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Abstract

With an expected market value of $2.71 billion in 2016, supporting daily use of real-

time location systems in households and commercial buildings is an increasingly im-

portant subject of study. A growing problem in providing robust location estimations

in real time is the use of wireless transmissions in RF frequencies in the daily envi-

ronments. Having implemented a simple RSSI-signature-based location system on a

24-node IEEE 802.15.4-based sensor network testbed, we are able to analyze the ef-

fect of background IEEE 802.11 traffic to the localization error. The measurement

results demonstrate that the 80th-percentile of the localization error may increase by

141% when the background 802.11 traffic is high. Such performance degradation is

a result of RSSI reading loss as the beacon messages collide with background traffic.

A common solution to this problem is to extend the time for beacon message collec-

tion. This approach, although effective, adds extra delay before robust estimations can

be obtained. Aiming at achieving robust real-time localization in daily environments,

we propose a frequency hopping mechanism that enables the system to adapt to the

current interference level. When the interference level is high, the system hops to a

new channel to avoid the foreseen high loss period. Our experimental results show that

v



the proposed frequency hopping mechanism can reduce the 80th-percentile localiza-

tion error from 1.82 to 1.32 meters (27%) in a busy hour and from 2.74 meters to 1.24

meters (55%) in a 20-minute period where the 802.11 traffic rate is at its peak.

Keywords— keywords Indoor Localization, Received Signal Strength Indicator,

K-Nearest-Neighbor Algorithm, Frequency Hopping, Interference, Coexistence, Hid-

den Markov model
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Chapter 1

Introduction

The market for real-time location systems for assets and personnel tracking is expected

to reach $1.26 billion by 2011 [3], and $2.71 billion in 2016 [1]. For widespread

adoption and everyday use of real-time location systems in households and commercial

buildings, the systems must be able to provide accurate and stable location estimations

with little delay.

Most indoor localization systems employ an RSSI-signature-based approach which

exploits temporal stability in the received signal strength indication (RSSI) from a set

of pre-deployed beacons at identified locations, which is referred to as the RSSI sig-

nature. When a target carrying a receiving tag enters the space, the received RSSI

values are compared to the RSSI signatures. The corresponding location of the clos-

est RSSI signature identifies the location of the target. Methods of ensuring robust

mapping between the measured RSSI values and the pre-recorded RSSI signature have

been studied intensively in recent years [11] [14] [32] . Such methods are needed to

1



CHAPTER 1. INTRODUCTION 2

minimize localization errors induced by unstable RSSI values.

An often overlooked problem is the increasing use of wireless transmission of RF

frequencies in the everyday environment. Bluetooth (IEEE 802.15.3), WiFi (IEEE

802.11) and Zigbee (IEEE 802.15.4) all operate in the 2.4x GHz frequency band. The

stability and availability of RSSI information for WiFi- or Zigbee-based localization

systems may vary depending on interference from other WiFi, Bluetooth, and Zigbee

sources.

After conducting a systematic set of experiments on a Zigbee-based sensor net-

work testbed, we find that the 80th-percentile error of a simple RSSI-signature-based

location system may increase from 1.6 to 3.9 meters when the amount of background

WiFi traffic increases from 68 to 2835 kbps. Having measured also the amount of WiFi

traffic in our department building, we observe that there is a significant amount of time

that the localization accuracy may suffer from the bursts of background noise.

In a detailed analysis, we discover that the degradation in localization accuracy

is mainly contributed by loss of beacon messages, rather than the variance of RSSI

values. This agrees with previous studies that discovered variance in RSSI values is

mainly due to the multi-path effect [2] [40]. Background traffic does not add to the

multi-path effect, rather causing the beacon messages to drop. A common solution

to this problem is to extend the time for beacon message collection. This approach,

although effective, adds extra delay before robust estimations can be obtained.

In wireless communication, frequency hopping [4] is a widely used technique to

avoid sending additional data on channels that are already busy. The proposed fre-

quency hopping mechanism for RSSI-based indoor localization exploits the same con-
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cept.

Each beacon node runs a diagnostic test periodically to determine whether the oper-

ating channel is experiencing beacon message losses. When the level of losses reaches

a preset limit, the beacon node issues a hopping signal to inform all nodes in the net-

work, including the receiving tag, to hop to the next channel. The diagnostic test is

essential for the efficiency of the frequency hopping location system. If the test is

inadequately sensitive, the system suffers from the beacon message loss problem and

provides unstable location estimations. If the test is overly-sensitive, the system may

hop unnecessarily, which would incur even greater beacon message losses. Note that

the receiving tag also suffers from the beacon message loss problem when beacon

nodes are hopping to the different channels.

Given the time dependency observed in long-term WiFi traces and the correlation

between WiFi traffic and the beacon message reception rate, whether or not the sys-

tem tends to produce high error can be obtained via hidden Markov model (HMM)

by observing beacon message reception rate. The resulting HMM and the Forward

algorithm to infer the ‘Hop’ or ‘No-Hop’ states are reasonably tractable for a limited

sensor node platform and can be used on beacon nodes for diagnostic testings.

The experimental results show that the transition time required for the network to

hop to a new frequency under realistic losses is approximately 8 milliseconds for the

sensor network testbed. The 80th-percentile error of the location system is reduced

from 1.82 to 1.32 meters (27%) in a busy hour and from 2.74 meters to 1.24 meters

(55%) in the 20-minute period where the WiFi traffic rate is at its peak. The 80th

percentile and 50th percentile localization errors are kept low to approximately 1.3
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meters and 0.6 meters, even when the environment is experiencing heavy interference.

Although using a longer beacon message collection time may mitigate the localization

error due to beacon message loss, the proposed frequency hopping mechanism pushes

the envelope further, and enables accurate and stable indoor localization with minimum

delay.

Although the frequency hopping mechanism is shown effective for an RSSI-signature-

based indoor localization system, the mechanism can potentially be applied to any

localization systems that sends wireless beacon messages for location estimations, re-

gardless whether the system is for indoor or outdoor localization, whether the system

is RSSI-signature-based or RSSI-ranging-based. This study makes the following four

contributions:

• This is, to our knowledge, the first proposed use of frequency hopping for local-

ization.

• The unique architecture of the proposed sensor network testbed enables low cost

co-collection of data traces at the beacon nodes and the receiving tags.

• The systematic measurement study provides an understanding on the effect of

background traffic to indoor RSSI-signature-based location systems.

• The simple frequency hopping mechanism for indoor RSSI-signature-based lo-

cation systems is shown effective.

The rest of the paper is organized as follows. First, the RSSI-signature-based location
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system and the implemented testbed for the study are detailed. Sections 4 and 5 de-

scribe the measurement methodology and trace analysis of the effect of background

WiFi traffic on the location system. The rationale and the design of the frequency hop-

ping mechanism are examined in Section 6. Finally, Section 7 reports the experimental

results validating the efficiency of the proposed frequency hopping mechanism.



Chapter 2

Localization System

This study implements an RSSI-signature-based localization system. The underlying

concept of this solution is to exploit the mapping between a tag’s location and RSSI

values of packets received from pre-deployed beacons. The RSSI set is referred to as

the RSSI signature or vector. These systems typically operate in two phases, train-

ing and tracking phases. In the training phase, the area is surveyed to construct the

reference RSSI signature per sampled location. The collective set of RSSI signatures

obtained at various locations is referred to as the radio map.

Using the radio map, the system compares the collected RSSI vector to the ref-

erence RSSI signatures in the tracking phase to identify the closest possible location.

The system employs the k-nearest-neighbor (KNN) method for location inference. The

k sample locations with RSSI signatures closest to the collected RSSI vector are se-

lected. The KNN estimator then outputs a location by averaging the coordinates of the

top k locations weighted by the distances between the RSSI vector and the signature.

6
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2.1 Beacon

The beacons periodically transmit short packets containing the beacon ID. The packet

sending interval is set to 200ms. The radio transmission power is set to -7dBm. Thus,

the tag can detect nine or ten beacons at every location. Because the beacon packets

are the basis for the RSSI readings, successful delivery of the packets is critical to the

performance of the localization system. To avoid packet collisions among the beacons,

the DESYNC [9] protocol is implemented. The protocol ensures that neighboring

beacons have different sending time to avoid collisions.

2.2 Training Phase

In the training phase, the RSSI signature map is constructed. The survey area is divided

into grids, approximately 30cm apart, which is about the distance of one step. During

the survey phase, a receiving tag is connected to a portable PC held by the user, who

then walks along the corridor. The user must wait at each grid for 8 seconds until

the beacon packets are received. After collecting forty RSSI vectors, the received

RSSI vectors are averaged to generate a single RSSI signature vector for each sampled

location.

2.3 Tracking Phase and the KNN Estimator

In the tracking phase, the receiving tag collects the beacon packets for 220ms and

sends the RSSI vector back to the localization system. The system then compares
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the received RSSI vector with the signature map to find the closest possible location.

The KNN method is then used to find the k locations with the closest signature and

computed the weighted average of the k location. In this study, the value of k was set

to 3.

The signature distance employed is the normalized Euclidean distance. Restated,

the Euclidean distance between two RSSI vectors is further divided by the number

of beacons with significant values in the RSSI vector. This step is necessary because

beacon packet loss may be due to geographic distance as well as signal instability or

collisions. The semantics of packet loss are ambiguous. Simply using the lowest RSSI

value for a lost beacon packet introduces bias and estimation error. To avoid the am-

biguity and bias, missing values are simply disregarded by normalizing the Euclidean

distance.



Chapter 3

Testbed

The testbed served as the platform for measurement study. Twenty-four beacon nodes

were deployed on the 6th floor of a department building at this university. The bea-

con nodes are telos-like modules [26] equipped with TI MSP430 microcontrollers and

CC2420 802.15.4 radio. The software is implemented on TinyOS, and the default

MAC, a CSMA/CA-like mechanism, is on for all beacon packet transmissions.

Figure 3.1 shows the floor plan. The smaller rooms, numbered 611 to 629, are

faculty offices and the remaining are graduate assistant laboratories. The twenty-four

Telos-like beacon nodes are small boxes distributed evenly along the corridor. To

simplify testbed debugging, every beacon node was connected via USB to one of the

two testbed PCs. The PCs were installed in room 621 and room 613, and each was

connected to twelve beacon nodes. The PCs served as gateways to allow easy code

upgrades and data logging via USB. MoteLab [37] shares the same wired setting, but

this testbed uses lower cost off-the-shelf components for long distance USB connec-

9
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Figure 3.1: Testbed Layout. The survey area is denoted as blue.

tivity. The testbed was designed to use AC power battery replacement and to enable

long-term measurements.

3.1 USB Connectivity

The effective transmission distance of the standard USB interface was about 5 meters.

For nodes more than 5 meters apart, a USB extender [18] was used. The USB extender

is an off-the-shelf product that extends the effective transmission distance by up to 45

meters. A local unit on the extender modulates the USB input to signals that transmit

on any standard CAT5e network cable. At the other end of the CAT5e network cable

is the remote unit which demodulates the signal back to the USB format.

To avoid deploying numerous lengthy wires throughout the building, the chaining
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Figure 3.2: (a) chained connection (b) cut the power connection (VCC) between USB
extender and USB hub

scheme in Figure 3.2(a) was used to connect nearby beacon nodes. At the beginning

of the chain, a 4-port USB hub was connected to the gateway via a USB extender.

Three beacon nodes were directly connected to this USB hub, and the next USB hub

in the chain was connected via another USB extender. This chain was continued until

it reached the maximum range of the USB extender. That is, the distance between the

last USB hub and the PC did not exceed forty-five meters. This limitation is also why

two PCs were required to cover the entire deployment area in the testbed.

Table 3.1: Details of the Data Sets
Test Case WiFi Log Beacon Beacon Length Error
(WiFi Data Rate) (pkt/MB) (pkt/MB) (pkt/Bytes)
68 kbps 48789/4.96 530483/11.13 21/462
264 kbps 74257/19.34 519557/10.90 16/352
1308 kbps 211008/95.80 455629/9.56 29/638
1705 kbps 247684/124.88 445589/9.35 28/616
2835 kbps 450176/207.62 368411/7.73 25/550
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3.2 Power Supply

Powering the beacon nodes and the USB devices was a challenging problem. The

peak current consumption of the beacon node, the USB hub and the USB extender was

approximately 60mA 5mA, and 20mA, respectively. Therefore, a single chain would

consume more than 800mA current. Sourcing power from the PC USB port was not

feasible due to the high current requirement.

Instead, the USB hubs for the system were externally powered. As Figure 3.2(a)

shows, each USB hub on the chain was connected to an AC power adapter providing

maximum of 3 amperes of currents. Due to the excessive length of the beacon chains

deployed and the large current consumption, the voltage at the last USB hub would

have dropped by as much as 1 volt. Hence, although the standard supply voltage

for USB is 5 volts, a 6 volt power adapter was use for the external power source to

compensate for the voltage drop. Every device in the testbed was tested to ensure it

could sustain the 6 volt power supply. The final step is to cut the power connection pin

(VCC) between the USB hub and the USB extender remote unit(Fig. 3.2(b)), to ensure

that the USB hub was drawing power solely from the external power source.



Chapter 4

Measurement Methodology

The RSSI-based localization system is vulnerable to environmental noises. In a typical

office or campus environment, background noise can be from WiFi, Bluetooth, a 2.4

GHz cordless telephone, a microwave-oven or other RF devices operating on a 2.4 GHz

ISM band. Among these, WiFi traffic produces the most interference. To determine

the effect of WiFi noise on localization accuracy and the efficiency of the proposed

frequency hopping mechanism, WiFi traffic was generated at different levels. As the

WiFi traffic was transmitted at different levels, the following data were collected: (1)

background WiFi traffic, (2) beacon messages received at the receiving tag and (3)

beacon messages received at other beacons.

13
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4.1 Location of Measurement

Because the generated WiFi traffic would be traveling in the space between the source

and the access point (AP), the wireless LAN for generating traffic and the location of

taking the beacon measurements were carefully selected. A survey of the 6th floor of

the department building revealed more than ten APs. Six APs located on the ceiling

of a corridor had been installed by the university to provide general wireless Internet

access for staff and students. Others were deployed by individual laboratories and had

restricted access. One of the generally accessible AP on the ceiling of a corridor was

selected for testing. The localization testbed was set to operate on the channel that

overlaps with the WiFi channel used by the AP. The receiving tag was positioned close

to the AP.

4.2 Data Logging

To generate WiFi traffic at different levels, a laptop PC was connected to the inter-

net via the selected AP and a large file was downloaded from an FTP server using

FlashFXP, an FTP client that allows the user to set the upload/download speed limit.

Another laptop PC near the WiFi source was used as a sniffer to log all WiFi traffic

in the channel and to ensure no unexpected extra traffic occurred. Dumpcap [10],

a Linux packet header capturing tool built on the pcap library, was used to log the

packets. The WiFi log, referred to as ’WiFi’ data, was used to measure the background

noise. The experiments were conducted in midnight during weekends. Only a very

small amount of traffic other than the generated one was observed by the sniffer. This



CHAPTER 4. MEASUREMENT METHODOLOGY 15

ensured that the interference patterns observed were coming from the same AP. In the

five sets of experiments, the average background WiFi traffic rates were 68, 264, 1308,

1705, and 2835 kbps. The traffic rate reported here is not exactly the same as the traffic

in the channel because the sniffer cannot capture corrupted packets. Also, no kernel

loss was reported by the packet capturing tool.

The receiving tag was connected to another laptop PC through the USB interface.

Each rate-limited file transfer session was slightly longer than 10 minutes. During that

period, the receiving tag transferred all beacon messages received through the USB

interface to the laptop PC. Similarly, all beacon nodes in the testbed passed the beacon

messages received through the USB interface to the gateway PCs. Table 3.1 provides

detailed information about the data sets.

The RSSI values in the beacon messages collected at the receiving tag were used to

infer the localization errors. From the beacon messages collected within a beacon cy-

cle (0.2 seconds), the location of the receiving tag was estimated using the mechanism

described in Section 2. Each run produced 3000 location estimations. The beacon mes-

sages collected at the neighboring beacons were used to calculate the beacon packet

reception rate (PRR). The beacon packet reception rate was calculated by zooming into

the beacon link near the AP where the generated background traffic emerged. Taking a

sliding window of 50, the percentage of beacon packets received in the past 50 cycles

was calculated.

The WiFi and RSSI data sets were later used to study the effect of WiFi background

traffic to the localization error. The RSSI and PRR data sets were used to observe

the correlation between the beacon message reception rate at the neighboring beacons
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and the localization error to determine the optimal design of the frequency hopping

mechanism.

4.3 Loss in Beacon Message Logging

Software running on the sensor nodes as well as the PCs collecting data through the

serial port was prone to errors. During the course of the experiments, several errors

in the data sets were identified. Most were software bugs and were quickly corrected.

The remaining errors were caused by hardware and communication problems . To

ensure that traces were not contaminated by software bugs and to accurately assess the

quality of the traces, three error checks were implemented to identify hardware and

communication problems.

(1) Message length check. Every beacon message generated had a fixed and iden-

tical length. For unknown reasons, the CC2420 radio stack sometimes received a valid

packet with an altered packet length in high contention. This problem was also noted in

the TinyOS CC2420 radio module file, but no fix is currently available. The incorrect

length field could be longer or shorter than normal. If the length field reported a longer

value, the packet payload would still be correct but with garbage bytes appended for

the extra length. However, the RSSI reading would be invalid, and would usually show

0xFF. This problem, although not critical to other uses of sensor packets, is problem-

atic for RSSI-based localization systems. Simply recording the RSSI value without

checking produces erroneous location estimations. To correct this problem, the num-

ber of bytes in the packet were verified and packets with incorrect packet length were
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dropped.

(2) Serial error check. To capture bit errors during serial transmission, a 16-bit CRC

checksum value was appended to each packet logged. Packets failing the checksum

were discarded by the serial listener. In addition to checksum, a serial sequence number

was also appended to each logged packet to check for possible serial loss. The serial

listener determined the amount of packet loss from the sequence number. Throughout

the experiments, no checksum failure or packet loss was reported. This also showed

that wiring the sensor nodes to a central PC was effective for the measurement study.

4.4 Beacon Message Synchronization

The beacon sequence number in the beacon messages was used to synchronize the

beacon traces. Upon receiving the beacon messages, the other beacon nodes and the

receiving tag time stamped the messages using their local clocks. Assuming that the

time required for the beacon messages to travel one hop to the receiving tag was the

same as that required to travel to the neighboring beacon, the traces were synchronized

by simplified Jigsaw approach [7].

More specifically, the local clock of the receiving tag was used as the global clock.

Let tm represent the timestamp of the reference packet received at the mobile tag and

let tk denote the timestamp of the reference packet received at the kth beacon nodes.

The local clock of the kth beacon node would then adjusted by adding the time offset

tm − tk. Since the testbed was a multi-hop network, no reference packet could be re-

ceived by any beacons in the network. A queue of reference packets was implemented
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to transitively synchronize other beacon nodes not receiving the previous reference

packets. The first packet received by the mobile tag was chosen as the first reference

packet. Once a beacon was synchronized, the next packet it received/sent was added to

the queue. Elements in the queue were popped out sequentially until all beacons were

synchronized.



Chapter 5

Trace Analysis

We analyze the five sets of traces collected from the localization testbed with different

levels of WiFi traffic in the background.

5.1 Localization Errors

Figure 5.1 depicts the cumulative distribution function (CDF) of the localization errors.

The localization accuracy was pretty good with 50th percentile error 53cm. We believe

such good accuracy comes from the following reasons. First, DESYNC was applied on

beacons. Collisions were thus reduced, and the receiving tag could receive sufficient

RSSI readings to give accurate location estimation. Second, the survey and the test

conditions, e.g. antenna orientation and the way the receiving tag was wore, were held

the same throughout the experiments. The beacon density of the system was also high,

with a beacon placed every five meters.

19
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Figure 5.1: Distribution of Localization Errors

The test results showed that the localization errors were influenced by the back-

ground WiFi traffic. In the 50th percentile, the errors increased from 53cm to 81cm

(53% increase) as the background WiFi traffic increased. The increase in the 80th

percentile error from 160cm to 385cm (141% increase) was particularly large. This

indicated that, as background traffic increases, the localization error and variance also

increase. In cases of heavy background traffic, all beacon messages may be corrupted

in some cycles. The localization error was set to a pre-defined maximum for analysis of

these cases. In practice, the system can predict or simply report the location obtained

in the previous cycle.
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Figure 5.2: Impact of Beacon Packet Loss
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5.2 Beacon Message Losses

To understand how the background traffic impacts localization accuracy, we first look

into the loss of beacon messages. In Figure 5.2(a), the left x-axis shows the average

number of beacon message received during each 220-ms interval, and the right x-axis

plots the 80-percentile localization error. It can be seen that the average number of

beacon message received goes down in high background traffic rate and shows a strong

correlation with the increasing localization error.

To further clarify the impact of beacon message loss, receiving cycles were clas-

sified by the number of beacon messages received for each trace in Fig. 5.2(b). The

corresponding average localization error and the variance shown in the figure indi-

cate that fewer received beacon messages increase localization error and variation. A

location estimation based on only one or two beacon RSSI readings would be very im-

precise. Average errors would be as high as 9 meters since several sample signatures

share similar RSSI readings for a single beacon. The insufficient information received

due to the fewer beacon messages would cause larger localization errors.

Figure 5.2(c) shows the probability of the tag receiving a specific number of beacon

messages for different background traffic rates. The distribution of the number of

received beacon messages indicates that high background traffic increase the number

of cycles in which the receiving tag observes only a small number of beacon messages.

In fact, the background traffic interferes with the delivery of beacon messages and

corrupts them. Thus, the overall number as well as variance in localization errors

worsens when background traffic is high.
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Figure 5.3: Effect of Background Traffic to RSSI Readings

5.3 RSSI Values

Note that in Fig. 5.2(b), if the receiving tag manages to receive sufficient beacon mes-

sages, the localization errors are all similar for different background traffic rates. This

suggests that produces less distortion of RSSI readings. Figure 5.3 shows the average

RSSI readings and the standard deviation for each trace. The RSSI values from dif-

ferent beacons are slid slightly for clarity and ease of comparison. The deviation of

RSSI readings again reveals no a clear trend as background traffic increases. Gener-

ally, RSSI variance causes some localization error. However, background WiFi traffic

apparently has no significant effect on RSSI variation.As Fig. 5.1 shows, the overall

increase in the magnitude of errors is mainly due to the beacon message losses caused

by background traffic.
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Figure 5.4: PRR vs Localization Errors

5.4 Packet Reception Rate

Figure 5.4 shows the beacon packet reception rate of a specific link located near the

source AP and the corresponding localization errors. The figure is plotted by concate-

nating the five 10-minute traces at different background traffic rates. When the level of

background traffic increases, the localization error increases and the packet reception

rate decreases. The effect of beacon message loss at the receiving tag is apparently

observable from the neighboring beacons. The implication is that each beacon node

may track the packet reception rates from neighboring beacons. The packet reception

rate is likely high when the channel is quiet. The packet reception rate is likely low

when there is background noise.
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Figure 5.5: WiFi Traffic Load

5.5 WiFi Traffic Load

Figure 5.5 shows WiFi data rate during a busy working hour at this department build-

ing. The data rate exceeds 1 Mbps for substantial time periods. Such bursty traffic

has also been reported in similar works elsewhere [29] [15]. The 80th-percentile error

during these periods may be as high as 2 or even 4 meters. The localization system

may temporarily blackout when WiFi traffic is high. For a stable RSSI-based localiza-

tion system in an everyday working environment, a frequency hopping mechanism is

proposed and will be detailed in the next section.



Chapter 6

Frequency Hopping Mechanism

For a RSSI-based localization system robust to background noise, this study proposes

a frequency hopping mechanism consisting of (1) a diagnostic test to detect whether

the sensor network is substantially influenced by background noise and (2) a protocol

for signaling all nodes semi-synchronously hop to the next channel. The following

subsections describe in detail the rationale for running the diagnostic test at the beacon

nodes rather than at the receiving tag. The use of hidden Markov model for diagnostic

testing, and the simple signaling protocol are also described.

6.1 Beacon Node

As observed in Section 5, the accuracy of an RSSI-based localization system is sen-

sitive to wireless signals traveling on the same frequency band. The resulting beacon

message losses cause localization errors. To hop away from busy channels, the system

26
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must be able to accurately detect such channels.

One obvious solution is to track the reception rate of the beacon messages at the

receiving tag. However, the receiving tag may appear anywhere in the surveyed re-

gion. Regardless of the beacon network density, some regions, particularly those at

the corners, should receive a small number of beacon messages even when the channel

is quiet. A diagnostic test based on the number of beacon messages received at the

receiving tag would not be robust. On the other hand, the effect of beacon message

loss at the receiving tag is observable from the neighboring beacons (see section 5.4).

The diagnostic test can thus be performed on individual beacon nodes by monitoring

reception of the beacon packets from well-connected neighboring beacons.

At the beacon network setup phase, the beacon nodes send messages to each other,

possibly during non-working hours for example, to determine the list of well-connected

neighboring beacons [38] [40]. Based on the beacon packet reception rate from these

well-connected neighbors, a beacon can measure the influence of heavy background

traffic.

6.2 Diagnostic Test

The accuracy of the diagnostic test to determine whether or not the beacon network

should hop is critical to a noise-resilient RSSI-based localization system. Given the

trend that packet reception rate decreases as the amount of background traffic increases,

observed in Figure 5.4. A naive solution is to set a threshold on the smoothed packet

reception rate. However, if the hopping threshold is set high, the diagnostic test may
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suffer from occasional beacon message loss due to instantaneous noise, as opposed to

sustained background WiFi traffic. The beacon network might therefore hop unneces-

sarily. In this case, beacon nodes as well as the receiving tag in the network require

time to switch to the new frequency channel. During the transition, the receiving tag

may be unable to receive beacon messages effectively and thus produce increased lo-

calization error. Conversely, if the threshold is set too low, the beacon may not be

sufficiently sensitive to detect the presence of background traffic. Furthermore, the

best threshold might differ between different pairs of well-connected beacon nodes.

Manually tracking the best threshold for each good link would also be tedious, i.e., not

scalable.

Instead of trying to find a hard threshold, this study proposed a learning approach

to solve the above dilemma by using hidden Markov model (HMM) [28]. Hidden

Markov model is well-known for recognizing temporal patterns, which is also seen in

daily WiFi traffic (see Figure 5.5). That is, if the data rate of the background WiFi

traffic is currently high, it is likely to remain high; if the data rate is currently low, it

is likely to remain low. The revealed time dependency in WiFi background traffic also

suggests temporal patterns in packet reception rate, knowing the correlation between

the WiFi traffic rate and the packet reception rate. This relationship enables application

of HMM to the beacon observed packet reception rate.

Hidden Markov model extends the concept of Markov models to include the case

where the observation is a probabilistic function of the state. Thus, hidden Markov

model is a doubly embedded stochastic process with a hidden underlying stochastic

process which can only be observed through another set of stochastic processes produc-
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ing the sequence of observations [28]. Using HMM enables modeling of the hopping

decision, the underlying stochastic process, according to the sequence of measured

packet reception rate, the observable stochastic process.

To obtain a model, we feed packet reception rate as the observation sequence into

the trainer. The HMM consists of several hidden states and their corresponding Gaus-

sian distributions which characterize the observation of each hidden state. Applying

the Expectation-Maximization (EM) algorithm enables adjustment of model param-

eters to maximize the probability of the training observation sequences. The hidden

states can be defined as ‘Hop’ or ‘No-Hop’ based on environments and strategies. With

the model, a diagnostic test can be performed on beacons by calculating the state prob-

ability of each observed PRR. Forward algorithm [6] is chosen for the state estimation

computation because of its simplicity, more suitable for resource constrained sensor

nodes.

6.2.1 State Modeling

Given the packet reception rate of a link near the wireless AP as the observation val-

ues, the following parameters are estimated by the Expectation-Maximization (EM)

algorithm. A general HMM represents by N states, denoted as S1, . . . , Si, . . . , SN .

Assuming the observation Ot can be characterized by a Gaussian distribution Ot ∈
{N(µi, σ

2
i )} with mean µi and variance σ2

i , the state modeling problem can be formu-

lated as, given observation sequence O = O1, O2, . . . , OT , find a model λ = (N, A, B,

π ) that maximizes P (O|λ). The notation is as follows:



CHAPTER 6. FREQUENCY HOPPING MECHANISM 30

• π : Initial state distribution

πi = P (q1 = Si), q1 ∈ {S1, S2, . . . , SN}, qt represents the estimated state at

time t.

• A = {aij} : state transition probability distribution given the previous state i;

probability of the next state j.

aij = P (qt = Sj|qt−1 = Si)

• B = {bi(Ot)} : observation probability distribution, given the state i at time t;

the probability that an observation Ot is observed at state i

bi(Ot) = P (Ot ∈ {N(µi, σ
2
i )}|qt = Si)

After training, certain hidden states can be designated as ‘Hop’, while others are

‘No-Hop’. For example, in the most conservative way, the state with the lowest obser-

vation mean is considered as ‘Hop’ and the others as ‘No-Hop’. Hopping would then

only occur when PRR is low enough. In this study, two-state and three-state HMM

are both used and only the state with the lowest observation mean is denoted as ‘Hop’.

Figure 6.1 gives an illustration of a two-state HMM with continuous observation.

Note that the observation, PRR, is calculated over a window of fifty. Thus, only

fifty-one PRR observations, i.e., 0, 1, . . . , 50, are possible; the state machine can there-

fore be modeled by discrete observations. However, the window size is in fact an

adjustable parameter, and may affect the accuracy of the diagnostic tests. Because the

optimal window size for individual environment is unknown, characterizing the PRR

observations as a continuous Gaussian distribution is more appropriate.
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6.2.2 State Estimation

With the derived HMM model λ and the observation sequence O = O1, O2, . . . , Ot,

the probability P (qt = Si, O = O1, O2, . . . , Ot|λ) can be found with the Forward al-

gorithm. The detailed derivation of the Forward algorithm can be found in [28]. The

estimated state at time t would be the state with the highest probability. Here, the

observation sequence can be the instantaneous PRR of a good link or a look-ahead

window of size Ts that records the past Ts PRR. Since the PRR observation is char-

acterized by Gaussian distributions, in Forward algorithm, exponential computation

will be needed to compute bi(Ot) = 1√
2πσi

e−(Ot−µi)/(2σ2
i ), where Ot are the values of

PRR observation and µi, σi are the parameters of the Gaussian distribution in state i.

Computing the exponential function on the sensor nodes would not be feasible. How-

ever, such function can be approximated by a look-up table, where there is a limited

number of PRR values. The look-up table can be computed in advance to capture the

above bi(Ot) function. Given the state machine and an implementation of the Forward

algorithm, the beacon node can perform the hopping decision inference on board. The

Forward algorithm, whose pseudo code is shown in Algorithm 1, is compact and rea-

sonably tractable on Telos-like sensor node platforms. More precisely, for a HMM

with N states, only N(N+1) multiplications and N(N-1) additions are needed for each

observation. There will be 6 multiplications and 2 additions for the two-state HMM

case; and 12 multiplications and 6 additions for the three-state HMM case.
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Algorithm 1: Forward Algorithm
N: the number of states in the HMM
π : the set of prior prob. {πi}, i ∈ {1, . . ., N}
A: the set of transition prob. {aij}, i, j ∈ {1, . . ., N}
B: the set of observation prob. function
{bi}, i ∈ {1, . . ., N}

t: time t
Ot: observation at time t
αt−1(i): the set of prob. of staying at state i at time t-1
qt: estimated state at time t

Input: N, π, A, B, t, Ot, αt−1

Output: αt, qt

if t == 1 then
foreach state i do

α1(i) = πi × bi(O1);
end

else
foreach state i do

αt(i) = [
N∑

j=1

αt−1(j)× aji]× bi(Ot);

end
end
qt = argmaxi αt(i)
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Figure 6.1: Illustration of Two-State HMM

6.3 Signaling Protocol

The beacon nodes as well as the receiving tag should hop to the next channel when the

hopping signal is detected. If all nodes hop synchronously, the receiving tag can contin-

uously receive beacon packets with minimum interruption. In other words, the shorter

the transition time, the better the system stability. However, coordinating all nodes to

hop in perfect synchronization is difficult. Instead, a mechanism, originally designed

to avoid self-interference in a dense wireless ad hoc network [39], was adopted. This

mechanism allows semi-synchronous hopping in beacon networks.

The signaling protocol functions as follows. Each beacon node independently runs

the diagnostic test on packet reception rate. Any beacon link making a decision to

hop takes the lead and generates a hopping message to its neighbors. Shortly after the

message is sent, the beacon node hops to the next channel and waits for other nodes

to join. Other nodes(beacon nodes and mobile nodes), upon receiving the hopping
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message, propagate the message further before hopping to the next channel themselves.

The process continues until there are no further hopping messages in the network. For

the best case that the hopping message can reach all the nodes in the network hop by

hop, the transition time T will be

T = network hop counts×

(transmission + processing) delay of the hopping message per hop

The worst case is that the hopping message cannot reach any nodes in the network.

When the first beacon node hops to a new channel, the packet reception rate(PRR)

of its neighboring nodes will eventually drop to zero after a period of time. In this

case, those neighboring nodes will hop due to the diagnostic test on the zero PRR. The

maximum transition time Tmax will be

Tmax = network hop counts× window size of PRR

For the mobile nodes, if they can receive the hopping message, they will hop very

fast. Otherwise, since no diagnostic test is run on the mobile nodes, we let them hop

if they cannot receive any beacon messages for a period of time (window size for

calculating the PRR).

At last, to ensure that all the nodes will remain in the same channel after the hop-

ping process, each node needs to wait for the maximum transition time before it starts

the diagnostic test again in the new channel. Although the theoretical maximum tran-

sition time can be as large as dozens of seconds for middle-scale network, practically

the hopping messages, propagated in such a flooding fashion, often result in multiple
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copies of the messages being passed around the network. Even when the network is

affected by background traffic and has a high packet loss rate, all nodes are likely to

receive the hopping message and hop to the next channel within a small amount of

time.



Chapter 7

Evaluation

In this section, trace-driven simulations, are used to evaluate the key components in the

proposed frequency hopping mechanism: (1) transition delay of the hopping signaling

protocol and the (2) accuracy of the diagnostic tests when using more realistic and

long-term traces.

7.1 Trace Synthesis

Results of the evaluation depend on the interaction between a Zigbee-based indoor lo-

calization system and WiFi noise in an actual environment. To obtain long-term RSSI,

PRR and WiFi co-traces, we could follow the measurement methodology detailed in

Section 4 and simply let the receiving tag, beacon nodes, and the WiFi traffic logger

run simultaneously for several days. However, because the system was installed in

a public area, continuously monitoring the receiving tag throughout the experiment

36
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Figure 7.1: One-Hour WiFi Data Rate

would be impractical. Leaving the receiving tag in the hallway unmonitored would

also raise technical and security concerns. Pedestrians walking by the receiving tag

would have significantly increased RSSI variance. Factoring out the effect of nearby

obstacles in the evaluation would be difficult without knowing the pedestrian traffic in

the hallway. The receiving tag might also be removed by curious trespassers. Early

attempts to collect long-term traces by leaving the receiving tag in the hallway also

generated complaints from other residents in the building.

Therefore, only long-term WiFi traces were taken. The long-term RSSI and PRR

traces were synthesized by using the short-term RSSI and PRR traces collected at

different WiFi traffic rates. The average data rate of the collected long-term WiFi traffic

was calculated once per minute, and a one-minute segment was randomly selected

from the RSSI and PRR traces at the closest WiFi data rate. All the selected one-

minute segments were merged into hours of RSSI and PRR traces. In the experiments

described in detail below, three one-hour segments were selected from the synthesized

traces, i.e., during busy (peek hours in a day), normal (throughout weekdays), and quiet

(after midnight) hours. (see Fig. 7.1).
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7.2 Hopping Time

Assuming the pattern of hopping message losses is similar to that of beacon message

losses, the time required for all beacons to hop to the next channel is simulated by using

the beacon packet reception rates in the PRR traces measured during different levels

of background WiFi traffic. Figure 7.2 shows the average time required to signal every

beacon node and hop to another channel. Here the average transmission and processing

delay of the hopping message per hop is assumed to be 5ms. When background traffic

rate is low, hopping requires an average of 8ms. The flooding-like approach used by

the signaling mechanism produces a reliable and consistent signal, and all beacons can

be reached from the initiating beacon through the shortest path. The hopping delay

is therefore minimized. If the interference level is higher, signaling packets are more

susceptible to corruption by jamming signals. Hopping time increases slightly as the

average hop count of the signaling packets increases, as Figure 7.2 shows. Although

packet loss becomes more severe, all beacon nodes in the testbed still receive the sig-

naling packets because of the flooding mechanism. Throughout the experiments, the

worst case as described in Section 6.3 is not observed, so that the hopping time here is

not bounded by the window size for calculating the packet reception rate.

7.3 Diagnostic Test

In this subsection, we examine qualitatively the inferred ‘Hop’ and ‘No-Hop’ behav-

iors using the PRR threshold and HMM approaches.
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Figure 7.2: Hopping Time

7.3.1 PRR Thresholds

As mentioned in Section 6, a naive, though not scalable, solution for making hop de-

cision is to set a threshold on the observed packet reception rate (PRR). The challenge

is how to find a proper threshold. A brute-force approach is to conduct a trace-driven

simulation on every possible threshold setting and select the one that can minimize

localization error. We take the normal-hour PRR trace for the simulations. Taking one

PRR value at a time, if the observed PRR is lower than the threshold, a ‘Hop’ decision

would be made; otherwise, a ‘No-Hop’ decision would be made. When the ‘No-Hop’

decision is made, the simulation then takes the next PRR data in the trace and repeats

the decision making process. When ‘Hop’ is indicated, the simulation moves to a data

point randomly selected from the PRR trace to simulate hopping to the “new” channel.

We assume no beacon messages are received in the first period after hopping, i.e., the

first localization error in the new channel is set to be a predetermined maximum. If

the simulation reaches the end of the trace, it rounds to the beginning of the trace. An
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Figure 7.3: Localization Error with Different PRR Thresholds

implicit assumption in such simulations is that all channels behave similarly during the

normal hours. Each simulation runs for 3 hours. Note that, simulating in this fashion,

when PRRs are computed using a sliding window, the first PRR value should be cal-

culated based on the dynamics of the beacon messages in the first and last forty-nine

cycles. The first forty-nine PRRs should be computed similarly.

Figure 7.3 shows the 80th-percentile localization error achieved by setting PRR

threshold from 20% to 80%. From the simulation results, setting PRR threshold at 48%

can achieve the most accurate localization estimation. The system would be unable to

detect the presence of background traffic with too low thresholds, resulting in higher

packet losses. Therefore, the localization error is higher for PRR threshold lower than

48%. On the other hand, frequent unnecessary hopping decisions are made with too

high thresholds. Therefore, the localization error increases when the threshold is higher

than 48%.

Setting 48% as the PRR threshold, another set of simulation was carried out with

the busy-hour trace. Figure 7.4 shows the data points predicted as ‘Hop’ in red(dark)
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Figure 7.4: Hopping Decision of PRR-Thresholding. Red dots: Hop. Green dots:
No-Hop.

and those predicted as ‘No-Hop’ in green(gray). The ‘Hop’ data points generally cor-

respond to the 20-minute interval during which a surge of WiFi traffic occurs. A sub-

stantial number of false negative were noted while no false alarms were detected. Here,

the false negative is defined as a data point that is within the WiFi traffic burst and re-

sults in high localization error, but the diagnostic test reveals a prediction of ‘No-Hop’.

The false alarm is defined as a data point that is beyond the WiFi traffic burst but is

predicted as a ‘Hop’ point.

7.3.2 Hidden Markov Model

Instead of brute-forcely searching for a good threshold, with HMM the system can

learn to distinguish busy and quiet channel from measured packet reception rates and

make hopping decisions. To train a model, the normal-hour is applied, and the initial
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(a) Two-state Diagram (b) Three-state Diagram

Figure 7.5: State Diagram of HMM

values for parameters µ and σ in each state is derived from the K-means algorithm.

The K-means algorithm identifies partitions such that the data points within the same

state are as close together as possible, and the data points in different states are as far

apart as possible. For the HMM-related computation, a Matlab HMM toolbox was

employed [21].

A two-state HMM is first employed, since there is a straight-forward mapping be-

tween the two states and the two decisions, ‘Hop’ or ‘No-Hop’. Figure 7.5(a) shows

the state machine obtained after training with the normal trace. The state with lower

PRR mean is denoted as ‘Hop’, while the other is ‘No-Hop’. A trace-driven simu-

lation based on the derived model then runs with the busy-hour trace, and the result

is shown on Figure 7.6(a). In the figure, the red(dark) points are the data points pre-

dicted as ‘Hop’, while the green(gray) points are those predicted as ‘No-Hop’. As in

the previous section, the ‘Hop’ data points generally correspond to the 20-minute in-

terval during which a surge of WiFi traffic occurs. However, a substantial number of

false alarms were also noted. Frequent false alarms may cause the system to hop un-
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(a) Two-state Model

(b) Three-state Model

(c) Three-state Model (Window Size=10)

Figure 7.6: State Prediction of HMM. Red dots: Hop. Green dots: No-Hop.
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necessarily. In this case, the receiving tag would be unable to reliably receive beacon

messages during the hopping transition and the accuracy of the location system would

deteriorate.

Compared to the results of PRR thresholding in Figure 7.4, we have observed that

those false alarms are composed by the data points who only suffered from mild packet

losses and still can achieve high localization accuracy. This phenomenon can also be

found in Figure 4(b), the localization error remains low while the number of receiving

beacon packets decrease to 8 or 7 packets. An optimization of this two-state HMM is

to create another hidden state to capture the PRR data points who are only affected by

mild background traffic.

We then evaluate a three-state HMM, and classify the three states in the most con-

servative way. The resulted state machine is depicted in Figure 7.5(b). Only the states

with the lowest PRR mean is designated ‘Hop’, while others are ‘No-Hop’ states. Fig-

ure 7.6(b) shows that three-state HMM can effectively lower the false alarm rate by

accommodating the above mentioned data points with one more ‘No-Hop’ state.

7.4 Localization Error with Frequency Hopping

Figure 7.7(a) shows the CDF of localization errors during a busy hour using two-state

HMM, three-state HMM, the 48% PRR threshold, as well as the localization errors

without frequency hopping. Both two-state and three-state HMM improve the 80th-

percentile localization error. For three-state HMM, the improvement is as high as

28% (from 1.82m to 1.32m) and achieved similar accuracy as the brute-force 48%
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PRR threshold setting. The above results show that the frequency hopping mechanism

can avoid unnecessary beacon packet losses and still maintain localization accuracy.

Conversely, the original localization system without frequency hopping must undergo

a period of high localization error.

The 50th-percentile localization errors, however, are similar because the interfer-

ence level is not high during most of the one hour period. The frequency hopping

mechanism is not intended to improve the average error of the localization system. In-

stead, it aims at minimizing the variance in localization error by avoiding occasional

surges of background traffic. This task is particularly important if the system is to be

deployed for everyday use.

To further highlight the advantage of frequency hopping, we zoom into the busiest

20 minutes. The 80th-percentile localization error, as shown in Figure 7.7(b), can be

reduced from 2.74 meters to 1.24 meters. Localization error of the PRR thresholding

approach is slightly worse than three-state HMM. The PRR thresholding approach,

though introduces no false alarms, reacts slower to the degraded wireless environment.

The delay in responding to busy background traffic leads to the less accurate location

estimates during the busy period, but gives a better overall performance by avoiding

unnecessary hopping during the quiet period.

7.4.1 Busy vs. Quiet Hour

Figure 7.7(c) shows the CDF of localization errors during a quite hour. Both HMM

models show slightly worse 80-percentile localization error than the no-hop case. This

is because any hopping in this trace is unnecessary. In addition, even if the system
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(b) Zoom in to busy 20 minutes
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Figure 7.7: Localization Accuracy in Busy/Quiet Hour

successfully hops to a very quiet channel, no particular benefit can be achieved. In

fact, there is a slight penalty of not being able to receive beacon messages during the

transition of hopping.

7.4.2 Sliding Window Size

The sliding window size for computing the packet reception rate is a tunable parameter

in our localization system. PRR represents the beacon message reception rate over a

period of time, which is the sliding window size. If there is a WiFi traffic burst, it

would take a certain amount of time for the PRR to reflect the change. The delay can

be reduced by setting a smaller window size. However, the false alarm rate becomes

higher as a smaller window size is more sensitive to short-term noise. As shown in

Figure 7.6(b) and 7.6(c), a window size of 10 incurs substantial amount of unnecessary

hopping while a window size of 50 makes the system more stable. To observe the effect

of different window sizes, we take the busy-hour trace and 3-state HMM method and
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Figure 7.8: Impact of Window Size on Localization Accuracy

simulate the localization error varying the window size from 10 to 90. Figure 7.8 are

the resulting localization errors. As window size increases from 10 to 40, the error

decreases and reaches smallest when the window size is around 50 to 70. Then the

error increases again when window size goes from 80 to 90. In this sense, a window

size of 50 gives a good tradeoff between delay and false alarm rate.
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Related Work

8.1 Channel Hopping

Co-channel interference is not a new problem, and channel hopping is a popular solu-

tion. The problem exists whether or not radio standards are similar. Recently Gum-

madi et al. [12] analyzed the interference of Zigbee and cordless phone using 802.11

networks. Gummadi proposed a channel hopping mechanism to mitigate the impact.

Utilizing multiple channels also helps to maximize network capacity. [4] and [20] both

studied the channel hopping problem within 802.11 networks for network throughput

improvement. In the domain of wireless security, [39] used channel hopping as a coun-

termeasure to wireless jamming attack. The mechanism proposed in the current study,

however, differs in that the channel hopping mechanism employs beacons for robust

localization.

Several works are proposed to understand the packet delivery in low power wire-
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less networks [40] [34] [16]. [33] conducted experiments to understand the interference

among the same low-power radio network. [34] reported the correlation between RSSI

and packet reception rate. [16] proposed to use the measured signal strength of interfer-

ence to simulate packet delivery rate. Our work, on the contrary, utilizes the measured

packet delivery rate to infer the level of interference.

8.2 Localization Systems

The various techniques developed for indoor localization commonly require signal

transmissions between pre-deployed beacons and observed target. For example, sonic,

ultrasonic, infrared, RF, camera, and UWB are all commonly used as signal sources.

The major differences are the calibration methods and signal type.

Assuming that signals propagate at constant velocity, TOA (time of arrival) [25]

is the most common method of estimating distance by measuring signal propagation

time. The AOA (angle of arrival) [23] is a network-based technique for exploiting

geometric properties of arriving signals. By measuring the angles of the arriving sig-

nal at more then one receiver, AOA achieves precise localization. Another network-

based technique, TDOA (time difference of arrival) [31] infers distance by measuring

time difference instead of angle. Some hybrid approaches combining TOA, AOA, and

TDOA have also been proposed [8]. The FDOA (frequency difference of arrival) ap-

proach [19] exploits signal interference patterns from multiple beacons for distance

estimation.

Another class of techniques measures the received signal strength indication (RSSI).
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These techniques exploit the decay model of electronic-magnetic fields to determine

distance by monitoring RSSI distance [24] [22] [17]. Frequency bands used for trans-

mission also vary. For example, the well-known RADAR system [5] uses radio fre-

quency (RF) whereas LADAR and SONAR use visible light and audible sound bands,

respectively. Cricket [27] is a hybrid approach using both RF and ultrasonic bands.

The UWB-based systems, such as Ubisense [36], use very wideband to solve the prob-

lems of multi-path and environmental interference. However, UWB-based systems

require specialized hardware to achieve GHz sampling rates and nanosecond time syn-

chronization. Adding such specialized hardware increases costs on typically resource-

constrained sensor nodes.

In addition to range-based systems, range-free systems have also been proposed.

Such systems do not localize targets based on range estimation. For example, APIT

[13] estimates target location by analyzing connectivity information to anchor nodes

with known locations. The more anchor nodes deployed, the greater precision of the

technique. Spotlight [35] and Lighthouse [30] correlate the event detection time of a

sensor node with the known spatiotemporal relationship. Detection events can then be

mapped to a possible position.

Both range-based and range-free localization systems are affected by co-channel

interference since the frequency band they use to deliver localization messages may be

shared with other users, particularly in the increasingly crowded RF frequency band.

Although RSSI-signature-based localization system was adopted for evaluation, the

basic concept and mechanism of frequency hopping are not limited to it.
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Conclusion and Future Works

We have demonstrated in this study that the proposed frequency hopping mechanism

can achieve accurate, stable indoor localization in daily environments. The 80th per-

centile and 50th percentile localization errors are kept low to approximately 1.3 me-

ters and 0.6 meters, even when the environment is experiencing heavy interference.

Although using a longer beacon message collection time may also mitigate the local-

ization error due to beacon message loss, the proposed frequency hopping mechanism

pushes the envelope further. It enables accurate and stable indoor localization with

minimum delay, i.e., the real-time location systems with a rising market demand.

Our intention is to implement the frequency hopping mechanism on our localiza-

tion testbed and evaluate the long-term stability under realistic WiFi influences. In the

design of our frequency hopping mechanism, each beacon runs a diagnostic test on

beacon packets received from each well-connected neighboring beacon. If the beacon

finds any of the well-connected neighbors is busy, the beacon initiates the signaling

51
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protocol and informs everyone to hop to the next frequency. The implementation of

the Forward algorithm and the signaling protocol is relatively straightforward. Obtain-

ing the HMMs, however, requires an extended measurement study with WiFi traffic

systematically generated at different locations. This is top on our future plan pursuing

research in robust real-time location systems.
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