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摘要 

本論文提出於時域電磁全波模擬過程中輔以 Krylov 子空間模型

降階的混合型方法，有效率地求得封閉系統的遲時響應。在本論文

提出的混合型方法中，模型降階程序通常於激發源消失之後啟動，

負責萃取出系統主要且活躍的模態，並利用這些模態的線性組合建

構系統的遲時響應。由於有效利用在空間上得到的資訊，在訊源消

失並於系統中往返之後，此方法只需要少數額外的時域迭代就能夠

得到足夠數量的激發模態。適當地萃取出系統的主要模態之後，便

可以輕易地用解析公式重建系統的遲時響應。利用本論文中提出的

技巧來實現這類型的混合方法，現存的時域模擬程式碼將得以重覆

使用。論文之中亦提供數個數值模擬範例以供檢驗此類方法的正確

性、效率、收斂性以及複雜度。由這些範例中皆可以觀察到模型降

階程序只需運作少量步驟，混合方法便能得到與直接進行時域計算

相當一致的結果。 





 

 

  

Abstract 

Hybrid methods combining time-domain full-wave electromagnetic simulation 

and Krylov subspace based model order reduction techniques are proposed for 

efficiently obtaining the late-time responses of closed systems. In general, model 

order reduction process is applied after the sources fade to zero for extracting the 

active modes in the system. Late-time responses are then constructed by the linear 

combination of the extracted modes. Taking advantage of the space information, only 

few direct time domain iterations are required after the sources fade to zero with 

additional round-trip time before the extraction of the excited modes. After the 

dominant modes are properly extracted, the late time response of the system can be 

easily reconstructed by analytic expressions. With the proposed hybridizing 

techniques, existing codes of time-domain simulation can be resorted. Several 

numerical examples are provided for the verification of the correctness, efficiency, 

convergence, and complexity of the proposed hybrid methods, which show that with 

only very few iterations of model order reduction, good agreement can be achieved 

between the results of the proposed hybrid methods and those obtained from direct 

time-domain iterations. 
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Introduction 

IME-domain full-wave electromagnetic simulations have been widely used 

in modern digital and analog circuit design. This thesis proposes a 

model-order reduction technique for the late-time responses of time-domain 

full-wave electromagnetic simulation. As an introduction, the research motives of 

this work will be discussed first in this chapter. Literature survey of related works is 

then presented, followed by the major contribution of this work. Outlines of each 

chapter will also be briefly described in the end of this chapter. 

1.1 Research Motives 

Modern electronic circuits are often composed of digital and analog 

hybridization. As the fabrication processes such as very large scale integrated (VLSI) 

circuit and low-temperature co-fire ceramic (LTCC) advance, the complexity and 

T
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circuit size has grown to an extraordinary level. Operation speed and frequency range 

of the signal also increases rapidly as computer and communication applications 

mature. Circuit level simulation no longer satisfies the precision desire for some 

critical parts or even the whole circuits at design stage. On the other hand, full-wave 

electromagnetic simulation provides accurate results with the expenses of time and 

memory requirement of computation. Typical design procedure has then become 

extracting the characteristics such as scattering coefficients or impedance matrices of 

the critical parts, and then the extracted “black boxes” become new circuit 

components in the circuit level simulation. Therefore time-domain full-wave 

methods are often preferred in package level co-simulation, especially when dealing 

with cases where non-linear components are presented, due to their easy integration 

with existing commercial circuit simulation software packages, e.g. SPICE. 

The finite-difference time-domain (FDTD) method [1], [2] is well known for its 

simple implementation and high efficiency in solving various general-purpose 

problems. In general, sources such as Gaussian pulses or time-domain reflectometry 

(TDR) signals are injected into the areas of interest and a few field points wherein 

are often chosen to be observed. The FDTD solvers update all the field points in the 
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areas continually as time marching until the injected energies decay to a certain level. 

The relation between observing field points and injecting sources are then set up to 

find the characteristics such as transfer functions or scattering parameters of the 

system. However, this strategy fails in most low-loss close problems and some open 

problems with high-Q materials. The energies decay very slowly or may even remain 

at a nonconverging level permanently in certain cases. 

Steady-state responses are often desired for finding the system characteristics in 

the frequency domain. In order to increase the resolution in the frequency domain, a 

steady-state response in a long enough time interval is needed to be calculated. For 

complex structures, fine meshes are often required to improve accuracy and, 

consequently, the time step in conventional FDTD simulation should also be small 

enough to satisfy the stability condition. It is a time-consuming task to obtain the 

frequency-domain characteristics under such conditions. In addition, only a few field 

points need to be taken into consideration in most practical applications while fields 

at all points in the computational domain should be calculated at each time iteration. 

How to efficiently get the steady-state response at those field points concerned 

therefore becomes an important subject. [3] 
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1.2 Literature Survey 

Techniques commonly used for the extrapolation of late-time responses in 

FDTD simulations are Prony’s methods [2], [4]-[8]. It is a technique for modeling 

sampled data as a linear combination of complex exponentials, therefore particularly 

suitable for calculating the resonant frequency and Q of a resonating structure [2]. 

With data sampled at a relatively small number of time iterations, the late-time 

responses can be effectively predicted [6]. However, temporal data are needed to be 

sampled at a sufficient number of locations, or the frequency-domain circuit 

parameters will not be accurate [8]. 

Another way to retrieve the spectral-domain data from timedomain simulators 

are the filter-diagonalization methods [2], [9]-[13]. This technique recasts the 

problem of spectral analysis of a short segment of a time-dependent signal into an 

eigenvalue problem [2]. These methods are useful in extracting the mode frequencies 

and decay constants of high-Q cavities [12]. With properly chosen basis sets, the 

spectral parameters obtained by the filter-diagonalization method can be used to 

construct a high resolution Fourier spectrum, circumventing the Fourier uncertainty 
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principle [13]. Therefore, cases of nearly degenerate modes can be effectively 

handled. 

The aforementioned techniques usually deal with data sampled in a long period 

of time at few points. Increasing the sample temporal points can improve the 

accuracy, but with larger computational overhead as a tradeoff. On the other hand, it 

can be advantageous to exploit the space information that is necessary to be updated 

at each FDTD iteration. Model-order reduction techniques combining with the FDTD 

that recently arose are the Lanczos algorithms [14], [15]. Taking advantages of the 

sparsity of the equivalent matrix of the FDTD operator, although still large in size, 

the model order can be efficiently reduced since the Lanczos algorithm is able to 

convert a large sparse matrix into a much smaller tridiagonal matrix with very low 

overheads. The eigenvalues of the reduced matrix are approximately equal to some 

of the extremal eigenvalues of the original matrix. The associated eigenvectors of the 

original matrix can also be recovered from the eigenvectors of the reduced matrix 

through a simple transformation. 

Several papers have been proposed for dealing with the model-order reduction 

of the FDTD method by the Lanczos algorithm. A modified Lanczos algorithm is 
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proposed for the computation of transient electromagnetic fields [16]. Accurate 

representation of the transient electromagnetic fields is obtained on a certain bounded 

interval in time. However, this is not suitable for obtaining the steady-state response 

for practical problems since more Lanczos iterations may be required in order to 

increase the time interval of accurate simulation. Tradeoffs between divergence 

owing to loss of orthogonality and slow convergence due to re-orthonormaliztion 

will arise as Lanczos iterations increase [15].  

Rapid FDTD simulation without time stepping is also proposed [17]. With the 

reduced-order model extracted by the Lanczos algorithm, the response can be 

obtained at any frequency. However, the number of FDTD update equations is 

doubled. The original system and its adjoint problem are both needed because the 

asymmetric Lanczos algorithm is applied [18]. 

This work provides a different approach in combining the FDTD method and 

Lanczos algorithm based on [19]. The basic theory is detailed in Chapter 2 and the 

hybrid method as well as some numerical examples in provided in Chapter 3. With 

the Lanczos algorithm, modes for a source-free FDTD operator concerning either 

electric or magnetic fields only are extracted. Utilizing the time-reversal property of 
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the FDTD [20], the existing FDTD codes can be resorted to directly. 

For the analysis of power-ground plane issues in high-speed digital circuit 

systems, an efficient model of power-ground planes based on the concept of model 

network has been proposed [21], [22]. A novel model consisting of the virtual ports 

and triangular meshes with the distributed lumped circuit elements is established, 

which has the advantages of constructing the SPICE-compatible models to facilitate 

the multi-layer design analysis for power-ground planes. With little modifications, a 

time marching scheme similar to FDTD based on this method can be combined with 

Krylov subspace methods  

1.3 Contributions 

As mentioned in the previous section, this work provides a novel approach 

combining the FDTD method and Lanczos algorithm. Unlike other approaches which 

take time information over few space samples into consideration, the proposed 

hybrid method utilizes the space information which is automatically evaluated every 

time step in FDTD. Since the most time consuming bottleneck is FDTD iteration 

itself, less iterations needed for completing a model order reduction process is 
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preferred. 

Taking advantages of the space information, Lanczos algorithm extracts 

dominant modes rapidly. This means only few FDTD iterations are needed for the 

proposed hybrid method to converge. The modal information is then used to 

construct the late-time response of the system. Only the responses at those points 

concerned is computed with nearly constant order of complexity. After introducing 

time-reversal FDTD into the hybrid method, with little modification, existing FDTD 

code are also preserved. 

Another hybrid method dealing with time-domain model order reduction for 

analyzing the power-ground planes of high-speed digital circuit systems is also 

proposed in this thesis. Based on the efficient model of power-ground planes 

presented in [22], a time marching scheme similar to FDTD is constructed. Krylov 

subspace method is then applied to extract the dominant mode according to the space 

information computed at each time step. After the modal information has been 

extracted, the late-time responses of the system at those points concerned are also 

easily determined with nearly constant order of complexity. 

Unlike the FDTD/Lanczos hybrid method, time-reversal scheme is not available 
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for the time-domain method utilized in this hybrid method. The Krylov subspace is 

instead constructed from a series of space information which are stored at different 

time steps. With additional memory overhead, the existing codes of the time-domain 

method can also be preserved. 

Several examples are provided for both hybrid methods, ranging from simple 

demonstration cases to more realistic applications. In addition to the presented 

simulation results for the examples, the convergence and complexity for both 

methods are further discussed also with a few simulation results to verify the 

robustness and effectiveness of the proposed methods. 

1.4 Chapter Outlines 

In order to provide a systematic and structured presentation of this work, the 

remaining contents of the thesis are organized as follows. 

The basic theory which both hybrid methods based on will be described in 

Chapter 2. A brief review of the finite-difference time-domain method will be 

presented firstly, including the traditional iterative FDTD equations and its matrix 

form, equations involving both the electric and magnetic fields, as well as those with 
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single field only. Time-reversal technique for FDTD will also be described. The 

time-domain method based on Delaunay-Vononoi modeling of power-ground planes 

will then discussed, which shows how a time marching scheme similar to FDTD can 

be established from the efficient power-ground plane model. The last part of chapter 

2 shows the key component of both hybrid methods, i.e., model order reduction with 

Krylov subspace methods. With these methods modes of systems can be extracted 

effectively for the reconstruction of late-time responses. 

Chapter 3 presents the first hybrid method which efficiently evaluates the 

late-time response by combining finite-difference time-domain method and Lanczos 

algorithm. Technique that hybridizing FDTD and Lanczos Algorithm by introducing 

time-reversal FDTD equations is firstly described, followed by numerical examples 

with a homogeneous PEC cavity and an inhomogeneous PEC cavity with different 

excitations. Convergence and complexity is then discussed with verification from the 

simulation results. 

The other hybrid method that reconstructs the late-time response for 

Delaunay-Vononoi modeling of power-ground planes in time-domain with Krylov 

subspace method is presented in Chapter 4. After describing the hybridizing 
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technique that applies Krylov subspace method on the Delaunay-Vononoi modeling 

of power-ground planes in time-domain, several examples inclusive of power-ground 

planes of a simple geometry and a more realistic power-ground plane is demonstrated. 

The convergence and complexity for this method is also analyzed and verified with 

simulation results. 

The thesis is then concluded with a summary of this work. A few suggestions 

for the future works will also be provided. 
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Theory 

HE hybrid methods presented in this work is based on the basic theory 

described in this chapter. The finite-difference time-domain (FDTD) method 

will be briefly reviewed first. The traditional iterative FDTD equations and its matrix 

form, equations involving both the electric and magnetic fields and those with single 

field only, and time-reversal technique for FDTD will be described. Based on the 

Delaunay-Vononoi modeling of power-ground planes provided in [22], a time 

marching scheme similar to FDTD is developed. The key component of the proposed 

hybrid methods, model order reduction with Krylov subspace methods, with which 

the modes of a system are extracted effectively for the reconstruction of late-time 

responses, will be discussed in the last part of this chapter. 

T
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Fig. 2.1 Yee’s cell [1] for descretization of Maxwell equation for the finite-difference 

time-domain method in three-dimension. 

2.1 Finite-Difference Time-Domain Method 

The derivation of finite-difference time-domain equations in source free regions 

begins with source free Maxwell equations. 
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2.1.1 Time Marching in TDTD 

In source-free region with lossless isotropic media, (2.1) can be discretized with 

the Yee’s cell [1] setting shown in Fig. 2.1, where the simplified coordinate notation 

( )kji ,,  denotes the point located at ( )zkyjxi ΔΔΔ ,, , integer multiples i, j, and k of 

the space descretization Δx, Δy, and Δz, respectively. If the descretization in time is 

denoted as Δt with integer multiples n, the field values of the x-component of the 

electric field locate at ⎟
⎠
⎞

⎜
⎝
⎛ + kji ,,

2
1  and time step n can be denoted as n

kjixE
,,

2
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+
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2
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n

kjiyH . Notations of other field values can be 

defined in a similar manner. Applying central difference method for both the 

differentiation in time and space, the iterative finite-difference time-domain 

equations can be derived as 
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, where 
0

0
0 ε

μη =  is the intrinsic impedance of free space and c is the velocity of 
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light in free space. At time step n, the magnetic field is first updated to the next half 

time step by (2.2a) with the electric field at current time step and magnetic field at 

previous half time step; the updated magnetic field at next half time step and the 

electric field at current time step is used to update the electric field to the next time 

step by (2.2b). After updating both fields, the FDTD iteration in a time step is 

completed. Time step is than moved from n to n+1. Repeatedly, the desired time 

responses of both fields can be evaluated. 

2.1.2 FDTD Equations in Matrix Form 

Let nE  and nH  be the column vectors formed by the electric and magnetic 

field values at time step n in (2.2), respectively. The FDTD update equation can be 

cast into matrix form as 

 ( ) n
r

nn
t EDμHH ⋅⋅⋅Δ⋅−= −−+ 12

1

0
2
1

0 cηη  (2.3a) 

and 

 ( ) 2
1

0
11 c

+−+ ⋅⋅⋅Δ⋅+=
nT

r
nn t HDεEE η , (2.3b) 

where D denotes the discrete curl operator. Substitute (2.3a) and the (n-1)-th time 

step of (2.3b) into the n-th time step of (2.3b), the FDTD update equation in matrix 
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form can be written as 

 
( )
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⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅⋅⋅Δ⋅−⋅⋅Δ⋅
⋅⋅Δ⋅−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

−−−

−

+

+

n

n

r
T

r
T

r

r

n

n

tctc
tc

E
H

DμDεIDε
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E
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0
1121

1

1

2
1

0 ηη , (2.4) 

where the identity matrix is denoted by I. 

Eliminating the equations involving magnetic fields in (2.4) yields an update 

equation with electric field only. 

 ( ) 11121 c
2
12 −−−+ −⋅⎥⎦

⎤
⎢⎣
⎡ ⋅⋅⋅⋅Δ⋅−⋅= nn

r
T

r
n t EEDμDεIE  (2.5a) 

On the other hand, an update equation with only magnetic field concerned can also 

be obtained. 

 ( ) 2
3

0
2
1

0
1122

1

0 c
2
12

−−−−+
−⋅⎥⎦

⎤
⎢⎣
⎡ ⋅⋅⋅⋅Δ⋅−⋅=

nnT
rr

n
t HHDεDμIH ηηη . (2.5b) 

These two matrix equations with only a single field in (2.5) play an important role in 

the next chapter, where Lanczos algorithm is applied to the symmetric matrix inside 

the bracket. With the hybridizing technique which will be detailed later, direct 

evaluation of (2.5) is not required. Existing code of FDTD solvers can be reused with 

the introducing of additional time-reversal FDTD equations. 
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2.1.3 Time-Reversal FDTD Equations 

The time-reversal technique in FDTD method has been proposed for the 

numerical synthesis of a microwave structure [20]. By slightly rearranging (2.3), the 

update equation can be operated backward in time as 

 n
r

nn
tc EDμHH ⋅⋅⋅Δ⋅+= −+− 12

1

0
2
1

0 ηη  (2.6a) 

and 

 2
1

0
11 −−− ⋅⋅⋅Δ⋅−=

nT
r

nn tc HDεEE η . (2.6b) 

The time-reversal FDTD iterations proceed in a similar manner as ordinate FDTD. At 

time step n, the magnetic field is first updated to the previous half time step by (2.6a) 

with the electric field at current time step and magnetic field at next half time step; 

the updated magnetic field at previous half time step and the electric field at current 

time step is then used to update the electric field to the previous time step by (2.6b). 

After updating both fields, another iteration begins with the time step moving from n 

to n−1. 

For the hybrid method presented in the following chapter, the time-reversal 

FDTD equations will only activate after the model order reduction procedure begins. 
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As long as the model order reduction procedure converges rapidly, the computation 

overhead increased by introducing the time-reversal FDTD equation and the 

numerical error cumulates in the backward iteration in time [20] can be minimized. 

2.2 Delaunay-Vononoi Modeling of Power-Ground Planes 

in Time-Domain 

A simplified structure is shown in Fig. 2.2 for analyzing the problems of 

power-ground planes with practical source ports [22]. A pair of close-spaced 

power-ground planes with length l and width w are separated by a dielectric substrate 

with a thickness h and a relative dielectric constant rε . Two source ports, port A and 

port B, are placed in the plane for the modeling of via structures through the planes. 

Current injecting into port A may induce a power-ground bounce noise between the 

planes. The noise wave travels throughout the entire planes and eventually the noise 

will couple to port B, causing a slightly variation to the port voltage. 

Fig. 2.3 shows the modeling of possible paths of current flow between the two 

practical source ports at high frequencies compared with the electrical dimension by 

adding virtual ports on the planes [22]. As the wavelength of interests approaches the 



2.2 Delaunay-Vononoi Modeling of Power-Ground Planes in Time-Domain 21 

 

 

 

x

y

z

P ra ctica l s ource  ports

w

l

h

P ort A

P ort B

rε

 

Fig. 2.2 A simplified structure for analyzing the problems of power-ground planes with 

practical source ports [22]. 

electrical dimensions of the interconnection structures, the current does not flow 

straightly from port A to port B but also includes the paths spreading radially outward 

from port A and then reflecting from the edges of power-ground planes to port B. 

This phenomenon can be effectively modeled by the novel method proposed in [22] 

using an equivalent lumped circuit model with virtual ports that play the role of the 

distributed current transition. The values of lumped circuit elements are associated 
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Fig. 2.3 Modeling possible paths of current flow between the two practical source ports 

at high frequencies compared with the electrical dimension by adding virtual 

ports on the planes [22]. 

with the geometry of the triangular mesh and can be obtained by employing the 

Delaunay triangularization for the mesh generation and applying Voronoi tesserlation 

at each node. 
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Fig. 2.4 Typical setting for the Delaunay-Vononoi modeling of power-ground planes. (a) 

The arrangement of triangular meshes and the placement virtual ports. (b) The 

equivalent lumped circuit associated with the practical source port i  and the 

virtual ports connected. 

2.2.1 Delaunay-Vononoi Modeling of Power-Ground Planes 

For the typical setting of Delaunay-Vononoi modeling of power-ground planes 

shown in Fig. 2.4, if the arrangement of triangular meshes and the placement virtual 



24  2 Theory 

 

 

 

ports is given in Fig. 2.4a, the equivalent lumped circuit associated with the practical 

source port i and its connecting neighbor virtual ports, which are embraced in the 

dashed circle, can be determined as Fig. 2.4b, assume a lossless condition. The 

values of the elements in the equivalent lumped circuit model can be determined by 

matching the terms derived from the perspective of circuit and electromagnetic 

theory. 

Applying the Kirchhoff’s Current Law (KCL), the relation between nodal 

voltages and the lumped circuit elements at the i-th node in Fig. 2.4 can be obtained 

as 

 0
6

1

=
−

+∑
=j ij

ji
ii Lj

VV
VCj

ω
ω  (2.7) 

with the notations shown in Fig. 2.4b, where the nodal voltages at the i- and j-th node 

are denotes by iV  and jV , respectively. The shunt capacitance at the i-th node is 

denoted by iC  and ijL  represents the series inductance connecting the i- and j-th 

node. 

On the other hand, if the thickness h in Fig. 2.2 is small enough compare to the 

wavelength of interest, the voltage distribution can be approximate as a function of 
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coordinates (x, y), the electric and magnetic field can be written as 

 z
h

yxVE )v ),(
−=  (2.8a) 

and 

 ( )zyxV
hj

H )v
×∇= ),(1

ωμ
, (2.8b) 

respectively. Applying Ampere’s Law ∫∫∫ ⋅+=⋅ sdEjIldH vvvv
ωε  to the i-th node in 

Fig. 2.4, with integration along the path connecting the circumcenters of the 

triangular mesh surrounding the node, the integral on both sides of the equation can 

be derived as 

 ∑∫
=

−
=⋅

6

1j
ji

ji

ji l
hdj
VV

ldH
ωμ

vv
 (2.9a) 

and 

 i
i A

h
VjsdEj ωεωε =⋅∫∫

vv
, (2.9b) 

where jid  is the length of the line connecting the j- and i-th node, jil  is the length 

between the circumcenters of the two triangles with a common edge connecting the j- 

and i-th node, and iA  is the area of the integration loop. Detailed derivation can be 

found in [22]. 
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By matching the terms in (2.7) and (2.9), the values of the lumped circuit 

elements is then determined as 

 
h
A

C i
i ε=  (2.10a) 

and 

 
ij

ij
ij l

hd
L

μ
= , (2.10b) 

which shows a relation only with the geometric parameters. Therefore once the 

meshes for the analysis are set, these values can then be uniquely defined. 

2.2.2 Time Marching Scheme for Delaunay-Vononoi Modeling of 

Power-Ground Planes 

For the i-th node of the equivalent lumped circuit model of power-ground planes 

shown in Fig. 2.4b, the node voltage and the branch current can be related with the 

lumped circuit elements in time domain as 

 
dt

dVCI i
ii =  (2.11a) 

and 

 
dt

dI
LVV ij

ijji =− , (2.11b) 
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where iV  and jV  is the node voltage at the i- and j-th node, respectively, iI  is the 

current through the shunt capacitance iC , and ijI  is the current through the series 

inductance ijL  connecting the i- and j-th node. These two current can be related by 

KCL as 

 0=+∑
j

iji II . (2.11c) 

Since the current flows from the i- to j-th node in the opposite direction as from j- to 

i-th node, it is obvious that jiij II −=  when (2.11) is applied to the j-th node. 

Let the time in (2.11) be dicretized as tn Δ⋅ . If the node voltages is located at 

the integer multiples as ( )tnVV i
n

i Δ⋅=  and the branch current is located at the 

center of every two contiguous integer multiples as ⎟
⎠

⎞
⎜
⎝

⎛
Δ⋅⎟

⎠
⎞

⎜
⎝
⎛ +=

+
tnII i

n

i 2
12

1

 and 

⎟
⎠

⎞
⎜
⎝

⎛
Δ⋅⎟

⎠
⎞

⎜
⎝
⎛ +=

+
tnII ij

n

ij 2
12

1

, applying central difference to the differentiation in time in 

(2.11)yields 

 2
1

1 ++ Δ
+=

n

i
i

n
i

n
i I

C
tVV  (2.12a) 

and 
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(2.11c) can also be rewritten as 

 ∑
++

−=
j

n

ij

n

i II 2
1

2
1

 (2.12c) 

with branch currents 2
1

2
1

++
−=

n

ji

n

ij II . For the time marching scheme of Delaunay- 

Vononoi modeling of power-ground planes, the iteration at time step n begins with 

(2.12b), where the branch currents through the series inductances connecting the 

nodes are updates to the next half time step with those at previous half time step and 

the voltages at all nodes at current time step. The current through the shunt 

capacitance at each node can then be update by (2.12c). After that all node voltages 

can be update to the next time step with their value at current time step and the 

currents at next half time step. Time step is then moved from n to n+1 for the 

beginning of a new iteration. 

2.3 Model Order Reduction with Krylov Subspace 

Methods 

Model order reduction for linear systems is often associated with a few numbers 
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of the largest and/or smallest eigenvlaues and their eigenvectors. For a large sparse 

symmetric nn×  matrix A, the approximation of its extremal eigenvalues can be 

efficiently extracted through a sequence of tridiagonal matrices generated by Krylov 

subspace methods, where the extremal eigenvalues of the tridigonal matrices are 

progressively better estimates of A’s extremal eigenvalues [15]. 

2.3.1 Krylov Subspaces 

For a Rayleigh quotient defined as 

 ( ) 0≠= x
xx
xxxr T

T A , (2.13) 

where A is a symmetric nn×  matrix and x is a column vector with dimension n, the 

maximum and minimum values of ( )xr  can be proved to be the largest and smallest 

eigenvalues of A, i.e., ( )A1λ  and ( )Anλ , respectively [15]. 

Define a sequence of orthonormal vectors [ ]kk qqq K21=Q  and scalars 

kM  as 

 ( ) ( ) ( ) ( )AQAQQAQQ 1101
2

maxmax λλ ≤===
=≠

yr
yy

yyM kyT
k

T
k

T

yk
T
kk , (2.14) 

and let { }kk q,q,qu ,span 21 K∈  be the vector that ( )kk urM = , to ensure that 
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kk MM >+1 , 1+kq  can be selected such that ( ) { }121 ,span +∈∇ kk q,q,qur K  

since ( )xr  increases the most rapidly in the direction of its gradient 

 ( ) ( )( )xxrx
xx

xr T −=∇ A2 . (2.15) 

One can easily find that ( ) { }xxxr A,span∈∇ , therefore the above problem is 

equivalent to the computation of orthonormal bases for the k-th order Krylov 

subspaces 

 ( ) { }1
1

111 ,span, qqqq kk −= AAA Kκ . (2.16) 

2.3.2 Lanczos Algorithm 

For any nn ×  symmetric matrix A and an arbitrary starting vector b, Lanczos 

algorithm is able to establish a Krylov subspace of order m [15], 

 ( ) { } { }m
mm qqqbAAbbbA ,,,span,,,span, 21

1 LL =≡ −κ ,  (2.17) 

at the m-th iteration by generating an mm ×  symmetric tridiagonal matrix mT  and 

an mn ×  transformation matrix mQ , where the columns of mQ  which form an 

orthonormal set are called Lanczos vectors. Let iα  and iβ  be the i-th element on 

the diagonal and subdiagonal of mT , respectively, i.e., 
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, (2.18) 

and iq  be the i-th column of  mQ . By equating columns in mmm TQAQ = , i.e., 

 111 +−− ++=⋅ iiiiiii qqqqA βαβ ,  (2.19) 

and exploiting the orthonomality of iq , the Lanczos iteration can be determined as 

follows. 

Starting with vector b, 

1) 0,1,, 0010 ===== kβ0qbbqr . 

Repeat the following steps until kβ  has reached an acceptable tolerance level. 

2) 1: += kk . 

3) k
T
kk qAq ⋅⋅=α . 

4) 11 −−−−⋅= kkkkkk qqqAr βα . 

5) kk r=β . 

6) kkk βrq =+1 . 
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The matrices mT  and mQ  obtained in the Lanczos algorithm are then used to 

approximate the eigenpairs of the original systems. If m
iλ  and m

iθ  are one of the 

eigenpairs of mT , then an approximate eigenpair of A, denoted by iλ
~  and iθ

~ , can 

be found via the following relations. 

 m
ii λλ =

~  and m
imi θQθ ⋅=~ . (2.20) 
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Late-Time Response by FDTD Method 

and Lanczos Algorithm 

hybrid method combining finite-difference time-domain (FDTD) method 

and Lanczos algorithm is proposed in this chapter for efficiently obtaining 

the steady-state response for closed systems. The theory begins with the FDTD 

equations in isotropic media. Although Lanczos algorithm for asymmetric systems is 

available theoretically, the symmetric form which is more stable and insensitive to 

numerical error is preferred here. 

A symmetric updating matrix appears in the FDTD equations which only either 

electric or magnetic fields are involved. Lanczos algorithm is applied to one of the 

symmetric updating matrices after the sources fade to zero. However, modification of 

existing FDTD codes is not preferred and can be avoided with the aid of 

time-reversal FDTD techniques. 

A 
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The detailed derivation of the hybrid method is described in the first section, 

followed by numerical examples with a homogeneous PEC cavity and an 

inhomogeneous PEC cavity with different excitations. Convergence and complexity 

is then discussed with verification from the simulation results. 

3.1 Hybridizing FDTD and Lanczos Algorithm by 

Time-Reversal technique 

As mentioned in 2.1, in isotropic media with relative permittivity ( )rεr  and 

permeability ( )rμr , (2.4) shows the source-free Maxwell equation for FDTD 

method in matrix form, which is rewritten here as 

 
( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅⋅⋅Δ⋅−⋅⋅Δ⋅
⋅⋅Δ⋅−

=⎥
⎦

⎤
⎢
⎣

⎡ −

−−−

−

+

+

n

n

r
T

r
T

r

r
n

n

tctc
tc

E
H

DμDεIDε
DμI

E
H 21

0
1121

1

1

21
0 ηη

, (3.1) 

where I is the identity matrix, D denotes the discretized curl operator, tΔ  is the time 

step, c denotes the velocity of light in free space, and the superscript n means the n-th 

time step of FDTD iteration. 

The equivalent matrix of FDTD operator in (3.1) is large and sparse, but not 

symmetric. As (2.5), eliminating either the magnetic or electric field in (3.1) yields 
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 ( ) 11121

2
12 −−−+ −⋅⎥⎦

⎤
⎢⎣
⎡ ⋅⋅⋅⋅Δ⋅−⋅= nn

r
T

r
n tc EEDμDεIE  (3.2a) 

and 

 ( ) 23
0

21
0

11221
0 2

12 −−−−+ −⋅⎥⎦
⎤

⎢⎣
⎡ ⋅⋅⋅⋅Δ⋅−⋅= nn

r
T

r
n tc HHDεDμIH ηηη . (3.2b) 

It is obvious that if either the relative permittivity or permeability matrix is 

homogeneous, one of the updating matrices inside the bracket in (3.2) will be 

symmetric. 

For the common usage of FDTD solvers, e.g., applications at microwave and 

millimeter-wave frequency or in high-speed digital systems, materials are usually 

non-magnetic. In other words, rμ  is an identity matrix in common applications and 

therefore (3.2b) is usually applicable for obtaining a symmetric updating matrix. 

The symmetric updating matrix in (3.2) is theoretically equivalent to the 

updating matrix in [23], and therefore has eigenvalues of magnitudes no larger than 

unity. The field vector nE  or nH  in (2) can be expanded in terms of the 

eigenvectors of the updating matrix. If the expansion coefficient corresponding to the 

j-th eigenvector at n-th time step in the FDTD iterations is denoted by jna , , the 

following recurrence relation can be obtained by substitution of the expansion 
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coefficients to (3.2), 

 02 ,1,,1 =+− −+ jnjnjjn aaa λ , (3.3) 

where jλ  is the corresponding j-th eigenvalue of the updating matrix in (3.2). 

The second order difference equation in (3.3) can be solved analytically if jλ  

and two initial conditions, jna ,0
 and jna ,10−

 are given for some time step 0n . Once 

(3.3) is solved, the expansion coefficient jna ,  at any time step 10 −≥ nn  can be 

calculated directly. This can be done for the most significant m-th eigenvectors. Then 

an approximate solution for the steady-state response of the original large system can 

be obtained analytically. 

After the electromagnetic sources fade to zero, the modal patterns begin to 

appear. Lanczos algorithm is then applied to obtain the approximated eigensolutions 

of the updating matrix in (3.2). The initial b vector for Lanczos algorithm is set to be 

the field vector 0nE  or 0nH  in (2) at some time step 0n , and the A matrix is 

chosen to be the corresponding updating matrix.  

As described in 2.3.2, the most time consuming part in each Lanczos iteration is 

the matrix-vector product kqA ⋅ . Getting these vectors for Lanczos algorithm 
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Fig. 3.1 Obtaining the matrix-vector product in the Lanczos algorithm without direct 

computing by the standard FDTD and its time-reversal form. 

directly by (3.2) is not preferred because existing FDTD codes cannot be employed 

directly. Instead, as implied by (3.2), the time-consuming matrix-vector product 

kqA ⋅  can be obtained in a much easier way. 

Fig. 3.1 shows how to obtain the matrix-vector product in the Lanczos 

algorithm without direct computing by the standard FDTD and its time-reversal form. 
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Assume that Lanczos algorithm is applied to the updating matrix in (3.2a). After k 

Lanczos iterations the k-th Lanczos vector kq  can be obtained. Let k
n qE =~  be the 

virtual electric field at current time step and 21~ −nH  be the virtual magnetic field at 

half a time step before, the virtual electric field at the previous time step can be 

obtained by (2.6b), 

 21
0

11 ~~~ −−− ⋅⋅⋅Δ⋅−= nT
r

nn tc HDεEE η , (3.4) 

and the virtual electric field at the next time step can be obtained from standard 

FDTD iterations 

 ( )n
r

nT
r

n

nT
r

nn

tctc

tc

EDμHDεE

HDεEE
~~~

~~~

121
0

1

21
0

11

⋅⋅⋅Δ⋅−⋅⋅⋅Δ⋅+=

⋅⋅⋅Δ⋅+=
−−−

+−+

η

η
. (3.5) 

Once 1~ −nE  and 1~ +nE  are determined, kqA ⋅  can be easily obtained by 

reorganizing (3.2a), i.e., 

 ( )11 ~~
2
1~ +− +=⋅=⋅ nnn

k EEEAqA . (3.6) 

Also note that the terms associated with virtual magnetic field 21~ −nH  are canceled 

when averaging the virtual electric fields at the previous and next time steps, thus 

21~ −nH  is considered as a dummy field vector and can be arbitrary chosen. 
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The enforcement of boundary conditions can be applied directly for close 

systems. However, for open problems, the absorbing walls become “injection walls” 

in time-reversal FDTD simulations [20]. It is therefore necessary to know the time 

evolution of the field injected from the boundary, which is unknown for the “virtual 

field” in the Lanczos iterations. The extension of time-reversal FDTD requires 

further study and is not included here. 

The block diagram of the aforementioned procedures is shown in Fig. 3.2 where 

the model-order reduction procedure by time-reversal FDTD and Lanczos algorithm 

in Fig. 3.2b is used instead of the direct computing loop in Fig. 3.2a. The overall 

flow chat of the hybrid is shown in Fig. 3.3. These are summarized as the following 

steps for clarity. This hybrid method can be repeated in the same manner if Lanczos 

algorithm is applied to the updating matrix in (3.2b) instead. 

1) Perform the standard FDTD iterations until all sources fade to zero at time 

step 0n . 

2) Begin Lanczos iterations with starting vector 0nEb = . 
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Fig. 3.2 Model-order reduction by time-reversal FDTD and Lanczos algorithm applying 

to (3.2a). (a) Block diagram for the direct computing loop of (3.2a). (b) Block 

diagram for the model-order reduction loop with 0
1

nEq = . 

3) At the k-th Lanczos iteration, let k
n qE =~ , calculate kqA ⋅  by (3.4) − 

(3.6). 

4) Perform all operations for the k-th Lanczos iteration. 
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Fig. 3.3. The flow chart of the hybrid method proposed in this chapter, where the 

matrix-vector product of the Lanczos algorithm is accomplished by standard and 

time-reversal FDTD, as shown in Fig. 3.2. 

5) Solve the eignesolution of kT  and find the approximate eigenvectors for 

the original system by (2.20). 

6) Compute the projection of 0nE  on each eigenvector. 

7) Repeat 3) − 6) until the projection of 0nE  on the newly added eigenvector 
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is negligible. 

8) Solve (3.3) for each approximate eigenpairs. 

9) Obtain the approximate solution for the steady-state response of the 

original system. 

In order to verify the hybrid method associated with both equations in (3.2). 

Two simple examples are given. The first example, an air-filled perfect electric 

conductor (PEC) cavity gives a symmetric updating matrix in both (3.2a) and (3.2b), 

while only (3.2b) can be used to obtain an symmetric updating matrix in the second 

example, an air-filled PEC cavity with dielectric objects. Results of the hybrid 

method for both examples are verified by comparing with those of brute-force 

FDTD. 

3.2 Homogeneous PEC Cavity 

3.2.1 Simulation Settings 

Fig. 3.4 shows the geometry of the first example, an air-filled PEC cavity of 

dimension 10 cm by 10 cm by 1 cm. The size of spatial division for FDTD 
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Fig. 3.4 An air-filled PEC cavity of dimension 10 cm by 10 cm by 1 cm. 

simulation in each direction is 1 cm and the normalized time step tc Δ⋅  is 0.5 cm, 

where c is the velocity of light in free space. A z-directed electric field excitation of 

Gaussian pulse ( )( )1005.50exp 2−⋅− tc (volt/m) is applied at the point A in Fig. 3.4, 

the center of the cavity. For the hybrid method, iterations of Lanczos algorithm 

begins after the source fades to zero with additional time margin for the round-trip 

time. 
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Fig. 3.5. The late-time responses of the z-component of the electric field at point A 

obtained by brute-force FDTD and the hybrid method with different numbers of 

modes extracted. 

3.2.2 Late-Time Responses 

The late-time responses of the z-component of the electric field zE  observed at 

the points A, B, and C in Fig. 3.4 obtained by FDTD method and the hybrid method 

are shown in Fig. 3.5 and 3.5. Fig. 3.5 compares zE  at the point A in Fig. 3.6 
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Fig. 3.6. The late-time responses of the z-component of the electric field at points B and 

C obtained by brute-force FDTD and the hybrid method with two modes 

extracted. 

obtained by brute-force FDTD and the hybrid method with different numbers of 

modes extracted. As indicated by the figure, the steady-state response is faithfully 

reconstructed in this case with only two modes extracted in the hybrid method. Fig. 

3.6 shows the steady-state response of zE  at another two points B and C in Fig. 3.6 

which are obtained by FDTD and the hybrid method with two modes extracted. The 
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Fig. 3.7. Modal patterns of the first two modes extracted by Lanczos algorithm. (a) The 

first mode extracted; (b) the second mode extracted. 
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results are once again in good agreement. 

3.2.3 Modal Patterns 

Fig. 3.7 shows the modal patterns of the first two modes extracted by Lanczos 

algorithm. The normalized z-component of the electric field at plane z=0.5cm in the 

cavity is plotted. Due to the excitation symmetry, the first two modes extracted by 

Lanczos algorithm are TM110 (Fig. 3.7a) and TM330 (Fig. 3.7b). In other words, 

modes which are not excited will be effectively neglected by Lanczos algorithm. For 

the cases with nearly degenerate modes that are usually difficult to handle with 

common extrapolation techniques, it can be easily handled by the proposed hybrid 

method. By dealing with the modes of the original system, degenerate modes can be 

easily distinguished since their modal patterns are orthogonal. 

3.3 Inhomogeneous PEC Cavity 

3.3.1 Simulation Settings 

The geometry of the second example, an air-filled PEC cavity with a dielectric 

object, is shown in Fig. 3.8. The dimension of the cavity is 30mm by 50mm by 
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Fig. 3.8. An air-filed PEC cavity with a dielectric object. 

20mm. The dielectric object locates at the bottom center of the cavity which is 12 

mm by 10 mm by 4 mm in size with a relative permittivity 4.0. The spatial division is 

1 mm in all directions and the time step is chosen to be 1.6 ps. 

The cavity is excited with a z-directed electric field source at the plane y = 40 

mm in the form of Gaussian pulse. For a symmetric updating matrix, the hybrid 

method associated with (3.2b) is used. Two pulses with different rise times, 
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( )( )22 50250exp −− n (volt/m) and ( )( )22 25125exp −− n (volt/m) with n denoting the 

FDTD time step, are applied for verifying the convergence criteria which will be 

described in the next section. 

3.3.2 Late-Time Responses 

For the pulse with longer rise time, Lanczos algorithm begins at the 800-th time 

step, i.e., after the source fades to zero with additional round-trip time for the 

excitation. Only four modes are needed to be precisely extracted and the hybrid 

method converged at the sixth Lanczos iteration. Fig. 3.9a shows the steady-state 

response of the y-component of the magnetic field observed at the point (0.5 mm, 10 

mm, 10 mm) and Fig. 3.9b shows that of the x-component of the magnetic field 

observed at the point (15 mm, 0.5 mm, 10 mm) in Fig. 3.8, which are excited by the 

source with a longer rise time. 

If the pulse with a shorter duration is used for the excitation instead, Lanczos 

algorithm can be applied earlier in the hybrid method since the source fades to zero 

much faster. For the Gaussian pulse with a shorter rise time described in the previous 

paragraphs, Lanczos algorithm begins at the 600-th time step. However, more modes 
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Fig. 3.9. The late-time responses of (a) the y-component at the point (0.5 , 10 , 10)(mm) 

and (b) the x-component at the point (15 , 0.5 , 10 )(mm) of the magnetic field in 

Fig. 3.5 which is excited by a Gaussian pulse with a longer rise time. 



3.3 Inomogeneous PEC Cavity 51 

 

 

 

600 800 1000 1200 1400 1600

-0.6

0

0.6

1.2

-1.2

Time Step

η 0
H

y
at

 (0
.5

, 1
0,

 1
0)

 (v
ol

t/m
)

FDTD Hybrid Method

 

Fig. 3.10. The late-time responses of the y-component of the magnetic field at the point 

(0.5 mm, 10 mm, 10 mm) in Fig. 4 which is excited by a Gaussian pulse with a 

shorter rise time. 

are needed to be extracted precisely because higher modes are excited. 

Fig. 3.10 shows the result obtained by FDTD and the hybrid method. With the 

first six modes converged at the fifteenth Lanczos iteration in the hybrid method, the 

steady-state response of the y-component of the magnetic field observed at the point 
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Fig. 3.9. Modal patterns of the magnetic field at the mm10=z  plane in the structure 

shown in Fig. 3.8 for the first six modes extracted by Lanczos algorithm. 
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(0.5 mm, 10 mm, 10 mm) in Fig. 3.8 which is excited by the source with a shorter 

rise time is reconstructed faithfully. 

3.3.3 Modal Patterns 

Fig. 3.11 shows the modal patterns of the magnetic field at the mm10=z  

plane in the structure shown in Fig. 3.8 for the first six modes which are extracted by 

the FDTD/Lanczos hybrid method associated with (3.2b). The shaded rectangular 

region represents the location of the dielectric object. Once again it can be easily 

found that only the modes which are excited have been extracted by the hybrid 

method. 

3.4 Convergence and Complexity 

As described in the previous section, the hybrid method is able to give a good 

approximation for the steady-state response of the original problem with only a few 

modes extracted in a few Lanczos iterations. It is important to determine the 

convergence criteria about the number of modes which is necessarily to be concerned 

and how precisely should these modes be extracted. It is also an important issue to 

analyze the complexity of the hybrid method. The second case in the previous section 
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will be used as an example for discussing the convergence and complexity issues in 

the following paragraphs. 

3.4.1 Convergence 

As described in step 6) in the step-by-step implementation that summarized 3.1, 

in order to determine the number of modes that are needed to be extracted precisely, 

the expansion coefficients of the eigenmodes are compared. After m Lanczos 

iterations, an approximate eigensolution set of the original system can be found by 

(2.20). The expansion coefficient ia  associated with iθ  is calculated by taking the 

inner product with the field vectors 0nE  or 0nH  at the 0n -th time step of FDTD 

iteration that the Lanczos algorithm starts. Terms with small expansion coefficient 

can then be dropped safely. 

Fig. 3.12 shows the absolute value of the smallest expansion coefficient mina  

normalized to the largest one, maxa , which is obtained at each of the Lanczos 

iteration in the second example described in the previous section. One can see that 

after certain iterations, the smallest expansion coefficient decays to tenth an order of 

the largest one. Therefore number of modes to be precisely extracted is determined. 
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Fig. 3.12. The absolute value of the smallest expansion coefficient mina  normalized to the 

largest one, maxa , which is obtained at each of the Lanczos iteration in the 

second example described in the previous section. 

For example, only four modes are needed to be precisely extracted when the 

system is excited by the lower frequency source, while six modes should be taken 

into consideration with the higher frequency excitation. The Lanczos iteration 

terminates when all of the concerning modes have been extracted with the desired 

precisions. 
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3.4.2 Complexity 

To obtain a frequency response with a higher resolution in frequency, a longer 

time period of steady-state response in time-domain should be obtained. In 

traditional FDTD simulation, fine meshes in spatial leads to small division in time. 

As a result, more simulation time is needed for better frequency resolution. 

Assume that there are P field points in an FDTD simulation. It takes L time 

steps for the sources fade to zero and the modal patterns begin to appear and after 

that N time steps are performed for a satisfactory frequency resolution. The overall 

computation time for standard FDTD is linearly proportional to the number of field 

points and total time step computed, or ( )( )NLPO +⋅ . 

For the proposed hybrid method, standard FDTD is firstly applied for the same 

L time steps. Lanczos algorithm is then applied for model-order reduction. Assume 

that Q modes need to be extracted precisely and the Lanczos algorithm converges at 

the M-th time step. For each Lanczos iteration, at most Q modal expansion 

coefficients are obtained and the eigensolution of the mm ×  tridiagonal matrix is 

also solved for the convergence criteria. 
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After that, the frequency response at a single field point with the same 

resolution can be directly obtained with multiplications of order N. The overall 

complexity of the hybrid method is therefore ( )2MNQLPO +⋅+⋅ . In the usual 

cases, PNLMQ <<<<<<≤ , thus the standard FDTD has a ( )NPO ⋅  complexity, 

where as the hybrid method reduces the complexity to ( )LPO ⋅ , i.e., a speed up 

factor 
L
N  can be achieved. For structures with enormous active modes, e.g. optical 

waveguides or photonic crystals, the speed up factor may be reduced if ( )2MO  

eventually reaches ( )LPO ⋅ . 

In comparison with common extrapolation techniques, e.g., Prony’s methods [2], 

[4], [5], utilization of space information make Lanczos iterations able to be applied 

earlier, as long as the sources have faded to zero and the electromagnetic wave has 

spread over the computation domain. Utilization of space information also make the 

hybrid method converges much more rapidly. In addition, the reduced model 

obtained by this hybrid method is able to predict the late-time responses at any points 

of the original system without increasing computational overheads. For the Prony’s 

methods, this can only be done with enormous sampling points at both time and 

space grids. 
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Fig. 3.13. The magnitude of the frequency response of the magnetic field obtained at the 

point (0.5 mm, 10 mm, 10 mm) in Fig. 4 in the second example in IV with a 

high frequency excitation. 

Fig. 3.13 shows the magnitude of the frequency response of the magnetic field 

obtained at the point (0.5 mm, 10 mm, 10 mm) in Fig. 3.8 with a high frequency 

excitation. In order to obtain a 40 MHz frequency resolution, 16001 time steps are 

performed in the standard FDTD method. In this case, 30000=P , 15401=N , 

600=L , 15=M , and 6=Q . The results of both methods are once again in good 
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agreement. Moreover, total solution time for the standard FDTD computation is 128 

minutes while only 5.1 minutes are spent for the hybrid method, about 25 times faster. 

This also agrees with the complexity analysis in the previous paragraph, i.e., 

25≈LN . 

3.5 Summary of the Chapter 

The hybrid method combined with FDTD and Lanczos algorithm proposed in 

this chapter is able to reconstruct the steady-state response of a large system 

efficiently and faithfully. Taking advantage of the space information, only few FDTD 

iterations before the sources fade to zero suffice to extract the excited modes and 

then the late time response by analytic expression. By applying the time-reversal 

technique, the existing FDTD codes are preserved. Although suitable for problems 

with non-magnetic material only, the hybrid method still applies in common 

problems. With two simple examples, the correctness, efficiency, convergence, and 

complexity of this method have been verified for closed systems. 
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44 

Late-Time Response for Delaunay-Vononoi Modeling 

of Power-Ground Planes in Time-Domain with 

Krylov Subspace Method 

ELAUNAY-Vononoi modeling of power-ground planes in time-domain 

discussed in 2.2 is combined with Krylov subspace method in this chapter 

for efficiently obtaining the steady-state response for the power-ground plane 

problems. The updating equations are treated in a similar manner as FDTD to get a 

symmetric updating matrix. Krylov subspace method based on Lanczos algorithm is 

applied to the symmetric updating matrices after the sources fade to zero. 

Detailed derivation of the hybrid method is described in the first section, 

followed by numerical examples including a simple square power-ground plane with 

various mesh settings and a more realistic case of power-ground plane with a clipped 

corner and an aperture on the plane. Convergence and complexity of the hybrid 

method will also be discussed before the summary of this chapter. 

D
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4.1 Krylov Subspace Method for Delaunay-Vononoi 

Modeling of Power-Ground Planes in Time-Domain 

The time marching scheme of Delaunay-Vononoi modeling of power-ground 

planes in time-domain has been introduced in 2.2. In order to obtain the late-time 

response with minimum iterations in updating (2.12), a similar model-order 

reduction procedure as that described in chapter 3 is applied to the system after the 

sources fades to zero with a little margin of round-trip time. Active modes in the 

system are extracted for the reconstruction of the late-time response without actually 

update (2.12) to the time desired. 

Starting from (2.12), if the node voltages n
iV  and the branch currents flowing 

through the series inductance connecting the i- and j-th nodes 2
1

+n

ijI  are rewritten as 

column vectors, the updating equations can be cast into matrix form 
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Rows associated with the branch currents in (4.1) can be eliminated to get an update 

equation with node voltages 

 11 2 −+ −⋅= nnn VVAV , (4.2) 
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Fig. 4.1. Constructing a Krylov subspace for the approximation of system matrix A 

directly from a series of system response in time. 

where ⎥⎦
⎤

⎢⎣
⎡ += VI DDI

2
1A  is a symmetric matrix. Applying Lanczos algorithm to A 

with exactly the same method in chapter 3 requires the time-reversal expression of 

(2.12) and is not preferred here. Instead, the hybrid method proposed in this chapter 

constructs a Krylov subspace directly from the output results of the time domain 

iterations with the basic idea shown in Fig. 4.1. Comparing to the FDTD/Lanczos 

hybrid method, this hybrid technique is able to deal the cases without source codes of 
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time-domain full-wave solvers, provided the field information at any time steps is 

obtainable. 

As indicated by (4.2), if the column vector of the node voltage 0nV  at some 

time step 0n  is chosen as the starting vector b of a Krylov subspace, the second 

vector of the Krylov subspace Ab can be obtained by averaging the voltage vectors 

at the previous and the next time steps as 

 ( )11 0000

2
1 −+ +=⋅=⋅ nnnn VVVAbA , (4.3) 

where the superscript 0n  indicates that the Krylov subspace is constructed with a 

the node voltage at time step 0n  as the starting vector. Applying the system operator 

A to (4.3), the next vector of the Krylov subspace bA2  can be derived. 
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( )11

11

2

00

00

00

2
1
2
1

−+

−+

⋅+⋅=

⋅+⋅=

⋅⋅=⋅

nn

nn

nn

bAbA

VAVA

VAAbA

 (4.4) 

In general, the m-th vector of the Krylov subspace constructed with the node voltage 

at time step 0n  can be obtained by averaging the ( )1−m -th vector of the Krylov 

subspaces constructed with a the node voltage at time steps 10 +n  and 10 −n , or 

more specifically, 
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The hybrid method begins with the standard iteration of the updating equations 

(2.12). After the sources fade to zero and a little time margin for the round-trip time 

of the propagating wave, the voltage distribution on the power-ground planes will 

gradually become a linear combination of a few dominant modes. 

In order to construct a Krylov subspace of an order at most m with the node 

voltage at time step 0n  as a starting vector, the node voltages from its previous 

1−m  time steps to its next 1−m  time steps is stored. Applying (4.5) to the stored 

voltage vectors iteratively, a series of Krylov subspaces ( )0, nk VAκ  of orders 

mk ,,2,1 K=  as well as their Laczos vectors kQ  and tridiagonal matrices kT  can 

be construct for the approximation of the original system matrix A with (2.20). 

If the expansion coefficient corresponding to the j-th eigenvector at n-th time 

step in the iterations is denoted by jna , , the following recurrence relation can be 

obtained by substitution of the expansion coefficients to (4.2), 

 02 ,1,,1 =+− −+ jnjnjjn aaa λ , (4.6) 

where jλ  is the corresponding j-th eigenvalue of the updating matrix in (4.2). 
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Fig. 4.2. Flow chart of the hybrid method proposed in this chapter, where the Krylov 

subspace is constructed directly from the pre-stored voltage vectors as shown in 

Fig. 4.1. 

The second order difference equation in (4.6) can be solved analytically if jλ  

and two initial conditions, jna ,0
 and jna ,10−

 are given for some time step 0n . Once 

(4.6) is solved, the expansion coefficient jna ,  at any time step 10 −≥ nn  can be 

calculated directly. This can be done for the most significant k-th eigenvectors. Then 

an approximate solution for the steady-state response of the original large system can 
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be obtained analytically. 

Penalty of the proposed hybrid method comes when the Krylov subspaces do 

not converge before running out of the stored voltage vectors. Standard iteration by 

(2.12) is then restart for more successive voltage vectors, after that a new Krylov 

subspace with a starting vector at the middle time step of the voltage vector series is 

needed to be reconstructed. 

Figure 4.2 shows the flow chart of the hybrid method proposed in this chapter. 

For clarity, the hybrid method is summarized as follows. 

1) Construct the equivalent circuit network according to the mesh setting for a 

structure using Delaunay-Vononoi modeling. 

2) Perform the standard iterations (2.12) until all sources fade to zero with 

additional round-trip time according to the system dimension. 

3) Store all nV ’s for 11 00 −+≤≤+− mnnmn . 

For the starting vector 0nVb = , 

4) Construct a k-th order Krylov subspace ( )0, nk VAκ  by 4.5 and obtain its 

Lanczos vectors kQ  and tridiagonal matrices kT . 
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5) Solve the eignesolution of kT  and find the approximate eigenvectors for 

the original system by (2.20). 

6) Compute the projection of 0nV  on each eigenvector. 

7) Repeat 3) − 6) until the projection of 0nV  on the newly added eigenvector 

is negligible with 1: += kk  if mk ≤ , otherwise go back to 1) and restart 

(2.12) from the last time step with a larger m for 2) . 

8) Solve (3.3) for each approximate eigenpairs. 

9) Obtain the approximate solution for the steady-state response of the 

original system 

4.2 Power-Ground Plane of Simple Geometry 

4.2.1 Geometry 

Fig. 4.3 shows a square power plane with mm50== lw , mm6.1=h , and a 

relative dielectric constant 2.4=rε . A port is located at (20mm, 20mm) where a 

Gaussian current pulse ( )( )22
00 exp ds tttII −= , with mA10 =I , ns100 =t , and 

ns2=dt  is injected to excite the structure. With this mesh setting, the late-time 
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Fig. 4.3. The geometry of a 50mm×50mm×1.6mm power-ground plane with an excitation 

port at (20mm, 30mm). (a) Three-dimensional view. (b) Top view. 

responses of the voltage at the port computed directly by (2.12) are compared with 

the results obtained by the hybrid method described in the previous section. The 

frequency responses of the input impedance ( ) ( )
( )fI

fVfZin =  are also calculated by 

transforming the time responses of voltage and current into frequency domain with 

Fast Fourier Transform (FFT). 
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Fig. 4.4. Mesh setting for the simulation of the structure shown in Fig. 4.3. (a) Locations 

of the input port (solid dot) and virtual ports (double circle). (b) Arrangement of 

the triangular meshes on the plane. 

4.2.2 Simulation Results 

Fig. 4.4. shows the mesh setting for the simulation of the structure shown in 

Fig. 4.3, where the locations of the input port is indicated with a solid dot in Fig. 4.4a 

and the locations of all virtual ports are plotted with double circles. Triangular 



4.2 Power-Ground Plane of Simple Geometry 71 

 

 

 

120 122 124 126 128
-8

-6

-4

-2

0

2

4

6

8

Time (ns)

V
ol

ta
ge

 (m
V

)

130

Direct
Hybrid

 

Fig. 4.5. Late-time responses obtained by direct time-domain iteration (solid line) and 

hybrid method (dashed line) for the structure with a geometry shown in Fig. 4.3 

and a mesh settings in Fig. 4.4. 

meshes are arranged as shown in Fig. 4.4b. The simulation results obtained by direct 

time-domain iteration and hybrid method are shown in Fig. 4.5 with a solid and a 

dashed line, respectively. Obviously quite different results were obtained by the two 

methods. This could be recognized also in the frequency responses of the input 

impedance shown in Fig. 4.6, where the solid line represents the result obtained 



72 4 Late-Time Response for Delaunay-Vononoi Modeling of P-G Planes with Krylov Subspace Method 

 

 

 

0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

Frequency (GHz)

|Z
in
| (

O
hm

)

0

Z-Matrix in Frequency Domain

Time Domain + FFT

Hybrid + FFT

 

Fig. 4.6. The frequency responses of the input impedance at the port of Fig. 4.3 obtained 

by direct inversing the Y-matrix in frequency domain (solid line) and the 

frequency transform by FFT of the late-time responses obtained by direct 

time-domain iteration (dashed line) and the hybrid method (dotted line). 

bydirect inversing the Y-matrix in frequency domain. The dashed line and the dotted 

line are the results of late-time responses transformed into frequency by FFT, which 

were obtained by direct time-domain iteration and the hybrid method, respectively. 

One can see that only two of the four resonant frequencies are extracted by the 
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hybrid method. The explanation of the quite different results, however, can be found 

by analytical derivation of the resonant frequencies of the structure. 

4.2.3 Modal Patterns 

For the rectangular cavity shown in Fig. 4.3a, assume that hlw >>, , the cutoff 

wavenumber of the mnTM  mode can be defined [24] as 

 22
ynxmmn kkk +=  (4.7) 

with ⎟
⎠
⎞

⎜
⎝
⎛=

w
mkxm
π  and ⎟

⎠
⎞

⎜
⎝
⎛=

l
nk yn
π , where the indices m and n are some integers 

representing the number of variations in the standing wave pattern in the x and y 

directions, respectively. The angular frequency of the resonant mode with indices m 

and n can also found by 

 mnpmn kv ⋅=ω , (4.8) 

where pv  stands for the phase velocity of light in the dielectric of the resonating 

cavity. Finally the modal pattern of the voltage at the resonant frequency with indices 

m and n can be describe by the following formula 

 ( ) ( ) ( ) ( )mnmnynxmmnmn tykxkVtyxV φω += coscoscos,, ,0  (4.9) 
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Fig. 4.7 Frequency responses and modal patterns obtained by (4.9) for the cavity shown 

in Fig. 4.3 with (a) m=1, n=0 (b) m=0, n=1, and (c) m=1, n=1, respectively. 
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Fig. 4.8. Modal patterns of (a) the first mode and (b) the second mode extracted by the 

hybrid method for the structure shown in Fig. 4.3 with mesh settings shown in 

Fig. 4.4. 

with some initial voltage mnV ,0  and phase mnφ . 

Fig. 4.7 shows the frequency responses and the modal patterns of the first three 

modes with lowest resonant frequencies obtained by (4.9) for the square cavity 

shown in Fig. 4.3. Comparing with the modal patterns of the first two modes 
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extracted by the hybrid method, which are shown in Fig. 4.8, the modal pattern of the 

first mode extracted by the hybrid method is exactly the linear combination of the 

first two degenerated modes 10TM  and 01TM  calculated by (4.9). The second 

mode extracted by the hybrid method can also be identified as 11TM  mode, with a 

different phase from Fig. 4.7c. 

The frequency responses of the modes shown in Fig. 4.7, which are calculated 

by (4.9), also show a consistency with the two peaks of the dotted line at the resonant 

frequencies obtained by the hybrid method in Fig. 4.6. This is somewhat a surprising 

result that the hybrid method is able to extract the modes that actually exist in the 

structures and automatically discard the spurious mode owing to coarse mesh 

settings. 

4.3 A More Realistic Power-Ground Plane 

4.3.1 Geometry 

Fig. 4.9 shows a more realistic power-ground plane compare to the one in the 

previous section. The geometric parameters are shown in Fig. 4.9a where the 

top-right corner of a square metal plate with mm50== lw is cut from ( )50,35  to 



4.3 A More Realistic Power-Ground Plane 77 

 

 

 

x

y
z

w

l

h

Port

rε

0 10 20 30 40 50
0

10

20

30

40

50

(b)(a)
Unit: mm

 

Fig. 4.9. A more realistic power-ground plane with a clipped corner and an aperture on 

the top metal. (a) The geometric parameters of the power-ground plane. (b) The 

mesh setting for simulation. 

( )20,50 . An aperture with a width 15mm and a height 10mm is also located on the 

same plate with its center at ( )20,5.17 . The power-ground planes are separated by a 

dielectric slab with a relative dielectric constant 2.4=rε  and a height mm6.1=h . 

Two different sources with their responses shown in Fig. 4.10 are injected to the port 

with coordinate ( )35,20 . Fig. 4.10a and Fig. 4.10b shows the time and frequency 
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Fig. 4.10. (a) The time response of a standard Gaussian pulse and (b) its frequency 

response; and (c) the time response of a modulated Gaussian pulse with zero DC 

level and (d) its frequency response. 
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responses of the first current source with a standard Gaussian pulse response 

( )( )22
00 exp ds tttII −−= , where mA10 =I , ps1670 =t , and ps33=dt . This 

source is modulated by a 1GHz sine wave for the second source with a zero DC level, 

which has the time and frequency responses as shown in Fig. 4.10c and Fig. 4.10d, 

respectively. The input impedance at the same port is then calculated by frequency 

transforming the time responses of the voltage and current with FFT. 

4.3.2 Simulation Results 

Fig. 4.11 shows the magnitude of the frequency responses of the input 

impedance at the port shown in Fig. 4.9. The solid line is obtained by directly 

inversing the Y-matrix in frequency domain. The other two lines are the results by 

time-domain iteration and FFT with different sources of excitation. The result plotted 

in dashed line is excited by the first source, in which a DC level at stead-state in 

time-domain is transformed into a delta response at zero frequency. Since most 

energy is confined at DC, the precision of the results obtained at other frequencies is 

limited. The result of the second excitation, a modulated Gaussian current pulse with 

zero DC level, is plotted in a dash-dotted line. The sharp transition at zero frequency 

no longer exists and responses at other frequencies become closer to the solid line. 
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Fig. 4.11. The magnitude of the frequency responses of the input impedance at the port 

shown in Fig. 4.9. The solid line is obtained by direct inversing the Y-matrix in 

frequency domain. The dashed and dash-dotted lines are the results by 

time-domain iteration and FFT with two different sources of excitation. 

The result of the hybrid method is also obtained and compared. Fig. 4.12 shows 

the magnitude of the frequency responses of the input impedance at the port shown 

in Fig. 4.9 obtained by direct time-domain iteration (solid line) and the hybrid 

method (dashed line) with FFT. As shown in the figure, the hybrid method is able to 
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Fig. 4.12. The magnitude of the frequency responses of the input impedance at the port 

shown in Fig. 4.9 obtained by direct time-domain iteration (solid line) and the 

hybrid method (dashed line) with FFT. 

extract the major resonant frequencies of the structure. However the two responses 

are quite different at low frequencies. This is due to the nature of the model-order 

reduction process in the hybrid method in which the resonant modes were extracted 

for the reconstruction of late-time responses. Since the pole at DC cannot be treated 

as a “resonant mode”, it cannot be extracted by the hybrid method. 
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4.3.3 Modal Patterns 

The modal patterns of the first two modes extracted by the hybrid method are 

shown in Fig. 4.13a and Fig. 4.13b. The first mode, as shown in Fig. 4.13a, is 

basically a variation of the first mode extracted from the structure with no defected 

metal plate shown in Fig. 4.3 by the same method. However the combination of the 

two degenerated modes no longer exists since symmetry is destroyed by the cut 

corner. The second mode extracted in this case shows a quite different pattern as the 

one extracted from the structure shown in Fig. 4.3, because the symmetry for this 

mode is heavily destroyed by both the cut corner and the aperture. 

The modal patterns for the same structures are also extracted by Ansoft® 

HFSS™, a popular commercial full-wave simulation software package, for 

verification. The resulting modal patterns of same modes as Fig. 4.13a and Fig. 4.13b 

are shown in Fig. 4.13c and Fig. 4.13d, respectively, in which the magnitude and 

direction of electric field in the structure at different points are represented by the 

length and direction of arrows, respectively. It is obvious that the modal patterns for 

the first two modes extracted by the hybrid method are in good coherence to those 

extracted by HFSS. For example, for the first mode, both Fig. 4.13a and Fig. 4.13c 
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Fig. 4.13. (a) The first mode and (b) the second mode of the structure shown in Fig. 4.9, 

which are extracted by the hybrid method; and (c) the first mode and (b) the 

second mode of the same structure extracted by Ansoft® HFSS™. 
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show that the strongest field occurs at the two corners next to the one cut, with 

opposite directions. The field decrease gradually along the diagonal connecting these 

two corner and zeroes occur along a line connecting the cut corner and the aperture. 

4.4 Convergence and Complexity 

The hybrid method proposed in this chapter is composed of three major parts, 

the Delaunay-Vononoi Modeling of Power-Ground Planes, the time-domain iteration, 

and model order reduction by Krylov subspace method. The convergence with 

respect to the three parts will be discussed separately. A self convergence test will 

also be given. The complexity analysis is based on the step-by-step algorithm 

provided in 4.1. Both the complexity of computation and memory overhead will be 

considered. 

4.4.1 Convergence 

The convergence analysis begins with the Delaunay-Vononoi modeling of 

power-ground planes, where the mesh arrangement reveals that the accuracy is 

associated with the longest distance between any two connected virtual or source 

ports. As for the probing frequencies, its accuracy is ranged from 0.20 to 0.25 of 
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wavelength interested [22]. 

Taking the simulation in 4.2 for example, the longest distance between the ports 

is mm220 , which means the highest frequency of accuracy results is ranged from 

2GHz to 2.5GHz, according to the simulation parameters for this case. Inaccurate 

results such as spurious modes may arise above this frequency range, which can be 

observed in the simulation results. 

As mentioned in [22], the domain of Delaunay-Vononoi modeling of power- 

ground planes reduced identically to the rectangular FDTD grid when the Voronoi 

tesserlation becomes rectangular shape. Since the time-domain iteration based on this 

model, which is discussed in 4.1, is also updated with explicit equations in the same 

manner as FDTD, therefore the stability constraint in the Courant number 

 1≤
Δ
Δ

=
tcS , (4.10) 

must be satisfied, where Δ is the smallest distance crossing a cell from one grid point 

to another [2]. 

As described in step 5) in the step-by-step implementation that summarized 4.1, 

in order to determine the number of modes that are needed to be extracted precisely, 
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the expansion coefficients of the eigenmodes are compared. After the Krylov 

subspace of order m is constructed, an approximate eigensolution set of the original 

system can be found by (2.20). The expansion coefficient ia  associated with iθ  is 

calculated by taking the inner product with the voltage vectors 0nV  at the 0n -th 

time step of FDTD iteration that the Lanczos algorithm starts. Terms with small 

expansion coefficient can then be dropped safely. 

In order to verify the self convergence of the hybrid method proposed in this 

chapter, a set of three mesh settings from coarser to finer for the structure shown in 

Fig. 4.3 is arranged as shown in Fig. 4.14. The space division in both x and y 

directions are 10mm, 5mm, and 10/3mm for Mesh1 in Fig. 4.14a, Mesh2 in Fig. 

4.14b, and Mesh3 in Fig. 4.14c, respectively. A Gaussian current pulse 

( )( )22
00 exp ds tttII −−= , with mA10 =I , ns100 =t , and ns2=dt  is injected to 

excite the structure. 

The frequency responses of the input impedances at the incident port denoted by 

black dots in Fig 4.13 for all three mesh settings are calculated by frequency 

transforming the late-time response obtained by the hybrid methods with FFT. 

Results are plotted in Fig. 4.15, where the dotted, dashed, and solid lines are obtained 
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Fig. 4.14. (a) Mesh1, a coarse mesh setting, (b) Mesh2, a marginal mesh setting, and (c) 

Mesh3, a fine mesh setting arranged for the verification of self convergence of 

the hybrid method proposed in this chapter. 
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Fig. 4.15. Frequency responses of the input impedances at the incident port denoted by 

black dots in Fig 4.13 for mesh settings Mesh1 (dotted line), Mesh 2 (dashed 

line), and Mesh3 (solid line).  

with mesh settings Mesh1, Mesh2, and Mesh3, respectively. It is obvious that as the 

mesh settings become finer, both resonant frequencies obtained converge to fixed 

values. 

Modal patterns are also extracted. Fig. 4.16 shows the modal patterns of the first 
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Fig. 4.16. Modal patterns extracted by the hybrid method. (a) The first mode and (b) the 

second mode extracted from Mesh1; and (c) The first mode and (d) the second 

mode extracted from Mesh2. 
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two modes extracted by the hybrid method for mesh settings Mesh1 and Mesh2. Fig. 

4.16a and Fig. 4.16c shows the modal patterns of the first mode extracted from 

Mesh1 and Mesh2, respectively. It is obvious that these two patterns are identical. 

The second modal patterns extracted from Mesh1 (Fig. 4.16b) and Mesh2 (Fig. 4.16d) 

can also be recognized as the same pattern except for an inverted phase. 

4.4.2 Complexity 

As discussed in 3.4.2, a frequency response with a higher resolution in 

frequency requires a longer time period of steady-state response in time-domain. The 

previous subsection also mentioned that for the hybrid method proposed in this 

chapter to converge, a finer mesh setting in space leads to a smaller division in time 

as traditional FDTD simulation does. As a result, more simulation time is needed for 

better frequency resolution. 

Assume that a mesh setting for some structure is determined for simulation by 

the hybrid method. According to the step-by-step algorithm that concludes 4.1, an 

equivalent circuit network for a structure is firstly constructed using Delaunay- 

Vononoi modeling. If a network of total number P nodes and branches is constructed, 
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( )PO  basic arithmetic operations, e.g., multiplications and accumulations, is 

required for computing the values of capacitors and inductors. 

After constructing the equivalent circuit network, a total number P of voltage 

and current values is required to be updated in every time step for the time-domain 

iteration. If L time steps are took for the sources fade to zero and the modal patterns 

begin to appear and after that N time steps are performed for a satisfactory frequency 

resolution. The overall computation time for the time-domain iteration is linearly 

proportional to the number of field points and total time step computed, or 

( )( )NLPO +⋅ . 

For the proposed hybrid method, normal time-domain iteration is firstly applied 

for the same L time steps. Krylov subspace method is then constructed for 

model-order reduction. Assume that a necessary number of voltage vectors are stored 

for the model order reduction process to converge without penalty and Q modes need 

to be extracted precisely and the Lanczos algorithm converges at the M-th time step. 

For constructing a one-order-larger Krylov subspace, at most Q modal expansion 

coefficients are obtained and the eigensolution of the mm ×  tridiagonal matrix is 

also solved for the convergence criteria. 
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After that, the frequency response at a single field point with the same 

resolution can be directly obtained in ( )NO  basic arithmetic operations. The overall 

complexity of the hybrid method is therefore ( )2MNQLPO +⋅+⋅ . In the usual 

cases, PNLMQ <<<<<<≤ , thus the normal time-domain iteration has an 

( )NPO ⋅  complexity, where as the hybrid method reduces the complexity to 

( )LPO ⋅ . 

When penalty occurs, however, the overall model order reduction process is 

repeated with a larger number of voltage vectors. This means that another ( )2MO  

operation is required for the new model order reduction process to complete. 

Although an ( )2MO  operation is a small part of the overall hybrid method, doing 

the same operation repeatedly with only another starting value is still a time-wasting 

job if penalty occurs too often. 

Penalty can be avoided by pre-storing a larger number of voltage vectors for the 

construction of Krylov subspace. If plenty of voltage vectors are pre-stored, penalty 

never occurs. It is obvious that every vector pre-stored requires an ( )PO  of memory 

spaces and a minimum memory space of ( )PMO ⋅  is required for the model order 

reduction process to converge without penalty. Since this minimum size of memory 



4.4 Convergence and Complexity 93 

 

 

 

space is unknown before completing the model order reduction process, 

overestimating the number of voltage vectors is necessary. If this number is chosen 

too large such that secondary storage is used, the overall performance will be 

seriously reduced by the model order reduction process. 

4.5 Summary of the Chapter 

A hybrid method combining the Delaunay-Vononoi modeling of power-ground 

planes in time-domain and Krylov subspace method in proposed in this chapter. 

Taking advantage of the space information, only few time-domain iterations before 

the sources fade to zero is required for extracting the excited modes and 

reconstructing the late time response by analytic expression. With a simple example 

and a more realistic case, the correctness, efficiency, convergence, and complexity of 

this method have been verified. 
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55 

Conclusions 

YBRID methods that able to construct the late-time response of a system 

have been proposed in this thesis. In general, Krylov subspace method 

based model order reduction technique is applied to time domain full-wave 

electromagnetic simulations after the sources fade to zero for extracting the active 

modes in the system. Late-time responses are then constructed by the linear 

combination of the extracted modes. 

This chapter concludes the thesis by firstly provide a summary of the work, 

where the basic concept and typical application of the hybrid methods proposed in 

this thesis will be briefly reviewed. Several suggestions for the future work, 

according to the limitations and disadvantages in the present development of the 

proposed hybrid methods, will then be given for those interested in the further study 

of these methods. 

H
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5.1 Summary of the Work 

Two different hybrid methods based on the same concept are presented in this 

thesis. Beginning from the theories developed in chapter 2, the first hybrid method 

constructs the late-time response by combining finite-difference time-domain method 

and Lanczos algorithm, whereas the second hybrid method constructs Kyrlov 

subspaces directly for the approximation of Delaunay-Vononoi modeling of power- 

ground planes in time-domain. Taking advantage of the space information, both 

methods requires only few direct time domain iterations before the sources fade to 

zero with additional round-trip time before the extraction of the excited modes. After 

the dominant modes are properly extracted, the late time response of the system can 

be easily reconstructed by analytic expressions. 

The hybrid method combining FDTD and Lanczos algorithm proposed in 

chapter 3 is able to reconstruct the late-time response of the large systems efficiently 

and faithfully. Results of the hybrid method such as late-time responses, frequency 

responses, and modal patterns have been calculated and compared to those obtained 

from direct FDTD iterations. The correctness, efficiency, convergence, and 

complexity have been verified for the closed systems in the demonstration cases. 
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Existing FDTD codes are preserved by introducing the time-reversal technique in the 

FDTD iterations. Although suitable for problems with non-magnetic material only, 

the hybrid method still applies in common problems. 

The hybrid method combining the Delaunay-Vononoi modeling of 

power-ground planes in time-domain and Krylov subspace method proposed in 

chapter 4 is also suitable for efficient and faithful reconstruction of late-time 

responses. Both a simple example and a more realistic case are provided for 

demonstration. Results such as the late-time responses, frequency responses obtained 

by the hybrid method and direct time domain iteration are in good agreements. 

Modal patterns are also highly coherent to the results from the popular commercial 

full-wave electromagnetic simulation software package, Ansoft® HFSS™. 

5.2 Suggestions for Future Work 

Further studies of the hybrid methods proposed in this work are suggested in 

two aspects. One is extending the range of applications, such as systems with not 

only non-magnetic materials, systems with lossy dielectrics, or high-Q materials in 

systems with open boundaries. The other is to enhancing the performance, for 
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example, faster convergence or less memory requirement in the model order 

reduction process. 

Extending the range of applications can be accomplished by introducing the 

Krylov subspace methods for non-symmetric systems in the model order reduction 

process, in the mean time complex eigenpairs will also be generated for the 

approximation of both the attenuation constants and wave numbers of resonant 

modes, symmetric systems, systems with lossy media, or high-Q materials in systems 

with open boundaries will then be applicable. In order to integrate the Krylov 

subspace methods for non-symmetric systems into the hybrid method, however, 

modification of existing time-domain simulation code will be necessary because both 

the original and its adjoint problems are required. Convergence problems will also 

arise with Krylov subspace methods for non-symmetric systems [15]. Therefore 

minimizing the modification of existing to assure code reuse and avoiding the 

convergence issues with asymmetric Krylov subspace methods will be the primary 

challenges in extending the application range of the hybrid method. 

The performance of the hybrid method may be enhanced by applying the model 

order reduction process to smaller vectors containing a smaller subset of field values 
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in the solution space of the systems. The Krylov subspace can then be constructed 

faster and vectors that are necessary for the construction of Krylov subspace can also 

be stored with less memory requirement. However, less space information may result 

in longer converging time since more time information is needed to compensate the 

missing space information. Tradeoffs between space and time information for the 

eigenmodes of systems may become a major problem for enhancing the performance 

of the hybrid methods. 
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