
Department of Information Management

College of Management

National Taiwan University

Master Thesis

Mapping Relational Databases to Ontologies:

An Approach Combining Semantic Enrichment

and Mapping Consistency

Jun-Hong Liu

Advisor: Yih-Kuen Tsay, Ph.D.

97 7

July, 2008

i

THESIS ABSTRACT

Graduate Institute of Information Management

National Taiwan University

Student: Liu, Jun-Hong Month/Year: July, 2008
Advisor: Tsay, Yih-Kuen

Mapping Relational Databases to Ontologies:
An Approach Combining Semantic Enrichment

and Mapping Consistency

One of the core challenges of the Semantic Web is to transform mass existing infor-
mation to OWL ontologies. This mass existing information is mainly composed of the
contents on the Web. Therefore, to realize the Semantic Web, it will be necessary to map
the Web contents to OWL ontologies. Manually mapping the Web contents to OWL on-
tologies is impractical since the Web has well over billions of Web pages and most of the
contents of Web pages is stored in the relational databases and hence hard to be found
by search engines (so-called the “deep Web”). Hence, to make these contents available
for the Semantic Web, an effective way is to map the relational databases underlying the
deep Web to domain-related OWL ontologies.

In this thesis, we propose a semi-automatic approach for directly mapping relational
databases to OWL ontologies. This approach takes the concept of cluster analysis in data
mining to find the matching classes group (MCG) for every table, where every found class
of MCG will satisfy the mapping consistency stating that the mapping results should not
violate the fact expressed in the relational database. We divide our approach into two
phases. The first phase primarily uses the semantic information to map the foreign keys of
a relational database to object properties of OWL ontologies to get the features of MCGs
for tables. Different from other approaches, we not only take into consideration the
Generalization/Specialization relationship between tables but also take advantage of the
inverse relationship between tables which are implicitly expressed in a relational database
to construct an implicit matching level between foreigns keys and object properties. The
second phase uses the mapping results of the foreign keys as clues of features to find
MCGs for some tables and then takes the MCGs of these tables to find MCGs for other
tables. Finally, every table is mapped to its MCG. A prototype system demonstrates
that our approach performs well on several domain samples from the real world.

Keywords: Semantic Web, OWL, Deep Web, Mapping, Relational Databases, Cluster
Analysis, Mapping Consistency

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Objectives . 2
1.3 Thesis Outline . 3

2 Related Work 5
2.1 Semantic Web . 5

2.1.1 Ontology . 6
2.2 Deep Annotation . 7
2.3 Mapping between Relational Databases and OWL Ontologies 9

2.3.1 Extracting OWL ontologies from Relational Databases 9
2.3.2 Mapping Relational Databases to Existing OWL Ontologies . . . 11

2.4 Matching Techniques . 13
2.4.1 String-Based Matching . 13
2.4.2 WordNet . 14
2.4.3 Graph Matching . 15
2.4.4 Matching Systems . 16

3 Preliminaries 20
3.1 Relational Database . 20

3.1.1 Relational Data Model . 21
3.1.2 Relational Database Normalization 23
3.1.3 Entity-Relationship model . 24

3.2 OWL: Web Ontology Language . 24
3.2.1 OWL Lite . 25
3.2.2 OWL DL and OWL Full . 28
3.2.3 The Mapping Between OWL DL And Description Logic 29

3.3 Differences Between Database Schema and Ontology 30

4 Mapping Approach 32
4.1 Overview of the Approach . 33
4.2 Preliminary Definitions . 35
4.3 Classifying Tables and Columns . 36

4.3.1 Classifying Tables . 37
4.3.2 Classifying Foreign Keys . 39

4.4 Matchers in the Approach . 40

iii

4.4.1 Matchers . 40
4.4.2 Source of Computing the Similarity 43

4.5 Mapping Foreign Keys to Object Properties 44
4.5.1 Mapping Base FKs . 44
4.5.2 Mapping Part-Of FKs . 46
4.5.3 Mapping FKs of Relationship Tables 47

4.6 Mapping Tables . 48
4.6.1 MCGs of Associated Tables . 48
4.6.2 MCGs of G/S Tables and Other Tables 50
4.6.3 Mapping Tables and Non-Foreign Keys 52
4.6.4 Mapping Columns . 53

5 Prototype System: Annotator 57
5.1 Annotator . 57

5.1.1 Matcher . 58
5.1.2 Relational Database . 59
5.1.3 OWL Ontology . 59

6 Conclusion 64
6.1 Contributions . 64
6.2 Future Work . 66

iv

List of Figures

2.1 Semantic Web Layers . 6
2.2 An Architecture for Deep Annotation . 8
2.3 The GLUE Architecture . 18
2.4 Match processing in COMA . 19

4.1 System Architecture . 34

5.1 System Architecture of The Traveller . 61
5.2 Annotator . 62
5.3 Example: Relational Database Schema 63

v

List of Tables

3.1 OWL Constructors and Corresponding Description Logic Syntax 30

4.1 Classification of Tables and Columns . 35
4.2 Groups of SQL and XML Schema Datatypes 55

vi

Chapter 1

Introduction

1.1 Background

The information on the World Wide Web primarily consists of Web pages written in

HTML (Hyper Text Markup Language), a markup language that displays the information

on the Web. However, most of the information written in this format is only for human

consumption. As a consequence, computers or software agents can not understand and

process this kind of information effectively.

In order to make the computers exchange and process this kind of information effec-

tively, one way is to provide the information in such a way that computers can understand

it. For this purpose, Tim-Berners Lee presented the Semantic Web [7] , “The Semantic

Web is not a separate Web but an extension of the current one, in which information is

given well-defined meaning, better enabling computers and people to work in cooperation.”

The dream of the Semantic Web can be realized through using a well-defined structure

data such as ontology. An ontology is a formal, explicit specification of a shared conceptu-

alization [17]. Recently the World Wide Web Consortium (W3C) has developed the Web

Ontology Language (OWL) [29] providing a language defining the structured, Web-based

ontologies which allow a richer integration and interoperability of data among communi-

ties and domains. With the OWL standard, searching, sharing and reusing information

between Webs will be easier and more reliable. Nevertheless, currently the mass existing

information is mainly composed of the relational databases and the resources on the Web

and this kind of information has the heterogeneity with OWL ontologies. Besides, most

of the resource on the Web are stored in the relational databases (so-called the “deep

1

Web”) , and they are hard to be found by search engines. For this reason, to achieve

interoperability between the existing information and OWL ontologies, an effective way

is to create mapping between relational databases and OWL ontologies.

1.2 Motivation and Objectives

As mentioned above, most of the Web contents are stored in relational databases, and

they usually represented by dynamic pages. The Web pages are primarily composed of

static and dynamic pages. Static pages are based on HTML formats and not constantly

updating. In contrast to dynamic pages, the contents of the static pages are not stored

in databases but simply placed on a server.

Dynamic pages has rapidly increased in recent years with the development of the Web

technologys such as the Web 2.0. Most of the data on dynamic pages is created as the

result of a database retrieval. These data represent the invisible Web, ignored by search

engines. For instance, on the Web “Amazon.com”, all of the information such as books

and cost are stored in databases, these information can be seen only by users who visit

the Web but can not be fully found by search engines like Goggle and Yahoo.

In order to make the contents in databases available for the Semantic Web, Handschuh

et al. proposed a framework “deep annotation” [18] , which is an annotation process

that creates metadata from existing information to derive mappings between information

structures such as ontologies and databases. This process has three main parties and

each needs human participation 2.2. For instance, the annotator in this framework maps

the Web to his ontologies by using simple heuristics and translation rules to examine the

HTML or the underlying database.

However, the number of the Web pages has dramatically increased, manual anno-

tation of HTMLs or databases is not practical. In order to make the best of these

underlying databases and to realize the requirement for the Semantic Web, mapping be-

tween databases and OWL ontologies is necessary. The mapping process is to find the

semantic correspondences between entities or elements of different information structures.

Since the emergence of the Semantic Web and OWL, many studies have been concerning

about mapping between OWL ontologies. Nevertheless, on the other hand, literatures in

2

mapping between databases and OWL ontologies are rare.

Mapping between databases and OWL ontologies can be divided into two parts. The

one is to extract OWL ontologies from existing databases and the other is directly to map

databases to existing OWL ontologies. We believe that using the former one, in the long

run the generated OWL ontologies from databases will be mapped to the existing domain-

related OWL ontologies in order to reach the interoperateliablity between them, and

this will lose more semantic information comparing with the original database. Besides,

considering the Web contents are primarily stored in the relational database, and hence

the object in this thesis is to propose a approach that directly maps a relational database

to domain-related OWL ontologies.

1.3 Thesis Outline

Now, we briefly describe the remaining chapters of this thesis as follows:

In Chapter 2, first, we introduce the Semantic Web, especially for the ontology. Sec-

ond, due to the problem of the deep Web the deep annotation framework is described. The

goal of this framework is to propose a solution to map or migrate the databases behind

the deep Web to the ontologies. Third, we introduce two main approaches of Mapping

between Relational Databases and OWL ontologies including Extracting OWL ontologies

from Relational Databases and Mapping Relational Databases to Existing OWL Ontolo-

gies. The latter case is our objective in this thesis. Finally, we describe some matching

techniques that assist greatly the mapping between databases and ontologies.

In Chapter 3, since our object is to map a relational database to existing OWL

ontologies we first examine the basic concept of Web Ontology Language (OWL) and

relational database. Then the difference between databases and ontologies are described.

Finally since OWL is based on the Description Logics (DLs) we also illustrate the mapping

between OWL DL and DLs.

In Chapter 4, we introduce our approach to directly mapping a relational database

to OWL ontologies. We first describe our terms and functions of the relational database

and OWL ontologies used in our approach. Then the detailing of approach is discussed.

In Chapters 5 and 6, a mapping system “Annotator” implementing the approach

3

proposed in this thesis, our contributions and future works are introduced.

4

Chapter 2

Related Work

In this chapter, we will introduce some related studies in mapping between a relational

database and OWL ontologies. Our object is to map a relational database to domain-

related OWL ontologies to realize the requirement for the Semantic Web. Thus, we begin

to discuss the Semantic Web and his enabling technology ontology. Then the researches

of the deep annotation and the database-to-ontology mapping are described. Finally, we

introduce some matching techniques that do a lot of assistance in these fields.

2.1 Semantic Web

Since the development of the Web technologys, Web pages has increased rapidly. Ac-

cording to Google, currently the number of Web pages has well over 15.5 billion [32] .

These Web pages contained all kinds of information, however, the vast majority of these

information is only in a human understandable format such as HTML. More precisely for-

mat is eXtensible Markup Language(XML). Although XML provides a set of self-defined

metadata tags to describe the semantic of Web data, it does not define the meaning of

the tags. As a consequence, Web content can be accessed only in the syntactic level and

software agents or machines can not efficiently understand and process this kind of data.

For this purpose, in 2001 [7] , Tim-Berners Lee proposed the vision of the Semantic

Web as follows: “The Semantic Web is not a separate Web but an extension of the current

one, in which information is given well-defined meaning, better enabling computers and

people to work in cooperation.” To realize the requirement for the Semantic Web, World

Wide Web Consortium(W3C) and other organizes have been effected at specifying and

developing standard language. The Semantic Web will built on the standard layers as

5

Figure 2.1: Semantic Web Layers

shown in Figure2.1 [22]. In next section, we will present ontology which is the core

component in these layers.

2.1.1 Ontology

The term “Ontology” came from philosophy and there are plenty of definitions, the most

popular is “An ontology is a formal, explicit specification of a shared conceptualization”

[17] . Ontology is a key enabling technology for the Semantic Web. Unlike the XML,

the level ontologies provides not only the syntactic but the semantic. By ontologies, we

can build a controlled vocabulary of concepts, each with explicitly defined and machine-

understandable semantic. Thereby, people and machines can communicate precisely.

For this reason, during the last decade interest to ontologies has increased. The area

of applicability for ontologies is wide: information retrieval and extraction, information

systems design and enterprise integration, natural language processing, database design,

conceptual modeling. In the Semantic Web area, a formal knowledge representation

model is also called an ontology.

However, constructing ontologies for domain knowledge is still tedious, time-consuming

and error-prone. Although some tools like Protege [38] can manually edit ontologies, fully

automatic ontology building remains in the distant future. In order to make the ontology-

construction efficient, Maedche and Staab presented an ontology-learning framework [27]

that encompasses ontology import, extraction, pruning, refinement, and evaluation. The

6

overview of framework is as follows :

• Merging existing structures or defining mapping rules between these structures

allows importing and reusing existing ontologies.

• Ontology extraction models major parts of the target ontology, with learning sup-

port fed from Web documents.

• The target ontology’s rough outline, which results from import, reuse, and extrac-

tion, is pruned to better fit the ontology to its primary purpose.

• Ontology refinement profits from the pruned ontology but completes the ontology

at a fine granularity (in contrast to extraction).

• The target application serves as a measure for validating the resulting ontology.

Furthermore, in order to have the consistent format to model ontology, W3C had

defined the standard for Web ontology that is OWL(Web Ontology Language) [29]. OWL

is a language for ontology serves as defining and conceptualizing the Web content. We

can conceptualize or model a domain knowledge through OWL features such as class and

property. Currently, OWL is built on top of RDF(Resource Description Framework) and

divided into three sub-languages depend on the expressiveness, namely OWL Lite, OWL

DL and OWL Full. In Chapter 3, we have the details for OWL.

2.2 Deep Annotation

As mentioned above, Web pages is well over 15.5 billion [32] . Annotating these Web

pages with OWL is a key step to reach the goal of the Semantic Web. However, there

is still lack of the existing automatic tools to annotate them especially for the dynamic

Web pages. Dynamic Web page is also called a deep Web which most of its content comes

from the underlying databases. In contrast, the static Web page is called surface Web.

A July 2000 white paper [10] estimated 43,000-96,000 deep Web sites and an informal

estimate of 7,500 terabytes of data- 500 times larger than the surface Web.

However, the content of deep Web is hardly reached by search engines. For this

purpose, emerging the deep annotation [18] . Deep annotation is a vision of framework

7

Figure 2.2: An Architecture for Deep Annotation

to provide semantic annotations for the underlying databases of the deep Web. This

framework is composed of three parties: Database and Web Site Provider, Annotator, and

Query Party- see Figure2.2 [18]. It assumes that many web sites will in fact participate in

the Semantic Web and will support the sharing of information. Hence, Web site providers

will give their users information proper, information structure and information context.

The details of the architecture are as follows:

• Database and Web site providers markup the dynamic Web pages according to the

information structures of the database.

• The annotator produces client-side annotations conforming to the client ontology

either via the marked HTML documents or database schemas.

• The annotator publishes the client ontology and the mapping rules derived from

annotations.

• The annotator assesses and refines the mapping using certain guidelines.

8

• Query party mappings into his own information structures such as ontologies and/or

to migrate the data into his own repository.

2.3 Mapping between Relational Databases and OWL

Ontologies

Due to the requirement for the Semantic Web and the problem of the deep Web, many re-

searches has focused on the mapping between a relational database and OWL ontologies

[2] [24] [37] [1] [19]. In this field, mapping is the process to find the semantic corre-

spondences between entities or elements of the relational database and OWL ontologies.

Currently there are some solutions and tools to deal with this problem. They can be clas-

sified into two parts: methods for creating ontologies from existing relational database

and methods for mapping a relational database to already existing OWL ontologies. If the

former case that generated ontologies finally will be mapped to domain-related ontologies

, we think it will lose more semantic information comparing to the original database. For

this reason, our work will focus on the latter case. In next two sections, we will discuss

these two kinds of methods.

2.3.1 Extracting OWL ontologies from Relational Databases

Extracting OWL ontologies from relational databases is a Reverse engineering which is

the process of analyzing an existing system; identifying system components, abstractions,

and interrelationships; and creating representations of them. There are plenty of work on

the reverse engineering of relational databases. However, most of them focus on extracting

E-R(entity-relationship) and object models from them, the semantics obtained by these

methods cannot fully meet the requirement of constructing ontologies. Until recent years,

there exist a few approaches that consider ontologies as the target for reverse engineering.

In this section, we will introduce some studies in this field.

Astrova [2] presented a method to extract ontologies from a relational database. This

method is composed of two processes: By analyzing information such as key, data and

attribute correlations to extract a conceptual schema, which expresses semantics about

the relational database, and transforming this schema into a semantically equivalent on-

tology. Finally migrating data from a database to ontologies. Transforming the relational

9

schema into a semantically equivalent ontology proceeds as follows:

1. Classification of relations: Depend on the features, relations can be classified into

three categories:

• Base relations: If a relation is independent of any other relation in a relational

database schema, it is a base relation.

• Dependent relations: If a primary key of a relation depends on another rela-

tions’ primary key, it is a dependent relation.

• Composite relations: A composite relation is a relation that is neither base

nor dependent and its primary keys are composed of other relations’ primary

keys.

2. Mapping: Key, data and attribute correlations can be described given two relations.

Each kind of correlation has four types: equality, inclusion, overlap and key disjoint-

edness. With the combination of these types of correlation and the development

of the mapping constraint, how to extract a ontology from a relational database

schema can be determined.

Since the relational database schema often has little explicit semantics [33] , through

analyzing tuples in the relational database, additional ”hidden” semantics (e.g. inheri-

tance) can be discovered. However, it is very time consuming with regard to the number

of tuples of the relational database.

Astrova also presented a method [3] that constructed an ontology based on analyzing

the HTML-forms to extract a form model schema, transforming the form model schema

into ontology and creating ontological instances from data contained in the pages. The

drawback of this approach is that it does not offer any way to the identification of inher-

itance relationship which is a significant aspect in the ontology construction. In order to

overcome this drawback, Benslimane proposed an approach [9] to acquire ontologies from

data-intensive webs. The main idea of this approach is the fact that users often query

database through HTML forms and the query results often return as HTML tables. Thus,

the data in the HTML forms are often structural data. By analyzing a HTML-form, im-

portant information can be obtained. Besides, this method use an enriched relational

10

schema instead of simply use the relational schemas that is constructed from database.

The processes of this method are as follows:

1. Extract forms schema by analyzing HTML pages. It uses several identification rules

and translation rules to identify the form unit and generate the XML-schema.

2. Restructure and enrich the relational schema through semantics of the forms schema.

In this step, the result of the relational schema is mostly like the structure of the

underlying database. But it has additional inclusion dependencies and constraints.

3. Construct OWL ontology from the enriched relational schema using a set of trans-

formation rules. These rules construct classes, properties, and Inheritance from the

semantic similarities between the relational schema and ontology(OWL).

Man Li [24] extracted ontology in a relational database using E-R Model. This ap-

proach defined twelve rules for extracting ontology from the relational database schema

and used these rules to create ontology.

Trinh [37] proposed a tool named RDB20NT that creates ontology in a relational

database. This tool is a method using an ontology to describe relational database and

converting the information in a relational database into this ontology.

2.3.2 Mapping Relational Databases to Existing OWL Ontolo-
gies

In this section we will discuss some approaches that directly mapping relational databases

to OWL ontologies. These approaches are assumed that domain-related ontologies and

legacy relational databases already exist. Because there is a different domain level or size

between databases and ontologies, and the modeling criteria used for designing databases

is also different from those used for designing ontology models. Thus, compare with the

approaches that extract ontologies from databases, mapping approaches here are rare and

more complex.

Borgida et al. [1] proposed a method that assists users in specifying and inferring

mapping formulas between relational databases and OWL ontologies. Based on the sim-

ple correspondences between relational database schemas and OWL ontologies, complex

formulas expressing the semantic mapping can be found. However, this method has a

11

disadvantage that the database must be based on ER design principles and cannot extract

classes that can be separated in the fields within a table. Besides, since only scheme is

taken account of without consideration on instance, it is hard to match precisely.

Hu and Qu presented an approach [19] that uses virtual documents based on TF/IDF

model to discover simple mappings between the relational database schema and OWL

ontologies. Besides, this approach also finds the subsumption relationships, called contex-

tual mappings, which can be directly translated to conditional mappings or view-based

mappings [11] . The overview of this approach is as follows:

1. Classifying entity types: This is a preprocessing process. It classifies entities into

the relational schema and the ontology into four different groups to limit the search-

ing space of candidate mappings. Besides, it coordinates different characteristics

between the relational schema and the ontology.

2. Discovering simple mappings: This step firstly constructs virtual documents for the

entities in the relational schema and the ontology to capture their implicit semantic

information. Then, it discovers simple mappings between entities by calculating

the confidence measures between virtual documents via the TF/IDF model

3. Validating mapping consistency: This phase uses mappings between relations and

classes to validate the consistency of mappings between attributes and properties.

It considers the compatibility between data types of attributes and properties as

well. In addition, some inference rules are also integrated in this process.

4. Constructing contextual mappings: This phase operates on mappings between re-

lations and classes found in the previous phases, and supplies them with sample

instances. It constructs a set of contextual mappings, which indicate the conditions

how they could be transformed to view-based mappings with selection conditions.

Furthermore, there exist some studies that deal with the other problems from other

aspects. For instance, Dou et al. [15] describe a general framework for integrating

databases with ontologies via a first-order ontology language Web-PDDL. Barrasa et al.

[5] design a language R2O to express complex mappings between relational database

schemas and ontologies.

12

2.4 Matching Techniques

After introducing the mapping between relational databases and OWL ontologies, we

now discuss some matching techniques that do a lot of help in this field. Matching is

the process that takes two data structures such as schemas or ontologies as input and

calculates similarity relationship between their entities or elements as output. It plays

a important role in many application domains, such as semantic web, schema/ontology

integration, data warehouses, e-commerce, query mediation, information retrieval, etc.

Many matching approaches have been proposed so far, and in this section we will intro-

duce some of them include string-based matching, WordNet-based matching, graph-based

matching and some matching systems.

2.4.1 String-Based Matching

String-based matching is a element level matching that takes the information such as

local descriptions of two elements as input and return their similarity measure as output.

This technique is widely used in various schema matching systems [26] [13] . In this

section, some popular string-based matchers are discussed.

• Edit-distance: It determine the distance between two strings based on the min-

imal number of edit operations (insert, delete, replace) needed to transform one

string into the other. There are various edit-distance matchers, for instance, a fa-

mous matcher called Levenstein distance [23] is the minimum number of insertions,

deletions, and substitutions of characters required to transform one string into the

other.

• Jaro measure: The Jaro measure has been defined for matching proper names that

may contain similar spelling mistakes [20] . It is not based on an edit distance

model, but on the number and proximity of the common characters between two

strings. The definition of Jaro is as below: Let s[i] ∈ com(s, t) if and only if

∃j ∈ [i − (min(|s|, |t|)/2, i + (min(|s|, |t|)/2] and transp(s, t) are the elements of

com(s, t) which occur in a different order in s and t.

13

Jaroσ(s,t) =
1

3
× |com(s, t)|

|s| × |com(t, s)|
|t| × |com(s, t)| |transp(s, t)|

|com(s, t)|
• N-gram similarity: The N-gram similarity is also often used in comparing strings. It

computes the number of common n-grams, i.e., sequences of n characters, between

them. For instance, three-grams for the string article are: art, rti, tic, icl, cle. Its

definition is: Let ngram(s, n) be the set of substrings of s of length. The n-gram

similarity is a similarity �such that:

n − gramσ(s,t) =
|ngram(s, n)

⋂
ngram(t, n)|

min(|s| , |t|) − n − 1

• Token-based distances: This technique come from information retrieval and consider

a string as a (multi)set of words (also called bag of words). A very common measure

is TFIDF, many systems use measures based on it. In this model, each string is

represented as a vector containing weights for each term(word) of a global corpus.

The similarity of two strings is then determined with the cosine measure.

2.4.2 WordNet

String-based matchers can only reach the syntactic matching. In order to get to the

semantic matching, we need some other tools such as WordNet. WordNet [31] is a large

lexical database of English, words are grouped into sets of cognitive synonyms (synsets),

each expressing a distinct concept. Each synset has a gloss that defines the concept that

it represents. Synsets are connected each other through explicit semantic relations such

as hypernymy, hyponymy for nouns and hypernymy and troponymy for verbs. These

relations constitute kind-of and part-of hierarchies. For example, the word author has a

Synonym writer, and they constitute a sysset which has a gross“writes (books or stories

or articles or the like) professionally (for pay)” to describe it. The word communicator

is the hypernymy of this synset, hence, author, writer and communication constitute

a hierarchy relation. Thereby, a matcher based on WordNet can be designed by the

following rules: Given two words s and t,

• t � s, if t is a hyponym or meronym of s

14

• t � s, if t is a hypernym or holonym of s

• t ≡ s, if they are connected by synonymy relation or they belong to one synset.

• t ⊥ s, if they are connected by antonymy relation or they are the siblings in the

part of hierarchy.

2.4.3 Graph Matching

Graph matching usually is based on is-a or part-of hierarchy of the relation in the graph.

Many researchers have conducted studies on this field. Do et al. [13] , calculate the

similarity between internal nodes in a graph based on the similarity of children nodes. In

other words, similarity between two classes is evaluated by using the similarity of child

node, not terminal node.

Melnik et al. [30] presented a generic graph matching algorithm Similarity Flood-

ing(SF) that uses fixed point computation to determine corresponding nodes between

two graphs. The principle of the algorithm is that the similarity between two nodes

must depend on the similarity between their neighbor nodes. The algorithm proceeds as

follows:

1. First, given two data structures S1 and S2, translating them into graphs G1 and

G2.

2. Then, using matching technique such as string-based matcher to do initial mapping

between G1 and G2.

3. Based on the assumption that whenever any two nodes in models G1 and G2 are

found to be similar, the similarity of their adjacent elements increases, and hence

this step begins a number of iterations that each computes the similarity in each

node between G1 and G2 until a fixpoint has been reached, i.e. the similarities of

all model nodes stabilize.

4. Finally, depending on a variety of selecting mapping strategies. Filters select the

best mappings which are then manually reviewed.

15

SF is flexible and extensible because it is a generic approach. However, the effective-

ness and fitness for mapping different data structures such as database and ontology is

unknown.

In the previous approaches, they compute coefficients between labels in the range

[0,1] instead of computing semantic relations such as subsumption or equivalent relation.

Hence, Giunchiglia and Yatskevich [16] proposed a method S-Match that computes the

semantic relations(not the similarity) between nodes based on that mappings between

the concepts (but not labels) assigned to nodes should be calculated. With the help of

WordNet, this method proceeds as follows:

1. By using WordNet, all concepts denoted by all labels in two graphs are computed.

2. For all nodes in the two trees, compute concepts at nodes. In this step, concept is

denoted by the conjunction of the concept path from root to node.

3. Using matchers in S-Match system to determine the the semantic relations between

labels.

4. Using structure level matcher in S-Match system and the result in step 3 to deter-

mine the the semantic relations between nodes.

2.4.4 Matching Systems

Many matching systems have emerged during the last decade. For example, DELTA

(Data Element Tool-based Analysis) [8] is a system that semi-automatically discovers

attribute correspondences among database schemas by using textual similarities between

data element definitions. Cupid uses linguistic and structural schema matching tech-

niques, and computing similarity coefficients with the help of external specific thesauri.

The matching algorithm in Cupid consists of three phases. The first phase computes

linguistic similarity coefficients between schema element names based on some matchers

such as common prefix, suffix tests. The second phase computes structural similarity co-

efficients by measuring the similarity between contexts. The third phase aggregates the

results of the linguistic and structural matching through a weighted sum and generates

a final alignment. In next paragraphs, we introduce other two matching systems GLUE

and COMA.

16

Doan and colleagues [14] developed a system, GLUE, which uses machine learning

techniques to find mappings between two ontologies. For each concept in one ontology,

GLUE finds the most similar concept in the other ontology. Comparing with other

machine learning approaches where only use a single similarity measure, GLUE using

probabilistic definitions of several practical similarity measures. Furthermore, GLUE

uses multiple learning strategies, each of which exploits a different type of information

either in the data instances or in the taxonomic structure of the ontologies.

GLUE is heavily rely on instances that use to compute the joint probability distri-

bution, P (A, B), P (A,B), P (A, B), and P (A, B), where the term P (A, B) is the notion

of the probability that an instance belongs to concept A but does not belong to concept

B. The joint probability distribution of the concepts is used in the similarity measures.

Thereby, the application can use the joint distribution to compute any suitable similarity

measure. Based on the computing of joint probability distribution and not to estimate

specific similarity values directly, GLUE has the advantage that can co-work with various

similarity functions which have found appropriate probabilistic interpretations.

GLUE has three kind of learner, content learner, name learner and meta-learner. The

content learner uses a text classification method, called Naive Bayes learning. The name

learner is similar to the content learner but uses the full name of the instance instead

of its content. The meta-learner that combines the predictions of the two learners. The

architecture of GLUE is composed of three main modules (Figure 2.3 [14]):

• Distribution Estimator : Once two ontologies has taken into the Distribution Esti-

mator with their data instances, the Distribution Estimator begin to apply machine

techniques to compute the joint probability distribution for every pair of concepts.

• Similarity Estimator : Similarity Estimator uses the result(probability values) from

Distribution Estimator to compute the similarity values for probability values each

pair of concepts. The output is in the form of similarity matrix, which will feed to

the Relaxation Labeler.

• Relaxation Labeler : The Relaxation Labeler contains domain-specific constraints

and heuristic knowledge that can support to the discovery of the most appropriate

mapping. By taking into the domain-specific constraints and heuristic knowledge,

17

Figure 2.3: The GLUE Architecture

the Relaxation Labeler can find the mapping which not only has high similarity, but

also satisfies the domain constraints and the common knowledge. This mapping is

the output of GLUE.

Do and Rahm designed a schema matching system, COMA [13]. Based on the idea

that achieves high match accuracy for a large variety of schemas, a single technique is

unlikely to be successful, COMA uses a composite match approaches more comprehen-

sively and effectively. Moreover, COMA is a generic match system supporting different

applications and multiple schema types such as XML and relational schemas. In 2005,

a extended system COMA++ [4] also supports mapping between database schemas and

ontologies.

The match processing in COMA is composed of numbers of iterations or one iteration.

Each iteration consists of three phases(Figure 2.4 [13]):

• After two data structures are converted to the graphs, user uses Feedback matcher

to capture match and mismatch information including corrected match results from

18

Figure 2.4: Match processing in COMA

the previous match iteration.

• In this step, multiple independent matchers chosen from the matcher library are

executed. The result with k matchers, m S1 elements and n S2 elements is a k x m

x n cube of similarity values

• Finally, matcher results are combined and stored in the similarity cube by the

aggregation of matcher-specific results and selection of match candidates

Currently the matchers in COMA are classified into three parts: simple, hybrid and

reuse-oriented matchers. Simple matchers consist of string-based matching techniques,

and hybrid matchers combine of simple matchers and other hybrid matchers to obtain

more accurate similarity values. Reuse-oriented matcher is a new matcher created by

COMA, and it is based on the fact that many schemas to be matched are similar to pre-

viously matched schemas. The operation of reuse-oriented matcher proceeds as follows:

Given two match results, match1: S1 ↔ S2 and match2: S2 ↔ S3 sharing schema S2,

using the MatchCompose operation which derives a new match result, match: S1 ↔ S3.

Note that MatchCompose operation computes the similarity measure by using Average

strategy that is: Given n as the similarity between a and b, and m as the similarity

between b and c, the similarity between a and c will be n+m
2

using MatchCompose oper-

ation.

19

Chapter 3

Preliminaries

Since our work aims at mapping between relational databases and ontologies, in this

chapter, we first introduce preliminary studies of relational databases and OWL.

3.1 Relational Database

A database is a collection of related data or relation grouped together as a single file.

The related form of these relations is depends on what the database model is applied.

These databases models are primarily composed of as follows:

• Hierarchical Model: Relations are related in a parent/child tree, with each child

relation having at most one parent relation

• Network Model: Similar to the hierarchical model, but each relation can have more

than one parent relation

• Relational Model: Relations are related to each other by sharing a common at-

tribute. In next section, we have the details of Relational Model.

In the past, storing data in database systems always meant to adapt the data to either

the hierarchical or the network based models as mentioned above. Until the emergence of

Edgar F. Codd, he devoted to the study of relational model [12] resulted in revolutionizing

data storage and access fundamentally. Currently, relational database have become the

most popular way to store data for nearly any of applications especially for the Web.

20

3.1.1 Relational Data Model

In this section we give a short introduction to the relational data model. The introduction

is based on article “A Relational Model of Data for Large Shared Data Banks.” [12]

The relational data model regards a database as a set of relations or tables. In turn,

each relation R consists of a collection of attributes A1, A2, ...An, also stated as columns.

Consequently, a relation R of degree n is a subset of the Cartesian product A1×A2×...×An

with the following properties:

• Each row is a distinct n-tuple element of R.

• Each value in a tuple is atomic, i.e. it is neither composite nor multivalued.

• The order of attributes and rows are irrelevant.

• Both, relations and columns are labeled by names.

• Each attribute has a data type. There are many standard types, and each DBMS

can also have their own specific types.

• Each attribute can contain the possible values .

• A attribute is said to contain a null value when it contains nothing at all.

• One or more columns comprise primary key whose values uniquely identify a row

in a table.

• One or more columns comprise candidate key whose values could be used to uniquely

identify a row in a table. The Primary Key is chosen among a table’s Candidate

Keys.

• A relationship between two tables is created by creating a common attribute to the

two tables. The common attribute must be a primary key to one table.

• A virtual table are called view made up of a subset of the actual tables.

• A one-to-one (1:1) relationship occurs where, for each instance of table A, only one

instance of table B exists, and vice-versa.

21

• A one-to-many (1:m) relationship is where, for each instance of table A, many

instances of the table B exist, but for each instance of table B, only once instance

of table A exists.

• A many to many (m:n) relationship occurs where, for each instance of table A,

there are many instances of table B, and for each instance of table B, there are

many instances of the table A.

• Each data in relational database must not violate data integrity which describes

the accuracy, validity and consistency of data.

Furthermore, when creating a database, there are some constraints which are rules or

regulations imposed on data to ensure their correctness. Some important constraints are

as follows:

• Unique Constraints: A unique constraint is a rule to ensure no duplicate values are

in specific columns.

• Primary Key Constraints: A primary key constraint is a rule that ensure the value

in primary key of columns are unique and cannot be null.

• Foreign Key Constraints: A foreign key constraint also called referential integrity

specifies that the data in columns of a relation referred by the data in foreign key

columns cannot be null.

• Check Constraints: Check constraints is a rule to ensure the validity of data in a

database and to provide data integrity.

Some relationships in the relational data model are important. We now introduce the

most fundamental relationships in relational databases.

• Functional dependency (FD) : Given two sets of attributes X and Y in a relation

R, the FD: X → Y holds for relation R if and only if each X value is associated

with at most one Y value.

• Inclusion dependency (IND) : Given a set of attributes X in a relation and a set of

attributes Y in another relation, X ⊆ Y holds if X is a subset of Y

22

• Equivalence: Given a set of attributes X in a relation Ri and a set of attributes Y

in a relation Rj, X=Y holds if there exists Ri ⊆ Rj and Rj ⊆ Ri

3.1.2 Relational Database Normalization

In creating a database, normalization is the process of organizing the database compliant

with a Normal Form. Basically, it can be seen as a way to organize data in database

better. There are several levels of the Normal Form, and each level requires that the

previous level be satisfied. Our prototype system takes the relational database schemas

as inputs, and these schemas are at least in third Normal Form (3NF). The features of

1NF to 3NF are as follows:

First Normal Form (1NF)

The goal of First Normal Form is to make sure that there is none duplicate values in the

relation. If a relation is in First Normal Form (1NF), then we can conclude that each

attribute of the relation is atomic.

Second Normal Form (2NF)

If a relation is in the Second Normal Form (2NF), it must be in the 1NF, too. The

goal of 2NF is to remove partial dependencies. The partial dependency means that when

the primary key are combined with several attributes, and there is some other attribute

depends on just part of the primary key attributes. A relation can be said as in 2NF if

it fulfills 1NF and all of the attributes which are not part of primary keys are related to

the whole primary key(s).

Third Normal Form (3NF)

The goal of Third Normal Form (3NF) is to remove transitive dependencies. A functional

dependency X → Y in a relation schema R is a transitive dependency if there is a set

of attributes Z that is not a subset of any key of R, and both X → Z and Z → Y

hold. A relation can be said as in 3NF if it fulfills 2NF and all attributes that are

not dependent upon the primary key must be eliminated. In most situations, table

(relations) in the 3NF are already fit the daily application. Much of the researches of

23

Relational Database Reverse-engineering and Ontology Extracting also suggests that the

used relational databases must at least fulfill the 3NF.

3.1.3 Entity-Relationship model

The core foundations of relational databases are mainly in the relational data model as

mentioned above. Later, the entity-relationship(ER) model [Che76] was proposed for

simple yet powerful modelling technique of relational database. The ER model describes

relational database as entities, relationships and attributes. An entity is a object in the

real world with an independent existence, for example, a traveller, a hotel or an airline.

Each entity has attributes - the particular properties that describe it. For example, an

traveller entity may be described by the traveller’s name, trip-location and address. An

entity type defines a collection of entities that have the same attributes. The relationship

type is a concept to define associations between two or more entity types, and is formally

defined as a subset of the cartesian product of the participating entity types.

ER model is important for mapping between relational databases and OWL ontologies

because the designers of databases often use it to model a relational database in real world.

Therefore, if only reversing of engineering from relational databases to its original entity-

relationship model we can capture the more semantic from the relational databases.

3.2 OWL: Web Ontology Language

Since the emerging of Semantic Web, some organizers has developed the related spec-

ification of describing Web resources and one of them is RDF. RDF was developed by

W3C (World Wide Web Consortium) as a language to describe Web resources. W3C also

built the RDF Schema language as an extension to RDF. The combination of RDF and

RDF Schema is known as RDF(S). RDF statement are expressed in the form of triples:

subject, predicate, and object. The main drawback of RDF is its expressiveness, which

are basically limited to simple object, class, or property relationships. Thus, the W3C

developed a new language OWL to realize the requirement for a modeling language going

beyond the basic semantics of RDF Schema.

The OWL, which builds up on the RDF layer of the Semantic Web, is the W3C stan-

dard for representing ontologies on the Semantic Web. Furthermore, OWL are compat-

24

ible with the Extensible Markup Language (XML) and its most immediate predecessor,

namely DAML+OIL, which was deeply influenced by Description Logics. Nowadays,

OWL are play a key role in Semantic Web by defining structured Web-based ontologies

which allow a richer integration and interoperability of data among communities and

domains.

Different from RDF language, OWL has more powerful expressiveness than RDF,

e.g. additional vocabulary such as a disjointness relation between classes, transitivity

and cardinality of properties, or the creation of complex classes. Depending on the

expressiveness, the W3C has split OWL into three increasingly expressive sublanguages:

OWL Lite, OWL DL, and OWL Full. The following sections to the three sublanguages

is based on the standard [29] .

3.2.1 OWL Lite

OWL Lite is the most basic of the three OWL sublanguages, supporting classification

hierarchies and simple constraints. Additionally, OWL Lite provides the possibility to

build up subclass hierarchies and make properties optional, i.e. to impose a cardinality

constraint of 0 and 1. The following are the definitions of tags for OWL Lite according

to [29] .

OWL Lite RDF Schema Features

• Class: A class defines a group of individuals because they share some properties.

For instance, classes can be organized in a specialization hierarchy using subClassOf.

Besides Thing is a built-in most general class.

• rdfs:subClassOf : A class is a subclass of another class, which can be described

by making one or more statements.

• rdf:Property : A property is used to state relationships between individuals.

• rdfs:subPropertyOf : Similar to subClassof, property hierarchies can be created

by making one or more statements that a property is a subproperty of one or more

other properties.

25

• rdfs:domain : A domain of a property states the individuals to which the property

can be applied.

• rdfs:range : A range of a property states the individuals that the property may

have as its value.

• Individual : Individuals are instances of classes, and properties may be used to

relate one individual to another

OWL Lite Equality and Inequality

OWL includes features that are related to equality or inequality.

• equivalentClass : Two classes may be stated to be equivalent. Equivalent classes

have the same instances and can be used to create synonymous classes.

• equivalentProperty : Two properties may be stated to be equivalent. Equivalent

properties relate one individual to the same set of other individuals and may be

used to create synonymous properties

• sameAs : A number of different names, which refer to the same individual, can be

stated to be the same by using sameAs

• differentFrom : By using differentFrom, individual can be stated to be different

from other individuals.

• AllDifferent : A number of individuals may be stated to be mutually distinct in

one AllDifferent statement.

OWL Lite Property Characteristics

There are some special identifiers in OWL Lite that are used to provide information

concerning properties and their values.

• inverseOf : One property may be stated to be the inverse of another property. If

the property P1 is stated to be the inverse of the property P2, then if X is related

to Y by the P2 property, then Y is related to X by the P1 property.

26

• TransitiveProperty : Properties may be stated to be transitive. If a property is

transitive, then if the pair (x,y) is an instance of the transitive property P, and the

pair (y,z) is an instance of P, then the pair (x,z) is also an instance of P.

• SymmetricProperty : Properties may be stated to be symmetric. If a property is

symmetric, then if the pair (x,y) is an instance of the symmetric property P, then

the pair (y,x) is also an instance of P.

• FunctionalProperty : Properties may be stated to have a unique value. If a

property is a FunctionalProperty, then it has no more than one value for each

individual (it may have no values for an individual). This characteristic has been

referred to as having a unique property. FunctionalProperty is shorthand for stating

that the property’s minimum cardinality is zero and its maximum cardinality is 1.

• InverseFunctionalProperty : Properties may be stated to be inverse functional.

If a property is inverse functional then the inverse of the property is functional.

Thus the inverse of the property has at most one value for each individual. This

characteristic has also been referred to as an unambiguous property.

OWL Lite Property Restrictions

How properties can be used by instances of a class can be stated by property restrictions.

There are two restrictions limit which values can be used.

• allValuesFrom : The restriction allValuesFrom is stated on a property with re-

spect to a class. It means that this property on this particular class has a local

range restriction associated with it. Thus if an instance of the class is related by

the property to a second individual, then the second individual can be inferred to

be an instance of the local range restriction class.

• someValuesFrom : The restriction someValuesFrom is stated on a property with

respect to a class. A particular class may have a restriction on a property that at

least one value for that property is of a certain type.

27

OWL Lite Restricted Cardinality

OWL Lite includes only a limited form of cardinality restrictions because they only allow

statements concerning cardinalities of value 0 or 1 (they do not allow arbitrary values for

cardinality, as is the case in OWL DL and OWL Full).

• minCardinality : Cardinality is stated on a property with respect to a particular

class. If a minCardinality of 1 is stated on a property with respect to a class, then

any instance of that class will be related to at least one individual by that property.

This restriction is another way of saying that the property is required to have a

value for all instances of the class.

• maxCardinality : Similar to minCardinality, if a maxCardinality of 1 is stated on

a property with respect to a class, then any instance of that class will be related to at

most one individual by that property. A maxCardinality 1 restriction is sometimes

called a functional or unique property.

• cardinality: Cardinality is provided as a convenience when it is useful to state that

a property on a class has both minCardinality 0 and maxCardinality 0 or both

minCardinality 1 and maxCardinality 1.

3.2.2 OWL DL and OWL Full

OWL DL add additional features to OWL Lite, corresponding to the expressiveness pro-

vided by description logics . Unlike OWL Lite, OWL DL supports all language constructs

of OWL, but still imposes some restrictions, e.g. an instance of a class cannot be at the

same time itself a class or a property. These restrictions are required to guarantee the

computational completeness and decidability of OWL DL. On the other hand, OWL Full

supports the complete functionality of OWL and allows an arbitrary combination with

any constructs of RDF or RDF Schema. As a result, the usage of OWL Full may result

in undecidable problems. Now we begin to introduce tags of OWL DL and OWL Full

according to [29] .

• oneOf : (enumerated classes): Classes can be described by enumeration of the

individuals that make up the class. The members of the class are exactly the set of

28

enumerated individuals; no more, no less.

• hasValue : (property values): A property can be required to have a certain indi-

vidual as a value (also sometimes referred to as property values).

• disjointWith : Classes may be stated to be disjoint from each other.

• unionOf, complementOf, intersectionOf : (Boolean combinations): OWL

DL and OWL Full allow arbitrary Boolean combinations of classes and restrictions:

unionOf, complementOf, and intersectionOf.

• minCardinality, maxCardinality, cardinality(full cardinality): While in

OWL Lite, cardinalities are restricted to at least, at most or exactly 1 or 0, full

OWL allows cardinality statements for arbitrary non-negative integers.

• complex classes:

3.2.3 The Mapping Between OWL DL And Description Logic

Description Logic (DL) is a family of logic-based Knowledge Representation (KR) for-

malisms. By using a structured and unambiguous way, the knowledge on an application

domain can be represented and reasoned by DL. For this purpose, DL provides each of

its constructs with a precise logical meaning. The basic building blocks for structuring

the domain knowledge are a set of atomic concepts (unary predicates) and atomic roles

(binary relations). Besides, DL provides a set of operators, called constructors, which

allow to form complex concepts and roles from atomic ones.

On the other hand, since OWL DL includes all the OWL language constructs with

some restrictions such as a class cannot be treated as an individual or a property, it can

be processed by DL-based reasoner. As a result, OWL-DL corresponds to the Description

Logic SHOIN(D). Hence, comparing with OWL Full, OWL DL is decidable, and this why

we takes OWL DL as one of inputs in our prototype system. The table 3.1 is the mapping

between OWL and basic DL notations.

29

Table 3.1: OWL Constructors and Corresponding Description Logic Syntax

Constructor Description Logic Syntax Example

intersectionOf C1 � ... � Cn Location � Taipei

unionOf C1 � ... � Cn DaanChiu � ShinyiChiu

complementOf ¬C ¬TaipeiCity

oneOf {x1...xn} {Red, Blue, Yellow}
allValuesFrom ∀P.C ∀locatedIn.TaipeiCity

someValuesFrom ∃P.C ∃isPassedBy.BusNo 1

hasValue ∃P.x ∃ locatedIn.{ind TaipeiCity}
minCardinality ≥ nP ≥ 3hasTripElement

maxCardinality ≤ nP ≤ 2hasTripElement

cardinality = nP = 1hasTripElement

3.3 Differences Between Database Schema and On-

tology

When mapping relational databases to OWl ontologies using relational database schemas,

differences between them should be first taken into account. Now we introduce these

differences based on [33] .

• In general, the aim is to preserve the integrity of data itself when creating database

schemas. However, for ontologies, data themselves can be seen as ontologies. More-

over, in many cases, an ontology will not have any instance data at all, and a result

of an ontology query can include elements of the ontology itself but a result of an

database query is data or refer to other data.

• Comparing with the ontology, database schema itself provide very little semantic,

whereas ontology is logic-based, and hence the semantics is explicitly represented.

• Database schemata are not sharable or reusable, usually they are part of an inte-

grated system and is rarely used apart from it, whereas ontologies are by nature

reusable and typically extent other ontologies, and they are not bound to a specific

system.

30

• In general, database schema development and maintenance is a centralised process,

whereas ontology development is more de-centralised.

• Database schema often takes into account effects of each change operation on the

data. However, in ontologies, the number of knowledge representation primitives is

much higher and more complex

• Databases make a clear distinction between schema and instance data, whereas

classes and instances can be the same in some knowledge representation languages

used for ontology modelling such as RDFS.

31

Chapter 4

Mapping Approach

In this chapter, we begin to introduce our approach to mapping a relational database

to OWL ontologies. As mentioned in Chapter 2, the approaches in the related field are

mainly composed of two parts. One is “to extract ontologies from a relational database”

and the other is “directly to map a relational database to existing OWL ontologies.” The

former primarily focus on finding rules about how to extract classes and properties of

OWL ontologies from tables and columns of a relational database by analysing keys, data

and so on. The latter primarily discovers a new method of mapping a relational database

to domain-related OWL ontologies and this is our object. Besides, a fully-automatic

mapping approach in this field is still in the very early stage to be implemented since

the related technique such as the natural language processing (NLP) has not been yet

mature enough to deal with all mapping problems. Therefore, the use of a semi-automatic

mapping approach is seen as the practical short terms solution.

We proposes a semi-automatic approach that directly to map a relational database to

OWL ontologies. As far as we know, the methods of directly to map a relational database

to existing OWL ontologies are less related to the ones of extracting OWL ontologies from

a relational database. Besides although some approaches using a two-phases mapping

method, which first extracts OWL ontologies from a relational database and then maps

this extracted OWL ontologies to existing OWL ontologies, it would have the drawback of

loosing more information, that is the extracted OWL ontologies from a relational database

would lose some semantic information, and the mapping process between OWL ontologies

would also lose some information. However, our approach immunizes this problem even

though using the contributions of extracting OWL ontologies from a relational database.

32

4.1 Overview of the Approach

Our approach of directly mapping a relational database to OWL ontologies is based on

the concept of cluster analysis in data mining. There are many data mining techniques

and one of them is cluster analysis [35] whose purpose is to find groups of objects such

that the objects in a group will be similar (or related) to one another and different from

(or unrelated to) the objects in other groups. Extending this purpose to our approach

is to find a matching classes group (MCG) for every table such that every found class of

MCG of the table has the same features and the final mapping result of the table must

be in its MCG and satisfy the mapping consistency. Mapping consistency states that the

mapping results should not violate the fact expressed in the relational database.

Since the final mapping results must be in the MCGs of tables and the most important

features for classes of OWL ontologies are their properties, especially for object properties,

our approach of first phase is to map foreign keys to object properties to get the features

of MCGs of the related tables and the second phase finds MCGs of tables using the results

of the first phase as inputs. After finishing these phases, some new properties or classes

can be created based on the mapping rules. Furthermore, there are two assumptions in

this approach.

• Assumption one: The mapping results of the first phase are accurate, that is, these

mapping results are consistent with the fact expressed in the real world.

– Rationality: Our approach is semi-automatic and hence users will need to

refine the final mapping results after finishing the phase one. For this purpose,

we expected these mapping results refined by users are accurate.

• Assumption two: When using our approach to mapping a relational database to

OWL ontologies, the domain size described by OWL ontologies should subsume the

one described by the relational database.

– Rationality: Relational databases are less semantic model comparing to OWL

ontologies. Besides, the domain size of OWL ontologies usually increase grad-

ually with time but relational databases do not. Hence for some relational

33

databases whose domain size are not subsumed by OWL ontologies currently,

OWL ontologies will subsume these domain in the long run.

Now we first briefly overview the approach implemented by the system in Figure 4.1

and detail our approach in the following sections.

Figure 4.1: System Architecture

• Preprocessing: Since mapping between a relational database and OWL ontologies

is usually from a less semantic model to a more semantic one, we will engage in

preprocessing the relational database schema by the help of semantic enrichment

to get more semantic data from the relational database. The semantic enrichment

can be done by classifying tables and columns of a relational database as in Table

4.1.

34

• Phase One: After classifying tables and columns, we will get the related semantic

information for every column and we will use this information to map foreign keys

of a relational database to object properties of OWL ontologies.

Table 4.1: Classification of Tables and Columns

Classification of Tables

Independent Tables Associated Tables Generalization/Specialization(G/S) Tables

Classification of Columns

Foreign Keys Non Foreign Keys

Base FKs Part-Of FKs IS-A FKs Numeric Group String Group Time Group

• Phase Two: The object of the second phase is to find MCGs of tables then map

tables to classes. According to the structure of tables, we will first to find MCGs

of associated tables whose inputs are the mapping results in phase one and hence

the assumption one is taken into this mapping process. Then the MCGs of some

cases of G/S table can be found by using the MCGs of associated tables. Besides,

the MCGs of other cases of G/S tables and independent tables will all be regarded

as the collection of all classes of OWL ontologies. Finally, after system completes

finding the MCG for every table, the mapping between tables and their MCGs will

begin to be dealt with.

4.2 Preliminary Definitions

We first define some terms of the relational database schema and OWL ontologies used

in our approach.

Definition 4.2.1 (Relational Database Schema). Let T = t1, t2,, tn be the set of

tables from a relational database schema RDBS, where

• Each table ti has a set of columns COL(ti) = c1, c2, ..., ci

• Each table ti has a set of primary keys PK(ti)

• Each table ti has a set of foreign keys FK(ti)

35

• The foreign key fkey refers to the table Ref(fkey)

• The table RefBy(fkey) referred by the foreign key fkey

• The tables SubT (ti) are the set of sub-table of ti

• The table SupT (ti) is the super-table of ti

Definition 4.2.2 (OWL Ontologies). Let T = cls1, cls2,, clsn be the set of classes

from OWL ontologies, where

• Each class clsi has a set of object properties OP (clsi)

• Each class clsi has a set of datatype properties DP (clsi)

• Each class clsi has a set of possible subclasses SubC(clsi)

• Each class clsi has a set of possible superclasses SupC(clsi)

• Each object property opi has a set of all possible domain classes DOM(opi)

• Each object property opi has a set of all possible range classes Range(opi)

4.3 Classifying Tables and Columns

Our goal in first step is to classify tables and columns into groups as Table 4.1. Classifying

these entities is necessary to reach the more accurate mapping results when applying the

following intuitions.

• Intuitively, two entities are hard to be mapped if their external structures are dif-

ferent and therefore we group tables of the relational database schema into three

kinds of table: Independent Tables, Associated Tables, and G/S Table. We map

foreign keys to object properties and non-foreign keys to object or datatype prop-

erties. Because object properties in OWL can link individuals of domain classes

to individuals of range classes and foreign keys in the relational database are their

counterparts since for foreign keys, they can link the instances of table they store

in to the instances of table they refer to. But as for non-foreign keys, their counter-

parts in OWL ontologies are datatype properties because both of them can not link

36

two individuals or instances to each other. Nevertheless, non-foreign keys can also

be mapped to object properties because there are some columns in the relational

database that can independently represent entities, i.e., these columns can be the

range classes of object properties. Furthermore, foreign keys and non-foreign keys

can be further classified into various groups and this will discussed in the following

sections.

• Intuitively, two entities have different internal structure, especially for the different

datatype, will be difficult to match each other and hence when mapping between

non-foreign keys and datatype properties, the datatype between them will be taken

into consideration.

Since the useful semantic data is not explicitly defined in the relational database

schema, in other words, the information such as which table belongs to which group

is invisible and hence we will first engage in the semantic enrichment of the relational

database to extract some implicit information which can be used to find some classifica-

tions of tables and columns such as G/S tables. Therefore, semantic enrichment is the

task of gathering additional semantic information which is not explicitly available from

the relational database system [6]. In the research of transforming the relational database

schemas to other data models such as object-oriented databases schemas, semantic enrich-

ment is considered an important process and hence many researches in this area had made

some helpful contributions. In general, these results of research are presented as rules.

Furthermore, in the topic of extracting OWL ontologies from the relational database,

the processes of extracting OWL ontologies also primarily focus on finding rules through

analyzing the semantic of the relational database schema. Therefore, we will greatly take

advantage of the contributions in these field to classify tables and columns to get their

semantic.

4.3.1 Classifying Tables

In relational data model, there are some tables representing the real world entities whose

instances can be identified exclusively through its own attributes and have no any rela-

tionship with other tables. In this thesis, they are called independent tables since the

37

semantic of this kind of table usually explicitly reflects in the relational database schema

and the following is its definition.

Definition 4.3.1. For table ti , ti is an independent table if FK(ti) = Φ and no other

foreign keys of tables refers to ti

Associated tables are the main components in the relational data model represent-

ing the various relationship between tables such as one-to-one relationship, many-to-one

relationship and many-to-many relationship. Among them, a relationship table will be

created in order to express the many-to-many relationship between tables. A relation-

ship table in the relational data model denotes a set of tuples, each one is composed of

instances of the entities that participate in the relationship. The number of the partic-

ipation of these entities in a relationship constructs a n-arity relation. For example, for

tables “package(packageID, numOfDays, departed,...)” and “spot(name, location)” in the

relational database schema 5.3, package is a table used to store the related information

of the journey. Therefore, a package can have many spots and a spot can be included by

many packages. In order to represent many-to-many relationship between “package” and

“spot”, a relationship table “spotDetail(packageID, sname)” , which combining primary

keys “packageID” and “sname” as foreign keys, need to be created. The followings are

the definitions of associated tables and relationship tables.

Definition 4.3.2. For table ti , ti is an associated table if there exist a foreign key ci

which is not an IS-A FK or some other foreign keys of tables refer to ti

Definition 4.3.3 (Relationship Table). For tables t1, t2,..., ti and tj , tj is a relationship

table if PK(tj) = FK(tj) = PK(t1) � PK(t2) � . . . � PK(t1)

To represent inclusions between the sets of instances of two entities, so called Gen-

eralization/Specialization(G/S) tables are used. G/S tables states the inheritance of

properties from a more general entity to a more specific one. In other words, two tables

have a G/S relationship if every instance of one table is also an instance of the other ta-

ble. In general, many studies [24] had considered that finding the tables have inheritance

relationships is equal to finding the tables have the subsumed relationship between their

own primary keys and hence the definition for G/S tables is as follow.

38

Definition 4.3.4 (G/S table). For tables ti, tj , ti and tj are G/S tables if PK(ti) ⊆
PK(tj) and exist Ref(ci) = tj, where ci ∈ FK(ti)

For example, for tables “accom(hotelCode, location)” and “resortHotel”(hotelCode,

resort) in our example of relational database schema 5.3, where hotelCode of resortHo-

tel refers to hotelCode of accom. These two tables are G/S tables since there exist

PK(resortHotel) ⊆ PK(accom) and Ref(hotelcode) = accom.

By using the definitions, independent tables and associated tables can be automat-

ically detected by the system, but as for some G/S tables user interaction is required

because the relational data model is known to be a semantically poor model and the con-

cept of inheritance relationship cannot be directly represented in the relational database.

Besides, in the designing of the relational database schema, designers rarely consider the

inheritance relationships between tables because the main goal of designing a relational

database is to create the binary relationship between two tables. Therefore, as opposed

to OWL ontologies, inheritance relationships are less and not explicit in the relational

database schema. In order to find the tables ti and tj satisfying the definition of G/S

table, we need to verify every instance of PK(ti) is also an instance of PK(tj). But since

we have no instance in hand can proof it, some cases need querying users to find the G/S

tables.

Now discussing these cases, for tables ti, tj and foreign key ci , ti and tj can at

least have “is-part-of” and “has-part” relationship [24] if ci ∈ FK(ti), ci ∈ PK(ti) and

Ref(ci) = tj. If the condition |PK(tj)| = 1 pluses to this case, we can further make sure

ti and tj exist a G/S relationship since we know every instance of ti is also an instance

of tj. But if the conditions |PK(ti)| > 1, |PK(tj)| > 1 and |PK(ti)| ≥ |PK(ti)| are

satisfied, whether ti and tj have a G/S relationship can only be decided by interacting

with users. For instance, if PK(ti) = {ca, cb}, PK(tj) = {cc, cd} and ca is also a foreign

key of ti referring to cc of tj, ti and tj can not be made sure if they have a G/S relation

since whether instances of cb are subsume by instances of cd or not can not be proofed.

4.3.2 Classifying Foreign Keys

After the process of classifying tables, the semantic of different kind of foreign keys can

also be found concurrently [24]. These kinds of foreign keys are defined as follows.

39

Definition 4.3.5 (Base FK). For table ti and its foreign key ci, ci is a base FK if

ci � PK(ti)

Definition 4.3.6 (IS-A FK). For super-table tj, its sub-table ti and foreign key ci of

ti, ci is an IS-A FK if ci ⊆ PK(ti) and ci ⊆ PK(tj)

Definition 4.3.7 (Part-Of FK). For table ti and its foreign key ci, ci is a Part-Of FK

if ci is not an IS-A FK and ci ⊆ PK(ti)

4.4 Matchers in the Approach

Before describing the method for mapping foreign keys to object properties we are first

to discuss the matchers and source of computing the similarity using in this approach.

4.4.1 Matchers

Various matching techniques have been introduced in Chapter 2 , especially for the string-

based and WordNet-based matchers. Usually mapping is a complex process and a single

kind of matcher often can not satisfy the mapping problem since different situation can

be happened when matching different information structures, and a matcher is frequently

designed for specifying applications. For this reason, some matching systems use com-

posite or hybrid matchers. Composite matcher is a matcher that combines the results of

multiple single matchers and hybrid matcher incorporates the features of several match-

ers into one compound matcher. Furthermore, most of the time is spent on computing

the similarities between entities when dealing with the mapping problem. Therefore, an

efficiency matcher is required. In this approach, we use a hybrid matcher combining Lin

and I-Sub measures. These two measures are complement based on the fact that Lin can

be used as a WordNet-bases matcher and I-Sub can be used as a string-based matcher and

besides, the designing concept of I-Sub comes from the intuitions of Lin. Now explaining

this hybrid matcher.

In the field of the Information retrieval(IR), the following formula can be represented

the information content of some word w in a document.

IC(w) = log(
1

P (w)
)

40

Intuitively, two concept are similar if they share some mutual information content

and hence Resnik[34] uses the following equation as a method to evaluate the similarity

between two concepts.

Definition 4.4.1 (Resnik Similarity).

Sim(c1, c2) = max
c∈Sup(c1,c2)

[− log P (c)]

, where P (c) is the probability of encountering an instance of concept c and Sup(c1, c2)

is a set of superconcept of c1 and c2

If all words in a WordNet tree are regarded as a document, the similarity of two

words can be determined by their common information contents. Besides, since a word

in WordNet tree can be seen as a concept, any similarity of two words can depend on

their common information contents in WordNet tree.

Since the equation of Resnik only considers the commonality between two concepts,

Lin [25] proposed a similarity measure normalizing Resnik’s equation based on the three

intuitions. In his thesis, intuitions are described as follow.

• Intuition 1: The similarity between A and B is related to their commonality. The

more commonality they share, the more similar they are.

• Intuition 2: The similarity between A and B is related to the differences between

them. The more differences they have, the less similar they are.

• Intuition 3: The maximum similarity between A and B is reached when A and B

are identical, no matter how much commonality they share.

Commonality or difference between two concepts can be quantified by using the in-

formation contents of these two concepts and hence Lin extended Resnik’s equation to

the following formula:

Simlin(c1, c2) =
2 ∗ IC(LCS)

IC(c1) + IC(c2)
, where LCS is the least common subsumer of c1 and c2.

Stoilos et al. [36] proposed a string-based matcher called I-Sub. The main idea of

I-Sub comes from Lin measure, that is, the similarity among two entities is related to

41

their commonalities as well as to their differences and hence the following equation is

proposed.

Sim(s1, s2) = Comm(s1, s2) − Diff(s1, s2) + Winkler(s1, s2)

,where

Comm(s1, s2) =
2 ∗ ∑n

i=1(length(maxComSubStringi))

length(s1) + length(s2)

Diff(s1, s2) =
uLens1 ∗ uLens2

p + (1 − p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2)

Winkler(s1, s2) = commonPrefixLenght ∗ 0.1 ∗ (1 − Comm(s1, s2))

Note that in our approach, we ignore the formula Diff(s1, s2). Because as opposed

to the names of entities in OWL ontologies, the ones of entities in relational databases are

often incomplete and abbreviated. Furthermore, I-Sub is designed for mapping between

OWL ontologies. Therefore, when mapping between a relational database and OWL

ontologies, the fact that some entities whose similarities should be high will not be shown

due to the formula Diff(s1, s2).

Now using two strings “hasTransportation” and “traffic” as an example to describe

how a hybrid matcher combining Lin and I-Sub measures computes the similarity in our

approach. Before calculating the similarity of these two string, they need to be tokenized

first as described below.

• Tokenization: In information retrieval, a string is considered as a set of words also

called bag of words. Besides, in the area of Computer Science researchers tend to

use multiple words to represent variables or real world entities. Hence, in order

to get the more accurate meaning of strings, we need to tokenize these strings by

segmenting them into sequences of tokens. In this approach, we recognize four

tokenizing processes:

– Replacing the punctuation character with the blank.

– Recognizing the upper case as a beginning of a word.

– Removing digits.

– Removing stopwords.

42

After tokenizing, “hasTransportation” becomes “transportation” and “traffic” does

not change. Then using our hybrid matcher to compute the similarity between these two

strings. Since “transportation” and “traffic” can be found in WordNet their information

contents are 9.054 and 10.170 respectively and the information content of LCS for these

two strings is 5.894. Therefore Simlin(transportation, traffic) = 0.613. Note that all

information contents are computed in advance [28]. If this example is revised to “has-

Trans” and “traffic”, “hasTrans” will become “Trans”. I-Sub will compute the similarity

in this case since trans can not be found in WordNet.

4.4.2 Source of Computing the Similarity

In order to increase the mapping performance, many researches make full use of the infor-

mation related to the mapped entities. In general, these information can be summarized

as follows.

• Local similarity: Some information uses for describing the entities is local infor-

mation. For instance, we usually give a name as a meaning of an entity and this

name is the local description of this entity. Hence, many approaches use matchers

to compute the similarity of entities by their local descriptions.

• Internal similarity: Similar entities usually have the similar internal structures. In

other words, if two entities are with similar internal structures, they will have a

chance to match each other. For instance, we can compute the internal similarity

by the datatypes of two entities such as “int” and “float”, then the result can

influence the final similarity measure between these two entities.

• External(Relational) similarity: Similar to internal similarity, two entities will be

possible to match each other if their neighbors are similar. We compute the sim-

ilarity of their neighbors as the external similarity. Then, the final result of the

similarity measure between two entities will be influenced by the external similar-

ity.

43

4.5 Mapping Foreign Keys to Object Properties

Many researches [30] claim that the similarity of two entities will be influenced by their

neighbor entities. Hence, when mapping a foreign key to some possible object properties,

if only considering the information foreign key itself has, there will cause a low accuracy of

mapping results. Besides, since some semantic of foreign keys can be gotten by classifying

tables a foreign key can have different matching level depend on the semantic it has.

Combining above mentions, two principals of mapping foreign keys to object properties

are composed as follows:

• Principal 1: The similarity between two entities should be influenced by their neigh-

bor entities.

• Principal 2: Foreign keys can have different level matching depend on the semantic

they have.

Therefore, the principals and source of computing similarity are considered when

mapping foreign keys to object properties. In the following sections, we introduce how

to map various kinds of foreign keys to object properties except IS-A FKs. Because

as for OWL ontologies, it does not use object properties to declare subclass and super-

class relationship between classes but use a built-in vocabulary “owl:superClassOf” or

“owl:subClassOf” and hence IS-A FKs will be ignored in the matching process.

4.5.1 Mapping Base FKs

As defined in 4.3.5, the semantic of a base FK has explicitly expressed the fact that it can

relate one table to another table and as for object properties which can link individuals

each other between domain classes and range classes. Therefore, for one base foreign

key and one object property, their total similarity can be combined the local similarity

and the external similarity to improve the performance of mapping results. The related

definitions of these similarities are defined as follows.

Definition 4.5.1 (Local Similarity for Two Entities). For two entities ei and ej, their

local similarity can be expressed as Simlocal(ei, ej) which is the result using matchers to

compute their local information such as names.

44

For a foreign key ci, the table ci stores in and the table ci refers to will be the main

structures for ci. The counter parts in object property opi are its domain classes and

range classes. Hence, the external similarity of ci and opi can combine their domain

similarity Simdomain(ci, opi) and range similarity Simrange(ci, opi). These two similarities

are defined as follows.

Definition 4.5.2 (External Similarity of FKs and OPs). For foreign key ci of table

ti referring to table tj and object property opi which has n related domain classes

{dc1, dc2, . . . , dcn} and m related range classes {rc1, rc2, . . . , rcn}, the exteranl similar-

ity of ci and opi is

Simexternal(ci, opi) = Simdomain(ci, opi) + Simrange(ci, opi)

where

• Simdomain(ci, opi) = max
1≤x≤n

Simloc(ti, dcx) is the domain similarity of ci and opi.

• Simrange(ci, opi) = max
1≤y≤m

Simloc(tj, rcy) is the range similarity of ci and opi.

According to the principal 2 foreign keys can have different level matching depend

on the semantic they have. In this approach, two matching levels, which are level one

matching and level two matching, are used. Level one matching represents the matching

between entities only considers the explicit information they have. As opposed to level one

matching, level two matching uses implicit information to match entities. Hence, since a

base FK in this approach is regarded as an entity which has no implicit information it

will be matched up to level one and its similarity is defined as follows.

Definition 4.5.3 (Similarity for Base FKs and Object Properties). For base foreign key

ci and object property opi, the similarity between them can be computed as:

Simone(ci, opi) = Simlocal(ci, opi) + Simexternal(ci, opi)

, where

• Simlocal(ci, opi) is the local similarity.

• Simexternal(ci, opi) is the external similarity.

45

Since for each base foreign key there are many possible object properties to match,

we give the priority to the matching candidate based on the rank of their similarity. For

example, the best matching candidate for base foreign key ci can be defined as follows.

Definition 4.5.4. For base foreign key ci and n numbers of object properties {op1, op2, . . . , opn},
the best matching candidate from these object properties for ci is opi if :

Sim(ci, opi) = max
1≤x≤n

Simone(ci, opx)

4.5.2 Mapping Part-Of FKs

For any two individuals I1 and I2 in OWL ontologies, if I1 is part of I2 and I2 has part of

I1, I1 and I2 will have inverse relationship and this kind of relation can be easily claimed

in the OWL ontologies as two object properties which have inverse relation. But as for

the relational database schema, inverse relationship between tables can not be explicitly

expressed. Because for any two tables ti and tj, if they have inverse relationship in the

real word, database designers usually regard this kind of relationship as the common

binary relationship and hence may design that ti uses a foreign key to refer to tj and the

fact that tj can also use a foreign key to refer to ti would not be captured.

As mentioned above, the fact that two tables have the inverse relationship will be

represented incompletely, in other words, some implicit information is not expressed in

the relational database schema. Hence, extracting these implicit information is necessary

to improve the performance of mapping result. For this purpose, our approach takes

advantage of Part-Of FKs to find the inverse relationship between tables. Because for a

table ti and its Part-Of FK ci referring to table tj, the fact that ti and tj have inverse

relationship is satisfied since both of them have the common primary key describing

themselves.

Mapping a Part-Of FK to object properties can adopt a level two matching since this

kind of FK has implicitly expressed the information about two tables exist an inverse

relationship. In level one matching for a Part-Of FK ci, the behavior of computing

similarity between ci and object properties is the same as the one of a base FK. But

when reaching the level two matching, we will create a conceived foreign key cj to express

the implicit information of ci. The name of cj is the same as ci and now cj becomes

46

a foreign key of the table ci refers to and cj refers to the table ci stores in. Hence, if

combining level one and level two matching for ci and n numbers of object properties,

there will be 2n numbers of matching results for ci. n numbers of them are the matching

results using explicit information ci to match and the others are the matching results

using implicit information ci to match. Now we define the best matching candidate of ci.

Definition 4.5.5. For tables ti and tj, if ti has a Part-Of foreign key ci referring to tj and

ci will match to n numbers of object properties {op1, op2, . . . , opn}, a conceived foreign

key cj of tj referring to ti will be created and the best matching candidate from these

object properties for ci is opi if :

Sim(ci, opi) = max((max
1≤x≤n

Simone(ci, opx)) � (max
1≤y≤n

Simtwo(ci, opy)))

where

• Simone(ci, opx) is the level one matching result.

• Simtwo(ci, opy) is the level two matching result.

4.5.3 Mapping FKs of Relationship Tables

When calculating the external similarity between foreign keys and object properties, we

usually take the tables foreign keys store in and domain classes of object properties as

input to compute the domain similarity but as for foreign keys of relationship tables we

doesn’t always do that. Because relationship tables are created to facilitate the ”many-

to-many” relationship betweens tables and not to represent entities in the real word.

Furthermore, on one hand, one relationship table can represent n-arity relationship, but

on the other hand, OWL ontologies can only support unary or binary relationship.

Hence for a relationship table ti which has a set of foreign keys {c1, c2, . . . , cn}, when

mapping these foreign key to object properties, two cases are considered as follows to

capture the semantic of relationship table as far as possible.

• Case 1: If n = 2 and COL(ti) = FK(ti), the table used to compute the domain

similarity for c1 will be the the table referred by c2 and the table used to compute

the domain similarity for c2 will be the table referred by c1

47

• Case 2: If n ≥ 2 or COL(ti) �= FK(ti), every table used to compute the domain

similarity for cn will be the relationship table itself

4.6 Mapping Tables

In the second phase, we devise a new method to map tables of a relational database to

classes of OWL ontologies. This new method is based on the idea of “Cluster Analysis”.

We will use the cluster analysis to find the MCG for every table and every class of the

found MCG will satisfy the “Mapping consistency”. For example, if two associated tables

ti and tj express the face that ti can relate to tj through its foreign key ci, the mapping

result of ti could also related to the one of tj through the one of ci.

Basically, the object of finding MCG for every table can be easily to be reached by

the help of the related mapping results. We first take the mapping results in phase one as

inputs when finding MCGs for associated tables. In phase one, the object of approach is

to map foreign key to object properties and what the method we used has been discussed

in the previous sections. After finishing this phase, user will first obtain the mapping

results between foreign keys and object properties and beginning to refine the mapping

results, i.e., to revise some best mapping results which are not correctly matched. Hence,

we can assume these mapping results are accurate then the MCGs for associated tables

can be found with these results. Finally, once finishing the finding of the initial MCGs

of associated tables, we can find MCGs for some cases of G/S table using the MCGs of

associated and the principal of mapping consistency. Now detailing this method.

4.6.1 MCGs of Associated Tables

In the phase one, if one foreign key need matching to n numbers of object properties,

n numbers of similarities between them will be required to be computed. It seems as

demanding a lot time to tackle this task. In fact, many methods proposed[16] [30] in

matching field need an initial mapping using the element level matching. This initial

mapping will usually compute all possible local similarities between attributes of entities

or/and entities of two schemas to determine the initial mapping results. Moreover, in

OWL ontologies, the number or the increased rate of object properties is often much

less than the classes and hence the results of our experiment showed that time taken to

48

compute the similarities in the phase one is acceptable. But since the situation of classes

in OWL ontologies is different from object properties and the mapping result of this phase

must satisfy the mapping consistency we should take a more efficiency way to deal with

mapping between tables and classes. For this reason, when mapping one associated table

to n numbers of classes, instead of computing every matching class between them, we only

need to compute some necessary matching classes which lead to every mapping result of

associated table satisfies the definition 4.6.1 and these necessary matching classes are the

members of MCG.

Definition 4.6.1 (Mapping Consistency for Associated Tables). For associated tables ti,

its MCG must satisfy that no matter which class of its MCG chosen by users as a mapping

result this chosen class will be a qualified one, i.e., this mapping result is consistent with

the fact expressed in ti.

As mentioned above, the mapping results of mapping foreign keys to object properties

in phase one are assumed correct and these mapping results are right the features of the

classes which associated tables expected to map. Therefore, the MCG for every associated

table can be easily found by the help of these results. First, we first to find all possible

matching classes for every associated table based on these results. For an associated table

ti, we denote MCG(ti) as a set of all possible matching classes group for ti. MCG(ti)

can be found by intersecting domain or range classes of the mapping results of the foreign

keys for ti and range or domain classes of the mapping results of the foreign keys referring

to ti. The definition of matching classes group(MCG) is as follows.

Definition 4.6.2 (Matching Classes Group(MCG)). For an associated table ti, which has

n numbers of foreign keys {cout1, cout2, . . . , coutn} and is referred by m numbers of foreign

keys {cin1, cin2, . . . , cinm}, if the mapping results in phase one for {cout1, cout2, . . . , coutn}
and {cin1, cin2, . . . , cinm} are {opin1, opin2, . . . , opinn} and {opout1, opout2, . . . , opoutm}
respectively, the matching classes group for ti will be as follows.

MCG(ti) = DOMRange(opout1) �DOMRange(opout2) � . . . �DOMRange(opoutn) �
DOMRange(opin1) � DOMRange(opin2) � . . . � DOMRange(opinm)

Note that :

49

• DOMRange(opoutn) = Range(opoutn) if the mapping result of coutn is from the

level two matching.

• DOMRange(opoutn) = DOM(opoutn) if the mapping result of coutn is from the

level one matching.

• DOMRange(opinm) = DOM(opinm) if the mapping result of cinn is from the level

two matching

• DOMRange(opinm) = Range(opinm) if the mapping result of cinn is from the level

one matching

For example, supposing that there exist no foreign key referring to table tj, tj has

one foreign key cin1 referring to ti and ti has two foreign keys cout1 and cout2, besides,

object property opin1 is the mapping result of cin1 from level one matching and object

properties opout1 and opout2 are the mapping results of cout1 and cout2 from level one

and level two matching respectively. Hence, these mapping results tell the fact that the

class ti expected to map is the domain of opout1, the range of opout2 and the range of

opin1 and the class tj expected to map is domain of opin1. Finally, in order to satisfy

the principal of mapping consistency, MCG(ti) must be the intersection of all domain

classes of opout1, all range classes of opout2 and all range classes of opin1 and in the

same way MCG(tj) is equal to all domain classes of opin1. In this way, choosing any

one class from MCG(ti) and MCG(tj) respectively will satisfy the mapping consistency,

i.e., satisfying the fact that tj can related to ti through cin1 in the real word and any one

class of MCG(tj) can related to any one class of MCG(tj) through opin1.

4.6.2 MCGs of G/S Tables and Other Tables

The second main step in phase two is to find MCGs of G/S tables. Similar to associated

tables, we also find all possible matching classes for G/S tables. Nevertheless, different

from the associated tables, which can take advantage of the mapping results of foreign

keys, G/S tables have no such information because their foreign keys use to refer to the

supertable are kind of IS-A links which are not necessary to map to the object properties.

But in some case, finding MCGs of G/S tables can still reach the same effect by using

50

the MCGs of associated tables in first step. These cases are those tables which are the

members of both associated tables and G/S tables and we will first deal with such cases.

First, we find those G/S tables which constitute a generalization/specialization tree

and exist at least one table which is also a member of associated tables. Since these

members have the initial MCGs in first step, these initial results will be used to find

MCGs of any other members in these trees. The MCGs of G/S tables should satisfy the

following mapping consistency.

Definition 4.6.3 (Mapping Consistency for G/S Tables). For a subtable ti and its su-

pertable tj , their matching classes of groups MCG(ti) and MCG(tj) must satisfy one of

the following conditions

• It must exist at least one matching class in MCG(tj) which is the superclass of the

mapping result of MCG(ti) chosen by users.

• It must exist at least one matching class in MCG(tj) which can lead to the same

mapping result as the one of MCG(ti) chosen by users.

Taking a example to describe the processes of finding MCGs for G/S tables, for tables

ti,tj and tk constitute a tree, where tj is a supertable of ti, tk is a supertable of tj and

ti is also an associated table. Hence, the initial MCG(ti) of ti has been obtained in

first step. Now we need to find the MCG(tj) and MCG(tk). In order to not violate the

mapping consistency, i.e., every class of MCG(ti) must exist at least one class in MCG(tj)

which is its superclass or the same class as it, MCG(tj) will be found by intersecting all

superclasses of class of MCG(ti) and MCG(ti) itself. In the same way, MCG(tk) can

be found since the initial matching result of MCG(tj) has been created. If the example

becomes ti and tj are also associated tables, both of them have the initial MCG(ti) and

MCG(tj) respectively. In this situation, we will revise MCG(tj) to a new MCG′(tj) by

intersecting all superclasses of class of MCG(ti), MCG(ti) and MCG(tj). The following

is the definition describing the processes of finding MCGs for two G/S tables ti and tj.

Definition 4.6.4. For a subtable ti and its supertable tj: If ti has initial MCG(ti) =

{cls1, cls2, . . . , clsn} and tj doesn’t.

• MCG(tj) = (SupC(cls1) � SupC(cls2) � . . . � SupC(clsn)) � MCG(ti)

51

If tj has initial MCG(tj) = {cls1, cls2, . . . , clsn} and ti doesn’t.

• MCG(ti) = (SubC(cls1) � SubC(cls2) � . . . � SubC(clsn)) � MCG(tj)

If ti and tj both have the initial matching classes of group MCG(ti) = {cls1, cls2, . . . , clsn}
and MCG(tj) respectively, a revised MCG′(tj) is

• MCG′(tj) = ((SupC(cls1)�SupC(cls2)� . . .�SupC(clsn))�MCG(ti))�MCG(tj)

Note that MCG(ti) does not necessary to be revised in this case.

MCGs of Other Tables

Nevertheless, there are some G/S tables which can not satisfy the conditions described

above, i.e., those G/S tables constitute a generalization/specialization tree but have no

existing associated table from them. In these cases, their MCGs will be regarded as a

universal classes in OWL ontologies and directly compute the similarities from all classes

of OWL for these tables since these cases are rare and there is no other information can

be further used. For those independent tables which are neither associated tables nor

G/S tables, they will be also directly computed all possible similarities between them and

all classes of OWL ontologies.

4.6.3 Mapping Tables and Non-Foreign Keys

After finishing second step, we will compute the similarities between table and its MCG.

In phase one, the similarities between foreign keys and object properties comprises the

local similarity and the external similarity. Different from the phase one, similarities

between tables and classes in this phase are only composed of the local similarity because

on the one hand, the external similarity for one table and one class is unnecessary since

the external structure of every class of one MCG is no difference, and on the other, the

internal similarity does not suit to be included into the similarity between one table and

one class since our experiment had shown that the internal similarity does not really help

the accuracy of the final mapping result.

52

4.6.4 Mapping Columns

In phase one, we map various kinds of foreign keys to object properties to get the features

of MCGs for associated tables and in phase two, MCG for every table is found by using

the related features of classes expected to be mapped and then the mapping results of

tables are done by mapping each table to its MCG.

After finishing these two phase, we need to determine every column of table requires to

be mapped to which property of the mapping result of table or mapped to nothing since

not all columns of table can be migrated into instances of class. Once completing the

mapping columns, we can apply these results to various application such as transferring

instances of columns to instances of properties. There are two kinds of columns, which

are foreign keys and non-foreign keys. For Base FKs and Part-Of FKs, which properties

should be mapped has been determined in phase one and the mapping columns rules for

these two kinds of FKs are described as follows.

Definition 4.6.5. For tables ti and tj, if ci is a Base or Part-Of FK of ti referring to tj,

opi is the mapping result of ci in phase one and clsi and clsj are the mapping results of

ti and tj respectively in phase two, the mapping columns rules for ci will be :

• Case 1: If the mapping result opi comes from the level one matching, ci must be

mapped to opi of clsi since clsj has no property opi.

• Case 2: If the mapping result opi comes from the level two matching, ci must be

mapped to opi of clsj since clsi has no property opi.

Apparently, for Base FKs, whose mapping results only come from the level one match-

ing and hence they only can apply Case 1 to map columns. Furthermore, if these foreign

keys can map to object properties, they will become the range classes of object properties.

For example, supposing that a table “railroad(trainNO, type, startStation, endStation)”

in the relational database schema 5.3 is mapped to a class “RailwayLine”, which has

object properties “transEndTo” and “transStartFrom” and both of them describe some

transportation line will has its start station and end station. Since columns of rail-

road “startStation” and “endStation” are foreign keys and have the same meaning as

“transEndTo” and “transStartFrom”, they will be mapped to these two object proper-

53

ties respectively in phase one. In this example, also meaning that “startStation” and

“endStation” will also become the range classes of “transEndTo” and “transStartFrom”.

For other columns including IS-A FKs and non-foreign keys, which properties they

should be mapped depend on the similarities between them. Besides, these other columns

can also be possible to be mapped to object properties if they can independently represent

the range classes of object properties. If these other columns need to be matched to some

datatype properties, in this time, their matching result will depend on the datatypes and

similarities they have. The datatypes of columns in the relational database are build-

in SQL datatypes. Similar to columns, datatype properties in OWL ontologies, which

are not like object properties that have range classes, make use of the RDF datatyping

scheme, which provides a mechanism for referring to XML Schema datatypes [29]. Be-

sides, two entities will have almost no chance to match each other if their datatypes of

range are different. For example, a datatype property named “Year” whose datatype

is “time” and a none foreign key column called “Creator” whose datatype is “CHAR-

ACTER”. Apparently Year and Creator represent different thing in the real world and

hence they should not be the final mapping result even though both of them may appear

a high similarity to some string-based matchers. Therefore, in order not to spend time on

computing unnecessary similarities, we divide datatypes into three main groups based on

the correspondences between SQL datatypes and XML Schema datatypes. These groups

are in Table 4.2. For a column ci of table ti, its possible matching datatype properties of

group will be only those which have the same datatypes as ci.

Moreover, as opposed to properties in OWL ontologies, columns in the relational

database can not be independent existing, they depend on their own table, i.e., when

a table is deleted its columns is also disappeared. Hence, by taking advantage of three

views as mentioned above:

• A column can be possible to be mapped to object properties.

• A column can only be mapped to the datatype properties which have the same

dataytype as it.

• A column can only be mapped to properties of the mapping result of table which

this column stores in.

54

Table 4.2: Groups of SQL and XML Schema Datatypes

Groups of Datatypes

Group SQL Datatypes XML Schema Datatypes

Numeric Group

SMALLINT short

INTEGER integer

INTEGER positiveInteger

INTEGER negativeInteger

INTEGER nonPositiveInteger

INTEGER nonNegativeInteger

INTEGER int

INTEGER long

NUMERIC decimal

DECIMAL decimal

FLOAT float

REAL float

DOUBLE PRECISION double

String Group
CHARACTER string

CHARACTER VARYING string

Time Group

TIME time

TIME WITH TIME ZONE time

DATE date

TIMESTAMP datetime

TIMESTAMP WITH TIME datetime

The similarity of the best matching candidate between a column ci and a properties

group of clsi can be defined through as follows.

Definition 4.6.6. Let:

• ci be a column excluding Base FK and Part-Of FK in table ti and the datatype of

ci be ctype

• GPdtype(clsi) ={dp1, dp2, . . . , dpn, op1, op2, . . . , opm} be a set of properties including

every datatype property with the same datatype dtype and every object property

of clsi.

If ctype is the same as dtype according to Table 4.2 and clsi is the mapping result of

55

ti, pi is the best matching candidate property for ci if :

Sim(ci, pi) = Sim(ci, GPdtype(clsi)) = max((max
1≤x≤n

Simlocal(ci, dpx))�(max
1≤y≤m

Simlocal(ci, opy)))

56

Chapter 5

Prototype System: Annotator

We develop a prototype system called “Annotator” (see Figure 4.1) implementing the

approach in Chapter 4. This prototype system is created as a plugin of Protégé[38] and

integrated in “the Traveller”[39] as its component. The Traveller is a Semantic Web-

based trip planning system that aims to help a customer or a travel agent to semantically

discover, combine, and invoke the desired Web services for a trip by the help of related

matching service. Web services are based on widely accepted standards such as WSDL

(Web Service Definition Language) and UDDI (Universal Description, Discovery and

Integration). However, just like the deep Web, the data used by Web Services usually

comes from relational databases and hence Annotator will play a role to support the

Traveller by mapping all related relational databases to the domain ontologies used by

the Traveller. The functions of the Traveller can see Figure 5.1. In the following sections,

we introduce how Anotator works.

5.1 Annotator

Annotator is a subsystem of the Traveller whose object is to assist system administrator

to engage in mapping the relational databases of travel industry to travel-related OWL

ontologies used by the Traveller. Figure 5.2 is the GUI of Annotator and this figure

also show the mapping results between our relational database example 5.3 and the

OWL ontologies used by the Traveller. This mapping process for domain experts can be

described as follows.

• Experts loads the OWL ontologies of the Traveller into Protégé to use the functions

57

of Protégé provideds to maintain ontologies.

• Now if expert want to map a relational database to the current OWL ontologies,

expert only need to open the tab of Annotator and the OWL ontologies used by

Protégé currently will automatically be loaded into the process of Anotator.

• System will begin to map the relational database to OWL ontologies once expert

executes the related command. After finishing mapping and expert saves the map-

ping results, these mapping results will automatically reflect in the GUI of OWL

ontologies.

Note that the information of mapping results of foreign keys and tables includes the

similarity of these mapping results and when experts clicks these mapping results, system

will show options for experts to revise mapping results and these options are sorted based

on their ranks of similarities. But as for mapping results of columns, usually only small

group of columns of tables require to be mapped to properties and besides, in contrast

to names of properties, the ones of columns are often incomplete. Therefore, a low

performance of mapping results for columns can be expected. For this reason, system

will only show the best matching property in option one and other options will leave to

experts to choose if they need to revise mapping results

5.1.1 Matcher

Matcher used in this system is a hybrid matcher combining Lin and I-Sub measures.

Lin measure computes the similarity of two words in WordNet. How similar of these two

words should be depends on their positions and information contents in the WordNet tree.

For these reasons, we use a famous Java API called ”Java WordNet Library (JWNL)”

1. JWNL is a Java API for accessing the WordNet dictionary. With JWNL we can

easily manipulate the related information of a word in WordNet such as deciding the

relationship between two words in the WordNet tree. Once we can know the related

position of two words in the WordNet tree using JWNL, LCS of these two words and

their information contents could be found and computed.

1http://jwordnet.sourceforge.net/

58

Calculating the Lin similarity between two words needs extra time computing their

information contents and this extra time will cause an inconvenience for uses since there

require quite a lot information contents of words for our mapping system. Therefore,

we use Java WordNet Similarity Library 2 to speed up the computing similarities. Java

WordNet Similarity is a pure Java API implementation of a number of standard WordNet

similarity measures include Lin and this API had computed in advance information con-

tent of every word in WordNet 2.0 stored in a file. Furthermore, there are repeated pair

of strings which require to be computed the similarities especially for the ones between

foreign keys and object properties when computing the similarities between entities and

hence we create a repository storing the similarity of every pair of strings. Whenever a

pair of words want to be computed system first looks up the repository to decide if this

pair of words need to be computed the similarity or not, thereby, saving more time for

users.

5.1.2 Relational Database

The related information of a relational database schema used as inputs in this system

can be easily retrieved through Java Database Connectivity (JDBC) API. JDBC 3 is a

database-independent connectivity between the Java programming language and a wide

range of databases and hence we use JDBC as a mediator between our system and our

goal relational database MySQL. We use JDBC to connect to MySQL database and make

full use of “DatabaseMetaData” object in JDBC. With DatabaseMetaData we can get

all metadatas of schema from relational databases.

5.1.3 OWL Ontology

Our system is developed as a plugin of Protégé[38]. Protégé is used to construct, edit,

update, maintain and retrieve OWL ontology and created by Stanford University. Stan-

ford University released not only the Protégé system but the Protégé-OWL API used to

build Protégé. Protégé-OWL API is so powerful that we can easily manipulate OWL

ontologies. For example, given one class clsi, the set of superclasses or subclasses of clsi

2http://nlp.shef.ac.uk/result/software.html
3http://java.sun.com/javase/technologies/database/

59

can be immediately obtained throug Protégé-OWL API and given one object property

opi the set of domain classes or range classes of opi can be also immediately obtained.

60

Figure 5.1: System Architecture of The Traveller

61

Figure 5.2: Annotator

62

Figure 5.3: Example: Relational Database Schema

63

Chapter 6

Conclusion

We implemented a system of mapping relational databases to OWL ontologies using

the approach proposed in this thesis. With this system, domain-related experts can

semiautomatically engage in mapping various sources of relational databases to OWL

ontologies such as the underlying relational databases of dynamic Web pages or the ones

used by Web services. Mapping processes of this system are composed of two phases and

we detail our contributions and future works as follow.

6.1 Contributions

• Construct an implicit matching level between foreigns keys and object

properties: We reach the object of semantic enrichment by classifying tables and

columns of the relational database. As far as we know, many approaches to di-

rectly mapping a relational database to OWL ontologies do not use the concept of

semantic enrichment, i.e., extracting the implicit semantic metadata expressed in

the relational databases. Hence, the mapping results of these approaches are often

the relational-like ones. Besides, most of the approaches only adapt the rule of

inheritance relationship between tables to map G/S tables to classes. Apparently

this is insufficient since the inheritance relationship in the relational database is rare

case and there still exist other implicit semantic which is not extracted. However

in our mapping system, we not only take the Generalization/Specialization rela-

tionship between tables into consideration but also take advantage of the inverse

relationship between tables which are implicitly expressed in a relational database

to construct an implicit matching level between foreigns keys and object properties.

64

• Devise a new method using the concept of cluster analysis: We devised a

new method to map tables of a relational database to classes of OWL ontologies

based on the concept of cluster analysis. The object of using this concept is to

find the MCG for every table. Finding the MCG for every table has at least four

advantages. First, most of the time in mapping problem is spent on computing the

similarities between entities and hence if we do not find the MCG for tables, one

table will usually match to every class of OWL ontologies that is equal to compute

every similarity between one table and every class of OWL ontologies. However,

we can reduce this problem to only compute the necessary similarities after finding

the MCGs for associated and G/S tables. Second, for one table, its MCG means

we collect all classes with the same features as the one that should be the final

mapping result in the real world, in other words, every class of MCG has share

some same properties with the real final mapping result. Therefore, sometime we

can avoid resulting a great error of mismatching even though the users choose or

system computes the wrong mapping results. Third, since the final mapping result

must be in the MCG of the table, the exact matching class which should be the

final mapping result in the real world must be included into MCG even though

the names of tables and classes are greatly divergent. Finally, in phase one, the

total similarities between foreign keys and object properties include the external

similarities and these ones in fact are right the local similarities between tables

and classes in phase two. Therefore, users can find that there is almost no waiting

time to see the matching results in phase two because most of the local similarity

between tables and classes has been computed in phase one.

• Create a flexible approach: The strategy what the similarity should be com-

posed of can depend on the situation when computing the similarity between one

foreign key and one object property. For example, in worse case, the composition of

similarity can combine the local similarity, the internal similarity and the external

similarity if the names of terms in relational databases is disorder a lot. On the

contrary, in best case, the composition of similarity can be only the local similarity.

65

6.2 Future Work

• Need a more powerful matcher: Many matchers have been proposed so far.

However, there is still lacking of matchers specifying for mapping between relational

databases and OWL ontologies, i.e., most of them only deal with mapping between

databases or ontologies. A matcher specifying for mapping between databases is not

fit to our approach because computing similarities between relational databases and

OWL ontologies is usually from a less ordered names of terms to a more ordered

ones. Therefore, our approach using a hybrid matcher combining Lin and I-Sub

measures. However, these two measures are sensitive to the appearance of string

of database since Lin and I-Sub specify for mapping between ontologies, i.e., if two

strings have some degree of similarity but due to the reason one of them cannot be

looked up in WordNet and both of them have no substring relation, the similarity

of them will be zero and this will indirectly require more feedback from users. For

this purpose, we need to devise or find a more powerful matcher that devotes to

database-to-ontology mapping.

• Find more implicit information: We take advantage of the semantic enrichment

in phase one and its object is reached by simply using the classifying tables and

columns. Nevertheless, if only simply considering the classification, there still exist

some implicit semantic metadatas cannot be captured for some tables especially for

those may express more than one entity in the real word. For instance, Johannesson

[21] proposed that if one table has more than one candidate key, this table may be

possible to represent two different entities in the real word. Therefore, in order to

deal with such this case, more complex sematic enrichment may be necessary.

• A more sophisticated way to find MCG for every table is required: We

find MCG for every table and every member of MCG satisfies the mapping con-

sistency. For our example 5.3, tables “package”, “spotDetail” and “spot”, all of

them have non-null set of MCG. The fact of relational database shows “package”

and “spotDetail” have binary relationship and “spotDetail” and “spot” also have

binary relationship. Their non-null set of MCG must be satisfy mapping consis-

66

tency because no matter which class of MCG is chosen as a final mapping result,

these results can always relate each other through the mapping result in phase

one. In this example, if classes “Package”, “SpotAdvertisement” and “Spot” are

the final mapping results of these tables and object properties “hasTripElement”

and “hasSpot” are the mapping result of foreign keys “packageID” and “sname” in

“spotDetail”. Therefore, the mapping class “Package” can relate to “SpotAdver-

tisement” through “hasTripElement” and the mapping class “SpotAdvertisement”

can relate to “Spot” through “hasSpot”. However, if one of these tables whose

MCG is a null set, mapping consistency will be violated. For example, if the MCG

of “spotDetail” is a null set, i.e., there is no mapping result for “spotDetail” and it

will cause that the mapping result of “package” cannot be related to mapping re-

sult of “spotDetail” through “hasTripElement” , indirectly, violating the mapping

consistency. Therefore, if we want to also analyse this null case of violating the

mapping consistency, a more complex way to find MCG for every table is required.

67

Bibliography

[1] Y. An, A. Borgida, and J. Mylopoulos. Inferring complex semantic mappings between

relational tables and ontologies from simple correspondences. International Semantic

Web Conference., pages 6–20, 2005.

[2] I. Astrova. Reverse engineering of relational databases to ontologies. Proceedings of

1st European Semantic Web Symposium, Heraklion, Crete, Greece, LNCS, 3053:327–

341, 2004.

[3] I. Astrova. Reverse engineering of relational databases to ontologies: An approach

based on an analysis of html forms. Proceedings of the 1 stEuropean Semantic Web

Symposium, pages 327–341, 2004.

[4] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and ontology matching

with COMA++. Proceedings of the International Conference on Management of

Data, 2005.

[5] J. Barrasa, O. Corcho, and Gomez-Perez. R2O, an extensible and semantically based

database-to-ontology mapping language. Second Workshop on Semantic Web and

Databases, 2004.

[6] A. Behm. Migrating relational databases to object technology. 2001.

[7] T. Bemers-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

279(5):34–43, 2001.

[8] S. Benkley, J. Fandozzi, E. Housman, and G. Woodhouse. Data element tool-based

analysis (delta). MITRE Technical Report MTR, 1995.

68

[9] S.M. Benslimane, D. Benslimane, M. Malki, Y. Amghar, and H. Saliah-Hassane.

Acquiring OWL ontologies from data-intensive web sites. Proceedings of the 6th

international conference on Web engineering, pages 361–368, 2006.

[10] M. K. Bergman. The Deep Web: Surfacing Hidden Value, 2000.

[11] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting context into schema

matching. Proceedings of the 32nd International Conference on Very Large Data

Bases, pages 307–318, 2006.

[12] E.F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

[13] H. H. Do and E. Rahm. COMA - a system for flexible combination of schema

matching approaches. Proceedings of the Very Large Data Bases Conference, pages

610–621, 2001.

[14] A.H. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between

ontologies on the semantic web. Proceedings of the eleventh international conference

on World Wide Web, pages 662–673, 2002.

[15] D. Dou, P. LePendu, S. Kim, and P. Qi. Integrating databases into the semantic web

through an ontology-based framework. International Workshop on Semantic Web

and Database, pages 33–50, 2006.

[16] F. Giunchiglia, P. Shvaiko, and Yatskevich M. S-Match: an algorithm and an im-

plementation of semantic matching. In Proceedings of ESWS’04., 2004.

[17] T.R. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2):199–220, 1993.

[18] S. Handschuh, S. Staab, and R. Volz. On deep annotation. Proceedings of the twelfth

international conference on World Wide Web, pages 431–438, 2003.

[19] W. Hu and Y. Qu. Discovering simple mappings between relational database schemas

and ontologies. International Semantic Web Conference., pages 225–238, 2007.

69

[20] M. A. Jaro. Advances in record-linkage methodology as applied to matching the

1985 census of tampa, florida. Journal of the American Statistical Association, 1989.

[21] P. Johannesson. A method for transforming relational schemas into conceptual

schemas. Proceedings.10th International Conference, pages 190–201, 1994.

[22] M.R. Koivunen and E. Miller. W3C Semantic Web activity. Semantic Web Kick-Off

in Finland, pages 27–44, 2001.

[23] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-

sals. English translation: Sov. Phys.�Dokl., vol. 10, no.8, pages 707–710, 1966.

[24] M. Li, X.Y. Du, and S. Wang. Learning ontology from relational database. Pro-

ceedings of the fourth international conference on machine learning and cybernetics,

6:3410–3415, 2005.

[25] D. Lin. An information-theoretic definition of similarity. In Proceedings of the 15th

International Conference on Machine Learning, 1998.

[26] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.

Proceedings of the Very Large Data Bases Conference, pages 49–58, 2001.

[27] A. Maedche and S. Staab. Ontology learning for the Semantic Web. IEEE Intelligent

Systems and Their Applications, pages 72–79, 2001.

[28] A. Mark. Pure Java WordNet similarity library. http://nlp.shef.ac.uk/result/

software.html.

[29] D.L. McGuinness, F. van Harmelen, et al. OWL web ontology language overview.

W3C Recommendation, 2004.

[30] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a versatile graph

matching algorithm and itsapplication to schema matching. In Proceedings of ICDE,

pages 117–128, 2002.

[31] G.A. Miller et al. WordNet: a lexical database for english. Communications of the

ACM, 38(11):39–41, 1995.

70

[32] W. Nathan. Google at how many billions. http://google.blognewschannel.com/

archives/2005/01/23/google-at-how-many-billion-9-11/.

[33] N.F. Noy and M. Klein. Ontology evolution: Not the same as schema evolution.

Knowledge and Information Systems, 2004.

[34] Philip Resnik. Using information content to evaluate semantic similarity in a tax-

onomy. pages 448–453, 1995.

[35] M. Steinbach, P. N. Tan, and V. Kumar. Introduction to Data Mining. Pearson

Addison-Wesley, 2005.

[36] G. Stoilos, G. Stamou, and S. Kollias. A string metric for ontology alignment.

International Semantic Web Conference, pages 624–637, 2005.

[37] Q. Trinh, K. Barker, and R. Alhajj. RDB2ONT: A tool for generating OWL ontolo-

gies from relational database systems. Proceedings of the Advanced Int’l Conference

on Telecommunications and Int’l Conference on Internet and Web Applications and

Services, pages 170–170, 2006.

[38] Standford University. Protégé. http://protege.stanford.edu.

[39] Te-Wei Yang. Web services search and composition by combining Web 2.0 and

Semantic Web technology. Master Thesis, National Taiwan University, 2008.

71

