
Web Services Search and Composition by
Combining Web 2.0 and Semantic Web Technology

@~ß�ÄÆ�

¼0>0�|Ç�

Department of Information Management

National Taiwan University

July 18, 2008

i

THESIS ABSTRACT
Graduate Institute of Information Management

National Taiwan University

Student: Yang, Te-Wei Month/Year: June, 2008
Advisor: Tsay, Yih-Kuen

Web Services Search and Composition by
Combining Web 2.0 and Semantic Web Technology

Web Services which are specific functionalities and can be combined to meet a partic-
ular user’s needs have become a mature technology in the past few years. However, the
discovery and search mechanism provided by UDDI based on keyword matching may lead
to an ambiguous answer. It is a challenge to target the suiting Web services precisely.
Semantic Web technology provides another option for service matching. It enables a
service profile to be described according to its functionalities in OWL, which is based on
Description Logics. Recently, researchers are dedicated on studying Semantic Web tech-
nology as a primary tool for ontology-based Web Services searching and invocation. With
help of precise semantics description, Web Services are able to be utilized automatically.

Under such a Semantic Web search mechanism, Web Services profile and domain
ontology are both described by Description Logics. However, potential users often do
not have any knowledge about Description Logics. That creates a huge gap and critically
imposes high entrance barriers for the user. Besides, ontology maintenance is another im-
portant issue for Semantic Web applications. Ontology maintenance is a time-consuming
job. Ontology maintenance is usually controlled by a small group of people. But it has
several drawbacks: (1) the addition can be time-consuming and lack of completion and
(2) the ontology maintainer read the concept in the different manner from how potential
user does. Accordingly, sometimes concepts become obsolete by the time they enter the
ontology. In the long run, ontology maintenance cannot be ignored especially in such a
Semantic Web application.

In this thesis, we proposed: (1) an open system architecture to lower the entrance
barriers of Semantic Web applications, (2) a practical approach to ontology maintenance,
and (3) a new prototype system. The Traveller was implemented based on our ontology-
based architecture and related methodologies. With the service composition and execu-
tion architecture, the user is able to find suiting Web Services, invoke services by defining
BPEL4WS, and participate in collaborative ontology maintenance without knowing any
Semantic languages.

Keywords: AJAX, BPEL, BPEL4WS, Description Logics, Ontology, OWL, Seman-
tic Web, Semantic Web application, Semantic Web Service, Service Execution, SWRL,
Web Services, Web 2.0, Protégé,

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Objectives . 2
1.3 Thesis Outline . 4

2 Related Work 5
2.1 Web Services . 5

2.1.1 Web Service Description Language(WSDL) 6
2.1.2 UDDI . 8
2.1.3 SOAP . 9

2.2 Semantic Web . 10
2.2.1 Resource Description Framework(RDF) 10
2.2.2 Web Service Modeling Ontology(WSMO) 11
2.2.3 OWL-S . 12
2.2.4 Modeling Ontology of Time and Value 14

2.3 Service Matching and Ranking . 16
2.3.1 Service Matching . 16
2.3.2 Service Ranking . 18

2.4 Web Services Composition . 20
2.5 Related Projects . 20

2.5.1 SATINE Project . 20
2.5.2 European Semantic Systems Initiative (ESSI) 21
2.5.3 EON Architecture . 23

3 Preliminaries 25
3.1 Description Logics . 25

3.1.1 Description Logics Syntax and Semantics 27
3.2 OWL . 30
3.3 Semantic Web Rule Language: SWRL 31

3.3.1 SWRL Editor . 31
3.4 Quantitative Relations . 32
3.5 Web Service Description Language(WSDL) 36
3.6 Web Services Business Process Execution

Language(WS-BPEL) . 38
3.7 Web 2.0 Technology . 39

iii

4 Service Composition and Execution Based on Semantic Technology 41
4.1 Overview of Web Services Composition Architecture Based on Semantic

Technology . 41
4.1.1 Web Services Composition . 42
4.1.2 Design of Web Services Composition Architecture Based on Seman-

tic Technology . 46
4.2 Service Composer . 52

4.2.1 Design of the Service Composer 52
4.2.2 Architecture of the Service Composer 54

4.3 Knowledge Base Management System . 58
4.3.1 Design of the Knowledge Base Management System 58
4.3.2 Architecture of the Knowledge Base System 58

4.4 Ontology Modeling . 62
4.4.1 Service Composition Mechanism 67
4.4.2 Service Execution Based on Semantic Technology 69

4.5 Constraint Handling . 69
4.5.1 Constraints . 70
4.5.2 Time Constraint . 71
4.5.3 Value Partition . 72

4.6 Ontology Maintenance . 73
4.6.1 Wiki-supported Ontology Engineering 73
4.6.2 The Model of Ontology Maturing 75
4.6.3 Wiki Community Component and Ontology Maintain Procedure 76

4.7 Service Execution . 79
4.7.1 Design of the Service Execution Module 79
4.7.2 Architecture of the Service Execution Module 79
4.7.3 Development of the Business Process Execution Language 81

5 Implementation - The Traveller 85
5.1 The System Design . 85
5.2 Service Description . 87

5.2.1 Trip Requirement Description . 88
5.2.2 Service Advertisement Description 89

5.3 Implementation of the Traveller . 90
5.3.1 Implementation of the Service Composer 92
5.3.2 Implementation of the Knowledge Base Management System . . . 94

5.4 Ontology Design . 97
5.4.1 The Tourism Domain Ontologies 97
5.4.2 The Spot Ontology . 97
5.4.3 The Requirement Ontology . 100
5.4.4 The Advertisement Ontology . 103

5.5 Constraint Checking . 106
5.5.1 Time Constraints . 108
5.5.2 Budget Constraints . 110

5.6 Constraint Rules . 112
5.6.1 PAL Rules . 112

iv

5.6.2 SWRL Rules . 113
5.7 The Traveller Demonstration . 115

5.7.1 Matching Service Process . 115

6 Conclusion 118
6.1 Contributions . 118
6.2 Future Work . 119

v

List of Figures

1.1 Web Services Architecture . 2

2.1 Web Services Architecture . 6
2.2 WSDL Binding Example . 7
2.3 Relation between UDDI data structures 9
2.4 Top level of the Service Ontology . 13

3.1 Architecture of a knowledge representation system based on Description
Logics. 26

3.2 The SWRL Editor in Protégé . 33
3.3 Relationship between SWRL and Ontology 34

4.1 Web Services Composition Architecture 47
4.2 Architecture of the Service Composer . 54
4.3 Architecture of the Knowledge Base System 59
4.4 Requirement Modelling - The TBox Approach 64
4.5 Requirement Example - The TBox Approach 65
4.6 Ontology Design of the Architecture - Requirement, Advertisement

and Common Ontology . 66
4.7 Example of Subsumption Reasoning . 67
4.8 The Classification of Constraints . 71
4.9 The ValuePartition Ontology . 72
4.10 Architecture of the Service Execution Module 81
4.11 Life-cycle of the Business Process Execution Language 84

5.1 The Implementation of the Service Composer 94
5.2 The Implementation of the Knowledge Base Management System 96
5.3 The Tourism Ontology Design . 98
5.4 Design of the Spot Ontology (Part) . 99
5.5 The Ching Jing Farm Service Profile . 100
5.6 The Requirement Ontology in the Traveller 102
5.7 The Requirement Example in the Traveller 103
5.8 The Requirement Concept Definition in the Traveller 104
5.9 The Trip Requirement of the scanrio in the Traveller 105
5.10 The Advertisement Ontology in the Traveller 106
5.11 The Advertisement Example in the Traveller 107
5.12 The Advertisement Concept Definiton in the Traveller 108
5.13 The Trip Package Example . 109

vi

5.14 Constraint Handling and Checking in the Implementation System 109
5.15 Relationship between leq5000 and leq500 in the ValuePartition Ontology 111
5.16 The User Interface of Matchmaker . 117

vii

List of Tables

2.1 Comparison between WSMO and OWL-S 15

3.1 Description Logics Concept Constructors 28
3.2 Terminological and Assertional Axioms 29
3.3 Abstract Syntax of SWRL . 32
3.4 Semantics of Quantitative Concepts . 34
3.5 Semantics of Quantitative Relations . 36

5.1 Implementation of the components of the Traveller 91

viii

Chapter 1

Introduction

1.1 Background

Web Services which are specific functionalities and can be combined to meet a particular

user’s needs have become a mature technology in the past few years. Service Oriented

Architecture(SOA) [4]provides a distributed, loosely coupled, and open standard archi-

tecture which is able to create a platform-independent mechanism over the Internet,

combine services together and reuse them to achieve business applications. Aside from

Service Oriented Architecture, W3C has developed several related standards to support

Web Service, such as Simple Object Access Protocol (SOAP) [11], Web Service Descrip-

tion Language (WSDL) [15], Universal Description, Discovery, Integration (UDDI) [2],

and Web Services Business Process Execution Language (WS-BPEL) [8]. SOAP is a

communication protocol adapted in Web Services today. Through XML-based message

communication, applications are able to exchange information in a decentralized, dis-

tributed, and heterogenous environment. Using WSDL, a user can locate Web Services

and invoke any of its publicly available function. UDDI enable businesses to publish

service lists and have them to be found on the Internet. In other word, UDDI provides a

platform-independent service registry for businesses worldwide. The role of WS-BPEL is

to define a specific Web Services by composing a set of existing services. Figure 1.1 shows

that the basic architecture of Web Services involves three main roles: service provider,

service registry, and service requestor.

1

Figure 1.1: Web Services Architecture

1.2 Motivation and Objectives

Just as previous stated, Web Services development is continually booming. However, the

discovery and search mechanism provided by UDDI based on keyword matching may lead

to an ambiguous answer. It is a challenge to target the suiting Web services precisely.

Keyword search mechanism is not an efficient methodology, because there may be different

meanings to a single keyword and cause a failed search outcome. Therefore, we try to

combine Semantic Web and Web Services technology together, which means Web Services

description written in XML format can be annotated with semantics. By this method,

search machines like computers are able to understand the exact semantic of Web Service,

and find out the best description that matches the user’s need. There are many researches

on the Semantic Web Services. They try to use expressive Description Languages, such

as Description Logics [9] to equip service profile with semantics. Description Language,

which is a formal logic-based system and developed to conceptualize knowledge and to

model Ontology, has extended many Ontology languages applied in Sematic Web Service,

such as RDF [35], DAML+OIL [25], and Web Ontology Language (OWL) [18]. Recently,

researchers are dedicated on studying Semantic Web technology as a primary tool for

ontology-based Web Services searching and invocation rather than keyword-based search

mechanism. With help of precise semantics description, Web Services are able to be

utilized automatically.

2

Under such Semantic Web mechanism, Description Logics play an important role.

Web Services profile, domain ontology are both described by Description Logics. Our

matching scheme also relate with Description Logics. However, potential users often do

not have any knowledge about that [44]. It creates a huge gap and critically imposes high

entrance barriers for Semantic Web applications. Ontologies in Semantic application need

constant updates and maintenance so that they correctly represent the real world. But it

is a time-consuming job for those administrators. The managements of ontology need to

be more efficient and more organized so that computers can use those plentiful and correct

ontologies in reasoning tasks to deduce the right results. In the traditional approach,

ontology maintenance is controlled by a small group of people. But the fact shows that

small group constructs the ontology for a bigger group has several drawbacks: (1) the

addition can be time-consuming and lack of completion (2) the ontology maintainer read

the concept in the different manner from how potential user does. Accordingly, sometimes

concepts become obsolete by the time they enter the ontology. In the long run, ontology

maintenance cannot be ignored especially in such a Semantic Web applications.

The goal of this thesis is to propose a new architecture based our previous architecture

of ”automatic service composition and execution for Web Services” [57]. In our previous

architecture, we have identified some issues from casual users’ perspective and adminis-

trators’ perspective. We want to provide new features that not only make our system

more friendly for casual users and also for administrators. In new architecture, we want

to create a open environment where every user participates in update and maintenance.

We implement a new prototype system called the Traveller, which acts as a trip planner

on the Internet that handles the customer’s tourism requirements. By combining Web

2.0 technology [46], such as community and mashups, the entrance barrier of Semantic

Web applications will be lower.

In this thesis, we proposed: (1) an open system architecture to lower the entrance

barriers of Semantic Web applications, (2) a practical approach to ontology maintenance,

and (3) a new prototype system. The Traveller was implemented based on our ontology-

based architecture and related methodologies. With the new service composition and

execution architecture, the user is able to find suiting Web Services, invoke services

by defining BPEL4WS, and participate in collaborative ontology maintenance without

3

knowing any Semantic languages.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, we introduce the development of the Web Services and Semantic Web

in recent years. Then we review some related researches about Semantic-based ser-

vice matching and service ranking. Besides, composition of Semantic Web Services

and ontologies modeling of Time and Value are discussed with some relevant papers.

In the end of chapter 2, we introduce Web 2.0 technology and some ongoing projects

related to our thesis, such as SATINE [22] which is a travel domain project based

on Semantic Web Services, European Semantic Systems Initiative (ESSI) which

dominates six projects specialized in certain aspects of Semantic Web services.

• In Chapter 3, we introduce basic notations and axioms about Description Logic,

basic inference problems in Description Logics. Otherwise, Web Ontology Lan-

guage (OWL), an ontology language, Semantic Web Rule Language (SWRL) [26],

which extends OWL axioms to support specific rules, and other related Web Service

standard: WSDL and WS-BPEL, will be introduced.

• Chapter 4 explains service composition and execution based on semantic technolo-

gies. The relationships between requirements and advertisements are described.

The architecture of ontology are detailed. We also proposed a classification of con-

straints and their handling approaches. Besides, the service execution module is

proposed and explained in this chapter.

• Chapter 5 describes the prototype system, the Traveller, which is applied in tourism

domain. The ontologies modelling of the system and interactions among compo-

nents in the system will be represented in detail.

• Chapter 6 summaries the contributions of this thesis, and its future direction for

further research.

4

Chapter 2

Related Work

In this chapter, We will review related works about the Web Service, Semantic Web

Service, some researches in modeling Ontology, several papers about service matching

and ranking, and related projects working recently.

2.1 Web Services

Web Services is a software system designed to support computers interaction over a dis-

tributed system environment.By accessing server service, it allows different applications

from different sources to communicate with each other without time-consuming custom

coding. In the following, We will introduce main architecture components.

• Service Provider: A service provider implements the service and make it available

on the Internet by publishing its service descriptions to the service registry.

• Service Requester: A service requester utilizes an existing Web Services by

searching service registry and invoking qualified services.

• Service Registry: A service registry serves as a service broker, which performs a

matching scheme and sends qualified service descriptions back.

In order to ensure service interoperability. Every component in Web Services architec-

ture exchanges message with Simple Object Access Protocol(SOAP) which is XML-based

communication standard. Service profiles are described by Web Service Description Lan-

guage(WSDL), and are stored at Universal Description, Discovery, Integration(UDDI)

5

Registry where Service Requester search for their Web Service. Finally, Service Re-

quester make a remote procedure calls(RPCs) to invoke the business function on the

Service Provider. Figure 2.1 shows how Web Services Architecture work.

Figure 2.1: Web Services Architecture

2.1.1 Web Service Description Language(WSDL)

WSDL is an XML document describing a Web Service. WSDL document has two types

of elements: Abstract and Concrete. The Abstract part, which is also known as

interface definition, describes what data types and message format should be used, what

functions are supported by the service. The Concrete part describes how the service will

be used over network and where the service locates. In the Concrete part, services are

well implemented in details, some implementation specifications are defined here

A service interface definition, which is reusable, describes a service in terms of message

format and its operations. A service implementation definition provides actual implemen-

tation details, such as access points and service provider information.

The Abstract part definition includes four elements, Types, Message, PortType,

and Binding.

1. Types, defines primitive data types used to form messages. WSDL prefers XML-

Schema as the canonical type system.

6

2. Message, defines the name and content of the request/response messages, which

are the parameters of operations. Message element will be removed in WSDL2.0

[15], since message types can be directly defined in Types element.

3. PortType, renamed as Interface in WSDL2.0, is a named set of operations in-

volved.

4. Binding, defines message format and protocol details for operations and messages

defined by a particular portType(Interface). Figure 2.3 introduces the concept of

service binding.

The Concrete part definition includes two elements, Port and Service.

1. Port, renamed as Endpoint in WSDL2.0, describes the access point of service

when perform data transmission.

2. Service, a collection of related endpoints, defines the address for invoking the

specified service.

Figure 2.2: WSDL Binding Example

7

2.1.2 UDDI

WSDL has defined a standard for service description and service accessing. However, the

user still needs a central registry that stores service profiles and provide service discovery

in a efficient way. That’s the functionality UDDI supply for. UDDI was developed by

IBM, Microsoft, and Ariba. It defines a explicit specification for service discovery and

service publishing, and solidifies the integration of Web Service.

UDDI’s registration information consists of four data structure types including busi-

nessEntity, businessService, bindingTemplate, and tModel. Figure 2.3 describes

the relations between these data structures.

• businessEntity: The businessEntity structure represents all known information

about a business or entity that publishes information about the entity and what

services it offers.

• businessService: The businessService structure describes services provided by a

specified businessEntity, including service name, service key, and service description.

• bindingTemplate: The bindingTemplate structure, which was included in busi-

nessService, provide support for determining a technical entry point or optionally

support remotely hosted services

• tModel: The tModel structure has two main uses. One is defining the technical

specification and the other is defining an abstract namespace reference.

There are three general categories which are the way how UDDI stores service infor-

mation.

• White Pages: White pages provide basic contact information about a company,

such as the business name, address and contact information. White pages also

provide unique business identifiers, such as domain name. In short, white pages

allow customers and partners to discover business services based upon business

identification.

• Yellow Pages: Yellow pages describe a business service using different catego-

rizations (“taxonomies” in UDDI terminology). This information allows others to

8

Figure 2.3: Relation between UDDI data structures

discover business services based upon its categorization, such as being in the man-

ufacturing or software development business.

• Green Pages: Green pages provide technical information on the behaviors and

supported functions of a business service hosted by a business. Green pages in

UDDI are not limited to describing XML-based Web Services, but any business

service type offered by a business entity, such as phone-based services, for example

call center service.

As we mentioned in last chapter, although UDDI play an important role as a service

broker, but we do not consider UDDI’s keyword-based search as a good approach. Be-

cause different semantics may be referring to the same word, Keyword-based may cause

ambiguous results sometimes. In our approach, we prefer semantic can be embedded into

the search system, make service description more clear and more articulate.

2.1.3 SOAP

SOAP provides the definition of the XML-based information which can be used for ex-

changing structured and typed information between peers in a decentralized, distributed

environment. SOAP message is formally specified as an XML Information Set called

XML Infoset, which provides an abstract description of its contents. However, SOAP

provides the framework by which application-specific information may be conveyed in an

9

extensible manner. SOAP is mainly used for performing remote procedure calls (RPCs)

transported via HTTP. Unlike other RPC technologies, such as CORBA, JAVA RMI and

DCOM, SOAP messages are entirely written in XML. Therefore, services can be invoked

without platform limitations.

2.2 Semantic Web

Semantic Web, which is brought up by Time Berners-Lee, is considered as a next gen-

eration of World Wide Web. Tim Berners-Lee issued the call for the Semantic Web,

because he found that HTML, the syntax of the Web, did not include enough meaning.

He suggested a syntax that could capture the meaning expressed in our daily live in a way

that computers could process. Therefore, the goal of Semantic Web is to make data over

network understandable and accessible to human and machines.Under such mechanism,

we can imagine that business process can be initiated by people and then proceed on its

own. All the tasks within the process would be interactions between machines, without

human participation. The other advantage it brings is the improvement of service dis-

covery. By semantic-embedded service description, a service broker can match services

according to their functionalities. Therefore, in this section, we introduce two standards

of Semantic Web.

2.2.1 Resource Description Framework(RDF)

Resource Description Framework (RDF) is designed by World Wide Web Consortium

(W3C). The original idea is establish a standard of metadata model but which has come

to be used as a general method of modeling information, through a variety of syntax

formats. The RDF metadata model is based upon the idea of making statements about

resources in the form of subject-predicate-object expressions. In the other word, RDF

can express the relationship between two terms, like Apples are a type of fruit; Homer is

the father of Bart. By putting all relationships together, we can construct an ontology.

Because of RDF’s simple data model and ability to model disparate concepts, it has not

only led to its increasing use in knowledge management applications but also animated

the expand of Semantic Web activity.

10

2.2.2 Web Service Modeling Ontology(WSMO)

In order to create a Web Service Modeling Ontology [51], which is abbreviated to WSMO,

for describing abundant Semantic of Web Service. The ESSI 1 WSMO group works

for explicit standardization in Semantic Web Services language, and try to use a com-

mon architecture to represent the standard of Semantic Web Service. The architecture

called Web Service Modeling Framework(WSMF) consists of four different main elements:

Ontologies that provide the terminology used by other components in WSMF, Goal

Repositories that define the user’s problems that should be solved by Web Services;

Web Services descriptions that define various aspects of Web Services in detail; and

Mediators which are responsible for interoperability problems in connecting heteroge-

neous datum, processes, and protocols between WSMF elements.

which provide the conceptual model for semantically accomplishing the functions of

Web Services including automatic Web Services publishing, Web Service discovering, Web

Services composition, and execution, the group aims at developing the language called

Web Services Modeling Language (WSML) that formalizes the Web Services Modeling

Ontology (WSMO) and focusing on a framework called Web Services Modeling Frame-

work (WSMF) that develops a fundamental execution environment.

Detailed descriptions about these components are as follows:

• Ontologies: According to Gruber’s definition about Ontology: An ontology is a

formal, explicit specification of a shared conceptualization. [23] In WSMF, ontolo-

gies are used to define the terminology that is used by other elements of WSMF

specifications. Therefore, they enable reuse of terminology as well as interoperabil-

ity between components referring to the same or linked terminology. Ontologies,

which was developed in Artificial Intelligence to facilitate knowledge sharing and

reuse, are formal and consensual specifications of conceptualizations that provide

a shared and common understanding of a domain, an understanding that can be

communicated across people and application systems. It define formal semantics

for information, consequently allowing information processing by a computer.

• Goal Repositories: The description of a goal specifies objectives of fulfillment

1http://www.essi-cluster.org/

11

http://www.essi-cluster.org/

arrived by executing the Web Services and that user may have when he consults

a Web Service.A goal specification consists of two elements:Pre-conditions describe

what a Web Services expects for enabling it to provide its service. Post-conditions

describe what a Web Services returns in response to its input.

• Web Services: Web Services represent service entities, which provide certain func-

tional tasks in a domain. Web Services descriptions consist of its non-functional

properties, its functional properties, and the behavioral aspects of a Web Service.

These properties and aspects of Web Services are described by using the terminolo-

gies defined in Ontologies.

• Mediators: The Mediators allow one to link heterogeneous resources and are pro-

posed to overcome the interoperability problem between different WSMO elements.

The Mediators not only solve the data heterogeneity problem, but also deal with

process, and protocol heterogeneity. WSMO defines four types of Mediators, such

as ggMediators, ooMediators, wgMediators, and wwMediators.

2.2.3 OWL-S

As we mentioned above, WSDL document contains sufficient information for user to in-

voke a service, but semantic about service description is inadequate, such as ”how service

works”, ”what is its precondition” and postcondition, and even ”who provides the ser-

vices”. Base on OWL and predefined language of DAML+OIL [16, 25], OWL-S [18] is

proposed. However, OWL-S supplies Web Services providers with markup language con-

structs for increasing the expressive power and semantics of the properties and capabilities

of their Web Services. . When information is in unambiguous, computer-understandable

form, OWL-S markup of Web Services will facilitate the automation of Web Services

tasks including:

• Automatic Web Services Discovery

• Automatic Web Services Execution

• Automatic Web Services composition and interoperation

12

Figure 2.4: Top level of the Service Ontology

• Automatic Web Services execution monitoring

OWL-S does not aim to replace the current standard of Web Services, but attempts

to increase the capability of semantic level interoperability. To fulfill the task, OWL-S

constructs the Upper Ontology that consists of Service Profile, Service Grounding,

and Service Grounding described below:

• Upper ontologies: Upper ontologies defines three types of knowledge about the

different aspects of services; Service Profile, which defines what services are pro-

vided, Service Process Model, which defines how services work, Service Grounding,

which defines how services interact. Figure 2.4 shows the top level of the Service

Ontology.

• Service Profile: Service Profile represents what services are offered by the service

and descriptions about the services. Based on OWL subclassing approach, the de-

tailed information of services, such as who provides the service, what are the inputs,

outputs, preconditions, consequences, a list of features of services, quality rating of

a service, and an unbounded list of service parameters. Among registry informa-

tion in terms of the capabilities and description of the services, Service discovering

and matching can be implemented into Web Services standard like UDDI or other

inferencing mechanisms.

13

• Service Process Model: In Service Model, there is a minimal set of control

constructs u used to represent a variety of process of Web Services. It is including

Sequence, Split, Split-Join,Any-Order, Choice, If-Then-Else, Iterate, Repeat-While,

and Repeat-Until,. The behavior that Service Model specified should be consistent

with the descriptions in Service Profile.

A Process can be an atomic process or composite process. In the former one, it

expects one (possibly complex) message and returns one (possibly complex) message

in response. In the latter one, it maintains some state so that each messages from

clients can be recognized and be arranged in the correct order.

• Service Grounding: Service Grounding gives a concrete level of service specifi-

cation including the access point of the service, the communication protocols used,

and the message passed during its execution.

Lara [34] made a comparison between WSMO and OWL-S. In a nutshell, OWL-S

tries to construct the description of services in a broad sense, not focusing on a specific

domain. WSMO aims to create an ontology for describing services in a more defined

focus: solving the integration problem. Table 2.1 gives a brief comparison between the

two standards.

2.2.4 Modeling Ontology of Time and Value

Some researchers refer ontology to the study of conceptualization of reality. Web Ontology

Language (OWL) are used to model ontologies in order to represent the explicitly semantic

of terms in vocabularies and the relationships between those terms on the Web. Basically,

modeling various descriptive features, such as qualities, attributes, or modifiers, is a

frequent requirement while constructing ontologies. For example, descriptive features are

often be modeled as properties in OWL with specify ranges which define the constrains

on the values. However, there are many restrictions and limitations on modeling property

values while using OWL-DL or OWL-Lite, especially on handling time and value. Such

properties need to be handled specifically. Some approaches, such as [12, 24], are proposed

to solve problems relevant modeling time and value. The recently research [12] introduces

CaTTS, the Calendar and Time Type System, which is based on predefined date and time

14

Table 2.1: Comparison between WSMO and OWL-S

Aspect WSMO OWL-S

Purpose Focused goal, specific Wide goal, does not focus on

application domains concrete application domains

Coupling Loose coupling, independent Tighter coupling in several

definition of description elements aspects

Requester Two different points of view, Not separated, unified view in

needs and modeled independently the service profile

service and linked through Mediators

capabilities

Functional Explicit and complete description Does not describe some aspects

description of the functionality

Mediation Scalable mediation between No mediation

loosely coupled elements

Languages F-Logic for logical expressions. Language for condition not defined.

Ontology language not imposed Ontology language OWL

types after the Gregorian calendar in XML Schema. CaTTS provides a generic Semantic

Web application with methods to model and reason about time and calendar constraints.

It comprises two languages, a type definition language, CaTTS-DL, for specifying the

type of the calendars and a constraint language, CaTTS-CL, for parsing the constraints

of languages. CaTTS contains a tool called static type checking for program analysis,

which verifies the behavior of programs and/or systems under specific specifications.

Another tool called constraint solver is used to annotate on arbitrary finite domains with

calendars defined using CaTTS-DL. The W3C Working Group proposed two guidelines

for modeling time and value. They are respectively Value Partitions and Value Sets in

[50].

• Value Partitions: The Value Partitions considers the feature as an individ-

ual/instance. We introduce a scenario that describes the health status of a person is

presented as an example. The Value Partitions takes the values of the health status

as sets of individual. It defines the class Health Value and its corresponding enu-

meration of the individual good health, medium health, and poor health. The

pattern is a simple and intuitive approach, but it has some limitations: it is impos-

15

sible to further subpartition the values because OWL only supports a dichotomy,

i.e., there are only equalities or differences between individuals. Individuals with

partial overlaps are not considered. Therefore, alternative partitions of the same

feature space cannot be represented.

• Value Sets: The Value Sets considers the feature as a class representing a con-

tinuous space that is partitioned by the values in the collection of values. We take

the same scenario to illustrate Value Sets approach. The Value Sets describes the

health status as subclass partitions, Poor health value, Medium health value,

and Good health value, of the Health value feature class. Although this method

is more complex, it provides more flexibility than the previous approach. The

subclass can be made into further subpartition such that there can be several alter-

native partitions of the same feature space. The choice between these two patterns

depends on the future maintenance and the expansibility of the ontology.

2.3 Service Matching and Ranking

As we mentioned above, service matching is the process that takes user requirement as

an input and returns all qualified results. Since there may be multiple results according

to different matching degrees, a ranking algorithm, which can be helpful for user to

choose among these results, is essential. In this section, we will review several service

matching frameworks first. Each of them employs a service description language along

with a matching algorithm to perform service matchmaking tasks. Different definitions of

matching degree are given according to the relations between a service requirement and

an advertisement. Then we review related works on service ranking, which gives priority

to several matching results.

2.3.1 Service Matching

Sycara et al. [56] define an agent capability description language called LARKS (Language

for Advertisement and Request for Knowledge Sharing), which can be used to specify

an advertisement, request, and matching agent capabilities. They define three types of

matching in LARKS: exact match, plug-in match, and relaxed match. In addition, five dif-

16

ferent filters in LARKS are provided to carry out the matching process including context

matching, profile comparison, similarity matching, signature matching, and constraint

matching. These filters spans form text matching to semantic matching. All filters are

independent and each of them narrows the set of matched candidates and different degrees

of partial matching can result form using different combinations of filters. They propose

a well-formed framework for service matchmaking. However, in this framework, no rank-

ing function is provided except for relaxed match, which is determined by a numerical

semantic distance value.

Paolucci et al. [48] propose a service matchmaking approach based on DAML-S. They

make use of Service Profile section of DAML-S to describe the input, output, precondition

and effect (IOPE) of a service. Their matching algorithm consists of matching all the

outputs of the request against the outputs of the advertisement; and matching all the

inputs of the advertisement against the inputs of the request. They compare the outputs

first and use input matching only when there is an equal degree of match between outputs.

They define four matching degrees as follows:

• Exact: For brevity, we use outR to represent one of request’s output and outA to

represent one of advertisement’s output. There are two situations that the match

will be labeled as EXACT. The first case is when outR and outA are equivalent,

which is intuitive. The second case is when outR is a subclass of outA, then they

still mark the result as EXACT.

• Plug-In: If outA subsumes outR, that is, outA is a set that includes outR.

• Subsume: If outR subsumes outA. This happens when the provider dose not

completely fulfill the request.

• Fail: Failure occurs when no subsumption relation between outR and outA can be

identified.

They also propose an architecture to apply their matching algorithm to incorporate

with UDDI servers to equip UDDI registries with an additional semantic layer that per-

forms a capability based matching.

17

Li et al. [37] design and implement a service matchmaking prototype system which

combines a DAML-S based ontology and a Description Logics reasoner. They extend the

matching degrees in [48] and propose a five-level matching degree:

• Exact: If advertisement A and request R are equivalent concepts, we call the match

Exact; formally, A ≡ R.

• PlugIn: If request R is sub-concept of advertisement A, we call the match PlugIn;

formally, R v A.

• Subsume: If request R is super-concept of advertisement A, we call the match

Subsume; formally, A v R.

• Intersection: If the intersection of advertisement A and request R is satisfiable,

we call the match Intersection; formally, ¬(A uR v ⊥).

• Disjoint: Otherwise, we call the match Disjoint; that is, A uR v ⊥.

Paolucci and Li both think that PlugIn match is better than Subsume match be-

cause, under PlugIn match, the output can be used to substitute what the requester

expects; while, under Subsume match, the requirement of the requester can only be

partially fulfilled. However, we have different consideration. PlugIn match may suffer

from the problem that an advertisement is too generic: a service provider may define his

advertisement as general as possible to maximize the likelihood of being matched. On

the other hand, the Subsume match works under the assumption that a requester may

define his requirement with a general sense and can be satisfied with a specified kind

of matched services. We think such a viewpoint would be better in order to fulfill the

user’s requirement. Therefore, in our approach we discard PlugIn match and reserve

Subsume match.

2.3.2 Service Ranking

Stojanovic et al. [55] propose an approach to query results ranking in the Semantic Web.

The rationale behind their ranking scheme is to score services by counting available fillers

of properties. The more available fillers of a certain property, the lower score it will obtain.

18

If two property are connected by a and-connector, the obtained score is the sum of these

two properties’ scores. If two property are connected by an or-connector, the obtained

score is the product of scores of these two properties. In short, they translate query results

from a set of concept instances to a set of returned relation instances and compute the

relevance value to rank query results.

Di Noia et al. [20] and [45] propose a logical approach based on ”CLASSIC Description

Logics” to support supply-demand matching. In their approach, both supply and demand

are described as a conjunction of concepts. Their approach provide three types of match:

• Exact match: all requested characteristics are available in the description exam-

ined

• Potential match: some part of the request is not specified in the description

examined

• Partial match: some part of the request is in conflict with the description exam-

ined

For potential match and partial match, a rank function is devised respectively. The

main idea behind their rank function is to compare concept names between supply and

demand. The algorithm computes a distance between concepts. The distance starts

with an initial value 0, which means best ranking. The value gains with the syntactical

difference between concept names and can be used for a measurement of ranking.

Base on [20], Di Noia, et al. present an extended semantic-based matchmaking algo-

rithm [19]. They adopt two non-standard inference services in DL, Concept Abduction

and Concept Contraction. In Concept Contraction, the user’s requirement is divided

into two parts, NG and ST . NG stands for the part which is negotiable; while ST

represents for the part which should be strictly enforced. When potential match is un-

reachable, the algorithm utilizes Concept Contraction, which relaxes the negotiable part

of requirement, to gain satisfiable result. Then, Concept Abduction computes the part of

advertisement which should be refined to make requirement and advertisement complete

satisfiable with each other. By Concept Abduction and Concept Contraction, the service

matching scheme becomes more flexible under reasonable computational complexity.

19

2.4 Web Services Composition

The composition of Web Services can be considered from two aspects. The first is how

component in a Web Services architecture cooperate with each other. We take this

perspective as a role of the coordinator in the Web Services system. The coordinator

manages the interaction between components of system. The other aspect is a process

manager that combines many services that performs a complicated task. The composition

of service specifies which operations need to be invoked and in what order. This aspect

is worthy of research in Web Services based on Semantics therefore and is the focus of

this thesis.

The composition of Web Services used to form new, aggregate services for completing

more complicated tasks is the most important part in the interaction and inter-operation

of Web services. How to compose and coordinate different services, and assemble them

to support more complex services and goals, are major challenges. Service composition

should consider the global constraints of the services involved in the composition, as well

as the sequence of the services. The composition based on the logics of automation of

Web Services is discussed in detail in [54, 17, 33].

The composition and execution of services should be considered simultaneously be-

cause the result of the composition may influence the methoud of execution. [49, 58]

propose a technique for automated synthesis of new composite Web Services from a set

of abstract BPEL4WS descriptions of component services to executable BPEL4WS pro-

cesses automatically.

2.5 Related Projects

2.5.1 SATINE Project

The SATINE Project [22], which is applied on tourism industry, is dominated by Software

R&D Center in Middle East Technical University in Turkey. Since activities of travel do-

main involves Business to Business (B2B), such as the relationship between travel agents

and airline company or other partners, and also involves Business to Customer (B2C),

means if a person wants to plan his/her trip spontaneously, he/she have to deal with a lot

of services distributed in the network. If machines can search advertisements and book

20

their orders automatically, it would be convenient for those travelers. SATINE project is

proposed to fulfill such requirements in travel domain and is motivated by Open Travel

Alliance (OTA), which produced the XML schemas of message specifications to be ex-

changed between trading partners. The architecture of SATINE project provides secure

and semantic-based interoperability framework for Web Services platform in peer-to-peer

networks, and provides tools and mechanisms for publishing, discovering, composing, and

invoking correlative Web Services. A trip plan comprises many sub-plans and related ac-

tivities which invoke many Web services to complete a composed trip requirement. The

creation of complex services for orchestrating many simple Web Services is an important

task in travel business, because the execution order of Web Services may be very compli-

cated, vary execution order may result different consequence. Therefore SATINE project

also developed the framework of Semantic Web Services composition and execution to

provide complex services. In SATINE project, a Semantic Wrapper for constructing and

describing Web Services is proposed. That component is to wrap existing information

resources and provide an easy tool for small/middle enterprises to collect and annotate

Web Services conveniently. A Semantic Wrapper consists of two tools: the Web Ser-

vices Creator and the Web Services Annotator. The Web Services Creator transforms

the existing resources of Web Services and the Web Services Annotator describes a Web

services with using OWL-S as semantic descriptions.

2.5.2 European Semantic Systems Initiative (ESSI)

The European Semantic Systems Initiative (ESSI) Cluster2, which combines Web Services

and Semantically empowered system solutions with semantically service-oriented archi-

tectures, is made of six European 6th Commission Framework Projects that works on

European research and industry through world-wide standardisation. The ESSI Cluster

research projects are listed below:

• Adaptive Services Grid (ASG)

ASG provides an architecture that aims to build a bridge between business-related

requirements and current service-oriented IT-infrastructures for eliminating the gap

of communication, protocol, and standard.

2http://www.essi-cluster.org/

21

http://www.essi-cluster.org/

• Data Information and Process Integration with Semantic Web Services

(DIP)

DIP focuses on further development, combination, and enhancement of Semantic

Web and Web Services technologies for producing a new infrastructure of Semantic

Web Services that will provide data and process integration in eWork and eComerce.

• Knowledge Web

Knowledge Web promotes greater awareness and faster take-up of Semantic Web

technology with the research activity for extending the capabilities of Semantic Web

to help reduce time which is needed to transfer the technology to industry.

• Semantically-Enabled Knowledge Technologies (SEKT)

SEKT is an integrated project by combining the three core research areas, that is,

ontology management. machine learning, and natural language processing.

• Semantics Utilised for Process management within and between Enter-

prises (SUPER)

SUPER raises Business Process Management (BPM) to the business level from the

IT level of semantics of business experts. It focuses on managing the execution

from a Business expert’s view rather than from a technical perspective.

• Triple Space Communication (TripCom)

TripCom shares with the project of ESSI the approach to add machine-readable

and machine-understanding descriptions to data and processes. It adds a new com-

munication channel to existing efforts that is not covered by current Web Services

technology by providing instant publication in distributed information system with

Semantic Web Services.

Each project with specialized aspects about Semantic Web Services contributes on

building the infrastructure, developing Semantic Web-based knowledge technologies, en-

riching existing Web Services with semantic description and supporting the transition

mechanism of Ontology technology from the Academia to the Industry.

22

2.5.3 EON Architecture

The EON project, section on Stanford Medical Informatics, want to create an architec-

ture consists of a set of software components and interfaces that provides developers a

concrete approach to construct robust decision-support systems that based on ontology

reasoning about guideline-directed care. They implemented the EON architecture by

building three main components, such as the temporal database mediator for handling

requests of time-dependent data from a patient database, the generic and extensible on-

tology for modeling clinical guidelines and protocols, a protocol-based therapy planner,

and a mediator for explaining and visualizing the behavior of other EON components.

Recent years, a practical DSS project called ATHENA uses the EON architecture for

developing guideline-based decision-support systems . An application based on EON

architecture may contain these components described below:

• EON Problem-Solving Modules(Guideline Interpreter) The EON Problem-

Solving Modules consists of many submodules. All problem-solving modules access

a guideline knowledge base consisting of models of clinical guidelines, patient data,

and medical concepts created in and accessed through the Protégé, an ontology

management system. There is a module called EON Guideline Interpreter is re-

sponsible for taking inputs such like standard clinical guideline description from

clients’ queries and relevant patient data from patient database then generating an

output situation-specific recommendations.

• ChronusII Temporal Mediator a temporal database mediator, also called ChronusII,

has been developed that serves as the conduit between the problem-solving modules

and the clinical database which stores significant amount of temporal information,

such as hen a specimen for a laboratory test is obtained and when a prescription

is written and filled. The ChronusII extends the standard relational model and

the SQL query language to support temporal queries and provides an expressive

general-purpose temporal query language that is tuned to the querying requirements

of clinical decision-support systems.

• EON Knowledge Base EON knowledge base includes the EON Guideline Model,

23

which consists of a set of classes and attributes that describe concepts and relations

with which the content of clinical guidelines are formalized The Medical-Concept

Model, which defines the particular clinical interventions that are typical for a given

area of medicine, and the types of patient findings and patient problems that are

most commonly reported in a given medical discipline, and The Patient Data Model,

which defines the classes and attributes of patient information required by the rest

of the system. The EON knowledge base is manipulated through the Protégé editor.

Each project with specialized aspects about Semantic Web Services contributes on

building the infrastructure, developing Semantic Web-based knowledge technologies, en-

riching existing Web Services with semantic description and supporting the transition

mechanism of Ontology technology from the Academia to the Industry.

24

Chapter 3

Preliminaries

From the previous chapter, we not only review recently researches which focus on es-

tablishing related standards and ideas about Web Services and Semantic Web but also

many developing projects which brought academic theories into practical domains. The

Semantic Web enhances the usability and extensibility of Web Services life-cycle on au-

tomatically publishing services, discovering services, and invoking services because they

have defined precise specifications of service descriptions and protocols. Furthermore, the

Knowledge is represented by ontology, which is modeled to express the fact in the certain

domain, is a fundamental task in Semantic Web Services environment. It would be help-

ful for us to understand the academic theories behind this mechanism. Therefore we will

introduce some preliminaries of our thesis in this chapter, such as Description Logics (DL)

[9] for knowledge representation and describing concepts and properties is introduced. In

this section, syntax, semantics, and reasoning feature of DLs is represented briefly. After

that, Web Ontology Language (OWL), which is the communication language between

service components, and Semantic Web Rule Language (SWRL), which defines rules of

relationship between Web Services semantically, is represented. In the end, Web Service

Description Language(WSDL) and Web Services - Business Process Execution Language

(WS-BPEL) are introduced in detail.

3.1 Description Logics

Description Logics (DL) [9] are a well-known family of knowledge representation for-

malisms which represent the knowledge of a domain. The essential elements of DLs are

concepts (unary predicates, classes) and roles (binary relations). Complex concepts can

25

Figure 3.1: Architecture of a knowledge representation system based on Description
Logics.

be defined by assembling atomic ones. With formal and logic-based semantics, reasoning

is an important feature of Description Logics which allows inferring implicit knowledge

from explicit knowledge stored in the knowledge base. In addition, the DL reasoner can

check whether two concepts subsume each other(classify taxonomy). Figure 3.1 shows

the architecture of a knowledge representation system based on Description Logics.

The knowledge representation system consists of a TBox and an ABox. In the TBox,

it first defines the concepts in the application domain (the terminology used in the world)

and then utilizes these concepts to define roles (binary relationship between concepts).

Along with concepts and roles, TBox contains a set of axioms that are used for asserting

relationship among concepts and roles. A concept can be viewed as a set of objects,

which are instances of a certain object class. Therefore, in the ABox, we can assert that

a certain instance (denoted as individual) belongs to the given concept or two individ-

ual have realized the relationship of a certain role. TBox supports reasoning service for

checking subsumption and satisfiability among concepts, while ABox support reasoning

services, such as consistency and instance checking. Both of them are described in De-

scription Language, such as AL ,or the other extensive language. Another feature of the

26

Description Logics knowledge representation system is the emphasis on reasoning as its

core services. Application programs and rules can interact with the systems in various

way. Other applications can interact with the system by querying the Knowledge Base

,and by modifying it by adding and retracting concepts, roles, and assertions. Rules,

which are extensional formalisms that enrich the knowledge base, are another way to

access the DLs knowledge architecture. In the following sections, we list Description

Logics notations, such as concept definitions and roles to represent ontology definitions.

Detailed theoretical explanation can be referred in [9].

3.1.1 Description Logics Syntax and Semantics

Description Logics Syntax Atomic concepts, which are sets of unary predicate sym-

bols that are used to denote, and atomic roles, which are sets of binary predicate symbols

that are used to denote, are basic description elements of Description Logics. Complex

descriptions can be built from them inductively with concept constructors and role con-

structors. In the following abstract notations, the capital letter A stands for an atomic

concept, the capital letter R stands for atomic roles, and the capital letter C and D rep-

resent concept descriptions. The language AL is a minimal and fundamental language

that contains smallest set of concept constructors. Concept description in AL are defined

using the following syntax rules [9]:

C,D −→ A | (atomic concept)

> | (universal concept)

⊥ | (bottom concept)

¬ A | (atomic negation)

C u D | (intersection)

∀ R.C | (value restriction)

∃ R.> (limited existential quantification)

We present an example to illustrate the expressive of AL: suppose that Person and

Female are atomic concepts, then we can define Person u Female to represent Woman,

which means a person who is female. Then Person u ¬Female represents Man, which

means a person who is not a female. In addition, if hasChild is an atomic role, we can say

27

that Person u ∃hasChild.> express a person who has at least a child. Another example

Person u ∃hasChild.(Person u Female) expresses a person whose children are all female.

However, in practical applications and business domains, the AL languages are not

enough for describing cardinality constraints on roles, concrete domains, transitive roles,

inverse roles, role hierarchies and so on. The extended language, such as ALC which

supports full concept negation(C), based on AL with more expressive power is proposed.

A language that supports number restriction(N) is named ALCN while all member of

the AL-family include AL as a sublanguage. Therefore, we use constructors, SHIQ(D),

to describe our application domain. These added constructors include:

=n ≥n ≤n (concrete domain exactly�min�max restriction)

= n R > n R 6 n R (unqualified cardinality exact�atleast�atmost restriction)

= n R.C > n R.C 6 n R.C (qualified cardinality exact�atleast�atmost restriction)

¬C (arbitrary concept negation)

To follow up the example presented before, we show some examples of the constructors.

If Woman ≡ PersonuFemale, we can define Mother concept by Womanu∃hasChild.Person.

Here we can see that Woman and Person are arbitrary concept name. ¬Woman means a

set of individuals that are not women. Moreover, we can use Motheru ≥ 2hasChild and

Motheru ≥ 2hasChild.Female to represent “a mother has 2 children” and “a mother has 2

daughters”.

Description Logics Semantics Here we summarize the Description Logics syntax

and its semantics in the Table 3.1. The language description for each constructor is listed

in column Symbol.

Table 3.1: Description Logics Concept Constructors

Name Syntax Semantic Symbol

Top > ∆I AL
Bottom ⊥ ∅ AL
Intersection C u D CI ∩ DI AL
Union C t D CI ∪ DI U

28

Name Syntax Semantic Symbol

Negation ¬C ∆I \ CI C
Value restriction ∀R.C {a ∈ ∆I | ∀b.(a,b) ∈ RI → b ∈ CI} AL
Existential quant. ∃R.C {a ∈ ∆I | ∃b.(a,b) ∈ RI ∧ b ∈ CI} E
Unqualified ≥ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≥ n}
number ≤ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≤ n} N
restriction = nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |= n}
Qualified ≥ nR.C {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI} |≥ n}
number ≤ nR.C {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI} |≤ n} Q
restriction = nR.C {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI} |= n}

Description Logics Terminologies Terminologies are statements describing the re-

lationship between concepts and concepts or between roles and roles. The terminological

axioms are represented in the following two forms of

• Inclusion Axioms C v D (R v S)

• Equality Axioms C ≡ D (R ≡ S)

where C, D are concept names (and R, S are role names). The first axiom is called

inclusion, while the second one is called equalities.The relative semantics to inclusion

and equalities are defined as follows: an interpretation I satisfies C v D if CI ⊆ DI ,

and it satisfies C ≡ D if CI ≡ DI . All the terminological (TBox) and assertional (ABox)

axioms are listed in Table 3.2.

Table 3.2: Terminological and Assertional Axioms

Name Syntax Semantics

Concept Inclusion C ⊆ D CI v DI

Role Inclusion R v S RI ⊆ SI

Concept Equality C ≡ D CI ≡ DI

Role Equality R ≡ S RI ≡ SI

Concept Assertion C(a) aI ∈ CI

Role Assertion R(a, b) (aI , bI) ∈ RI

29

3.2 OWL

The Web Ontology Language(OWL) [18, 42] is a semantic markup language which is

defined to describe and construct web ontologies. OWL supports greater machine inter-

pretability of Web content. It is derived from the DAML+OIL Ontology language and

is the recommended and standard ontology language in W3C. For the implementation of

Semantic Web, OWL is based on XML and RDF and has ability to represent machine

interpretable and understandable content on Web by providing additional vocabulary

along with a formal semantics. It is written in XML document and defines it own syntax

as a vocabulary extension of RDF. An OWL ontology includes descriptions of class, prop-

erties, and their individuals. Based on the logic-based semantics theory, OWL supports

ontology reasoning.

The OWL currently provides three kinds of sublanguages: OWL-Lite, OWL-DL, and

OWL-Full. OWL-Lite supports those users primarily needing a classification hierarchy

and simple constraints. OWL-DL supports those users who want the maximum expres-

siveness while retaining computational completeness, which means all conclusions are

guaranteed to be computable, and decidability, which means all computations will finish

in finite time. OWL-DL includes all OWL language constructs but they can be used only

under certain restrictions. OWL-DL is based on Description Logics to form the formal

foundation of OWL. OWL-Full is defined for users who want maximum expressiveness

and the syntactic freedom of RDF with no computational guarantees. Since OWL-Full

retain the most expressiveness and freedom on represent OWL, there are no reasoning

software supporting complete reasoning for all features of OWL-Full.

These sublanguages are an extension of its particular simpler predecessor, both in

what can be legally expressed and in what can be validly concluded. Such relationships

between subsets are in the following sets which are not reversibly:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

30

Ontology developers consider which OWL subset they adopt depending on their needs.

The choice between OWL-Lite and OWL-DL is decided by the extent to which users

require the more-expressive constructs provided by OWL-DL, while the choice between

OWL-DL and OWL-Full depends on the extent to which users require the meta-modeling

facilities of RDF Schema. Reasoning support is less predictable when using OWL-Full

since complete OWL-Full implementations do not currently exist.

3.3 Semantic Web Rule Language: SWRL

Semantic Web Rule Language (SWRL) [26] is a rule language, which combines OWL

and RuleML. It extends OWL axioms to support Horn-like rules. Rules are of the form

of an implication between an antecedent (body) and consequent (head), which means

whenever the conditions specified in antecedent holds, the conditions in consequent must

also hold. Besides, an empty antecedent is treated as trivially true, while an empty

consequent is treated as trivially false. For example, we can define a rule which asserts

that the composition of two roles hasParent and hasBrother is hasUncle. This rule can

be represented as the following human readable form:

parent(?x,?y) ∧ brother(?y,?z)−→ uncle(?x,?z)

where ?x,?y,and ?z stand for variables corresponding to individuals in ABox. The overall

abstract syntax of SWRL are listed in Table 3.3

3.3.1 SWRL Editor

To integrate rules with ontologies, a SWRL rule editor called SWRLTab has been embed-

ded into Protégé, which is the most popular OWL-ontology editor. SWRLTab works as

a plug-in of Protégé. It provides a friendly graphical user interface to edit SWRL rules.

Figure 3.2 shows the editing environment of the SWRL editor in Protégé.

The SWRLTab should be visible for all OWL knowledge bases that import the SWRL

ontology 1. The rules are stored as concepts within the same ontology where classes and

properties are defined. Therefore, classes and properties defined in an ontology can be

used directly by SWRL rules. Figure 3.3 shows the relationship between SWRL rules and

1http://www.daml.org/rules/proposal/swrl.owl

31

Table 3.3: Abstract Syntax of SWRL

axiom ::= rule

rule ::= ’Implies(’annotation antecedent consequent’)’

antecedent ::= ’Antecedent(’atom’)’

consequent ::= ’Consequent(’atom’)’

atom ::= description ’(’i-object’)’

| individualvaluedPropertyID ’(’i-object i-object’)’

| datavaluedPropertyID ’(’i-object d-object’)’

| sameAs ’(’i-object i-object’)’

| differentFrom ’(’i-object i-object’)’

i-object ::= i-variable | individualID

d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’URIreference’)’

d-variable ::= ’D-variable(’URIreference’)’

ontologies. Rules can be divided into two parts: head and body. Each part consists of zero

or multiple atoms, which can be ClassAtom, IndividualPropertyAtom or others. Multiple

atoms are treated as a conjunction. ClassAtom can be viewed as an unary predicate and

the predicate name refer to a class name in an ontology; whereas IndividualPropertyAtom

can be viewed as a binary predicate and the predicate name refer to an property name

in the same ontology.

3.4 Quantitative Relations

In the previous section, we’ve introduce the Web Ontology Language (OWL) and Se-

mantic Web Rule Language (SWRL). Although, OWL has been a standardize language

to express ontology in the Semantic Web, it still have some drawbacks considering the

support of concrete domain. Pan et al. [47] pointed out some limitations of current

version OWL.

• It does not support user-defined XML Schema datatypes:e.g., >15

• It does not support negated datatypes:e.g., ¬ >15

• Enumerated datatypes are the only user-defined datatypes supported by OWL.

32

Figure 3.2: The SWRL Editor in Protégé

• We cannot name the enumerated datatypes in OWL.

• There is no n-ary datatype predicates:e.g., +.

• There is no user-defined datatype predicates:e.g., sumNoLargerThan15

From the above, we can see that the current version of OWL lacks support for the

modeling for quantitative relations. For example, it is difficult for us to express the range

of the trip budget in the form of concept expression. Lu [39] proposed an approach for

modeling quantitative relations. The main idea is to transfer a linear inequality problem

into concept subsumption checking. He proposed two methods to deal with such kind of

problem.

In the first method, concrete values and intervals are modeled with four kinds of

concepts. Each concept represents a range with an upper/lower bound and relations

among these ranges can be defined with concept subsumptions. The semantics of these

four kinds of concepts are defined by the following table.

33

Figure 3.3: Relationship between SWRL and Ontology

Table 3.4: Semantics of Quantitative Concepts

Concept Semantics

leqX (−∞,X]

lessThanX (−∞,X)

geqX [X ,∞)

greaterThanX (X ,∞)

Therefore, given a concrete value X , we have the following four types of concepts:

leqX represents ” X and all concrete values less than X”

lessThanX represents ” all concrete values less than X”

geqX represents ” X and all concrete values greater than X”

greaterThanX represents ” all concrete values greater than X”

Given two concrete values X and Y where X < Y , we can define relations among these

four kind of concepts as follows:

lessThanY v leqY

greaterThanY v geqY

leqX v lessThanY

lessThanX v leqY

geqY v greaterThanX

greaterThanY v geqX

34

Based on these concepts and subsumption relationships, we can express all concrete values

between X and Y with ”lessThanX u greaterThanY”. A single point of concrete value

is a special case of interval whose upper bound and lower bound are the same. A concrete

value X can be represented with “leqX u geqX”. Such a method models concrete values

and intervals well, but it cannot define ordinal relations between intervals. Therefore, Lu

proposed a second method.

The second method is used for modeling temporal ordinal relations. Given a rational

number line, we can divide it into equal length ranges called primitive intervals. Temporal

relations between primitive intervals are defined as

t1 < t2 means t1 is before t2

t1 ≤ t2 means t1 is before or the same as t2

t1 > t2 means t1 is after t2

t1 ≥ t2 means t2 is after or the same as t2

Complex intervals consist of primitive intervals. A complex interval T is an interval that

stars form one primitive interval (written as begin(T)) and ends at another primitive

interval (written as end(T)). Temporal relations between two arbitrary intervals T1 and

T2 can be defined as

T1 < T2 means end(T1) < begin(T2)

T1 > T2 means begin(T1) > end(T2)

T1 ≤ T2 means (end(T1) ≤ end(T2)) and (begin(T1) ≤ end(T2))

T1 ≥ T2 means (begin(T1) ≥ begin(T2)) and (begin(T1) ≥ end(T2))

In this method, an interval T are modeled as a concept (written as C(T)) in TBox. If T2

is a sub-interval of T2, it means that C(T2) is a sub-concept of C(T1). Then, he defines

two transitive object property ends before and begins after to express the above temporal

ordinal relations. Their semantics are shown in the following table.

Note that, in the concept hierarchy, if we say an interval C(T1) ends before C(T2)

(represented as C(T1) v ends before.C(T2))and does not overlap C(T2) (represented as

C(T1) u C(T2) v ⊥), C(T1) also ends before all sub-concept of C(T2). Temporal ordinal

relations between two intervals can be checked by the following rules.

35

Table 3.5: Semantics of Quantitative Relations

Concept Expression Semantics

∃ends before.C(T) (−∞, end(T))

∃begins after .C(T) (begin(T),∞)

C(T1) v ∃ends before.C(T2) end(T1) < end(T2)

C(T1) v ∃begins after .C(T2) begin(T1) > begin(T2)

T1 < T2 iff (C(T1) u C(T2) v ⊥) and (C(T1) v ends before.C(T2)) are both true.

iff (C(T1) v (¬C(T2) u ∃ends before.C(T2))) is true.

T1 ≤ T2 iff (C(T1) ≡ C(T2)) is true

or (C(T1) v ∃ends before.C(T2)) and (C(T1) v ∃begins after .C(T2)) are

both true.

or (C(T1) 6v ∃ends before.C(T2)) and (C(T2) 6v ∃ends before.C(T1)) and

(C(T2) v ∃begins after .C(T1)) are all true.

or (C(T1) 6v ∃begins after .C(T2)) and (C(T2) 6v ∃begins after .C(T1)) and

(C(T1) v ∃ends before.C(T2)) are all true.

Lu’s approach models quantitative relations using concepts and object properties. It

has several flaws. For example, in the first method, for every concrete value, it will create

four concepts:leq, lessThan, geq, and greaterThan. Second, it does not allow the user to

specify intervals that are smaller than primitive intervals. For example, if the primitive

interval is set to be one day, then it is impossible for user to describe schedule using hours.

On the other hand, SWRL supports build-ins for dealing with quantitative relations. We

can use the less(X, Y) function provided by SWRL build-in to compare the numeric value

or time interval. Such a numeric value or time interval must be XML Schema datatypes.

However, SWRL rules can be only applied to individuals and cannot be used in the level

of TBox. In our system, we models service descriptions as concept expressions. Therefore,

we adopt Lu’s approach to model value partition and time ontology.

3.5 Web Service Description Language(WSDL)

The WSDL [3] is an XML based document for describing network services in abstract

terms about operating on messages containing concrete data formats and network proto-

36

col. As communication protocols and message formats are standardized in W3C (World

Wide Web Consortium), it becomes increasingly possible and important to be able to

describe the communications in structured way. WSDL defines an XML grammar for

describing services’ specification in order to achieve its needs. Such network connection

used to communicate is standardized with SOAP 1.1, HTTP GET/POST, and MIME.

A WSDL document simply specifies:

• What the Web Services consists of - (types, message, operation)

• How the Web Services is bound to a set of concrete protocol - (binding, port type)

• Where the Web Services are implemented - (port)

Above-mentioned specification is defined with some main elements for automating

the details involved in application communications applied in distributed systems and

services. Details description about these elements is in the following section:

• Types: A Type is a container for data type definitions using some type system,

such as XSD.

• Message: Message is an abstract, typed definition of the data being communicated.

• Operation: Operation defines an abstract description of an action supported by

the service.

• Port Type: Port Type is an abstract set of operations supported by one or more

endpoints.

• Binding: Binding defines a concrete protocol and data format specification for a

particular port type.

• Port: A Port means a single endpoint defined as a combination of a binding and a

network address.

• Service: A Service represents a collection of related endpoints.

However, since WSDL recognizes the need for rich type systems for describing message

formats and supports the XML Schemas specification (XSD), it does not support semantic

description of services.

37

3.6 Web Services Business Process Execution

Language(WS-BPEL)

The Web Services - Business Process Execution Language (WS-BPEL) [7], which is de-

veloped from Business Process Execution Language for Web Services (BPEL4WS) [30, 8]

is a language for describing business processes in Web Services. It is based on WSFL and

XLANG, provided by IBM and Microsoft respectively. Based on Web Service Description

Language (WSDL) 1.1, BPEL-WS is also compatible with other Web Services standards

of XML module definitions, XPath, and WS-Addressing. The goals of the BPEL4WS

specification are as follows [36]:

• Define business processes that interact with external entities through Web Services

operations.

• Define business processes using XML as the basic language.

• Define a set of Web Services orchestration concepts to be used by both external

(abstract) and internal (executable) views of a business process.

• Provide both hierarchical and graph-like control strategies.

• Provide functions for the simple manipulation of data needed to define process

relevant data and control flow.

• Support an identification mechanism for process instances.

• Support the implicit creation and termination of process instances as the basic

lifecycle mechanism.

• Define a long-running transaction model.

• Use Web Services as the model for process decomposition and assembly.

• Build on compatible Web Services standards as much as possible in a composable

and modular manner.

38

WS-BPEL refers to high-level state transition interaction of processes with an Ab-

stract Process, which represents a set of publicly observable behaviors, including informa-

tion like when to wait for messages, when to send messages, when to compensate for failed

transactions, and so on. It also deals with short-lived programmatic behaviors, which are

often executed as a single transaction and invoke access to local logic and resources, such

as files and databases.

Business Process Execution Language for Web Services (BPEL4WS) is still the most

adopted standards for Web Services composition. Essentially, it is comprised of Part-

ner Links, Partner Link Types, Variables, Activities, Correlation Sets, Compensation

Handlers, and Fault Handlers for describing business processes. Partner Links are Web

Services interfaces that facilitate interaction between a business process and partner Web

Services. Partner Link Types define the roles played by the services using the processes’

WSDL. Variables define messages sent and received by partners. Activities can be divided

into two types: Primitive Activities,namely assign, invoke, receive, reply, throw, and wait;

and Structure Activities, including sequence, while, switch, flow and pick. Correlation Sets

are sets of business data fields that capture the state of an interaction. Compensation

Handlers are invoked to perform compensation activities. Fault Handlers are defined to

catch exceptions.

BPEL4WS enables automated Web Services execution and is broadly used for Web

Services composition. However, some shortcomings of BPEL4WS that limit its ability to

provide flexible interoperability are reported in [40, 59]. BPEL4WS is a process-based

language, so that process participants (partners’ Web Services) must be defined and

bound to the process flow during the design stage. The BPEL standard does not support

Semantic Web Services; therefore, partner discovery and binding at run time are not

possible. In [13, 32], the authors discuss some solutions for dynamical composition of

Web Services execution.

3.7 Web 2.0 Technology

The Web 2.0 technology, as outlined in [46], allows for an easier distributed collaboration.

In panel discussion at ISWC 2006, there is an interesting topic, ”The Role of Semantic

39

Web in Web 2.0: Partner or Follower?”. It makes a lot of people start thinking of the

possibility of combining Semantic Web and Web 2.0 technology. Including Tim Berners-

Lee, the World Wide Web inventor, some researchers believe that these two ideas are

complementary rather than competing . The goals of the Semantic Web vision and Web

2.0 are aligned, and each brings it owns strengths into the picture. Semantic Web has

good inference ability, and Web 2.0 technology bridges the user and Web application

with responsive user interface and collaborative mechanism. Web 2.0 is distinguished

from classical web technology by various characteristic features described below:

• Community Web 2.0 pages allow contributors to collaborate and share information

easily. These sites may have an ”Architecture of participation” that encourages the

user to add value to the application as they use it. Each contributor gains more

from the system than he/she puts into it.

• Mashups Mashups combines data from more than one source into a single inte-

grated tool. Certain services from different sites can be pulled together in order to

experience the data in a novel and enhanced way. For example, we could embed

Google Maps in our personal blog to add location information that enriches the

contain of the site.

• Rich User Experience Web 2.0 sites often feature a rich, user-friendly interface

based on AJAX, Flex or similar rich media. Techniques such as AJAX, Adobe

Flash, Flex, Java, and Silverlight have improved the user-experience in browser-

based applications. These technologies allow the user to request an update for

some part of web page’s content, and to alter that part in the browser, without

needing to refresh the whole page at the same time.

AJAX is consider as the technological pillar of the Web 2.0 which allows to create

responsive user interfaces, and thus facilitated both of the other pillars. For instance, the

user likes to use community pages with slick user interfaces, and mashups that incorporate

data from different web sites introduced asynchronous communication for more responsive

pages.

40

Chapter 4

Service Composition and Execution
Based on Semantic Technology

4.1 Overview of Web Services Composition Archi-

tecture Based on Semantic Technology

In the Web Services environment, service providers advertise their services based on

UDDI search mechanism so that service requestors can find their suiting services that

fit their needs. Due to the limitation of keyword-based search, sometimes it is hard to

meet the user’ complicated requirements precisely. While Web Services become mature

in recent years. The division of labor between Web Services is emerging obviously. Web

Services tends to be a composite service which offer value-add and integrated service,

such as a travel agent which provides a integrated trip package, including transportation

tickets, accommodation reservations, admissions for amusement park, to the customer.

Otherwise, discovering and choosing an appropriate provider is usually time-consuming

and error-prone. To increase flexibility and ability, [57] proposed ”a Web Services compo-

sition architecture based on semantic technology” that provides accurate and automated

matching.

In our previous architecture we states earlier, we found some drawbacks from casual

users’ and administrators’ perspectives. Such as the high entrance barrier of Description

Logics for casual users. And the management of ontology controlled by a small group is

not efficient enough. Ontology maintenance need to be more organized so that machines

can use those plentiful and correct ontologies in reasoning tasks to deduce the right

results. In this chapter, we will review the fundamental design of Web Service composition

41

architecture and also illustrate new features to create a better environment for the user

under semantic-based application.

4.1.1 Web Services Composition

Service composition is a solution to a specific problem and combines different Web Ser-

vices into a integrated execution process. From service provides’ perspective, they publish

their services and annotate their services with service description like WSDL, which con-

tains information of how service requestors access the service and what messages format

should service requestors adopt. From the requestors’ perspective, they would like to

discover suitable services to fit their needs and invoke composite service automatically.

So we start to discuss the relationship between providers’ services and requestors’ needs.

We denote the things that service providers release are Advertisements, and requestors’

needs as Requirements.

• Requirements and Advertisements

In general, a complicated requirement comprises different service attributes defined

under Advertisements. With Semantic Web technology, Web Services descrip-

tions are annotated by Web Ontology Language(OWL), and are able to be utilized

for service matching with subsumption checking and composition. To match Re-

quirements and Advertisements, we compare Advertisements’ Web Services

descriptions written in OWL with Requirements in the ontology. We assume that

Web Services descriptions are mapped to ontology in advance.

According to the research [29]. There are some characteristics of Requirements:

– incomplete: Service requestors usually cannot describe their exact needs.

They only mention parts of their requirements. That make a requirement

input by the user is often incomplete.

– ambiguous: Service requestors often do not state their requirements clearly.

They even do not know exactly what they want.

– incrementally evolving: The guidelines help the user state their require-

ments more clearly. With system suggestion, the user is also more involved in

defining his/her requirements.

42

The characteristics of an advertisement are:

– more complete: Advertisements should provide detailed information to ser-

vice requestors.

– clear: Advertisements that the user discovers and invokes should not be am-

biguous. The service description of advertisements should be accurate and

formal.

– interrelated: A package comprised of many advertisements contains more

complicated and rich information, so the advertisements should be correlative.

Beside talking about service composition, requirement decomposition is an another

important process that classifies requestors’ requirements into independently small

pieces of requirements so that they can be matched with small advertisements.

• Requirement decomposition Users’ requirements are usually ambiguous and

comprised of various attributes. We considered those attributes what the user needs

as many criterion for matching. With numbers of criterions, matching mechanism

can be achieved accurately.

In other word, requirement decomposition is a process of extracting the attributes of

requirements into more specific criterions according to different types of attributes.

Take a trip plan requirement as an example, a trip requirement can be decomposed

into many specific criterions according to dates, spot requirements, accommodation

requirements, and so on.

• Service Matching To find appropriate advertisements and fulfill requestors’

requirements, service matching is achieved by examining the subsumption relation-

ship between the requirements and advertisement via Description Logics reasoning

mechanisms. Consequently, the Web Services composition architecture needs a

matchmaker component to handle the service matching process. We will introduce

that in later half of this chapter. It interacts with inference engine and involves in

ontology classification. In [28], the author proposed a service matching algorithm,

43

and we apply his matching approach in our architecture. After service matching,

the matchmaker would response suggested advertisements for the user.

• Synthesized Services In [27], the author indicates that there are two kinds of

aspects of synthesized services: Service Combination and Service Composition. To

compose Web Services, we need to note what kinds of synthesized services we are

handling. Different situations lead to different solutions.

– Service Combination: Service Combination involves combining Web Services

that may be invoked independently without a particular order. It can be

considered as feature matching between services. The features are mapped

to operation semantics composability in the composability model proposed in

[43]. We only check service profiles and match services without considering

any data or control dependencies.

– Service Composition: Service Composition emphasizes the data/control flows

of synthesized services from one service to another in a particular order. It can

be regarded as process matching between services. The process involves bind-

ing composability, operation mode composability, and message composability

in the composability model [43]. Binding composability can check the bind-

ing element in WSDL of the services that we want to compose. Operation

mode composability can check the message dependency of message elements in

WSDL. Message composability can check the types of message parameters in

an advertisement description by WSDL.

• Service Profile and Service Interface In the Web Services architecture, adding

semantic ability helps automatic discovery of accurate services. The goals of com-

bining semantics technologies to Web Services are: to precisely discover desired

Web Services, and to compose a sequence of tasks for a complicated service to ful-

fill requestors’ requirements. Web Services based on Semantic technology achieve

these goals with Service Profiles and Service Interfaces.

The service profile is semantic information about service characteristics, such as

information of service providers and types of the service. Service profiles are ex-

44

pressed in Description Logics that formalize certain ontologies predefined by ser-

vice providers and provide non-functional static descriptions in the Web Services

environment. Therefore, either the service requestors or the service providers can

express their service requirements and service advertisements if we give them the

same abstract service descriptions, which are written in the same sets of ontologies.

Under the same schema of ontologies the service requirements and the suitable

service advertisements can be compared each other and matched then combined

automatically.

Service interface is the other important part of service description. A service inter-

face described in WSDL contains necessary information for invoking Web Services.

Those functional descriptions offer requestors a avenue to access. A WSDL doc-

ument is a standard document that describes how to use the Web Services. It

specifies Web Services connection protocols so requestors can actually invoke the

remote services, and denotes Web Services locations, operation names, input pa-

rameters, and output parameters to help requestors manipulate the services. In a

real-world Semantic-based service environment, these functional properties of the

Web Services are described in the following WSDL elements.

– <definitions>: specifies the WSDL document’s format and its location.

– <message>: specifies the input and output variables of operations in WSDL.

The input variable can refer to requestors’ “Request” parameters of require-

ments and the output variable can refer to the “Response” for the requestors.

– <portType>: defined as a Java class name and its subelement <operation>

is a function that requestors can call.

– <binding>: describes the specific transportation protocols that requestors can

invoke.

– <service>: provides the essential information about how to find the service of

interest and its actual location.

Based on the service description, it is possible to achieve machine-processable con-

tents with meaning for humans and to implement communication between com-

45

ponents in the architecture or between service requestors and service providers.

In addition, automatic Web Services discovery, composition, and invocation are

facilitated with the ability of ontology reasoning

In this thesis, we assume Web Services are sort of service composition because we

care about the order and data/control flows. A more detailed description of the service

composition mechanism based on semantic technology is given in 4.4.2.

4.1.2 Design of Web Services Composition Architecture Based
on Semantic Technology

Based on our previous studies and projects like [60], [27], [5], and [57]. A complete archi-

tecture providing service matchmaking and service invocation was proposed. It accepts

the user’s requirements, discovers suitable Web Services, dynamically assembles existing

Web Services, provides customized services, and invokes these services. At this time we

emphasize on the two parts. First, we strengthen the responsive interaction between the

user and the system by combining web 2.0 technology, trying to make Semantic Web appli-

cations under the architecture easier and more friendly for the user. The second, we bring

the idea of community-driven ontology engineering [41] into our architecture. Ontology

maintenance is not longer controlled by a small group. Though Community Component,

every user could join the community to collaboratively edit ontology. It makes ontology

more flexible and agility to ensure that the concepts in ontology are not obsolete. The

Web Services composition architecture provides automatic service discovery, collection,

composition, and execution. The Web Services composition system consists of six main

components based on the shared and pre-defined ontologies: Service Composer, AJAX

component, Community component, Service Collector/Annotator, Inference Engine, and

Execution Engine. Detailed descriptions are given below:

• Ontologies

Ontologies play an essential role in sharing and exchanging knowledge in the ar-

chitecture of the Semantic Web Services composition. Each component in the ar-

chitecture shares the same ontologies and communicates with other components

by accessing ontologies. The ontologies should be defined generally and flexibly

46

Figure 4.1: Web Services Composition Architecture

for broad and long-term use. Ontology maintenance is a time-consuming and com-

plex job for administrators, especially when the ontologies are maintained by a small

group. Obsolete concepts in Ontologies leads to a wrong deduction that would cause

a huge damage to a reasoning-based system. Therefore, we have to notice whether

Ontologies is consistent with the reality. Besides, there are many constraints need

to be checked periodically to maintain ontologies consistent and correct. It is also

a challenge to handle contiguous constraints, such as value and time.

In addition, designing the ontologies is the fundamental task in our architecture.

Ontologies modeling are wide-vary in different domain applications. We introduce

our detailed ontologies modeling approach in 4.4.

• The Service Collector/Annotator

The task of Service Collector/Annotator is automatically discover Web Services on

the World Wide Web, collect information about service interfaces, and service pro-

files and then store it in the database of our system in order.

The database schemas in the architecture are designed based on the shared ontolo-

47

gies. To match for suiting service, service profiles stored in the database will be

mapped to the ontologies as concept expression. The Service Collector/Annotator

collects two types of information: static information and dynamic information.

Static information is the corresponding WSDL file of the service, including the ser-

vice providers’ name, and the other related information. For example, the flight

schedule in service profile of flight reservation service seldom changes. This infor-

mation can be stored in database as local data as a service description for other

components to use. The static information is updated at mid to long-term period,

say every few weeks or months. In contrast, dynamic information/data, such as

real-time data in providers’ Web pages link, is changed daily or as short notice.

The Service Collector/Annotator collects services from Web Services registries like

UDDI. It also retrieve the data from the Web pages or existing databases of ser-

vice providers. The Service Collector/Annotator parses Web pages and obtains the

necessary data, and maps the service data from the database of service provider

into the shared ontologies in the architecture. Also the Service Collector/Annotator

should handle problems related to the mapping between different ontologies. For

example, if the service providers have different ontology schemas from ours, the

Service Collector/Annotator is responsible for mapping those knowledge into the

same terms of the shared ontologies. The mapping process will not create a new

ontology but import the knowledge from outside into our existing ontology. [14],

[61], and [38] illustrate the detailed mapping process.

In a word, the Service Collector/Annotator attempts to collect static and dynamic

information on the Internet and are designed to handle ontology mapping if the

service profiles are described in the different ontology schema. On receiving a re-

quest from the Service Composer, which is a core component in the architecture,

the Service Collector/Annotator will query the local database for suited service

profile. If the requested data exists, it transforms the data into the format defined

in the shared ontologies and sends it back to the Service Composer. It will trigger

a request to the corresponding service provider for the latest service profiles if the

requested data does not exist.

48

• The Service Composer

The Service Composer plays as a core component in this Web Services composition

system. It is a bridge that connects the customer and the whole architecture of the

system. We define the term ”customers” is those causal users who do not have any

Description Logics background. They want to manipulate the system in a easy way.

And we define another term named ”administrator” who are charged with the on-

tology maintenance. Because different domains have different kinds of requirements

and different business processes. A implementation of Service Composer is designed

for a specific domain. It contains modules that collaborate interaction between com-

ponents in the architecture. Although the implementation of Service Composer is

vary according to different application, but the fundamental architecture of Service

Composer we propose is generally suiting for all kinds of ontology-Based automation

of Web Services composition.

In general, the Service Composer coordinates with the user, AJAX component,

Community component, the Inference Engine, and the Execution Engine. It has

four main subtasks: First, the customer defines their incomplete and ambiguous

requirements by using integrated user interface. The module of Integrated user

interface communicate with AJAX component to converts the customer’s require-

ments into formal semantic language. Second, the Service Composer passes formal

requirements to Matchmaker responsible for communicating the Inference Engine

to find suitable advertisements. Third, Matchmaker return suitable advertisement

to the Service Composer. Then that collaborate with the AJAX component and

covert the formal advertisement described in Description Logics back to graphical

figures that display on integrated user interface. Alternative suggestions are also

displayed according to the ranking similarity.

Customers are able to decide which advertisement satisfies their needs and ask the

system to execute related Web Services behind that. All revelent Web Services

will be packages as the composition Service, which is described by a BPEL4WS

document. Finally, the Service Composer send that document to the Execution

Engine.

49

In addition, through collaboration with Community Engine, the Service Composer

provide the user a open community environment to discuss their requirement and

share their experience about using the system . When the system cannot find a

suiting advertisement for the customer, the customer can publish their unanswered

requirements on the community that suggest the administrator to update related

advertisements in ontologies. Furthermore, administrator could release part of on-

tology on the community. Let every user participate in ontology maintenance,

decreasing maintenance time and making concept in ontologies not obsolete.

• The Inference Engine

The Inference Engine is responsible for interacting with the Service Composer and

matching services through subsumption reasoning based on Description Logics(DLs)

inference. It provides approximately matching services which correspond to the

requirements and helps ensure the dependencies and constraints between individual

requirements. In a word, the Inference Engine has an inference capability to find

suitable services and return them to the customer.

• The Execution Engine

When the Customers decides the service they want, the Service Composer produces

a related process document in terms of service execution and pass it to the Execu-

tion Engine to invoke the composition service. The Execution Engine is responsible

for invoking the composition services correctly and controls the status of the in-

volved Web Services. According the work flows in the process file, which is written

in process language like BPEL4WS, the invocation of the Web Services executes

sequently. If any Web Services fail, the Execution Engine will charge the rollback

of all the executions and also inform the Service Composer a execution failure mes-

sage. If all the Web Services execute successfully and finish, the Execution Engine

will return a successful message to the Service Composer and send it back to the

customer afterwards.

• The AJAX Component

Asynchronous JavaScript and XML, as known as AJAX, is one of the technical

pillar of Web 2.0 technology. AJAX is a group of inter-related web development

50

techniques used for creating interactive web applications .It increases the respon-

siveness and the interactivity of web pages by exchanging small amounts of data

with the server ”behind the scenes.” In addition, it improves the user-experience

in browser-based applications. The AJAX Component adopts AJAX technique so

that entire Semantic Web application do not have to be reloaded each time there

is a need to fetch data from the server. It is intended to increase the system’s

interactivity, speed, functionality and usability.

Therefore, we want to bring that advantage of AJAX into Semantic Web appli-

cations to lower the entrance barriers. The AJAX Component is responsible for

hiding the formal Semantic information and generating a interactive GUI on the

Service Composer. In other word, the AJAX Component encapsulates the com-

plex information which are not proper for the customer and convert it into the

nature language or graphics . While displaying the matching result to the cus-

tomer, it also coverts the suiting advertisement defined in Description Logics back

to human-readable format, such as pictures, videos.

• The Community Component

The Community Component is another great idea we borrow from web 2.0 tech-

nology. Web 2.0 approaches empower the individual to take part in community

activities by lowering the barriers: informal, lightweight, easy-to-use, and easy-to-

understand. The community we’ve seen in web 2.0 pages allows contributors to

collaborate and share information easily. For example, Wikipedia is a community,

there are hundred and thousands volunteer people collaboratively create and main-

tain the knowledge on the Wiki site. In [41], they propose a new collaborative

approach for Ontology Engineering. The Community Component is responsible for

creating a open Wiki-based environment where the user can share their require-

ments and match results. Besides, the customer participates in maintenance a

light-weight ontology though Wiki-based community.

Figure 4.1 shows the Web Services Composition Architecture and how the components

interact with each other.

51

4.2 Service Composer

4.2.1 Design of the Service Composer

In Figure 4.1, the Service Composer plays the central role in the Semantic Web Services

composition architecture. It is also a bridge which connects the user and the system. Be-

cause complicated Semantic languages, such as Description Logics, impose high entrance

barriers for casual users, we decrease information complexity by removing unnecessary

modules from the Service Composer.

Overall, it helps the customer define their complicated requirements, and achieve

their goals by matching advertisements and executing the compound services. In fact,

the Service Composer cannot finish those tasks by itself. A completed procedure of

those task involves many components. As a pivot in the system. The Service Composer

collaborates other component in the architecture.

When customer manipulates the system, the Service Composer communicates with

AJAX component to provide the customer a responsive user interfaces. While the cus-

tomer inputting their requirements, the Service Composer translates the customer’s

ambiguous inputs into detailed and formal semantic descriptions. Before sending re-

quirements to Inference Engine, the Service Composer attempts to decompose the cus-

tomer requirements (a compound task) into many sub-requirements(subtask). A simple

sub-requirement may be satisfied by many different sub-advertisements. And each sub-

advertisement corresponds to certain Web service described by WSDL document. The

task of service composition mechanism and service decomposition are implemented in the

Service Composer component in order increase the accuracy of matching.

After decomposing the customer’s requirement, the Matchmaker in the Service Com-

poser Component calls the Inference Engine to find suitable services by approximate

matching. The subsumption reasoning relationship between description of the require-

ments and advertisements will be checked at matching stage. A list of matched services

with corresponding degrees, which represent the matching similarity between the require-

ments and advertisements, will be returned to the customer. The customer can choose

one set of the matched services and ask the Service Composer to invoke the related Web

Service. Meanwhile, the Execution Module in the Service Composer obtains the WSDL

52

files of the selected services, assembles them into the BPEL file according to the work

flows of the services, compiles the related setting files about the BPEL engine , deploys

them in the Execution Engine, and invokes the BPEL services.

In addition, Service Composer provide the user a open community to discuss their

requirement and share their experience about using the system on their personal pages.

When the system cannot find a suit advertisement for the customer, the customer can

publish their requirement on the community to suggest the administrator to add related

advertisements in ontologies. Furthermore, administrator can release part of ontology

on the community. Let every user participate in ontology maintenance, decreasing the

maintenance time and making concept in ontologies not obsolete.

The whole process and the interaction between components can be described as fol-

lows:

1. The Service Composer helps the customer complete their requirements through a

of series interaction with AJAX component.

2. It transforms the customer’s compound requirements into element requirements and

sends them to the Matchmaker to find matching advertisements.

3. The Matchmaker returns a list of possible matched advertisements sorted by cor-

responding similarity matching degrees.

4. After the the customer chooses his/her desired advertisement package, the Service

Composer will ask Service Execution Module to execute related Web Service.

5. The Service Execution Module transform the abstract descriptions of the selected

advertisements into the executable descriptions, i.e., BPEL4WS files. The BPEL4WS

files are deployed to the Execution Engine and wait to be invoked.

6. When the advertisements are executed successfully, the system sends a message to

the user. In addition, the Service Execution Module has a mechanism to handle

execution failures.

7. The customer can publish the requirement and the advertisement he/she chose on

Wiki-based Community Component, sharing his/her opinions about this system.

53

Figure 4.2: Architecture of the Service Composer

Meanwhile, the customer’s experience may help the administrator improve the in-

adequate ontologies.

4.2.2 Architecture of the Service Composer

Figure 4.2 shows the architecture of the Service Composer. The bold rectangle represents

the scope of the Service Composer. Outside of the bold rectangle are other components

that cooperate with the Service Composer. The components from up to down are the

customer, AJAX Component, the Inference Engine, the Execution Engine, and the Com-

munity Component in the Semantic Web Services composition architecture. We use

arrows to represent the interaction between the components.Detailed definition of the

components inside the bold rectangle are given below.

• Inner Knowledge Base / Ontologies and Rules

Our Knowledge base consists of Ontologies and rules. As we mentioned at previous

54

chapter, ontologies play an essential role in sharing and exchanging knowledge in

the architecture of the Semantic Web Services composition. Each component in the

architecture shares the set of ontologies and communicates with other components

by accessing ontologies. Ontologies are kind of formal representations of knowledge.

Rules used to describe the complicated relationships between roles and we can use

rules to capture the role composition in the ontologies. We use Inner Knowledge

Base for certain functions:(1) data storage: Requirements, advertisements, and

related information are described in OWL which based on DL. (2) With deduction

power of the inference engine like RACER and, reasoning allows us to infer implicitly

represented knowledge from the ontologies.

Because all data flows within the Service Composer are read from the knowledge

base and are written back, the component in the Service Composer can communi-

cate with the inner knowledge base directly or indirectly. (See the arrows in Figure

4.2) When the user input their requirement, they are stored in the inner knowledge

base so that the data can be extracted later when needed.

• Integrated User Interface

The Integrated User Interface mashing up with AJAX component provide the cus-

tomer responsive user interfaces and aid them input their requirements step by step.

It is also responsible for displaying the matched results after service matching. In-

tegrated User Interface encapsulates the complex and formal information which are

not proper for the customer. Integrated User Interface provides error detections

if the customer inputs inappropriate data. Besides, it will invoke the constraint

checker tools to check the consistency of the constraints after the user complete

their requirements. The whole process can be simplified as follows. First, the cus-

tomer sets their requirements by interacting with the AJAX component. Second,

he/she can review and re-edit their requirements. Third, he/she submit the re-

quirements to the Matchmaker to search for suitable advertisements and get the

ranking scores of the advertisements. Finally, the customer can invoke the desired

advertisements from the result list.

The Integrated User Interface plays an important role because it directly interacts

55

with the customer. To lower the entrance barrier of Semantic Web application, we

should put the design of the friendly UI as the first priority.

• AJAX Module

Through cooperating with the AJAX Component and the Integrated User Interface,

AJAX module is responsible for passing the parameters which involve in display-

ing AJAX-based interfaces. While the Integrated User Interface is displaying the

responsive user interface, for instance, a interactive map, AJAX module retrieves

necessary information from the ontology, such as location name, descriptions of lo-

cations. Meanwhile, it continuously listen the interaction events triggered by the

customer’ behavior, such as mouse clicking, mouse trajectory. Through clicking

mouse on the map, the customer input their requirement easily.

• Community Module

Community Module connects the Service Composer and the Community Compo-

nent. After the customer input their requirements and select their desire advertise-

ments, community module publish those requirements and corresponding advertise-

ments to the Community Component. Besides, if the customer input a requirement

that contain some information not in the ontologies, the Community Module will

automatically report to the Community Component.

• Matchmaker

The Matchmaker is a matching module that invokes the Inference Engine to start

reasoning. It acts as a bridge between the Service Composer and the Inference

Engine. We implement the matching algorithm and the approach of computing

similarity degree in this component. The service matching algorithms are tightly

dependent with the domain ontology and are designed for a specific domain or

a specific system. After finding matched services through the reasoning of the

Inference Engine, the Matchmaker returns the desired advertisement lists according

to the similarity degree.

• Service Execution Module

The Service Execution Module provides tools to generate executable processes from

56

abstract service descriptions and templates, and invokes the Execution Engine. It

returns the results from the Execution Engine to the the customer. A more detailed

description of the service execution stage is given in Section

• Knowledge Base Handler

The Knowledge Base Handler handles the all the access of the ontology, including

write-in and read-out. Through the Knowledge Base Handler, every module in the

Service Composer is able to retrieve the data from ontology.

• Dynamic Concept Component

To handle the subsumption between requirements and advertisements, we have

to overcome the subsumption between the numeric concepts. Since the particular

concepts like Time and Value Partition are related to unlimited concepts in the real-

world, those concepts need to be created dynamically as a programming method

that adds automatically time or value concept to the knowledge base while per-

forming reasoning. This innovative approach avoids having large specific concepts

in the inner knowledge base. The system administrator does not have to define and

maintain large concepts manually. That makes ontology reasoning more efficient.

57

4.3 Knowledge Base Management System

4.3.1 Design of the Knowledge Base Management System

The Knowledge Base Management mainly provide the administrator an integrated man-

agement environment to edit and maintain their ontologies. Different from the Service

Composer is dedicated to the customer, the Knowledge Base Management is dedicated to

the administrator. With the Knowledge Base Management, the administrator is able to

maintain ontologies, inference implicit knowledge, an check the correctness of the ontolo-

gies. Recent years, there are several outstanding ontology management system, such as

Protégé, OntoEdit, OilEd. Our architecture adopts Protégé and related plug-ins, which

are used to extend its management ability, as the Knowledge Base Management.

Protégé Axiom Language (PAL) tab-widget provides constraint checkers to examine

different kinds of constraints. according to the needs of the application, the ontology con-

straints are defined by Protégé Axiom Language. We will introduce constraints handling

in detail in section 4.5. In addition, Protégé SWRL tab-widget supports SWRL rules

reasoning which allows implicit knowledge to be inferred by asserting certain rules.

4.3.2 Architecture of the Knowledge Base System

Figure 4.3 shows the architecture of the Knowledge Base System. The bold rectangle

represents the scope of the Knowledge Base System. Outside of the bold rectangle are

other components that cooperate with the Service Composer. We use arrows to represent

the interaction between the components.Detailed definition of the components inside the

bold rectangle are given below.

• Inner Knowledge Base / Ontologies and Rules

The Inner Knowledge Base we define in the Knowledge Base Management System

is the same as the Service Composer’s one. They share the same set of ontologies

and rules. The most different point is the Knowledge Base Management System

manipulates the ontologies by reading and also writing. But the Service Composer

focus on reading rather than writing.

Because all data flows within the Service Composer are read from the knowledge

base, the Knowledge Base Management System has to check the validity of the

58

Figure 4.3: Architecture of the Knowledge Base System

59

ontologies to ensure their consistency by examining the constraints. With the vali-

dation mechanism, case of GIGO(garbage in, garbage out) can be avoided. There

are several related constraint checker tools in the Knowledge Base Management

System to keep the consistency of the knowledge base.

• Integrated User Interface

the Knowledge Base Management System provides an Integrated User Interface

that makes the administrator maintain ontologies in a comfortable and convenient

way. The Integrated User Interface includes all kinds of functions for maintain

including ontologies editing, SWRL rules editing, ontologies inferring, constraints

defining, validation checking, ontologies import/export tools.

• Import / Export Component

The goals of ontologies are defined as common use, sharing, and exchanging in

Semantic environments. The Import/Export component allows different component

not in our architecture, like other application, to exchange ontologies through file

transportation. Outside ontologies can be imported as a plug-in into the inner

knowledge base, and ontologies in the knowledge base can also be exported. The

ontologies are exchanged and combined via the Import/Export Component without

notifying the customer. It is a seamless and flexible mechanism in the service-

oriented approach.

• Translation Tools and Rule Engines

Rules are defined to increase the expressive powers and complement the limited

expressiveness of the ontology language. There are many ongoing efforts to design

rule languages for the Semantic Web. These rules can be defined by the admin-

istrator through the user interface of the Knowledge Base Management System.

They can infer implicit knowledge from the defined rules through a translation tool

that transforms the rules into the specific ontology language according to the rule

engines that enable reasoning. For example, the SWRL rules can be defined with

a SWRL-Tab editor as a Protégé plug-in. We adopts the Jess rule engine as the

Rule Engines that allows implicit composition roles to be inferred by SWRL rules

and stored the new knowledge in the ontologies.

60

• Ontology Edit Tool

The Ontology Edit Tool provide the administrator basic functions to edit their

ontology. The functionality of editing includes addition, remove, and modification

for concepts, roles, and individuals.

• Constraint Check Tools

To ensure the global consistency of the inner knowledge base, the constraint check

tools are designed for examining the correctness of the constraints. The tools han-

dle different kinds of constraints like quantitative constraints and non-quantitative

constraints, we will introduce in detail in section 4.5. Constrain Check tools are

designed to solve the domain problems based on domain ontologies with different

reasoning tools and engines.

61

4.4 Ontology Modeling

Our system is based on Semantic Web technology. Consequently, ontologies play an

important part in the architecture of the Semantic Web Services composition. They

characterizes the non-functional properties of Web Services and Web Services profiles.

To communicate with different components, each component exchange information by

sharing the same set of ontologies in the architecture. In this section, we attempt to

illustrates the approach of ontology modeling.

TBOX Modeling and ABOX Modeling

An ontology is a formalization of concepts in a specific domain. They are essential for

knowledge reusing, exchanging, and sharing. An ontology contains two parts. The first

part, called TBox, is to define terminologies with concepts (or classes) and the terminol-

ogy taxonomy using concepts (or classes) and subconcepts (or subclasses) relationship.

Besides, it defines properties (or roles) to describe the relationship between concepts.

The second part, called ABox, is to assert individuals (or instances) corresponding to the

previous defined concepts in the first part.

Because ontology languages are based on Description Logics (DLs), we can facilitate

subsumption reasoning based on the inference theorems of DLs. Therefore, we adopt

concepts expression to represent the requirements and advertisements.

Ontology language modeling involves TBox modeling and ABox modeling. The con-

cepts and roles refer to TBox modeling, which defines a concept hierarchy and also the

relationships between concepts, and the individuals refer to ABox modeling.

TBox conceptual modeling supports subsumption reasoning so that the similarity

degree between requirements and advertisements can be inferred. During the concept

modeling phase, concepts and roles are constructed to describe the requirements and

advertisements. Using inference engines, such as Racer, to match the requirements with

advertisements.

System-Specific and Common Ontologies

In Semantic-based Web Services composition architecture, ontologies are divided into

two types. The first one is system-specific ontologies, which are for specific domains.

62

For example, in the implementation of our system, the Traveller, we took tourism as our

specific domain. System-specific ontologies supports the definition of the requirements

and the advertisements and also supports the operations about matching scheme. We

will attempt to illustrate the Design of the Ontologies of the requirements and the ad-

vertisements in 4.6). System-specific ontologies have to concern about handling common

constraints and checking global constraints. And also it collaborates with SWRL rules

for capturing the complicated relationships between properties in the ontologies.

The other type of ontologies, common ontologies, contain domain-independent knowl-

edge which can support system-specific ontologies. For example, in the tourism domain,

when a new trip requirement is created, it will be stored at system-specific ontologies.

But a trip requirement contain other related concepts about the trip such as time, value,

locations, those domain-independent information is stored at common ontologies. Be-

cause of the independent characteristic of common ontologies, they can be imported from

other ontologies providers or share them with other applications.

There are several ontology languages that have a trade-off between expressive pow-

ers and computing complexities. The choice of what ontology need to be implemented

depends on the needs of the application types and the computing ability of inferencing.

Design of Ontology - Requirement and Advertisement

The ontology design for the Service Composer, which are used to store the user’s require-

ments and the service providers’ advertisements in the Semantic-based service compo-

sition architecture is the most important part. It is also closely related to the service

matching approach.

Based on [27], each requirement is defined as a concept (or a class). We use the same

concepts scheme to model advertisements so that requirements and advertisements can

be matched easily for their subsumption relationships. In ontology modeling, the user’s

requirements and service providers’ advertisements are regarded as concepts. Because of

the inference limitation of SWRL rules for capturing the implicit relationships, we define

an individual as a realized instance to represent the corresponding concept.

A composite service, which combines many desired services in a specific order, needs

to be represented in the ontology. As we state previously, the Service Composer can

63

decompose the user’s requirement into many sub-requirements. We regard those sub-

requirements as many sub-concepts in the concept hierarchy of system-specific ontologies.

Figure 4.4 shows the TBox approach modeling.

Figure 4.4: Requirement Modelling - The TBox Approach

In Figure 4.4, the root class Requirement has two subclasses: General Require-

ment, which defines the customer’s requirements, and Element Requirement, which

defines element requirements of General Requirement. The Element Requirement

has several subclasses that represent different types of element requirements, such as Ele-

ment Type1 Requirement and Element Type2 Requirement. The General Re-

quirement has properties, such as hasElement Type1, and the range of each object-

type property depends on its type class. Figure 4.5 shows an example of a complete

requirement, which is composed of two general requirements MyReq 1 and MyReq 2.

64

Figure 4.5: Requirement Example - The TBox Approach

MyReq 1 and MyReq 2 are subclasses of General Requirement connected by

the object-type property next inherited from super class Requirement, which next

represents the order of the element requirements. MyReq 2 contains two element re-

quirements: Element Type1Req 1 and Element Type2Req 1. Each element re-

quirement is a subclass of the respective type element requirements. Besides, MyReq 2

correspond to a individual, ind MyReq 2, to represent the class for SWRL rule rea-

soning. Advertisement, which defines providers’ advertisements of Web Services, is

designed by the same approach as Requirement. We can find the same class hierarchy

of Requirement and Advertisement defined in the system-specific ontology, shown

in Figure 4.6. The figure also shows the common ontology including Location, Time,

and ValuePartition, which describes the domain-independent information in concepts

to support the tourism domain ontology. For example, Location defines tourism location

in concepts, Time defines the measurement unit of time in concepts and ValueParti-

tion defines those values or numbers in concept such as, budget. Section 4.5 contains

more detailed descriptions of design Time and ValuePartition. Figure 4.7 presents an

example of the subsumption reasoning and the result.

65

Figure 4.6: Ontology Design of the Architecture - Requirement, Advertisement and
Common Ontology

66

Figure 4.7: Example of Subsumption Reasoning

4.4.1 Service Composition Mechanism

Since Web Services technologies become maturing and convenient, we start to compose

many services together to complete a complicated task. Therefore, we need to concern

about the execution order of the services. Different orders may lead to different conse-

quences.

Based on the Inference rule of Hoare Logic [Hoare 1969], the Sequence rule is the

essential aspect of the composition. However, few studies express the rule in detail.

{P}S1{Q} {Q}S2{R}
{P}S1; S2{R}

(Sequence)

In [9], DL supports the composition of relationships to define concepts and roles.

If these assembled services are independent without involving interaction each other, it

67

is very easy to handle them. Just executing them in any order. However, if there are sev-

eral interactions between these composed services, then the composability of the services

should be considered [43]. [43] proposes a composability model to check whether com-

ponent services are composable [10]. The composability model for Web Services consists

of six parts: binding composability, which compares the binding protocols of interacting

services; operation mode composability, which compares operation modes including noti-

fication, one-way, solicit-response, and request-response; messages composability, which

compares the numbers of message parameters, data types, business roles, and units;

operation semantics composability, which compares the semantics of service operations;

qualitative composability, compares the qualitative properties of Web services; compo-

sition soundness, which checks if the combination of Web Services in a specific way is

worthwhile.

According our previous research [57], the Semantic-basd service composition architec-

ture focuses on service composition and emphasizes the data/control flows of synthesized

services from one service to another in a particular order. When the desired Web Services

are composed to a service, the composability of the services should be considered. We pick

four principles from the composability model. The binding composability can be taken

as checking binding element in WSDL of two composed services. The operation mode

composability can be seen as checking the message dependency of portType in WSDL

of the two composed services. The message composability can be examined by message

types in WSDL of the two composed services. The operation semantics composability of

the two composed services should be checked using the service description in OWL.

Besides, in the Semantic Web Services composition architecture, services are composed

by checking the composability and extending the aspects of the Sequence. A requirement

is composed of many element requirements. An advertisement is also composed of many

element advertisements. When the Service Composer wants to compose the element

requirements, it has to check the composability of the related element requirements first.

The next object property in the ontology model (Figure 4.6) represents the composition

and also expresses the order of the involved requirements.

68

4.4.2 Service Execution Based on Semantic Technology

In the Semantic-based service composition architecture, services are invoked in the same

way as in the Web Services environment. Those Web Services annotated with semantic

can be invoked through SOAP messages or other appropriate protocols. However, we

take advantage of invoking more accurate services because these services are matched

and selected according to the customer’s requirements and preferences. The invocation

sequence of the services is also important in the architecture. The composite services

are assembled as BPEL according to the business policy and the execution order. The

service execution based on Semantic technologies in the architecture has to implement

the fault tolerance. For example, alternative services will be selected to substitute the

failure service in the service matching stage [21].

4.5 Constraint Handling

In the Semantic-based service composition architecture, constraints are used to repre-

sent the respective conditions of requirements and advertisements. For example, we use

constraints to restrict some requirements’ and advertisements’ attributes, such as time

and cost. Constraints are also applied to Web Services selection in the QoS architec-

ture and can be divided into two types: global constraints and local constraints [6]. In

[62], the Semantic and dynamic service selection framework contains a Constraint Ana-

lyzer to analyze the characteristics of the constraints and handle them via appropriate

approaches.

Checking constraints ensures the consistency of the knowledge base including the

common ontologies and the domain-specific ontologies. Different types of constraints are

checked by different approaches. In addition, specifying a number constraint in a specific

range is a frequent task. We adopt value partition approach to subsumption checking

for the comparison between two numbers. For instance, we want a certain number in

ontology lower than a threshold. Our system adopts this kind of range constraint to

restrict common ontologies like time and value partition.

Sometimes, those constraints with subsumption cannot be a effective restriction be-

cause of concept hierarchies design. In this case, we have to implement additional val-

69

idation in programs. However, using programs is not a good solution because it is lack

of flexibility. That means those constraints will be bundled with a specific domain, of a

specific system.

Next, we summarize the classification of constraints and the solutions for handling

them. The common ontologies of time and value partition are detailed in subsequent

sections.

4.5.1 Constraints

According to the framework in [62], constraints are basically divided into two types:

quantitative constraints and non-quantitative constraints. Quantitative constraints

are constraints that can manipulate the four fundamental arithmetic operations. For ex-

ample, the total price of an trip order must be the sum of all trip prices. We can say

total price has quantitative constraints that it must be equivalent to sum of all trips. In

contrast, non-quantitative constraints use to restrict those features which do not support

arithmetic operations. For example, if a trip consists of three-day itineraries, one of the

feature of the trip, the first day of the trip must be the same as the start date of first

itinerary.

Exception for the categories of quantitative or non-quantitative, constraints can be

particularly divided into binary relationships and global relationships. A binary relation-

ship means that the constraint relationship only involves two different features, such as

checking if start date of a trip is before the end date of a trip. Constraints of binary rela-

tion compares two features to decide whether the concepts are consistent in the ontology.

We often adopts subsumption approach in binary relation comparison. That’s why we

need to dynamically construct the concept hierarchy for time and value. Different from

binary relationship, global relationships involve more than two features, such as checking

whether the total budgets of a trip is equivalent to the total sum of all itineraries. As

far as we know, it is impossible to express the subsumption relationship between more

than three concepts in OWL ontology modeling. Therefore, we must find another ap-

proach rather than subsumption approach. When handling global constraints, we define

SWRL rules to solve non-quantitative constraints or use a program to solve quantitative

constraints.

70

Figure 4.8: The Classification of Constraints

Based on the quantitative types and the constraint relationships, we classify con-

straints and propose a solution about constraint handling beyond the approaches in

[62, 39, 6]. Figure 4.8 shows the classification of constraints.

4.5.2 Time Constraint

It is controversial to judge that Time belongs to a quantitative constraint or a non-

quantitative constraint According to the time temporal concepts defined in [1], the Time

duration has quantitative attributes that can be taken as quantitative constraints. For

example, if it takes one hour and fifteen minutes from Taipei City to Hsinchu City by

train, the value of the time unit, hour, can accumulate with another time duration,

minute.

In the Semantic Web Services architecture, we simplify the unit of the Time constraint

and we only consider one kind of time unit, date. A date consists of months, days, and

years. We adopt the approach proposed by [39] to handle time and value partition

that dynamically construct value concept in the value concept hierarchy for subsumption

reasoning. There are before and after relationships between the dates of Time concepts

in the Time ontology. Through checking the subsumption relationships between different

Time concepts we can decide the sequence of the time and apply that in our domain

71

application.

During dynamical concepts constructing, the needed time concepts and also the nec-

essary relationships are added to the knowledge base. However, this approach [39] for

handling time wastes space in the knowledge base and reduces the inference efficiency as

time goes on.

4.5.3 Value Partition

In Figure 4.8, if we want to handle the binary relationship between two quantitative fea-

tures, we define the concept hierarchy of the quantitative constraints. To make subsump-

tion checking, those quantitative concepts are constructed dynamically as object-type

concepts. In the Semantic-based service composition architecture, we apply the Value

Partition ontology proposed in [39]. The Value Partition approach uses subsumption re-

lationship to express the comparison of amounts. By checking subsumption, system can

inference which quantitative value is greater or less than the other.

Figure 4.9 shows the Value Partition Ontology.

Figure 4.9: The ValuePartition Ontology

72

4.6 Ontology Maintenance

Ontology maintenance is an important issue in Semantic Web Applications. To correctly

represent and reflect the real world, concepts in Ontologies need constant updates and

maintenances. But it is a time-consuming job for those ontologies administrators. Be-

cause most existing editing tools like Protégé are stand alone desktop applications which

lacks of collaborative work. Besides, involving ontology engineering specialist is very

expensive, most of ontology maintenance in current Semantic Web Applications are con-

trolled by a small group of people. Through this traditional maintenance approach, a

small group constructs the ontology for a bigger group has several drawbacks [41]. First,

the addition or update for new concepts can be time-consuming and lack of completion.

For example, missing concepts cannot be added by any user who reveals the need for

a new concept, but has to be added by the small group of creators. Second, the on-

tology creators read the concept in the different manner from how the potential user

does. Despite a formal language like Description Logics can precisely grasp the meaning

of concepts, ontologies creator may misunderstand the meaning of needed concept that

described in natural language by potential users. It leads to the problem that the cre-

ator add the unnecessary concepts to the ontologies. Sometimes concepts are becoming

obsolete by the time they enter the ontologies.

Therefore, the managements of ontology need to be more efficient and more organized

so that machines can use those plentiful and correct ontologies in reasoning tasks to

deduce the right results. In the long run, ontology maintenance cannot rely on small

groups. It should be collaborative task that everyone who use the system can participate

in ontology maintenance.

4.6.1 Wiki-supported Ontology Engineering

Ontology Engineering is usually not supposed to be a one-time activity of an expert

committee, but rather a sustainable process of continuous evolution [53]. That means

the traditional maintenance approach, controlled by small group, are not flexible and

agile enough for current Semantic Web applications.

[41] provides another approach to ontology maintenance. They borrow the idea of

73

community from Web 2.0 era. Using Wiki as a platform where everyone can share in-

formation and collaboratively maintain ontologies. Different from the traditional main-

tenance approach, missing concepts can be added by any user who reveals the need for

a new concept, it decrease the duration of addition and make maintenance process more

efficient.

Wiki is a popular knowledge management tool widely adopted on the Internet. The

basic idea is to use a Wiki as a mechanism to:

• Concepts Creation

Any user can create an URI for any needed concept.

• Concepts Annotation

Users can describe the concept using natural language and probably multimedia

elements such as, pictures, videos, rather than the formal and complexity Logic

language. Even Potential users can understand the meaning of concepts.

• Concepts Refinement

Wiki technology provides comprehensive version control and edit tools. Refining

and modifying the definition of concepts cab be convenient for the user.

• Collaborative maintenance

Ontologies administrators can release a part of ontologies to Wiki. Give the user

more power to modify and refine ontologies.

In [41]], they show that standard Wiki technology can be easily used as an ontology

development environment for named classes. It supports the user’s participation in the

creation and maintenance of lightweight ontologies. And also they prove that the URIs of

Wikipedia entries are surprisingly reliable identifiers for ontology concepts. In Semantic-

based Web Services composition architecture, we add the a new component based on

Wiki, called Community Component. In addition, we proposed a complete Ontology

Maintenance Procedure to support ontology maintenance. We believe that will increase

the efficient of maintenance in a long run.

74

4.6.2 The Model of Ontology Maturing

In [41] and [52], they have made some observations about how new ideas develop in the

contexts of knowledge management. In [41], this development process was divided into

five abstract phases as the so-called knowledge maturing process. This process is viewed

as a macro model for interconnected individual learning processes. Detailed definition of

the process are list sequentially below.

• Emergence of Ideas

Emergence of Ideas is the first step in the knowledge maturing process. In this

initial transition, new concept ideas are introduced which are informal and not

well-defined. Most of the time, they are personal expression which are informally

communicated and typically represented by tags. Accordingly, we introduce a new

tag or correct the existing one without further reflecting.

• Consolidation in Communities

The second part of knowledge maturing process is called Consolidation in Com-

munities. Through reuse and adaption of concept symbols, a shared vocabulary

emerges within a community. When comparing currently envisioned concepts with

previously used ones, we discover similarities and differences that allow for creating

concepts or accepting existing concepts. In this stage, the cognition from people in

communities will gradually consolidate the new concepts idea or just refuse them.

But these preliminary concepts are still without formal semantics.

• Formalization

Within the third phase, new concepts are organized into hierarchical construction

or other taxonomies. For instance, we need the hierarchy for subsumption infer-

ence. Subsumption inference we applied in our system is based on the subconcept

relations. In formalization stage, we have to decide that the new concepts, such

as new location, a new tourism spot, or a new advertisement, belongs to which

super-concept(categories) in ontologies.

• Axiomatization

The last phase of knowledge maturing process captures more domain semantics

75

by adding background knowledge for improving inferencing processes. This step

requires a high level of competence in logical formalism, such as Description Log-

ics. Therefore, this can usually only be carried out by domain experts or system

administrators.

According to the model of knowledge maturing process, we believe Wiki-based com-

munity efficiently support the first two phases of the knowledge maturing process. So

that we add Wiki community component to our system. Through collaboratively editing

feather of Wiki, every user is able to publish a new concepts ideas. Everyone in the

community will notice the emergence of those new ideas. They can discuss and compare

new ideas with others. Gradually, the new concepts are consolidated by those people who

involve in the community. In addition, Wiki-based community give the system adminis-

trator an effective suggestion that what concepts should be update in the ontologies. That

makes the maintenance of the ontologies faster and flexible. Up-to-date concepts can be

add to the ontologies immediately. We will introduce the ontology maintain procedure

in detail at next section.

4.6.3 Wiki Community Component and Ontology Maintain Pro-
cedure

Wiki Community Component is one of the new components in Semantic-based Web

Services composition architecture. We borrow this idea from web 2.0 technology to

empower the individual to take part in community activities by lowering the barriers.

It is responsible for creating a open Wiki-based environment which allow the customer to

contribute their requirements and corresponding match results and to tap the collective

intelligence of a community. Most importantly, Customers are able to participate in light-

weight ontology maintenance through Wiki-based editing tools. Our Wiki Community

Component indirectly help the administrator to maintain ontologies. In other word, it

summary the administrator a guidance from the customer’ preliminary concept creation.

To collaboratively maintain the ontologies, we proposed an Ontology maintenance

Procedure. That maintenance procedure was divided into five phases. Detailed definition

of the procedures are list sequentially below.

76

• Ontology Meta Model Definition

At this first phase, the administrator has to define an ontology meta model suitable

for a large audience. Our principle for meta model is less complicated is better.

Many ontologies have a subsumption hierarchy that allows to infer implicit class

membership, but this is not mandatory to show the whole ontologies to the cus-

tomer, especially to those users who do not have any logical formalism background.

With simplifying the existing ontology to light-weight ontology, the customer can

easily understand the structure of ontology and participate actively.

• Light-weight Ontology Release

Within the second phase, the administrator releases the simplified ontology to Wiki-

based Community Component. The scheme of simplified ontology are consistent

with the meta model defined at previous phase. Light-weight ontologies released

on the Wiki can be annotated with nature language, pictures, videos, or other

multimedia elements. For a large participators, these easy-to-understand, media-

rich, Wiki-based user interface lower entrance barriers of collaborative ontology

engineering.

• Preliminary Concepts Creation and Modification

During the third phase, through Wiki platform, the customer freely modifies ex-

isting concept or creates new concepts according with the released ontology meta

model.

• Preliminary Concepts Consolidation

The forth part of ontology maintain procedure is a evolution process that needs

participators to accept or reject the preliminary concept idea through continuously

reuse and adaption of concept symbols. If they are tend to have a common cognition

toward the new concepts, those new concept ideas will be gradually consolidated

and be well formed. For instance, those stable concepts in Wiki are rarely modified

by others because participators accepted the current definition. In contrast, the

controversial concepts are always have many different version in history log.

• Ontology Update

77

The last phase, Ontology Update, which has to involve the administrator to up-

date the ontology directly through manipulating KBMS, such as Protégé. The

Wiki Community Component indirectly provide the administrator a guidance that

suggest what concepts should be updated or created. With Wiki Community Com-

ponent and the user’s participation, ontology maintenance becomes more effective.

78

4.7 Service Execution

4.7.1 Design of the Service Execution Module

The Service Execution Module in the Service Composer is activated when the customer

chooses matched services to execute them. It handles the execution part of the architec-

ture and is the bridge between the Integrated User Interface and the Execution Engine.

After the user choose one of the desired services and ask the Service Composer to invoke

it, the related information about the services is sent to the Service Execution Module.

That contain several component: the WS-BPEL File Handler, the WS-BPEL Template

Pool, the WS-BPEL Generator, and the Execution Engine Invoker. At first, the WS-

BPEL File Handler starts to yield a WS-BPEL file using the WS-BPEL Generator. The

WSDL Parser in the WS-BPEL Generator obtains related WSDL files from the Internet

and extracts the necessary information and parameters. The WS-BPEL Generator ob-

tains the template (Abstract Process) from the WS-BPEL Template Pool and combine

with WSDL files into the BPEL file (Executable Process). Finally, the WS-BPEL File

Handler then deploys the BPEL file to Execution Engine.

The Service Execution Module interacts with the Execution Engine and returns mes-

sages about the execution status to the Service Composer. The messages, which will be

displayed in the Integrated User Interface, should be clear and detailed. If any incidents

occur, the Service Execution Module is responsible for handling them.

4.7.2 Architecture of the Service Execution Module

• WS-BPEL File Handler

The WS-BPEL File Handler is responsible for communicating with the Integrated

User Interface, handling the BPEL related files, and deploying the BPEL files to the

Service Engine. It receives the desired service lists from the user and collects respec-

tive service descriptions from the Internet. After it asks the WS-BPEL Generator

to generate the executable processes of WS-BPEL, it sets the related configurations

of the Execution Engine and deploys these files (WS-BPEL files and the Execution

Engine setting) to the Execution Engine. If there were errors in the BPEL File

Handling stage, the WS-BPEL File Handler sends corresponding messages to the

79

Integrated User Interface to notify the user.

• WS-BPEL Template Pool

The WS-BPEL Template Pool stores the BPEL templates, which are designed

by the system administrator. According to different processes and interaction of

services, different BPEL templates are pre-defined using the existing application

for creating BPEL processes. These templates are stored as abstract processes and

can be transformed to executable processes by adding related parameters. They

can be reused to meet the defined composition processes as needed by the invoked

services..

• WS-BPEL Generator

The WS-BPEL Generator is responsible for generating WS-BPEL files according

to the selected templates and related WSDL files. It produces the executable pro-

cesses from the BPEL template (abstract processes) by adding related parameters

extracted from the WSDL files. It uses the WSDL Parser to parse the WSDL files

and get the parameters needed for the BPEL files. After it finishes generating the

WS-BPEL files, it returns them to the WS-BPEL File Handler.

• Execution Engine Invoker

The Execution Engine Invoker acts as a bridge between the Service Composer and

the Execution Engine when the user want to invoke services. After the WS-BPEL

files are deployed by the WS-BPEL File Handler, the Execution Engine Invoker is

responsible for invoking the desired services. If the services are invoked successfully,

it sends messages to the user. However, if any Web Services fail, the Execution

Engine will rollback all the executions it has done so far and send the Execution

Engine Invoker an execution failure message.

Otherwise, the Execution Engine must be bundled into a Web application server.

It can provide execution logs via the Web pages so that the system administrator and

the user can trace the execution status of the services according to the processes of the

WS-BPEL.

80

Figure 4.10: Architecture of the Service Execution Module

4.7.3 Development of the Business Process Execution Language

In the service execution stage, BPEL files are generated by the Service Execution Module

in the Service Composer. We adopt the methodology for development of Web Service-

based Business Processes proposed in [31], and simplify the process to meet the essential

needs of the Semantic-based Web Services composition architecture. In Figure 4.11, the

service execution involves two stages: the Build Time and the Run Time. The Build

Time refers to the procedure of defining the WS-workflows with the desired characteristics

and related settings in the Execution Engine. It involves in three phases: Preprocessing,

WS-BPEL Process Generation, and WS-BPEL Deployment. The Run Time

refers to the actual Service Execution and Post-run Time, which monitors the status

of the Execution Engine. The detailed functions are as follows:

• Preprocessing

In the Perprocessing stage, the agents or the system administrators should partici-

pate in and define BPEL templates according to their needs or business processes.

81

Templates can represent collections of activities that implement composition pat-

terns and activities with specific features. The system administrators can use ex-

isting BPEL related tools like Active-BPEL Designer to define the processes. They

make an abstract process definition and store it in the template pool.

• WS-BPEL Process Generation

In the architecture of the Service Execution Module, when the customer selects a

suggested advertisement package to invoke, the Service Composer sends a request

to the WS-BPEL Generator to process BPEL4WS files. In the WS-BPEL Process

Generation stage, the process definition program representation is generated. Af-

ter collecting the related WSDL files of the advertisements from the Internet, the

selected template (abstract process) is combined with the related parameters and

definitions, and a BPEL file (executable process) is generated. Besides, the related

files about the Execution Engine are made in this stage.

• WS-BPEL Deployment

When all the BPEL files and the setting files about the Execution Engine are

completed, they are packaged and deployed to the Execution Engine by the WS-

BPEL Deployment. The deployed BPEL files become a service process in the

Execution Engine and ready to be called.

• Service Execution

Service Execution executes the deployed processes according to the execution order

scheduled by the process control flow. During executing, data is exchanged between

processes and the invoked Web services.

• Post-run Time

It would be useful to gather the status information of the execution during run

time. In this stage, the system administrators monitor the execution, analyze the

process logic, and configure it by checking the status information.

The BPEL life-cycle provides a semi-automatic development process for BPEL. Humans

only have to participate in the first stage, Preprocessing, because business logics and

process flows should be defined by the user. The rest of stages in BPEL life-cycle can

82

be implemented automatically. The process model can shorten the development time of

processes and also hide the complexity from the developers because humans do not need

to join every stage. In addition, the model provides flexibility by postponing the choice

of a language for the definition and by deferring the binding to the specific Web Services

to the latest possible time.

Service composition correlates highly with service execution because the order of com-

posed services is considered as the same as the order of service execution. The information

of the service composition details what services participate in the process and the cor-

rect execution order. In [63], the authors note that there are many types of the service

composition, such as sequential service composition, sequential alternative composition,

parallel with results synchronization, and parallel alternative composition. Sequential

service composition means that the execution of a constituent service is dependant on

its preceding service. Sequential alternative composition means that alternative services

could be part of the composition. Every alternative will be attempted until anyone service

succeeds. The parallel with results synchronization means that the constituent services

can run concurrently. However, the results of their execution need to be combined. The

parallel alternative composition means that alternative services are pursued in parallel

until one service is chosen. Each of them is classified by the flows of involved services.

Based on the Semantic technologies, the service composition will be accurately com-

posed by matching with the customer’s requirements. Furthermore, Sematic technologies

support Web Services with providing accurate suggestions to dynamically and automat-

ically invoke the services. Besides, different orders of service execution are designed

according to the customer’s needs and business process logic.

83

Figure 4.11: Life-cycle of the Business Process Execution Language

84

Chapter 5

Implementation - The Traveller

5.1 The System Design

To validate the Semantic-based service composition architecture described in the previous

section 4.1.2, we have implemented a prototype system for the tourism domain, called

The Traveller, as a web application based on existing Web Services ,sematic web, and

Web 2.0 technologies. The Traveller obeyed the service composition architecture that

contains each essential components we introduced in previous chapter. The reason why

we chose the tourism industry domain to be our analytic target is that the relation-

ship between the customer’s trip requirements and the providers’ trip advertisements is

conspicuous for observation.

In general, the Traveller provides an integrated tourism service that includes the

customer’s requirement defining, approximate matching, service invocation. Through

mouse clicking in the browsers, the customer can define the requirements and match for

suitable Web Services.

The Traveller was originally designed in [27], which was implemented as a plug-in

application in the Protégé, a well-developed ontology management system developed by

Stanford Medical Informatics at the Stanford University School of Medicine1. However,

as a Protégé plug-in there is a big problems that is those ontology tools and ontology

languages impose high entrance barriers for potential users. While using previous system,

the customer often had information-overload problem. So that we decide to divide the

system view into customers’ perspective and administrators’ perspective. At this time,

1http://Protege.stanford.edu/

85

http://Protege.stanford.edu/

we have a lot of improvement on providing a friendly system interface and encapsulating

complex semantic language into figures and pictures which are easy to be understand

by the customer. To achieve that, we spent a lot of time on transplanting our system

from Protégé to a open J2EE web application. Being a web application, the customer

do not have to install Protégé or related plug-in modules, such as SWRL tab-widget,

Protégé Axiom Language (PAL) tab-widget, and Racer inference engine. All they need

is a accessible Internet and a browser. With combining different plug-ins, Protégé play

an important role of being a useful management tools for administrators. That contains

1) SWRL tab-widget with the JESS rule engine, which is used to define SWRL rules

and examine role relationships between individuals in the ontologies; and 2) the Protégé

Axiom Language (PAL) tab-widget, which helps the global constraint checker analyze

the integrity constraints.

To demonstrate our system, we take a scenario in the tourism domain as an assumptive

example. That is a customer wants to plan a trip for two days from Taipei to Nantou in

Taiwan. We assume that he/she does not know what exactly places to visit or which hotel

to accommodate. As a Semantic Web application, the Traveller, can aid the customer plan

their trips. The Traveller adopts Google Maps API as the AJAX interface, that help the

customer indicate their starting point and destination by putting the flag on the Google

Maps. With stating point and destination, a basic trip requirement is initialized. Also the

customer could input detailed information more than locations, such as the customer’s

budgets, date, numbers of people, and spots which they want to visit. The Traveller guides

the customer to fill-in necessary information step-by-step. If input data are inconsistent

with what we expect, such as data type mismatch, a warning window will jump out that

remind the customer to correct their inputs. After completing requirements, the Traveller

translates the requirements into formal logic language at the back-end. Subsequently, it

starts making exactly or approximately matching services according to the customer’s

preferences. Finally, the matched result will be returned, the customer can make a

decision to invoke the Web Services on the result list such as flight booking services and

hotel reservations.

Based on the above scenario, there are the four stages in the Semantic Web Services

composition architecture, which we describe bellows:

86

• The system collects the advertisements of potential services from UDDI registry or

the related web sites.

• Users define their requirements and complete the service description with the help

of the system.

• The system matches the appropriate advertisements of the services according to

the user’s requirements.

• The user selects the desired package of advertisements from the matched advertise-

ments and asks the system to invoke them.

In the following section, we introduce the implementation system and explain the

service descriptions of requirements and advertisements, ontologies, constraint checking,

and rules in the system.

5.2 Service Description

To accommodate to the matching scheme, the descriptions of the customer’s requirements

and providers’ advertisements are defined in the same form, Description Logics. In the

Semantic Web Services composition architecture, we adopt concepts to express service

description which contain constraints(feathers/attributes) about the trip service, like trip

price, starting point, destination, and date. We use the u constructor to connect these

constraints together. With concepts expression, we can specify a service requirement or

advertisement which hold all constraints at the same time.

In the matching stage, a suitable matched service must satisfy all or partial specified

constraints. From customers’ perspective, a requirement description represents a cus-

tomer’s demand and expectation about the service. From a service provider’s perspec-

tive, a advertisement description characterize the functionality service provides. Note

that the service description we mention here is an ”abstract description” which detailed

the functional descriptions other than execution details in the service profile of WSDL

document. Travel agents can publish their advertisements using OWL-DL based ser-

vice descriptions or traditional existing database schema. In the back-end, those service

profiles published on the Internet are automatically discovered and stored by he Service

87

Collector/Annotator, one of the main component in our system. If the travel agent adopts

different kinds of service descriptions to those of the ontologies in our system, the Service

Collector/Annotator is responsible for translating the heterogenous descriptions into the

same format. Those abstract descriptions will be mapped into OWL-DL concepts so that

service properties are restricted with specific constraints. In front-end, the Service Com-

poser accept and store the customer’s requirements using the shared set of ontologies for

matching with abstract service descriptions. Following the scenario mentioned above, we

explain the service descriptions in the Traveller system.

5.2.1 Trip Requirement Description

According to the design approach of the ontologies discussed in Section 4.4, in the sce-

nario, the Traveller accepting a requirement, a two-day trip from Taipei to Nantou from

July 1st to July 3rd, 2007, from a customer. The customer is seeking for a trip for two

people and trip budget around NT.10,000. The customer plan that the first day, July

2nd, 2007, start from Taipei to Hsinchu, and second day, July 3rd, 2007, start from

Hsinchu to Nantou County by bus. We defined the general trip as the concept, MyTrip,

which shows below. MyTrip concept can be segmented into two days represented by

MyRequirement-1 and MyRequirement-2. The bus requirement can be defined as a

transportation requirement called TransReq1. Besides, the customer has stated prefer-

ence about the tourism spot named Ching Jing Farm2, and its budget is about NT.1,000.

The tourism spot requirement in July 3rd. is described by the concept, SpotReq1.

MyTrip ≡ ∃ tripStartDate.2007-07-01

u ∃ tripEndDate.2007-07-03

u ∃ startsFrom.Taipei

u ∃ endsAt.NantouCounty

u ∃ hasNumberOfPeople.{2}

u ∃ hasTripBudget.leq10000

u ∃ hasTripElement.MyRequirement-1

u ∃ hasTripElement.MyRequirement-2

2Ching Jing Farm is a famous farm in Nantou County,Taiwan.

88

MyRequirement-1 ≡ ∃ tripStartDate.2007-07-01

u ∃ tripEndDate.2007-07-02

u ∃ startsFrom.Taipei

u ∃ endsAt.Hsinchu

u ∃ hasNumberOfPeople.{2}

u ∃ next.MyRequirement-2

MyRequirement-2 ≡ ∃ tripStartDate.2007-07-02

u ∃ tripEndDate.2007-07-03

u ∃ startsFrom.Hsinchu

u ∃ endsAt.NantouCounty

u ∃ hasNumberOfPeople.{2}

u ∃ hasBudget.leq6000

u ∃ hasTransTE.TransReq-1

u ∃ hasSpotTE.SpotReq-1

TransReq-1 ≡ ∃ hasTransDepartDate.2007-07-02

u ∃ hasTrans.Bus AoWanTa ChingjingFarm

u ∃ hasNumberOfPeopleTrans.{2}

u ∃ hasTransBudget.leq2000

SpotReq-1 ≡ ∃ hasSpotScheduledDate.2007-07-03

u ∃ hasSpot.CingjingFarm

u ∃ hasNumberOfPeopleSpot.{2}

u ∃ hasSpotBudget.leq1000

5.2.2 Service Advertisement Description

Travel agents publish their advertisements using OWL-DL based service descriptions or

traditional existing database schema. If the travel agent adopts different kinds of service

89

descriptions from the ontologies we use, the Service Collector/Annotator is responsible

for translating the heterogenous descriptions into the same format. The concept listed

below represents a two-day trip advertisement for two persons from Hsinchu to Nantao

for the period July 2nd to July 3rd, 2007, which advertised price of the trip is NT.5,000.

In addition, it also include a spot itinerary, called SpotAd0. The spot itinerary is for a

ChingjingFarm spot scheduled on July 3rd.

AdvertisementNantou-0 ≡ ∃ tripStartDate.2007-07-02

u ∃ tripEndDate.2007-07-03

u ∃ startsFrom.Hsinchu

u ∃ endsAt.NantouCounty

u ∃ hasNumberOfPeople.{2}

u ∃ hasBudget.leq5000

u ∃ hasSpotTE.SpotAd-0

SpotAd-0 ≡ ∃ hasSpotScheduledDate.2007-07-03

u ∃ hasSpot.CingjingFarm

u ∃ hasNumberOfPeopleSpot.{2}

u ∃ hasSpotBudget.leq500

5.3 Implementation of the Traveller

In this section, we will explain the components of the Traveller in detail. The components

include the Service Composer, the AJAX Component, the Community Component, the

Inference Engine, the Execution Engine, the Service Collectors/Annotator, the Knowl-

edge Base Management System, Ontologies. We have mentioned the function of each

component in section 4.1.2. Somehow, the Service Composer and KBMS play the most

two important roles in the architecture. The former interacts with the user in the front-

end by providing an user-friendly interface and collaborates with the other components

in the back-end by accessing the set of the ontologies. The later one monitor and man-

age the correction of the ontologies with SWRL rule and Protégé Axiom Language by

manipulating Protégé and its plug-ins. Therefore, we focus more implementation detail

90

on those two components. We adopt JSP/Servlet technology, which is a Java-based web

application, as the Service Composer in the Traveller. To lower the entrance barrier of

the semantic application, we have modified the functionality of the Service Composer

which is simpler than the previous version.

Based on the Semantic technology environment, we use the Web Ontology Language

(OWL-DL), a family of knowledge representation languages for authoring ontologies,

adored by the World Wide Web Consortium, to describe the service descriptions and

related information and use the Semantic Web Rule Language (SWRL) to increase the

inference power for solving the role composition. To implement the Inference Engine,

we adopt the Racer DL reasoner as the back-end Inference Engine to perform concept

subsumption reasoning. Otherwise, we adopt the Active-BPEL Engine3 as the Execution

Engine, which attaches to the Web Application Server of Tomecat 5.04. For the Service

Collector/Annotator, we apply the approach proposed in [14]. Here, we detail the im-

plementation of each component in the Semantic-based service composition architecture.

Table 5.1 illustrates the implementation tools and the corresponding components.

Table 5.1: Implementation of the components of the Traveller

Components Implementation

The Service Composer JSP/Servlet

The AJAX Components Google Maps API

The Community Components JSPWiki

The Inference Engine Racer

The Execution Engine Active-BPEL Engine

The Service Collector Java-application

The Knowledge Base Protégé 3.11

Management System

Ontology Standard OWL-DL

File System MySQL 5.0

Application Server Tomcat 5.0

3http://www.active-endpoints.com/active-bpel-engine-overview.htm
4http://tomcat.apache.org/

91

http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://tomcat.apache.org/

5.3.1 Implementation of the Service Composer

• Inner Knowledge Base

Knowledge Base is represented by Web Ontology Language(OWL), a language for

defining Web ontologies. We adopt Protégé API to access the OWL file which

contains numbers of concepts and relative rules. Regarding the trade-off between

the expressive power and the computational complexity, we adopt OWL-DL as the

specification for our system’s ontology. The requirement that the customer input

would be translated into OWL format and stored at ontologies. To encapsulation

the complex semantic information, we did not authorize the customer any power to

modify the ontologies. All related management tools are removed from the Service

Composer.

• Integrated User Interface

As we state previously, the Traveller is web application based on Semantic Web

technologies. To provide the interface on pages, the Integrated User Interface is

implemented by Java Server Pages(JSP), a script language widely adopted on the

Internet. It provides a user-friendly interface that helps the user complete their

trip requirements step-by-step, and return the suitable service on pages. Most

importantly, the Integrated User Interface mashing up with Google Maps API that

provide a interactive AJAX GUI to the customer. In addition, it connects other

component such as the Wiki-based community through hyper-links.

• AJAX Module

With cooperate with the AJAX Component, AJAX module is responsible for build-

ing a geographic interface, for instance, a Earth map, displayed on the Integrated

User Interface. While displaying the geographic interface, AJAX module retrieve

necessary information from the ontology, such as location name, descriptions of

locations. Meanwhile, it continuously listen the interaction events between the cus-

tomer and the system, such as mouse click, mouse trajectory. Those events are used

to trigger certain functions. For example, Through clicking mouse on the map, the

customer inputs their requirement easily.

92

• Community Module

Community Module is implemented as a Java program, that dynamically gener-

ate the document for JSPWiki. The document contains the customer information,

their requirements, and corresponding advertisements. Also if the customer input

a requirement that contain some information not in the ontologies, it generate a

report document to the administrator. The documents generated by the Commu-

nity Module are used to be deployed on JSPWiki. So that JSPWiki can display the

needed information on the collaboratively editing environment.

• Matchmaker

The Matchmaker is a matching module that invokes the Inference Engine to start

reasoning. It acts as a bridge between the Service Composer and the Inference

Engine To provide an approximate service matching between requirements and

advertisements, we developed a Java program as a matchmaker module to com-

municate with the Inference Engine, Racer inference engine. This Java Program

is responsible for computing similarity degree. Also numbers of domain rules for

decision are implemented in the code, such as the similarity between transportation

lines, location concepts substitution rule.

• Dynamic Concept Component

To solve the problem of quantitative concepts, we use a set of Java programs to

dynamically create quantitative concepts like Time and ValuePartition. When re-

quirements related values and time, this Java programs will adds automatically

time or value concepts to the knowledge base. That implies relationship between

concepts and the concept hierarchy are created automatically and dynamically. to

avoids having to define a large knowledge base of quantitative concepts in advance,

• Service Execution Module

We develop this Service Execution Module combining the following components:WS-

BPEL File Handler, WS-BPEL Template Pool, WS-BPEL Generator, and Execu-

tion Engine Invoker. It provides tools to generate executable processes from ab-

stract service descriptions and templates, and invokes the Execution Engine. It also

returns the results from the Execution Engine to the Integrated User Interface.

93

Figure 5.1: The Implementation of the Service Composer

Figure 5.1 illustrates the implementation of the Service Composer in the Traveller.

5.3.2 Implementation of the Knowledge Base Management Sys-
tem

• Inner Knowledge Base

Inner Knowledge Base we mentioned here is exactly the same ontology as the Sys-

tem Composer’s one. It is a represented by Web Ontology Language(OWL). We use

Protégé OWL editor to define and maintain the tourism domain ontology. Only ad-

ministrators can modify and update the ontology at back-end. To increase the ontol-

ogy management capability, we also adopt Semantic Web Rule Language (SWRL)

and Protégé Axiom Language (PAL) rules to support maintenance of ontology.

• Integrated User Interface

Protégé ontology editor provides an Integrated User Interface for the administrator.

94

With that, creating or modifying a class, property, instance is very convenient. In

addition to OWL editing, Integrated User Interface integrate other Protégé plug-in

tools such as, The Protégé Axiom Language tab-widget plug-in and the Protégé

SWRLJess Tab-widget plug-in. SWRL rule and PAL also can be defined in Inte-

grated User Interface.

• Translation Tools and Rule Engines

We adopt Protégé SWRLJess Tab plug-in for editing and reasoning rules. SWRL

rules are used to strengthen the expressive power of OWL-DL in our system, and

to capture implicit composition relationships. The SWRLJess plug-in translates

SWRL rules to JESS rules, which can infer new knowledge through the Jess rule

engine. It returns the inferred knowledge and stored it in OWL-DL format in the

knowledge base.

• Constraint Checker Tools

To check the consistency of the ontology, we use the Racer DL reasoner to handle the

binary relationship between two constraints by subsumption inference(classification).

Besides, we use the Jess Rule Engine and SWRL rules to solve the global relation-

ship among more than two non-quantitative constraints. Otherwise, we adopt the

PAL rule engine provided by Protégé Axiom Rule plug-in to check the global rela-

tionship among quantitative constraints. These Constraint Checker Tools are used

to check constraints like trip budgets and time dependencies between the require-

ment and its element requirements.

• Import/ Export Component

We use the Protégé OWL plug-in to exchange knowledge base with other Semantic

Web applications . Ontologies will be stored as OWL files through the Protégé

OWL editor plug-in. With OWL standard, Semantic Web applications are able

to import their ontology into our knowledge base. In contrast, we can export our

ontology in OWL format to others.

Figure 5.2 illustrates the implementation of the Knowledge Base Management System

in the Traveller.

95

Figure 5.2: The Implementation of the Knowledge Base Management System

96

5.4 Ontology Design

5.4.1 The Tourism Domain Ontologies

According to the architecture of the service combination approach mentioned in the 4.4,

ontologies play an essential role for different components in the architecture to communi-

cate with each other. They make computers able to exchange information with each other

in the semantic-level understanding instead of only in the syntactic-level consistency. In

the following sections, we introduce the ontologies design in implementation system, the

Traveller, and explain the consideration and purposes. Following the architecture of the

ontology in [27], we attempt to distinguish two different kinds of ontologies in our system.

First, there are upper common ontologies, which can be reused in different domain, such

as time, and Value Partition, to describe the constraints like time and budget. Second,

there are domain-related ontologies for describing requirements, advertisements, accom-

modation, transportation, event, spot, and location. Figure 5.3 shows an overall tourism

ontology design. We will specify these ontology design details in the following sections.

5.4.2 The Spot Ontology

As we mentioned above, domain-related ontologies are those description for requirements,

advertisements, accommodation, transportation, event, spot, and location. In this sec-

tion, we introduce the spot ontology which ontology hierarchy are similar with event,

accommodation, and transportation. Therefore, after introducing the spot ontology,

readers also understand the ontology design of event,accommodation, and transportation.

We assume there is a Web Service, a spot ticket booking service, contains functionality

descriptions, such as input and output message definitions, and non-functionality descrip-

tions, such as service provider information. In the service composition architecture, we

use a concept(class) to define the spot service. The non-functional service descriptions are

represented as properties of the concepts. Figure 5.4 illustrates the Spot ontology. In the

figure, a class called Spot is used to represent a root class of a spot ticket booking Web

Service. It contains numbers of properties to represent the descriptions of spot services.

For example, a spot class has its name, its Web site URL, e-mail address, telephone

number, fax number, address, corresponding WSDL description, and its location. We

97

Figure 5.3: The Tourism Ontology Design

divide spots into four categories: cultural spots, general spots, natural spots, and temple

spots. The classifications CulturalSpot class, GeneralSpot class, NaturalSpot class, and

TempleSpot class respectively denote the types of spots.

98

Figure 5.4: Design of the Spot Ontology (Part)

Take Ching Jing Farm, one of the famous spots in Taiwan, as an example. We con-

struct a ChingJingFarm concept to represent that spot. We classify the ChingJing-

Farm as a natural spot, so it should be a subclass of the NaturalSpot class. Also

we build an individual ind ChingJingFarm to represent ChingJingFarm concept in

ABox level. As far as we know, there is no role composition inference in TBOX level.

That’s why we have to build an additional individual to capture the composition relation-

ship between different concepts through SWRL rules. Ind ChingJingFarm contains the

corresponding information according to the range of property defined in the spot ontolo-

gies. For example, if hasName property’s range is String, then a String type information

99

need to be filled in hasName property. Event, Accommodation, and Transportation

ontology are modeled in the same approach.

In Figure 5.4, the Spot is the subclass of SpotRequirement and SpotAdvertise-

ment, so we can facilitate the subsumption relationship in the TBOX level reasoning

between the requirements and the advertisements of the spots. We can also capture the

relationship by individuals of the Spot concept in ABOX level reasoning in Figure 5.5.

Figure 5.5: The Ching Jing Farm Service Profile

5.4.3 The Requirement Ontology

In the service composition architecture, a requirement description stands for a customer’s

needs. A requirement description can be considered as a abstract description from Web

100

Services perspective. The Requirement ontology is used to represent such requirement

descriptions. In contrast, the Advertisement ontology represents the descriptions of

the services offered by service providers. In the requirement ontology, we define a

Requirement class to express a general requirement. A general requirement consists of

many element, for instance, Spot Requirement is a typical trip element. So that we can

decompose a compound requirement represented in ontology.

According to the ontology design described in Section 4.4, we have implemented the

Requirement ontology in our system, as shown in Figure 5.6. The root class Require-

ment represents a set of compound requirements. There are two subclasses of Require-

ment class. First one, the GeneralRequirement class, is used to represent a composed

requirement which is connecting Event, Spot, Accommodation, and Transportation Re-

quirement through properties. Each general requirement stands for an itinerary. And

numbers of general requirements aggregate a complete requirement, called Trip Re-

quirement. Second one, the TERequirement class, can be divided into four types

of trip element requirements as subclasses in our prototype system. They are Ac-

comRequirement, EventRequirement, SpotRequirement, and TransRequire-

ment. Accordingly, a GeneralRequirement class has four types of properties called

hasAccomTE, hasEventTE,hasSpotTE, and hasTransTE, and the respective ob-

ject property classes AccomRequirement, EventRequirement, SpotRequirement,

and TransRequirement represent the different types of trip element requirements in

the tourism domain.

As a trip requirement contains, it contains necessary information like the trip’s start

date, end date, departure location, arrival location, trip budget, and so on. The trip

information we mentioned above are annotated as properties, such as tripStartDate,

tripEndDate, startsFrom, endsAt, hasTripBudget, of the Requirement class.

The TripRequirement class is used to describe a trip package which has a has-

TripElement property to connecting GeneralRequirement requirements. With defining

Requirement as the range of the hasTripElement , the TripRequirement class is

used to describe a trip package connecting GeneralRequirement requirements. These gen-

eral requirements can be considered as several daily plans included in the trip package.

Figure 5.7 shows an example of the Requirement scenario in the Traveller. We assume

101

Figure 5.6: The Requirement Ontology in the Traveller

that system got a two-day trip requirement. We respectively create two classes called

MyReq 1 and MyReq 2 as requirements. for the first day and the second day itinerary.

The next property represents the dependencies of the two requirements. MyReq 2 has

two trip element requirements. The next property represents the dependencies of the

two requirements. In our scenario, the customer would like to take bus to Ching Jing

Farm at the second day. So we add a spot requirement, called SpotReq 1 and also

add a transportation requirement, TransReq 1. These two trip element requirements

are connect with MyReq 2 through properties, hasSpotTE and hasTransTE. Fig-

ure 5.8 shows the concept definitions of MyReq 2 and its trip element requirements,

SpotReq 1 and TransReq 2 classes. Figure 5.9 illustrates the implementation of the

scenario in the previous sections.

102

Figure 5.7: The Requirement Example in the Traveller

5.4.4 The Advertisement Ontology

In the service composition architecture, a advertisement description stands for a provider’s

service. The architecture of the advertisement ontology is identical to the requirement

ontology. It is used for representing advertisement descriptions in concept expression. In

the Advertisement ontology, we define a Advertisement class to express a general

advertisement. Like the general requirements we mentioned in above section, a general

advertisement consists of many trip element, such like Spot advertisement. Therefore, we

can decompose a compound advertisement into many small pieces of trip as we did to a

compound requirement. According to the architecture described in Section 4.4, we have

implemented the Advertisement ontology in our system, as shown in Figure 5.10. The

root class, Advertisement, represents a set of compound advertisements. Similar to the

requirements ontology, it also has two subclasses. The GeneralAdvertisement class is

used to represent composed advertisements. The TEAdvertisement class has four types

of trip element advertisements as subclasses. They are AccomAdvertisement, Even-

tAdvertisement, SpotAdvertisement, and TransAdvertisement. Accordingly, a

GeneralAdvertisement class has four types of properties called hasAccomTE, ha-

sEventTE,hasSpotTE, and hasTransTE. The respective object property classes Ac-

comAdvertisement, EventAdvertisement, SpotAdvertisement, and TransAd-

103

Figure 5.8: The Requirement Concept Definition in the Traveller

vertisement represent the different types of trip element advertisements in the tourism

domain.

A trip advertisement also contains necessary information, such as the trip start date,

end date, departure location, arrival location, trip budget, and so on. Those trip in-

formation we mentioned above are annotated as properties, such as tripStartDate,

tripEndDate, startsFrom, endsAt, hasTripBudget, of the Requirement class.

The Package class is used to describe a trip package. The hasTripElement prop-

erty connects the Package and the Advertisement. Through the hasTripElement

property, these Advertisement can be seen as several stops included in the trip pack-

age. In the Traveller, we use GeneralAdvertisement as a trip’s element advertisement

104

Figure 5.9: The Trip Requirement of the scanrio in the Traveller

that can be divided by the date of the itinerary.

Figure 5.11 is example of an advertisement in the Traveller. According to the providers’

Web Services profile defined in 5.2.2, we create two classes, called TripAd 1 and Tri-

pAd 2, as advertisements that respectively represent the first day and the second day

trip advertisement. The next property represents the dependencies of the two adver-

tisements. TripAd 2 has two trip element advertisements, SpotAd 1 and TransAd 1,

stand for the spot advertisement and the transportation advertisement. These advertise-

ments are connected to TripAd 2 by hasSpotTE and hasTransTE properties. Figure

5.12 shows the concept definitions of TripAd 2 and its trip element advertisements,

SpotAd 1 and TransAd 2 classes. Figure 5.13 illustrates the implementation of the

scenario in the previous sections.

105

Figure 5.10: The Advertisement Ontology in the Traveller

5.5 Constraint Checking

In Section 4.5, we discussed the approach for handling different kinds of constraints.

Those constraints are used to check the consistency of the ontology. In the Traveller,

we simplify the constraint problem to three main topics: Time constraints, Budget con-

straints, and Location constraints. When we handle the binary relationships of con-

straints, we construct a concept hierarchy that implies relationships of subsumption rea-

soning, so that the binary relationships of the constraints can be checked easily by concept

subsumption reasoning. Even if we want to handle the binary relationship of two quanti-

tative constraints, we model the concept hierarchy of the quantitative constraints like the

ValuePartition ontology 4.5.3. Through design of the hierarchy, ValuePartition ontology

transforms a problem of comparisons of value to a problem of concept subsumption. By

106

Figure 5.11: The Advertisement Example in the Traveller

concept subsumption reasoning, we not only can compare a requirement with an adver-

tisement for service matching, also we can compare the quantitative relationship between

constraints of two element requirements in a composed requirement.

In Figure 5.14 shows a new picture for constraint handling in the Traveller, we adopt

the Semantic Web Rule Language (SWRL) and JESS rule engine as the solutions in

the non-quantitative constraints of the global relationship. The SWRL rule specify the

relationships of the constraints and check the consistency of the knowledge base. It is used

to infer new knowledge that implies role compositions among complicated relationships

of non-quantitative constraints. We also adopt the Protégé Axiom Language(PAL), a

tab-widget plug-in for Protégé, to define PAL rules that help us check the relationships

among quantitative constraints. For administrators, SWRL rule and the Protégé Axiom

Language provides a useful back-end tools that make management ontology more efficient.

In Section 5.6, we focus on the implementation of PAL rules and SWRL rules.

In the following sections, we explain the Time constraints and Budget constraints in

the Traveller. We also discuss the binary relationships and global relationships between

these constraints.

107

Figure 5.12: The Advertisement Concept Definiton in the Traveller

5.5.1 Time Constraints

In the descriptions of the requirements and advertisements, Time constraint specify the

time condition of the trip activity, such as start date and end date of the trip, which are

represented by the tripStartDate and the tripEndDate properties. According to the

approach [39], we facilitate before and after relationships between the tripStartDate

and the tripEndDate properties. Through [39], we can check the time dependencies to

decide the order of two dates or if a date within a date range. In the scenario described in

the previous section, the customer want to start a trip from July 2nd to July 3rd, 2007.

The Traveller dynamically add Y2007M07D02 and Y2007M07D02 to the Time Ontology.

The time definition of Y2007M07D02 concept is presented as follows:

Y2007M07D02 v ∃ ends before.Y2007M07D03

u ∃ begins after .Y2007M07D01

u ∃ begins after .Y2007M06

108

Figure 5.13: The Trip Package Example

Figure 5.14: Constraint Handling and Checking in the Implementation System

109

u Y2007M07

Subsequently, we intuitively use Y2007M07D01 concept as the restriction of the trip-

StartDate property in Requirement concept. Similarly, Y2007M07D03 concept will be

the restriction of the tripEndDate property in Requirement concept. Finally, the sys-

tem automatically infers relationships about the Y2007M07D2 and Y2007M07D3 con-

cept. Therefore, the relationship between the tripStartDate and tripEndDate can be

easily examined, such as checking whether the tripStartDate is before the tripEndDate

by checking concept subsumption listed below:

TripStartDateConcept v ∃ ends before.TripEndDateConcept

In the scenario described in the previous section, the customer plans to go Ching Jing

Farm on July 3rd, 2007. The spot element requirement has a hasSpotScheduledDate

property and a concept of Time ontology as its restriction. The spot scheduled date is

a concept of Y2007M07D03 presented in the Time ontology. We can check whether the

spot scheduled date, Y2007M07D03, is within the range of the start and the end dates

of the trip by checking the subsumption listed below:

SpotScheduledDateConceptv ∃ begins after .tripStartDate u ∃ ends before.tripEndDate

The examples we mention above belongs to non-quantitative binary relationship de-

fined at section 4.5.1. we can handle the constraints of tripStartDate, tripEndDate, and

hasSpotScheduledDate by the existing roles, ends before and begins after, of the Time

concept; instead of using SWRL rules.

5.5.2 Budget Constraints

The budget constraints usually restrict the number of budget greater or less than a

specific number. In practical, the budget constraints check if each Budget of element

requirement is within the Total Budget of the trip requirement. They also check that if

the summation of budgets of element requirements is less than total budget of the trip

requirement. According to the ValuePartition ontology proposed in [39], this kind of the

quantitative constraint can be transformed to a concept subsumption problem as Time

110

constraint. That means the system can solve quantitative constraint by checking concept

subsumption. In OWL-DL, it is hard to make quantitative handling, such as budget

constraint. ValuePartition complements the quantitative weakness in OWL-DL.

With dynamic concept program, the system automatically create the subsumption

relationships between the quantitative concept in the ValuePartition ontology as figure

5.15.

Figure 5.15: Relationship between leq5000 and leq500 in the ValuePartition Ontology

Taking the scenario as the example, we facilitate subsumption reasoning to check if

the budget of the spot advertisement is less than the advertisement budget in our sce-

nario. Trip advertisement 5.2.2, AdvertisementNantou-0, has a property hasBudget

which connects with concepts, leq5000, which describes the cost of advertisement is less

than Nt.5000. . Similarly, Spot advertisement, SpotAd-0, has a property hasSpot-

Budget, and its budget is Nt.500. Before adding the budget of advertisement and spot

advertisement, the system automatically create leq5000 and leq500 concepts with sub-

sumption relationships in advance.. When adding the leq500 concept that expresses the

spot budget, the implied relationship is also defined. Figure 5.15shows the relationship

between leq5000 and leq500, where leq500 v leq5000 can be reasoned through the

Racer DL reasoner. The problem of checking the budget 500 is less than the budget 5000

can be solved by checking subsumption relationship as follows:

LessThanTripElementBudgetConcept v LessThanTripBudgetConcept

111

Not only comparing hasBudget and hasSpotBudget, we adopt the same approach

to the relationship checking between hasBudget and hasEventBudget, hasAccom-

Budget, or hasTransBudget properties which describe the budgets for events, accom-

modation, and transportation, respectively.

However, the complicated comparison problem involving more than two budgets, i.e.,

problem of checking whether the summation of the budgets of the element requirements

is less than the total budget of the trip requirement or not. For this kind of problem,

concept subsumption relationship between ValuePartition concepts does not work. In

Section 5.6.1, we will illustrate how to use PAL rules to solve the problem of more than

two budgets.

5.6 Constraint Rules

In 4.5 and 5.5, we realize that the subsumption induction can not solve the global rela-

tionship constraint. Accordingly, we adopt additional rules language, PAL and SWRL

rules, to complement the lack of OWL-DL expression power as shown in the figure 5.14.

In the following sections, we explain the mechanism of these rules and give examples of

implementing our system.

5.6.1 PAL Rules

The Protégé Axiom Language tab-widget plug-in(PAL) is a useful tool for Protégé that

check integrity constraints in ontologies. We adopt the PAL as the engine to validate

the global quantitative constraint. While constructing the rules, we have to define the

range and write the constraint statements. Here, we take the Total Budget Constraint

as the example. First, we define the rule for ensuring the summation of all trip element

budgets must be equal to or less than the trip budget. However, PAL does not support

recursive rule definitions. Therefore, we need to manually define many rules with different

numbers of trip elements explicitly. For example, we have a PAL statement that checks

the summation of the budget of trip element(1) and trip element(2) for two-element

trips. But a trip may contain three or more element, that’s why we have to define many

112

statement for those trips which contain at least three elements. We represent the PAL

rule for checking 2-element trips as follows:

• The range definitions:

(defrange ?trip :FRAME Trip)

(defrange ?tripElement :FRAME GeneralRequirement hasTripElement)

The two statements define the ranges of two variables used in the constraint state-

ments. The first ?trip stands for instances of the Trip class (frame). :FRAME

means a class in OWL. The second ?tripElement stands for instances of the Gen-

eralRequirement class (frame) and appears in the range of a hasTripElement

property (slot).

• The constraint statement:

(forall ?trip (forall ?tripElement

(=>(and (hasTripElement ?trip ?tripElement)

(= (number-of-slot-values hasTripElement ?trip) 2)

(own-slot-not-null next ?tripElement))

(or (> (hasBudget ?trip)

(+ (hasBudget ?tripElement)

(hasBudget (next ?tripElement))))

(= (hasBudgetD ?trip)

(+ (hasBudget ?tripElement)

(hasBudget (next ?tripElement)))))))

5.6.2 SWRL Rules

As PAL rules, Semantic Web Rule Language (SWRL) rules enhances the limited expres-

sive power of OWL-DL, SWRL rules are defined to capture the complicated relationships

of role/property compositions over ontologies. We adopt the Protégé SWRLJess Tab-

widget plug-in as a rule editor for defining rules. Accordingly, we adopt SWRL rules and

a rule engine to handle non-quantitative constraints as the Figure shown in 5.14 Here, we

113

demonstrate a SWRL rule example applied in the Traveller. If we want to inference the

implicit relationship, next property, between two trip elements, we check the condition:if

the first trip’s arrival location is the location of another trip’s departure location. If it

matched with the condition, then system inference that they are connected by the next

property used to describe their order. The following rule expresses the next property of

concepts that is inferred by asserting trip individuals.

hasTripElement(?a, ?x) ∧ hasTripElement(?a, ?z) ∧

endsAt(?x, ?y) ∧ startsFrom(?z, ?y) −→ next(?x, ?z)

The SWRL rules are facilitated by individuals in ABOX modelling. The variables with

initial ? indicate individuals. Because SWRL rules operating at ABOX, we respectively

build an trip element individual for representing the trip element concept. Reference

5.4.4 for detailed information.

The second example of SWRL rule is used to induce if a location of spot is accessible

for transportation line. In the ontology, we have properties: locatedIn describes a spot

location, isPassedBy describes the location is accessed by what kind of transportation,

such as bus, train, or air plane. With these two properties, we can inference an implicit

property, isReachable, indicate the spot is accessed by what kind of transportation.

The rule is illustrated by the following SWRL rule:

locatedIn(?spot, ?location) ∧ isPassedBy(?location, ?transportation)−→

isReachable(?spot, ?trasnportation)

The above SWRL rule is suitable for ?spot and also for ?accommodation. It represents

that whenever any transportation passes through the location where the accommodation

locates, the accommodation can be reached by that transportation.

Though the above-mentioned examples of SWRL rules look trivial, they are still effi-

cient in ontology maintenance. In the Traveller, we adopt TBOX modeling to represent

the descriptions of requirements and advertisements because of the mechanism of sub-

sumption reasoning. However, SWRL rules can only apply to individuals in ABOX. The

Ontologies in the Traveller has to be inferred by SWRL rules periodically to discovery

114

the complicated relationships between properties.

5.7 The Traveller Demonstration

As we mentioned in the previous chapter5.3, we have implemented a new prototype sys-

tem, the Traveller, as a Web application based on our ontology-based architecture and

related methodologies. The Traveller can be considered as a Web application providing

integrated tourism planing service on the Internet. From requirements defining, service

matching, service execution, to ontology maintenance, the whole procedure can be ma-

nipulated remotely at the user’s browsers. In this chapter we will illustrate the system

integrated user interface and demonstrate the tourism matching service provided by the

Traveller step by step.

5.7.1 Matching Service Process

The graphical user interface of the Traveller system is shown in Figure 5.16. The user

interface consists of three main panels - requirement input panel, matching result panel

on the left side of the interface. And AJAX-based Googele Maps on the right side. The

matching process comprised of several steps listed in the following:

1. To input trip requirement, according to the customer preferences, they are able to

choose to operate the AJAX-based Google Maps on the right side of the Traveller

web page or the traditional combo-box input style on the left side. Through mouse

clicking on the map, the customer decides the starting location and the destination

of the daily trip requirement. Furthermore, the customer could infill the additional

condition such as start date, end date, budget, transportation, accommodation,

number of people, and tourism spot. Customers could compose many daily trip

requirement as their complete trip requirement.

2. After finish inputting trip requirements, click the ”Send” button on the top-left

corner of requirement input panel to perform our matching scheme. In the pro-

cess of matching, approximate requirements with similarity value will be generated

and stored in the ontology. Then, Racer Inference Engine will be triggered to

115

perform the ”Classification”. Classification help us find subsumption relations be-

tween approximate requirements and advertisements. A advertisement subsumed

by approximate requirements represents that it is a suiting service for the customer.

Detailed information of matching scheme will be introduced in [28].

3. According to similarity value, all matching results will be listed in the result combo-

box on the bottom of panel. To get detailed information about suiting trip package,

selecting the package listed in combo-box. Then the route of the package you select

will be displayed graphically on the map, also related information will be shown in

the text area below.

4. After reviewing the packages, the customer can decide to execute which package

through checking the check-box corresponding that package. Once ”Execute” but-

ton is clicked, the Traveller will perform the service execution procedure, also related

information about the selected package will be published to Wiki-based community

as the customer’s trip history log.

116

Figure 5.16: The User Interface of Matchmaker

117

Chapter 6

Conclusion

Although Semantic Web technology enables Web Services to be matched precisely ac-

cording to their semantic descriptions, it also impose high entrance barriers of Semantic

Web applications. However, Web 2.0 technology booming recently has demonstrated a

lot of remarkable feathers that make the user closer to Web application. With borrowing

brilliant ideas from Web 2.0, we create a new architecture combining the strength of

Semantic Web and Web 2.0 technology. That makes Semantic-based application more

friendly and easier for maintenance.

In this thesis, we proposed a new semantic-based service composition architecture

in the distributed environment. Exception for combining Web 2.0 and Semantic Web

technologies together, we also create a community platform in our architecture that allows

user to share their information and to participate in ontology maintenance cooperatively.

Through ontology maintenance, the system is able to utilize the descriptive capability of

OWL adequately for matching service. Web Services which fit the customer’s needs can

be discovered and executed automatically. In this chapter, we summarize contributions

of this thesis and the future works.

6.1 Contributions

• A new semantic-based service composition architecture A complete archi-

tecture providing service matchmaking and service invocation was proposed. Differ-

ent from the previous version, we enhance the interaction between the user and the

system. Also the user has more power to participate in the ontology maintenance

through Community Component. By integrating advantage of Semantic Web and

118

Web 2.0 technology, a Semantic application based on this architecture would be

even more friendly and efficient.

• differentiation between the customer and the administrator The customer

and the administrator’s view of this system are divided. All complex Semantic lan-

guage are encapsulated by the system in the front-end, the customer manipulates

the system without having any Description Logics background. In contrast, the ad-

ministrator has authority to log on Knowledge Base Management System dedicated

on maintaining ontologies in the back-end.

• Ontology Maintenance Procedure We proposed an Ontology Maintenance Pro-

cedure that involves the customer in ontology engineer through Wiki-based com-

munity. Time-consuming Ontology Maintenance is no longer controlled by a small

group. Because of the customer’s participation, Ontology Maintenance become even

more agile and quick

• The Traveller Prototype System We implement a new Semantic application

system called Traveller based on our ontology-based architecture and related method-

ologies. From requirements defining, service matching, service execution, to ontol-

ogy maintenance, the whole procedure can be manipulated remotely at the user’s

browsers. The Traveller can be considered as a Web application providing inte-

grated tourism service on the Internet.

6.2 Future Work

• Integration between Semantic Web and Web 2.0 technology Although we

have proposed and implemented a architecture combing Semantic Web and Web

2.0 technology, but there are a lot of experiments needed to be validated for the

system efficiency.

• Ontology design methodologies We do have our approach to model ontology in

the travel domain, but we are not sure whether the design methodologies is good

enough. Our ontology design methodologies are still waiting for being testify by

experts in related domain. Also we need to concern about the trade-off between

119

expressiveness and realization. It is a depends-on question according to the appli-

cation’s domain and the computing ability of inferencing. To improve practicability

of the Semantic application, these issues should be estimated carefully.

• System efficiency The system efficiency is a critical factor to decide if a system

is usable. it includes the service reasoning time, the service execution time, loading

time, and so on. As things stand, our service reasoning time is a little bit slow for

the user. More Semantic application issues that increase system efficiency should

be discussed. Such as Ontology segmentations.

• Problem of Service Execution There are many run-time situations and problems

in terms of Service execution in real-world. Complicated factors are getting involved

with service execution. Such as that the different sequence may lead to the different

come out. A numbers of studies show that those run-time problems are very difficult

challenges, they do not provide solutions. Therefore, there is a lot of space for

improvement on solving the run-time problem.

120

Bibliography

[1] Time Ontology in OWL, http://www.w3.org/TR/owl-time/.

[2] Universal Description, Discovery, Integration, http://www.uddi.org/.

[3] Web Services Description Language, http://www.w3.org/TR/wsdl.

[4] E-services: Current technology and open issues. volume 2193/2001. Springer Berlin

/ Heidelberg, Sep. 2001.

[5] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint driven

web service composition in meteor-s. Services Computing, 2004.(SCC 2004). Pro-

ceedings. 2004 IEEE International Conference on, pages 23–30, 2004.

[6] Danilo Ardagna and Barbara Pernici. Global and local QoS constraints guarantee

in Web service selection. Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE

International Conference on, page 806, 2005.

[7] Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron Goland, Neelakantan

Kartha, Canyang Kevin Liu, Satish Thatte, Prasad Yendluri, and Alex Yiu. Web ser-

vices business process execution language version 2.0. WSBPEL-specification-draft-

01. OASIS (2005).

[8] Assaf Arkin, Sid Askary, et al. WS-BPEL: Web services business process execution

language version 2.0, 2004.

[9] Franz Baader, Diego Calvanese, McGuinness Deborah, Daniele Nardi, and Peter F.

Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press, 2003.

121

[10] Tim Berners-Lee. Services and Semantics Web architecture. white paper, World

Wide Web Consortium, 2001.

[11] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,

Henrik F. Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol

(SOAP) 1.2. Technical report, www.w3c.org, 2003.

[12] François Bry, Frank-André Ries, and Stephanie Spranger. CaTTS: calendar types

and constraints for Web applications. Proceedings of the 14th international confer-

ence on World Wide Web, pages 702–711, 2005.

[13] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with ao4bpel.

Proceding ECOWS, 2004.

[14] Yi-Shan Cheng. An approach to mapping relational databases to ontologies. 2007.

[15] Roberto Chinnici, Martin Gudgin, Jean J. Moreau, and Sanjiva Weerawarana. Web

Services Description Language (WSDL) Version 1.2. Technical report, www.w3c.org,

2002.

[16] The DAML Services Coalition. DAML-S: Semantic Markup for Web Services. Tech-

nical report, www.daml.org, 2002.

[17] Luiz A. G da Costa, Paulo F. Pires, and Marta Mattoso. Automatic composition

of web services with contingency plans. In IEEE International Conference on Web

Services (ICWS’04), 2004.

[18] Mike Dean, Dan Connolly, Frank V. Harmelen, James Hendler, Ian Horrocks, Deb-

orah L. McGuinness, Peter F. Patel-Schneider, and Lynn A. Stein. Web Ontology

Language (OWL) reference version 1.0. Technical report, www.w3c.org, 2002.

[19] T. Di Noia, E. Di Sciascio, and F.M. Donini. Extending semantic-based matchmaking

via concept abduction and contraction. EKAW 2004, pages 307–320, 2004.

[20] T. Di Noia, T. Di Sciascio, F.M. Donini, and M. Mongiello. Semantic matchmak-

ing in a P-2-P electronic marketplace. In In Proceedings of the Eighteenth Annual

122

ACM (SIGAPP) Symposium on Applied Computing, Special Track on E-commerce

technologies, pages 532–536, March 2003.

[21] Glen Dobson. Using WS-BPEL to implement software fault tolerance for web ser-

vices. Proceedings of the 32nd EUROMICRO Conference on Software Engineering

and Advanced Applications, pages 126–133, 2006.

[22] A. Dogac, Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, and A. Tumer. Satine project:

Exploiting web services in the travel industry. In eChallenges 2004 (e-2004), 2004.

[23] Thomas R. Gruber. A translation approach to portable ontology specifications.

Technical report, Knowledge Systems Laboratory, Computer Science Department,

Stanford University, 1993.

[24] Jerry R. Hobbs and Feng Pan. An ontology of time for the Semantic Web. In ACM

Transactions on Asian Language Information Processing, volume 3, pages 66–85,

2004.

[25] Ian Horrocks, Frank V. Harmelen, Peter Patel-Schneider, Tim Berners-Lee, Dan

Brickley, Dan Connolly, Mike Dean, Stefan Decker, Dieter Fensel, Richard Fikes,

Pat Hayes, Jeff Heflin, Jim Hendler, Ora Lassila, Deb McGuinness, and Lynn A.

Stein. DAML+OIL. Technical report, www.daml.org, 2001.

[26] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,

and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and

RuleML. Technical report, www.daml.org, 2004.

[27] Chia-Tzu Hsieh. The Traveller: A Service Combination System Based on Semantic

Web Technology. Master’s thesis, 2006.

[28] Chung-Hao Hsieh. Approximate Matching and Ranking of Web Services Using On-

tologies and Rules. Master’s thesis, 2007.

[29] Chen-Feng Huang. A Semantic-Based Framework for Web Services Composition,

Master’s thesis, 2005.

[30] IBM. Business Process Execution Language for Web Services, 2002.

123

[31] D. Karastoyanova. A Methodology for Development of Web Service-based Business

Processes. Proceedings of AWESOS, 2004.

[32] Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Reliable web service execution

and deployment in dynamic environments. Proc. of the Intl. Workshop on Technolo-

gies for E-Services (TES), 2819:104–118.

[33] Rania Khalaf, Nirmal Mukhi, and Sanjiva Weerawarana. Service-oriented composi-

tion in BPEL4WS. In Proceedings of the Twelfth International Conference on World

Wide Web (WWW), page 768, 2003.

[34] R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of WSMO

and OWL-S. Proceedings of the European Conference on Web Services (ECOWS

2004), 2004.

[35] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model

and Syntax Specification. Technical report, www.w3c.org, 1999.

[36] Frank Leymann, Dieter Roller, and Satish Thatte. Goals of the BPEL4WS Speci-

fication. xml.coverpages.org (2003), August.–http://xml.coverpages.org/BPEL4WS-

DesignGoals.pdf.

[37] L. Li and I. Horrocks. A software framework for matchmaking based on semantic

web technology. International Journal of Electronic Commerce, 8(4):39–60, 2004.

[38] Jun-Hong Liu. Mapping Relational Databases to Ontologies: An Approach Using

Cluster Analysis, Master’s thesis, 2008.

[39] Wei-Lun Lu. Approximate Matching of Service Descriptions Using Ontologies and

Rules, Master’s thesis, 2006.

[40] Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic

Web: The Bottom-Up Approach to Web Service Interoperation.

[41] Daniel Bachlechner Martin Hepp and Katharina Siorpaes. Harvesting wiki consensus

- using wikipedia entries as ontology elements. In Proceeding of the First Workshop

on Semantic Wikis - From Wiki to Semantic[SemWiki2006], 2006.

124

[42] D.L. McGuinness, F. van Harmelen, et al. OWL Web Ontology Language Overview.

W3C Recommendation, 10:2004–03, 2004.

[43] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid. Composing

Web Services on the Semantic Web. The VLDB Journal The International Journal

on Very Large Data Bases, 12(4):333–351, 2003.

[44] Alexander Mikroyannidis. Toward a social Semantic Web. Computer, November

2007, 2007.

[45] T.D. Noia, E.D. Sciascio, F.M. Donini, and M. Mongiello. A system for princi-

pled matchmaking in an electronic marketplace. International Journal of Electronic

Commerce, 8(4):9–37, 2004.

[46] Tim O’Reilly. What is Web 2.0: Design patterns and business models for the next

generation of software. In http://www.oreillynet.com/, 2005.

[47] J.Z. Pan and I. Horrocks. OWL-E: Extending OWL with expressive datatype expres-

sions. Technical report, IMG Technical Report, Victoria University of Manchester,

2004.

[48] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Seman-

tic Matching of Web Services Capabilities. In Proceedings of the First International

Semantic Web Conference (ISWC), volume 2342 of Lecture Notes in Computer Sci-

ence, pages 333–347. Springer-Verlag, 2002.

[49] Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi. Auto-

mated synthesis of composite BPEL4WS web services. Web Services, 2005. ICWS

2005. Proceedings. 2005 IEEE International Conference on, pages 293–301, 2005.

[50] A. Rector. Representing Specified Values in OWL: value partitions and value sets.

W3C Working Group Note, 17, 2005.

[51] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rube’n Lara, Michael

Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web

Service Modeling Ontology (WSMO). Applied Ontology 1(2005), 2005.

125

[52] Andreas Schmidt. Knowledge maturing and the continuity of context as a unifying

concept for knowledge management and e-learning. 2005.

[53] Andreas Schmidt Simone Braun and Andreas Walter. Ontology maturing: a collabo-

rative web 2.0 approach to ontology engineering. In Proceedings of the Workshop on

Collaborative Construction of Structured Knowledge at the 16th International World

Wide Web Conference, 2007.

[54] Biplav Srivastava and Jana Koehler. Web service composition: Current solutions

and open problems. In Workshop on Planning for Web Services(ICAPS), pages

28–35, 2003.

[55] N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query

results in the Semantic Web. In Proceedings of the Second International Semantic

Web Conference (ISWC), volume 2870 of Lecture Notes in Computer Science, pages

500–516. Springer-Verlag, 2003.

[56] Katia Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. LARKS: Dynamic

Matchmaking Among Heterogeneous Software Agents in Cyberspace. Autonomous

Agents and Multi-Agent Systems, 5(2):173–203, 2002.

[57] Hsin-Ying Tai. Automated Web Service Composition and Execution Based on Se-

mantic Web Technology. Master’s thesis, National Taiwan University, July 2007.

[58] Paolo Traverso and Macro Pistore. Automated composition of semantic web services

into executable processes. Proceding ISWC 04, 2004.

[59] Paolo Traverso and Macro Pistore. Automated composition of Semantic Web services

into executable processes. 2004.

[60] Yih-Kuen Tsay, Po-Chun Chen, Chih-Hsiung Liu, and Jyun-Yang Syu. Ontology-

Based Automation of Web Services Composition and Brokering. Unpublished

Manuscript, 2004.

[61] Chih-Hua Tu. A Semi-Automatic Approach for Mapping Structured Web Pages to

Ontologies, Master’s thesis, 2008.

126

[62] Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, and Zixin Wu.

The METEOR-S Approach for Configuring and Executing Dynamic Web Processes.

LSDIS METEOR-S project. Date, pages 6–24.

[63] Jian Yang and Mike. P. Papazoglou. Web components: A substrate for web service

reuse and composition. In Proceedings of the Fourteenth International Conference

on Advanced Information Systems Engineering (CAiSE’02).

127

	Introduction
	Background
	Motivation and Objectives
	Thesis Outline

	Related Work
	Web Services
	Web Service Description Language(WSDL)
	UDDI
	SOAP

	Semantic Web
	Resource Description Framework(RDF)
	Web Service Modeling Ontology(WSMO)
	OWL-S
	Modeling Ontology of Time and Value

	Service Matching and Ranking
	Service Matching
	Service Ranking

	Web Services Composition
	Related Projects
	SATINE Project
	European Semantic Systems Initiative (ESSI)
	EON Architecture

	Preliminaries
	Description Logics
	Description Logics Syntax and Semantics

	OWL
	Semantic Web Rule Language: SWRL
	SWRL Editor

	Quantitative Relations
	Web Service Description Language(WSDL)
	Web Services Business Process Execution Language(WS-BPEL)
	Web 2.0 Technology

	Service Composition and Execution Based on Semantic Technology
	Overview of Web Services Composition Architecture Based on Semantic Technology
	Web Services Composition
	Design of Web Services Composition Architecture Based on Semantic Technology

	Service Composer
	Design of the Service Composer
	Architecture of the Service Composer

	Knowledge Base Management System
	Design of the Knowledge Base Management System
	Architecture of the Knowledge Base System

	Ontology Modeling
	Service Composition Mechanism
	Service Execution Based on Semantic Technology

	Constraint Handling
	Constraints
	Time Constraint
	Value Partition

	Ontology Maintenance
	Wiki-supported Ontology Engineering
	The Model of Ontology Maturing
	Wiki Community Component and Ontology Maintain Procedure

	Service Execution
	Design of the Service Execution Module
	Architecture of the Service Execution Module
	Development of the Business Process Execution Language

	Implementation - The Traveller
	The System Design
	Service Description
	Trip Requirement Description
	Service Advertisement Description

	Implementation of the Traveller
	Implementation of the Service Composer
	Implementation of the Knowledge Base Management System

	Ontology Design
	The Tourism Domain Ontologies
	The Spot Ontology
	The Requirement Ontology
	The Advertisement Ontology

	Constraint Checking
	Time Constraints
	Budget Constraints

	Constraint Rules
	PAL Rules
	SWRL Rules

	The Traveller Demonstration
	Matching Service Process

	Conclusion
	Contributions
	Future Work

