
1

e Ontologies: According to Gfuberfs deﬁnitioﬁ:3eb0ut Ontology: An ontology is a
formal, explicit specification of & ehared coeceptualization. [23] In WSMF, ontolo-
gies are used to define the terminology that is used by other elements of WSMF
specifications. Therefore, they enable reuse of terminology as well as interoperabil-
ity between components referring to the same or linked terminology. Ontologies,
which was developed in Artificial Intelligence to facilitate knowledge sharing and
reuse, are formal and consensual specifications of conceptualizations that provide
a shared and common understanding of a domain, an understanding that can be
communicated across people and application systems. It define formal semantics

for information, consequently allowing information processing by a computer.

e Goal Repositories: The description of a goal specifies objectives of fulfillment

http://www.essi-cluster.org/

11

http://www.essi-cluster.org/

arrived by executing the Web Services and that user may have when he consults
a Web Service.A goal specification consists of two elements:Pre-conditions describe
what a Web Services expects for enabling it to provide its service. Post-conditions

describe what a Web Services returns in response to its input.

e Web Services: Web Services represent service entities, which provide certain func-
tional tasks in a domain. Web Services descriptions consist of its non-functional
properties, its functional properties, and the behavioral aspects of a Web Service.
These properties and aspects of Web Services are described by using the terminolo-

gies defined in Ontologies.

e Mediators: The Mediators allow one to link heterogeneous resources and are pro-
posed to overcome the interoperability problem between different WSMO elements.
The Mediators not only selve the data h.e‘gerogeneity problem, but also deal with
process, and protocol heter()geneity.r WSI\'/IJO defines four types of Mediators, such

as ggMediators, ooMediators; wgMediators, andiwwilediators.

2.2.3 OWL-S NS

< | |

l
As we mentioned above, WSPL doc 4ent _g;cﬁ_ntai?ﬁls sufficient information for user to in-
voke a service, but semantic abott seLthice descriptliipn 1s adequate, such as ”how service
works” | "what is its precondition”: éndvpostconcl_itiozﬁz, and even "who provides the ser-
vices”. Base on OWL and predefined lénguage of DAML+OIL [16] 25], OWL-S [1§] is
proposed. However, OWL-S supplies Web Services providers with markup language con-
structs for increasing the expressive power and semantics of the properties and capabilities
of their Web Services. . When information is in unambiguous, computer-understandable
form, OWL-S markup of Web Services will facilitate the automation of Web Services

tasks including:

e Automatic Web Services Discovery
e Automatic Web Services Execution

e Automatic Web Services composition and interoperation

12

ServiceProfile

ServiceGrounding
L ServiceModel

Figure 2.4: Top level of the Service Ontology

e Automatic Web Services execution monitoring

]
I:

OWL-S does not aim to repleée'the current stancié’rd of Web Services, but attempts
to increase the capability: of Semantlc level 1ntel:operab1hty To fulfill the task, OWL-S
constructs the Upper Ontology that cons-lsg df §erv1ce Proﬁle Service Grounding,

|

and Service Grounding described F lowf-: =1
-r[J._ l ¢
e Upper ontologies: Upper onlI ogleereeﬁqef three types of knowledge about the
different aspects of services; Serv1ce Proﬁle Wthh defines what services are pro-
vided, Service Process Model, Wthh deﬁnes how services work, Service Grounding,

which defines how services interact. Figure shows the top level of the Service

Ontology.

e Service Profile: Service Profile represents what services are offered by the service
and descriptions about the services. Based on OWL subclassing approach, the de-
tailed information of services, such as who provides the service, what are the inputs,
outputs, preconditions, consequences, a list of features of services, quality rating of
a service, and an unbounded list of service parameters. Among registry informa-
tion in terms of the capabilities and description of the services, Service discovering
and matching can be implemented into Web Services standard like UDDI or other

inferencing mechanisms.

13

e Service Process Model: In Service Model, there is a minimal set of control
constructs u used to represent a variety of process of Web Services. It is including
Sequence, Split, Split-Join,Any-Order, Choice, If-Then-Else, Iterate, Repeat-While,
and Repeat-Until,. The behavior that Service Model specified should be consistent

with the descriptions in Service Profile.

A Process can be an atomic process or composite process. In the former one, it
expects one (possibly complex) message and returns one (possibly complex) message
in response. In the latter one, it maintains some state so that each messages from

clients can be recognized and be arranged in the correct order.

e Service Grounding: Service Grounding gives a concrete level of service specifi-
cation including the access point of the service, the communication protocols used,

and the message passed during its. execution:

Lara [34] made a comparison'hetween WSMO afd OWL-S. In a nutshell, OWL-S

tries to construct the description of services insa*broad:sense, not focusing on a specific

domain. WSMO aims to create an orri;i:"' o f'—fiot describing services in a more defined

F - __,-,'
Taﬁle ‘ngives a brief comparison between the
I f -

focus: solving the integration problem

ERe

two standards. , i 1
+ i | 1
. j !

2.2.4 Modeling Ontology of “T'ime and Value

Some researchers refer ontology to the study of conceptualization of reality. Web Ontology
Language (OWL) are used to model ontologies in order to represent the explicitly semantic
of terms in vocabularies and the relationships between those terms on the Web. Basically,
modeling various descriptive features, such as qualities, attributes, or modifiers, is a
frequent requirement while constructing ontologies. For example, descriptive features are
often be modeled as properties in OWL with specify ranges which define the constrains
on the values. However, there are many restrictions and limitations on modeling property
values while using OWL-DL or OWL-Lite, especially on handling time and value. Such
properties need to be handled specifically. Some approaches, such as [12,24], are proposed
to solve problems relevant modeling time and value. The recently research [12] introduces

CaT'TS, the Calendar and Time Type System, which is based on predefined date and time

14

Table 2.1: Comparison between WSMO and OWL-S

Aspect WSMO OWL-S
Purpose | Focused goal, specific Wide goal, does not focus on
application domains concrete application domains
Coupling | Loose coupling, independent Tighter coupling in several

definition of description elements | aspects

Requester | Two different points of view, Not separated, unified view in
needs and | modeled independently the service profile

service and linked through Mediators
capabilities

Functional | Explicit and complete description | Does not describe some aspects

description of the functionality

Mediation | Scalable mediation between No mediation

loosely coupled elements

Languages | F-Logic for logical expressions. | Language for condition not defined.

Ontology language notsimposed Ontology language OWL

types after the Gregorian calendar in XML Schema CaTT S provides a generic Semantic
Web application with methods to model a&eﬂ“@aspn about tilne and calendar constraints.
It comprises two languages;-a type d%ﬁmmlm language CaTTS-DL, for specifying the
type of the calendars and a constmmt language, CaTT 8-CL; for parsing the constraints
of languages. CaTTS contains. a‘teol called statzc type «checking for program analysis,
which verifies the behavior of programs and/of systems under specific specifications.
Another tool called constraint solver is used to annotate on arbitrary finite domains with
calendars defined using CaTTS-DL. The W3C Working Group proposed two guidelines
for modeling time and value. They are respectively Value Partitions and Value Sets in

[50].

e Value Partitions: The Value Partitions considers the feature as an individ-
ual/instance. We introduce a scenario that describes the health status of a person is
presented as an example. The Value Partitions takes the values of the health status
as sets of individual. It defines the class Health Value and its corresponding enu-
meration of the individual good_health, medium health, and poor_health. The

pattern is a simple and intuitive approach, but it has some limitations: it is impos-

15

sible to further subpartition the values because OWL only supports a dichotomy,
i.e., there are only equalities or differences between individuals. Individuals with
partial overlaps are not considered. Therefore, alternative partitions of the same

feature space cannot be represented.

e Value Sets: The Value Sets considers the feature as a class representing a con-
tinuous space that is partitioned by the values in the collection of values. We take
the same scenario to illustrate Value Sets approach. The Value Sets describes the
health status as subclass partitions, Poor_health value, Medium_health _value,
and Good_health value, of the Health value feature class. Although this method
is more complex, it provides more flexibility than the previous approach. The
subclass can be made into further subpartition such that there can be several alter-
native partitions of the same feature'space. The choice between these two patterns

depends on the future maintenance and the expansibility of the ontology.

2.3 Service Matching and Ranking

As we mentioned above, service matcﬁinwe .ﬁrocess that takes user requirement as
an input and returns all qualified resill}ts. Si}ri_ce tfhére may be multiple results according
to different matching degrees;, & ra lg;ing algoritlliu_n, whi¢h' can be helpful for user to
choose among these results, is esséiltial.: In"this seéaéion, we will review several service
matching frameworks first. Each of therm employs a'service description language along
with a matching algorithm to perform service matchmaking tasks. Different definitions of
matching degree are given according to the relations between a service requirement and

an advertisement. Then we review related works on service ranking, which gives priority

to several matching results.

2.3.1 Service Matching

Sycara et al. [56] define an agent capability description language called LARKS (Language
for Advertisement and Request for Knowledge Sharing), which can be used to specify
an advertisement, request, and matching agent capabilities. They define three types of

matching in LARKS: ezact match, plug-in match, and relaxed match. In addition, five dif-

16

ferent filters in LARKS are provided to carry out the matching process including context
matching, profile comparison, similarity matching, signature matching, and constraint
matching. These filters spans form text matching to semantic matching. All filters are
independent and each of them narrows the set of matched candidates and different degrees
of partial matching can result form using different combinations of filters. They propose
a well-formed framework for service matchmaking. However, in this framework, no rank-
ing function is provided except for relaxed match, which is determined by a numerical
semantic distance value.

Paolucci et al. [48] propose a service matchmaking approach based on DAML-S. They
make use of Service Profile section of DAML-S to describe the input, output, precondition
and effect (IOPE) of a service. Their matching algorithm consists of matching all the
outputs of the request against the outputs of the advertisement; and matching all the
inputs of the advertisement against thesinputs o'f the request. They compare the outputs
first and use input matching only-whensthere is aﬁ equ@j’ degree of match between outputs.

They define four matching degrees as V:frgllrows: L

- Ii‘7 |
e Exact: For brevity, we use outREfto;e'pPésénlt one of request’s output and outA to
represent one of advertlsementls ou’qﬂlj_ There are two situations that the match
will be labeled as EXACT ThL Eﬁrst c-ase 1§ *lwhen outR and outA are equivalent,
which is intuitive. The second case'is when outR is a subclass of outA, then they

still mark the result as EXACT
e Plug-In: If outA subsumes outR, that is, outA is a set that includes outR.

e Subsume: If outR subsumes outA. This happens when the provider dose not

completely fulfill the request.

e Fail: Failure occurs when no subsumption relation between outR and outA can be

identified.

They also propose an architecture to apply their matching algorithm to incorporate
with UDDI servers to equip UDDI registries with an additional semantic layer that per-

forms a capability based matching.

17

Li et al. [37] design and implement a service matchmaking prototype system which
combines a DAML-S based ontology and a Description Logics reasoner. They extend the

matching degrees in [48] and propose a five-level matching degree:

e Exact: If advertisement A and request R are equivalent concepts, we call the match

Exact; formally, A = R.

e PluglIn: If request R is sub-concept of advertisement A, we call the match Plugln;

formally, R C A.

e Subsume: If request R is super-concept of advertisement A, we call the match

Subsume; formally, A C R.

e Intersection: If the intersection of advertisement A and request R is satisfiable,

we call the match Intersection; formally, H(AMRL L).

e Disjoint: Otherwise; we Call the match Disjoiﬁt’; that is, ANRC 1.

Paolucci and Li both think that Plug,Ln ma’qch is better than Subsume match be-
cause, under Plugln match, the out}) t tﬁ,— be 'used 0 substitute what the requester
expects; while, under Subsuine mafk:; the requn"ement of the requester can only be
partially fulfilled. However, we haveldlfferent COI;Slderatlon PlugIn match may suffer
from the problem that an advertlsement is too generlc a service provider may define his
advertisement as general as possible to maximize the likelihood of being matched. On
the other hand, the Subsume match works under the assumption that a requester may
define his requirement with a general sense and can be satisfied with a specified kind
of matched services. We think such a viewpoint would be better in order to fulfill the

user’s requirement. Therefore, in our approach we discard PlugIn match and reserve

Subsume match.

2.3.2 Service Ranking

Stojanovic et al. [55] propose an approach to query results ranking in the Semantic Web.
The rationale behind their ranking scheme is to score services by counting available fillers

of properties. The more available fillers of a certain property, the lower score it will obtain.

18

If two property are connected by a and-connector, the obtained score is the sum of these
two properties’ scores. If two property are connected by an or-connector, the obtained
score is the product of scores of these two properties. In short, they translate query results
from a set of concept instances to a set of returned relation instances and compute the
relevance value to rank query results.

Di Noia et al. [20] and [45] propose a logical approach based on ”Crassic Description
Logics” to support supply-demand matching. In their approach, both supply and demand

are described as a conjunction of concepts. Their approach provide three types of match:

e Exact match: all requested characteristics are available in the description exam-

ined

e Potential match: some part of the request is not specified in the description

examined

e Partial match: some part ‘ofithe request 18 in conflict with the description exam-

ined

For potential match and partial matcih,'&éﬁki fpnction is devised respectively. The
main idea behind their rank-funetion i to_@_f_&_mpérie concept names between supply and
demand. The algorithm compiites ‘Edistance b:efgween concepts. The distance starts
with an initial value 0, which IneARS best ranking. The value gains with the syntactical
difference between concept names and can be uséd for a measurement of ranking.

Base on [20], Di Noia, et al. present an extended semantic-based matchmaking algo-
rithm [19]. They adopt two non-standard inference services in DL, Concept Abduction
and Concept Contraction. In Concept Contraction, the user’s requirement is divided
into two parts, NG and S7. NG stands for the part which is negotiable; while ST
represents for the part which should be strictly enforced. When potential match is un-
reachable, the algorithm utilizes Concept Contraction, which relaxes the negotiable part
of requirement, to gain satisfiable result. Then, Concept Abduction computes the part of
advertisement which should be refined to make requirement and advertisement complete

satisfiable with each other. By Concept Abduction and Concept Contraction, the service

matching scheme becomes more flexible under reasonable computational complexity.

19

2.4 Web Services Composition

The composition of Web Services can be considered from two aspects. The first is how
component in a Web Services architecture cooperate with each other. We take this
perspective as a role of the coordinator in the Web Services system. The coordinator
manages the interaction between components of system. The other aspect is a process
manager that combines many services that performs a complicated task. The composition
of service specifies which operations need to be invoked and in what order. This aspect
is worthy of research in Web Services based on Semantics therefore and is the focus of
this thesis.

The composition of Web Services used to form new, aggregate services for completing
more complicated tasks is the most important part in the interaction and inter-operation
of Web services. How to composeand cQordina_te different services, and assemble them
to support more complex services.and 'goals, are major challenges. Service composition
should consider the global eonstraints of the servicess ﬁivolved in the composition, as well
as the sequence of the services, [The Cgmpositiéh based on’ the logics of automation of
Web Services is discussed in,detail in [{54,5:,,(}@]' r

The composition and execution c?f servjfg's sho:uld be considered simultaneously be-

cause the result of the composition Emay fnﬂﬁen<';e: the methoud of execution. [49, 58]
propose a technique for automate{drsyﬁthesis of n!ex-v-:g:omposite Web Services from a set
of abstract BPEL4WS descriptions of cb’inponent: services to executable BPELAWS pro-

cesses automatically.

2.5 Related Projects
2.5.1 SATINE Project

The SATINE Project [22], which is applied on tourism industry, is dominated by Software
R&D Center in Middle East Technical University in Turkey. Since activities of travel do-
main involves Business to Business (B2B), such as the relationship between travel agents
and airline company or other partners, and also involves Business to Customer (B2C),
means if a person wants to plan his/her trip spontaneously, he/she have to deal with a lot

of services distributed in the network. If machines can search advertisements and book

20

their orders automatically, it would be convenient for those travelers. SATINE project is
proposed to fulfill such requirements in travel domain and is motivated by Open Travel
Alliance (OTA), which produced the XML schemas of message specifications to be ex-
changed between trading partners. The architecture of SATINE project provides secure
and semantic-based interoperability framework for Web Services platform in peer-to-peer
networks, and provides tools and mechanisms for publishing, discovering, composing, and
invoking correlative Web Services. A trip plan comprises many sub-plans and related ac-
tivities which invoke many Web services to complete a composed trip requirement. The
creation of complex services for orchestrating many simple Web Services is an important
task in travel business, because the execution order of Web Services may be very compli-
cated, vary execution order may result different consequence. Therefore SATINE project
also developed the framework of Semantic.-Web. Services composition and execution to
provide complex services. In SATINE project, & Sentantic Wrapper for constructing and
describing Web Services is proposed.aThat comipenent isito wrap existing information
resources and provide an easy:tool for small/ middle enterprises to collect and annotate
Web Services conveniently. A Semanticy)Alrapppr consists of two tools: the Web Ser-
vices Creator and the Web Serwices nnt‘!f’;)r 'The Web Services Creator transforms
the existing resources of WebServic 11101 t.!he ng,b Services' Annotator describes a Web

services with using OWL-S as‘semanti¢ descriptions.

2.5.2 European Semantic Systems' Initiative (ESSI)

The European Semantic Systems Initiative (ESSI) Clusterf] which combines Web Services
and Semantically empowered system solutions with semantically service-oriented archi-
tectures, is made of six European 6th Commission Framework Projects that works on
European research and industry through world-wide standardisation. The ESSI Cluster

research projects are listed below:

e Adaptive Services Grid (ASG)
ASG provides an architecture that aims to build a bridge between business-related
requirements and current service-oriented I'T-infrastructures for eliminating the gap

of communication, protocol, and standard.

Zhttp://www.essi-cluster.org/

21

http://www.essi-cluster.org/

e Data Information and Process Integration with Semantic Web Services
(DIP)
DIP focuses on further development, combination, and enhancement of Semantic
Web and Web Services technologies for producing a new infrastructure of Semantic

Web Services that will provide data and process integration in eWork and eComerce.

¢ Knowledge Web
Knowledge Web promotes greater awareness and faster take-up of Semantic Web
technology with the research activity for extending the capabilities of Semantic Web

to help reduce time which is needed to transfer the technology to industry.

e Semantically-Enabled Knowledge Technologies (SEKT)
SEKT is an integrated project by combining the three core research areas, that is,

ontology management. machine lgarning and natural language processing.

e Semantics Utilised for Precess managerﬁé’ﬁt Within and between Enter-
prises (SUPER) | &/ - '
SUPER raises Business Process Marfir ehi; (BPM) to the business level from the
IT level of semantics of busmefsj exmarts It fecuses on managing the execution

from a Business expert’s view Ita her than from a technlcal perspective.
i |

1
e Triple Space Communicat—ion (:TripCQm):{
TripCom shares with the projeet of ESSI fhe approach to add machine-readable
and machine-understanding descriptions to data and processes. It adds a new com-
munication channel to existing efforts that is not covered by current Web Services

technology by providing instant publication in distributed information system with

Semantic Web Services.

Each project with specialized aspects about Semantic Web Services contributes on
building the infrastructure, developing Semantic Web-based knowledge technologies, en-
riching existing Web Services with semantic description and supporting the transition

mechanism of Ontology technology from the Academia to the Industry.

22

2.5.3 EON Architecture

The EON project, section on Stanford Medical Informatics, want to create an architec-
ture consists of a set of software components and interfaces that provides developers a
concrete approach to construct robust decision-support systems that based on ontology
reasoning about guideline-directed care. They implemented the EON architecture by
building three main components, such as the temporal database mediator for handling
requests of time-dependent data from a patient database, the generic and extensible on-
tology for modeling clinical guidelines and protocols, a protocol-based therapy planner,
and a mediator for explaining and visualizing the behavior of other EON components.
Recent years, a practical DSS project called ATHENA uses the EON architecture for
developing guideline-based decision-support systems . An application based on EON

architecture may contain these componeénts described below:

e EON Problem-Solving Moedules(Guideline Interpreter) The EON Problem-
Solving Modules consists of many : submodules All problem solving modules access
a guideline knowledge base consmtmg?of quels of clinical guidelines, patient data,
and medical concepts created inl an‘ﬂf’écessed through the Protégé, an ontology
management system. There is| mod‘-ule called EON. Guideline Interpreter is re-
sponsible for taking inputs suqh like stand‘ard clini¢al guideline description from
clients’ queries and relevant, patlent data from patlent database then generating an

output situation-specific recommendatlons‘

e Chronusll Temporal Mediator a temporal database mediator, also called ChronusII,
has been developed that serves as the conduit between the problem-solving modules
and the clinical database which stores significant amount of temporal information,
such as hen a specimen for a laboratory test is obtained and when a prescription
is written and filled. The Chronusll extends the standard relational model and
the SQL query language to support temporal queries and provides an expressive
general-purpose temporal query language that is tuned to the querying requirements

of clinical decision-support systems.

¢ EON Knowledge Base EON knowledge base includes the EON Guideline Model,

23

which consists of a set of classes and attributes that describe concepts and relations
with which the content of clinical guidelines are formalized The Medical-Concept
Model, which defines the particular clinical interventions that are typical for a given
area of medicine, and the types of patient findings and patient problems that are
most commonly reported in a given medical discipline, and The Patient Data Model,
which defines the classes and attributes of patient information required by the rest

of the system. The EON knowledge base is manipulated through the Protégé editor.

Each project with specialized aspects about Semantic Web Services contributes on
building the infrastructure, developing Semantic Web-based knowledge technologies, en-

riching existing Web Services with semantic description and supporting the transition

mechanism of Ontology technology from the Academia to the Industry.
B ey LGI oy e
T

24

Chapter 3

Preliminaries

From the previous chapter, we not only review recently researches which focus on es-
tablishing related standards and ideas about Web Services and Semantic Web but also
many developing projects which brought academic theories into practical domains. The
Semantic Web enhances the usability and exten31b111ty of Web Services life-cycle on au-
tomatically publishing serviges, dlscovermg services, and invoking services because they
have defined precise specifications of service descrlptlons and protocols. Furthermore, the
Knowledge is represented by ontology; Whlch 1S modeled to express the fact in the certain

\
domain, is a fundamental task in Sema;ntmeéb $erv1ces environment. It would be help-

|

ful for us to understand the academic tiheor?gag. behind this mechanism. Therefore we will
introduce some preliminaries of.ourt eLsis in this c}i@pter, such as Description Logics (DL)
[9] for knowledge representation afid déscyibing concé}?ﬁts and properties is introduced. In
this section, syntax, semantics, and reaébning fea;cure of DLs is represented briefly. After
that, Web Ontology Language (OWL), which is the communication language between
service components, and Semantic Web Rule Language (SWRL), which defines rules of
relationship between Web Services semantically, is represented. In the end, Web Service
Description Language(WSDL) and Web Services - Business Process Execution Language

(WS-BPEL) are introduced in detail.

3.1 Description Logics

Description Logics (DL) [9] are a well-known family of knowledge representation for-
malisms which represent the knowledge of a domain. The essential elements of DLs are

concepts (unary predicates, classes) and roles (binary relations). Complex concepts can

25

v TBOX ™

Description

Reasoning
Language

/

™~ ABox

KB

Application
Programs

Rules

Figure 3.1: Architecture of a knowledge representation system based on Description
Logics. -

be defined by assembling atomi¢ ones. WJ@, fpi?mal and logrirc—based semantics, reasoning
is an important feature of Descriptio‘n; Lo;igst’\ﬁhlch allows inferring implicit knowledge
from explicit knowledge stored m the &now?ﬁdge base. Insaddition, the DL reasoner can
check whether two concepts subsume f_.each other(dlassify taxonomy). Figure shows
the architecture of a knowledge repfesentation systeﬁi based on Description Logics.

The knowledge representation systerﬁ consists of a TBox and an ABox. In the TBox,
it first defines the concepts in the application domain (the terminology used in the world)
and then utilizes these concepts to define roles (binary relationship between concepts).
Along with concepts and roles, TBox contains a set of axioms that are used for asserting
relationship among concepts and roles. A concept can be viewed as a set of objects,
which are instances of a certain object class. Therefore, in the ABox, we can assert that
a certain instance (denoted as individual) belongs to the given concept or two individ-
ual have realized the relationship of a certain role. TBox supports reasoning service for
checking subsumption and satisfiability among concepts, while ABox support reasoning

services, such as consistency and instance checking. Both of them are described in De-

scription Language, such as AL ,or the other extensive language. Another feature of the

26

Description Logics knowledge representation system is the emphasis on reasoning as its
core services. Application programs and rules can interact with the systems in various
way. Other applications can interact with the system by querying the Knowledge Base
,and by modifying it by adding and retracting concepts, roles, and assertions. Rules,
which are extensional formalisms that enrich the knowledge base, are another way to
access the DLs knowledge architecture. In the following sections, we list Description
Logics notations, such as concept definitions and roles to represent ontology definitions.

Detailed theoretical explanation can be referred in [9.

3.1.1 Description Logics Syntax and Semantics

Description Logics Syntax Atomic concepts, which are sets of unary predicate sym-
bols that are used to denote, and atomic roles, which are sets of binary predicate symbols
that are used to denote, are basie description glgments of Description Logics. Complex
descriptions can be built from thém inductively. With,éoncept constructors and role con-
structors. In the following abstract notatlons the capltal letter A stands for an atomic
concept, the capital letter R stands for, athlc ro}es and the capital letter C' and D rep-

resent concept descriptions. The lanF ag‘é’ﬁf i$ & minimal and fundamental language
that contains smallest set of ¢oncept TO str&rors Qoncept description in AL are defined

using the following syntax riiles {13) 1 ‘E 1

C,D — A| 7':(atomicr"concept)
T (universal concept)
1] (bottom concept)
- A (atomic negation)
CnD| (intersection)
V R.C | (value restriction)
JRT (limited existential quantification)

We present an example to illustrate the expressive of AL: suppose that Person and
Female are atomic concepts, then we can define Person M Female to represent Woman,
which means a person who is female. Then Person M —Female represents Man, which

means a person who is not a female. In addition, if hasChild is an atomic role, we can say

27

that Person M JhasChild. T express a person who has at least a child. Another example
Person M JhasChild.(Person M Female) expresses a person whose children are all female.
However, in practical applications and business domains, the AL languages are not
enough for describing cardinality constraints on roles, concrete domains, transitive roles,
inverse roles, role hierarchies and so on. The extended language, such as ALC which
supports full concept negation(C), based on AL with more expressive power is proposed.
A language that supports number restriction(N') is named ALCN while all member of
the AL-family include AL as a sublanguage. Therefore, we use constructors, SHZQ(D),

to describe our application domain. These added constructors include:

=n >n <n (concrete domain exactly /min,max restriction)

=n R >n R <n R (unqualified cardinality exact “atleast,“atmost restriction)
=n R.C >nR.C <n R.C (qualified casdinality exact ~atleast, atmost restriction)
—C' : (arbitfary concept -negation)

p—

To follow up the example presented befoﬁre WQEShQW some examples of the constructors.
If Woman = Person1Females we can de' ngl—_r'.ﬂoliie’r concept by Woman 1 3hasChild.Person.
Here we can see that Woman_and Perls n ax.i{{arbltrfary concept name. —Woman means a
set of individuals that are noti}Npme i Moreover: TVG can;use Motherll > 2hasChild and
Motherl > 2hasChild.Female to.represent “a mother has 2 children” and “a mother has 2

daughters”.

Description Logics Semantics Here we summarize the Description Logics syntax
and its semantics in the Table The language description for each constructor is listed

in column Symbol.

Table 3.1: Description Logics Concept Constructors

Name Syntax Semantic Symbol
Top T AT AL
Bottom 1 0 AL
Intersection cnD ctn Dt AL
Union cuDbD ctupt U

28

Name Syntax Semantic Symbol

Negation -C AT\ C* C
Value restriction VR.C {a € AT | Vb.(a,b) € RF — b € C*} AL
Existential quant. 3IR.C {a € AT | 3b.(a,b) € REAbE CF) &
Unqualified >nR {a€Al||{be AT|(a,b) € R'} |> n}

number <nR {ae€Al|{beA?]|(a,b) € R*}|<n} N
restriction = nR {a € AT || {be AT | (a,b) € R*} |=n}

Qualified >nR.C {acAT|[{bc AT |(a,b) € READbE C*} |>n}

number <nR.C {acAT|[{bec AT |(a,b) e REANDE C*}|<n} Q
restriction =nR.C {acAT||{bcAT|(a,b) e REANDE C"} |=n}

Description Logics Terminologies Terminologies are statements describing the re-
lationship between concepts and concepts or betweenroles and roles. The terminological
axioms are represented in the following twe foris of 1«

e Inclusion Axioms C./D (R C-S) ~

- [\
‘ \ e
| -

e Equality Axioms C= D (R = :"é';-i Il l

|

where C', D are concept names (anl 3 §%‘re ﬁcj-e naméé). The first axiom is called
inclusion, while the second oﬂé’:is (:Elied equalit%@i.T{he:fdative semantics to inclusion
and equalities are defined as folld\';xfg: &l inperprgtaé-{é)h T satisfies C C D if C* C D7,
and it satisfies C' = D if C* = D*. All the terminological (TBox) and assertional (ABox)

axioms are listed in Table 3.2

Table 3.2: Terminological and Assertional Axioms

Name Syntax Semantics
Concept Inclusion C CD C*fC D?
Role Inclusion RCS RTCS?
Concept Equality C=D % =D?
Role Equality R=S Rf=657

Concept Assertion C/(a) al € C*
Role Assertion R(a,b) (a',0') € R*

29

3.2 OWL

The Web Ontology Language(OWL) [18, [42] is a semantic markup language which is
defined to describe and construct web ontologies. OWL supports greater machine inter-
pretability of Web content. It is derived from the DAML4OIL Ontology language and
is the recommended and standard ontology language in W3C. For the implementation of
Semantic Web, OWL is based on XML and RDF and has ability to represent machine
interpretable and understandable content on Web by providing additional vocabulary
along with a formal semantics. It is written in XML document and defines it own syntax
as a vocabulary extension of RDF. An OWL ontology includes descriptions of class, prop-
erties, and their individuals. Based on the logic-based semantics theory, OWL supports
ontology reasoning.

The OWL currently provides three kipds of sublanguages: OWL-Lite, OWL-DL, and
OWL-Full. OWL-Lite supports those tisérs pri'“rharily,:needing a classification hierarchy
and simple constraints. OWL-DL supports those usefs who want the maximum expres-
siveness while retaining computatlonal completeness which means all conclusions are
guaranteed to be computable, and dedeaE;Hgl_,_w;hlch means all computations will finish
in finite time. OWL-DL includes all (b L lﬂnguage constructs but they can be used only
under certain restrictions. OWL DLi ba;ez_i on IJ:?escrlptlon Logics to form the formal
foundation of OWL. OWL- Full is/ deﬁned for use'rs who want maximum expressiveness
and the syntactic freedom of RDE with no computatlonal guarantees. Since OWL-Full
retain the most expressiveness and freedom on represent OWL, there are no reasoning
software supporting complete reasoning for all features of OWL-Full.

These sublanguages are an extension of its particular simpler predecessor, both in
what can be legally expressed and in what can be validly concluded. Such relationships

between subsets are in the following sets which are not reversibly:
e Every legal OWL Lite ontology is a legal OWL DL ontology.
e Every legal OWL DL ontology is a legal OWL Full ontology.
e Every valid OWL Lite conclusion is a valid OWL DL conclusion.
e Every valid OWL DL conclusion is a valid OWL Full conclusion.

30

Ontology developers consider which OWL subset they adopt depending on their needs.
The choice between OWL-Lite and OWL-DL is decided by the extent to which users
require the more-expressive constructs provided by OWL-DL, while the choice between
OWL-DL and OWL-Full depends on the extent to which users require the meta-modeling
facilities of RDF Schema. Reasoning support is less predictable when using OWL-Full

since complete OWL-Full implementations do not currently exist.

3.3 Semantic Web Rule Language: SWRL

Semantic Web Rule Language (SWRL) [26] is a rule language, which combines OWL
and RuleML. It extends OWL axioms to support Horn-like rules. Rules are of the form
of an implication between an antecedent (body) and consequent (head), which means
whenever the conditions specified in-antecedent holds, the conditions in consequent must
also hold. Besides, an empty antecedeﬁt is treated as trivially true, while an empty
consequent is treated as trivially false.” For example:;"we can define a rule which asserts
that the composition of two*r;)les hasParent @_nfi“hasBmih@—r is hasUncle. This rule can

be represented as the following human;'}élﬁﬁ.lé form:
|

. |
parent(?x;7y) A Hothq ﬁ?y,?b?—% uncle(?x,?2)
4re |

|
|

I 1 2
where 7x,7y,and 7z stand for Variablgls Eorrespondiﬁg_:po individuals in ABox. The overall

abstract syntax of SWRL are listed in Table 3.3

3.3.1 SWRL Editor

To integrate rules with ontologies, a SWRL rule editor called SWRLTab has been embed-
ded into Protégé, which is the most popular OWL-ontology editor. SWRLTab works as
a plug-in of Protégé. It provides a friendly graphical user interface to edit SWRL rules.
Figure shows the editing environment of the SWRL editor in Protégé.

The SWRLTab should be visible for all OWL knowledge bases that import the SWRL
ontology [[] The rules are stored as concepts within the same ontology where classes and
properties are defined. Therefore, classes and properties defined in an ontology can be

used directly by SWRL rules. Figure|3.3|shows the relationship between SWRL rules and

Thttp://www.daml.org/rules/proposal /swrl.owl

31

Table 3.3: Abstract Syntax of SWRL

axiom = rule

rule ::= 'Implies("annotation antecedent consequent’)’
antecedent ::= "Antecedent(’atom’)’

consequent ::= 'Consequent(’atom’)’

atom ::= description ’(’i-object’)’

| individualvaluedPropertyID ’(’i-object i-object’)’
| datavaluedPropertyID ’(’i-object d-object’)’

| sameAs ’(’i-object i-object’)’

| differentFrom ’(’i-object i-object’)’

i-object ::= i-variable | individuallD
d-object ::= d-variable | datal.iteral
i-variable ::= 'I-variable("URIreference’)’
d-variable ::= 'D-variable(’URIreference’)’

ontologies. Rules can be divided itito two parts: head:afid body. Each part consists of zero
or multiple atoms, which ¢an be ClassAtom IndiyidualPro’fjertyAtom or others. Multiple
atoms are treated as a conjunction. Cl&ssAi.om crm be viewed as an unary predicate and
the predicate name refer to a class naIFI rf‘@’%ﬁt@l?gy, whereas IndividualProperty Atom

can be viewed as a binary predicatel d th :_pre(élf:ate name refer to an property name

in the same ontology. , | E !I |

3.4 Quantitative Relatibns

In the previous section, we’ve introduce the Web Ontology Language (OWL) and Se-
mantic Web Rule Language (SWRL). Although, OWL has been a standardize language
to express ontology in the Semantic Web, it still have some drawbacks considering the
support of concrete domain. Pan et al. [47] pointed out some limitations of current

version OWL.
e [t does not support user-defined XML Schema datatypes:e.g., >15
e [t does not support negated datatypes:e.g., = >15

e Enumerated datatypes are the only user-defined datatypes supported by OWL.

32

4 family.swil Protege 3.1.1 (file\C:\Program%20Files\Protege_3.1\examplesifamily swrl. pprj, OWL Files Covlor - (O[3

File Ecdit Project CWL Code Window Toolz Help

NeE B0 mad ¢ BH B BE 4 % ﬁpmrégé

r WL Claszes r- Properties r = Forms r. Individualzs |/ & Metadata |/ — SWEL Rules rJJeSS |

SWRL Rules o =1 TR
Mame | Expression
Def-hasAunt —* hasParent(?x, ?y) n hasSister(?y, ¥2) — hasfunt(?x, 7z)
Def-hasBrother —* hasSibling(?x, ?v) A Man({?y) — hasBrother(?x, 7y)
Def-hasDaughter —* hasChild(7x, ?y) a Woman(?y) — hasDaughter(?x, 7y)
Def-hasFather —* hasParert{?x, 2v) a Man{?y) — hasFather(?x,)
Def-hashather —* hasParent(?x, ?y) a Woman(?y) — hasMather{?x, 7v)
Def-hasMephew —* hasSibling(?x, 2v) A hasSon(?y, 7z) — hashephew(?x, 72)
Def-hasMiece —* hasSibling(?x, ?v) A hasDaughter(?y, 7z) — hasMiece(7x, 72)
Def-hasParent —* hasConsort{?y, 7z) n hasParert(?x, ?¥) — hasParert(?x, 72)
Def-hasSibling —* hasChild(%y, 7x) a hasChild(?y, 72) na differertFrom{7x, 72) — hasSibling(7x, 72)
Def-hasSister —* hasSibling(?x, ?v) A Woman(?y) — hasSister(?x, 7y)
Def-hasSon —* hasChild(7x, ?y) a Man(?y) — hasSon(?x, Ty)
Def-haslncle —* hasParert{?x, ?v) a hasBrother(?y, ?z) — hasUncle(?x, 7z)
me R BEE® MEA
B A = 3 [1 +~

[]

e We cannot name tﬁé eITumerat datatypes| i OWL oy

e There is no n-ary data-tyfj-e} p]_t_é:dicates_ e.g., lr

g [d q

e There is no user-defined datatypeupredicatps:e.g., sumNoLargerThanl5

From the above, we can see that the current version of OWL lacks support for the
modeling for quantitative relations. For example, it is difficult for us to express the range
of the trip budget in the form of concept expression. Lu [39] proposed an approach for
modeling quantitative relations. The main idea is to transfer a linear inequality problem
into concept subsumption checking. He proposed two methods to deal with such kind of
problem.

In the first method, concrete values and intervals are modeled with four kinds of
concepts. Each concept represents a range with an upper/lower bound and relations
among these ranges can be defined with concept subsumptions. The semantics of these

four kinds of concepts are defined by the following table.

33

SWRL (_Ontology)

Consist of

Figure 3.3: Relationship between SWRL and Ontology

Table 3.4: Semantics of Quantitative Concepts

Therefore, given a coﬁf_@re}e

leqX represeﬁt's 4 X 7
.:", .%;
lessThanX represeﬂ%s " “a't“ﬂ G@Ecrete ya}ues Ie,.séﬁ"than X7

geqX represents ” X’%J)ﬂ.@lby:@ljﬂbtel values greater than X7

b

greaterThanX represents ” all concrete values greater than X

Given two concrete values X and Y where X <), we can define relations among these

four kind of concepts as follows:

lessThan) C leq)y
greaterThan) C geq)
leqX C lessThan)
lessThanX C leq)
geqY C greaterThanX
greaterThan) C geqX

34

Based on these concepts and subsumption relationships, we can express all concrete values
between X and Y with "lessThanX M greaterThan)”. A single point of concrete value
is a special case of interval whose upper bound and lower bound are the same. A concrete
value X can be represented with “leqX M geqX”. Such a method models concrete values
and intervals well, but it cannot define ordinal relations between intervals. Therefore, Lu
proposed a second method.

The second method is used for modeling temporal ordinal relations. Given a rational
number line, we can divide it into equal length ranges called primitive intervals. Temporal

relations between primitive intervals are defined as

t1 <ty means ty is before ty
t1 <ty means t; is before or the same as ty
t; > ty means ty is after to

ty >ty means ty is afterior the same as t3-

Complex intervals consist, of prlmltlve 1ntervals A complex mterval 7' is an interval that
stars form one primitive interval (erbtaréaaslbégin and ends at another primitive
interval (written as end(T)). Temporia reﬁﬁé‘ﬁs jbetween two arbitrary intervals 77 and

T, can be defined as | - j_ il

Ty < T, means end (1) <begm|(’j“2)
Ty > T, means begin(1}) > enll(Tj)
T < Ty means (end(T7) < end(T3)) and (begin(T}) < end(T3))

T, > Ty means (begin(Ty) > begin(Ts)) and (begin(Ty) > end(T3))

In this method, an interval 7" are modeled as a concept (written as C(7")) in TBox. If T
is a sub-interval of Ty, it means that C'(73) is a sub-concept of C'(77). Then, he defines
two transitive object property ends_before and begins_after to express the above temporal
ordinal relations. Their semantics are shown in the following table.

Note that, in the concept hierarchy, if we say an interval C'(7}) ends before C(7%)
(represented as C(T7) C ends_before.C(T3))and does not overlap C(T3) (represented as
C(Th)NC(Tz) C 1), C(Ty) also ends before all sub-concept of C(T3). Temporal ordinal

relations between two intervals can be checked by the following rules.

35

Table 3.5: Semantics of Quantitative Relations

Concept Expression Semantics
Jdends_before.C(T') (—o0,end(T))
dbegins_after.C(T) (begin(T'), c0)

C(T1) C Jends_before.C(Tz) end(Ty) < end(T3)
C(Ty) C Jbegins_after.C(Ty) begin(Ty) > begin(Ts)

or (C(T) Z Jends_before.C(1>)) and(C(1>) L Jends_before.C(T7)) and
(C(T3) T Jbegins -after C (L
or (C(Ty) L Hbegms after.C (T,
(C(Ty) T 3ends_beford. Q(Tg

Iﬂ"

T

) are all true.
)) and (G (Tg) Z Jbegins_after.C(T1)) and

) dre all true.
= | |
Lu’s approach models quantitative melm‘,‘ﬁfrg usmg concepts-and object properties. It

has several flaws. For example; in the first rgethod for every. concrete value, it will create
four concepts:leq, lessT han, geq, and QTeaterT ha‘p‘ Second, it does not allow the user to
specify intervals that are smaller than prlmltlve mtervals For example, if the primitive
interval is set to be one day, then it'is 1mp0851ble for user to describe schedule using hours.
On the other hand, SWRL supports build-ins for dealing with quantitative relations. We
can use the less(X,Y") function provided by SWRL build-in to compare the numeric value
or time interval. Such a numeric value or time interval must be XML Schema datatypes.
However, SWRL rules can be only applied to individuals and cannot be used in the level
of TBox. In our system, we models service descriptions as concept expressions. Therefore,

we adopt Lu’s approach to model value partition and time ontology.

3.5 Web Service Description Language(WSDL)

The WSDL [3] is an XML based document for describing network services in abstract

terms about operating on messages containing concrete data formats and network proto-

36

col. As communication protocols and message formats are standardized in W3C (World

Wide Web Consortium), it becomes increasingly possible and important to be able to

describe the communications in structured way. WSDL defines an XML grammar for

describing services’ specification in order to achieve its needs. Such network connection

used to communicate is standardized with SOAP 1.1, HTTP GET/POST, and MIME.

A WSDL document simply specifies:

What the Web Services consists of - (types, message, operation)
How the Web Services is bound to a set of concrete protocol - (binding, port type)

Where the Web Services are implemented - (port)

Above-mentioned specification is defined with some main elements for automating

the details involved in application communications applied in distributed systems and

services. Details description about these elements is in the following section:

Types: A Type is a container for data type déﬁnitions using some type system,

such as XSD. b _ R

= i

Y - |

| m==w | |
Message: Message is an abstraft, tf%i:d'eﬁr}ition of the data being communicated.
m | | .
|

Operation: Operation deﬁnesl a}n abstract (%escriptjoh of an action supported by
T I 5
1

the service.

Port Type: Port Type is an abstract set of operations supported by one or more

endpoints.

Binding: Binding defines a concrete protocol and data format specification for a

particular port type.

Port: A Port means a single endpoint defined as a combination of a binding and a

network address.

Service: A Service represents a collection of related endpoints.

However, since WSDL recognizes the need for rich type systems for describing message

formats and supports the XML Schemas specification (XSD), it does not support semantic

description of services.

37

3.6 Web Services Business Process Execution
Language(WS-BPEL)

The Web Services - Business Process Execution Language (WS-BPEL) [7], which is de-
veloped from Business Process Execution Language for Web Services (BPEL4WS) [30, 8]
is a language for describing business processes in Web Services. It is based on WSFL and
XLANG, provided by IBM and Microsoft respectively. Based on Web Service Description
Language (WSDL) 1.1, BPEL-WS is also compatible with other Web Services standards
of XML module definitions, XPath, and WS-Addressing. The goals of the BPEL4WS

specification are as follows [36]:

e Define business processes that interact with external entities through Web Services

operations.
e Define business processes using XML as-the basic language.

e Define a set of Web Serviges orchestration ‘coneepts to be used by both external

(abstract) and internal (executable) _g.ews?f a business process.
I

|| == ||
e Provide both hierarchical ‘and ngph—]{fk.e cop’prol strategies.

e Provide functions for the‘simélg manipulation’ of ‘data needed to define process
| -

relevant data and control-fAdw.
e Support an identification mechanism for process instances.

e Support the implicit creation and termination of process instances as the basic

lifecycle mechanism.
e Define a long-running transaction model.
e Use Web Services as the model for process decomposition and assembly.

e Build on compatible Web Services standards as much as possible in a composable

and modular manner.

38

WS-BPEL refers to high-level state transition interaction of processes with an Ab-
stract Process, which represents a set of publicly observable behaviors, including informa-
tion like when to wait for messages, when to send messages, when to compensate for failed
transactions, and so on. It also deals with short-lived programmatic behaviors, which are
often executed as a single transaction and invoke access to local logic and resources, such
as files and databases.

Business Process Execution Language for Web Services (BPEL4WS) is still the most
adopted standards for Web Services composition. Essentially, it is comprised of Part-
ner Links, Partner Link Types, Variables, Activities, Correlation Sets, Compensation
Handlers, and Fault Handlers for describing business processes. Partner Links are Web
Services interfaces that facilitate interaction between a business process and partner Web
Services. Partner Link Types define the roles,played by the services using the processes’
WSDL. Variables define messages sent and received by partners. Activities can be divided
into two types: Primitive Activities;namely assigny iny@ke, receive, reply, throw, and wait;
and Structure Activities, including'sequence, while, switehy flrc_)w and pick. Correlation Sets
are sets of business data fields that Cap‘bi,";ge thé Fétate of a:n interaction. Compensation

I

T |
Handlers are invoked to perform COH}TM%IT activities. Fault Handlers are defined to

lil 1] L | I

catch exceptions. | 1

BPEL4WS ecnables automated é) Seryices é}éecutioﬁ and is broadly used for Web
Services composition. However, séfn;e Shqrtcomings of 7BPEL4WS that limit its ability to
provide flexible interoperability are rep;)rted iny[40; 59]. BPEL4WS is a process-based
language, so that process participants (partners’” Web Services) must be defined and
bound to the process flow during the design stage. The BPEL standard does not support
Semantic Web Services; therefore, partner discovery and binding at run time are not

possible. In [13, 32], the authors discuss some solutions for dynamical composition of

Web Services execution.

3.7 Web 2.0 Technology

The Web 2.0 technology, as outlined in [46], allows for an easier distributed collaboration.

In panel discussion at ISWC 2006, there is an interesting topic, " The Role of Semantic

39

Web in Web 2.0: Partner or Follower?”. It makes a lot of people start thinking of the
possibility of combining Semantic Web and Web 2.0 technology. Including Tim Berners-
Lee, the World Wide Web inventor, some researchers believe that these two ideas are
complementary rather than competing . The goals of the Semantic Web vision and Web
2.0 are aligned, and each brings it owns strengths into the picture. Semantic Web has
good inference ability, and Web 2.0 technology bridges the user and Web application
with responsive user interface and collaborative mechanism. Web 2.0 is distinguished

from classical web technology by various characteristic features described below:

¢ Community Web 2.0 pages allow contributors to collaborate and share information
easily. These sites may have an ” Architecture of participation” that encourages the
user to add value to the application as they use it. Each contributor gains more

from the system than he/sheputs into it.

e Mashups Mashups combings data from moreat::han one source into a single inte-
grated tool. Certain serfices from. different sites can :be pulled together in order to

experience the data in a novel and: &n-hanc’ed way.. For example, we could embed

J | &

T

Google Maps in our personal ?Iisg to, H'd 'locatlon information that enriches the

|
| |

contain of the site. i .
. 1 i 1

e Rich User Experiencé-V-V_eb 2.t0 sites ofte'nhfe_aturé a rich, user-friendly interface
based on AJAX, Flex or similar Tich*media. Techniques such as AJAX, Adobe
Flash, Flex, Java, and Silverlight have improved the user-experience in browser-
based applications. These technologies allow the user to request an update for
some part of web page’s content, and to alter that part in the browser, without

needing to refresh the whole page at the same time.

AJAX is consider as the technological pillar of the Web 2.0 which allows to create
responsive user interfaces, and thus facilitated both of the other pillars. For instance, the
user likes to use community pages with slick user interfaces, and mashups that incorporate

data from different web sites introduced asynchronous communication for more responsive

pages.

40

Chapter 4

Service Composition and Execution
Based on Semantic Technology

4.1 Overview of Web Services Composition Archi-
tecture Based on Semantic Technology

In the Web Services environment, serviee prolrv'iders advertise their services based on
UDDI search mechanism 80 that service requestorsican _find their suiting services that
fit their needs. Due to the limitation of _lﬂ{_r@/word-based séérch, sometimes it is hard to
meet the user’ complicated requiremeﬁts:gﬁié‘ely While Web Services become mature
in recent years. The division-ef labor k})etwelzn Web Services'is emerging obviously. Web
Services tends to be a composite serv1ce which offer valte-add and integrated service,
such as a travel agent which prevides a mtegrated tiip'package, including transportation
tickets, accommodation reservations,:admissions fer amusement park, to the customer.
Otherwise, discovering and choosing an appropriate provider is usually time-consuming
and error-prone. To increase flexibility and ability, [57] proposed ”a Web Services compo-
sition architecture based on semantic technology” that provides accurate and automated
matching.

In our previous architecture we states earlier, we found some drawbacks from casual
users’ and administrators’ perspectives. Such as the high entrance barrier of Description
Logics for casual users. And the management of ontology controlled by a small group is
not efficient enough. Ontology maintenance need to be more organized so that machines
can use those plentiful and correct ontologies in reasoning tasks to deduce the right

results. In this chapter, we will review the fundamental design of Web Service composition

41

architecture and also illustrate new features to create a better environment for the user

under semantic-based application.

4.1.1 Web Services Composition

Service composition is a solution to a specific problem and combines different Web Ser-
vices into a integrated execution process. From service provides’ perspective, they publish
their services and annotate their services with service description like WSDL, which con-
tains information of how service requestors access the service and what messages format
should service requestors adopt. From the requestors’ perspective, they would like to
discover suitable services to fit their needs and invoke composite service automatically.
So we start to discuss the relationship between providers’ services and requestors’ needs.
We denote the things that service providers release are Advertisements, and requestors’

needs as Requirements.
e Requirements and Advertisements

In general, a complicate[i' requirefri’ent comf:irises difierent service attributes defined
under Advertisements. With Semanﬁg Web technology, Web Services descrip-
tions are annotated by Web:Ont logy.-l'[,f;nguage(OWL) and are able to be utilized
for service matching with subs#l ptlon Checkmg and composition. To match Re-
quirements and Advertlsements we corhpare Advertlsements Web Services

descriptions written in OWL Wlth Requirements in the ontology. We assume that

Web Services descriptions are mapped to ontology in advance.

According to the research [29]. There are some characteristics of Requirements:

— incomplete: Service requestors usually cannot describe their exact needs.
They only mention parts of their requirements. That make a requirement

input by the user is often incomplete.

— ambiguous: Service requestors often do not state their requirements clearly.

They even do not know exactly what they want.

— incrementally evolving: The guidelines help the user state their require-
ments more clearly. With system suggestion, the user is also more involved in

defining his/her requirements.

42

The characteristics of an advertisement are:

— more complete: Advertisements should provide detailed information to ser-

vice requestors.

— clear: Advertisements that the user discovers and invokes should not be am-
biguous. The service description of advertisements should be accurate and

formal.

— interrelated: A package comprised of many advertisements contains more

complicated and rich information, so the advertisements should be correlative.

Beside talking about service composition, requirement decomposition is an another
important process that classifies requestors’ requirements into independently small

pieces of requirements so that, they can be matched with small advertisements.

¢ Requirement decomposition' Users’ requirements are usually ambiguous and
comprised of various attributes. ‘W-ell'(_;_o?psgflciieréd those attributes what the user needs

as many criterion for matehing! With nembers of/eriterions, matching mechanism
- |

-
_“sr 1

|

In other word, requiremeﬂfidecdrrgposition is !ﬁgprocesé of extracting the attributes of

=1
p

can be achieved accurately.

requirements into more specifi¢ criterions a’gcor&ing to different types of attributes.
Take a trip plan requirement as‘an‘example, a trip requirement can be decomposed
into many specific criterions according to dates, spot requirements, accommodation

requirements, and so on.

e Service Matching To find appropriate advertisements and fulfill requestors’
requirements, service matching is achieved by examining the subsumption relation-
ship between the requirements and advertisement via Description Logics reasoning
mechanisms. Consequently, the Web Services composition architecture needs a
matchmaker component to handle the service matching process. We will introduce
that in later half of this chapter. It interacts with inference engine and involves in

ontology classification. In [28], the author proposed a service matching algorithm,

43

and we apply his matching approach in our architecture. After service matching,

the matchmaker would response suggested advertisements for the user.

e Synthesized Services In [27], the author indicates that there are two kinds of
aspects of synthesized services: Service Combination and Service Composition. To
compose Web Services, we need to note what kinds of synthesized services we are

handling. Different situations lead to different solutions.

— Service Combination: Service Combination involves combining Web Services
that may be invoked independently without a particular order. It can be
considered as feature matching between services. The features are mapped
to operation semantics composability in the composability model proposed in
[43]. We only check service profiles.and match services without considering

any data or control dependencies.

— Service Composition: Sexvice Compositiot“emphasizes the data/control flows
of synthesized services fromrone serviceto anothet in a particular order. It can

be regarded as process matcﬁihﬁéﬁween services. The process involves bind-
ing composability, operatz'qw] mopie -ciomposabzlzty, and message composability
in the composability modF 13 Bmdzhg composabzlzty can check the bind-
ing element in WSDL of tlgle services 'that we want to compose. Operation
mode composability can check,the message dependency of message elements in
WSDL. Message composability ean check the types of message parameters in

an advertisement description by WSDL.

e Service Profile and Service Interface In the Web Services architecture, adding
semantic ability helps automatic discovery of accurate services. The goals of com-
bining semantics technologies to Web Services are: to precisely discover desired
Web Services, and to compose a sequence of tasks for a complicated service to ful-
fill requestors’ requirements. Web Services based on Semantic technology achieve

these goals with Service Profiles and Service Interfaces.

The service profile is semantic information about service characteristics, such as

information of service providers and types of the service. Service profiles are ex-

44

pressed in Description Logics that formalize certain ontologies predefined by ser-
vice providers and provide non-functional static descriptions in the Web Services
environment. Therefore, either the service requestors or the service providers can
express their service requirements and service advertisements if we give them the
same abstract service descriptions, which are written in the same sets of ontologies.
Under the same schema of ontologies the service requirements and the suitable
service advertisements can be compared each other and matched then combined

automatically.

Service interface is the other important part of service description. A service inter-
face described in WSDL contains necessary information for invoking Web Services.
Those functional descriptions offer requestors a avenue to access. A WSDL doc-
ument is a standard document. that describes how to use the Web Services. It
specifies Web Services connection ﬁrotockpis so requestors can actually invoke the
remote services, and denotés Web Services loé‘af-iens, operation names, input pa-
rameters, and output p:éi‘rameters—tqr hel}i)_, requestorér.;r:nanipulate the services. In a

=¥ [~ | ' .
real-world Semantic-based serviCF é@rpgmefnt, these functional properties of the

Web Services are describedin tih folﬁ;ﬁf,ingj WSDL elements.
e 1 | T
— <definitions>: specifies tkleLWSDL doq:t%ment’si format and its location.
o | LG
— <message>: specifies t'hei'input and 01_1tpii‘i: variables of operations in WSDL.
The input variable can refer o requestors’ “Request” parameters of require-

ments and the output variable can refer to the “Response” for the requestors.

— <portType>: defined as a Java class name and its subelement <operation>

is a function that requestors can call.

— <binding>: describes the specific transportation protocols that requestors can

invoke.

— <service>: provides the essential information about how to find the service of

interest and its actual location.

Based on the service description, it is possible to achieve machine-processable con-

tents with meaning for humans and to implement communication between com-

45

ponents in the architecture or between service requestors and service providers.
In addition, automatic Web Services discovery, composition, and invocation are

facilitated with the ability of ontology reasoning

In this thesis, we assume Web Services are sort of service composition because we
care about the order and data/control flows. A more detailed description of the service

composition mechanism based on semantic technology is given in [4.4.2]

4.1.2 Design of Web Services Composition Architecture Based
on Semantic Technology

Based on our previous studies and projects like [60], [27], [5], and [57]. A complete archi-
tecture providing service matchmaking and service invocation was proposed. It accepts
the user’s requirements, discovers suitable Web Sexvices, dynamically assembles existing
Web Services, provides customized services, arid- invokes these services. At this time we
emphasize on the two parts. First, we strengthen the fésponsive interaction between the
user and the system by combin}ng web 20 technol‘ogy, tryihg-to make Semantic Web appli-
cations under the architecture easier and n@e frlendly for the user. The second, we bring
the idea of community-driven ontolog | englfleerlng [41] into our architecture. Ontology
maintenance is not longer controlled Pj a small gl:oup Though Community Component,
every user could join the Commumty to collaboratlvely edit ontology. It makes ontology
more flexible and agility to ensure that—,the Concepts in ontology are not obsolete. The
Web Services composition architecture provides automatic service discovery, collection,
composition, and execution. The Web Services composition system consists of six main
components based on the shared and pre-defined ontologies: Service Composer, AJAX

component, Community component, Service Collector/Annotator, Inference Engine, and

Execution Engine. Detailed descriptions are given below:

¢ Ontologies
Ontologies play an essential role in sharing and exchanging knowledge in the ar-
chitecture of the Semantic Web Services composition. Each component in the ar-
chitecture shares the same ontologies and communicates with other components

by accessing ontologies. The ontologies should be defined generally and flexibly

46

I

1

1

1

1

i

| AJAX Inference
! compgnent Engine
i

1

1

1

I

1

|
]‘
¥]

Customers

Annotator

- g
I Community

I
Administrator : Component Execution
i)
: KBMS Engine
I
e - —— =h Ao ——mmm——————
Knowledge base ile system

| == 7;[:7.
Figure 4.1: Weli Serviees Composition Architecture

Fal—xy4
for broad and long-term use. O OIW ﬂenance issa time-consuming and com-
plex job for administrators, especially ﬁl}en e ontolo_gles are maintained by a small
group. Obsolete concepts"in On clogigsr?eada’\ 0 A Wrong deduction that would cause
a huge damage to a reasonmg;-based system Therefore we have to notice whether
Ontologies is consistent with the reahty B681deS there are many constraints need
to be checked periodically to maintain ontologies consistent and correct. It is also
a challenge to handle contiguous constraints, such as value and time.

In addition, designing the ontologies is the fundamental task in our architecture.

Ontologies modeling are wide-vary in different domain applications. We introduce

our detailed ontologies modeling approach in 4.4}

e The Service Collector/Annotator
The task of Service Collector/Annotator is automatically discover Web Services on
the World Wide Web, collect information about service interfaces, and service pro-
files and then store it in the database of our system in order.

The database schemas in the architecture are designed based on the shared ontolo-

47

gies. To match for suiting service, service profiles stored in the database will be
mapped to the ontologies as concept expression. The Service Collector/Annotator
collects two types of information: static information and dynamic information.
Static information is the corresponding WSDL file of the service, including the ser-
vice providers’ name, and the other related information. For example, the flight
schedule in service profile of flight reservation service seldom changes. This infor-
mation can be stored in database as local data as a service description for other
components to use. The static information is updated at mid to long-term period,
say every few weeks or months. In contrast, dynamic information/data, such as
real-time data in providers’ Web pages link, is changed daily or as short notice.
The Service Collector/Annotator collects services from Web Services registries like
UDDI. It also retrieve the data from the Web pages or existing databases of ser-
vice providers. The Service Collector/ Amj.'i_)tator parses Web pages and obtains the
necessary data, and maps-the service date froxﬁ' the database of service provider
into the shared ontologics in‘the architectur_e Alse t’he Service Collector/Annotator
should handle problems related tO‘ t]a.e rhaﬁ)pmg between different ontologies. For
example, if the service prov1deI1 hﬁ" dii Fferent ontology schemas from ours, the
Service Collector/Annotator is 11Spo:ilsable fCPr mapping those knowledge into the
same terms of the shared ontoloiz;les The f,nhppmg process will not create a new
ontology but import the knowledge from Q_utsuie into our existing ontology. [14],
[61], and [38] illustrate the detailed mapping process.

In a word, the Service Collector/Annotator attempts to collect static and dynamic
information on the Internet and are designed to handle ontology mapping if the
service profiles are described in the different ontology schema. On receiving a re-
quest from the Service Composer, which is a core component in the architecture,
the Service Collector/Annotator will query the local database for suited service
profile. If the requested data exists, it transforms the data into the format defined
in the shared ontologies and sends it back to the Service Composer. It will trigger

a request to the corresponding service provider for the latest service profiles if the

requested data does not exist.

48

e The Service Composer

The Service Composer plays as a core component in this Web Services composition
system. It is a bridge that connects the customer and the whole architecture of the
system. We define the term ”customers” is those causal users who do not have any
Description Logics background. They want to manipulate the system in a easy way.
And we define another term named ”administrator” who are charged with the on-
tology maintenance. Because different domains have different kinds of requirements
and different business processes. A implementation of Service Composer is designed
for a specific domain. It contains modules that collaborate interaction between com-
ponents in the architecture. Although the implementation of Service Composer is
vary according to different application, but the fundamental architecture of Service
Composer we propose is generally suiting for all kinds of ontology-Based automation
of Web Services composition. -

In general, the Service Cofnposer coordinateé‘xéx-fith the user, AJAX component,

Community componenf;:‘ the Inference Engine, and::ﬂae Execution Engine. It has

four main subtasks: First, the Cﬁrgtégléll:‘idjeﬁnes their incomplete and ambiguous
requirements by using mtegratra usg-.! mtérflace The module of Integrated user
interface communicate Wlth AJI X componerlnt to converts the customer’s require-
ments into formal semanfic lanédage SecomldI the Service Composer passes formal
requirements to Matchmaker resppnmble for commumcatmg the Inference Engine
to find suitable advertisements.” Third, Matchmaker return suitable advertisement
to the Service Composer. Then that collaborate with the AJAX component and
covert the formal advertisement described in Description Logics back to graphical

figures that display on integrated user interface. Alternative suggestions are also

displayed according to the ranking similarity.

Customers are able to decide which advertisement satisfies their needs and ask the
system to execute related Web Services behind that. All revelent Web Services
will be packages as the composition Service, which is described by a BPEL4WS
document. Finally, the Service Composer send that document to the Execution

Engine.

49

In addition, through collaboration with Community Engine, the Service Composer
provide the user a open community environment to discuss their requirement and
share their experience about using the system . When the system cannot find a
suiting advertisement for the customer, the customer can publish their unanswered
requirements on the community that suggest the administrator to update related
advertisements in ontologies. Furthermore, administrator could release part of on-
tology on the community. Let every user participate in ontology maintenance,

decreasing maintenance time and making concept in ontologies not obsolete.

The Inference Engine

The Inference Engine is responsible for interacting with the Service Composer and
matching services through subsumption reasoning based on Description Logics(DLs)
inference. It provides approximately mat'ching services which correspond to the
requirements and helps ensure the depend'encies qnd constraints between individual
requirements. In a word, thedmference Enginérrhas an inference capability to find
suitable services and retﬁrn them to the ‘_.C'}i'sj;omer. :

The Execution Engine | To=—g |

When the Customers decides the lservl@é thebnwant the Service Composer produces
a related process document:in eirms of servilcp execution and pass it to the Execu-
tion Engine to invoke the corﬁf)ositipn serviee. The Execution Engine is responsible
for invoking the composition Services corréctly and controls the status of the in-
volved Web Services. According the work flows in the process file, which is written
in process language like BPEL4AWS, the invocation of the Web Services executes
sequently. If any Web Services fail, the Execution Engine will charge the rollback
of all the executions and also inform the Service Composer a execution failure mes-
sage. If all the Web Services execute successfully and finish, the Execution Engine
will return a successful message to the Service Composer and send it back to the

customer afterwards.

The AJAX Component
Asynchronous JavaScript and XML, as known as AJAX, is one of the technical
pillar of Web 2.0 technology. AJAX is a group of inter-related web development

20

techniques used for creating interactive web applications .It increases the respon-
siveness and the interactivity of web pages by exchanging small amounts of data
with the server "behind the scenes.” In addition, it improves the user-experience
in browser-based applications. The AJAX Component adopts AJAX technique so
that entire Semantic Web application do not have to be reloaded each time there
is a need to fetch data from the server. It is intended to increase the system’s

interactivity, speed, functionality and usability.

Therefore, we want to bring that advantage of AJAX into Semantic Web appli-
cations to lower the entrance barriers. The AJAX Component is responsible for
hiding the formal Semantic information and generating a interactive GUI on the
Service Composer. In other word, the AJAX Component encapsulates the com-
plex information which are not proper for the customer and convert it into the
nature language or graphies . While dié,fglaying the matching result to the cus-
tomer, it also coverts the sﬁiting advertisemenf:(i‘l-eﬁned in Description Logics back

to human-readable fomiét, suchyas.pictuzes; videes'
1 |

§ -
-~ :E_i

e The Community ComponentL :J—';. ' '
The Community Cemponent iaJ notl?lér__ grea“t idea we: borrow from web 2.0 tech-
nology. Web 2.0 approa:ugh_es e {powér :-the :ii%ldividual to take part in community
activities by lowering the batgiers: informall, li"ghtwéight, easy-to-use, and easy-to-
understand. The community We’§é séen inweb 2.0 pages allows contributors to
collaborate and share information easily. For example, Wikipedia is a community,
there are hundred and thousands volunteer people collaboratively create and main-
tain the knowledge on the Wiki site. In [41], they propose a new collaborative
approach for Ontology Engineering. The Community Component is responsible for
creating a open Wiki-based environment where the user can share their require-
ments and match results. Besides, the customer participates in maintenance a

light-weight ontology though Wiki-based community.

Figure[4.1|shows the Web Services Composition Architecture and how the components

interact with each other.

51

4.2 Service Composer
4.2.1 Design of the Service Composer

In Figure [£.1] the Service Composer plays the central role in the Semantic Web Services
composition architecture. It is also a bridge which connects the user and the system. Be-
cause complicated Semantic languages, such as Description Logics, impose high entrance
barriers for casual users, we decrease information complexity by removing unnecessary
modules from the Service Composer.

Overall, it helps the customer define their complicated requirements, and achieve
their goals by matching advertisements and executing the compound services. In fact,
the Service Composer cannot finish those tasks by itself. A completed procedure of
those task involves many components. As a pivot in the system. The Service Composer
collaborates other component in_the architecture.

When customer manipulates the systom, tﬁo Seryice Composer communicates with
AJAX component to provide. the customer a responsi&e user interfaces. While the cus-
tomer inputting their requlrements :he Serm{;e Composer translates the customer’s
ambiguous inputs into detailed. and fbrm.a?'samphtlc descriptions. Before sending re-
quirements to Inference Engine; the E rvuﬁ_ Composer attempts to decompose the cus-
tomer requirements (a compouiid ta k? into ;nan)lf [sub réquirements(subtask). A simple
sub-requirement may be satisfied by many dlfferent ‘sub-advertisements. And each sub-
advertisement corresponds to certain Web Service-déscribed by WSDL document. The
task of service composition mechanism and service decomposition are implemented in the
Service Composer component in order increase the accuracy of matching.

After decomposing the customer’s requirement, the Matchmaker in the Service Com-
poser Component calls the Inference Engine to find suitable services by approximate
matching. The subsumption reasoning relationship between description of the require-
ments and advertisements will be checked at matching stage. A list of matched services
with corresponding degrees, which represent the matching similarity between the require-
ments and advertisements, will be returned to the customer. The customer can choose

one set of the matched services and ask the Service Composer to invoke the related Web

Service. Meanwhile, the Execution Module in the Service Composer obtains the WSDL

52

files of the selected services, assembles them into the BPEL file according to the work
flows of the services, compiles the related setting files about the BPEL engine , deploys
them in the Execution Engine, and invokes the BPEL services.

In addition, Service Composer provide the user a open community to discuss their
requirement and share their experience about using the system on their personal pages.
When the system cannot find a suit advertisement for the customer, the customer can
publish their requirement on the community to suggest the administrator to add related
advertisements in ontologies. Furthermore, administrator can release part of ontology
on the community. Let every user participate in ontology maintenance, decreasing the
maintenance time and making concept in ontologies not obsolete.

The whole process and the interaction between components can be described as fol-

lows:

1. The Service Composer helps. the icustonier complete their requirements through a

of series interaction Wit}l AJAX component,

2. It transforms the customer s compou;_],d I;GQIflI“ementS mto element requirements and
e

E
sends them to the Matchmakerlt fmﬂ-ﬁl‘atphmg advertisements.
‘-14 | ‘;‘

3. The Matchmaker returns a hstl pOSSlble hfatched advertlsements sorted by cor-

1
responding similarity matchlng (fegrees 1

4. After the the customer chooses hié /her desired advertisement package, the Service

Composer will ask Service Execution Module to execute related Web Service.

5. The Service Execution Module transform the abstract descriptions of the selected
advertisements into the executable descriptions, i.e., BPEL4AWS files. The BPEL4WS

files are deployed to the Execution Engine and wait to be invoked.

6. When the advertisements are executed successfully, the system sends a message to
the user. In addition, the Service Execution Module has a mechanism to handle

execution failures.

7. The customer can publish the requirement and the advertisement he/she chose on

Wiki-based Community Component, sharing his/her opinions about this system.

23

a

Customer

4

L

¥

'

Integrated User Interface

AJAX

A

maodule

&=

= Matchmaker

A

AV Compaonent

= i

-

- 3
Inference Engine

A A h \ Service <
Y Y Execution |- > o
Constraint Knowledge Module Service
Checker Base Collector/Annatator
Tools Handler > Community -
module
A A
Community Component
Y Y
Inner Knowledge Base / File System

ontologies + Rules

. w1 i ; 7y \ e
Figure 4.2: Archl@; O.ﬂj E—hel Service Composer

AT o I

-

Meanwhile, the custome(rjs_.expkrllencé ﬁlay #‘ Ip'the-administrator improve the in-

adequate ontologies. L5

gy LN =

L]

4.2.2 Architecture of the Service Composer

Figure shows the architecture of the Service Composer. The bold rectangle represents
the scope of the Service Composer. Outside of the bold rectangle are other components
that cooperate with the Service Composer. The components from up to down are the
customer, AJAX Component, the Inference Engine, the Execution Engine, and the Com-
munity Component in the Semantic Web Services composition architecture. We use

arrows to represent the interaction between the components.Detailed definition of the

components inside the bold rectangle are given below.

e Inner Knowledge Base / Ontologies and Rules

Our Knowledge base consists of Ontologies and rules. As we mentioned at previous

o4

chapter, ontologies play an essential role in sharing and exchanging knowledge in
the architecture of the Semantic Web Services composition. Each component in the
architecture shares the set of ontologies and communicates with other components
by accessing ontologies. Ontologies are kind of formal representations of knowledge.
Rules used to describe the complicated relationships between roles and we can use
rules to capture the role composition in the ontologies. We use Inner Knowledge
Base for certain functions:(1) data storage: Requirements, advertisements, and
related information are described in OWL which based on DL. (2) With deduction
power of the inference engine like RACER and, reasoning allows us to infer implicitly

represented knowledge from the ontologies.

Because all data flows within the Service Composer are read from the knowledge
base and are written back, the componéntiin.the Service Composer can communi-
cate with the inner knowledge base Ldirectly or indirectly. (See the arrows in Figure
When the user input theizsgequirement, th‘éyfare stored in the inner knowledge

base so that the data cati be extraeted later, when ﬁé@ded.

Integrated User Interface | | =2 |

The Integrated User Interface r}l shin;g;u;p wiith AJAX component provide the cus-
tomer responsive user interfaces and éid:-ther‘lnainput their requirements step by step.
It is also responsible for displaﬁyirtlg the ma’gclhe'&' results after service matching. In-
tegrated User Interface encapsulatéé the cofnplex and formal information which are
not proper for the customer. Integrated User Interface provides error detections
if the customer inputs inappropriate data. Besides, it will invoke the constraint
checker tools to check the consistency of the constraints after the user complete
their requirements. The whole process can be simplified as follows. First, the cus-
tomer sets their requirements by interacting with the AJAX component. Second,
he/she can review and re-edit their requirements. Third, he/she submit the re-
quirements to the Matchmaker to search for suitable advertisements and get the

ranking scores of the advertisements. Finally, the customer can invoke the desired

advertisements from the result list.

The Integrated User Interface plays an important role because it directly interacts

95

with the customer. To lower the entrance barrier of Semantic Web application, we

should put the design of the friendly UI as the first priority.

AJAX Module

Through cooperating with the AJAX Component and the Integrated User Interface,
AJAX module is responsible for passing the parameters which involve in display-
ing AJAX-based interfaces. While the Integrated User Interface is displaying the
responsive user interface, for instance, a interactive map, AJAX module retrieves
necessary information from the ontology, such as location name, descriptions of lo-
cations. Meanwhile, it continuously listen the interaction events triggered by the
customer’ behavior, such as mouse clicking, mouse trajectory. Through clicking

mouse on the map, the customer input their requirement easily.

Community Module %

Community Module conneets-the Service.CompOser and the Community Compo-
nent. After the customer input their requ1rements and select their desire advertise-
ments, community module publish tk}gse re(i{ulrements and corresponding advertise-

ments to the Community Compo enf"B‘egldes if ghe customer input a requirement
that contain some information not m,rl_ﬁ};e on'[cologles, the Community Module will
2-

automatically report to thé Com@unity Coiinbonent:;

Matchmaker

The Matchmaker is a matching module that invokes the Inference Engine to start
reasoning. It acts as a bridge between the Service Composer and the Inference
Engine. We implement the matching algorithm and the approach of computing
similarity degree in this component. The service matching algorithms are tightly
dependent with the domain ontology and are designed for a specific domain or
a specific system. After finding matched services through the reasoning of the
Inference Engine, the Matchmaker returns the desired advertisement lists according

to the similarity degree.

Service Execution Module

The Service Execution Module provides tools to generate executable processes from

26

abstract service descriptions and templates, and invokes the Execution Engine. It
returns the results from the Execution Engine to the the customer. A more detailed

description of the service execution stage is given in Section

Knowledge Base Handler
The Knowledge Base Handler handles the all the access of the ontology, including
write-in and read-out. Through the Knowledge Base Handler, every module in the

Service Composer is able to retrieve the data from ontology.

Dynamic Concept Component

To handle the subsumption between requirements and advertisements, we have
to overcome the subsumption between the numeric concepts. Since the particular
concepts like Time and Value Partition are related to unlimited concepts in the real-
world, those concepts need to be. dreated ’_dynamically as a programming method
that adds automatically tirhe- ox Qalue colrzlcept_;i:O the knowledge base while per-
forming reasoning. ThlS 1nnovat1ve approach avoids: havmg large specific concepts
in the inner knowledge base The syé‘gergl G}Inmlstrator does not have to define and

maintain large concepts manua1 ?ifaft—’makes ontology reasoning more efficient.

"L t

S
| r I l

| l| i !I F|

o7

4.3 Knowledge Base Management System
4.3.1 Design of the Knowledge Base Management System

The Knowledge Base Management mainly provide the administrator an integrated man-
agement environment to edit and maintain their ontologies. Different from the Service
Composer is dedicated to the customer, the Knowledge Base Management is dedicated to
the administrator. With the Knowledge Base Management, the administrator is able to
maintain ontologies, inference implicit knowledge, an check the correctness of the ontolo-
gies. Recent years, there are several outstanding ontology management system, such as
Protégé, OntoEdit, OilEd. Our architecture adopts Protégé and related plug-ins, which
are used to extend its management ability, as the Knowledge Base Management.
Protégé Axiom Language (PAL) tab-widget provides constraint checkers to examine
different kinds of constraints. according to the needs of the application, the ontology con-
straints are defined by Protégé Axiom Laﬁguagle.' We will'introduce constraints handling
in detail in section [1.5 In ac_ldition, Protégé SWRLirtab-Widget supports SWRL rules

reasoning which allows implicit knowledge to ber inferred by asserting certain rules.
L \

T T

| s
4.3.2 Architecture of the | nowledge Base System

Figure shows the architecture oé t e Knowledge Base System. The bold rectangle
represents the scope of the Knowledge Base System Outside of the bold rectangle are
other components that cooperate with the Sérvice Composer. We use arrows to represent
the interaction between the components.Detailed definition of the components inside the

bold rectangle are given below.

e Inner Knowledge Base / Ontologies and Rules
The Inner Knowledge Base we define in the Knowledge Base Management System
is the same as the Service Composer’s one. They share the same set of ontologies
and rules. The most different point is the Knowledge Base Management System
manipulates the ontologies by reading and also writing. But the Service Composer

focus on reading rather than writing.

Because all data flows within the Service Composer are read from the knowledge

base, the Knowledge Base Management System has to check the validity of the

o8

&

Administrator
A

A

Integrated User Interface

L]

Ontology Translation Constraint Import/Export

. Tools and Rule
Edit tools Engines Checker Tools Component

I A
Y

Inner Knowledge Base / ontologies + Rules

Figure 4.3: Architecture of the Knowledge Base System

29

Y

Other
Shared Ontologies

ontologies to ensure their consistency by examining the constraints. With the vali-
dation mechanism, case of GIGO(garbage in, garbage out) can be avoided. There
are several related constraint checker tools in the Knowledge Base Management

System to keep the consistency of the knowledge base.

Integrated User Interface

the Knowledge Base Management System provides an Integrated User Interface
that makes the administrator maintain ontologies in a comfortable and convenient
way. The Integrated User Interface includes all kinds of functions for maintain
including ontologies editing, SWRL rules editing, ontologies inferring, constraints

defining, validation checking, ontologies import/export tools.

Import / Export Component

The goals of ontologies are defined as ComMon use, sharing, and exchanging in
Semantic environments. The lmpert / Export component allows different component
not in our architecture;-like other apphcatlon to exohange ontologies through file
transportation. Outs1de ontologles ‘can! be 1mported as a plug-in into the inner
knowledge base, and dntalogies| in tﬂrﬁmwiedge base can also be exported. The
ontologies are exchanged and co blnegwla ﬁhe Import/Export Component without
notifying the customer. .t is Eseamless alnid flexible mechanism in the service-

oriented approach.

Translation Tools and Rule Engines

Rules are defined to increase the expressive powers and complement the limited
expressiveness of the ontology language. There are many ongoing efforts to design
rule languages for the Semantic Web. These rules can be defined by the admin-
istrator through the user interface of the Knowledge Base Management System.
They can infer implicit knowledge from the defined rules through a translation tool
that transforms the rules into the specific ontology language according to the rule
engines that enable reasoning. For example, the SWRL rules can be defined with
a SWRL-Tab editor as a Protégé plug-in. We adopts the Jess rule engine as the
Rule Engines that allows implicit composition roles to be inferred by SWRL rules

and stored the new knowledge in the ontologies.

60

e Ontology Edit Tool
The Ontology Edit Tool provide the administrator basic functions to edit their
ontology. The functionality of editing includes addition, remove, and modification

for concepts, roles, and individuals.

e Constraint Check Tools
To ensure the global consistency of the inner knowledge base, the constraint check
tools are designed for examining the correctness of the constraints. The tools han-
dle different kinds of constraints like quantitative constraints and non-quantitative
constraints, we will introduce in detail in section Constrain Check tools are
designed to solve the domain problems based on domain ontologies with different

reasoning tools and engines.

61

4.4 Ontology Modeling

Our system is based on Semantic Web technology. Consequently, ontologies play an
important part in the architecture of the Semantic Web Services composition. They
characterizes the non-functional properties of Web Services and Web Services profiles.
To communicate with different components, each component exchange information by
sharing the same set of ontologies in the architecture. In this section, we attempt to

illustrates the approach of ontology modeling.

TBOX Modeling and ABOX Modeling

An ontology is a formalization of concepts in a specific domain. They are essential for
knowledge reusing, exchanging, and sharing. An ontology contains two parts. The first
part, called TBox, is to define terminologies with cencepts (or classes) and the terminol-
ogy taxonomy using concepts:(or classes)' and "s'ubconcepts (or subclasses) relationship.
Besides, it defines properties (or'roles) to describe:'tlee relationship between concepts.
The second part, called ABox,iis to agsert, individuals (or Vinstances) corresponding to the
previous defined concepts in the first pai"tﬁ 'flfi!'_r‘ r

Because ontology languages|are ba ’edio,lf f)escmptlon Logies (DLs), we can facilitate
subsumption reasoning based on the Tnference theorems of DLs. Therefore, we adopt
concepts expression to represent the I1"equ11rements and advertlsements

Ontology language modeling 1nvolves TBox modehng and ABox modeling. The con-
cepts and roles refer to TBox modeling, which defines a concept hierarchy and also the
relationships between concepts, and the individuals refer to ABox modeling.

TBox conceptual modeling supports subsumption reasoning so that the similarity
degree between requirements and advertisements can be inferred. During the concept
modeling phase, concepts and roles are constructed to describe the requirements and

advertisements. Using inference engines, such as Racer, to match the requirements with

advertisements.

System-Specific and Common Ontologies

In Semantic-based Web Services composition architecture, ontologies are divided into

two types. The first one is system-specific ontologies, which are for specific domains.

62

For example, in the implementation of our system, the Traveller, we took tourism as our
specific domain. System-specific ontologies supports the definition of the requirements
and the advertisements and also supports the operations about matching scheme. We
will attempt to illustrate the Design of the Ontologies of the requirements and the ad-
vertisements in . System-specific ontologies have to concern about handling common
constraints and checking global constraints. And also it collaborates with SWRL rules
for capturing the complicated relationships between properties in the ontologies.

The other type of ontologies, common ontologies, contain domain-independent knowl-
edge which can support system-specific ontologies. For example, in the tourism domain,
when a new trip requirement is created, it will be stored at system-specific ontologies.
But a trip requirement contain other related concepts about the trip such as time, value,
locations, those domain-independent information is stored at common ontologies. Be-
cause of the independent characteristic of common ontolegies, they can be imported from
other ontologies providers or shar¢-them with other =applications.

There are several ontology languages that have a trade off between expressive pow-
ers and computing complexities. The c‘h(u:.e of Yvhat ontology need to be implemented

depends on the needs of the apphcaqo tyﬁﬁ‘ anld the ¢omputing ability of inferencing.

|) 1 i
Design of Ontology - Requi.r.emeinr aIiﬂdr_:i'XdY(%rtisemént
The ontology design for the Service Co[mposer, thlicﬁz areused to store the user’s require-
ments and the service providers’ adver;trisements‘. in the Semantic-based service compo-
sition architecture is the most important part. It is also closely related to the service
matching approach.

Based on [27], each requirement is defined as a concept (or a class). We use the same
concepts scheme to model advertisements so that requirements and advertisements can
be matched easily for their subsumption relationships. In ontology modeling, the user’s
requirements and service providers’ advertisements are regarded as concepts. Because of
the inference limitation of SWRL rules for capturing the implicit relationships, we define
an individual as a realized instance to represent the corresponding concept.

A composite service, which combines many desired services in a specific order, needs

to be represented in the ontology. As we state previously, the Service Composer can

63

decompose the user’s requirement into many sub-requirements. We regard those sub-
requirements as many sub-concepts in the concept hierarchy of system-specific ontologies.

Figure [4.4] shows the TBox approach modeling.

Requirement - Class and property definitions:

Class ——domain (ObjectProperty)
Requirement | range (next |
e -
subClassOf subClassOf
Class Class
General Element
Requirement Requirement
[/ / K
subClassOf subClassOf sumlasﬂ\
Class Class Class
" Element_Typef Element_Type2 e Element_TypeN
Requirement Requirement Requirement
[} A }
range I'El"igﬂ ranlge
| N B
(" ObjectProperty) (ObjectProperty) (__ObjectProperty)
/'hasElement_ ", I.-"'hasEIement_'\.l 14 'ﬁa\sEI«ement_"~-.I
. Typel . Type2 J _ TypeN
domain domain domfain

e e R -

iy e -
" i "

Figure 4.4: Requii‘emgnf Mo'deili}lg “IThe TBox Approach

In Figure the root class Requirement has two subclasses: General Require-
ment, which defines the customer’s requirements, and Element Requirement, which
defines element requirements of General Requirement. The Element Requirement
has several subclasses that represent different types of element requirements, such as Ele-
ment_Typel Requirement and Element_Type2 Requirement. The General Re-
quirement has properties, such as hasElement_Typel, and the range of each object-
type property depends on its type class. Figure shows an example of a complete

requirement, which is composed of two general requirements MyReq_1 and MyReq_2.

64

A Requirement example: Class

Element_Type1
Requirement

GCIaSS I subCI‘assOf
enera
Requirement Class
haSTE'emfnt— —»{ Element_Typef
subClassOf subClassOf ype Req_1
Class Class Class
MyReq_1 —» next MyReq_2 Element_Type2
i $ Requirement
tyTe type subClassOf
|
Instance Instance hasElement_ Class
ind_MyReq_1 ind_MyReq_2 Type2 Element_Type?2
- - Req_1

Figure 4.5: Requirement'?ExamIble - The TBox Approach

r—

MyReq_1 and MyReq 2 are sube'}aasas bf 'General Requ1rement connected by
the object-type property next 1nher|1t d"ﬁgr—ﬁ sm?er class Requirement, which next
represents the order of the element re ulr_eer__entsl. il MyReq. 2 contains two element re-
quirements: ElementTypelR'qu iand Elem#ariltiTsrlf)e2Req,l. Each element re-
quirement is a subclass of the respéétivq type elegler;%-requirements. Besides, MyReq_2
correspond to a individual, ind,MyRéq_Z, torepresent the class for SWRL rule rea-
soning. Advertisement, which defines providers’ advertisements of Web Services, is
designed by the same approach as Requirement. We can find the same class hierarchy
of Requirement and Advertisement defined in the system-specific ontology, shown
in Figure [4.6] The figure also shows the common ontology including Location, Time,
and ValuePartition, which describes the domain-independent information in concepts
to support the tourism domain ontology. For example, Location defines tourism location
in concepts, Time defines the measurement unit of time in concepts and ValueParti-
tion defines those values or numbers in concept such as, budget. Section contains
more detailed descriptions of design Time and ValuePartition. Figure presents an

example of the subsumption reasoning and the result.

65

Class
ValuePartition

Class

Location Time

Requirement and Advertisement Ontology

Element_Type1
Requirement

Element_Type2
Requirement

i
subClassOf
1

i
subClassOf
1

Class

Class

Element_Type1

Element_Type2

Class
General
Requirement | i
subClassOf domain damain damain
-~ B
Class (OnjectProperty) { ObjectProperty) [ObjectProperty)
. asElement asElement asElement_",
Requirement - (- =}
q _ Typel J Type2 _ TypeN
w
subllassOf |
range range range
Class 4 subClassOf Jl
Element | l Y |
Requirement Class Class Class

Element_TypeN
Reguirement

T
subClassOf
|

Class

Element_TypeN

subCIlass{)f subCIlassC)f subCIlassOf
L] Y Y
Class Class Class
Element_Type1 Element_Type2 Element_TypeN
Advertisement Advertisement Advertisement
Class
A
Element | o iciascor 4 ‘ | |
Advertisement range range range
su}CIasst
Class (ObjectProperty) (" ObjectProperty) (_ ObjectProperty)
- / hasElement_ hasElement_", / hasEIement_\‘
Advertisement _ Typet Type2 / ‘. TypeN
*
subClassOf X . "
domain domain domain
Class
General
Advertisement

Figure 4.6: Ontology Design of the Architecture - Requirement, Advertisement and

Common Ontology

66

Subsumption Reasoning (Advertisement and Requirement):

Class Class
Advertisement Requirement
A)
subClassOf subClassOf
‘ |
Class Class
General General
Advertisement Requirement
v v k
_— // \ T~ subClassOf
subClassOf subClassOf subClassOf subClassOf
_— ~
— i \ ~ Class
Class Class Class Class MyReq_2
Ad_1 Ad 2 Ad 3 Ad 4
— — — — V\\
subClassOf subClassOf
b SC
Inferred Class Inferred Class

Ad_2 Ad 4

Ad_2 C MyReq_2
Ad_4 E MyReq_2

"
!

Figure 4.7:\E | iﬂ‘i%]lfblll R
igure 4.7: ExampleofiSubsumption Reasoning
R

|
1 &

b= |
4.4.1 Service Compo‘éi‘:tiqnll\/[echanl'iim

Since Web Services technologies becowic -majcuriri-g and convenient, we start to compose
many services together to complete a complicated task. Therefore, we need to concern
about the execution order of the services. Different orders may lead to different conse-
quences.

Based on the Inference rule of Hoare Logic [Hoare 1969], the Sequence rule is the

essential aspect of the composition. However, few studies express the rule in detail.

{P}Si{Q} {Q}SA{R}
{P}Sl; Sz{R}

(Sequence)

In [9], DL supports the composition of relationships to define concepts and roles.

If these assembled services are independent without involving interaction each other, it

67

is very easy to handle them. Just executing them in any order. However, if there are sev-
eral interactions between these composed services, then the composability of the services
should be considered [43]. [43] proposes a composability model to check whether com-
ponent services are composable [10]. The composability model for Web Services consists
of six parts: binding composability, which compares the binding protocols of interacting
services; operation mode composability, which compares operation modes including noti-
fication, one-way, solicit-response, and request-response; messages composability, which
compares the numbers of message parameters, data types, business roles, and units;
operation semantics composability, which compares the semantics of service operations;
qualitative composability, compares the qualitative properties of Web services; compo-
sition soundness, which checks if the combination of Web Services in a specific way is
worthwhile.

According our previous research [57]; the Se;lﬁ_antic—basd service composition architec-
ture focuses on service composition-and emphasiées the datay/control flows of synthesized
services from one service to aﬁbther in a_particular order. ’When the desired Web Services
are composed to a service, the Composabﬂl‘ug(.of’thF services should be considered. We pick
four principles from the composabth nﬂ’d—lz rHh]e binding composability can be taken
as checking binding element int WS YL of_tho c?fpposed services. The operation mode
composability can be seen as Gh'écking Ethe messaéerﬁ dependency of portType in WSDL
of the two composed services. Th'el ?}Lessqge comgoscz.-éﬁzélity can be examined by message
types in WSDL of the two composed sefvices. ‘The operation semantics composability of
the two composed services should be checked using the service description in OWL.

Besides, in the Semantic Web Services composition architecture, services are composed
by checking the composability and extending the aspects of the Sequence. A requirement
is composed of many element requirements. An advertisement is also composed of many
element advertisements. When the Service Composer wants to compose the element
requirements, it has to check the composability of the related element requirements first.
The next object property in the ontology model (Figure represents the composition

and also expresses the order of the involved requirements.

68

4.4.2 Service Execution Based on Semantic Technology

In the Semantic-based service composition architecture, services are invoked in the same
way as in the Web Services environment. Those Web Services annotated with semantic
can be invoked through SOAP messages or other appropriate protocols. However, we
take advantage of invoking more accurate services because these services are matched
and selected according to the customer’s requirements and preferences. The invocation
sequence of the services is also important in the architecture. The composite services
are assembled as BPEL according to the business policy and the execution order. The
service execution based on Semantic technologies in the architecture has to implement
the fault tolerance. For example, alternative services will be selected to substitute the

failure service in the service matching stage [21].

4.5 Constraint Handling

In the Semantic-based service compesition architectllre —eonstraints are used to repre-
sent the respective conditions of requexﬁents a,ﬂd advertlsements For example, we use
constraints to restrict some requlremehts,fmi-apl{fertlsements attributes, such as time
and cost. Constraints are also ‘applied to rtBJeb Serwces selection in the QoS architec-

|
ture and can be divided into twe ty ets global constrailits and local constraints [6]. In

[62], the Semantic and dynamie sérvice seleetion lfra'ﬁfievvork contains a Constraint Ana-
lyzer to analyze the characteristics of ﬂie constfaints and handle them via appropriate
approaches.

Checking constraints ensures the consistency of the knowledge base including the
common ontologies and the domain-specific ontologies. Different types of constraints are
checked by different approaches. In addition, specifying a number constraint in a specific
range is a frequent task. We adopt value partition approach to subsumption checking
for the comparison between two numbers. For instance, we want a certain number in
ontology lower than a threshold. Our system adopts this kind of range constraint to
restrict common ontologies like time and value partition.

Sometimes, those constraints with subsumption cannot be a effective restriction be-

cause of concept hierarchies design. In this case, we have to implement additional val-

69

idation in programs. However, using programs is not a good solution because it is lack
of flexibility. That means those constraints will be bundled with a specific domain, of a
specific system.

Next, we summarize the classification of constraints and the solutions for handling
them. The common ontologies of time and value partition are detailed in subsequent

sections.

4.5.1 Constraints

According to the framework in [62], constraints are basically divided into two types:
quantitative constraints and non-quantitative constraints. Quantitative constraints
are constraints that can manipulate the four fundamental arithmetic operations. For ex-
ample, the total price of an trip order must.be the sum of all trip prices. We can say
total price has quantitative constraints that it ;In'ust be equivalent to sum of all trips. In
contrast, non-quantitative constraints.use to res.trict :th‘ose features which do not support
arithmetic operations. For example if a trlp COIlSlStS of three-day itineraries, one of the
feature of the trip, the first day of ther tr;p.mus]; Ibe tha same as the start date of first

I

itinerary. | - _7--"’ |

Exception for the categories’of quz;ntit&iye c')ri non-quantitative, constraints can be
a=yc q

particularly divided into binary;'felatib%lships and 'giobal télationships. A binary relation-
ship means that the constraing rélé%ionship only_inv&ves two different features, such as
checking if start date of a trip is before fhe end date of a trip. Constraints of binary rela-
tion compares two features to decide whether the concepts are consistent in the ontology.
We often adopts subsumption approach in binary relation comparison. That’s why we
need to dynamically construct the concept hierarchy for time and value. Different from
binary relationship, global relationships involve more than two features, such as checking
whether the total budgets of a trip is equivalent to the total sum of all itineraries. As
far as we know, it is impossible to express the subsumption relationship between more
than three concepts in OWL ontology modeling. Therefore, we must find another ap-
proach rather than subsumption approach. When handling global constraints, we define

SWRL rules to solve non-quantitative constraints or use a program to solve quantitative

constraints.

70

Constraints

]
x\‘l
.bbﬁk@ O"Q,‘F&.:)’J-.
P U,
Quantitative Constraints MNon-Quantitative Constraints
Global Binary Global Binary
relationship relationship relationship relationship
Rules +
. Integer Concept Rule + Concept
Solution | Constraint Hierarchy Rule Engine Hierarchy
Rule Engine

Figure 4.8: The Classification of Constraints

% =

Based on the quantitative types and” the;éfdﬁstraint relationships, we classify con-
straints and propose a solutlon about constraing handhng beyond the approaches in

[62, 39, [6]. Figure shows the/classification @iT c?nstramts

4.5.2 Time Constraint ' *l!;[?"'

It is controversial to judge that Ti belongs tio a quantltatlve constraint or a non-

quantitative constraint Accordmg to. the time temporal concepts defined in [I], the Time
duration has quantitative attrlbutes' that can be taken as quantitative constraints. For
example, if it takes one hour and fifteen minutes from Taipei City to Hsinchu City by
train, the value of the time unit, hour, can accumulate with another time duration,
minute.

In the Semantic Web Services architecture, we simplify the unit of the Time constraint
and we only consider one kind of time unit, date. A date consists of months, days, and
years. We adopt the approach proposed by [39] to handle time and value partition
that dynamically construct value concept in the value concept hierarchy for subsumption
reasoning. There are before and after relationships between the dates of Time concepts
in the Time ontology. Through checking the subsumption relationships between different

Time concepts we can decide the sequence of the time and apply that in our domain

71

application.

During dynamical concepts constructing, the needed time concepts and also the nec-
essary relationships are added to the knowledge base. However, this approach [39] for
handling time wastes space in the knowledge base and reduces the inference efficiency as

time goes on.

4.5.3 Value Partition

In Figure if we want to handle the binary relationship between two quantitative fea-
tures, we define the concept hierarchy of the quantitative constraints. To make subsump-
tion checking, those quantitative concepts are constructed dynamically as object-type
concepts. In the Semantic-based service composition architecture, we apply the Value
Partition ontology proposed in [39]. The Value Partition approach uses subsumption re-
lationship to express the comparison of: a:mount;ls_. By checking subsumption, system can
inference which quantitative'valué-is greater or less th:ém the other.

Figure [.9 shows the Valie Partition Ontology.

¥ M’aluePalt&iun
v geqVP
v geq2000
v geq3s00
v geqs000
geqE000
v legVP
4 legyE000
4 legy5000
4 ley3500
leq2000

Figure 4.9: The ValuePartition Ontology

72

4.6 Ontology Maintenance

Ontology maintenance is an important issue in Semantic Web Applications. To correctly
represent and reflect the real world, concepts in Ontologies need constant updates and
maintenances. But it is a time-consuming job for those ontologies administrators. Be-
cause most existing editing tools like Protégé are stand alone desktop applications which
lacks of collaborative work. Besides, involving ontology engineering specialist is very
expensive, most of ontology maintenance in current Semantic Web Applications are con-
trolled by a small group of people. Through this traditional maintenance approach, a
small group constructs the ontology for a bigger group has several drawbacks [41]. First,
the addition or update for new concepts can be time-consuming and lack of completion.
For example, missing concepts cannot be added by any user who reveals the need for
a new concept, but has to be added byL the small group of creators. Second, the on-
tology creators read the concept in thé different manner from how the potential user
does. Despite a formal language liké Description Loéﬁis can precisely grasp the meaning
of concepts, ontologies creator may mlsundersta,nd the mieaning of needed concept that
described in natural language by potentrg;l’_i;ise s \It leads to the problem that the cre-
ator add the unnecessary concepts tcl he d'tltologles Sometimes concepts are becoming
obsolete by the time they enter the oin ologles : EI

Therefore, the managements of ontélogy need to bé more efficient and more organized
so that machines can use those plentlful and correct ontologies in reasoning tasks to
deduce the right results. In the long run, ontology maintenance cannot rely on small
groups. It should be collaborative task that everyone who use the system can participate

in ontology maintenance.

4.6.1 Wiki-supported Ontology Engineering

Ontology Engineering is usually not supposed to be a one-time activity of an expert
committee, but rather a sustainable process of continuous evolution [53]. That means
the traditional maintenance approach, controlled by small group, are not flexible and
agile enough for current Semantic Web applications.

[41] provides another approach to ontology maintenance. They borrow the idea of

73

community from Web 2.0 era. Using Wiki as a platform where everyone can share in-
formation and collaboratively maintain ontologies. Different from the traditional main-
tenance approach, missing concepts can be added by any user who reveals the need for
a new concept, it decrease the duration of addition and make maintenance process more
efficient.

Wiki is a popular knowledge management tool widely adopted on the Internet. The

basic idea is to use a Wiki as a mechanism to:

e Concepts Creation

Any user can create an URI for any needed concept.

e Concepts Annotation
Users can describe the concept using natural language and probably multimedia
elements such as, pictures; videos,frather-than the formal and complexity Logic

language. Even Potential users gan undetsgand the meaning of concepts.

e Concepts Refinement,

Wiki technology provides compréh;aﬁvféiv’ension control and edit tools. Refining

-

- T

| -
and modifying the definition oflcrncelftls ca]lo ‘beg€onvenient for the user.
L ! kE .
11

|pal

Ontologies administrators cATl release a part o"f{ontologies to Wiki. Give the user

e Collaborative maintenance

more power to modify and refine ontologies:

In [41]], they show that standard Wiki technology can be easily used as an ontology
development environment for named classes. It supports the user’s participation in the
creation and maintenance of lightweight ontologies. And also they prove that the URIs of
Wikipedia entries are surprisingly reliable identifiers for ontology concepts. In Semantic-
based Web Services composition architecture, we add the a new component based on
Wiki, called Community Component. In addition, we proposed a complete Ontology
Maintenance Procedure to support ontology maintenance. We believe that will increase

the efficient of maintenance in a long run.

74

4.6.2 The Model of Ontology Maturing

In [41] and [52], they have made some observations about how new ideas develop in the
contexts of knowledge management. In [4I], this development process was divided into
five abstract phases as the so-called knowledge maturing process. This process is viewed
as a macro model for interconnected individual learning processes. Detailed definition of

the process are list sequentially below.

e Emergence of Ideas
Emergence of Ideas is the first step in the knowledge maturing process. In this
initial transition, new concept ideas are introduced which are informal and not
well-defined. Most of the time, they are personal expression which are informally
communicated and typically represented by tags. Accordingly, we introduce a new

tag or correct the existingone withiout further reflecting.

e Consolidation in Communities)
The second part of knowledge maturmg process 1srcalled Consolidation in Com-
munities. Through reuse and adapgn, of \concept symbols, a shared vocabulary
emerges within a communitys WTen qt)rr:parmg currently envisioned concepts with
previously used ones; we dlscov*ar smnlarltle? Elmd dlfferences that allow for creating
concepts or accepting ex1st1ng cohcepts In t[,hls stage the cognition from people in
communities will gradually consolidate themey, concepts idea or just refuse them.

But these preliminary concepts are still'without formal semantics.

e Formalization
Within the third phase, new concepts are organized into hierarchical construction
or other taxonomies. For instance, we need the hierarchy for subsumption infer-
ence. Subsumption inference we applied in our system is based on the subconcept
relations. In formalization stage, we have to decide that the new concepts, such
as new location, a new tourism spot, or a new advertisement, belongs to which

super-concept(categories) in ontologies.

e Axiomatization

The last phase of knowledge maturing process captures more domain semantics

75

by adding background knowledge for improving inferencing processes. This step
requires a high level of competence in logical formalism, such as Description Log-
ics. Therefore, this can usually only be carried out by domain experts or system

administrators.

According to the model of knowledge maturing process, we believe Wiki-based com-
munity efficiently support the first two phases of the knowledge maturing process. So
that we add Wiki community component to our system. Through collaboratively editing
feather of Wiki, every user is able to publish a new concepts ideas. Everyone in the
community will notice the emergence of those new ideas. They can discuss and compare
new ideas with others. Gradually, the new concepts are consolidated by those people who
involve in the community. In addition, Wiki-based community give the system adminis-
trator an effective suggestion that what concepts should be update in the ontologies. That
makes the maintenance of the ontelogies faster and flexible. Up-to-date concepts can be

add to the ontologies immediatelys We will introduce the_ontology maintain procedure

in detail at next section. k \

31
4.6.3 Wiki Community Cq | pqlt'ié}lt and Ontology Maintain Pro-
| U :

cedure i

1
coa W | 1 s

Wiki Community Component 1S one of themew cemponents in Semantic-based Web
Services composition architecture: 1 We: borrow ithis idea from web 2.0 technology to
empower the individual to take part in community activities by lowering the barriers.
It is responsible for creating a open Wiki-based environment which allow the customer to
contribute their requirements and corresponding match results and to tap the collective
intelligence of a community. Most importantly, Customers are able to participate in light-
weight ontology maintenance through Wiki-based editing tools. Our Wiki Community
Component indirectly help the administrator to maintain ontologies. In other word, it
summary the administrator a guidance from the customer’ preliminary concept creation.

To collaboratively maintain the ontologies, we proposed an Ontology maintenance

Procedure. That maintenance procedure was divided into five phases. Detailed definition

of the procedures are list sequentially below.

76

e Ontology Meta Model Definition
At this first phase, the administrator has to define an ontology meta model suitable
for a large audience. Our principle for meta model is less complicated is better.
Many ontologies have a subsumption hierarchy that allows to infer implicit class
membership, but this is not mandatory to show the whole ontologies to the cus-
tomer, especially to those users who do not have any logical formalism background.
With simplifying the existing ontology to light-weight ontology, the customer can

easily understand the structure of ontology and participate actively.

e Light-weight Ontology Release
Within the second phase, the administrator releases the simplified ontology to Wiki-
based Community Component. The scheme of simplified ontology are consistent
with the meta model defined at previous phase. Light-weight ontologies released
on the Wiki can be anmotated Wifh nat"ﬁre language, pictures, videos, or other
multimedia elements: Fpr a large participatofs,"these easy-to-understand, media-
rich, Wiki-based user intetface lower eptfénce bafr’iérs of collaborative ontology

engineering. | = ||

¢ Preliminary Concepts Creation and Modification
During the third phase,,th:roughl_ Wiki platfd:rm, the customer freely modifies ex-
isting concept or creates ne‘w%ongepts accgrdi-rzig with the released ontology meta

model.

e Preliminary Concepts Consolidation
The forth part of ontology maintain procedure is a evolution process that needs
participators to accept or reject the preliminary concept idea through continuously
reuse and adaption of concept symbols. If they are tend to have a common cognition
toward the new concepts, those new concept ideas will be gradually consolidated
and be well formed. For instance, those stable concepts in Wiki are rarely modified
by others because participators accepted the current definition. In contrast, the

controversial concepts are always have many different version in history log.

e Ontology Update

77

The last phase, Ontology Update, which has to involve the administrator to up-
date the ontology directly through manipulating KBMS, such as Protégé. The
Wiki Community Component indirectly provide the administrator a guidance that
suggest what concepts should be updated or created. With Wiki Community Com-

ponent and the user’s participation, ontology maintenance becomes more effective.

78

4.7 Service Execution
4.7.1 Design of the Service Execution Module

The Service Execution Module in the Service Composer is activated when the customer
chooses matched services to execute them. It handles the execution part of the architec-
ture and is the bridge between the Integrated User Interface and the Execution Engine.
After the user choose one of the desired services and ask the Service Composer to invoke
it, the related information about the services is sent to the Service Execution Module.
That contain several component: the WS-BPEL File Handler, the WS-BPEL Template
Pool, the WS-BPEL Generator, and the Execution Engine Invoker. At first, the WS-
BPEL File Handler starts to yield a WS-BPEL file using the WS-BPEL Generator. The
WSDL Parser in the WS-BPEL Generator obtains related WSDL files from the Internet
and extracts the necessary information -and parameters. The WS-BPEL Generator ob-
tains the template (Abstract Progess) {rom thé 'W'S:—BPEL Template Pool and combine
with WSDL files into the BPEL file (Executable Proj(ﬁess)r Finally, the WS-BPEL File
Handler then deploys the BPEL file fo Executlon Engine.”

The Service Execution Module mteraeﬁhﬂl the Execution Engine and returns mes-
sages about the execution status to t;lh Serhce Composer “The messages, which will be
displayed in the Integrated Use__r(_Inte&face, shouldp be eleirand detailed. If any incidents

,) !
occur, the Service Execution Modiile' is responsible for handling them.

4.7.2 Architecture of the Service Execution Module

e WS-BPEL File Handler
The WS-BPEL File Handler is responsible for communicating with the Integrated
User Interface, handling the BPEL related files, and deploying the BPEL files to the
Service Engine. It receives the desired service lists from the user and collects respec-
tive service descriptions from the Internet. After it asks the WS-BPEL Generator
to generate the executable processes of WS-BPEL, it sets the related configurations
of the Execution Engine and deploys these files (WS-BPEL files and the Execution
Engine setting) to the Execution Engine. If there were errors in the BPEL File
Handling stage, the WS-BPEL File Handler sends corresponding messages to the

79

Integrated User Interface to notify the user.

¢ WS-BPEL Template Pool
The WS-BPEL Template Pool stores the BPEL templates, which are designed
by the system administrator. According to different processes and interaction of
services, different BPEL templates are pre-defined using the existing application
for creating BPEL processes. These templates are stored as abstract processes and
can be transformed to executable processes by adding related parameters. They
can be reused to meet the defined composition processes as needed by the invoked

services..

¢ WS-BPEL Generator
The WS-BPEL Generator is responsible for generating WS-BPEL files according
to the selected templates and relatéd WSPL files.. It produces the executable pro-
cesses from the BPEL/template (abetract.proees'Ses) by adding related parameters
extracted from the WSDL files. 1t uses the WSDL Parser to parse the WSDL files
and get the parameters needed for*tl;e. BPE)L files. After it finishes generating the
WS-BPEL files, it returns them[tsife’W‘SaBPEL File Handler.

o T [

¢ Execution Engine Invoker i ‘ 1
The Execution Engine Invoker aets as a brléige between the Service Composer and
the Execution Engine when the user want to invoke services. After the WS-BPEL
files are deployed by the WS-BPEL File Handler, the Execution Engine Invoker is
responsible for invoking the desired services. If the services are invoked successfully,
it sends messages to the user. However, if any Web Services fail, the Execution

Engine will rollback all the executions it has done so far and send the Execution

Engine Invoker an execution failure message.

Otherwise, the Execution Engine must be bundled into a Web application server.
It can provide execution logs via the Web pages so that the system administrator and

the user can trace the execution status of the services according to the processes of the

WS-BPEL.

80

A

Web Application
Server

WS-BPEL Template Pool

<1/

WSDL

WS-BPEL Generator
Parser

:

WS-BPELFiles Handler

Integrate User Interface

WS-BPEL
R ~ g Execution Engine

Execution Engine Invoker

AN

|| Web
Services
Services

|| Web
Services

=)
Figure 4.10: Architiectuie of the Sérvice Execution Module

i- 't “
- ra'

s a L

4.7.3 Development of the uﬁ%élfrrocess Execution Language
IRy 1 &

In the service execution stage, BPEL}ﬁ es are genérhted by the Service Execution Module
in the Service Composer. We. adopt the methodélogy for development of Web Service-
based Business Processes proposed in [31], and snnphfy the process to meet the essential
needs of the Semantic-based Web Services ‘composition architecture. In Figure [4.11] the
service execution involves two stages: the Build Time and the Run Time. The Build
Time refers to the procedure of defining the WS-workflows with the desired characteristics
and related settings in the Execution Engine. It involves in three phases: Preprocessing,
WS-BPEL Process Generation, and WS-BPEL Deployment. The Run Time
refers to the actual Service Execution and Post-run Time, which monitors the status

of the Execution Engine. The detailed functions are as follows:

e Preprocessing
In the Perprocessing stage, the agents or the system administrators should partici-

pate in and define BPEL templates according to their needs or business processes.

81

Templates can represent collections of activities that implement composition pat-
terns and activities with specific features. The system administrators can use ex-
isting BPEL related tools like Active-BPEL Designer to define the processes. They

make an abstract process definition and store it in the template pool.

¢ WS-BPEL Process Generation
In the architecture of the Service Execution Module, when the customer selects a
suggested advertisement package to invoke, the Service Composer sends a request
to the WS-BPEL Generator to process BPEL4AWS files. In the WS-BPEL Process
Generation stage, the process definition program representation is generated. Af-
ter collecting the related WSDL files of the advertisements from the Internet, the
selected template (abstract process) is combined with the related parameters and
definitions, and a BPEL file (executable pr'ocess) is generated. Besides, the related

files about the Execution Engine are made'in this stage.

e WS-BPEL Deployment
When all the BPEL files and the _gttmgF ﬁles about the Execution Engine are

completed, they are packaged d déﬂ’éyed to the Execution Engine by the WS-
BPEL Deployment. The'dep voled ﬁl‘bEL ﬁles become a service process in the

,,

Execution Engine and ready to! k?e called. Fl !

e Service Execution
Service Execution executes the deployed processes according to the execution order
scheduled by the process control flow. During executing, data is exchanged between

processes and the invoked Web services.

e Post-run Time
It would be useful to gather the status information of the execution during run
time. In this stage, the system administrators monitor the execution, analyze the

process logic, and configure it by checking the status information.

The BPEL life-cycle provides a semi-automatic development process for BPEL. Humans
only have to participate in the first stage, Preprocessing, because business logics and

process flows should be defined by the user. The rest of stages in BPEL life-cycle can

82

be implemented automatically. The process model can shorten the development time of
processes and also hide the complexity from the developers because humans do not need
to join every stage. In addition, the model provides flexibility by postponing the choice
of a language for the definition and by deferring the binding to the specific Web Services
to the latest possible time.

Service composition correlates highly with service execution because the order of com-
posed services is considered as the same as the order of service execution. The information
of the service composition details what services participate in the process and the cor-
rect execution order. In [63], the authors note that there are many types of the service
composition, such as sequential service composition, sequential alternative composition,
parallel with results synchronization, and parallel alternative composition. Sequential
service composition means that the execution of a constituent service is dependant on
its preceding service. Sequentialialternative Co1jrli_position means that alternative services
could be part of the composition.“Every alternati;/e Wi]rlf'be attempted until anyone service
succeeds. The parallel with results Synchronlzamon mearis that the constituent services
can run concurrently. However, the resuitsaof the[lr executlon need to be combined. The
parallel alternative composition meafx thﬁr#‘l'fetqatlve services are pursued in parallel
until one service is chosen. Each of t jm 1& e}lassafﬂ?d by the flows of involved services.

Based on the Semantic ‘cechnolog]l %; the servﬂ;d cqmp0s1t1on will be accurately com-
posed by matching with the custorner’s requireme_nts'-.:":kFurthermore, Sematic technologies
support Web Services with providing ac:curate suggestions to dynamically and automat-

ically invoke the services. Besides, different orders of service execution are designed

according to the customer’s needs and business process logic.

83

» Preprocessing
e Define a process using existential Application.

e Make a BPEL Template and do the correlate setting in WS-BPEL Generator.
e Test the template.

» WS-BPEL Process Generation

e Choose a template. (Abstract Process)

e Collect WS-BPEL definition about WSDL and Service.

e Add WS-BPEL definitions and variables into the template. (Executable Process)
e Make setting files about Execution Engine.

» WS-BPEL Deployment

e Deploy the WS-BPEL file and Execution Engine setting files in Execution Engine.

» Execution

e Monitor service invocations.

» Post-run time

Figure 4.11: Life-cycle of the Business Process Execution Language

84

Chapter 5

Implementation - The Traveller

5.1 The System Design

To validate the Semantic-based service composition architecture described in the previous
section 4.1.2, we have implemented.-a prototype system for the tourism domain, called
The Traveller, as a web application based on:"existing Web Services ,sematic web, and
Web 2.0 technologies. The Travéller obeyed the sefvice composition architecture that
contains each essential Compoﬁents we introduced in previous chapter. The reason why

we chose the tourism industry; domai‘nr to-be E,QU.IT analytic_target is that the relation-
| - .

| = | 1
ship between the customer’s trip reqpireme*l‘_us and the providers’ trip advertisements is

conspicuous for observation. \ t i 1

In general, the Traveller bigvidés;an integra'téd,(touﬁsm service that includes the
customer’s requirement defining; abproXimate matching, service invocation. Through
mouse clicking in the browsers, the customer ‘can define the requirements and match for
suitable Web Services.

The Traveller was originally designed in [27], which was implemented as a plug-in
application in the Protégé, a well-developed ontology management system developed by
Stanford Medical Informatics at the Stanford University School of Medicind] However,
as a Protégé plug-in there is a big problems that is those ontology tools and ontology
languages impose high entrance barriers for potential users. While using previous system,

the customer often had information-overload problem. So that we decide to divide the

system view into customers’ perspective and administrators’ perspective. At this time,

'http://Protege.stanford.edu/

85

http://Protege.stanford.edu/

we have a lot of improvement on providing a friendly system interface and encapsulating
complex semantic language into figures and pictures which are easy to be understand
by the customer. To achieve that, we spent a lot of time on transplanting our system
from Protégé to a open J2EE web application. Being a web application, the customer
do not have to install Protégé or related plug-in modules, such as SWRL tab-widget,
Protégé Axiom Language (PAL) tab-widget, and Racer inference engine. All they need
is a accessible Internet and a browser. With combining different plug-ins, Protégé play
an important role of being a useful management tools for administrators. That contains
1) SWRL tab-widget with the JESS rule engine, which is used to define SWRL rules
and examine role relationships between individuals in the ontologies; and 2) the Protégé
Axiom Language (PAL) tab-widget, which helps the global constraint checker analyze
the integrity constraints.

To demonstrate our system, we take a.scenarioin the tourism domain as an assumptive
example. That is a customer wants-togplan a tripsfor. ,tWo days from Taipei to Nantou in
Taiwan. We assume that he / she does not know What exactly places to visit or which hotel
to accommodate. Asa Semantic Web apph.aa.txon,F the Trayeller, can aid the customer plan
their trips. The Traveller adopts Goorg M’"API as the AJAX interface, that help the
customer indicate their starting pomF Lnd gestmat?on by putting the flag on the Google
Maps. With stating point and destlnation asbasic’ ,thp requlrement is initialized. Also the
customer could input detailed mforma,t;pn more‘_than locations, such as the customer’s
budgets, date, numbers of people, and Sp:OtS which they want to visit. The Traveller guides
the customer to fill-in necessary information step-by-step. If input data are inconsistent
with what we expect, such as data type mismatch, a warning window will jump out that
remind the customer to correct their inputs. After completing requirements, the Traveller
translates the requirements into formal logic language at the back-end. Subsequently, it
starts making exactly or approximately matching services according to the customer’s
preferences. Finally, the matched result will be returned, the customer can make a
decision to invoke the Web Services on the result list such as flight booking services and
hotel reservations.

Based on the above scenario, there are the four stages in the Semantic Web Services

composition architecture, which we describe bellows:

86

e The system collects the advertisements of potential services from UDDI registry or

the related web sites.

e Users define their requirements and complete the service description with the help

of the system.

e The system matches the appropriate advertisements of the services according to

the user’s requirements.

e The user selects the desired package of advertisements from the matched advertise-

ments and asks the system to invoke them.

In the following section, we introduce the implementation system and explain the
service descriptions of requirements and advertisements, ontologies, constraint checking,

and rules in the system.

5.2 Service Description

To accommodate to the matching scher{ig" ﬁeﬁ%gpriptions of the customer’s requirements
and providers’ advertisements are deﬁTed lrii the Sz_xme form Description Logics. In the
Semantic Web Services composition la chltec'ture; Iwe adopt concepts to express service
description which contain Constralntskfieathers/ atth'butes) ‘about the trip service, like trip
price, starting point, destination; and date. Wense the M constructor to connect these
constraints together. With concepts expression, we can specify a service requirement or
advertisement which hold all constraints at the same time.

In the matching stage, a suitable matched service must satisfy all or partial specified
constraints. From customers’ perspective, a requirement description represents a cus-
tomer’s demand and expectation about the service. From a service provider’s perspec-
tive, a advertisement description characterize the functionality service provides. Note
that the service description we mention here is an ”abstract description” which detailed
the functional descriptions other than execution details in the service profile of WSDL
document. Travel agents can publish their advertisements using OWL-DL based ser-

vice descriptions or traditional existing database schema. In the back-end, those service

profiles published on the Internet are automatically discovered and stored by he Service

87

Collector/Annotator, one of the main component in our system. If the travel agent adopts
different kinds of service descriptions to those of the ontologies in our system, the Service
Collector/Annotator is responsible for translating the heterogenous descriptions into the
same format. Those abstract descriptions will be mapped into OWL-DL concepts so that
service properties are restricted with specific constraints. In front-end, the Service Com-
poser accept and store the customer’s requirements using the shared set of ontologies for
matching with abstract service descriptions. Following the scenario mentioned above, we

explain the service descriptions in the Traveller system.

5.2.1 Trip Requirement Description

According to the design approach of the ontologies discussed in Section [4.4] in the sce-
nario, the Traveller accepting a requirement,-a two-day trip from Taipei to Nantou from
July 1st to July 3rd, 2007, froma customer. T.‘Ihe customer is seeking for a trip for two
people and trip budget around NF:105000. THe custdmer plan that the first day, July
2nd, 2007, start from Talpel to Hsmchu and second day, July 3rd, 2007, start from
Hsinchu to Nantou County by bus. We, deﬁned tl}e general trip as the concept, MyTrip,
which shows below. MyTrip concel'[) segmented into-two days represented by
MyRequirement-1 and MyRequi eLneanQ Th(e bus requirement can be defined as a
transportation requirement called TrlapSReql B,ebldes the customer has stated prefer-
ence about the tourism spot named: Chmg Jing Fz_xrmﬂ, and its budget is about N'T.1,000.

The tourism spot requirement in July 31, . is.desciibed by the concept, SpotReql.

MyTrip

3 tripStartDate.2007-07-01

3 tripEndDate.2007-07-03

3 startsFrom.Taipei

3 endsAt.NantouCounty

3 hasNumberOfPeople.{2}

3 hasTripBudget.leq10000

3 hasTripElement. MyRequirement-1

J J J O O O 3

3 hasTripElement.MyRequirement-2

2Ching Jing Farm is a famous farm in Nantou County, Taiwan.

88

MyRequirement-1 = 3 tripStartDate.2007-07-01

M 3 tripEndDate.2007-07-02
r 3 startsFrom.Taipei
M 3 endsAt.Hsinchu
M 3 hasNumberOfPeople.{2}
r 3 next.MyRequirement-2
MyRequirement-2 = 3 tripStartDate.2007-07-02
r 3 tripEndDate.2007-07-03
r 3 startsFrom.Hsinchu
M 3 endsAt.NantouCounty
M 3ihasNumberOfPeople. {2}
M 2 hasBuaget 1{(5516000
M. JdhasTransTE. TransReq—
ai £ hasSthTE. SthReq— -
s b~ £ 1
TransReq-1 = 4 has'I‘.ransP partd ate‘2007 07-02
N hasTrans} us AéWamﬂjj'a ChlngjlngFarm
n 3 hasNumBelOfPeople"llerns {2
n 4 hasTransBudget,.lquOOO
SpotReq-1 = 3 hasSpotScheduledDate.2007-07-03
M 3 hasSpot.CingjingFarm
M 3 hasNumberOfPeopleSpot.{2}
M 3 hasSpotBudget.leq1000

5.2.2 Service Advertisement Description

Travel agents publish their advertisements using OWL-DL based service descriptions or

traditional existing database schema. If the travel agent adopts different kinds of service

89

descriptions from the ontologies we use, the Service Collector/Annotator is responsible
for translating the heterogenous descriptions into the same format. The concept listed
below represents a two-day trip advertisement for two persons from Hsinchu to Nantao
for the period July 2nd to July 3rd, 2007, which advertised price of the trip is NT.5,000.
In addition, it also include a spot itinerary, called Spot AdO. The spot itinerary is for a
ChingjingFarm spot scheduled on July 3rd.

3 tripStartDate.2007-07-02
3 tripEndDate.2007-07-03

AdvertisementNantou-0

3 startsFrom.Hsinchu

3 endsAt.NantouCounty

3 hasNumberOfPeople.{2}
3 hasBudget.leq5000

3 hasspthE.spotAd-o

J..0 3 O IO 3

SpotAd-0

3 hasSpotScheduledDate 2007—07-03

3 hasSpot. Cmgpn&E‘armF :

g hasNumberdfP(ﬂfﬂESpot {2}
3 hasSpotBud et. lélfvﬂ() 1

!
‘ Irl
I |
A4 i}

J 3 3

5.3 Implementation of ‘the Traveller

In this section, we will explain the components of the Traveller in detail. The components
include the Service Composer, the AJAX Component, the Community Component, the
Inference Engine, the Execution Engine, the Service Collectors/Annotator, the Knowl-
edge Base Management System, Ontologies. We have mentioned the function of each
component in section [4.1.2] Somehow, the Service Composer and KBMS play the most
two important roles in the architecture. The former interacts with the user in the front-
end by providing an user-friendly interface and collaborates with the other components
in the back-end by accessing the set of the ontologies. The later one monitor and man-
age the correction of the ontologies with SWRL rule and Protégé Axiom Language by

manipulating Protégé and its plug-ins. Therefore, we focus more implementation detail

90

on those two components. We adopt JSP/Servlet technology, which is a Java-based web
application, as the Service Composer in the Traveller. To lower the entrance barrier of
the semantic application, we have modified the functionality of the Service Composer
which is simpler than the previous version.

Based on the Semantic technology environment, we use the Web Ontology Language
(OWL-DL), a family of knowledge representation languages for authoring ontologies,
adored by the World Wide Web Consortium, to describe the service descriptions and
related information and use the Semantic Web Rule Language (SWRL) to increase the
inference power for solving the role composition. To implement the Inference Engine,
we adopt the Racer DL reasoner as the back-end Inference Engine to perform concept
subsumption reasoning. Otherwise, we adopt the Active-BPEL Engineﬂ as the Execution
Engine, which attaches to the Web Application Server of Tomecat 5.1 For the Service
Collector/Annotator, we apply.the apptoach pllr'pposed in [14]. Here, we detail the im-
plementation of each component-in-thesSemantiéshased service composition architecture.

Table illustrates the implémentation tools and theicorrésponding components.

11 ii??,??
Table 5.1: Implementat}op q@%&e_@qmponen’cs of the Traveller

Components L i%i ilmplementation
The Service Composer gSP /Setvlet

The AJAX Components Gaoogle Maps API
The Community Coriponents-{* JSPWiki

The Inference Engine Racer

The Execution Engine Active-BPEL Engine
The Service Collector Java-application
The Knowledge Base Protégé 3.11
Management System

Ontology Standard OWL-DL

File System MySQL 5.0
Application Server Tomcat 5.0

3http://www.active-endpoints.com/active-bpel-engine-overview.htm
‘http://tomcat.apache.org/

91

http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://tomcat.apache.org/

5.3.1 Implementation of the Service Composer

e Inner Knowledge Base
Knowledge Base is represented by Web Ontology Language(OWL), a language for
defining Web ontologies. We adopt Protégé API to access the OWL file which
contains numbers of concepts and relative rules. Regarding the trade-off between
the expressive power and the computational complexity, we adopt OWL-DL as the
specification for our system’s ontology. The requirement that the customer input
would be translated into OWL format and stored at ontologies. To encapsulation
the complex semantic information, we did not authorize the customer any power to
modify the ontologies. All related management tools are removed from the Service

Composer.

e Integrated User Interface .
As we state previously, the Travellér is V!v'eb application based on Semantic Web
technologies. To provide, the intg_rface on-page;, the Integrated User Interface is
implemented by Java Server Page.s(lgP),-’:% ‘écript 1a1-1;guage widely adopted on the
Internet. It provides & user—frieﬁdlmm(’;e that hélps the user complete their

1 |

trip requirements step-by-step, and :ggj_turn' the suitable service on pages. Most
e]r ‘EInterface mllé;shing up with Google Maps API that

importantly, the Integrated.Us
provide a interactive AJAX GUI to the custo"fﬁer. In addition, it connects other

component such as the Wiki-based commuhity through hyper-links.

¢ AJAX Module
With cooperate with the AJAX Component, AJAX module is responsible for build-
ing a geographic interface, for instance, a FEarth map, displayed on the Integrated
User Interface. While displaying the geographic interface, AJAX module retrieve
necessary information from the ontology, such as location name, descriptions of
locations. Meanwhile, it continuously listen the interaction events between the cus-
tomer and the system, such as mouse click, mouse trajectory. Those events are used
to trigger certain functions. For example, Through clicking mouse on the map, the

customer inputs their requirement easily.

92

¢ Community Module
Community Module is implemented as a Java program, that dynamically gener-
ate the document for JSPWiki. The document contains the customer information,
their requirements, and corresponding advertisements. Also if the customer input
a requirement that contain some information not in the ontologies, it generate a
report document to the administrator. The documents generated by the Commu-
nity Module are used to be deployed on JSPWiki. So that JSPWiki can display the

needed information on the collaboratively editing environment.

e Matchmaker
The Matchmaker is a matching module that invokes the Inference Engine to start
reasoning. It acts as a bridge between the Service Composer and the Inference
Engine To provide an approximate serviee matching between requirements and
advertisements, we developed a JaLVa pré'gram as a matchmaker module to com-
municate with the Inference Engine, Racer infé'rence engine. This Java Program
is responsible for computing snnﬂarlty degree Also numbers of domain rules for

decision are implemented in the cpde::g;‘h as the similarity between transportation

=) l;
-

lines, location concepts subst1tdt|on rilLe |
e Dynamic Concept Compon ‘Pt :l Eg
To solve the problem of quzfnjcitatiye COHC,eptS:;:VWG use a set of Java programs to
dynamically create quantitative cencepts li‘ke Time and ValuePartition. When re-
quirements related values and time, this Java programs will adds automatically
time or value concepts to the knowledge base. That implies relationship between

concepts and the concept hierarchy are created automatically and dynamically. to

avoids having to define a large knowledge base of quantitative concepts in advance,

e Service Execution Module
We develop this Service Execution Module combining the following components: WS-
BPEL File Handler, WS-BPEL Template Pool, WS-BPEL Generator, and Execu-
tion Engine Invoker. It provides tools to generate executable processes from ab-
stract service descriptions and templates, and invokes the Execution Engine. It also

returns the results from the Execution Engine to the Integrated User Interface.

93

a

Customer

A

i
! S
o« Al 8
Il module il PRJAX Component
Integrated User Interface ks
<+ Matchmaker |- - =
Inference Engine
i i A \ Service S
Y Y Execution |- - o
Time & Module Service
ValuePartition | | Protégé API | . Collector/Annotator
Program » Community | -
i i module
Community Component
Y Y
Protégé Knowledge Base /
OWL-DL + SWRL + PAL MySQL

Figure 5.1: The Imple(_\athh@ﬂ the Serv1ce Composer
I ..g';.}-

I
Figure illustrates the 1mplementaltlt)n of the SF vige, Composer in the Traveller.

5.3.2 Implementation of the Knowledge Base Management Sys-
tem

e Inner Knowledge Base
Inner Knowledge Base we mentioned here is exactly the same ontology as the Sys-
tem Composer’s one. It is a represented by Web Ontology Language(OWL). We use
Protégé OWL editor to define and maintain the tourism domain ontology. Only ad-
ministrators can modify and update the ontology at back-end. To increase the ontol-
ogy management capability, we also adopt Semantic Web Rule Language (SWRL)

and Protégé Axiom Language (PAL) rules to support maintenance of ontology.

e Integrated User Interface

Protégé ontology editor provides an Integrated User Interface for the administrator.

94

With that, creating or modifying a class, property, instance is very convenient. In
addition to OWL editing, Integrated User Interface integrate other Protégé plug-in
tools such as, The Protégé Axiom Language tab-widget plug-in and the Protégé
SWRLJess Tab-widget plug-in. SWRL rule and PAL also can be defined in Inte-

grated User Interface.

e Translation Tools and Rule Engines
We adopt Protégé SWRLJess Tab plug-in for editing and reasoning rules. SWRL
rules are used to strengthen the expressive power of OWL-DL in our system, and
to capture implicit composition relationships. The SWRLJess plug-in translates
SWRL rules to JESS rules, which can infer new knowledge through the Jess rule
engine. It returns the inferred knowledge and stored it in OWL-DL format in the

knowledge base.

e Constraint Checker Tools
To check the consmtenoy of the ontology, we Use the Racer DL reasoner to handle the
binary relationship between two cons _Lamts by subsumptlon inference(classification).
Besides, we use the Jess Rule Ein Hm'ﬁ‘d' SIVV RL rules to solve the global relation-
ship among more than twao no —juanﬁtatlvé constraints. Otherwise, we adopt the
PAL rule engine provided by Perege AXIOII‘E !Rule plig=in to check the global rela-
tionship among quantitative :constrrﬁaints. Thesé{Constraint Checker Tools are used
to check constraints like trip budgiets and fime dependencies between the require-

ment and its element requirements.

e Import/ Export Component
We use the Protégé OWL plug-in to exchange knowledge base with other Semantic
Web applications . Ontologies will be stored as OWL files through the Protégé
OWL editor plug-in. With OWL standard, Semantic Web applications are able
to import their ontology into our knowledge base. In contrast, we can export our

ontology in OWL format to others.

Figure illustrates the implementation of the Knowledge Base Management System

in the Traveller.

95

8

Administrator

3

Integrated User Interface

Y

|

|

Protege
Editor

SWRLJess
+

PAL
Plug-in

Jess Rule
Engine
+
Racer

Protege's
OWL Plug-in

|

A

Inner Knowledge Base / ontologies + Rules

A

Y

Other
Shared Ontologies

Figure 5.2: The Implementation of the Knowledge Base Management System

96

5.4 Ontology Design
5.4.1 The Tourism Domain Ontologies

According to the architecture of the service combination approach mentioned in the 4.4}
ontologies play an essential role for different components in the architecture to communi-
cate with each other. They make computers able to exchange information with each other
in the semantic-level understanding instead of only in the syntactic-level consistency. In
the following sections, we introduce the ontologies design in implementation system, the
Traveller, and explain the consideration and purposes. Following the architecture of the
ontology in [27], we attempt to distinguish two different kinds of ontologies in our system.
First, there are upper common ontologies, which can be reused in different domain, such
as time, and Value Partition, to describe the constraints like time and budget. Second,
there are domain-related ontologies for describing requirements, advertisements, accom-
modation, transportation, eyent, spot, and local'ti'on._Figure 5.3 shows an overall tourism

ontology design. We will specify these ontology desigrilr details in the following sections.

5.4.2 The Spot Ontolo __"I\
p gY || T

|
|

| - -

As we mentioned above, domain—relat_{e ont'a}Qgies ;au"e those deseription for requirements,

advertisements, accommodationy tra%sportation, ;Qifent, spot, and location. In this sec-
tion, we introduce the spot ontology !Which ontro!l(-)g"y' hierarchy are similar with event,
accommodation, and transportation. Thereforé, after introducing the spot ontology,
readers also understand the ontology design of event,accommodation, and transportation.
We assume there is a Web Service, a spot ticket booking service, contains functionality
descriptions, such as input and output message definitions, and non-functionality descrip-
tions, such as service provider information. In the service composition architecture, we
use a concept(class) to define the spot service. The non-functional service descriptions are
represented as properties of the concepts. Figure illustrates the Spot ontology. In the
figure, a class called Spot is used to represent a root class of a spot ticket booking Web
Service. It contains numbers of properties to represent the descriptions of spot services.

For example, a spot class has its name, its Web site URL, e-mail address, telephone

number, fax number, address, corresponding WSDL description, and its location. We

97

Tourism Domain-Related Ontology

Class

Class

Location

ValuePartition

| i
1 I
1 I
1 I
1 I
1 I
' |
| Class |
1 General :
| Requirement | | i

I
: subClassOf domain damain damain damain :
1 r
: Class (: ObjectProperty :} (" ObjectProperty -:l L ObjectProperty) f ObjectProperty) i
: Requirement | hasEventTE) (hasSpotTE /I KhasAcoomTE)- KhasTransTE)- :
| -
1 - |
1 subClassOf | :
: range range range range |
1 Class -4 subClassOf Jl | l l | :
I Element A

I
| Requirement Class Class Class Class I
: Event Spot Accommodation Transportation | |
| Requirement Requirement Requirement Reguirement :
1
: subCi:tlass'Df subCi:tlass'Df subCi:.ass'Df subCi?asstf :
] Class Class Class Class !
1 I
: Event Spot Accommaodation Transportation :
1 I
1 subC%ssOf subC%ssOf subcéss{)f subCI'lessOf :
1
| Class Class Class Class |
I Event Spot Accommodation Transportation | !
| Advertisement Advertisement Advertisement Advertisement | |
| Class ‘ | ’ y | :
1
1 Element <% sybClassOf 4 I
| Advertisement range range range range :
1
1 subClassOf !

I
: - {_ ObjectProperty) (_ ObjectProperty) (" ObjectProperty) (" ObjectProperty | !
. Class ;} ! d \ s \ . \1 I
1 . | R I | 1
| |Advertisement k\xhaaE\-rentTE) khasSpotTE/} \MhasAcmmTE/J a\hasT"a”STE/; :
H _ . S S

I
: FCIa.s Of I
: = 2 domain domain domain domain :
1 Class :
| General I
| Advertisement :
| i
1 I
' :

Figure 5.3: The Tourism Ontology Design

divide spots into four categories: cultural spots, general spots, natural spots, and temple
spots. The classifications CulturalSpot class, GeneralSpot class, NaturalSpot class, and

TempleSpot class respectively denote the types of spots.

98

[Dentelty;:peProperl\,.r |

%5d:
hasName l—ranH String
[DatatypeProperty l —xsd]
hasHomepagel—mnge—P String
Class Class domain Dalalwepmpeny
Spot Spot hasEmall \—range-h xsg.
Requirement || Advertisement d°mﬁ'" String
hhss&f subCIag:Of/ domain I atatypePrnpertyl xsd:
'y (hasTel) ~ange-» String
Class omain-—'_'_'_-_._._-_-_—\‘»i./
Spot "—_-_-_-_-_'_'_‘—‘-dornain I:hat.aat:,rpeF‘rcaperh.I sdr
ﬂ__________________(—-—-r d:
| hasFax e String
‘domain —_
P T ——————
Mmlr\?&tatypelﬁmpeny) xsd]
subClassOf subClassOf subClassCf subClassOf :' hasAddress \—rang&h- String
domain ‘\7’
-)_DalalypeF'roperty TR
-f' haSWSDL) —rarge| anyURI
Class Class Class Class ! ISR AA
CulturalSpot || GeneralSpot | MNaturalSpot || TempleSpot ‘) Class
e -~ —ran
/ hY .
cubChseor (_locatedin) Location
Class
ChingjingFarm
i
type
[Instance |
ind_ChingjingFarm ‘
B9\ WS

Figure 5 4,. Desygn 0

Take Ching Jing Farm, one of the famous spots in Taiwan, as an example. We con-
struct a ChingJingFarm concept to represent that spot. We classify the ChingJing-
Farm as a natural spot, so it should be a subclass of the NaturalSpot class. Also
we build an individual ind_ChingJingFarm to represent ChingJingFarm concept in
ABox level. As far as we know, there is no role composition inference in TBOX level.
That’s why we have to build an additional individual to capture the composition relation-
ship between different concepts through SWRL rules. Ind_ChingJingFarm contains the

corresponding information according to the range of property defined in the spot ontolo-

gies. For example, if hasName property’s range is String, then a String type information

o,

#Pr

e Pot @“ﬂtol@gy (Part)

.

o '
- *'"-ff—f |

99

i

need to be filled in hasName property. Event, Accommodation, and Transportation
ontology are modeled in the same approach.

In Figure the Spot is the subclass of SpotRequirement and SpotAdvertise-
ment, so we can facilitate the subsumption relationship in the TBOX level reasoning
between the requirements and the advertisements of the spots. We can also capture the

relationship by individuals of the Spot concept in ABOX level reasoning in Figure

ChingjingFarm = 3 hasMame. ™ Chingjing Farm”
3 hasHomepage. "hitp:fichingjing twirip.net”
3 hasEmail. " chinjinghotel@yahoo.com.tw ™
M I hasTel. "+B86 49 280 27487
M3 hasFax. "+886 49 280 2203 "
3 hasAddress. " No.25, Dingyuan Lane, Dingyuan Village,
Ren-ai Township, Nantou County 546, Taiwan"
1 3 hasWSDL. "http:/ichingjing.twirip.net :8080/ticket?wsdl”

1 Jlocatedin. "Nantou_County”

Ayiom (DatatypeProperty)
il il y\ Siring
[hasName |j—values| 'Ching lJing Farm'
Class N S
ingji (DatatypeProperty)
ChingjingFarm ypeProp YL g
(hasHomepage™¥#Me®"http:/ichingjing. twirip.net/"
type
(DatatypeProperty)
| Instance (DatatypeProperty) SEa

s N ™
ind_ChingjingFarm [hasEmail J—values| "chinjinghotel@yahoo.com tw’
— e i
[DatatypeProperty) String

hasTel Crvaluesl 4886 49 280 2748°

(DatalypeProperty) Stig

hasFax ~valem -igg6 49 280 2203"

—

(DatalypeProperty) St
J—— tring

| hasAddress }r‘“""”s"' "No.25, Dingyuan Lane, Dingyuan Village,
— Ren-ai Township, Nantou County 546, Taiwan”
(DatatypeProperl‘,r)

7 < String

r/ \u
| hasWSDL j-valuem!™ pyo 1chingjing.bwtrip.net :8080/ticket?wsdl"

(‘ObjectProperty)

— Location

| locatedIn alies! =Nantou_County”
) _

S

Figure 5.5: The Ching Jing Farm Service Profile

5.4.3 The Requirement Ontology

In the service composition architecture, a requirement description stands for a customer’s

needs. A requirement description can be considered as a abstract description from Web

100

Services perspective. The Requirement ontology is used to represent such requirement
descriptions. In contrast, the Advertisement ontology represents the descriptions of
the services offered by service providers. In the requirement ontology, we define a
Requirement class to express a general requirement. A general requirement consists of
many element, for instance, Spot Requirement is a typical trip element. So that we can
decompose a compound requirement represented in ontology.

According to the ontology design described in Section [4.4] we have implemented the
Requirement ontology in our system, as shown in Figure[5.6] The root class Require-
ment represents a set of compound requirements. There are two subclasses of Require-
ment class. First one, the GeneralRequirement class, is used to represent a composed
requirement which is connecting Event, Spot, Accommodation, and Transportation Re-
quirement through properties. Each general . requirement stands for an itinerary. And
numbers of general requirements aggregate a:i'epmplete requirement, called Trip Re-
quirement. Second one, the TERequirementclass; can be divided into four types
of trip element requirements?as Subclasses in_our prototype system. They are Ac-
comRequirement, EventRequlremen‘t.q.. SpotRequlrement and TransRequire-
ment. Accordingly, a GeneralReqpirerﬁ“ ent elass has four types of properties called
hasAccomTE, hasEventTE, hasSp t Tl and hasTransTE, and the respective ob-
ject property classes AccomRequlrement EventReqmrement SpotRequirement,
and TransRequirement represent the,dlfferent types of trip element requirements in
the tourism domain. 7

As a trip requirement contains, it contains necessary information like the trip’s start
date, end date, departure location, arrival location, trip budget, and so on. The trip
information we mentioned above are annotated as properties, such as tripStartDate,
tripEndDate, startsFrom, endsAt, hasTripBudget, of the Requirement class.

The TripRequirement class is used to describe a trip package which has a has-
TripElement property to connecting GeneralRequirement requirements. With defining
Requirement as the range of the hasTripElement , the TripRequirement class is
used to describe a trip package connecting GeneralRequirement requirements. These gen-
eral requirements can be considered as several daily plans included in the trip package.

Figure shows an example of the Requirement scenario in the Traveller. We assume

101

Requirement in the Traveller - Class and property definitions:

(ObjectProperty) (_ ObjectProperty) Class
— 7 nge—m] -
(" next) (tripStartDate | e Time
."’ e
domain range domain C ObjectF'roperiy ange—s Class
S | tn EndDate ‘.._ Time
'(Objedpruperty :, Class omain P 4
B ——————eeee
T rang i l ObjectPropert
{T_ Elels] Requirement o jectProperty)) Tlass
\.mn}' RHT startsFrom | | Location
damain subClassOf subClassOf domain A
\ Ob]ECtPFODGFtY Class
(Ellﬁ;s GClassI Class domain endsAt T ™ Location
eneral ; E
: . TERequirerment
Requirement | | Requirement q domaln C ObjectPrDPertY) Class
—
l hasTanudgat. "% ValuePartition
subClassOf subClassOf subClassOf subClassOf Datatypeprnperty) xsd:
asNumQO 7 range—m| Int .
/ __ People g8
Class Class Class Class
Accom Event Spot Trans
Requirement Requirement Requirement Requirement
i i i
range ran|ge mr‘lrge ranlge
|
(" ObjectProperty) |': ObjectProperty _:\ ’K ObjectProperty) |': ObjectProperty _}
(‘hasAccomTE) [hasEventTE) [hasSpoiTE | (hasTransTE |
N AN N AN vy
domain donpain domain donpain
L -
L] .
Figure 5.6: Th in ‘the Traveller
iy |
= , Y
LY LN ":4"{-_:‘ P
- ;I-e o s b3

_-nm I‘égpectn?ely create two classes called

MyReq_1 and MyReq_2 as requu@emeﬁts for the ﬁl’ﬁt IHay and the second day itinerary.
A gt
The next property represents the dependenmes of the two requirements. MyReq_2 has

that system got a two—da,th'ft_]’) re

two trip element requirements. The next property represents the dependencies of the

two requirements. In our scenario, the customer would like to take bus to Ching Jing
Farm at the second day. So we add a spot requirement, called SpotReq_1 and also
add a transportation requirement, TransReq_1. These two trip element requirements
are connect with MyReq_2 through properties, hasSpotTE and hasTransTE. Fig-
ure shows the concept definitions of MyReq_2 and its trip element requirements,

SpotReq_1 and TransReq_2 classes. Figure illustrates the implementation of the

scenario in the previous sections.

102

A Requirement example in the Traveller;

Class
Spot
Requirement
GCIaSS | subClassOf
enera [
Requirement | (_ObjectProperty) Class
[hasSpotTE |—f
subClassCf subClassOf — SpotReq_t1
Class :;ijectF’ropertyfg: Class Class
* Requirement
ty;lna type i . subClassOf
[ObjectProperty)
nstance Instance (hasTransTE) Class
ind_MyReq_1 ind MyReq 2 | —— TransReq_1

Figure 5.7: The Requirement Example in the Traveller

% =ik

kA |
5.4.4 The Advertisement Ontology

In the service composition ar@hltectur@fme‘\dverprseﬁrlent deSC-mptlon stands for a provider’s
service. The architecture of the adver 1s@$bdnrology is idemtical to the requirement
ontology. It is used for representlng aid ertlmmen escrlptlons in concept expression. In
the Advertisement ontology, we define ‘& Adve tlsement class to express a general
advertisement. Like the general requulements welI entloned in above section, a general
advertisement consists of many trlp elerr-;ent,\,sueh hke Spot advertisement. Therefore, we
can decompose a compound advertisement into many small pieces of trip as we did to a
compound requirement. According to the architecture described in Section [£.4] we have
implemented the Advertisement ontology in our system, as shown in Figure [5.10, The
root class, Advertisement, represents a set of compound advertisements. Similar to the
requirements ontology, it also has two subclasses. The GeneralAdvertisement class is
used to represent composed advertisements. The TEAdvertisement class has four types
of trip element advertisements as subclasses. They are AccomAdvertisement, Even-
tAdvertisement, SpotAdvertisement, and TransAdvertisement. Accordingly, a
GeneralAdvertisement class has four types of properties called hasAccomTE, ha-
sEventTE hasSpotTE, and hasTransTE. The respective object property classes Ac-

comAdvertisement, EventAdvertisement, SpotAdvertisement, and TransAd-

103

Axiom definition of a requirement: Class
Requirement

MyReq 2 = 3 uipStartDate. 2007-07-02 subClassOf subClassOf
M 3 tripEndDate. 2007-07-03 Class Class
M3 startsFrom. Hsinchu Reiﬁ:::ﬁ;m TERequirement
M 3 endsAt. NantouCounty i i ry
i bClassOf
M 3 hasTripBudget lessThan6000 OR_subClassor ™ |a§S SUhclfsng
M 3 hasNumberOfPeople 2 Class Cs::‘l'ass Fl_lass
- pot rans
M3 has§ T Reg 1 . .
asSpotTT. SpotReq_ MyReq_2 Requirement Requirement
M 3 hasTransTT. TransReq_1 [}
mlm subClassOf subClassOf
| Instance | |
ind MvReq 2 Class Class
nd_NyReq_ SpotReq_1 TransReq_1
= 7-07 [))
SpotReq_1 I hasSpotScheduledDate. 2007-07-03 y ‘Im / h’TE
M 3 hasSpot.CingjingVeteransFarm axiom
i B Instance o Instance
M 3 hasSpotBudgetleqThan 1000 o

M 3 hasNumberOfPeopleSpot. 2

ind_SpotReq_1 / ‘ ind_TransReq_1

TransReq_1 = 3 hasTransDepartDate.2007-07-02
M 3 hasTrans.Bus_AoWanTa_ChingjingFarm
M 3 hasTransBudget.leqThan2000
M3 hasNumberOfPeopleTrans.2

LS UL
Figure 5.8: The‘Rgiiﬁir 1ent Uoncept eﬁntlgﬂ in the Traveller

B
Nk |
!

o)

o

=iy .,' i

T
&3y [N
vertisement represent the different types of trip element advertisements in the tourism

L

domain.

A trip advertisement also contains necessary information, such as the trip start date,
end date, departure location, arrival location, trip budget, and so on. Those trip in-
formation we mentioned above are annotated as properties, such as tripStartDate,
tripEndDate, startsFrom, endsAt, hasTripBudget, of the Requirement class.

The Package class is used to describe a trip package. The hasTripElement prop-
erty connects the Package and the Advertisement. Through the hasTripElement
property, these Advertisement can be seen as several stops included in the trip pack-

age. In the Traveller, we use GeneralAdvertisement as a trip’s element advertisement

104

Class

Requirement

su t!:lassOT"'_'_'—__H—’ -‘-‘_‘_‘_‘_‘-‘_h_'_subcmggﬂf

Class

Class
Trip General
Requirement Requirement
Y
subClassOf {::Obja ctPrope l'f)f:j SubGIassdrf{H ‘:u‘b\CIassOf
Class (Elfésl'ngl‘?t \;|_... Class -itﬂbjactPropartij Class
MyTrip_1 - MyReq_1 next | MyReq_2
COD]BdPI"OpGﬂ)’ - —
wﬁe \ “hasTrip A w':e
axicm | \LEIemem | |
Instance Instance Instance
/ ind_MyTrip_1 ind_MyReq_1 ind_MyReq_2

MyTrip_1 =
3 hasTripElement. MyReq_1
M 3 hasTripElement. MyReq_2

A
Figure 5.9: The ?[‘i'.;p

wE?in fﬁiﬂ in the Traveller

N T3 . B
T ' &
that can be divided by th"-é date'of th ioh! :‘

Figure[5.11]is example o{raniesﬁv i aveﬂer‘wAccordmg to the providers’

Web Services profile defined mi, we, crea eﬁtwoe%fasées called TripAd_1 and Tri-
pAd_2; as advertisements that re§pecty/e£y repjrese‘rﬂt the first day and the second day
trip advertisement. The next property represents the dependencies of the two adver-
tisements. TripAd_2 has two trip element advertisements, SpotAd_1 and TransAd_1,
stand for the spot advertisement and the transportation advertisement. These advertise-
ments are connected to TripAd_2 by hasSpotTE and hasTransTE properties. Figure
shows the concept definitions of TripAd_2 and its trip element advertisements,
SpotAd_1 and TransAd_2 classes. Figure illustrates the implementation of the

scenario in the previous sections.

105

Advertisement in the Traveller - Class and property definitions:

— T PT=m——
{ObjectProperty | (_ObjectProperty) Class
P a—— 7 —range—tel |
(next) (tripStartDate j_' Time
! -
. y —
ObjectP) rly) -
demain range domain phe LR L | Class |
range—- .
. | tri EndDate ‘|_ Time
lrObjEt:tPr!:l|::E=rty). Class omain P /
has 0 rang = Advertisement (ObJedF'ropertv
'Trl Element, o \—ram Llass
p_I_L \ ‘h‘—(startsFrom Location
demain subClassOf subClassOf domain .
v I \ ObjectProperty Class
Class G‘Classsl Class domain endsAt . TR | ocation
enera . \
Package . TEAdvertisement
g Advertisement domain ObjEdPererty J Class
i hasPrice | "***ValuePartition
subClassdf subClassOf subClassOf subClassOf 4 I;)atatypepruperty) xsd.
~ hasNumO V rangE—-] Int .
_ People °9¢
Class Class Class Class
Accom Event Spot Trans
Advertisement || Advertisement Advertisement Advertisement
[} i i
range rarige mr'lrge ranlge
|
(" ObjectProperty) (_ ObjectProperty) (_ ObjectProperty) (_ ObjectProperty)
(hasAccomTE | (| hasEventTE) (hasSpotTE) [hasTransTE
M AN AN AN A
domain donain domain donpain
'-:- ™
[] Ty
Figure 5.10: in the Traveller
e
— . | b |
i ra o' |
- 'E‘l\
- ' 1\

__,-') L . :.L.' B

In Section we discussed the apbrbéﬁc’ﬁ 1“51" Jffé;dling different kinds of constraints.
Those constraints are used to check the consistency of the ontology. In the Traveller,
we simplify the constraint problem to three main topics: Time constraints, Budget con-
straints, and Location constraints. When we handle the binary relationships of con-
straints, we construct a concept hierarchy that implies relationships of subsumption rea-
soning, so that the binary relationships of the constraints can be checked easily by concept
subsumption reasoning. Even if we want to handle the binary relationship of two quanti-
tative constraints, we model the concept hierarchy of the quantitative constraints like the
ValuePartition ontology Through design of the hierarchy, ValuePartition ontology

transforms a problem of comparisons of value to a problem of concept subsumption. By

106

An Advertisement example in the Traveller:

Class
Spot
Advertisement
GC|6.SS | subCIialssD‘I’
enera o
Advertisement @m Class
[hasSpotTE |—
subClassOf sut:rCsCrf N —"fl SpotAd_T
Class .(—_gbjempmpmyg Class Class
TripAd_1 |—®(pext | TripAd_2 Trans
i Y f Advertisement
ty;l)a type B - subClassOf
| [ObjectProperty | |
Inst
nstance Instance (hasTransTE |_ Class
ind_TripAd_1 ind_TripAd_2 | —— TransAd_1
e

et
Figure 5.11: The Advertlsement Exam_ple in the Traveller

constraints of two elemerﬂg’_ regil
In Figure shows a——n_ew pi
the Semantic Web Rule Langpa

e|for constréli t an&fhng in the Traveller, we adopt
: WJESS rule engine as the solutions in
the non-quantitative constraints off tbe g;lobal reIaiiLonshlp The SWRL rule specify the
relationships of the constraints and check the consistency of the knowledge base. It is used
to infer new knowledge that implies role compositions among complicated relationships
of non-quantitative constraints. We also adopt the Protégé Axiom Language(PAL), a
tab-widget plug-in for Protégé, to define PAL rules that help us check the relationships
among quantitative constraints. For administrators, SWRL rule and the Protégé Axiom
Language provides a useful back-end tools that make management ontology more efficient.
In Section we focus on the implementation of PAL rules and SWRL rules.

In the following sections, we explain the Time constraints and Budget constraints in

the Traveller. We also discuss the binary relationships and global relationships between

these constraints.

107

Axiom definition of an advertisement: Class

Advertisement
N
— i bClassOf
MyAd_2 = 3 uipStartDate, 2007-07-02 sk el
M 3 tripTindDate. 2007-07-03 Class Class
. i General .
M 3 startsFrom, Hsinchu Advertisement TEAdvertisement
M 3 endsAt. NantouCounty) i bCI‘ o
axiom - subClas:
M 3 hasTripBudget lessThan5000 SubCiassOr |
M 3 hasNumberOfPeople 2 Class %la)zf
M3 hasSpotTT. SpotAd_1 TripAd_2 Advertisement
)
Ly;I)e subClassOf
Instance ol
ass
Ind_TripAd_2 SpotAd_2
i
_ type
SporAd_1 = 3 hasSporScheduledDate, 2007-07-03 zem [nstance
M 3 hasSpot.CingjingVeteransFarm ind_SpotAd_1
M 3 hasSpotBudget.leq Than500

M 3 hasNumberOfPeopleSpot. 2

R
J

A
Figure 5.12: ThQ;:'Ak,:?.ye

In the descriptions of the r_ég_ --e:me ;
time condition of the trip ac£1.\71ty, mch,a's startt&%at:h;r;td 1émd date of the trip, which are
represented by the trlpStartDate aﬁdlﬁhﬁ tnp’El"rdDate properties. According to the
approach [39], we facilitate before and after relationships between the tripStartDate
and the tripEndDate properties. Through [39], we can check the time dependencies to
decide the order of two dates or if a date within a date range. In the scenario described in
the previous section, the customer want to start a trip from July 2nd to July 3rd, 2007.

The Traveller dynamically add Y2007M07D02 and Y2007MO07D02 to the Time Ontology.
The time definition of Y2007M07D02 concept is presented as follows:

Y2007TMO7D02 3 ends_before.Y2007TM07D03
M 3 begins_after.Y2007TMO7D01
M 3 begins_after.Y2007MO6

108

Class

Advertisement
sut!:lassOT"'_'_'—__.—.—’ ‘Hhﬁ""‘suhclassﬂf
Trip General
Advertisement Advertisement
4 oS
subClassOf {::Obja ctPrope l'f)f:j subClassOf subClassCf
Class f aslnp > Class { ObjectProparty) Class
/’k‘ Elernua--r'ltjxI : - < -
Package_1 - TripAd_1 (next) TripAd_2
COD]BdPI"OpGﬂ)’) - —
DN ; X
axiom \LEIemem
Instance Instance Instance
ind_Package_1 ind_TripAd_1 ind_TripAd_2
Package 1 =

3 hasTripElement. TripAd_1
M 3 hasTripElement. TripAd_2

Example

Solution

Quantitative Constraints Non-Quantitative Constraints
Global Binary Global Binary
relationship relationship relationship relationship

Trip Location
Total Budget Budgets and TE Location Date
Y ¥ L
Protege SWRL Rules
Axiom Concept + Concept
Language Hierarchy JESS Rule Hierarchy
(PAL) Engine

Figure 5.14: Constraint Handling and Checking in the Implementation System

109

M Y2007MO7

Subsequently, we intuitively use Y2007MO07DO01 concept as the restriction of the trip-
StartDate property in Requirement concept. Similarly, Y2007M07D03 concept will be
the restriction of the tripEndDate property in Requirement concept. Finally, the sys-
tem automatically infers relationships about the Y2007M07D2 and Y2007M07D3 con-
cept. Therefore, the relationship between the tripStartDate and tripEndDate can be
easily examined, such as checking whether the tripStartDate is before the tripEndDate

by checking concept subsumption listed below:

TripStartDateConcept = 3 ends_before. TripEndDateConcept

In the scenario described in the prev1ous sectlon the customer plans to go Ching Jing
Farm on July 3rd, 2007. The spot elenient requlrement has.a hasSpotScheduledDate
property and a concept of Tlme ontology as its restrlctlon The spot scheduled date is
a concept of Y2007M07D03 presented in ‘she Tlme ontology We can check whether the
spot scheduled date, Y2007MO7DO03, lis Wﬁhl-the range of*the start and the end dates
of the trip by checking the subsumptl hsﬂ_e{l beilow

SpotScheduledDateConcept & 3 b}zgms afzéer t]flpStartDate M3 ends_before.tripEndDate

The examples we mention above belongs, to ﬁon—quantitative binary relationship de-
fined at section we can handle the constraints of tripStartDate, tripEndDate, and
hasSpotScheduledDate by the existing roles, ends_before and begins_after, of the Time
concept; instead of using SWRL rules.

5.5.2 Budget Constraints

The budget constraints usually restrict the number of budget greater or less than a
specific number. In practical, the budget constraints check if each Budget of element
requirement is within the Total Budget of the trip requirement. They also check that if
the summation of budgets of element requirements is less than total budget of the trip
requirement. According to the ValuePartition ontology proposed in [39], this kind of the

quantitative constraint can be transformed to a concept subsumption problem as Time

110

constraint. That means the system can solve quantitative constraint by checking concept
subsumption. In OWL-DL, it is hard to make quantitative handling, such as budget
constraint. ValuePartition complements the quantitative weakness in OWL-DL.

With dynamic concept program, the system automatically create the subsumption

relationships between the quantitative concept in the ValuePartition ontology as figure

. 1ol

L J YaluePartition

| 2 gegP
Y legWP
v leqR000
v O 1eg5000
Y leg3s00
v lecr3000
L J le=ssthan3000
Y leg2000
L J legs00

lessthans00

Figure 5.15: Relationship bétween léqéé@aﬁj«f-}éd%O n file ValuePartition Ontology
== ||
R
|

Taking the scenario as the(_éxam[!ﬂia, we faciliﬂlarlte Subéumption reasoning to check if
the budget of the spot advertisement is.less than the'advertisement budget in our sce-
nario. Trip advertisement [5.2.2] Adve;tiserinenti\lantou—(), has a property hasBudget
which connects with concepts, leq5000, which describes the cost of advertisement is less
than Nt.5000. . Similarly, Spot advertisement, SpotAd-0, has a property hasSpot-
Budget, and its budget is Nt.500. Before adding the budget of advertisement and spot
advertisement, the system automatically create leq5000 and leq500 concepts with sub-
sumption relationships in advance.. When adding the 1leq500 concept that expresses the
spot budget, the implied relationship is also defined. Figure [5.155hows the relationship
between 1leq5000 and 1leq500, where leq500 C 1leq5000 can be reasoned through the
Racer DL reasoner. The problem of checking the budget 500 is less than the budget 5000

can be solved by checking subsumption relationship as follows:

LessThanTripElementBudgetConcept C LessThanTripBudgetConcept

111

Not only comparing hasBudget and hasSpotBudget, we adopt the same approach
to the relationship checking between hasBudget and hasEventBudget, hasAccom-
Budget, or hasTransBudget properties which describe the budgets for events, accom-
modation, and transportation, respectively.

However, the complicated comparison problem involving more than two budgets, i.e.,
problem of checking whether the summation of the budgets of the element requirements
is less than the total budget of the trip requirement or not. For this kind of problem,
concept subsumption relationship between ValuePartition concepts does not work. In
Section [5.6.1] we will illustrate how to use PAL rules to solve the problem of more than
two budgets.

5.6 Constraint Rules

In [4.5] and [5.5], we realize/that the subsumption induétion can not solve the global rela-
tionship constraint. Accordingly, we ad@pLaddltlonal rules language, PAL and SWRL
rules, to complement the lack of OW{J foi’;’;—)ressmn power as shown in the figure |5.14}

In the following sections, we explain Et e me@hanlsm of these rules and give examples of

implementing our system. | ‘ 1

5.6.1 PAL Rules

The Protégé Axiom Language tab-widget plug-in(PAL) is a useful tool for Protégé that
check integrity constraints in ontologies. We adopt the PAL as the engine to validate
the global quantitative constraint. While constructing the rules, we have to define the
range and write the constraint statements. Here, we take the Total Budget Constraint
as the example. First, we define the rule for ensuring the summation of all trip element
budgets must be equal to or less than the trip budget. However, PAL does not support
recursive rule definitions. Therefore, we need to manually define many rules with different
numbers of trip elements explicitly. For example, we have a PAL statement that checks
the summation of the budget of trip element(1l) and trip element(2) for two-element

trips. But a trip may contain three or more element, that’s why we have to define many

112

statement for those trips which contain at least three elements. We represent the PAL

rule for checking 2-element trips as follows:

e The range definitions:
(defrange 7trip :FRAME Trip)

(defrange 7tripElement :FRAME GeneralRequirement hasTripElement)

The two statements define the ranges of two variables used in the constraint state-
ments. The first ?trip stands for instances of the Trip class (frame). :FRAME
means a class in OWL. The second ?tripElement stands for instances of the Gen-
eralRequirement class (frame) and appears in the range of a hasTripElement

property (slot).

e The constraint statement;:
(forall 7trip (forall ?tripElement
(=>(and (hasTripElement ?tript?tripElement)
(= (number-of-slot~ va.lues HasTripElement 7trip) 2)
(own-slot-not= nulﬂ ne‘f"gtripElement))
(or (> (hasBuF et 91:r1p)
G (hbsBudget 7tr1pElement)
(hasBudget (next ?tripElement))))
(= (hasBudgetD ?trip)
(+ (hasBudget 7tripElement)

(hasBudget (next 7tripElement)))))))

5.6.2 SWRL Rules

As PAL rules, Semantic Web Rule Language (SWRL) rules enhances the limited expres-
sive power of OWL-DL, SWRL rules are defined to capture the complicated relationships
of role/property compositions over ontologies. We adopt the Protégé SWRLJess Tab-
widget plug-in as a rule editor for defining rules. Accordingly, we adopt SWRL rules and

a rule engine to handle non-quantitative constraints as the Figure shown in Here, we

113

demonstrate a SWRL rule example applied in the Traveller. If we want to inference the
implicit relationship, next property, between two trip elements, we check the condition:if
the first trip’s arrival location is the location of another trip’s departure location. If it
matched with the condition, then system inference that they are connected by the next
property used to describe their order. The following rule expresses the next property of

concepts that is inferred by asserting trip individuals.

hasTripElement(?a, 7x) A hasTripElement(%7a, 7z) A

endsAt(?7x, ?y) A startsFrom(?z, ?7y) — next(?x, ?z)

The SWRL rules are facilitated by individuals in ABOX modelling. The variables with
initial 7 indicate individuals. Because SWRIL:rules operating at ABOX, we respectively
build an trip element individual for reptesentifig the trip element concept. Reference
[£.4.4] for detailed information. 7
The second example of SWRL rule'is used to inducesif+a locatlon of spot is accessible
for transportation line. In the ontologyy ‘Wfa.have Fpropertles locatedIn describes a spot

such as bus, train, or air plaje. 'With these two pI‘ppertles iwe can inference an implicit

location, isPassedBy describes the lr)[atﬂ?"s a@cessed by what kind of transportation,
property, isReachable, indicata thé é;pot is accgésed by what kind of transportation.
The rule is illustrated by the followmg SWRL rule:

locatedIn(?spot, 7location) A 1sPassedBy(?location, ?transportation) —

isReachable(?spot, 7trasnportation)

The above SWRL rule is suitable for ?spot and also for 7accommodation. It represents
that whenever any transportation passes through the location where the accommodation
locates, the accommodation can be reached by that transportation.

Though the above-mentioned examples of SWRL rules look trivial, they are still effi-
cient in ontology maintenance. In the Traveller, we adopt TBOX modeling to represent
the descriptions of requirements and advertisements because of the mechanism of sub-
sumption reasoning. However, SWRL rules can only apply to individuals in ABOX. The
Ontologies in the Traveller has to be inferred by SWRL rules periodically to discovery

114

the complicated relationships between properties.

5.7 The Traveller Demonstration

As we mentioned in the previous chapter5.3], we have implemented a new prototype sys-
tem, the Traveller, as a Web application based on our ontology-based architecture and
related methodologies. The Traveller can be considered as a Web application providing
integrated tourism planing service on the Internet. From requirements defining, service
matching, service execution, to ontology maintenance, the whole procedure can be ma-
nipulated remotely at the user’s browsers. In this chapter we will illustrate the system
integrated user interface and demonstrate the tourism matching service provided by the

Traveller step by step.

5.7.1 Matching Service Pracess

The graphical user interfage of the Mraveller systeni:'is shown in Figure [5.16, The user
interface consists of three main panels*‘f"require'rﬁent inpﬁt ‘panel, matching result panel

on the left side of the interface; And AJA:Ebasdd Googele Maps on the right side. The

i

| [
1. To input trip requu"ement accqr{img to the'c‘ustomer preferences, they are able to

| Y
- T

matching process comprised of several 'stepﬂhsted in the followmg

choose to operate the AJAX—based: Google,_Maps on the right side of the Traveller
web page or the traditional comboibox input style on the left side. Through mouse
clicking on the map, the customer decides the starting location and the destination
of the daily trip requirement. Furthermore, the customer could infill the additional
condition such as start date, end date, budget, transportation, accommodation,
number of people, and tourism spot. Customers could compose many daily trip

requirement as their complete trip requirement.

2. After finish inputting trip requirements, click the ”Send” button on the top-left
corner of requirement input panel to perform our matching scheme. In the pro-
cess of matching, approximate requirements with similarity value will be generated

and stored in the ontology. Then, Racer Inference Engine will be triggered to

115

perform the ”Classification”. Classification help us find subsumption relations be-
tween approximate requirements and advertisements. A advertisement subsumed
by approximate requirements represents that it is a suiting service for the customer.

Detailed information of matching scheme will be introduced in [2§].

. According to similarity value, all matching results will be listed in the result combo-
box on the bottom of panel. To get detailed information about suiting trip package,
selecting the package listed in combo-box. Then the route of the package you select
will be displayed graphically on the map, also related information will be shown in

the text area below.

. After reviewing the packages, the customer can decide to execute which package

through checking the check—box corr?sppnding that package. Once ”Execute” but-

ton is clicked, the Traveller |iW1H perferm tht‘—?servfég,executlon procedure, also related

.__1-

information about the seleca{:"ee}

\Qgﬁ@hshed to Wiki-based community

as the customer’s tr;p };nﬁto
u

116

four Trip Requirement m

Thisisa 2 ¥ day's trip

L

L —

-)ayl '-)"l'z

51| Taipei_City ~ s Hancha City v
Spot: Spot:

| | | |
A '8

| | | |
B B:

| | |
Maks Mate

[~ Mapping Result

Figure 5.16: The User Interface of Matchmaker

117

Chapter 6

Conclusion

Although Semantic Web technology enables Web Services to be matched precisely ac-
cording to their semantic descriptions, it also impose high entrance barriers of Semantic
Web applications. However, Web 2.0 technology booming recently has demonstrated a
lot of remarkable feathers that make the user closer to Web application. With borrowing
brilliant ideas from Web 2.0, we create a new archltecture combining the strength of
Semantic Web and Web 2.0 techuology. That {r}akes Scarantic-based application more
friendly and easier for maintenance. ,'_j_ " -

In this thesis, we propoSed a newfseffn%ﬁﬁ%—bésed service composition architecture
in the distributed environment. Excge})tiorgfer doimbiningWeb 2.0 and Semantic Web
technologies together, we also ¢reate d community I?)latform inour architecture that allows
user to share their information‘and £6 bagticipate in ehtology maintenance cooperatively.
Through ontology maintenance, the syseem is abie to utilize the descriptive capability of
OWL adequately for matching service. Web Services which fit the customer’s needs can

be discovered and executed automatically. In this chapter, we summarize contributions

of this thesis and the future works.

6.1 Contributions

e A new semantic-based service composition architecture A complete archi-
tecture providing service matchmaking and service invocation was proposed. Differ-
ent from the previous version, we enhance the interaction between the user and the
system. Also the user has more power to participate in the ontology maintenance

through Community Component. By integrating advantage of Semantic Web and

118

Web 2.0 technology, a Semantic application based on this architecture would be

even more friendly and efficient.

e differentiation between the customer and the administrator The customer
and the administrator’s view of this system are divided. All complex Semantic lan-
guage are encapsulated by the system in the front-end, the customer manipulates
the system without having any Description Logics background. In contrast, the ad-
ministrator has authority to log on Knowledge Base Management System dedicated

on maintaining ontologies in the back-end.

¢ Ontology Maintenance Procedure We proposed an Ontology Maintenance Pro-
cedure that involves the customer in ontology engineer through Wiki-based com-
munity. Time-consuming Ontology Maintenance is no longer controlled by a small
group. Because of the custemer’s pajrticipéli't'ion, Ontology Maintenance become even

more agile and quick

e The Traveller Prototiype System We ’Implemehtf—a new Semantic application
system called Traveller bagsed on oii;olﬁdiég%based architecture and related method-
ologies. From requirements defining, qarvm'e matchlng, service execution, to ontol-
ogy maintenance, the whole prb([edure can be manlpulated remotely at the user’s

browsers. The Travelléx ' can be conmdered’ éms a Web application providing inte-

grated tourism service on the Internet.

6.2 Future Work

e Integration between Semantic Web and Web 2.0 technology Although we
have proposed and implemented a architecture combing Semantic Web and Web
2.0 technology, but there are a lot of experiments needed to be validated for the

system efficiency.

¢ Ontology design methodologies We do have our approach to model ontology in
the travel domain, but we are not sure whether the design methodologies is good
enough. Our ontology design methodologies are still waiting for being testify by

experts in related domain. Also we need to concern about the trade-off between

119

expressiveness and realization. It is a depends-on question according to the appli-
cation’s domain and the computing ability of inferencing. To improve practicability

of the Semantic application, these issues should be estimated carefully.

System efficiency The system efficiency is a critical factor to decide if a system
is usable. it includes the service reasoning time, the service execution time, loading
time, and so on. As things stand, our service reasoning time is a little bit slow for
the user. More Semantic application issues that increase system efficiency should

be discussed. Such as Ontology segmentations.

Problem of Service Execution There are many run-time situations and problems
in terms of Service execution in real-world. Complicated factors are getting involved
with service execution. Such as thejlt__.}h,e ;diﬁerent sequence may lead to the different

come out. A numbers of st_.l,}di(% s«how thaﬁtﬁoé@figﬂ;time problems are very difficult

hete

:"l_,—' W G .
challenges, they do noft pr«cgwd fore, there is a lot of space for

improvement on sohiir'ig";,gh
B)

120

Bibliography

1]
2]
3]

[4]

[5]

Time Ontology in OWL, http://www.w3.org/TR/owl-time/.
Unwversal Description, Discovery, Integration, http://www.udd?. org/.
Web Services Description Language, http://www.w3. org/TR/wsdl.

E-services: Current technology and open issues. volume 2193/2001. Springer Berlin

/ Heidelberg, Sep. 2001.

Rohit Aggarwal, Kunal Verma John Miller, and Wllham Milnor. Constraint driven
web service composition:in meteet- S Sermces Computmg, 2004.(SCC 2004). Pro-
ceedings. 2004 IEFEE [nternatzona{ C reﬂa? on, pages 23-30, 2004.

Danilo Ardagna and Barbara P«Lr}um i.I(ElobaL and local QoS constraints guarantee
in Web service selection. JWeb.S| 71[”1)2068, 2005'. g] OWS2005. Proceedings. 2005 IEEE
International Conference on,'i)ége 306, 2005

Assaf Arkin, Sid Askary, Ben Bloch; Francisco Curbera, Yaron Goland, Neelakantan
Kartha, Canyang Kevin Liu, Satish Thatte, Prasad Yendluri, and Alex Yiu. Web ser-

vices business process execution language version 2.0. WSBPEL-specification-draft-

01. OASIS (2005).

Assaf Arkin, Sid Askary, et al. WS-BPEL: Web services business process execution
language version 2.0, 2004.

Franz Baader, Diego Calvanese, McGuinness Deborah, Daniele Nardi, and Peter F.
Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

121

[10]

[11]

[18]

[19]

[20]

Tim Berners-Lee. Services and Semantics Web architecture. white paper, World

Wide Web Consortium, 2001.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik F. Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol
(SOAP) 1.2. Technical report, www.w3c.org, 2003.

Francois Bry, Frank-André Ries, and Stephanie Spranger. CaTTS: calendar types
and constraints for Web applications. Proceedings of the 14th international confer-

ence on World Wide Web, pages 702-711, 2005.

Anis Charfi and Mira Mezini. Aspect-oriented web service composition with ao4bpel.

Proceding ECOWS, 2004.
Yi-Shan Cheng. An approagch to mapping.relational databases to ontologies. 2007.

Roberto Chinnici, Martin Gudgm Jean J. Moreau and Sanjiva Weerawarana. Web
Services Description Language (WSDL) Versmn 1.A Techmcal report, www.w3c.org,

2002. 80—

E ;—-' | |

The DAML Services Coalition. i}‘ML—rb Se antlc Markup for Web Services. Tech-
]
1

nical report, www.daml.org}.200 :
, 174

Luiz A. G da Costa, Paulo F.?Pire:s, and Martd Mattoso. Automatic composition
of web services with contingency plans. In IEEFE International Conference on Web

Services (ICWS’04), 2004.

Mike Dean, Dan Connolly, Frank V. Harmelen, James Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn A. Stein. Web Ontology

Language (OWL) reference version 1.0. Technical report, www.w3c.org, 2002.

T. Di Noia, E. Di Sciascio, and F.M. Donini. Extending semantic-based matchmaking
via concept abduction and contraction. EKAW 2004, pages 307-320, 2004.

T. Di Noia, T. Di Sciascio, F.M. Donini, and M. Mongiello. Semantic matchmak-
ing in a P-2-P electronic marketplace. In In Proceedings of the Fighteenth Annual

122

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

ACM (SIGAPP) Symposium on Applied Computing, Special Track on E-commerce
technologies, pages 532-536, March 2003.

Glen Dobson. Using WS-BPEL to implement software fault tolerance for web ser-
vices. Proceedings of the 32nd FEUROMICRO Conference on Software Engineering
and Advanced Applications, pages 126—133, 2006.

A. Dogac, Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, and A. Tumer. Satine project:
Exploiting web services in the travel industry. In eChallenges 2004 (e-2004), 2004.

Thomas R. Gruber. A translation approach to portable ontology specifications.
Technical report, Knowledge Systems Laboratory, Computer Science Department,

Stanford University, 1993.

Jerry R. Hobbs and Feng Pant An ontology. of time for the Semantic Web. In ACM
Transactions on Asian, Langgage Informa;f%on Processing, volume 3, pages 66-85,

2004.

lan Horrocks, Frank V. Harmeleﬂ“"iﬂﬁelifEa‘tel—Schneider Tim Berners-Lee, Dan
Brickley, Dan Connelly, Mike]:fern*f;t—e‘fan' Decker, Dieter Fensel, Richard Fikes,
Pat Hayes, Jeff Heflin, Jim Herid

Stein. DAML~+OIL. Techmcal rbport WWW. daml org7 2001.

er,~Ora Lassﬂa Deb McGuinness, and Lynn A.

Ian Horrocks, Peter F. Patel- Schnelder Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. Technical report, www.daml.org, 2004.

Chia-Tzu Hsieh. The Traveller: A Service Combination System Based on Semantic

Web Technology. Master’s thesis, 2006.

Chung-Hao Hsieh. Approximate Matching and Ranking of Web Services Using On-
tologies and Rules. Master’s thesis, 2007.

Chen-Feng Huang. A Semantic-Based Framework for Web Services Composition,

Master’s thesis, 2005.
IBM. Business Process Execution Language for Web Services, 2002.

123

[31]

[32]

[33]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. Karastoyanova. A Methodology for Development of Web Service-based Business
Processes. Proceedings of AWESOS, 2004.

Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Reliable web service execution
and deployment in dynamic environments. Proc. of the Intl. Workshop on Technolo-

gies for E-Services (TES), 2819:104-118.

Rania Khalaf, Nirmal Mukhi, and Sanjiva Weerawarana. Service-oriented composi-
tion in BPEL4AWS. In Proceedings of the Twelfth International Conference on World
Wide Web (WWW), page 768, 2003.

R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of WSMO
and OWL-S. Proceedings of the European Conference on Web Services (ECOWS
2004), 2004.

Ora Lassila and Ralph R: Swick. Resource Deseription Framework (RDF) Model

and Syntax SpeciﬁcationL Tecghnical report WWW-:W?)C:OI‘g, 1999.

Frank Leymann, Dieter Roller, anJ Se:trsh Ihatte Goals of the BPELAWS Speci-
fication. xzml.coverpages.org (20(? %ﬁgust Llpttp //:Uml coverpages.orq/BPEL4 WS-
J -

DesignGoals.pdf. 7 l as ||

E ! ’l
|
L. Li and I. Horrocks. A software framework for rnatchmakmg based on semantic

web technology. International Journal of Electmmc Commerce, 8(4):39-60, 2004.

Jun-Hong Liu. Mapping Relational Databases to Ontologies: An Approach Using
Cluster Analysis, Master’s thesis, 2008.

Wei-Lun Lu. Approximate Matching of Service Descriptions Using Ontologies and
Rules, Master’s thesis, 2006.

Daniel J. Mandell and Sheila A. Mcllraith. Adapting BPELAWS for the Semantic
Web: The Bottom-Up Approach to Web Service Interoperation.

Daniel Bachlechner Martin Hepp and Katharina Siorpaes. Harvesting wiki consensus
- using wikipedia entries as ontology elements. In Proceeding of the First Workshop

on Semantic Wikis - From Wiki to Semantic[Sem Wiki2006], 2006.

124

[42]

[43]

[44]

[45]

[48]

[49]

[50]

[51]

D.L. McGuinness, F. van Harmelen, et al. OWL Web Ontology Language Overview.
W3C' Recommendation, 10:2004-03, 2004.

Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid. Composing
Web Services on the Semantic Web. The VLDB Journal The International Journal
on Very Large Data Bases, 12(4):333-351, 2003.

Alexander Mikroyannidis. Toward a social Semantic Web. Computer, November

2007, 2007.

T.D. Noia, E.D. Sciascio, F.M. Donini, and M. Mongiello. A system for princi-
pled matchmaking in an electronic marketplace. International Journal of Electronic

Commerce, 8(4):9-37, 2004.

Tim O’Reilly. What is Web 2.0: Design patterns and business models for the next

, s
generation of software. In"http:/ /www. oreillynet.com/, 2005.

J.Z. Pan and 1. HorrockstWL—E'f"EXFtendi_ing-OWL Wlth expressive datatype expres-
sions. Technical report, IMG Teclilgi@ Eliéploﬁ, Vigtoria University of Manchester,
2004. | f 'l |
Massimo Paolucci, Takahiro.Ka éEmur-a, -Tern:y!gR. Pajne, and Katia Sycara. Seman-
tic Matching of Web Serviges'Capabilities: In Proceedings of the First International
Semantic Web Conference (ISWC);Vvolume 534906f Lecture Notes in Computer Sci-

ence, pages 333-347. Springer-Verlag, 2002.

Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi. Auto-
mated synthesis of composite BPELAWS web services. Web Services, 2005. ICWS
2005. Proceedings. 2005 IEEE International Conference on, pages 293-301, 2005.

A. Rector. Representing Specified Values in OWL: value partitions and value sets.

W3C Working Group Note, 17, 2005.

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rube’n Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology (WSMO). Applied Ontology 1(2005), 2005.

125

[52]

[53]

[55]

[56]

[57]

[58]

[59]

[60]

Andreas Schmidt. Knowledge maturing and the continuity of context as a unifying

concept for knowledge management and e-learning. 2005.

Andreas Schmidt Simone Braun and Andreas Walter. Ontology maturing: a collabo-
rative web 2.0 approach to ontology engineering. In Proceedings of the Workshop on
Collaborative Construction of Structured Knowledge at the 16th International World
Wide Web Conference, 2007.

Biplav Srivastava and Jana Koehler. Web service composition: Current solutions
and open problems. In Workshop on Planning for Web Services(ICAPS), pages
28-35, 2003.

N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query
results in the Semantic Web. In Proceedings of the Second International Semantic
Web Conference (ISWC); volume 2870 of ﬂ:ecture, Notes in Computer Science, pages
500-516. Springer—\/erlag, 2003 o<

Katia Sycara, Seth Wldoff Matthlas Kluseh‘ and Jlanguo Lu. LARKS: Dynamic

Matchmaking Among Heterogene uSqSﬁ'ﬁwa,re Agents in Cyberspace. Autonomous
(F 1?3 203 2002,

Agents and Multi-Agent Systemj

Hsin-Ying Tai. Automated Web Servme Composmon and Execution Based on Se-
mantic Web Technology. Master s-thesis, Natlonal Taiwan University, July 2007.

Paolo Traverso and Macro Pistore. Automated composition of semantic web services

into executable processes. Proceding ISWC' 04, 2004.

Paolo Traverso and Macro Pistore. Automated composition of Semantic Web services

into executable processes. 2004.

Yih-Kuen Tsay, Po-Chun Chen, Chih-Hsiung Liu, and Jyun-Yang Syu. Ontology-
Based Automation of Web Services Composition and Brokering. Unpublished
Manuscript, 2004.

Chih-Hua Tu. A Semi-Automatic Approach for Mapping Structured Web Pages to
Ontologies, Master’s thesis, 2008.

126

[62] Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, and Zixin Wu.
The METEOR-S Approach for Configuring and Executing Dynamic Web Processes.
LSDIS METEOR-S project. Date, pages 6-24.

[63] Jian Yang and Mike. P. Papazoglou. Web components: A substrate for web service
reuse and composition. In Proceedings of the Fourteenth International Conference

on Advanced Information Systems Engineering (CAiSE’02).

127

	Introduction
	Background
	Motivation and Objectives
	Thesis Outline

	Related Work
	Web Services
	Web Service Description Language(WSDL)
	UDDI
	SOAP

	Semantic Web
	Resource Description Framework(RDF)
	Web Service Modeling Ontology(WSMO)
	OWL-S
	Modeling Ontology of Time and Value

	Service Matching and Ranking
	Service Matching
	Service Ranking

	Web Services Composition
	Related Projects
	SATINE Project
	European Semantic Systems Initiative (ESSI)
	EON Architecture

	Preliminaries
	Description Logics
	Description Logics Syntax and Semantics

	OWL
	Semantic Web Rule Language: SWRL
	SWRL Editor

	Quantitative Relations
	Web Service Description Language(WSDL)
	Web Services Business Process Execution Language(WS-BPEL)
	Web 2.0 Technology

	Service Composition and Execution Based on Semantic Technology
	Overview of Web Services Composition Architecture Based on Semantic Technology
	Web Services Composition
	Design of Web Services Composition Architecture Based on Semantic Technology

	Service Composer
	Design of the Service Composer
	Architecture of the Service Composer

	Knowledge Base Management System
	Design of the Knowledge Base Management System
	Architecture of the Knowledge Base System

	Ontology Modeling
	Service Composition Mechanism
	Service Execution Based on Semantic Technology

	Constraint Handling
	Constraints
	Time Constraint
	Value Partition

	Ontology Maintenance
	Wiki-supported Ontology Engineering
	The Model of Ontology Maturing
	Wiki Community Component and Ontology Maintain Procedure

	Service Execution
	Design of the Service Execution Module
	Architecture of the Service Execution Module
	Development of the Business Process Execution Language

	Implementation - The Traveller
	The System Design
	Service Description
	Trip Requirement Description
	Service Advertisement Description

	Implementation of the Traveller
	Implementation of the Service Composer
	Implementation of the Knowledge Base Management System

	Ontology Design
	The Tourism Domain Ontologies
	The Spot Ontology
	The Requirement Ontology
	The Advertisement Ontology

	Constraint Checking
	Time Constraints
	Budget Constraints

	Constraint Rules
	PAL Rules
	SWRL Rules

	The Traveller Demonstration
	Matching Service Process

	Conclusion
	Contributions
	Future Work

