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中文摘要 
毫米(millimeter)與次毫米波(Submillimeter)提供了宇宙中低溫塵埃輻射

與許多分子光譜資訊，是地面天文觀測最後的波段。建造當中的新一代地表最大

次毫米波干涉儀（the Atacama Large Millimeter and submillimeter Array，

簡稱 ALMA）是有史以來最大的地面望遠鏡興建計畫。毫米和次毫米波的干涉影

像相位起伏擾動主要都是受到對流層水汽分布的影響。為了減低觀測影像相位擾

動，我們使用夏威夷白山(Mauna Kea)上的次毫米波干涉陣列（Submillimeter 

Array，簡稱 SMA）的觀測數據來發展相位補償修正策略，以作為最大次毫米波

干涉儀 ALMA 當中的短基線密集陣列（the Atacama Compact Array，簡稱 ACA）

影像修正用。運用內插和外插的演算技巧來比較與了解影像相位補償修正的有效

程度。 
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Abstract 
 

Millimeter and submillimeter astronomers pursue science and technology 
development with ground-based millimeter/submillimeter interferometers through the 
opaque atmosphere.  This waveband provides a unique window on cold dust 
emission and highly excited lines from molecules and ions.  The next generation 
interferometer at this waveband is the Atacama Large Millimeter and submillimeter 
Array (ALMA) with the Atacama Compact Array (ACA).  The interferometers at 
this waveband are, however, highly affected by the water vapor induced refraction, 
which results as phase fluctuations.  To reduce the phase fluctuation, we conducted a 
phase correction scheme using the observing data of the Submillimeter Array (SMA) 
for the ACA.  The phase correction schemes, interpolation and extrapolation, are 
studied to know how effective these scheme are.  

Three simultaneously detected antenna phases form a plane of a wave front, and 
this phase screen are used for the interpolation and extrapolation.  The interpolation 
scheme can apparently obtain improved results, while the extrapolation scheme often 
does not. 

There are unexpectedly large phase fluctuations showed up only around the 60 
meters away from the reference antennas.  This can be explained with considering 
the frozen phase screen. 

It may be explained more clearly after more careful investigation of the wind aloft 
and the temporal and spatial turbulent structure on the summit of Mauna Kea. 
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Chapter 1 
Introduction 
 

Submillimeter and millimeter wavebands are perhaps the last wholly unexplored 
wavelength frontier because of the technical difficulties and opaqueness of the 
atmosphere.  Here we conducted a scheme to compensate the interferometric phase 
via SMA observations for the phase correction of the Atacama Compact Array (ACA) 
in part of the Atacama Large Millimeter and submillimeter Array (ALMA) project. 

Astronomers place the millimeter and submillimeter observation wavebands 
between 30 and 950 GHz with wavelength from 10 mm to 0.3 mm, which are 
technically difficult due to the sheer complexity of the antenna receivers and to the 
strong absorption of the atmosphere in such a waveband.  They are unique in 
astronomy containing more than 1000 spectral lines (Carilli et al. 1998) of interstellar 
and circumstellar molecules as well as the thermal continuum spectrum of cold dust at 
temperatures of 3-100 K (Taylor et al. 1998).  Besides, they promise to yield a new 
view upon the Universe we live in, almost certainly shedding light upon many of the 
outstanding questions in modern astronomy.  They are the only bands in the 
electromagnetic spectrum which allow studying cold gas and dust in space.  Single 
dish submillimeter telescopes were built after 1980s.  The Submillimeter Array 
(SMA; Ho et al. 2004) is the world's first dedicated submillimeter interferometer 
exploring one of astronomy's last frontiers at a site at the summit of Mauna Kea in 
Hawaii.  The aim of the SMA is to use interferometric techniques to observe 
millimeter and submillimeter wavebands (its wavelength ranges from 0.3 to 1.7 
millimeter at frequencies from 180 GHz to 900 GHz) with higher angular resolution. 

For a ground-based interferometer operating at millimeter and submillimeter 
wavelengths, ambient atmospheric water vapor will absorb (block) incoming radio 
waves.  At low elevations, where more water vapor resides, the atmosphere is very 
opaque at submillimeter wavelengths.  The abundant water vapor absorbs a lot of 
incoming submillimeter light before they can reach the antenna.  As a result, 
observations in the millimeter and submillimeter range are strongly affected by 
fluctuations in distribution of tropospheric water vapor (Tatarskii 1961).  Such 
variations can cause interferometric image to quiver or to be unstable because the 
arrival of radio light is affected by the changing index of refraction along its path of 
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sight through the atmosphere. 
Correction of the atmospheric phase fluctuations due to the spatial and temporal 

variations of the water vapor content in the troposphere is of great importance in radio 
interferometry, especially in the millimeter and submillimeter wavebands.  Even for 
the observations using the SMA, which is located at the top of Mauna Kea that is one 
of the best observing sites in the world, phase fluctuations can be seen very often.  
The water vapor induced phase errors should be removed or calibrated before 
constructing the interference.  Measurements of the water vapor content are very 
important, but the water vapor is poorly mixed in the atmosphere, and the total 
column density of the water vapor cannot be accurately sensed from surface 
meteorological measurements.  In addition, higher operating frequency will lead to 
more phase fluctuations.  Several kinds of conventional techniques have been 
proposed for reducing tropospheric phase noise.  They are fast switching phase 
calibration, paired array phase calibration, radiometric phase calibration, and so on 
(Carilli and Holdaway 1999). 

The ALMA, the largest ground based and astronomical observational facility ever 
built, is currently under construction in the Chajnantor area in the Atacama Desert in 
northern Chile.  The ALMA is designed to cover the wavelength range from 0.3 mm 
to 9 mm (almost the same as the SMA) with the ability to provide images at an 
angular resolution of 0.01 arcsec.  The ACA is designed to improve the short 
baseline coverage of the ALMA, especially for observations of extended and large 
scale structures at submillimeter wavelength (Fig.1.1). 

Figure 1.1  Artist's conception of the ALMA antennas in a compact configuration.  Image 
courtesy of NRAO/AUT and ESO.  The ACA is at the bottom-right corner of 
the figure. 
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Asaki et al. (2005) conducted a series of simulations of a phase calibration scheme 
for the ACA using water vapor radiometers (WVRs).  In the proposed scheme, the 
WVRs that measure the tropospheric water vapor content are attached to the 12-m 
antennas at the four corners of the array.  The interferometric phase change due to 
the tropospheric water vapor variations aloft is transferred into the excess path length 
of the arriving radio waves.  The excess path length is fitted to a simple 
two-dimensional slope using WVR measurements.  Then the phases of the antennas 
inside the reference rectangle can be compensated and calibrated.  Note that under a 
compact configuration, the fast switching phase calibration will not work effectively 
(Holdaway 2004). 

To confirm this simulation study and discuss further, we performed the proposed 
phase calibration scheme for the ACA using the SMA datasets.  Here we present 
observations with the SMA at 230 GHz, analyze the datasets under the proposed 
scheme, and discuss the results of the corrected phase variations.  Our experiment is 
to clarify how effectively the proposed compensation scheme works in the conditions 
of the real atmosphere.  We construct a reference triangle composed of three 
antennas, and make a flat phase plane with observing a point source.  The phase of 
antennas inside the reference triangle can be interpolated, while the phase of antennas 
outside can be extrapolated.  Then we compare the observed phases and the 
predicted phases of the point source.  Standard deviations for the observed and the 
subtracted phases are compared.  Temporal structure functions for the observed and 
the subtracted phases are used to evaluate how stable the fluctuations are. 
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Chapter 2 
Theory 
 

2.1  Basic Principle of Millimeter and 

Submillimeter Interferometry 
 

2.1.1  Electromagnetic Waves from Astronomical Sources 
 

Away from our Earth, vast numbers of various astronomical sources emit 
electromagnetic waves.  The electromagnetic waves propagate through space with 
obeying the well-known Maxwell’s equations.  Some of the waves travel toward our 
Earth, and reach to our sensing device－antennas for submillimeter and millimeter 
astronomy.  The arrived waves, or in other words signals, yield electric currents in 
the antennas, and give us information about the electromagnetic fields at the 
astronomical sources. 
 
 

2.1.2  Two-Element Interferometer 
 

To obtain the detailed spatial distributions of the astronomical sources, the size an 
antenna is needed to be large.  However, the size of an antenna cannot be too large 
due to the technical and budgetary problems.  To avoid these problems, 
interferometry was invented.  Much of the early works in interferometric imaging 
were done by radio astronomers.  The signals from two radio antennas were added 
electronically to produce interference.   Later interferometers included a variable 
delay between one of the antennas and the correlator as shown in Figure 2.1. 
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Signal
Delay

Output
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Figure 2.1  The simple diagram of the two-element Michelson interferometer.  The path 

delay τg is compensated by the delay circuit. 

 
 
 

We define the response of the interferometer as the complex visibility, V(u,v), and 
the sky brightness distribution as B(x,y).  The spatial coherence function can be 
expressed as follows: 
 

∫ += dxdyeyxBvuV vyuxi )(2),(),( π .                                    (2.1) 

 
Equation (2.1) demonstrates the Fourier Transform relationship between B(x,y) and 
V(u,v).  Interferometric observations, therefore, measure the Fourier transformed 
source brightness distribution at a particular spatial frequency due to the limited 
numbers of antennas.  The spatial frequency is given by the baseline vector of two 
antennas, projected onto the uv-plane. 

The schematic diagram depicted in Figure 2.2 shows the source plane, the uv-plane, 
and the celestial sphere.  The Fourier transform of the source distribution is 
measured in this uv-plane.  According to the theory of Fourier transform, a source 
with an angular extent of x has a largest spatial frequency of u proportional to 1/x.  
Thus, if a source exhibits fringes in the spatial frequency of u, the source must have 
an angular size less than x.  If we need to observe an object with a large-scale 
structure, we need a compact array with short baselines. 
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radio source 

y

x

v
u

u, v-plane 

 
 
Figure 2.2  The geometric relationship between a radio source and the uv-plane, depicted in 

relation to the celestial sphere.  The components of the offsets to the source 
center is expressed as x and y.  

 
 
 

2.2 Mean Tropospheric Effect on Interferometric 

Phase 
 

2.2.1  Water Vapor Induces Phase Variation 
 

The neutral media between astronomical sources and our Earth often have profound 
effects on radiation fields traversing them.  Propagation of radio waves through the 
Earth’s neutral atmosphere causes a fluctuation of the phase due to refraction within 
the medium.  These effects can be analyzed in terms of geometric optics.  They are 
the change of the propagating velocity and the deflection of the radio signals. 

In the troposphere, which is the lowest layer of the atmosphere, the temperature 
begins to decrease from the Earth’s surface at a lapse rate of 6.5 K km-1 until it 
reaches about 218 K at an altitude of approximately 7 to 11 km.  Within the neutral 
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atmosphere, the propagation of radio waves is most affected by the troposphere.  The 
phase fluctuations in radio interferometers at centimeter, millimeter, and 
submillimeter wavelengths are caused predominantly by fluctuations in the 
distribution of water vapor.  Uncertainties of water vapor content limit the accuracy 
of interferometric angular resolution especially at millimeter and submillimeter 
wavebands.  Furthermore, the water vapor is poorly mixed and inhomogeneously 
distributed in the atmosphere, such as clouds or fog, and the content of the water 
vapor cannot be accurately sensed from ground-based meteorological measurements. 
 
 

2.2.2  Excess Path Length and Refractivity 
 
Differences in the refractive index of the atmosphere along the line-of-sight from the 
different antennas to a radio source cause phase changes (Thompson et al. 2001).  
Let us consider an electromagnetic wave propagating along the y direction in a 
uniform dissipative dielectric medium.  The wave equation can be represented as 
 

)2(
0),( tknyiety πν−= EE ,                                               (2.2) 

 
where E0 is the electric field amplitude, n describes the complex index of refraction, 
and k is the propagation constant in free space, equal to 2πν/c, where c is the speed of 
light.  Assume that the effect of the difference in physical length between the actual 
wave path and the straight-line path is negligible and the source is in the far-field of 
the antennas, where the antenna primary beam pattern is essentially independent of 
the distance from the source. 

The difference between the time to penetrate through a medium with index of 
refraction n(y) and the time required to traverse the same distance in free space is 
 

∫ −=Δ dyn
c

t )1(1 .                                                  (2.3) 

 
In most radio astronomical studies, the excess path length L is defined as cΔt, 
 

∫−= dyyNL )(10 6 ,                                                 (2.4) 
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where N is the refractivity, defined by N = 106(n－1).  The excess path length is used 
extensively in millimeter radio astronomy. 

The refractivity of moist air can be approximated by the Smith-Weintraub equation 
(Smith 1953) 
 

2
510776.38.646.77

T
p

T
p

T
pN VVD ×++= ,                                (2.5) 

 
where T is the temperature in Kelvin, pD and pV are the partial pressures of the dry air 
and the water vapor in millibars (1 mb = 1 hPa = 100 N/m2), respectively. 

According to the ideal gas law, the refractivity can be written in terms of gas 
density 
 

M
RTp ρ

= ,                                                        (2.6) 

 
where p and ρ  are the partial pressure and mass density of the constituent gas, R is 
the universal gas constant, and M is the molecular mass.  The air is a mixture of the 
dry and wet components.  The equation of state of these two components are 

DMDD /RTp ρ=  and VVV / MRTp ρ= , where Dρ  and Vρ  are the mass densities 

the troposphere is M
of the dry air and water vapor, respectively.  The molecular mass for the dry air in 

l 
pr

D = 28.96 g mol-1 and that for water vapor is Mv = 18.02 g mol-1. 
According to the Dalton’s law, the total pressure p is the sum of all the partia
essures, and the total density Tρ  is the sum of the densities of dry air and water 

vapor.  The total pressure p can therefore be replaced by ρ  and written as 
 

T

T

M
RTp ρ

= , 

 
here w

 
1

11
−

⎥
⎦

⎤
⎢
⎣

⎡
+=

T

V

VT

D

D
T MM

M
ρ
ρ

ρ
ρ .                                         (2.7) 

 
ubstituting Eq.(2.6) and the equation S VTD ρρρ −=  into Eq.(2.5) yields 
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T
N V

VT
ρρρ 1742076.02228.0 ++= ,                                   (2.8) 

 
here w  and Vρ  Tρ are in g m-3.  Since the second term on the right-hand side of 

wi
under the condition of T = 280 K, 
Eq.(2.8) is small th respect to the third term, it can be combined with the third term 

 

VD
V

T
VVN +

×
+= T NN

TTT
+=+≈

ρρρ 1280076.02228.0 ρρ 17642228.0742 .   (2.9) 

 
The refractivity can be divided into the contribution of the dry and wet ref

hich are defined as ND and NV, respectively. 

 

ractivities, 
w

The equation below describes an air parcel in static equilibrium between pressure 
and gravity 

gdp ρ−= ,T                                                       (2.10) 

 
where g is the acceleration due to gravity

e height above the Earth’s surface.  The equation of hydrostatic equilibrium for the 

pressure can be obta
constant with height: 

From Eq.(2.4), (2
 

dh

, approximately equal to 980 cm s-2, and h is 
th
atmosphere can be applied to a high degree of accuracy (Humphreys 1940).  Using 
the ideal gas law, Eq(2.6), we integrate Eq.(2.10) with assuming an isothermal 
atmosphere and a constant mixing ratio.  The solution can be written as 

RTMgh
TT eh /)0()( −= ρρ .  This is an exponential function with a scale height of RT/Mg 

= 8.5 km for 290 K, which is close to the observed scale height.  The surface 
ined by integrating Eq.(2.10) as follows, assuming g to be 

 

∫
∞
ρ=

00 )( dhhgP T .                                                 (2.11) 

 
.9), and (2.11), the dry excess path length in zenith direction is 

000

6 228.0
gM

6.7710 PPRdhNL DD =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫

∞− .                             (2
D

.12) 

 
The excess path length in centimeter due to the dry component of refractivity (LD) 
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oes not depend on the height distribution of total density or temperature, but only on 

parameters (Reber and Swope 1972).  On average, 
w

                     (2.13) 

 
with a scale height of 2 km
nd the density of water vapor can be expressed as 

d
the surface pressure P0, under the conditions of hydrostatic equilibrium in the 
assumed isothermal atmosphere.  

Water vapor is not well mixed in the atmosphere and therefore is not well correlated 
with ground-based meteorological 

ater vapor density has an exponential distribution 
 

RTghMVeh /)0()( −= ρρ                        VV

.  From Eq.(2.6), the relation between the partial pressure 
a
 

RT
pM VV=ρ ,                               V                       (2.14) 

 

Mv = 18.02 g mol-1 and R = 8.314 J mol-1 K-1, thus 217≈
R

MVwhere  and therefore 

 

T
pV

V
217

=ρ  [g m-3].                                              (2.15) 

 
The partial pressure of water vapor VS

btained from the Clausius-Clapeyron equation (Hess 1959) to an accuracy of better 
, p , for saturated air at temperature T, can be 

o
than 1% within the temperature range 240-310 K by the formula 
 

( ) TT
VS eTp /2732.25

3.5−

273
11.6 −⎟

⎠
⎞

⎜
⎝
⎛=  [mb].                                 (2.16) 

 
Note that pV/pVS is the relative humidity (Crane 1976).  Eq.(2.16) represents the 
artial pressure of water vapor at temperature T.  Compared to the other gases in the p

air, water may easily condensate.  The water vapor pressure is in general very low 
compared to the air pressure in a mixture.  Common values for the vapor pressure 
are between 5 to 30 mb.  The component of the path length resulting primarily from 
water vapor is 
 



 

 11

∫
∞−×=

0

6

)(
)(101763 dh

hT
hL V

V
ρ .                                         (2.17) 

 
e assume that the atmosphere is isothermal and that pV decreases exponentially with 

                                             (2.18) 

 
nd 

W
a scale height of 2 km, 
 

RTghM
VV

Vephp /)0()( −=

a
 

2=
Mg
RT  [km], 

 
en from Eqs.(2.15) and (2.17) th

 

2
04106.7

T
pL V

V ×=  [cm],                                            (2.19) 

 
here pV0 is the partial pressure of water vapor at the surface of the earth.  We w

denote the precipitable water vapor density as 
 

∫
∞

=
0

)(1 dhhw V
W

ρ
ρ

,                                                (2.20) 

 
here w Wρ  is the density of water, 106 g m-3.  Suppose that the atmosphere is 

al
 

                                     (2.21) 

This wide
GHz.  In the operating wavebands above 100 GHz, the ratio LV/w can increase from 
.3 to about 8 (Fig.2.3). 

2.2
 

isotherm  at 280 K in Eq.(2.17) 

wLV 3.6≈ .                  
 

ly used formula is an excellent approximation for frequencies below 100 

6
The total zenith excess path length through the atmosphere is VD LLL +≈  in 

centimeter, which from Eqs.(2.12) and (2.21) is 
 

wP0 +≈ ,                                                ( 2) L 3.6228.0
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w
L/

 

 
Figure  2.3  The excess path length due to water vapor per unit column density versus 

frequency, from formulas by Liebe (1989) (Sutton and Hueckstaedt 1996). 

 
 

excess path l for 
stimation purposes.  However, it is usually not accurate enough to predict the path 
ngth of a wavelength at millimeter and at submillimeter wavelengths.  Table 3.1 

hows two different meteorological conditions for estimation purposes.  More 

ue to water vapor. 

eteorological Parameter Case I Case II 

Frequency (GHz)

 
where P0 is in millibars, and w is in centimeters.  Equation (2.22) shows that the 

ength L depends on the meteorological condition and is reasonable 
e
le
s
precipitable water vapor can cause longer excess path length. 
 
 
 

Table 2.1  Two different physical conditions for estimation purposes.  More precipitable 
water vapor density leads to longer excess path length d

M

Temperature (K) 303 258 
Relative Humidity (%) 80 50 

ρV0(g/m3) 
PV0(mb) 34 1.0 

24 0.8 
w (cm) 4.9 0.15 
LV(cm) 28 1.1 
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Phase Change in the Atmosphere 

 a simple model (McKinnon 1988) to present the phase change in the process 
f radio wave propagation in the neutral atmosphere, troposphere.  Let the 

urved in the reality, 
 one antenna have 

ickness wm and the water vapor layer above the other antenna have thickness wn.  

 k is in general complex (k = 2πν/c).  For waves propagating along the y 
irection in a dissipative medium (non-dispersive), which is a poor conductor 

(Jackson 1998), k can be expressed as 
 

2.3  
 
We use
o
atmosphere above the interferometer be flat, as opposed to be c
with a uniform thickness h and the water vapor layer above
th
To carry out the radio wave propagating through the atmosphere, we use the Equation 
(2.2) 
 

)2(
0),( tknyiety πν−= EE ,                                               (2.23) 

 
where
d

εc
i

c
4

 
Substituting this term for k into Eq.(2.2

μνσπμεπν 22
+≈ .                                         (2.24) 

3), the equation can be rewritten as follows 

k

 

(24

0

2

),( c
i

c
y

eety
−

=
πν

ε
μνσπ

EE
)cty −με
.                                    (2.25) 

 
The phase of the propagating wave in the equation above is 
 

tny
c

πνπνφ 22
−= ,                                                (2.26) 

 

με=n . since the medium index of the refraction is 

After the wave propagates through atm
at each antenna becom

osphere, the phase of the radio wave arriving 
es 

 

( )[ ] tnwwh
c mmm πνπνφ 22

−+−= ,                                   (2.27) 
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Figure 2.4  Schematic diagram of water vapor induced excess path length and phase 

difference between two connected element antennas.  It shows that the 
interferometric phases change more as radio wave propagating through more 
water vapor fluctuations. 

 

 
 

([ h
cn ) ] tnww nn πνπνφ 2

=

here n is now the refractive index of water vapor and the refractive index of air is 
ssumed to be unitary, and 

2−+− ,                                    (2.28) 

 
w
a mφ  and nφ  are the two phases for each antenna (Fig.2.4).  
The phase delay between the tw
 

o antennas is therefore 

( ) ([ ])−−−=−= mnmnmn wwwwn
c

Δ
πνφφφ 2

If D is the difference in signal path length above the two connected antennas, then 

.                          (2.28) 

 

mn www −=  and 
 

( ) ( )
λ
wN ××−60 ,                (2.29) π

λ
ππνφ wncnw ×=×−=−=Δ 1212/12

excess path l , the equation can be expressed as 
 

 
where we have introduced the refractivity N, defined by N = 106(n－1).  In terms of 

ength L

 wn wm h 

nφ mφ
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able 2.2 Theoretical calculation at 230 GHz of the two days on the summit of Mauna Kea. T

 
 
 

w×NL ×=×= 10
2π
Δ −6φλ .               

ffect of the atmosphere on phase delay.  The real 
tmosphere is turbulent, and water vapor is not uniformly distributed in the 
oposphere.  According to the Equation (2.29), the phase delay increases with the 
ater vapor content and the frequency of the incident radio wave.  As our operating 

frequency is getting highe e 
case of the SMA observing at 230 GHz (wav  
hase under different weather conditions can be roughly calculated as listed in Table 

Time of Observation PWV (mm)  

                         (2.30) 

 
The equation above illustrates the e

Phase Difference (degree)

Thu Aug 26, 2004 (10 HST) MKWC  1.0 30° 

Tue Sep 07, 2004 (17 HST) MKWC 5.0 152° 

a
tr
w

r, water vapor for phase fluctuations affects more.  In th
elength = 1.3 mm), the difference of the

p
3.2.  Therefore it is necessary to develop a suitable strategy to compensate the 
tropospheric phase fluctuations due to water vapor for millimeter and submillimeter 
interferometers with higher and higher frequencies. 
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periment is to investigate the proposed phase compensation 
g the SMA on Mauna Kea.  The reasons of using the SMA 

ter 
he 

ray is applicable for this experiment.  The ACA uses WVRs for the phase 
mpensation, but for this experiment using the SMA, we observed strong point 

so

e foot of Pu'u Poli'ahu at 4080 m above sea level 
t the summit of Mauna Kea, Hawaii, U.S.A. (Fig. 3.1) as a collaborative project of 

AO) and the Academia Sinica 
gure 3.2 shows all antennas of 

e SMA.  Eight 6-m radio antennas comprise the array with currently working 
ceiver bands at 230, 345, and 690 GHz.  Each element can observe with two 

 
Chapter 3 
Measurements and Data Reduction 
 

The purpose of the ex
method for the ACA usin
for this experiment are that the SMA is an interferometer operating at submillime
wavelengths, which is the same as the ACA, and that the antenna configuration of t
ar
co

urces to measure the phase directly. 
 

3.1  Measurements 
 

3.1.1  The Submillimeter Array (SMA) 

 
The SMA has been constructed at th
a
between the Smithsonian Astrophysical Observatory (S
Institute of Astronomy & Astrophysics (ASIAA).  Fi
th
re
receivers simultaneously, with two sidebands and a 2 GHz bandwidth each.  The 
array will have 8 receiver bands covering the frequency range of 180-900 GHz.  The 
SMA can achieve angular resolutions down to about 0.5 arcsecond at 200 GHz and, 
eventually at highest, 0.1 arcsecond at 850 GHz, providing at least 60 times sharper 
images than those the existing submillimeter-wave single-dish telescopes (such as the 
Caltech Submillimeter Observatory [CSO], the James Clerk Maxwell Telescope 
[JCMT] and the Atacama Submillimeter Telescope Experiment [ASTE]) can provide. 
Observations conducted on the SMA are to study stars and planets formations, stellar 
evolutions, the center of our Galaxy and nearby galaxies, early universe, and so on. 
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Figure 3.1  Locations of summit facilities of the Mauna Kea observatories.  The SMA is 

located in the red dotted rectangle (courtesy of Institute for Astronomy of 
University of Hawaii). 

 

 

Figure 3.2  All 8 antennas of the SMA observing during the SMA dedication, November 
22nd

 
2004 (Ho et al. 2004) 
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Figure 3.3  Three different precipitable water vapor (PWV), 1 mm, 2 mm, and 5 mm, with 
different atmospheric transmission (Wiedner 1998). 

 
 
 

The emissions at submillimeter and millimeter wavelengths from astronomical 
sources are partially absorbed by water vapor in the Earth's atmosphere.  At sea level, 
little submillimeter radiation reaches the Earth's surface, and therefore ground-based 
astronomical observations at submillimeter and millimeter wavebands are very 
difficult.  By building the SMA on a high and dry site, the radiation can be detected 
and measured through the atmospheric window (Wiedner 1998).  The atmospheric 
transmission spectrum on Mauna Kea is in Figure 3.3. 
 
 

 
The measurements were carried out on August 26, 2004 and September 7, 2004 

sing all eight antennas.  The antenna configuration is depicted in Figure 3.4.  The 
hortest and longest baselines are 11.60038 meters (antenna 1 to antenna 8) and 

3.1.2 Measurements 

u
s
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17

B1921-293 (OV-236) is a southern bright quasar with a 17.5 V-ma  At a 
hift of 0.352 (Wills and Wills 1981), B1921−293 is one of the closest members of 

ongest and the comp tic radio source known, 
didate for high-resolution VLBI observations.  B1921- 

93, together with 3C273B and 3C279, is currently among the brightest extragalactic 
so

 
Figure 3.4  Configuration of all eight antennas of the observation for the data reduction, 

antenna 1 to antenna 8.  The length of each side of the rectangle is 10 meters. 
 

9.2118 meters (antenna 4 to antenna 6), respectively.  The measurements were 
performed at 240.0 GHz for the August 26, 2004 measurement and 230.5 GHz for the 
September 7, 2004 measurement.  The data were stored in the SMA archive 
directories 040826_01:23:23/ and 040907_05:22:09/.  Hereafter we call the former 
dataset as “040826” and the latter “040907”.  We observed B1921-293 (J1924-291) 
in both days for 1.1567 and 0.469 hours, respectively, with the integration time for 
one data point of 5.16 seconds. 

gnitude. 
reds
its class.  It is one of the str
which makes it a prime can

act extragalac

2
urces in the sky at millimeter wavelengths (Tornikoski et al, 1996).  The flux at 

230 GHz around our observation periods was about 6 Jy.  We summarize the basic 
information of B1921-293 in Table 3.1. 
 
 
 
 

3 

1 

2 

4 

5 

6 

7 

8 
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Table 3.1  Profile of B1921-293. 

Name other name right ascension 
(J2000)

declination 
(J2000)

230GHz  
flux density

optical 
ID redshift 

B1921-293 J1924-291, 
OV-236 

 h 24 m 
.0559 s

-29°1419
51

'
30.120" ～6 Jy quasar 0.352 

 
 
 

3.2  Data Reduction 
 

3.2.1 Calibration 
 

We reduced the data using the OVRO software MIR adopted for the SMA.  The 
observed target B1921-293 is assumed to be a point source.  The data were calibrated 
based on the antenna-base calibration.  We confirmed that all the results did not 
change with the reference antennas in the antenna-base calibration.  Note that since 

SMA backen

3 ns  of

Consider a reference triangle composed of three antennas.  A plane of phase or 
hase screen through these three antennas can be constructed at each integration (data 

nction of this phase screen at each integration 
iphery of the antenna configuration as reference 

ntennas.  There are always several antennas inside and/or outside this reference 
ing the phase screens, interpolations and extrapolations are 
 phase at each antenna position inside or outside the reference 

ntennas, respectively.  We then compare the observed phases with our interpolated 
an

the geometrical (baseline) delay is taken into account at the correlation process (at the 
d), we do not need to consider the effect of the antenna altitude. 

 
 

.2.2 Co truction  Phase Screen 
 

p
point).  We therefore compute the fu
using antennas located at the outer per
a
triangle (Fig. 3.5).  Us
conducted to predict the
a

d extrapolated phases. 
  We have seven different configurations of reference triangles to interpolate and extrapolate 

our phases of antennas inside and outside the triangle, respectively.  The configurations of 
all reference triangles we calculated are summarized in Table 3.3. 
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igure 3.5  Schematic diagram for the proposed plane of phase for interpolations and 

extrapolations. 

 
 
 
Table 3.2  Configurations of reference triangles and the interpolate and extrapolate antennas 

inside and outside the triangle.  The cross in this table means no antenna is 
ce triangle to do interpolation under that configuration. 

Configurations 
Datasets 

antenna A 

antenna B

antenna C
interpolated 
antennaPhase Surface 

Fitted Plane of Phase 

extrapolated 
antenna  

F

inside the referen

040826 040907 

Referen
Antennas Antenna(s) 

Extrapolati
Antennas Antenna(s) 

Extrapolation 
Antennas 

ce Interpolation on Interpolation 

[2, 3, 6] 1, 8  1, 4, 5, 7 4, 5, 7
[2, 4, 5] × 1, 3, 6, 7, 8 × 1, 3, 6, 7 
[2, 4, 6] 1, 8 3, 5, 7 1 3, 5, 7 
[2, 4, 7] 1, 8 3, 5, 6 1 
[2, 5, 6] 1, 7, 8 3, 4 1, 7 3, 4 
[3, 4, 6] 8 1, 2, 5, 7 × 1, 2, 5, 7 
[4, 5, 6] 8 1, 2, 3, 7 × 1, 2, 3, 7 

3, 5, 6 
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Results 

om  b b Interpolated, 

Extrapolated, and Residual Phase Fluctuations 

we show phase fluctuation plots of observed data after ase 
bration, and the interpolated or extrapolated data estimated fr he reference 
for each tenna in Figure 4.1 and 4.2.  Figure 4.1 is the plo  dataset 
with the tenna-base gai ion referring the antenna 2, and with the 

ference triangle [2, 3, 6] for the interpolation/extrapolation of the phase.  Figure 
.2 is the plots for the dataset 040907 with the antenna-based gain calibration 
ferring the antenna 2, and with the reference triangle [2, 3, 6] for the 
terpolation/extrapolation of the phase.  We overplotted the subtracted (residual) 

 the same figures, which are calculated as follows: 

l) phase] = [observed antenna-base gain calibrated phase] 

－[interpolated or extrapolated phase].      (4.1) 

correctio
observed

spectively. 

 
Chapter 4 

 

4.1  C parisons etween O served, 

 
First,  the the antenna-b

gain cali om t
triangle an ts for the
040826  an n calibrat
re
4
re
in
phase fluctuation plots in
 
[subtracted(residua
 

 
The subtracted phase tells us how much difference between the observed and our 
estimated interpolated or extrapolated phase is, namely how effective our phase 

n is.  In these figures, the plotted curve in green, blue, and red are the 
 phases, interpolated or extrapolated phases and residual (subtracted) phases, 

re
To evaluate the effectiveness of the phase correction quantitatively, we calculate the 

standard deviation of our observed, interpolated/extrapolated, and subtracted phase 
fluctuations, and shown in Figure 4.1 and 4.2.  It appears that the interpolations lead 
to a smaller standard deviation of residual phases, while the extrapolations do not 
always improve the phase fluctuation. 

Phase correction can not work effectively with too large phase fluctuations in either 
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ithin ±π, 
nd it is difficult to recover the real phase fluctuations larger than ±π. 

 

(interpolated/extrapolated) phases.  
for phase fluctuation over the integra
interpolated calculations always
extrapolation calculations do not always ha
the reference triangle [2, 3, 6] for the antennas 1 and 8.  (b) The extrapolation 
results of the reference triangle [2, 3, 6] for the antennas 4, 5, and 7. 

 

interpolation or extrapolation.  We find out that the main reason of this failure is 
because of the 2π ambiguity of the phases.  The interferometer can measure the 
phase only within ±π, so if the phase fluctuates largely, the phases wrap w
a
 
 

 
 
 

(a) Interpolation                            (b) Extrapolation 

 
 
 
 
 
 
Figure 4.1  The time series plots of the ph

number 2321-3128.  The green curves s

the red curves trace the 

ase from dataset 040826 between the integration 
how the observed antenna-base gain 

xtrapolated data, and calibrated data, the blue curves show the interpolated or e
subtracted data between the observed and modeled 

S.D. means the standard deviation values 
tion time of the observation.  The 

 have more satisfied results, while the 
ve.  (a) The interpolation results of 
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 b) Extrapolation 

 
 
 

 
 
 
 
 
Figure 4.2  

 

It is interesting to note that observed phases of dataset 040826 are more stable than 
dataset 040907, and the former one have more satisfied phase correction results.  In 
addition, even within one dataset, phase fluctuation and the degree of phase correction 
changes drastically.  For example, in the dataset 040826, the phase fluctuation and 
the subtracted phase changes a lot between the integration 2321-2799 and 2800-3128; 

e standard deviation of phase fluctuation improved a bit for the former case, but 
proved a lot for the latter case (Fig.4.1).  Hereafter we separate each dataset into 
o integrations and they are shown in Table 4.1.  We divided our two datasets into 

arly and later parts.  The foreparts of ‘040826’ and ‘040907’ are the integration 
umbers of 2321-2799 and 140-199, which have larger variations on phase than the 
ter parts of 2800-3128 and 200-467. 

    ((a) Interpolation                         

 
 
 

The time series plots of the phase from dataset 040907 between the integration 
number 140-467.  Other information is the same as in Figure 6.2.  (a) The 
interpolation results of the reference triangle [2, 3, 6] for the antenna 1.  (b) 
The extrapolation results of the reference triangle [2, 3, 6] for the antennas 4, 5, 
and 7. 

 
 
 

th
im
tw
e
n
la
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able 4.1  The two datasets are divided via their observed phase variations. 

Integration Period 040826 040907 

T

Early Part 2321-2799 140-199 
Later Part 2800-3128 200-467 

 
 
 

4.2  Re-Define the Phase: Phase Refers to the 

Center of the Reference Triangle 

The improvement of the phase, however, depends on the reference antenna of the 
an

 

 

he phase correction more quantitatively, we 
-define the phase to that refers to the center of the reference triangle.  In Figure 4.4, 

tance 
from the center of the reference triangle to our interpolated/extrapolated antennas.  
The centroid coordinate of the reference triangle is as the center of the 
reference tr  Second, 

ference triangle.  This is because, as mentioned above, the phase derived using 
ntenna-base phase calibration depends on the reference antenna, and therefore 
ifficult to evaluate the improvement of the phase due to the correction. 

 

 

tenna-based gain calibration.  If the interpolated antenna is close to the reference 
antenna, the improvement of the phase is small, but if the interpolated antenna is far in 
spatial distance from the reference antenna, the improvement of the phase is large. 
In addition, the final results, namely the residual phase fluctuations, do not change 
with the reference antenna.  In Figure 4.3, we show examples of observed and 
subtracted phases for different reference antennas.  As can be seen, in case of the 
interpolation scheme (Fig. 4.3a) subtracted phases improve in all the three reference 
antenna cases, but the degree of improvements depends on the reference antennas. 
In case of the extrapolation scheme (Fig. 4.3b), on the other hand, subtracted phases 
improve in some reference antenna cases, but some do not. 

To evaluate the effectiveness of t
re
we show the schematic diagram of the relations.  First, we define ρ as the dis

assigned 
iangle C. we define the phase reference at the center of the 

re
a
d
 
 
 
 
 



 

 26

(a) Interpolation                         (b) Extrapolation 

  
Figure 4.3  Data calibrated with different reference antennas have different observed phase 

standard deviation, but they all have identical standard deviations for the 
subtracted phase. (a) The interpolation of antennas 1 and 8 in the reference 
triangle [2, 4, 7] through integration 2800-3128. (b) The extrapolation of 
antennas 3, 5 and 6 in the reference triangle [2, 4, 7] through integration 
2800-3128. 

 
 

ρextra

C

 

ρinter 

 

Figure 4.4  The denoted spatial length ρ are the distance from the center of the reference 
array C to the interpolated/extrapolated antennas. The subscript “inter” and 
“extra” are corresponding to the distance of the interpolated and extrapolated 
antennas from C. 
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Figure 4.5  The simple diagram of the phase conversion from (a) the observed phase to (b) 
the real phase.  The three antennas 1, 2, and 3 are located at the corner of the 
triangle configuration.  The reference antenna for the antenna-base phase 

calibration, r, and the tenna for correcting the phase, t, are also shown in 
the plots. 

 
 

Consider
after the an
antenna r, which can be expressed as 

(a) Observed Phase (b) Real Phase 

r1φ  

r2φ  r3φ

trφ  

0=rφ

φ  0=φ  

1φ  

2φ 3φ  

tφ  

rφ  

 target an

 
 a reference triangle composed of three antennas and the detected phases 
tenna-base phase calibration of these three antennas using the reference 

r1φ , r2φ , and r3φ  in Figure 4.5a.  Since all 
ese phases are measured relative to the phase of the reference antenna r, the 

observed s  
 

th
ignals can be written as

rr φφφ −= 11 ,                                                    (4.2) 
 

rr φφφ −= 22 ,                                                   ( 3) 
 

4.

rr φφφ −= 33 ,                                         ) 
 
where 

         (4.4 

 and 1φ , rφ 2φ , 3φ  
e

ated or extrapolated antenna 

are the actual phases at  and the 
three antennas of rence triangle, respectively.  for 
the in l t.  The actual and the observed phases for 
antenna 

 the reference antenna 
 We then consid

r
er the phas our ref

 can be expressed as 

e
terpo

t tφ  and trφ .  The phases for the relation between tφ  
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and trφ  can be written as, 
 

rtr t φφφ −= .                                                   (4.5) 
 

 we redefine the phase, which is, not measure from the reference antenna r, 
ut  the center of the triangle (see Fig. 4.5b).  First, we define
Now,

from  as b  φ
 

≣ ( r1 + r2 + r3 )/3 = ( 1φ φ φ φ φ + 2 + 3 )/3－ rφφ φ .                         (4.6) 

 
We can consider this phase as the phas f  center f the triangle relative to the 
reference antenna r.  If we subtract the phase 

e o the  o
φ  from other phases, these phases 

will be the phases refer to the center of the triangle.  If we derive the phase of 
antenna t relative to the center of the reference triangle, the phase can be rewritten as 
 

φφφφφ −−=− rttr                                              (4.7) 

 

φ  If we substitute in Eq.(4.6) into this equation, the equation can be written as 

 

( )[ ]rrttr φφφφφφφφ −++−−=− 3/321                                (4.8) 

 

= tφ －( 1φ + 2φ + 3φ )/3                                       (4.9) 
 
The final form of this equation d es not clude the phase of the reference antenna o in rφ , 
and only depends on the real pha get antenna tφ  se of the tar relative to the real phase 
of the center of the triangle, ( 1φ + 2φ + 3φ )/3. 
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4 o r  R

e

 
eparated the large and small phase fluctuation data for each dataset (see Table 4.1).  

All the real phase fluctuations before the phase correction increase with the distance 
from the center of the reference triangle.  The corrected (subtracted) ph  
ther hand, shows different behavior between the interpolated and extrapolated data. 

r the 
fset antennas.  It seem

epends mainly on center distance offset.  Exception for this result is the first data 
(integration number of 140-199) of the dataset 040907 (Fig. 4.8a; see also Fig. 4.2a), 
which is largely affected by the 2π ambiguity.  It is interesting to note that the data 

ith more stable phase condition, the residual phase fluctuations get smaller.  
The ra te d ,  

in phase fluctuation.  Generally, the phase fluctuation increases with the distance 
om the center of the reference triangle.  There is, however, a steep rise at the spatial 

the extrapolated phases of antennas 2, 3, and 5 from reference triangle [2, 4, 6], [2, 4, 
 t  l n Chapter 5. 

 

 

.3 C mpa ison between eal and Subtracted 

Phase Fluctuations 
 

We then compare the relationship between th  spatial length to the center of 
reference triangle and the corrected phase fluctuations, which is depicted in Figure 4.6 
to Figure 4.9.  We separated the interpolated and extrapolated antennas, and also
s

 ase, on the
o
  The interpolated data show improvement in phase fluctuation, especially fo
longer distance of s that the phase correction efficiency 
d

w
ext pola d ata on the other hand, show no improvement or often gets worse

fr
length ρ around 60 meters and drop rapidly at longer ρ in all the subtracted phases of 
the extrapolation results (see Figs. 4.6b, 4.7b, 4.8b, and 4.9b).  These data points are 

7] and [3, 4, 6].  We will discuss his ater i
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Subtracted Phase
Linear fit
y = -0.0369x + 32.101
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igure 4.6  Plots of the real phase, interpolated phase, and the comparison between these two 

plots.  (a) Interpolation results for time integration 2321-2799 of dataset 
040826.  (b) Extrapolation results for time integration 2321-2799 of dataset 
040826.  The error bar corresponds to one sigma error of the phase. 
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(a)                                   (b) 
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Real Phase
Linear Fit
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Subtracted Phase
Linear Fit
y = -0.0154x + 16.913
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Figure 4.7  
integration 

2800-3128 of dataset 040826. 

 

 
The same plots as in figure 4.6, but (a) interpolation results for time integration 
2800-3128 of dataset 040826, and (b) extrapolation results for time 
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(a)                                    (b) 
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Figure 4.8  
nd (b) extrapolation results for time integration 

140-199 of dataset 040907. 

 

 
The same plots as in figure 4.6, but (a) interpolation results for time integration 
140-199 of dataset 040907, a
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(a)                                     (b) 
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Figure 4.9  .6, but (a) interpolation results for time integration 
200-467 of dataset 040907, and (b) extrapolation results for time integration 
200-467 of dataset 040907. 

 
The same plots as in figure 4
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4.4  Comparisons of RMS Phase with Temporal 

Structure Function 
 

To evaluate the time variation of phase quantitatively, the temporal structure 

function is often used.  Here, we define the temporal structure function  as 

 

( )TφD

( ) ( ) ( )[ ]2TT tt Φ−+Φ≡φD ,                                      (4.10) 

 
where T is the characteristic integration time interval, and ( )tΦ  is the phase at 

integration time t.  The angle bracket “ ” means the tim ble.  We denote e ensem

rmsφ  as the root mean square (rms) of the temporal structure function φD .  We can 
pare com rmsφ  of the real phase with rmsφ  of the interpolated lated phases as a 

function of integration time intervals.  Figures 4.10 and 4.11 show the relation of 
root mean square temporal structure function of the real and residual phase. 

The plots show that 

/extrapo

rmsφ  rises with time interval T to a maximum value, and tend 
to be flat at this maximum value.  If the maximum value for the subtracted phase 

correction w
of the time, heme does not work well like the interpolation 
cheme.  The extrapolation scheme sometimes works in short distances, but does not 
ork in long distances.  The effectiveness of the interpolation and extrapolation 

chemes is shown in Table 4.2. 
The plots of the relation between the distance from the center of the reference 

iangle and the rms phase 

gets lower than the real phase, the temporal structure function plots tell that the phase 
orked well.  Indeed, in Figure 4.11, the interpolation scheme works most 

 while the extrapolation sc
s
w
s

tr ( φD ) with the different integration time interval are 
resented in Figures 4.12 and 4.13.  Blue, pink, and green dots in the figures are 2, 
0, and 20 integration time intervals, respectively.  In all the integration time interval 
ases, longer integration time intervals tend to show larger phase fluctuation.  In the 
ase of the integration time interval of 2, the rms phase does not increase much with 
e spatial length ρ.  The phases for the integration time interval more than 10 
tegrations, however, rise significantly with the spatial length ρ.  Again, the phase 

ariations have a sharply rise at the spatial length ρ around 60 meters. 

p
1
c
c
th
in
v
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(a) Interpolation                       (b) Extrapolation 
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Figure 4.10  The root mean square temporal structure function of the real and subtracted 
phase from dataset 040826.  (a) The interpolation results of the reference 
triangle [2, 4, 7] and [2, 5, 6] for antennas 8 and 7, respectively.  (b) The 
extrapolation results of the reference triangle [2, 4, 7] and [2, 4, 6] for antennas 
3 and 5, respectively. 
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(a) Interpolation                          (b) Extrapolation 
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Figure 4.11  Root mean square temporal structure function of the real and subtracted phase 
of the dataset 040907.  (a) The interpolation results of the reference triangle [2, 
3, 6] and [2, 5, 6] for antennas 1 and 7, respectively.  (b) The extrapolation 
results of the reference triangle [2, 4, 7] and [2, 4, 6] for antennas 3 and 5, 
respectively. 
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Table 4.2  E rpolation and extrapolation schemes 

. 
Distance offset ρ (m) Real phase rms (deg) Subtracted phase rms (deg) 

ffectiveness of the inte

(a) Interpolation comparison of standard deviation for the real and subtracted phases

10.78813 47.74483 39.3843 

29.17451 44.83473 39.3019 

40.26273 47.74483 39.1590 

42.84865 51.33642 24.5918 

49.53231 47.74483 45.4089 

 
(b) Extrapolation comparison of standard deviation for the real and subtracted phases. 

Distance offset ρ (m) Real phase rms (deg) Subtracted phase rms (deg) 

29.91766 79.77232 75.0352 

38.9961 128.7902 107.2451 

39.90832 102.179 118.3359 

42.99792 69.0018 121.3851 

48.58575 81.00795 64.0123 

55.46777 89.4308 122.849 

55.99502 100.488 182.9942 

56.45395 78.71871 79.4144 

57.56667 132.9996 134.451 

59.06425 110.0124 128.4916 

62.82648 74.95818 132.3584 

63.63205 90.40502 102.2276 

65.06253 110.583 146.6375 

65.57583 101.5463 91.7562 

67.17108 98.8503 125.987 

78.29955 84.76246 100.5247 

80.03234 81.13863 113.0428 

82.4509 90.2943 148.3662 

88.76965 128.323 108.1231 

101.2208 81.86107 86.3214 

110.6268 116.1609 122.9414 

113.1465 108.3851 114.1335 

128.3275 132.1032 154.5918 
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 (a) Real phase integration = 2321-2799        (b) Residual phase integration = 2321-2799 
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) Real phase integration = 2800-3128       (d) Residual phase integration = 2800-3128 
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) Real phase integration = 140-199         (b) Residual phase integration = 140-199 (a
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(c) Real phase integration = 200-467          (d) Residual phase integration = 200-467 
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Figure 4.13  The relation between the distance to the center of reference triangle and the rms 

phase ( φD ) with different integration time interval for the dataset 040907.  

Blue, pink and green dots in the figures are 2, 10, and 20 integration time 
intervals, respectively. 
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Chapter 5 
Discussion 
 

This study is to determine the efficiency of the interpolation or extrapolation phase 
compensation using phase screens for millimeter and submillimeter interferometer, 
especially for the ACA in the ALMA.  In the previous chapter, we showed that the 

terpolation scheme outperforms the extrapolation one, suggesting that there is a 

 
 
 

5.1  Interpolation and Extrapolation 
 

The results of experiments show that the phase interpolation provides a better 
estimation than the extrapolation approach.  Considering it mathematically, the

antenna phases as a reference triangle, while 
from the three initial conditions of
between thes
are within co  antennas.  The extrapolated phases are estimated 

om the phases of the reference antennas without any confine to be a boundary 
ondition, therefore the extrapolation results deviate more than the interpolation 
sults due to more degree of freedom or more uncertainties. 
Furthermore, the distortion of the wave front is caused by the variations of the 

ater vapor distribution in the troposphere that move across an interferometer.  The 
ituation between the atmosphere and the interferometer is depicted in Figure 5.2.  
maller scale water vapor “clumps” cause a smaller phase variations, and larger scale 
clumps” cause a larger phase variations.  Since the interpolation scheme is 
alculated within the separation of the reference antennas, the fluctuations of the 
hase variation (i.e., the size distribution of the water vapor clumps) are small.  It is 
erefore possible to estimate a rough phase screen similar to the variation of phase, 

nd compensate the phase fluctuation well. 

 

in
merit to manipulate the interpolated phase correction. 

 
results of interpolation are calculated under the three boundary conditions of the three 

the results of extrapolation are calculated 
 the distribution of the phases.  The difference 

e two schemes can be compared in Figure 5.1.  The interpolated phases 
nfines of the reference

fr
c
re

w
s
S
“
c
p
th
a
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ide” boundary condition. 

ted without any outer 
er vapor clumps, and 

erefore resulted as a large variation of phase (larger the distance from the center of 
th

Wave Front 

interpolated extrapolated 

Fitted Screen

 
Figure 5.1  The wavefront corrected by the fitted screen.  The interpolation estimations 

have three reference antennas being the “two-side” boundary condition, while 
the extrapolation estimations only have “one-s

Reference antennaReference antenna 

 
 
 

On the other hand, since the extrapolation scheme is calcula
boundary condition, there is no limit on the size of the wat
th

e reference triangle, large the phase variations). 
 
 
 

 
Figure 5.2  Cartoon showing the water vapor clumps with different scales (Carilli and 

Holdaway 1999). 
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5.2  Extraordinary 60-meter F ns
 

In usual cases, the phase fluctuation increases with the increase of the spatial length, 
which is the distance from the center of the reference triangle to the interpolated or 
extrapolated antennas.  How hown in Figures 4.6 to 4.9, the subtracted 
phase of the extrapolation scheme suddenly goes up around the spatial length of 60 
meters (

luctuatio  

ever, as is s

meters60≈ρ ), much more than the general trend of the increase of the phase 
fluctuation.  Figures 4.12 and 4.13 show another estimation of the stability of the 
phase, and th se fluctuation” can also be found easily in the residual 

configuratio
some do not

The difference is the orientation (direction) of the center of the reference triangle to 
e antennas.  Depending on the orientation, the subtracted results can have entirely 

ifferent phase fluctuations.  Figure 5.3 presents the configurations of the reference 
tri

eters on these two days show that 
e prevailing wind direction is either east or west (Figs. 5.4a and 5.4b ).  These are 

lmost perpendicular to the orientation of ρ with extraordinary 60-meter fluctuations 
n both days (Fig. 5.3).  Note that in most cases at the summit of Mauna Kea, the 

wind direction is either east or west (Fig. 5.5).  We have a possible explanation for 
this extraordinary phenomenon. 

The time variations of the atmospheric phase are usually approximated by a “frozen 
screen” model proposed by Taylor (1938) and Garratt (1992), in which the turbulence 
as ‘frozen’ and assuming that a uniform wind is translating the air mass with water 
vapor in scale height 2 km across the antennas (Léna et al. 1998).  The physical 
origin of the Taylor’s hypothesis is that the time scales involving development of 
turbulence are much longer than the time taken for a turbulent field removed or 
displaced by wind to pass across the aperture of a telescope or an interferometer.  In 
general case, the phase fluctuation in an interferometer can be explained by this effect 
(Figure 5.6). 

Since the wind direction and the orientation of ρ of the extrapolated antenna are 
almost perpendicular, the “60-meter phase fluctuation” suggests that the extrapolation 

frozen flow ection method. 

e “60-meter pha
(subtracted) plots.  Different data points for ρ of 60-meter is from the different 

ns of the reference triangles, and some follow the increasing trend, while 
. 

th
d

angles for two of those extraordinarily violent phase variation; antennas 2 and 3 in 
the reference triangle [3, 4, 7] and [2, 4, 7].  The extraordinary 60-meter phase 
fluctuation data all have similar orientation of ρ, which is almost along the 
north-south direction.  The meteorological param
th
a
o

of phase for direction perpendicular to the wind direction cannot be well modeled the 
with the phase screen phase corr
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 extraordinary rise of the subtracted phase. 

 

 
 
(a) 

 
(b) 

 
Figure 5.3  Schematic diagram of the phase surface created by the reference antennas and the 

distance from the center of the reference triangle to the extrapolated antenna (ρ). 
The unit length of the grid is 10 meters.  The black arrow in each diagram 
shows an example of ρ of around 60 meters.  The white arrow is the direction of 
the prevailing wind.  (a) The reference triangle is composed of antennas 2, 4, 
and 7.  The subtracted phase of the extrapolated antenna 3 rises extraordinarily. 
(b) Another configuration of the reference triangle [3, 4, 7].  The antenna 2 has 
an
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(a) 

 
(b) 

 
Figure 5.4  The meteorological parameters of (a) Aug. 26, 2004, and (b) Sep. 07, 2004 on 

Mauna Kea.  “PW” is the precipitable water and “WSPD” is the wind speed.  
The surface wind direction is mostly east on this day.  The plot is from the 
MKWC forecast. 
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re 5.5  Azimuth wind direction frequency of all winds at the JCMT on the summit of 
Mauna Kea in 1995. 

 
 
 

Figure 5.6  T
m d aloft.  

Figu

 
he schematic diagram of the “frozen screen” model. The water vapor content 
oves with the win

Water vapor 

wind flow 
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In the boundary layer of the Earth, since the upper air wind is stronger with less 
friction compared to the surface wind, the atmospheric effect of the surface friction by 
the wind aloft forces the surface wind to slow down.  Over a rough terrain, the wind 
gradient effect could cause a reduction of 40% to 50% of the geostrophic wind speed 
aloft (Thompson and Russell 1998).  The surface wind speed of Aug. 26, 2004 and 
Sep. 07, 2004 were 9 m s-1 (20 mph) and 4 m s-1 (10 mph), respectively (Tables 5.1 
and 5.2).  But due to the effect mentioned above, the strength of the wind advection 
speed may not be negligible, and the upper wind can be stronger than 10 m s-1.  
Figure 5.8 shows a schematic diagram and a table of the difference in wind speed as a 
function of height. The table shows that the wind speed will be more than two times 
larger than the wind speed at the surface.  The wind aloft on these measurement days 
may therefore be stronger and affect more than the wind flow velocity adopted by 
Asaki et al. (2005).  They suggested that the upper air wind speed less than 10 m s-1 
do not affect the phase fluctuations.  Since the stronger wind may cause more phase 
fluctuations, the phase error due to water vapor advection of specified wind direction 
may lead to difficulty in the extrapolation phase correction scheme under a longer 
time scale and a stronger wind field, and cause the sudden augment of phase 
fluctuations corresponding to the “60-meter phase fluctuation”.  

force.  Figure 5.7 also shows a change of the wind direction due to the Coriolis force.  
he wind direction can be changed for a few tens of degrees for the water vapor scale 
eight of 2 km. 
The location of the SMA is, on the other hand, at the top of Mauna Kea, which has 

less surface area than the ground at the sea level.  These effects may therefore be 
small.  To make this point clear, we need more careful inspection of the metrological 
data around Mauna Kea. 
 

In addition, the wind flows more northern or southern direction due to the Coriolis 
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Figure 5.7  Schematic diagram of hodograph plot of wind vectors at various heights in the 

troposphere.  Meteorologists can use this plot to evaluate vertical wind shear in 
weather forecasting.  The wind speed gradient is caused by the boundary layer 
friction and the wind direction is affected by the Ekman effect due to the 
Coriolis force (source: NOAA). 
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Table 5.1  Wind velocity (m s-1) at 200 mb obtained from the NOAA GGUAS data 
base  (Carrasco and Sarazin 2003). 

 
 
Table 5.2  Wind velocity (m s-1) at 200 mb obtained from the NOAA NCEP data base 
(Carrasco and Sarazin 2003). 
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Chapter 6 
Conclusions 
 

We performed an interferometric phase correction at millimeter and submillimeter 
wavelengths with the interpolation or extrapolation of the phase screen defined by 
three reference antennas using the SMA.  This interpolation method is proposed for 
the ACA in the ALMA, and our results reported here can provide the evaluation of

is phase correction scheme.  Here are the summary of our results and discussions. 
sidual 

(sub ween the rms phase and the distance from the 
center of the reference triangle, and the temporal structure function of the rms 
phase, the interpolation scheme improves phase fluctuation while the 
extrapolation scheme does not. 

 This result can be explained by the boundary conditions of phase in these 
schemes; in case of the interpolation scheme, the phase corrected antenna is 
inside the triangle of three reference antennas, so the phase inside the triangle 
can be well defined (more known boundary conditions, more precisions or less 
phase errors and deviations).  The extrapolation scheme, on the other hand, 
only has partial boundary conditions, and therefore less precision. 

 However, too large phase fluctuations due to tropospheric water vapor conten
cannot have good phase correction results.  This is largely due to the 2π 
ambiguity of the phase. 

 In the extrapolation scheme results, there is a sudden large phase fluctuation 
around the distance from the center of the reference triangle of 60 meters.  
According to the meteorological parameters on those observing dates and the 
antenna configurations, this “60-meter phase fluctuation” is occurring only at 
the antennas located from the center of the reference triangle perpendicular to 
the wind direction. 

 This “60-meter phase fluctuation” can be explained by the frozen flow model.  
The extrapolation scheme has only partial boundary conditions of phase, and 
especially in this case, the boundary condition is located far from the 
extrapolated antenna and perpendicular to the wind direction.  The phase 
information (water vapor clumps) flows as the wind flows, but in this case, the 

 

 
th

 According to the comparisons of the standard deviations of re
tracted) phases, relations bet
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phase information cannot be used due to this special antenna configuration, and 
therefore the phase correction scheme does not work at all. 

ement dates, the wind speeds were around 4 and 9 m s-1.  In 
), there is no difference in the results of the phase correction 

ind strength of 5 and 10 m s-1.  But in our case, the 
ch higher at the upper air, if we consider the surface 

friction effect.  We need more meteorological inspection around the summit 
of Mauna Kea to see whether this affects the results. 

 

 In our two measur
Asaki et al. (2005
between the upper air w
wind speed can be mu
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