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中文摘要 

攝護腺癌的致死率在西方男性世界中排名第二位；在台灣，攝護腺癌的發生

率以及死亡率亦有逐年增加的趨勢。有些研究指出發炎與攝護腺癌的產生以及惡

化有關。希樂葆 (Celebrex) 是一種亞型環氧化酶 (Cyclooxygenase-2, COX-2) 抑制

物，近年研究指出希樂葆具有抗發炎、抗癌以及預防癌症產生 (chemoprevention) 

的功能。然而，希樂葆是如何抑制攝護腺癌細胞侵襲的分子機制尚未清楚了解。

在本篇研究裡，我們建立了攝護腺癌細胞侵襲能力進化的細胞模式 (PC-3 以及

M2I2 PC-3 細胞)，並發現幾個發炎相關蛋白，亞型環氧化酶、磷酸化 JUN 激酶以

及第一型介白素在 M2I2 PC-3 細胞的表現量增加。進而檢測了希樂葆對於攝護腺

癌 PC-3 細胞的生長、移動與侵襲的影響。實驗結果指出希樂葆可有效地抑制攝護

腺癌細胞的生長、移動與侵襲能力。為了更進一步研究希樂葆抑制攝護腺癌細胞

移動與侵襲的分子機制，我探討希樂葆對於間質蛋白酶 (Matriptase) 可能的影響。

間質蛋白酶是第二型嵌膜絲胺酸蛋白酶，近年來研究指出異常活化的間質蛋白酶

與許多癌症的演進有相關聯，包括攝護腺癌。本篇實驗結果指出，希樂葆可以降

低間質蛋白酶的表現以及釋出到細胞外的量；此量的降低，主要藉由抑制間質蛋

白酶基因的表達以降低其表現量。更進一步地，在兩株不具亞型環氧化酶的攝護

腺癌 DU-145 和 LNCaP 細胞中，希樂葆一樣可以藉由降低間質蛋白酶活化及表現

量來抑制這兩種癌細胞的移動與侵襲能力。同時發現，在所有市面上可購得的非

類固醇抗炎藥物中，希樂葆是最具潛力的藥物可抑制攝護腺癌細胞的間質蛋白酶

活化。同時亞型環氧化酶主要產物 PGE2 可刺激間質蛋白酶的活化。為了更進一步

了解 PGE2如何促進間質蛋白酶的活化，我使用不同的 EP接受器抑制物並發現 EP1

接受器可能參與間質蛋白酶的活化。整體來說，本論文實驗結果指出希樂葆具有

抑制間質蛋白酶功能以及壓抑攝護腺癌細胞侵襲的能力。因此希樂葆是一個未來

具有潛力的藥物，可用以抗攝護腺癌或預防此癌症的產生。 
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Abstract 

Prostate cancer is the second leading cause of cancer-related death in men of the 

western world. In Taiwan, the incidence and mortality of prostate cancer (PCa) have 

been rising progressively in recent years. Several studies have showed that 

inflammation is involved in the development and progression of PCa. Celebrex, a 

COX-2 specific inhibitor, has been shown with anti-inflammatory, anti-carcinogenic, 

and chemopreventive effects. However, the molecular mechanism how celebrex 

suppresses PCa cell invasion is not well understood. In this study, we established a 

PC-3 cell invasion progression model (parental and M2I2 PC-3 cells) and found that 

several inflammation-associated proteins, COX-2, p-JNK and IL-1β were up-regulated 

in M2I2 PC-3 cells. The results showed that celebrex could significantly suppress PCa 

cell migration and invasion, at least in part, due to down regulation of a 

tumor-promoting serine protease matriptase at the gene expression and activation levels. 

Similarly, celebrex also can execute its anti-cancer properties in two COX-2-null PCa 

DU-145 and LNCaP cells, via a similar mechanism as shown in PC3 cells. Furthermore, 

PGE2, a main product of COX-2, could induce matriptase activation and its EP1 

receptor was identified to be involved in matriptase activation in PCa cells. Taken 

together, the data indicated that celebrex exhibits a suppressive effect on PCa cell 

migration and invasion, at least in part, by down-regulating matriptase function.
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1.1 Prostate cancer 

  Prostate cancer is one of the most prevalent malignancies affecting men worldwide 

(1). In Taiwan, the incidence of prostate cancer has been rising in recent years with 

seventh leading cause of cancer deaths in 2010 (2). When cancer cells are confined 

within the capsule, patients are often treated with prostatectomy or radiation to remove 

or destroy the cancer lesions (3). Alternatively, some prostate cancer patients adopt 

androgen ablation therapy since most of early-staged prostate cancers are 

hormone-dependent. However, hormone-refractory prostate cancer frequently emerges 

during this therapy (4, 5). These recurrent prostate cancers become aggressive with high 

metastatic potentials and poor prognosis. At present, there is no efficacious therapy for 

advanced prostate cancer with hormone-refractory or metastatic phenotype (6). Thus, 

new molecular targets or drugs are needed to develop useful therapeutic approaches for 

treatment prostate cancer. 

 

1.2 Inflammation in prostate carcinogenesis 

  Inflammation is a homeostatic response to tissue injury or infection, by recruiting 

inflammatory cells to clean up damaged tissue or to sequester pathogens (7). It has been 

reported that approximately 20% of all human cancers are caused by chronic 

inflammation, including prostate cancer (8). Exposure to environmental factors such as 
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infectious agents and dietary carcinogens, and hormonal imbalances lead to injury of the 

prostate and the development of proliferative inflammatory atrophy (PIA). PIA is a 

focal atrophic lesion and associated with chronic inflammation. In tissues, PIA is often 

directly adjacent to the lesions of prostatic intraepithelial neoplasia (PIN) and prostate 

cancers. Epithelial cells in PIA lesions usually highly express many molecular signs of 

stress, such as glutathione S-transferase P1 (GSTP1), glutathione S-transferase A1 

(GSTA1), and cyclooxygenase-2 (COX-2) (9). Up-regulation of these molecules can 

increase genetic instability that might then induce high-grade PIN and early prostate 

cancer development, even for the cancer progression. 

 

1.3 Cyclooxygenase-2 and cancer progression 

  Cyclooxygenase (COX) is a rate-limiting enzyme to catalyze the conversion of 

arachidonic acid to prostanoids, including prostaglandins and thromboxane A2 (TXA2) 

(10). Two isoforms of COX enzyme, COX-1 and COX-2, have been identified with a 

similar enzymatic activity (11). COX-1 is expressed commonly in most tissues to 

generate prostaglandins that modulate normal physiological functions, such as 

maintenance of the gastric mucosa and regulation of renal blood flow. COX-2, on the 

other hand, is not routinely expressed in most tissues, but is induced by a wide spectrum 

of growth factors and pro-inflammatory cytokines (12). Many studies suggest an 
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important role of COX-2 in pathophysiology of inflammation and carcinogenesis 

(12-14). Increased amounts of COX-2 are frequently found in both premalignant tissues 

and malignant tumors, including colon, breast, prostate and lung tumor (14). 

Prostaglandin E2 (PGE2) is the most abundant product of COX-2 that is found in various 

human malignancies. PGE2 exerts its cellular effects via binding to its cognate 

E-prostanoid (EP) receptors (EP1-4). EP receptors belong to a family of transmembrane 

G-protein coupled receptors (15). EP1 is a Gαq-coupled receptor that promotes calcium 

mobilization and PKC activation. EP2 and EP4 are coupled to Gαs and can activate 

adenylate cyclase, whereas EP3 is a Gαi-coupled receptor that inhibits adenylate cyclase 

(16). Several lines of evidence reported that PGE2 signaling can promote tumor growth 

and angiogenesis (17), and COX-2 affects many carcinogenic processes including 

angiogenesis (13), apoptosis (18), immunosuppression (19), and invasiveness (20). Thus, 

COX-2 may represent a potential therapeutic target for prostate cancer. 

 

1.4 Non-steroidal anti-inflammatory drugs (NSAIDs) 

  Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as effective 

anti-inflammatory, antipyretic and analgesic drugs. All traditional NSAIDs (e.g., aspirin) 

are able to inhibit both COX-1 and COX-2. However, long-term use of traditional 

NSAIDs, which inhibit both COX-1 and COX-2, is associated with serious 
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gastrointestinal side effects, such as ulceration and perforation of the gastric mucosa. 

These side effects have been attributed to the inhibition of COX-1, which mediates 

gastroprotective prostaglandin production. These observations led to the design and 

synthesis of a new class of NSAIDs that specifically inhibit COX-2 for suppressing 

inflammation (21). Despite the canonical anti-inflammatory activity of NSAIDs, several 

recent studies indicated that NSAIDs might be beneficial in the treatment of cancers (12, 

15, 22). In fact, it has been reported that a reduction of 15~20% in the risk of prostate 

cancer in regular users of NSAIDs compared with non-users (22). Moreover, using 

COX-2 specific inhibitor in the human prostate tumor cell line DU-145 resulted in a 

decreased secretion of MMP-2 and MMP-9 (20). NSAIDs can inhibit angiogenesis 

through increased endothelial cell apoptosis, inhibition of endothelial cell migration and 

recruitment of inflammatory cells, all of which have been associated with growth 

inhibition and attenuation of the metastatic potential of cancer cells (23).  

 

1.5. Celebrex (Celecoxib) 

  Celebrex is a COX-2 specific inhibitor that is developed as an alternative to aspirin. 

It is currently available for clinical use in the United States for the treatment of chronic 

arthritic conditions such as rheumatoid arthritis and osteoarthritis. On the other hand, 

they show promising not just for pain but also for cancer prevention. The US Food and 
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Drug Administration (FDA) approved daily doses of celebrex for reducing colon cancer 

risk in people with a rare genetic disease called familial adenomatous polyposis (FAP) 

(12). Pharmacological and genetic reports have indicated that a significant component 

of the anti-cancer properties of NSAIDs is due to their ability to inhibit the COX-2 

enzyme. In addition, some mechanisms independent of COX-2 have been recently 

proposed to be involved in the anti-neoplastic effects of celebrex (23). 

 

1.5.1 COX-2-independent effects of celebrex 

  Many studies have reported that celebrex reduces cell proliferation, migration and 

induces apoptosis in prostate cancer cells (24, 25). Molecular mechanisms involved in 

celebrex-induced cell cycle arrest are at least partly due to inhibition of protein kinase B 

(PKB/Akt) or its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1) (26). 

This is because a celebrex analogue that lacks COX-2 inhibitory activity also can inhibit 

PDK-1 and PKB activity. Although these inhibitory effects may be independent of 

COX-2, the molecular mechanisms for celebrex to inhibit PKB or PDK-1 is still unclear. 

It has been shown that PKB can induce anti-apoptotic effects by phosphorylating 

procaspase 9 to prevent caspase 9 activation and then keep the pro-apoptotic protein 

BAD stay inactive (27). Thus, inhibition of PKB by celebrex promotes the activation of 

caspase 9 and BAD, leading to apoptosis. Moreover, celebrex also alters the expression 
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and activity of matrix metalloproteases (MMPs). Treatment with celebrex inhibited the 

activity and secretion of MMP-2 and MMP-9 in lung adenocarcinoma cells, and 

concurrent with inhibition of cell migration and invasion (28). The expression of 

MMP-2 and MMP-9 depends on activated PKB in human glioblastoma cells, and 

inhibition of PKB phosphorylation by celebrex leads to reducing these cell invasion 

(29). It indicated that inhibition of PDK-1 and PKB/AKT appears to play a role in 

celebrex-induced apoptosis, cell cycle arrest and down-regulation of angiogenesis and 

metastasis. 

 

1.6 Matriptase 

Matriptase was first isolated in the conditioned media from human breast cancer 

cells due to its gelatinolytic activity and was therefore thought to be involved in the 

degradation of the extracellular matrix (ECM) including fibronectin and laminin (30, 

31). Matriptase, also named as membrane-type serine protease 1 (MT-SP1) (32), tumor- 

associated differentially expressed gene-15 (TADG-15) (33), suppression of 

tumorigenecity 14 (ST-14) (34), is a membrane-anchored serine protease. The orthologe 

of matriptase in mice is also known as epithin. Matriptase has been detected in various 

epithelial tissues and epithelial-derived cell lines.  
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1.6.1 Domain structure of matriptase 

Matriptase is a 855 amino acid protein with a molecular mass of 94.7 kDa (35). It is 

consisted of an intracellular N-terminus (residues 1-54) followed by a transmembrane 

domain, a SEA domain (residues 86-201), two tandem CUB domains (residues 214-334 

and 340-447), four LDL receptor (LDLR) domains (residues 452-486, 487-523, 

524-561, and 566-604) and a C-terminal catalytic domain (residues 614-855) (36). The 

protein structure of matriptase is shown in Figure I. The N-terminal signal anchor of 

matriptase, which is not removed during the protein synthesis, and guides the protease 

to have a type II integral membrane domain as a linker between its cytoplasmic 

N-terminus and extracellular C-terminus (37). 

 

 

 

 

 

 

 

 

 

Figure I. The structure of matriptase [modified from (37)]. 
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The stem regions of matriptase including SEA domains, CUB domains and LDLR 

domains, are non-catalytic and may function in protein-protein interactions or play a 

role in matriptase’s subcellular localization, activation, inhibition, and substrate 

recognition (38, 39). Four potential N-linked glycosylation sites are also found in 

matriptase (Asn109, 302, 485, and 772). Glycosylation on Asn302 and Asn772 have been 

shown to be important for the protease activation (38). The C-terminus of matriptase 

consists of a serine protease catalytic triad (His656, Asp711 and Ser805) which are essential 

for its proteolytic activity and autoactivation (40, 41).  

 

1.6.2 Proteolytic processing and activation of matriptase 

Matriptase is synthesized as an inactive, single-chain polypeptide. The activation 

of matriptase requires two sequential endoproteolytic cleavages following a 

simultaneous interaction with its cognate inhibitor, hepatocyte growth factor activator 

inhibitor-1 (HAI-1). The first cleave of matriptase zymogen occurs at G149 at SEA 

domain within endoplasmic reticulum or Golgi apparatus (42) by unknown proteolytic 

activity or possibly by nonenzymatic hydrolysis of the peptide bond to produce a 

70-kDa single-chain, latent form of matriptase (43). After G149 processing, matriptase 

requires HAI-1 for its intracellular trafficking via the interaction of LDLR domains on 

each protein (44). Upon activation, matriptase undergoes an autocatalytic cleavage at 
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Arg614 within C-terminal catalytic domain to convert a single-chain latent form to a 

two-chain form of active matriptase with 26 kDa serine protease domain linked to the 

fourth LDLR domain through a disulfide bond (45). After activation, the active 

matriptase is quickly inhibited by HAI-1 with a formation of 120 kDa complexes. Then, 

the matriptase-HAI-1 complex is shed with a molecular mass of 95 or 110 kDa to 

conditioned media or extracellular environments, via an unknown mechanism. The 

processes of matriptase activation, inhibition and shedding are shown in Figure II. 

 

 

 

 

 

 

 

 

To analyze the protein levels of matriptase, HAI-1 and the complexes they form, 

three monoclonal antibodies (M32, M69 and M19) are generated by Dr. Chen-Yong 

Lin’s group (45). M32 is an anti-total matriptase monoclonal antibody that recognizes 

the third LDLR domain and can detect a 120 kDa matriptase-HAI-1 complex, 95 kDa 

Figure II. The process of matriptase activation, inhibition and shedding [modified from (37)]. 
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full-length matriptase, 95 kDa of the catalytic domain of matiptase-HAI-1 complex and 

70 kDa latent form of matriptase. M69 is an anti-activated matriptase monoclonal 

antibody that is able to distinguish the activated matriptase from its latent part, and 

mainly detect 120 kDa matriptase-HAI-1 complexes. M19 is an anti-HAI-1 monoclonal 

antibody which can recognize a 55 kDa free (uncomplexed) HAI-1 and the HAI-1 in the 

complex with matriptase. In addition, 95 kDa and 110 kDa of matriptase-HAI-1 

complexes also can be detected in conditioned media by M32, M69 and M19 antibodies 

(46). The patterns of matriptase and HAI-1 detected by these three monoclonal antibody 

are showed as Figure III.  

 

 

1.6.3 Relationship between HAI-1 and matriptase 

Hepatocyte growth factor activator inhibitor-1 (HAI-1) is encoded by the serine 

protease inhibitor Kunitz type 1 (SPINT1) gene (47). HAI-1 has 478 amino acids with a 

Figure III. Monoclonal antibodies for the detection of matriptase, HAI-1 and their complex in PC-3 

cells. [modified from Ya-Yun Lin’s thesis (2010)] 
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calculated molecular mass of 55 kDa and serves as a protease inhibitor for HGFA or 

matriptase (48). HAI-1 has not an only inhibitory function but also a chaperon activity 

for matriptase’s biosynthesis, intracellular trafficking and activation (44). The existence 

of HAI-1 is thought to ensure that matriptase can be quickly inactivated after activation 

to prevent cells from uncontrolled matriptase activity and incorrect signaling (38). The 

ratio of matriptase to HAI-1 has been shown to be shifted towards matriptase in late 

cancer stage and the imbalance has been proposed to promote the proteolytic activity of 

matriptase, which has been implicated in cancer malignancy (49).  

 

1.6.4 Physiological functions of matriptase 

Matriptase is strongly expressed in epithelial tissues, such as stomach, pancreas, 

gallbladder, colon, and prostate (50, 51). Physiologically, matriptase has been proposed 

to play an important role in the maintenance of epithelial structures (52, 53) and in 

tissue remodeling (30, 31). Moreover, matriptase activity is required for the activation 

of a membrane-bound serine protease, prostasin (54). The study about matriptase- 

deficient mice suggests that matriptase is essential in the formation of epidermal barrier 

and lack of matriptase may cause fatal dehydration within 48 hrs after birth (55, 56). 

Embryonic or postnatal ablation of matriptase in epithelial tissue caused severe organ 

dysfunction, which was associated with increased permeability, loss of tight junction- 
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associated proteins, and generalized epithelial demise (55). Taken together, the function 

of matriptase is proposed to be implicated in epithelial cell homeostasis including 

proliferation, differentiation, and migration. 

 

1.6.5 Role of matriptase in human cancer and tumor progression 

Matriptase has been shown to be over-expressed in variety of epithelia-derived 

human tumors, including prostate (57, 58), breast (59), colon (74), stomach (60), 

ovarian (61) and renal cancer (62). In human cancer, matriptase has been proposed as an 

oncogenic protein with function to promote tumor cell invasion and metastasis (35, 48). 

In prostate cancer, matriptase expression is significantly increased in malignant tumors 

compared to adjacent normal parts, and the expression levels of matriptase are 

correlated with tumor grades (63). In colorectal cancer cells, matriptase overexpression 

is shown to significantly enhance their invasiveness (64). There is also extensive 

evidence that the matriptase level is augmented by either deregulation, stabilization or 

overexpression in a variety of tumor tissues (65). These studies show that elevated 

levels of matriptase can promote cancer cell invasion and suggest a direct involvement 

of the protease in the development and progression of cancer. Matriptase exhibits a 

trypsin-like proteolytic activity which can activate a number of proteins, including 

protease-activated receptor-2 (PAR-2), MMP3, prostasin, single-chain urokinase-type 
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plasminogen activator (uPA) and the proform of hepatocyte growth factor (proHGF) (53, 

66). In the matriptase transgenic mice, matriptase overexpression promoted the 

tumorigenecity and carcinogen-induced tumor formation (67). Taken together, it 

indicates that dysregulation of matriptase promotes the development and progression of 

human cancer and it may serve as a new potential target for cancer therapies. 

 

1.7 Research motivation 

Prostate cancer is rising progressively in recent years in Taiwan and one of the 

major causes of cancer-related death in the western world. Metastatic progression of 

prostate cancer is one of the main causes for low survival rate. Since inflammation has 

been proposed to promote in the prostate carcinogenesis and disease progression, in this 

study, I was interested in examining the effect of the anti-inflammation by using a 

NSAID, celebrex, on prostate cancer cell proliferation, migration and invasion. Several 

study aims were addressed as follows. (1) To analyze the effect of celebrex on prostate 

cancer cell proliferation, migration and invasion. (2) To isolate a serine protease 

affected by celebrex in prostate cancer cells. (3) To delineate whether the reduction of 

activated matriptase by celebrex leads to decreasing prostate cancer cell migration and 

invasion. (4) To investigate whether celebrex was through a COX-2-independent 

mechanism to inhibit prostate cancer cell migration and invasion. From these studies, 
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the information will provide some insights for the potential of a current clinically used 

drug, celebrex, in prostate cancer chemoprevetion and chemotherapy.
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Chapter 2. Materials and methods 
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2.1 Materials 

2.1.1 Cell lines 

PC-3, DU-145 and LNCaP cells were originally obtained from ATCC. Human 

prostate cancer PC-3 cells were isolated from a bone metastasis (68). Human prostate 

cancer DU-145 cells were isolated from a brain metastasis (69). Androgen-responsive 

human prostate carcinoma LNCaP cells were isolated from lymph node metastasis (70). 

 

2.1.2 Antibodies 

(1) Matriptase and HAI-1: monoclonal M32 (total matriptase), M69 (activated 

matriptase), and M19 (HAI-1) mAbs were a gift from Dr. Chen-Yong Lin, 

Greenebaum Comprehensive Cancer Center, Department of Biochemistry and 

Molecular Biology, University of Maryland, Baltimore, MD 21201 

(2) Anti-β-actin Ab: Sigma, MO, USA 

(3) Anti-COX-2 Ab: Cayman Chemical, USA 

(4) Anti-iNOS Ab: GeneTex, Taiwan 

(5) Anti-IL-1β Ab: Abcam, USA 

(6) Anti-phospho-SAPK/JNK Ab: Cell Signaling, USA 

(7) Anti-V5 Ab: Invitrogen, CA, USA 

(8) HRP-conjugated Goat anti-mouse IgG: Jackson Immuno Research, USA 
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(9) HRP-conjugated Goat anti-rabbit IgG: Jackson Immuno Research, USA 

 

2.1.3 Enzymes 

(1) SuperScriptTM Ⅲ Reverse Transcriptase: Invitrogen, USA 

(2) Taq polymerase: Bioman, Taiwan 

 

2.1.4 Reagents 

(1) 2-Mercaptoethanol: Sigma-Aldrich, USA 

(2) 5,5'-Dithio-bis(2-nitrobenzoic acid) (DTNB): Sigma-Aldrich, USA 

(3) 100 bp DNA marker: Bioman, Taiwan 

(4) Agarose: Uni-Region, USA 

(5) Ampicillin: Sigma-Aldrich, USA 

(6) Bovine serum albumin: Sigma-Aldrich, USA 

(7) Celebrex: Sigma-Aldrich, USA 

(8) Chloroform: Sigma-Aldrich, USA 

(9) Crystal violet: Sigma-Aldrich, USA 

(10) Diethyl pyrocarbonate (DEPC)-H2O: Invitrogen, USA 

(11) Dulbecco's Modified Eagle Medium (DMEM): Gibco, USA 

(12) Dimethyl sulfoxide (DMSO): Sigma-Aldrich, USA 
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(13) ECL (enhanced chemiluminescence): Thermo, IL, USA 

(14) Fetal bovin serum (FBS): Gibco, USA 

(15) Gelatin: Sigma-Aldrich, USA 

(16) Geneticin (G418): Gibco, USA 

(17) Glycine: J.T. Baker, USA 

(18) Glutamine: Sigma-Aldrich, USA 

(19) Isopropanol: Sigma-Aldrich, USA 

(20) L-161982: Cayman Chemical, USA 

(21) L798106: Cayman Chemical, USA 

(22) Lipofectamine 2000TM: Invitrogen, USA 

(23) Matrigel: BD biosciences, USA 

(24) Methanol: Sigma-Aldrich, USA 

(25) OPTI-MEM: Gibco, USA 

(26) Penicillin/streptomycin: Gibco, USA 

(27) Phosphate buffered saline (PBS): Gibco, USA 

(28) Plasmid Midi Kit: Geneaid, Taiwan 

(29) Prestained protein ladder: Fermentas, USA 

(30) Prostaglandin E2 (PGE2): Cayman Chemical, USA 

(31) RPMI-1640 medium: Gibco, CA, USA 
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(32) SC51322: Cayman Chemical, USA 

(33) Sodium pyruvate: Sigma-Aldrich, USA 

(34) TEMED: J.T. Baker, USA 

(35) Triton X-100: J.T. Baker, USA 

(36) Trizol: Invitrogen, USA 

(37) Tris-Base: J.T. Baker, USA 

(38) Tris-HCl: J.T. Baker, USA 

(39) Trypsin-EDTA: Invitrogen, USA 

(40) Tween-20: Fluka, USA 
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2.2 Methods 

2.2.1 Cell culture 

PC-3 cells were maintained in DMEM supplemented with 10% FBS, 2 mM 

glutamine, 1% sodium pyruvate and 1% penicillin/streptomycin in a humidified, 5% 

CO2, 37 °C incubator. DU-145 and LNCaP cells were maintained in RPMI-1640 

medium supplemented with 5% FBS, 2 mM glutamine, 1% sodium pyruvate and 1% 

penicillin/streptomycin in a humidified, 5% CO2, 37 °C incubator. 

 

2.2.2 Celebrex and PGE2 treatment 

Celebrex (Sigma-Aldrich, USA) and PGE2 (Sigma-Aldrich, USA) was dissolved in 

dimethyl sulfoxide (DMSO) at a concentration of 100 mM and stored in a dark colored 

eppendorf at -20 °C. The stock solution was further diluted to the indicated 

concentration at each experiment. Before the treatments, cells were grown up to 80% 

confluence and then exposed to celebrex or PGE2 at different concentrations and for 

various time periods. DMSO was used for adjustment to make each set of treatment 

with an equal amount of solvent.  

 

2.2.3 Protein extraction 

To prepare cell lysates, cells were washed twice with ice-cold PBS and lysed in a 
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lysis buffer (As shown in 2.3 Buffer). Lysed cells on petri dishes were scratched by a 

scraper, then collected to an eppendorf and kept on ice for 10 min. Cell lysates were 

centrifuged at 13,000 r.p.m., 4 °C, for 20 minutes. After centrifugation, the supernatant 

were collected. Protein concentrations of the supernatants were determined by 

spectrophotometry with Protein Assay reagent (Bio-Rad) and calculated by a BSA 

standard curve using the Microsoft Excel program. 

 

2.2.4 Preparation of conditioned media 

The conditioned media were collected and centrifuged at 1000 r.p.m., 4 °C, for 5 

minutes. The supernatants of conditioned media were transferred to Amicon○R Ultra-4 

centrifuge filter devices (Millipore) and then concentrated at 3,000 r.p.m. centrifugation 

for 30 minutes at 4 °C. 

 

2.2.5 Western blot analysis 

For matriptase western blotting by M32 and M69 mAbs, and HAI-1 detection by 

M19 mAb. Equal amounts of cell lysates were taken and mixed with 5X sample buffer 

without any reducing reagent for SDS-PAGE. For other samples, equal amounts of cell 

lysates were mixed with 6X protein loading dye with 5% 2-Mercaptoethanol and boiled 

for 10 min. The samples were separated by 10% SDS-PAGE and transferred to 
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nitrocellular membranes (Whatman, USA) within Towbin transfer buffer at 300 mA for 

3 hrs in a 4 °C refrigerator. The protein-transferring efficiency can be checked by 

staining nitrocellular membranes with Ponceau S dye. After staining, Ponceau S dyes 

were cleaned out using TBST buffer. The membranes were blocked with 5% skim milk 

in TBST at room temperature for 1 hr and then incubated with primary antibodies in 

blocking buffer at 4°C, shaking overnight. Primary antibodies were then discarded and 

the membranes were washed with TBST four times, 10 min per wash. The membranes 

were then incubated with secondary antibodies conjugated with Horseradish peroxidase 

(Jackson, USA) in blocking buffer at room temperature for 1 hr. Secondary antibody 

solutions were removed and the membranes were washed by TBST four times, 10 min 

per wash. The target proteins on membranes were visualized using an Enhanced 

Luminol Reagent Plus (Perkin Elmer, U.S.A.) and detected by a luminescent image 

analyzer with a CCD camera (LAS-4000; Fujifilm, Japan). 

 

2.2.6 Cell viability assay and IC50 determination 

PC-3 or DU-145 cells were seeded at densities of 3x105 and 5x104 cells/cm2 in 

24-well plates in 10% FBS DMEM or 5% FBS RPMI-1640 medium and maintained in 

a 37 °C, 5% CO2 incubator. LNCaP cells were seeded at densities of 1.5x106 and 1x105 

cells/cm2 within 5% FBS RPMI-1640 medium at 37 °C in a 5% CO2 incubator. Next 
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day, celebrex was added at indicated concentrations. After 16-hour treatment, 0.5 mg/ml 

MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) were added into 

each well and incubated with cells for 2 hr at a 37 °C incubator. The oxidization form of 

MTT, formazan with a purple color, was then dissolved in DMSO and measured at 540 

nm using a spectrophotometer. Each set of experiments was done in triplicate. The 

results were statistically calculated and represented as mean ± S.D. 

 

2.2.7 Cell growth assay 

1x104 of PC-3 or DU-145 cells were seeded in each well of 24-well plates in 10% 

FBS DMEM or 5% FBS RPMI-1640 medium and cultured at a 37 °C, 5% CO2 

humidified incubator. Twenty-four hours after seeding, cells were treated with indicated 

concentrations of celebrex. Control cells were treated with DMSO (solvent control). 

The media were refreshed every day. Cell viability was measured using MTT methods 

at each time point. Each set of experiment was performed in triplicate. The data were 

statistically calculated with normalization to day 0 and shown as mean ± S.D. 

 

2.2.8 Migration and invasion assays 

The effect of celebrex on the invasion and migration of cancer cells was evaluated 

by matrigel-coated or uncoated transwell assays. For invasion assay, 3 μg matrigels (BD 
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biosciences, USA) were diluted in 100 μl serum-free medium, added on the upper 

chamber of each transwell and air-dried overnight. Transwell chambers without any 

coating were used for migration assay. Before seeding, PC-3, DU-145 or LNCaP cells 

were starved for 24 hrs. 1 x 105 cells (3x105 cells/cm2) of serum-starved PC-3 and 

DU-145 cells in 200 μl serum-free media were seeded onto the upper chamber of a 

transwell with different concentrations of celebrex and PGE2. DMSO was used as 

control. 5 x 105 cells (1.5x106 cells/cm2) of serum-starved LNCaP cells in 200 μl 

serum-free medium were seeded onto the upper chamber of a transwell with different 

concentrations of celebrex. Control cells were treated with DMSO. Lower chambers of 

transwells were added with 750ul DMEM or RPMI-1640 medium with 10% FBS as 

chemoattractants containing the same concentrations of celebrex and PGE2 as that in the 

upper chamber. The durations for PC-3, DU-145 and LNCaP cell migration and 

invasion were 16, 16 and 24 hours. Cells were then fixed with methanol for 15 minutes 

and stained with crystal violet for 1 hour. The cells on the upper surface of transwells 

were wiped off with a cotton swab. Invaded or migrated cells on the lower surface of 

transwells were photographed (100x) under a light microscope (Nikon TS-100) and 

analyzed with a Nikon digital sight (DS-U2) software system. Each set of experiments 

was performed in triplicate. The results were statistically calculated and presented as 

mean ± S.D. 
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2.2.9 Real-time PCR 

PC-3 cells were seeded at a density of 5x104 cells per 60-mm petri dish. 

Twenty-four hours after seeding, cells were treated with different concentrations of 

celebrex. Control cells were treated with DMSO. After 16-hour treatment, cells were 

lysed by 500 μl Trizol (Invitrogen, U.S.A.) reagent on ice for 5 minutes, and then 200 μl 

chloroform (Sigma, MO, USA) were added to extract RNA into an aqueous phase. For 

phase separation, the mixture was centrifuged at 13,000 r.p.m., 4 °C for 15 minutes. 

After centrifugation, the upper-phase solution was transferred to a new eppendorf. RNA 

was precipitated by mixing the RNA extract with 500 μl of isopropanol (Sigma, USA). 

After centrifugation at 13,000 r.p.m at 4°C for 15 minutes, RNA pellets were washed 

with 500 μl 75% of ethanol, centrifuged again at 13,000 r.p.m. for 5 minutes and 

air-dried in a hood until the pellet was invisible. Twenty μl of DEPC-H2O (Invitrogen, 

U.S.A.) were added to dissolve the RNA pellet and the RNA concentrations were 

detected by spectrophotometer with O.D. 260. To generate the cDNA from mRNA, 5 μg 

of total RNA were mixed with 50 μM oligo-dT, 10 mM dNTP mixture, 0.1 M 

dithiothreitol (DTT) at 65 °C for 10 minutes, and then incubated on 4 °C for primer 

annealing. The mixture was then incubated with 4 μl First Strand buffer (5X), 1 μl DTT 

(0.1 μM) and 1 μl SuperScriptTMⅢ Reverse Transcriptase (Invitrogen, CA, USA) at 50 

°C for 1 hour elongation. Then, the mixtures were heated at 70 °C for 15 minutes to 
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inactivate the reaction. Real-time PCR was performed using Power SYBR Green 

real-time PCR system and ABI StepOneTM detection system (Applied Biosystems). 

The primers for real-time PCR are as follows: 

Matriptase 

(161 bp) 

Forward 5’-ATCGCCTACTACTGGTCTGAG-3’ 

Reverse 5’- GTTTTGGAGTCCGTGGGGAAA-3’ 

HAI-1 

(107 bp) 

Forward 5’- CCACGCTGGTACTATGAC-3’ 

Reverse 5’- GCTAGAATGCACTCTTCT-3’ 

GAPDH 

(156 bp) 

Forward 5’-TCAACGACCACTTTGTCAAGCT-3’ 

Reverse 5’-GTGAGGGTCTCTCTCTTCCTCTTG-3’ 

 

2.2.10 Zymography 

The activities of secreted matrix metalloproteinases in conditioned media were 

assayed by gelatin zymography. PC-3 cells were seeded at a density of 5x104 cells per 

60-mm dish in 10% FBS DMEM medium. After 24 hours, PC-3 cells were treated with 

celebrex or DMSO (solvent control) in serum-free DMEM for 16 hours. The 

conditioned media were collected and centrifuged at 1000 r.p.m., 4 °C, for 5 minutes. 

After centrifugation, the supernatants of the conditioned media were collected and 

concentrated using Amicon○R Ultra-4 centrifuge filter devices (Millipore) at 3,000 r.p.m. 

at 4 °C for 30 minutes. Without boiling and reducing, the samples underwent 
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electrophoresis in 8% polyacrylamide gels [polyacrylamide gel electrophoresis (PAGE)] 

containing 0.1% w/v gelatin and 0.1% sodium dodecyl sulfate (SDS) in 125 V for 3 

hours in a 4 °C refrigerator. After electrophoresis, the gel was incubated with a 

renaturation buffer (50 mM Tris-HCl, pH 7.5, 10 mM NaCl, 2.5% v/v Triton X-100) at 

37 °C for 15 min three times (50 r.p.m). After protein renaturation, the buffer was 

decanted and the gel was incubated with a developing buffer (50 mM Tris-HCl, pH 7.5, 

5 mM CaCl2) at 37 °C for 16 hrs with gentle agitation (30 r.p.m). 2 mM EDTA was 

added to inhibit matrix metalloproteinases activity (control). Gels were then stained 

with Coomassie brilliant blue R (0.1% w/v) and destained in 30% methanol and 10% 

acetic acid. Gelatinolytic activity appeared as a clear band on a blue background. The 

bands were imaged by a luminescent image analyzer with a CCD camera (LAS-4000; 

Fujifilm, Japan). 

 

2.2.11 Transfection 

One day before transfection, cells were seeded up with 70% confluence per 6-well 

dish and incubated overnight. Next day, cells were rinsed with PBS twice and then 

transfected by the transfection solution, a mixture of plasmids with Lipofectamine 2000 

(Invitrogen, USA). The transfection solutions were prepared by mixing 4 μg of plasmid 

DNA with 6 μl Lipofectamine 2000 in 500 μl OPTI-MEM (Gibco, USA) at room 
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temperature for 30 min before transfection. 6 hours after transfection, OPTI-MEM 

medium were refreshed with culture medium. The stable pools were selected by 400 

μg/ml geneticin for two weeks and maintained in regular media supplemented with 400 

μg/ml geneticin and cells with less than 10 passages were used for experiments.  
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2.3 Buffer 

Cell lysis buffer 

10 mM Tris, pH 7.4  

100 mM NaCl  

1 mM EDTA  

1 mM EGTA  

1 mM NaF  

20 mM Na4P2O7  

2 mM Na3V04  

0.1% SDS  

0.5% sodium deoxycholate  

1% Triton-X 100  

10% Glycerol  

1 mM PMSF  

Protease inhibitor cocktail  

5X protein loading dye 

1 M Tris-base 31.25 mL  

10% SDS 62.5 mL  

Glycerol 100 mL 

Bromophenol blue 250 mg 

Adjustment with ddH2O to 250 mL (pH=6.8) 

6X protein loading dye 

Tris-base 1.36 g 

SDS 3.6 g 

Glycerol l 9 mL 

Bromophenol blue 0.018 % 

2-Mercaptoethanol 1.62 mL 

Adjustment with ddH2O to 30 ml (pH=6.8) 
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10X Western blotting running buffer  

Tris-base 30.2 g 

Glycine 187.6 g 

SDS 10 g 

Adjustment with d.d.H2O to 1 L (pH=8.3) 

1X Towbin transfer buffer  

Tris-base 3.63 g 

Glycine 17.3 g 

Methanol 240 mL  

Adjustment with d.d.H2O to 1.2 L 

Blocking buffer 

Skim milk powder 2.5 g 

1X TBST 50 mL 

10X TBS  

NaCl 87.67 g 

Tris-base 24.22 g 

Adjustment with d.d.H2O to 1 L (pH=7.4) 

1xTBST  

10X TBS 100 mL 

Tween-20 1 mL 

Adjustment with d.d.H2O to 1 L 

Stripping buffer  

0.5M Tris-HCl 6.25 mL 

2-Mercaptoethanol  500 l　  

10% SDS 10 mL 

Adjustment with ddH2O to 50 mL 
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Chapter 3. Results 
 

 

 

 

 

 

 

 

 



 

33 
 

3.1 Correlation of inflammation-associated protein expression and matriptase 

activation in a PC-3 cell invasion progression model 

We established a PC-3 cell invasion progression model (Figure 1A) using transwell 

selection approaches with migration twice and invasion twice from the parental PC-3 

cells. As shown in Figure 1B, the migration and invasion abilities of M2I2 cells were 

increased by approximately 50%, compared to the parental PC-3 cells. Since several 

lines of evidence showed that inflammation is involved in the development and 

progression of prostate cancer (8), I examined several inflammation-associated protein 

expression, including COX-2, IL-1β and p-JNK, in PC-3 and M2I2 cells by western 

blotting. The data (Figure 1C) show that the levels of COX-2, IL-1β and p-JNK protein 

expression were increased in M2I2 cells, compared to the parental PC-3 cells. Since 

matriptase has been identified as an oncogenic membrane-anchored serine protease for 

cancer malignancy (44) and matriptase expression is correlated with the progression of 

prostate cancer (64), I further investigated the total protein and activated levels of 

matriptase in PC-3 and M2I2 cells by western blot analysis using anti-total matriptase 

(M32) and anti-activated matriptase (M69) mAbs. As shown in Figure 1D, the levels of 

activated matriptase (a complex of active matriptase and its cognate inhibitor HAI-1) 

were increased in M2I2 cells, compared to PC-3 cells. Taken together, these results 

showed that inflammation-associated protein expression and matriptase activation are 
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up-regulated during the progression of PC-3 cells with highly migratory and invasive 

potentials. 

 

3.2 Effect of celebrex on the cell viability of PC-3 cells 

It has been shown that the high level of COX-2 expression is associated with 

advanced prostate cancer (71). To examine the role of COX-2 signaling in the 

progression of prostate cancer and the activation of matriptase, I first tested the effect of 

celebrex, a COX-2 specific inhibitor, on the cell viability of prostate cancer PC-3 cells. 

PC-3 cells were treated with different concentration of celebrex (0.01-1000 μM) for 16 

hrs and the cell viability was assessed by MTT assays. As shown in Figure 2, celebrex 

reduced the viabilities of PC-3 cells in a dose-dependent manner. Moreover, celebrex 

exhibited various half-maximal inhibitory concentrations (IC50) according to the cell 

densities. The IC50 values of celebrex for PC-3 cells with the cell densities of 5x104 and 

3x105 cells/cm2 were 107.9 μM and 688.7 μM, respectively. These results indicated that 

a high IC50 of celebrex to PC-3 cells was associated with a high cell density. Thus, 

celebrex had an inhibitory effect on PC-3 cell viability. The IC50 of celebrex for the cell 

viability was dependent on cell density. 
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3.3 Inhibitory effect of celebrex on PC-3 cell growth. 

To further examine the effect of celebrex on the cell growth of PC-3 cells, PC-3 

cells were treated with the different concentrations of celebrex (5 and 25 μM) for 0, 2, 4 

and 6 days. Control cells were treated with equal amount of DMSO. At each time point, 

the amounts of PC-3 cells were assessed by MTT assays. As shown in Figure 3A, 5 μM 

celebrex had a marginal effect to decrease the growth of PC-3 cells while 25 μM 

celebrex significantly reduced the cell growth. Taken together, the results indicated that 

celebrex had a growth-inhibitory effect on PC-3 cells. 

 

3.4 Celebrex inhibited the motility and invasion of PC-3 cells. 

To further investigate whether celebrex can decrease prostate cancer cell migration 

and invasion, PC-3 cells were treated with different concentrations of celebrex and their 

cell migration and invasion were examined by transwell assays. The results (Figure 3B 

and 3C) showed that celebrex marginally reduced approximately 30% cell migration 

after 5 μM celebrex treatment and suppressed 70% cell migration upon 25 μM celebrex 

treatment. However, the invasion ability of PC-3 cells were decreased approximately by 

60% after 5 μM celebrex treatment and significantly reduced up to 80% upon 25 μM 

celebrex treatment. To determine that the effect of celebrex on PC-3 cell migration and 

invasion was not due to cytotoxic effect, I examined the cytotoxic effect of celebrex on 
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PC-3 cells. PC-3 cells with a density of 3x105 cells/cm2 were treated with 5 and 25 μM 

celebrex for 16-hour and counted by trypan blue exclusion methods. The results (Figure 

3D) showed that there was no significant cytotoxicity on PC-3 cells after 5 and 25 μM 

celebrex treatment. Taken together, the data indicated that celebrex ably suppressed 

PC-3 cell migration and invasion in a dose-dependent manner. 

 

3.5 Celebrex reduced matriptase and HAI-1 shedding and protein expression in 

PC-3 cells. 

To investigate whether celebrex suppressed PC-3 cell migration and invasion was 

via inhibiting matriptase activation, I examined the effect of celebrex on the total 

protein and activation levels of matriptase as well as HAI-1, matriptase’s aognate 

inhibitor, using western blotting with anti-total matriptase (M32), anti-activated 

matriptase (M69) and anti-HAI-1 (M19) mAbs. As shown in Figure 4A, celebrex ably 

decreased the whole levels of matriptase including latent matriptase and activated 

matriptase in a dose-dependent manner. The decrease of activated matriptase by 

celebrex was further validated by the western blotting with an anti-activated matriptase 

Ab (M69). Interestingly, the total protein levels of HAI-1 were also reduced by celebrex. 

It has been proposed that matriptase activation is followed by the shedding of the 

matriptase-HAI-1 complex with a molecular mass of 95 or 110 kDa to extracellular 
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environments (72). The shedding of matriptase-HAI-1 complex has been thought as a 

mechanism to remove active matriptase from cells (46). To identify whether the reduced 

levels of matriptase and HAI-1 by celebrex were through celebrex’s effect on promoting 

the shedding of matriptase and HAI-1, the conditioned media after celebrex treatment 

were collected and examined by western blotting with anti-total matriptase (M32), 

anti-activated matriptase (M69) and anti-HAI-1 (M19) mAbs. The data (Figure 4B) 

showed that celebrex reduced the levels of matriptase-HAI-1 complexes and HAI-1 in 

the conditioned media in a dose-dependent manner. Taken together, celebrex can inhibit 

the activation and shedding of matriptase and HAI-1 in prostate cancer cell, suggesting 

that the decrease of cellular activated matriptase upon celebrex treatment may not be 

due to the protein shedding. 

 

3.6 Celebrex down-regulated gene expression of matriptase and HAI-1 in PC-3 

cells. 

Since the data (Figure 4A and 4B) showed that celebrex can reduce the total 

protein levels of matriptase and HAI-1 in PC-3 cells, I further examined whether 

celebrex was through altering the gene expression of matriptase and HAI-1, leading to 

decrease their protein levels. With real-time RT-PCR, the data (Figure 4C) showed that 

celebrex significantly reduced the gene expression of matriptase and HAI-1 in the cells. 
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Thus, the data taken together from Figure 4A and 4C indicated that the decreased levels 

of matriptase and HAI-1 proteins by celebrex were, at least in part, via transcriptional 

regulation. 

 

3.7 Celebrex decreased MMPs activity in PC-3 cells. 

Since it has been shown that matrix metalloproteinases (MMPs) and serine 

proteases play important roles in cancer cell invasion in many cancers (73, 74), I also 

analyzed the effect of celebrex on MMPs activity by gelatin zymography. As shown in 

Figure 5, the activity of secreted MMP-9 but not MMP-2 was significantly suppressed 

by celebrex in a dose-dependent manner. 

 

3.8 Prostaglandin E2 (PGE2) increased the motility and invasion of PC-3 cells. 

Since celebrex is a COX-2 specific inhibitor, I further examined the effect of PGE2, 

the most abundant product of COX-2 in human malignancies, on the PC-3 cell 

migration and invasion by transwell assays. The data (Figure 6A and 6B) showed that 

the migration and invasion abilities of PC-3 cells were significantly induced 

approximately by 50% after 50 nM PGE2 treatment. Upon 100 nM PGE2 treatment, the 

invasion ability of PC-3 cells was increased approximately by one fold; while the 

migration ability of PC-3 cells was enhanced up to two folds. Taken together, these 
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results indicated that PGE2 can increase the migration and invasion of PC-3 cells. 

 

3.9 PGE2 induced the levels of matriptase activation and HAI-1 but reduced the 

shedding of matriptase and HAI-1 in PC-3 cells. 

I then further investigated the effect of PGE2 on the protein and activation levels of 

matriptase by treating PC-3 cells with the 100 nM PGE2 for 0, 0.5, 1, 2, 4, 8 and 16 hrs. 

Control cells were treated with DMSO. The protein and activation levels of matriptase 

were assessed using western blotting with an anti-total matriptase (M32) mAb. As 

shown in Figure 7A, PGE2 was able to induce matriptase activation. Then, I examined 

the effect of 50 and 100 nM PGE2 on the protein and activation levels of matriptase by 

western blotting with anti-total matriptase (M32), anti-activated matriptase (M69) and 

anti-HAI-1 (M19) mAbs. The data (Figure 7B) showed that PGE2 ably increased the 

levels of activated matriptase and HAI-1 in a dose-dependent manner. I further analyzed 

if PGE2 increased the levels of matriptase-HAI-1 complex and HAI-1 through 

suppressing the shedding of both proteins. The conditioned media after PGE2 treatment 

were collected and examined by western blotting with anti-total matriptase (M32), 

anti-activated matriptase (M69) and anti-HAI-1 (M19) mAbs. The data (Figure 7C) 

showed that the shedding of matriptase-HAI-1 complex and HAI-1 was reduced by 

PGE2 in a dose-dependent manner. Taken together, the increased level of cellular 
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activated matriptase upon PGE2 treatment may be at least partly due to 

PGE2-suppressing the shedding of matriptase-HAI-1 complexes into the conditioned 

media. 

 

3. 10 Effect of EP antagonists on matriptase shedding and protein expression. 

It has been reported that PGE2 exerts its cellular effects via binding to its cognate 

receptors (EP1-4) (10). To further explore the mechanism of celebrex-suppressed 

matriptase activation, I used an EP1 receptor antagonist SC51322, an EP3 receptor 

antagonist L798106 and an EP4 receptor antagonist L161982 to treat PC-3 cells and 

analyzed their effects on the protein and activation levels of matriptase using western 

blotting with anti-total matriptase (M32) and anti-activated matriptase (M69) mAbs. 

The data (Figure 8) showed that EP1 receptor antagonist was able to suppress the 

activation and shedding of matriptase in PC-3 cells, while EP3 and EP4 antagonists 

could enhance the shedding of matriptase. 

 

3.11 Celebrex down-regulated matriptase expression and activation partly via 

COX-2-independent pathway in PC-3 cells. 

It has been reported that celebrex has some inhibitory function via a COX-2 

independent fashion in spite of its effect on inhibiting COX-2 (23). Since the data 
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(Figure 4A and 7B) showed that celebrex was able to reduce matriptase expression, but 

PGE2 has no significant effect on matriptase protein levels, I further investigated 

whether celebrex reduced matriptase expression and activation may be partly through a 

COX-2 independent pathway. PC-3 cells were treated with 25 μM celebrex, 100 nM 

PGE2, or both. The total protein and activation levels of matriptase were analyzed by 

western blotting with anti-total matriptase (M32) and anti-activated matriptase (M69). 

As shown in Figure 9, PGE2-induced matriptase was also ably inhibited by celebrex. In 

other words, PGE2 could not rescue celebrex-inhibited matriptase activation. These 

results suggested that the inhibition of matriptase expression and activation by celebrex 

may be partly via a COX-2-independent pathway. 

 

3.12 Effect of celebrex on the cytotoxicity of non-COX-2 expressed prostate cancer 

cells, DU-145 and LNCaP cells. 

To further address that celebrex reduced matriptase expression and activation was 

through a COX-2-independent pathway, I examined the effect of celebrex on two 

non-COX-2 expressed prostate cancer cells, DU-145 and LNCaP cells. As shown in 

Figure 10A, COX-2 expression was hardly detectable in DU-145 and LNCaP cells by 

western blotting using an anti-COX-2 Ab, compared to PC-3 cells. Then, the effect of 

celebrex on th cell viability of DU-145 and LNCaP was assessed by MTT assays. The 
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data (Figure 10B and 10C) shown that celebrex was able to reduce the both viabilities of 

DU-145 and LNCaP cells in a dose-dependent manner. The IC50values of celebrex for 

DU-145 cells were 96.3 μM for the cell density of 5x104 cells/cm2 and 639.6 μM for 

cell density of 3x105 cells/cm2. The IC50 values of celebrex for LNCaP cells were 117.6 

μM for the cell density of 1x105 cells/cm2 and 527.8 μM for the cell density of 1.5x106 

cells/cm2. Similar to PC-3 cells (Figure 2), the IC50 of celebrex for the viability of 

DU-145 and LNCaP cells was also dependent on cell density. 

 

3.13 Inhibitory effects of celebrex on cell motility and invasion in DU-145 cells via 

down-regulating matriptase. 

I further examined the effect of celebrex on the DU-145 cell migration and 

invasion by transwell assays. The results (Figure 11A and 11B) showed that the 

migration and invasion abilities of DU-145 cells were decreased approximately by 20% 

after 5 μM celebrex treatment and suppressed up to 50% upon 25 μM celebrex 

treatment. To investigate whether celebrex-suppressed DU-145 cell migration and 

invasion were via down-regulating matriptase, I examined the effect of celebrex on the 

protein levels of matriptase and HAI-1 by western blotting using anti-total matriptase 

(M32) and anti-HAI-1 (M19) mAbs. As shown in Figure 11C, celebrex decreased the 

levels of matriptase and HAI-1 in a dose-dependent manner. Taken together, celebrex 
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was able to suppress DU-145 cell migration and invasion partly due to reducing the 

protein level of matriptase.  

 

3.14 Inhibitory effects of celebrex on LNCaP cell migration and invasion via 

suppressing the total and activated levels of matriptase. 

I also examined the effect of celebrex on LNCaP cell migration and invasion using 

transwell assay. The results (Figure 12A and 12B) showed that the migratory and 

invasive cells of LNCaP cells were decreased approximately by 20% after 5 μM 

celebrex treatment and suppressed up to 40% with 25 μM celebrex treatment. Then, the 

effect of celebrex on the total and activated levels of matriptase was analyzed by 

western blotting using anti-total matriptase (M32), anti-activated matriptase (M69) and 

anti-HAI-1 (M19) mAbs. As shown in Figure 12C, celebrex was able to reduce the 

activated level of matriptase in a dose-dependent manner. I also analyzed the effect of 

celebrex on the shedding of both matriptase and HAI-1 in LNCaP cells, by examining 

the shed proteins using western blotting with anti-total matriptase (M32), anti-activated 

matriptase (M69) and anti-HAI-1 (M19) mAbs. As shown in Figure 12D, celebrex 

suppressed the shedding of matriptase-HAI-1 complex and HAI-1 into the conditioned 

media in a dose-dependent manner. Taken together, celebrex ably suppressed LNCaP 

cell migration and invasion, at least part due to down-regulation of matriptase. 
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3.15 Effect of celebrex and other NSAIDs on matriptase expression and activation 

in LNCaP cells. 

To further investigate whether commercially available NSAIDs exhibited a similar 

effect on down-regulating matriptase, as celebrex, I then examined the effect of other 

NSAIDs including aspirin, Etoricoxib, Ibuprofen and Indomethacin on matriptase 

expression and activation by western blotting using anti-total matriptase (M32) and 

anti-activated matriptase (M69). The data (Figure 13) showed that the total and 

activated levels of matriptase were dramatically reduced by celebrex but not other 

NSAIDs in LNCaP cells. Taken together, the data indicated that celebrex was a potent 

inhibitor to down-regulate matriptase. 

 

3.16 Role of matriptase on PC-3 cell migration and invasion. 

Since matriptase has been shown to be overexpressed in variety of 

epithelia-derived human tumors, including prostate cancer (57, 58), we established the 

matriptase-overexpressing PC-3 cells by transfection and selection. The exogenous 

matriptase proteins produced by plasmids of matriptase-V5 tag were detected by 

western blotting analysis with anti-matriptase and anti-V5 Abs. As shown in Figure 14A, 

the protein levels of matriptase were increased in matriptase-overexpressing PC-3 cells. 

Then, I investigated the role of matriptase in the PC-3 cell migration and invasion by 
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transwell assays. Matriptase-overexpressing PC-3 cells exhibited strong migration and 

invasion capabilities, compared to the control PC-3 cells (Figure 14B). Taken together, 

the data indicated that matriptase was able to promote PC-3 cell migration and invasion. 

 

3.17 Inhibitory effect of celebrex on matriptase-overexpressing PC-3 cell migration, 

invasion and matriptase activation. 

I further examined the effect of celebrex on matriptase-overexpressing PC-3 cell 

migration and invasion. As shown in Figure 14C, celebrex ably reduced approximately 

80% cell migration and suppressed 95% cell invasion. To identify whether the 

decreased matriptase-overexpressing PC-3 cell migration and invasion by celebrex were 

through celebrex’s inhibitory effect on matriptase activation, I analyzed the effect of 

celebrex on matriptase activation in matriptase-overexpressing PC-3 cells using western 

blotting with anti-total matriptase (M32) and anti-activated matriptase (M69) mAbs. As 

shown in Figure 14D, celebrex was able to suppress matriptase expression and 

activation. Taken together, these results indicated that celebrex exhibited an inhibitory 

potential to the prostate cancer cell PC-3 migration and invasion induced by matriptase 

overexpression. 
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Chronic inflammation has been proposed to be associated with tumorigenesis by 

promoting cellular transformation, survival, proliferation, invasion, angiogenesis, and 

metastasis (75, 76). Since several lines of evidence showed that inflammation is 

involved in the development and progression of prostate cancer (8, 77), in this study, I 

also observed that several inflammation-associated proteins, COX-2, p-JNK and IL-1β 

were up-regulated following a prostate cancer PC-3 invasion progression, which was 

established by serial transwell selection. Interestingly, an anti-inflammation NSAID 

Celebrex (a COX-2-specific inhibitor) was able to reduce the cancer cell proliferation, 

migration and invasion, suggesting that a reduction of inflammation signaling can 

inhibit the progression of human prostate cancer. 

Expression of COX-2 is induced by many growth factors and pro-inflammatory 

cytokines in specific pathophysiological conditions (12). It has been reported that 

COX-2 is involved in the invasiveness (78, 79), anti-apoptosis (18), and angiogenesis 

(13) of colon and breast cancer. Recently, increased COX-2 expression has been 

associated with high prostate tumour grade (80). Consistent with this phenomenon, our 

data showed that the expression of COX-2 was enhanced in highly invasive PC-3 cells 

of the prostate cancer progression model, and correlated with the cell migration and 

invasion (Figure 1). Thus, this cancer cell model recapitulates the progression of human 

prostate cancer, and COX-2 may be a therapeutic target for prostate cancer. 
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To specifically inhibit COX-2 activity, several NSAIDs (e.g., aspirin, celebrex) 

have been developed for clinical uses as effective anti-inflammatory, antipyretic and 

analgesic drugs. Recent studies have provided several evidences that celebrex was 

recommended as chemotherapeutic and chemopreventive drugs for colon and prostate 

cancer (24, 81, 82). Celebrex has shown the inhibitory effects on the growth and 

invasiveness of colon cancer cells (83). In this study, I also found that celebrex could 

inhibit the cell proliferation, migration and invasion of prostate cancer cells and the IC50 

of celebrex for the cell viability was dependent on cell density. Moreover, my data 

showed that celebrex inhibited the migration and invasion of PC-3 cells was not due to 

its effect on cell cytotoxicity. Thus, celebrex may be a potentially useful compound for 

prostate cancer therapy. 

In addition to the involvement of matrix metalloproteinases (MMPs) in cancer 

metastasis (84-86), several recent studies revealed that pericellular serine proteases also 

play an important role in cancer metastasis (48, 64). In this study, I identified a 

membrane-anchored serine protease matriptase as a new target protein inhibited by 

celebrex. It has been shown that matriptase can promote the tumorigenesis, and 

correlated with prostate cancer progression (63) and involved in ErbB-2-induced 

prostate cancer cell invasion (87). I further found that celebrex could reduce PC-3 cell 

migration and invasion that was partly via decreasing the total and activated levels of 
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matriptase. The decreased protein level of matriptase by celebrex treatment was not due 

to its effect on promoting the matriptase shedding, but through the down-regulation of 

the gene expression. Moreover, my data also showed that the activity of secreted 

MMP-9 was also suppressed by Celebrex in prostate cancer cells. Thus, 

celebrex-reduced PC-3 cell migration and invasion was partly attributed to decrease of 

the total and activated matriptase as well as the activity of secreted MMP-9. 

Prostaglandin E2 (PGE2) is the most abundant product of COX-2 and can induce 

several signal pathways to promote cell proliferation (88, 89), invasion (90), and 

angiogenesis (91) in cancer cells. In this study, I showed that PGE2 could promote 

prostate cancer PC-3 cell migration and invasion. This increased PC-3 cell migration 

and invasion may be partly due to PGE2-inducing matriptase activation. However, PGE2 

was unable to rescue celebrex-reduced matriptase expression and activation, suggesting 

that Celebrex-inhibited matriptase activation may be via a COX-2 independent pathway. 

This is further supported by the facts that celebrex exerts its anti-neoplastic effects via a 

COX-2-independent pathway (23, 26). Moreover, celebrex and its derivatives without 

any COX-2-inhibiting activity still had strong anti-carcinogenic activity (23, 92). In this 

study, my data further supported the importance of the COX-2-independent pathway 

affected by celebrex in suppressing matriptase and the invasion of prostate cancer cells, 

because celebrex also can execute its anti-cancer properties in two COX-2-null prostate 
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cancer cells, DU-145 and LNCaP cells. Similar to PC-3 cells, the suppression of these 

cell migration and invasion by Celebrex was partly via decreasing the total and 

activated matriptase. I further explored whether other commercially available NSAIDs 

had similar inhibitory effects as celebrex on matriptase and observed that the other 

NSAIDs were not as effective as celebrex to reduce the total and activated levels of 

matriptase, suggesting that celebrex is a potent inhibitor to down-regulate matriptase 

through inhibiting a COX-2-independent pathway. 

Numerous studies have demonstrated that PGE2 and its EP receptors are implicated 

in promoting carcinogenesis in different types of cancer (93, 94). PGE2 binds to the four 

EP receptors that are coupled to different G proteins and induce a variety of intracellular 

signaling cascades (95). It has been reported that PGE2-induced VEGF secretion in 

prostate cancer cells is mediated through EP2-dependent cAMP signaling pathways (96). 

My result further identified EP1 receptor as a factor involved in matriptase activation 

because EP1 receptor antagonist was able to suppress the activation and shedding of 

matriptase in PC-3 cells. Since PKC has been shown as one of the important 

downstream molecules of EP1 receptor and a previous study has indicated that PKC is 

involved in matriptase activation (95, 97), these results taken together suggest that the 

reduction of PGE2-matriptase activation by celebrex may be via inhibiting a 

EP1-mediated PKC signal pathway. The detailed molecular mechanisms in which 
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celebrex suppresses PGE2-induced matriptase activation need more investigations. 

In conclusion, our data revealed that the effect of celebrex against the growth, 

migration and invasion of prostate cancer cells, was partly attributed to decrease the 

activated levels of matriptase and the gene expression. Therefore, this study provides 

some information that celebrex may be a potential option for prostate cancer treatment 

or chemoprevention in the future. 
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Figure 1. Establishment of prostate cancer PC-3 cell progression model and analysis of 

inflammation biomarkers and matriptase expression in these cells. 

(A) PC-3 cell progression model was established by serial transwell selection. (B) For 

invasion assay, 3 μg of matrigel were diluted in 100 μl serum-free medium, then added on the 

upper chamber of each transwell and air-dried overnight. No matrigel was coated on transwell 

for migration assay. 1×105 of serum-starved PC-3 cells or M2I2 cells in serum-free medium 

were seeded into the upper chamber of each transwell. After 16-hour incubation, the cells 

were fixed with methanol and stained with crystal violet. The lower surfaces of transwells 

were photographed under a light microscope (magnification, 100X). Migratory and invasive 

cell numbers were measured by ImageJ software and statistically calculated. Results were 

represented as mean ± SD (n=3). **: P<0.01. (C) Western blotting analysis of several 

inflammation biomarkers in PC-3 cells and M2I2 cells. PC-3 or M2I2 cells were seeded at a 

density of 5×104 cells per 60-mm dish and maintained in 10% FBS DMEM at a 37℃, 5% 

CO2 incubator. Twenty-four hrs after seeding, cell lysates were collected and analyzed by 

western blotting using anti-COX-2, anti-IL-1β and anti-p-JNK Abs. (D) Assessment of 

matriptase expression and activation in the PC-3 cell progression model by using anti-total 

matriptase (M32) and anti-activacted matriptase (M69) mAbs under a non-boiled and 

non-reduced condition. A loading control was analyzed with an anti-β-actin Ab. 
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Figure 2. Effect of celebrex on the cell viability of PC-3 cells.  

(A) PC-3 cells were seeded at the densities of 3×105 and 5×104 cells/cm2 in 24-well plates. 

Next day, cells were treated with different concentrations (0.01-1000 μM) of celebrex for 16 

hours at 37 °C in a 5% CO2 incubator. The effect of celebrex on cell viability was determined 

by MTT assays. Each experiment was performed in triplicate. Values were represented as 

mean ± SD (n=3). (B) The IC50 values of celebrex for different cell densities of PC-3 cells 

were calculated and shown in the table. 
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Figure 3. Effect of celebrex on PC-3 cell growth, migration and invasion.  

(A) Analysis of the effect of celebrex on PC-3 cell growth. 1×104 of PC-3 cells were seeded 

in each well of 24-well plates and cultured at a 37 °C, 5% CO2 incubator. Twenty-four hours 

after seeding, cell amount was measured using MTT assay as Day 0 and other sets of cells 

were treated with indicated concentrations of celebrex (0, 5 and 25 μM) for 2, 4 or 6 days and 

the media were refreshed every day. Cell amount was measured using MTT methods at each 

time point and normalized to Day 0. Values were represented as mean ± SD (n=3). *: P<0.05. 

(B) Analysis of the cytotoxic effect of celebrex on PC-3 cells. PC-3 cells were seeded at a 

density of 3×105 cells/cm2 in 6-well plates. Next day, cells were treated with indicated 

concentrations of celebrex (0, 5 and 25 μM) for 16 hours at 37 °C in a 5% CO2 incubator. 

After treatment, cells were trypsinized and the viable cell numbers were counted by a 

hemacytometer with a trypan blue exclusion method and normalized to untreated cells. (C) 

Examination of the celebrex effect on PC-3 cell migration and invasion. 1×105 (3×105 
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cells/cm2) of serum-starved PC-3 cells in serum-free medium were seeded into the upper 

chamber of each transwell with indicated concentrations of celebrex (0, 5 and 25 μM). After 

16-hour incubation, invaded cells were stained and photographed as described in Figure 1B. 

Each assay was performed in triplicate. (D) Invaded PC-3 cells were measured by ImageJ 

software and statistically calculated. Results were presented as mean ± SD (n=3). ***: 

P<0.001. 
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Figure 4. Effect of celebrex on matriptase and HAI-1 expression and shedding in PC-3 

cells.  

PC-3 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained in 10% 

FBS DMEM at a 37 °C, 5% CO2 incubator. Twenty-four hours after seeding, cells were 

washed twice with PBS. Indicated concentrations of celebrex (0, 5, and 25 μM) in the 

serum-free DMEM were added to the media and the cells were cultivated at a 37 °C, 5% CO2 

incubator for 16 hours. (A) After treatments, cells were collected and lyzed by lysis buffer. (B) 

The conditioned media were collected and concentrated by Ultra-4 centrifuge filter devices 

(Millipore) under 3,000 r.p.m. centrifugation at 4 °C for 30 minutes. Cell lysates and 

concentrated conditioned media were analyzed using anti-total matriptase (M32), 

anti-activated matriptase (M69) and anti-HAI-1 (M19) mAbs. M32 and M69 mAbs were used 

for western blotting under a non-boiled and non-reduced condition. The cell lysate with 



 

61 
 

boiling and reducing reagent was used for western blot analysis with M19. A loading control 

was analyzed with an anti-β-actin Ab. (C) Analysis of the effect of celebrex on the gene 

expression of matriptase (MTX) and HAI-1 in PC-3 cells. 1×106 (5×104 cells/cm2) of PC-3 

cells were seeded in each 60-mm dish and maintained in 10% FBS DMEM at a 37 °C, 5% 

CO2 incubator. Twenty-four hours after seeding, indicated concentrations of celebrex (0, 5 and 

25 μM) were added to the media and the cells were cultivated at a 37 °C, 5% CO2 incubator 

for 4 hours. After the treatments, total RNAs were extracted by Trizol reagent and analyzed 

by real-time RT-PCR described in method 2.2.9. Results were statistically calculated and 

shown as mean ± S.D. *: P<0.05, **: P<0.01. 
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Figure 5. Analysis of the celebrex effect on MMPs activity by gelatin zymography. 

PC-3 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained in 10% 

DMEM culture medium at a 37 °C, 5% CO2 incubator. Twenty-four hours after seeding, cells 

were washed twice with PBS. Indicated concentrations of celebrex (0, 5 and 25 μM) within 

serum-free DMEM media were added and the cells were cultivated at a 37 °C, 5% CO2 

incubator for 16 hours. The conditioned media were collected and concentrated as described 
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in Figure 4B. Gelatinolytic activities of MMP-9 and MMP-2 in the conditioned media were 

determined by gelatin zymography described in method 2.2.10. Results were statistically 

calculated and presented as mean ± S.D. **: P<0.01. 
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(A) 

(B) 

Figure 6. Effect of PGE2 on PC-3 cell migration and invasion. 

(A) 1×105 (3×105 cells/cm2) of serum-starved PC-3 cells in serum-free medium were seeded 

into the upper chamber of each transwell with indicated concentrations of PGE2 (0, 50 and 

100 nM) for cell migration and invasion assays. After 16-hour incubation, invaded cells were 

stained by crystal violet and photographed as described in Figure 1B. (B) Invaded PC-3 cells 

were measured by ImageJ software and statistically calculated. Results were represented as 

mean ± SD (n=2). **: P<0.01, ***: P<0.001. 
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(C) 

Figure 7. Effect of PGE2 on matriptase and HAI-1 expression and shedding in PC-3 

cells. 

PC-3 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained in 10% 

FBS DMEM at a 37 °C, 5% CO2 incubator. Twenty-four hours after seeding, cells were 

washed twice with PBS. (A) PC-3 cells were treated with 100 nM PGE2 in the serum-free 

DMEM and the cells were cultivated at a 37 °C, 5% CO2 incubator for 0, 0.5, 1, 2, 4, 8 or 16 

hrs. At each time point, the levels of total matriptase and activated matriptase in the cells were 

assessed by western blotting using anti-total matriptase (M32). (B) Indicated concentrations 

of PGE2 (0, 50, and 100 nM) in the serum-free DMEM were added to PC-3 cell culture media. 

After 16-hour treatment, cells were collected and lyzed by lysis buffer. (C) The conditioned 
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media were collected and concentrated as described in Figure 4B. Cell lysates and 

concentrated conditioned media were analyzed using anti-total matriptase (M32), 

anti-activated matriptase (M69) and anti-HAI-1 (M19) mAbs. M32 and M69 mAbs were used 

for western blotting under a non-boiled and non-reduced condition. A loading control was 

analyzed with an anti-β-actin Ab. 
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Figure 8. Effect of EP antagonists on matriptase expression and activation in PC-3 cells. 

PC-3 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained in 10% 

FBS DMEM at a 37 °C, 5% CO2 incubator. Twenty-four hours after seeding, cells were 

washed twice with PBS. Indicated concentrations of an EP1 antagonist (SC51322, 10 μM), an 

EP4 antagonist (L161982, 10 μM) and an EP3 antagonist (L798106, 10 μM) in the serum-free 

DMEM were added to the media and the cells were cultivated at a 37 °C, 5% CO2 incubator 

for 16 hours. (A) After treatments, cell lysates were collected and analyzed by western 

blotting. (B) The conditioned media were collected and concentrated as described in Figure 

4B. Cell lysates and concentrated conditioned media were analyzed using anti-total matriptase 

(M32) and anti-activated matriptase (M69) mAbs under a non-boiled and non-reduced 

condition. A loading control was analyzed with an anti-β-actin Ab. 
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Figure 9. Analysis of the of PGE2 and celebrex effect on matriptase in PC-3 cells. 

PC-3 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained in 10% 

FBS DMEM at a 37 °C, 5% CO2 incubator. Twenty-four hours after seeding, cells were 

washed twice with PBS. Cells were treated with celebrex (25 μM), PGE2 (100 nM) or both. 

After 16-hour treatments, cell lysates were collected and analyzed by western blotting using 

anti-total matriptase (M32) and anti-activated matriptase (M69) mAbs under a non-boiled and 

non-reduced condition. A loading control was analyzed with an anti-β-actin Ab. 
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Figure 10. Examination of COX-2 expression in PC-3, DU-145 andLNCaP cells and the 

effect of celebrex on the cell viability of DU-145 and LNCaP cells. 

(A) Western blotting analysis of COX-2 expression in PC-3, DU-145 and LNCaP cells. PC-3 

cells or DU-145 cells were seeded at a density of 5×104 cells per 60-mm dish and maintained 

in 10% FBS DMEM or 5% FBS RPMI-1640 medium at a 37℃, 5% CO2 incubator. LNCaP 

cells were seeded at a density of 1×105 cells per 60-mm dish with 5% FBS RPMI-1640 

medium at a 37℃, 5% CO2 incubator. Twenty-four hrs after seeding, cell lysates were 

collected and analyzed by western blotting using anti-COX-2 Ab. β-actin was used as control 

with immunoblots with an anti-β-actin Ab. (B) Analysis of the effect of celebrex on the cell 

viability of DU-145 cells. DU-145 cells were seeded at the densities of 3×105 and 5×104 

cells/cm2 in 24-well plates. (C) Analysis of the effect of celebrex on the cell viability of 

LNCaP cells. LNCaP cells were seeded at the densities of 1.5×106 and 1×105 cells/cm2 in 

24-well plates. Next day, cells were treated with different concentrations of celebrex for 16 

hours at 37 °C in a 5% CO2 incubator. The effect of celebrex on cell viability was determined 

by MTT assays. Each assay for the effect of celebrex on cell viability was performed in 

triplicate. The IC50 values of celebrex for different cell densities of DU-145 or LNCaP cells 

were calculated and shown in right panel of each figure. Values were represented as mean ± 

SD (n=3). 
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Figure 11. Effect of celebrex on DU-145 cell migration, invasion and on the expression of 

matriptase and HAI-1. 

(A) Analysis of the effect of celebrex on DU-145 cell migration and invasion. 1×105 (3×105 

cells/cm2) of serum-starved DU-145 cells in serum-free medium were seeded into the upper 

chamber of each transwell with indicated concentrations of celebrex (0, 5 and 25 μM). After 

16-hour incubation, migratory and invasive cells were stained and photographed as described 

in Figure 1B. (B) Invaded DU-145 cells were measured by ImageJ software and statistically 

calculated. Results were represented as mean ± SD (n=3). *: P<0.05, **: P<0.01, ***: 

P<0.001. (C) DU-145 cells were seeded at a density of 5×104 cells per 60-mm dish and 

maintained in 5% FBS RPMI-1640 medium at a 37 °C, 5% CO2 incubator. Twenty-four hours 

after seeding, cells were washed twice with PBS. Indicated concentrations of celebrex (0, 5, 

and 25 μM) in the serum-free RPMI-1640 medium were added to the media and the cells 

were cultivated at a 37 °C, 5% CO2 incubator for 16 hours. After treatments, cell lysates were 

collected and analyzed by western blotting using anti-total matriptase (M32) and anti-HAI-1 

(M19) mAbs. M32 mAb were used for western blotting under a non-boiled and non-reduced 

condition. A loading control was analyzed with an anti-β-actin Ab. 
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Figure 12. Effect of celebrex on LNCaP cell migration, invasion and on the expression 

and shedding of matriptase and HIA-1.  

(A) Analysis of the effect of celebrex on LNCaP cell migration and invasion. 5×105 (1.5×106 

cells/cm2) of serum-starved LNCaP cells in serum-free medium were seeded into the upper 

chamber of each transwell with indicated concentrations of celebrex (0, 5 and 25 μM). After 

16-hour incubation, invaded cells were stained and photographed as described in Figure 1B. 

(B) Statistically calculation of LNCaP cell migration and invasion. Invaded LNCaP cells were 

measured by ImageJ software. Results were statistically calculated and presented as mean ± 

SD (n=3). *: P<0.05, **: P<0.01, ***: P<0.001. (C) Analysis of the celebrex effect on the 

expression of matriptase and HAI-1 in LNCaP cells. LNCaP cells were seeded at a density of 
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1×105 cells per 60-mm dish and maintained in 5% FBS RPMI-1640 medium at a 37 °C, 5% 

CO2 incubator. Forty-eight hours after seeding, cells were washed twice with PBS. Indicated 

concentrations of celebrex (0, 5, and 25 μM) in the serum-free RPMI-1640 medium were 

added to the media and the cells were cultivated at a 37 °C, 5% CO2 incubator for 16 hours. 

After treatments, cell lysates were collected and analyzed by western blotting. (D) Effect of 

celebrex on the shedding of matriptase and HAI-1 in LNCaP cells. The conditioned media 

were collected and concentrated as described in Figure 4B. Cell lysates and concentrated 

conditioned media were analyzed using anti-total matriptase (M32), anti-activated matriptase 

(M69) and anti-HAI-1 (M19) mAbs. M32 and M69 mAbs were used for western blotting 

under a non-boiled and non-reduced condition. A loading control was analyzed with an 

anti-β-actin Ab.  
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Figure 13. Effect of different NSAIDs on matriptase expression and activation in LNCaP 

cells. 

LNCaP cells were seeded at a density of 1×105 cells per 60-mm dish and maintained in 5% 

FBS RPMI-1640 medium at a 37 °C, 5% CO2 incubator. 48 hours after seeding, cells were 

washed twice with PBS. Indicated concentrations of aspirin (50 μM), celebrex (25 μM), 

Etoricoxib (25 μM), Ibuprofen (25 μM) and Indomethacin (25 μM) in the serum-free 

RPMI-1640 medium were added to the media and the cells were cultivated at a 37 °C, 5% 

CO2 incubator for 16 hours. After treatments, cell lysates were collected and analyzed by 

western blotting using anti-total matriptase (M32) and anti-activated matriptase (M69) mAbs 

under a non-boiled and non-reduced condition. A loading control was analyzed with an 

anti-β-actin Ab. 
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Figure 14. Establishment of MTX-overexpressing PC-3 cells and the effect of celebrex on 

MTX-overexpressing PC-3 cell migration, invasion and matriptase activation. 

(A) Western blotting analysis of MTX-overexpressing PC-3 cells. PC-3 cells were seeding in 

6-well plates and then were transfected with MTX-V5 plasmids. Control cells were 

transfected with vector (pcDNA 3.1) alone. After transfection, stable pools of transfectants 

were selected by 400 g/ml G418. Stable pools of transfectants were harveste　 d for western 

blotting assays with anti-matriptase and an anti-V5 Ab. A loading control was analyzed with 

an anti-β-actin Ab. (B) Analysis of the role of matriptase on PC-3 cell migration and invasion. 

1×105 (3×105 cells/cm2) of serum-starved Vec cells or MTX cells in serum-free medium were 
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seeded into the upper chamber of each transwell. After 16-hour incubation, invaded cells were 

stained and photographed as described in Figure 1B. Invaded cells were measured by ImageJ 

software. Results were statistically calculated and presented as mean ± SD (n=2). (C) 

Analysis of the effect of celebrex on MTX-overexpressing PC-3 cell migration and invasion. 

5×105 (1.5×106 cells/cm2) of cells in serum-free medium were seeded into the upper chamber 

of each transwell with indicated concentrations of celebrex (0 and 25 μM). After 16-hour 

incubation, invaded cells were stained and photographed as described in Figure 1B. Invaded 

cells were measured by ImageJ software. Results were statistically calculated and presented as 

mean ± SD (n=2). (D) Analysis of the effect of celebrex on matriptase activation in 

MTX-overexpressing PC-3 cell. Cells were seeded at a density of 1×105 cells per 60-mm dish 

and maintained in 10% FBS DMEM medium at a 37 °C, 5% CO2 incubator. Twenty-four 

hours after seeding, cells were washed twice with PBS. Indicated concentrations of celebrex 

(0 and 25 μM) in the serum-free DMEM medium were added to the media and the cells were 

cultivated at a 37 °C, 5% CO2 incubator for 16 hours. After treatments, cell lysates were 

collected and analyzed by western blotting using anti-total matriptase (M32) and 

anti-activated matriptase (M69) mAbs under a non-boiled and non-reduced condition. A 

loading control was analyzed with an anti-β-actin Ab. 
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