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Abstract 

 
Split Vector Quantization (SVQ) is popularly used in a Distributed Speech Recognition 

(DSR) framework, in which the speech features are vector quantized and compressed at 

the client, transmitted via wireless networks, and recognized at the server. However, 

recognition accuracy is inevitably degraded by environmental noise at the input, 

quantization distortion and transmission errors; these three sources of disturbances 

naturally mix up with each other and further complicate the problem. The mismatch 

between the pre-trained VQ codebook and the constantly changing environmental 

conditions at the moving client is one of several major problems. In this dissertation, two 

dynamic quantization methods are proposed for both robust and distributed speech 

recognition.  

The first approach, Histogram-based Quantization (HQ), is a novel approach in 

which the partition cells of the quantization are dynamically defined by the histogram or 

order statistics of a segment of the most recent past values of the parameter to be 

quantized. This dynamic quantization scheme based on local signal order statistics is 
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shown to be able to solve to a good degree many problems related to the mismatch with a 

fixed VQ codebook. This concept is extended to Histogram-based Vector Quantization 

(HVQ). A Joint Uncertainty Decoding (JUD) approach is further developed for it, in 

which the uncertainty caused by both environmental noise and quantization errors can be 

jointly considered during Viterbi decoding. A three-stage error concealment (EC) 

framework based on HQ is also developed to handle transmission errors. The first stage 

detects the erroneous feature parameters at both the frame and subvector levels. The 

second stage then reconstructs the detected erroneous subvectors by MAP estimation, 

considering the prior speech source statistics, the channel transition probability, and the 

reliability of the received subvectors. The third stage then considers the uncertainty of the 

estimated vectors during Viterbi decoding. At each stage, the error concealment (EC) 

techniques properly exploit the inherent robust nature of Histogram-based Quantization 

(HQ). 

The second approach is context-dependent quantization, in which the representative 

parameter (whether a scalar or a vector) for a quantization partition cell is not fixed, but 

depends on the signal context on both sides, and the signal context dependencies can be 

trained with a clean speech corpus or estimated from a noisy speech corpus. This results 

in a much finer quantization based on local signal characteristics, without using any extra 

bit rate. The context-dependent quantization could be integrated with HQ proposed above. 

Both partition cells and representative values are dynamically defined in the integrated 

dynamic quantization process.  

These two dynamic quantization techniques are not only useful for DSR, but are also 

attractive feature transformation approaches for robust speech recognition outside of a 
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DSR environment. In the latter case, the feature parameters are simply transformed into 

their representative parameters after quantization. The robust nature of dynamic 

quantization is analyzed in detail. HQ performs the transformation by block-based order 

statistics, small disturbances of the feature parameters can be absorbed by the histograms 

to a good extent. As a result, the proposed HQ scheme can be useful for both robust and 

distributed speech recognition. For robust speech recognition, HQ is used as the front-end 

feature transformation and JUD as the enhancement approach at the back-end recognizer. 

For context-dependent quantization, exploiting high correlation in speech signals also 

significantly improves the robustness against transmission errors and environmental 

noise.  

All the above claims about speech recognition have been verified by experiments 

using the Aurora 2 testing environment, and significant performance improvements for 

both robust and/or distributed speech recognition over conventional approaches have 

been achieved. In addition, we also apply the concept of dynamic quantization on image 

features for photograph retrieval. Quantization with dynamic partition cells reduces the 

mismatch of pixel value distributions between different cameras; thus photos taken from 

different cameras are more easily retrieved. Quantization with dynamic representative 

codewords emphasizes more important color bins and texture features; thus the photo 

difference in more discriminative feature dimension could be preserved well in the 

quantization process as well. Experimental results show that dynamic quantization on 

image features can significantly improves photo retrieval results.  
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摘要 

 
架構於無線網路上的分散式語音辨識系統（Distributed Speech Recognition，DSR），

將傳統的語音辨識分散在手持設備與伺服器兩端：在手持設備執行語音特徵參數的

抽取與壓縮，並將壓縮後的資料經過無線通道傳送至伺服器端，以進行特徵參數的

還原與辨識。由於隨身攜帶的手持設備面臨多變且無可預知的環境，環境雜訊與壓

縮帶來的信號失真以及傳輸造成的錯誤會互相加成起來，嚴重影響分散式語音辨識

的效能。 

本論文針對聲學模型與量化碼本的訓練語音和實際進行辨識語音的特性不匹配

的問題，提出兩種強健性的動態量化法，第一種方法是「以分佈統計為基礎的強健

性量化法」，此方法是根據最接近所要量化係數的前面一段區間的順序統計資訊

(order-statistics)或分佈統計資訊(histogram)，動態調整其量化邊界，可使量化碼本自

動跟隨輸入語料的分佈而改變，解決了傳統以距離為基礎的量化因固定碼本的限制

下，量化碼字無法有效表示帶有不同雜訊的語音的問題，而動態的量化區間也使得

量化本身較不受不同語者特性所影響；本論文亦進一步提出一種以量化失真與分佈
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偏移為基礎的綜合不確定性解碼法，在完全不需要增加額外資料傳輸量的情況下，

能夠估測在「以分佈統計為基礎量化法」中的量化失真和雜訊環境下語音特徵參數

的兩種不確定性，在辨識器解碼的過程中一併考慮。在「以分佈統計為基礎量化法」

的分散式辨識系統中，本論文進一步發展出一套三階式錯誤補償技術。此技術結合

了以分佈統計為基礎量化法的強健特性，並同時考慮了語音輸入端的背景雜訊和無

線通道錯誤的問題。第一階段方法可偵測出音框和子向量兩種層級的錯誤，第二階

段考慮了語音訊號統計資訊、通道傳輸的轉換機率，以及所接收的語音係數可靠程

度，利用最大可能性估測法還原錯誤的語音特徵向量。第三階段則將所估測語音特

徵資訊的不確定性，加入維特比解碼的過程，使得較不確定的語音係數對辨識率的

影響較小。在每一階段中，錯誤補償技術皆能有效利用以分佈統計為基礎量化法的

強健本質，我們在 Aurora 2 語料庫上做了完整的實驗，並包含 GPRS 通訊系統的

通道錯誤模擬。實驗的結果顯示我們所提出的方法能有效地克服環境雜訊與傳輸干

擾的影響，並顯著地提升語音辨識的正確率。 

本論文提出的第二種強健性的動態量化法是「前後資訊相關的量化法」，有別

於傳統的量化方法都是以音框為單位，考慮單一音框的參數數值來決定此一參數的

量化結果，「前後資訊相關的量化法」的每個分割單元在解碼過程並不是對應到單

一的碼字，其代表碼字會根據前後特徵參數不同動態決定，此量化法考慮了語音前

後相關的特性，可得到較單一音框的量化更具有代表性的碼字。我們亦進一步建立

前後音框碼字的三連模型，將語音參數受到雜訊影響可能的變化在訓練模型時即加

以考慮，並以最小均方誤差(MMSE)準則來估計語音特徵參數。此量化法可以直接

應用在使用者端任何原有的量化方法上，完全不需更改使用者端的計算複雜度和傳
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輸的位元數，而是在伺服器端加入前後音框的資訊，透過一對多的解碼方式增加量

化特徵參數的解析度。本論文亦將「前後資訊相關的量化法」與「以分佈統計為基

礎量化法」結合，能動態的定義分割邊界和代表碼字，對環境雜訊和傳輸錯誤皆極

具強健性。 

本論文提出的兩種強健性量化法，亦可應用於強健性語音辨識。將語音特徵參

數透過強健性量化法轉換為代表值，可視為一套強健性的特徵參數轉換法，量化法

本身具有強健的特性，部分的環境干擾可以被量化法吸收掉，實驗結果顯示對低訊

噪比環境與不穩定性的雜訊也可有效處理。 

最後，本論文亦將動態量化的觀念應用到圖片特徵參數的量化。由於相片庫中

大部分的相片即使有文字註解，亦均為較短的文句，無法充分代表整張相片的語意，

若能由相片的圖片特徵抽取出可代表相片特徵的「圖像詞」，利用這些「圖像詞」

所建立的潛藏語意模型將有助於相片檢索。本論文將抽取「圖像詞」的過程視為一

種量化法，也就是要找出一些能有效表示圖片特徵參數的「圖像詞」。實驗結果顯

示使用動態的量化法能有效抽出代表圖片語意的「圖像詞」，大幅改善了相片檢索

的效果。 
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Chapter 1

Introduction

1.1 Background

With the rapid development of network and wireless technologies, people could

access network content from anywhere at anytime via hand-held devices such as personal

digital assistants (PDAs) or cellular phones. For theses pocket sized devices with smaller

screens and little keyboard, speech input would make it easier for users to interact with

system in a natural manner. A wide variety of potential applications for automatic speech

recognition (ASR) technologies have been highly anticipated [1]. But the recognition accu-

racy of ASR systems is always the core concern, which is very often seriously degraded by

the mismatch between training and testing environments. This mismatch could come from

the speaker difference (i.e. vocal tract length, dialect), or acoustic conditions (i.e. back-

ground noise, channel effects, room reverberation). Hence robustness for ASR technologies

with respect to environmental disturbances is definitely a key issue when considering real

world applications .

On the other hand, hand-held devices have limited computation resource, mem-

ory, transmission bandwidth, and battery energy. Distributing the speech recognition task

across the network could become an attractive alternative [2]. The client-server framework
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for Distributed Speech Recognition (DSR) has been widely accepted, in which speech fea-

tures are extracted and compressed at hand-held clients, transmitted via wireless networks,

and recognition is performed at the server [3]. However, recognition accuracy for DSR is

inevitably degraded by environmental noise at the input, quantization distortion and trans-

mission errors; these three sources of disturbances naturally mix up with each other and

further complicate the problem. The mismatch between the pre-trained VQ codebook and

the constantly changing environmental conditions at the moving client increases the quanti-

zation distortion. Also, speech features corrupted by noise are more sensitive to transmission

errors. Many approaches extract robust feature parameters before quantization at the client

to reduce codebook mismatch in DSR and make features less sensitive to transmission er-

rors. However, the meager computational resources available on hand-held devices should

be considered for many useful advanced robust approaches [4]. The reduction of floating-

point calculation to fixed-point implementation has to be considered for filtering-based

robustness approaches [5, 6, 7, 8]. Principle component analysis (PCA), Linear discrim-

inant analysis (LDA) filters are very successful data-driven robustness approaches which

aim to derive optimal sets of time filtering coefficients for a specific recognition task and

environment according to some optimization criterion [6, 8]. The attractive performance

of these data-driven methods may not be anticipated when the environmental noise and

acoustic conditions are unknown and changing at the moving client. Feature normalization

techniques may not be applied on the client end either under the recommendation of a

standardized VQ codebook [9, 10].

In this dissertation, we aim at solving the problems in DSR, including environ-

mental noise, quantization distortion, and transmission errors. The proposed method can

also be used as a robust feature transformation method for robust speech recognition out-

side of a DSR environment. The primary results obtained in this thesis is presented in the

following section.
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1.2 Primary Achievements of this Dissertation

In this dissertation, we propose a dynamic quantization method for distributed

and robust speech recognition. Both partition cells and representative values could be

dynamically defined based on local signal statistics. A Joint Uncertainty Decoding (JUD)

approach is further developed to consider the uncertainty caused by both environmental

noise and quantization errors. A three-stage error concealment (EC) framework is also

developed to handle transmission errors. These approaches are presented in Chapters 3

to 6. The concept of dynamic quantization could be easily applied on image features for

photograph retrieval as described in Chapter 7.

We first review some basic feature quantization and error concealment techniques

in Chapter 2, including the conventional split vector quantization(SVQ), two-dimensional

discrete cosine transform coding(2D-DCT), error detection and correction methods, erro-

neous feature estimation techniques, and reliability estimation in Viterbi Decoding. We

also present the speech/noise corpora used in this dissertation for experiments.

In Chapter 3, Histogram-based Quantization (HQ) is proposed to solve the many

related problems mentioned above. HQ is a novel approach in which the partition cells for

quantization are dynamically defined by the histogram or order statistics of a segment of

recent past samples of the parameter to be quantized. It is actually a dynamic quantiza-

tion, completely based on the local statistics of the signal, not on any distance measure, nor

directly related to any pre-trained codebook. On one hand, in the case of DSR, many of the

above-mentioned problems that arise from a fixed pre-trained VQ codebook in conventional

DSR framework are shown to be solved to a good extent with this new approach, because

the quantization is dynamic and not solely based on a fixed pre-trained codebook at all;

therefore the mismatch between the corrupted feature vectors and a fixed pre-trained code-

book is reduced. This concept of HQ is then further extended to Histogram-based Vector

Quantization (HVQ). On the other hand, HQ is also shown to be useful as a good approach
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for robust feature transformation, which can produce more robust features, because most

of the noise disturbances can be automatically absorbed by the dynamic histogram. This

robust nature of HQ against environmental noise is extensively explored and analyzed, in-

cluding considering quantization resolution (or required bit rate), noisy environment and

transmission conditions.

In Chapter 4, Joint Uncertainty Decoding (JUD) is developed to be applied with

HQ for improved recognition accuracy, and the approach was evaluated for both cases of

robust speech recognition and DSR. For both robust and/or distributed speech recognition,

feature vectors corrupted by environmental and/or quantization errors used at the recog-

nizer can be viewed as random vectors with uncertainty. Uncertainty decoding approaches

have been proposed to consider such uncertainty [11, 12, 13, 14, 15, 16], including han-

dling those produced by environmental noise [11, 13, 14] and estimating the uncertainty

generated in the quantization process [15, 16]. However, in DSR with environmental noise,

it is naturally better to consider environmental noise and quantization errors jointly. But

this is difficult because environmental noise is hidden in the quantized codewords, or mixed

with quantization errors. In Joint Uncertainty Decoding (JUD), we jointly consider the

uncertainty caused by both the environmental noise and the quantization errors in Viterbi

decoding under the framework of HQ.

Except for quantization errors and environmental noise, transmission errors caused

by communication channel is also a key issue in DSR. In Chapter 5, a three-stage error

concealment (EC) framework based on Histogram-based Quantization (HQ) for DSR is

proposed, in which noisy input speech is assumed and both the transmission errors and

environmental noise are considered jointly. The first stage detects the erroneous feature

parameters at both the frame and subvector levels. The second stage then reconstructs

the detected erroneous subvectors by MAP estimation, considering the prior speech source

statistics, the channel transition probability, and the reliability of the received subvectors.
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The third stage then considers the uncertainty of the estimated vectors during Viterbi de-

coding. At each stage, the error concealment (EC) techniques properly exploit the inherent

robust nature of HQ.

In addition to the dynamically defined partition cells in HQ for different environ-

ments, in Chapter 6, we propose a new concept of context-dependent quantization, in which

the representative parameter (whether a scalar or a vector) for a quantization partition cell

is not fixed, but depends on the signal context on both sides. The signal context depen-

dencies can be trained with a clean speech corpus or estimated from a noisy speech corpus.

This results in a much finer quantization based on local signal characteristics, without using

any extra bit rate. This approach is equally applicable to all (scalar or vector) quantization

approaches, and can be used either for signal compression in DSR or for feature transfor-

mation in robust speech recognition. In the latter case, each feature parameter is simply

transformed into its representative parameter after quantization. This concept is integrated

with HQ, and both partition cells and representative values of the context-dependent HQ

is dynamic defined based on local statistics.

The concept of dynamic quantization could be used in other applications. In

Chapter 7, we apply dynamic quantization on image features for photograph retrieval. The

partitions of color space are dynamically defined based on the histogram of photos taken

from each camera. Quantization with dynamic partition cells reduces the mismatch of

pixel value distributions between different cameras and photos taken from different cameras

are more easily retrieved. For the quantization of color histogram features and texture

features, we use dynamic representative values to preserve discriminative information. For

each photo, different sets of features are considered with difference importance to select

representative codeword. In this way, the photo difference in the more discriminative feature

dimension could be preserved well in the quantization process.

At last, we conclude this thesis in Chapter 8, by summarizing the works that
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we have accomplished. There are still several issues regarding to dynamic quantization

techniques that we have not been able to investigate. These issues will be discussed in the

future works in Chapter 8.
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Chapter 2

Preliminaries – Background

Review

2.1 Introduction

In this chapter, we briefly review existing feature quantization approaches in sec-

tion 2.2, including conventional split vector quantization (SVQ) and two-dimensional dis-

crete cosine transform coding (2DDCT). The three categories of error concealment tech-

niques are introduced in Section 2.3, including error detection and correction, erroneous

feature estimation, and weighted Viterbi Decoding. Finally, the speech corpora and wire-

less channel simulation conditions used in this dissertation for experiments are depicted in

Section 2.4.

2.2 Review of Existing Feature Quantization Approaches

2.2.1 Split Vector Quantization (SVQ)

Split Vector Quantization (SVQ) has been recommended by the ETSI-DSR standard[17].

The ETSI-DSR standard defines a feature extraction front-end and an encoding scheme for
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compressing speech features. The feature extraction front-end generates a 14-element vector

consisting of 13 cepstral coefficients (C1-C12 and C0) and log Energy. The feature vector is

directly quantized with a split vector quantizer. The 14 coefficients are grouped into 7 pairs,

and each pair is quantized using its own VQ codebook. The VQ codebook is pre-trained and

fixed for each pair. The codebook size is 64 for the first 6 pairs and 256 for the pair C0 and

logE. The closest VQ centroid is found using a weighted Euclidean distance to determine

the index, and the weight matrix is identity for the first 6 pairs (C1C2,..., C11C12). For

the pair C0 and logE, two sets of weight matrix are defined for different speech sampling

rate.

Each feature vector is quantized to 44 bits via SVQ. Two of the quantized 10 ms

mel-cepstral frames are grouped together as a pair. A 4-bit CRC is calculated on the frame-

pair and is appended to it, resulting in a 92-bit long frame-pair packet. These packets are

concatenated into a bit-stream for transmission via a GSM channel with an overall data

rate of 4.8 kbps.

2.2.2 Transform Coding

The above standard compression method, SVQ, is an intra-frame vector quantiza-

tion. This intra-frame compression is not very effective in bit rate because in the feature ex-

traction front-end the transformation from mel-filter bank output to MFCC lets the MFCC

coefficients uncorrelated. On the other hand, there is high correlation in consecutive frame

because of the overlap of processing window in the front-end processing. The transmission

rate could be further reduced if inter-frame correlation could be properly utilized in the

quantization process [18]. Also, vector quantization performed in a transformed domain

(obtained with transforms such as Discrete Cosine Transform (DCT) [19, 20, 21] has been

shown to be able to efficiently improve the desired robustness for feature vectors under

environmental disturbances.
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Figure 2.1: The system of two-dimensional discrete cosine transform coding (2DDCT).

The two-dimensional discrete cosine transform coding (2D-DCT) method has been

popularly used in image compression. This 2D-DCT scheme was modified for the quan-

tization of speech features [20, 21]. As shown in Fig. 2.1, the input features are MFCC

coefficients (i.e., C1 to C12 plus log-energy). First, buffer 6 frames to form 2 (6 ∗ 6) MFCC

matrix (B1 and B2), and then perform 2D-DCT on them to get 2 transformed matrix (S1

and S2). Because the coefficients in the first 2 columns are often with high energy, we

can truncate the last 4 columns and only reserve the first 2 columns. Then, we perform

scalar quantization on the reserved 24 coefficients, and transmit these bit patterns over wire-

less channel. Finally, the log-energy coefficients are quantized by inter-frame VQ method.

Also, an iterative bit allocation algorithm was carefully designed to make use of every bit

transmitted in an efficient way. [21]. Graceful degradation of recognition performance is

achievable at a bit rate of 3.4 kbps.
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2.3 Review of Existing Error Concealment Approaches

Various packet loss compensation schemes have been proposed for audio stream-

ing applications [22] to reconstruct the time-domain signal. However for DSR applications

the challenge is to maintain good speech recognition performance. Various error conceal-

ment (EC) techniques have been proposed to handle transmission errors problem in DSR.

In section 2.3.1, we would describe the first group of techniques, which aims to reduce

transmission errors through error detection and correction [17, 23, 24]. The second sets of

techniques are presented in 2.3.2, which reconstructs the feature vectors by estimating the

erroneous sub-vectors [25, 26, 27, 28, 29]. The third set of methods consider the reliability

of the estimated vectors at the decoding stage [30, 31, 32], as will be described in section

2.3.3.

2.3.1 Error detection and correction

The ETSI standard uses a 4-bit cyclic redundancy check (CRC) to a pair of MFCC

vectors to detect transmission errors [17]. When a bit error being detected, the pair of

MFCC vectors is declared lost. To avoid consecutive frame errors, this CRC-based detection

is modified to encode MFCC vectors individually using the 4-bit CRC [24]. This reduces the

number of consecutive frame errors but it requires additional CRC bits. Channel coding and

interleaving is very helpful for reducing the consecutive bit errors [27, 37]. Reed-Solomon

coding is one of the forward error correction methods, and it is very effective in protecting

feature vector stream from channel errors [23]. In particular, using unequal amounts of

error protection is helpful for minimizing the overall word error rate as channel conditions

becoming worsen. A further method investigates that bit errors in feature vectors, which

cause incorrect observation probabilities, have more serious influence on recognition results

than the loss of feature vector [30]. As such a CRC block code is proposed which varies

the level of protection according to the channel conditions in an effort to increase the error
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detection ability for bit errors [30].

2.3.2 Erroneous Feature Estimation

The most simple way to deal with lost vectors is to splice together the sequence of

received vectors and input these into the speech recognizer [25]. A better alternative is to

repeat the vector received immediately before packet loss. This ensures that the timing of

the feature vector stream is maintained and adds no delay to the system. A similar scheme

is to estimate lost vectors by duplicating the nearest correctly received vector either before

or after the loss [26]. There are simple techniques which provide estimates of the static

and/or dynamic component of lost feature vectors. Better methods include interpolation of

the most recently received vector in the event of loss [27, 28]. Estimation of lost vectors by

using speech prior probabilities derived from VQ codebooks has also been shown effective

in achieving performance gains [29].

2.3.3 Weighted Viterbi Decoding

The final set of error concealment methods aims to minimize the degradation of

recognition performance caused by transmission errors by modifying the decoding process

of the recognizer. With recognition on the server side, the channel characteristics influences

the reliability of the decoded features. When channel characteristics get worse, one can no

longer guarantee the confidence in the decoded feature. The weighted Viterbi recognizer,

presented in [38], modifies the Viterbi algorithm to take into account the reliability in the

decoded feature. In this way, more reliable feature vectors are emphasized in the decoding

process. Scaling the observation probability of a restored feature vector according to its

reliability gives increased robustness over just modifying the features. The reliability used

in weighted Viterbi decoding could be estimated in terms of its temporal distance from

a correctly received vector [30, 31], or based on the soft channel output or the speech
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characteristics [32, 33, 34]. There are several systems deal with lost vectors entirely at the

decoding stage through missing feature theory [39, 40].

2.4 Experimental environments

2.4.1 Speech Corpora

All the experiments reported in this paper were conducted on the AURORA 2

testing environment [41] based on a corpus of English connected digit strings. Two training

conditions (clean-condition and multi-condition) and three testing sets (sets A, B, and C)

were defined in AURORA 2. Both clean and noisy speech signals were prepared by filtering

the TI database 8 (both training and testing) using a telephone-bandwidth bandpass filter.

The testing set A included four types of noise which were used in the multi-condition training

(subway, babble, car and exhibition), while the testing set B included another four types of

noise not used in the multi-condition training (restaurant, street, airport and train station).

The testing set C was filtered with a MIRS (Modified Intermediate Reference System, which

simulates the band-pass filtering [300-3400 Hz] behavior of the telephone channels in the

public switched telephone networks [PSTN]) characteristic filter [41, 58] before adding two

additive noise types (subway in set A and street in set B). In all sets A, B, and C, the

signal-to-noise ratio (SNR) tested ranged from 20 to -5 dB. The MFCC extraction follows

the WI007 front-end [41] defined in AURORA 2 with frame length 25 ms and frame shift

10 ms, which gives 13 coefficients (C1-C12 and log energy) to be used to obtain the delta

and delta-delta features together for recognition.

2.4.2 Wireless Channel Simulation

General Packet Radio Service (GPRS) was chosen in this research as an example

for wireless channels in the experiments; GPRS was developed by ETSI based on a packet

switching framework to enhance the GSM system. GPRS shares the GSM frequency bands
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and uses several properties of the physical layer of the GSM system. It includes four different

error control coding schemes, CS1-CS4, each with a different code rate.

The GPRS simulation software used in the tests described here was developed by

the Wireless Communication Laboratory of National Taiwan University [32], in which all

complicated transmission phenomena have been carefully simulated in detail, such as the

propagation model, multi-path fading, Doppler spread, etc. The GPRS simulator considers

both large-scale fading (slow fading) and small-scale fading (fast fading) when the client

is travelling. Large-scale fading is caused by diffraction and shielding phenomena due to

terrain variation (e.g. reflections, refractions and diffractions of the signal from buildings,

trees, rocks). The large-scale fading results in relatively slow variations in the mean signal

power over distance. The large-scale fading is modeled as a log-normally distributed random

variable (with a zero dB mean and a standard deviation of 4 to 10 dB) in our experiments.

The experimental results presented below are based on the following simulation configura-

tions: typical urban (TU, an environment more frequently encountered with a more severe

fading problem), the client traveling at speeds of 3, 50, 100, 250 km/hr, single antenna,

hard decision at the receiver, and CS4 (i.e., without any protection) coding scheme, which

corresponds to a transmission bit error rate of 5.3% for a client traveling at a speed of 3

km/hr.

2.5 Summary

In this chapter, we briefly reviewed several existing feature quantization approaches

and different kinds of error concealment techniques. These two distance-based quantization

method would be implemented to compare with the proposed dynamic quantization in

chapter 3. In chapter 5, the three-stage error concealment techniques would integrate the

idea of these three categories of concealment method. Finally, the speech corpora and

wireless channel characteristics used in this dissertation were also addressed.
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Chapter 3

Dynamic Quantization I -

Histogram-Based Quantization

3.1 Introduction

Various schemes for compression of ASR features have been proposed in recent

years. Distance-based vector quantization (VQ) has been found very useful for clean speech

and/or matched VQ codebook conditions [16, 42] and Split Vector Quantization (SVQ) has

been recommended by the ETSI standard[17]. But environmental noise and quantization

distortion naturally tend to jointly degrade recognition performance. The quantization pro-

cess may increase the distance between clean and noisy features, and environmental noise

may also move the feature vectors to a different quantization cell. The quantization dis-

tortion is actually related to the bit rates, which is another key parameter in DSR. The

higher bit rate required for lower quantization distortion naturally becomes another diffi-

cult issue for transmission. Vector quantization or SVQ performed in a transformed domain

(obtained with transforms such as Discrete Cosine Transform (DCT) [19, 20, 21] or His-

togram Equalization (HEQ) [43, 44, 45]) has been shown to be able to efficiently improve
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the desired robustness for feature vectors under environmental disturbances; differential

encoding of transformed coefficients was shown to be very helpful as well [18]. However,

while all these approaches have proven more robust than the conventional SVQ (i.e. per-

forming SVQ on MFCC directly), they are still based on VQ or SVQ, which are distance-

and codebook-based. As long as the quantization is based on a pre-trained codebook and

some distance measure with the codebook, the mismatch between VQ codebook and testing

feature vectors under lower SNR conditions remains a difficult problem.

In this chapter, Histogram-based Quantization is proposed to solve the above

problems. Below in Section 3.2 we introduce the basic idea and formulation of Histogram-

based Quantization (HQ). In section 3.3, the one-dimensional HQ is extended to Histogram-

based Vector Quantization (HVQ). Then, the robust nature of dynamic quantization is

analyzed in detail in section 3.4. Experimental results are offered in Sections 3.5, with the

summary finally given in Section 3.6.

3.2 General Formulation of HQ

The concept of HQ is to perform quantization of a feature parameter yt at time

t based on the histogram or order statistics of that feature parameter within a moving

segment of the most recent past T samples, [yt-T+1, . . . , yt-1, yt] � Yt,T, up to the time

t being considered [46]. As shown in Fig. 3.1, the values of these T parameters in Yt,T

are sorted to produce a time-varying cumulative distribution function C(v), or histogram,

which changes for every time instant t, where C(v0) = b0 = 0 and C(vN ) = bN = 1, v0

and vN are respectively the minimum and maximum values within Yt,T . Also shown in Fig.

3.1, N partition cells, {Di = [bi−1, bi], i = 1, 2, . . . , N}, together with their corresponding

representative values, {z̄i, i = 1, 2, . . . , N}, are defined on the vertical scale [0, 1], which are

derived from a standard Gaussian N(0, 1) with cumulative distribution C0(v) via the Lloyd-

Max algorithm [47, 48]. Note that the boundaries {bi, i = 0, 1, 2, . . . , N} on the vertical
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scale can be either uniformly or non-uniformly distributed [46]. In the case of non-uniform

quantization, the Lloyd-Max algorithm can be performed with respect to any distribution,

including the distribution of training sets. Since different training sets may have different

distributions, we performed the Lloyd-Max algorithm based on uniform, Laplacian and

Gaussian distributions in the preliminary experiments. The best performance was obtained

with Gaussian distribution under noisy environments, probably because the distribution of

feature parameters under noisy environments on the vertical scale is closer to a Gaussian

distribution. Using the dynamic histogram C(v) constructed with Yt,T , these partition

cells on the vertical scale, {Di, i = 1, 2, . . . , N}, are then transformed to the horizontal

scale to be the N partition cells [vi−1, vi], i = 1, 2, . . . , N on the horizontal scale for the

quantization of yt, where C(vi) = bi. In other words, the partition cell [vi−1, vi] on the

horizontal scale is obtained from the partition cell Di = [bi−1, bi] on the vertical scale via

the dynamic histogram C(v). Thus the partition cell [vi−1, vi] on the horizontal scale is

dynamic. However, the representative values {zi, i = 1, 2, . . . , N} for these partition cells

{[vi−1, vi], i = 1, 2, . . . , N} on the horizontal scale are fixed, and are transformed from the

representative values {z̄i, i = 1, 2, . . . , N} previously obtained on the vertical scale by the

histogram C0(v) of the standard Gaussian.

The above formulation indicates that HQ is based on a hidden codebook {(Di, z̄i), i =

1, 2, . . . , N} derived from a standard Gaussian on the vertical scale, which is then trans-

formed by a dynamic histogram C(v) into time-varying partition cells [vi−1, vi], and by a

fixed histogram C0(v) into the fixed representative values zi, both on the horizontal scale.

The quantization here is then similar to all conventional quantization processes, in that it

is a mapping relation which maps the present parameter yt to a fixed representative value

zi, if yt is within the partition cell [vi−1, vi], except that this partition cell is dynamically

defined,

yt → zi, if bi-1 < C(yt) < bi, or vi-1 < yt < vi,
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C(vi-1) = bi-1, C(vi) = bi, i = 1, 2, . . . , N. (3.1)

Note that the quantization codebook here includes a set of dynamic partition cells {[vi−1, vi], i =

1, 2, . . . , N} and a set of fixed representative values {zi, i = 1, 2, . . . , N}. It will be shown

below that many practical problems mentioned previously can be automatically solved to

a good extent in this way. Also, although here HQ is a quantization process, it can also

be used as a feature transformation process offering the desired robustness as will also be

discussed below, in which each parameter yt is transformed to its representative value zi for

the corresponding partition cell.

Figure 3.1: The general formulation of Histogram-based Quantization (HQ).

3.3 Histogram-Based Vector Quantization (HVQ)

The above general formulation of one-dimensional HQ in Fig. 3.1 can be eas-

ily extended to HVQ with more than one dimension. Consider SVQ as an example[17],

in which two MFCC parameters (e.g. c1 and c2) can be quantized jointly by a two-

dimensional VQ codebook. Extending from the one-dimensional HQ mentioned above,

a moving segment of the most recent past T samples of the first parameter y
(1)
t up to time
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Figure 3.2: The concept of Histogram-based Vector Quantization (HVQ) using two
dimensions.

t, [y(1)
t−T+1, . . . , y

(1)
t−1, y

(1)
t ] � Y

(1)
t,T , gives a histogram C1(v(1)) for y

(1)
t , and a similar segment

of the past T samples of the second parameter y
(2)
t up to time t, Y

(2)
t,T , gives another his-

togram C2(v(2)) for y
(2)
t . The formulation below is exactly the same as the one-dimensional

HQ in Fig. 3.1, except that here both the vertical and horizontal axes are no longer one-

dimensional axes, but are extended to vertical and horizontal two-dimensional planes as

shown in Fig. 3.2. On the vertical plane with coordinates (b(1), b(2)), we have a two-

dimensional hidden codebook {(Di, z̄i), i = 1, 2, . . . , N}, which is derived from a bi-variate

standard Gaussian via the LBG algorithm [60]. Every point (b(1), b(2)) on this plane is then

transformed by the above-mentioned dynamic histograms C1(v(1)), C2(v(2)) back to a point

(v(1), v(2)) on the horizontal plane, where C1(v(1)) = b(1), C2(v(2)) = b(2). The set of all

these points (v(1), v(2)) on the horizontal plane transformed from those points (b(1), b(2)) on

the vertical plane in a certain partition cell Di then forms the dynamic partition cell Qi on
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the horizontal plane:

(v(1), v(2)) ∈ Qi, if (b(1), b(2)) ∈ Di,

C1(v(1)) = b(1), C2(v(2)) = b(2), i = 1, 2, . . . , N. (3.2)

On the other hand, the representative points z̄i for each partition cell Di on the vertical plane

are similarly transformed back to the fixed representative points zi on the horizontal plane,

except that the transformation is performed by two fixed histograms C0(v(1)), C0(v(2)), both

derived from a one-dimensional standard Gaussian. The quantization here is a mapping

relation just as one-dimensional HQ in Eq. (3.1), which maps the present parameter set

(y(1)
t , y

(2)
t ) to a representative value zi for the dynamically defined partition cell Qi,

(y(1)
t , y

(2)
t ) → zi, if (C1(y

(1)
t ), C2(y

(2)
t )) ∈ Di,

or (y(1)
t , y

(2)
t ) ∈ Qi, i = 1, 2, . . . , N. (3.3)

Based on the above, the two-dimensional HVQ can be performed dynamically on

the (v(1), v(2)) plane. For the present parameter pair (y(1)
t , y

(2)
t ) at time t, the two dynamic

histograms C1(v(1)) and C2(v(2)) based on Y
(1)
t,T and Y

(2)
t,T give a point (C1(y

(1)
t ), C2(y

(2)
t )) on

the vertical plane. The partition cell Di on the vertical plane to which this point belongs

then determines the partition cell Qi and representative point zi on the horizontal plane.

3.4 Discussions about Robustness of HQ (and HVQ)

Conventionally, feature quantization is for data compression and robust features

are for handling noise disturbances. The proposed HQ, however, includes the desired ro-

bustness in the quantization process.

3.4.1 The Robust Nature of HQ

Consider the conventional SVQ as in Fig. 3.3: the mismatch between the pre-

trained fixed VQ codebook and the current corrupted testing features may significantly
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Figure 3.3: Mismatch between the pre-trained fixed VQ codebook and the corrupted testing
features.

increase quantization distortions. With the proposed HQ, however, the actual partition

cells are dynamically adjusted according to local statistics. For example, as shown in Fig.

3.1, C(v) may be changed to C ′(v) when disturbances are encountered. The partition cell

on the horizontal scale for the disturbed parameter y′t may also be changed to [v′i−1, v
′
i],

where C ′(v′i−1) = bi−1 and C ′(v′i) = bi, which can be quite different from [vi−1, vi]. Nev-

ertheless, the partition cell Di and the corresponding representative value zi for y′t may

remain unchanged as long as v′i−1 < y′t < v′i, since Di is fixed on the vertical scale, while

the disturbances from yt to y′t are on the horizontal scale, and zi is fixed on the horizontal

scale. Since the actual partition cells are no longer fixed as in conventional SVQ methods,

the codebook mismatch problem mentioned above can thus be avoided to some extent. In

other words, HQ is based on the partition cells Di fixed on the vertical scale and the dy-

namic histogram C(v), and is therefore less sensitive to disturbances on the horizontal scale:

disturbances on the horizontal scale are actually absorbed by the dynamic histogram to a

certain degree. When a segment of parameters Yt,T are corrupted by small disturbances,

all individual values may be changed (C(v) is disturbed into C ′(v)), but the order statistics
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Figure 3.4: The robust nature expressed in terms of HVQ

which produce the partition cells on the horizontal scale may remain similar, and the rep-

resentative values zi remain fixed; therefore the changes to the quantization results may be

very limited. Such robustness is obtained by local order statistics for the most recent past

values of feature parameter. This is why HQ is able to handle various noise conditions as

will be shown in the experiments presented below.

The robust nature of HQ can be better visualized for the case of HVQ mentioned

above as shown in Fig. 3.4. The distribution of (c1, c2) for the testing features may be quite

different from that of the VQ training corpus. This mismatch is the source of the primary

difficulties in the conventional VQ approaches with fixed codebooks. With the proposed

HQ approach, however, we no longer rely on a fixed codebook on the (c1, c2) plane, but

instead we let the quantization codebook (or look-up table) move with the testing data

distributions, because the quantization is now based on the distribution or histogram on

the vertical scale. As can be found in Fig. 3.4, the shift of vectors (c1, c2) due to disturbances

becomes almost irrelevant to the quantization process.
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3.4.2 Comparison with Histogram Equalization (HEQ)

The popularly-used HEQ equalizes the cumulative distributions (or histograms)

of both the training and testing feature parameters in each temporal span, and has been

shown to produce very robust features for recognition [43, 44, 45]. HQ actually borrows the

concept from HEQ. The experiments below will show that HQ can be used as an attractive

feature transformation approach for robustness purposes as well, and it even performs better

than HEQ. It is important to explain why. HEQ actually performs point-to-point feature

transformation based on the order statistics, which can absorb the small disturbances to

a good degree, although some residual disturbances inevitably remain because the point-

based order statistics are in any case more or less disturbed. Quantile-based HEQ [49]

performs a piecewise-linear approximation of HEQ. It reduces the computation complexity

for histogram estimation, but does not change the point-based nature of the transformation.

HQ, on the other hand, performs the transformation block by block; therefore, the small

disturbances within each block (Di in Fig. 3.1) are absorbed by the block-based order

statistics. The block-based order statistics certainly introduce uncertainty as well, but with

the proper choice of the number of quantization levels N or the block size, this uncertainty

may be compensated for by the stochastic nature of the Gaussian mixtures in the HMMs.

HEQ can be considered the limiting case of HQ when the number of quantization levels N

becomes infinite. As will be shown below, the recognition performance certainly depends

on the value of N considering the noise conditions and so on, but N being infinite is not

necessarily the best.

3.5 Experimental Results

All the experiments reported here were based on order statistics over segments of

most recent past parameter values as mentioned in section 3.2, so there was no time delay.

Better results were obtainable if this no-delay condition was removed.
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3.5.1 HQ as a Feature Transformation Method

In the first set of experiments, we considered the case of robust speech recognition

apart from the DSR environment, in which one-dimensional HQ was used as a feature trans-

formation technique, that is, each feature parameter yt is transformed to the representative

value zi for the corresponding partition cell as in Eq. (3.1) to be used for recognition.

Figure 3.5: Accuracies for MFCC baseline and those transformed by MVA filtering, PCA
filtering, HEQ and HQ respectively under clean condition training: (a) averaged over all
SNR values but separated for different types of noise; (b) averaged over all types of noise
but separated for different SNR values; and (c) averaged over all types of noise and all SNR
values for different testing sets.

The results are shown in Fig. 3.5(a), (b), and (c). The recognition accuracies

for baseline experiments with original MFCC features, compared to those with MFCC
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parameters filtered by the MVA filter (mean and variance normalization followed by Auto-

Regression Moving-Average (ARMA) filtering) [56] and the Principal Component Analysis

(PCA) filter derived [6, 57], as well as transformed by the well-accepted HEQ [43, 44, 45],

and the proposed one-dimensional HQ are respectively shown in Fig. 3.5 under clean-

condition training for (a) averaged over all SNR values but separated for different types of

noise, (b) averaged over all types of noise but separated for different SNR values, and (c)

averaged over all types of noise and all SNR values for testing sets A, B, and C, respectively.

Here the order of the MVA filter was M=2, the PCA filter was performed with filter length

L=15, and HEQ was performed in exactly the same way as HQ, based on a moving segment

of the most recent T past parameters, and the same value of T=100 (or one second) was

used for all experiments for both HEQ and HQ. It has been verified that long term features

derived from one second time interval carry important speech information [59].

Many observations can be made here. First, it is clear that HQ (the last bar)

significantly improved the performance as compared to the baseline MFCC (the first bar)

for all testing sets, all SNR values (except for the clean speech case), and all noise types. For

example, from Fig. 3.5(a), it can be observed that for speech-like noise such as babble or

restaurant noise, the MFCC baseline accuracy (around 50%) was much lower as compared

to most other noise types (around 60% or more). HQ was able to absorb the speech-like

variation and improved the performance in such a way that the results for different noise

types were not only much higher, but also were more similar to each other (around 80%). As

another example, in Fig. 3.5(b) the recognition accuracy of HQ was 87.88% as compared to

MFCC baseline 66.95% at 10 dB SNR. The improvements became even more significant for

lower SNRs. Second, HQ proposed here performed consistently better than MVA, PCA, and

HEQ compared here for all testing sets, all noise types, and all SNR conditions (except for

clean speech cases). In particular, HEQ and HQ (the 4th and 5th bars) performed better as

compared to MVA and PCA (the 2nd and 3rd bars). This is probably because HEQ and HQ
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dynamically transform the MFCC features considering the whole distribution locally, while

the filters used in MVA and PCA are fixed, and only the first and second moment statistics

are taken into consideration. Furthermore, in all Fig. 3.5(a), (b), and (c), HQ performed

consistently better than HEQ for all testing sets, all noise types, and all SNR conditions.

For example, in Fig. 3.5(a), HQ turned out to be very helpful for babble/restaurant noise

(78.41%/79.08%) as compared to HEQ (75.95%/76.28%), probably because in such cases

of speech-like noise the order statistics disturbances were better absorbed by HQ’s blocks

than by HEQ’s point-by-point transformation. For subway noise, on the other hand, the

improvement of HQ (81.70%) compared to HEQ (80.86%) is relatively less, probably because

the impulse-like disturbances may very often exceed beyond the blocks.

Table 3.1: The averaged normalized distances between clean and corrupted speech features
under different SNR values for HEQ and HQ (1-dim).

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB
HEQ 0.7876 0.8695 0.9516 1.0384 1.1314 1.2276

HQ (1-dim) 0.7172 0.7870 0.8588 0.9362 1.0204 1.1087

We further compared HEQ with HQ (one-dimensional) tested here using a different

metric, the averaged normalized distance between the corrupted feature parameters xt and

the corresponding clean speech feature parameters xt,

d =
1

σTN

TN∑
t=1

|xt − xt|, (3.4)

where the average in Eq. (3.4) is performed over all feature parameters in all the testing

speech in sets A, B, C, TN is the total number of frames, and σ is the standard deviation

for all the clean feature parameters xt. Both xt and xt have been processed by either HEQ

or HQ, so the difference (xt − xt) indicates how the mismatch caused by noise disturbance

is reduced by either HEQ or HQ for each individual feature parameter. Smaller values of

d imply that the features are less influenced by disturbances, although d is not necessary

directly related to recognition accuracy. The results are listed in Table 3.1 for different SNR

values. We find in the table that the values of d consistently increase as the SNR value
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degrades, which makes very good sense, and HQ clearly gives smaller values of d in all cases.

This may explain from a different perspective why HQ performed better than HEQ.

3.5.2 HQ as a Feature Quantization Method

The next set of experiments considered HQ as a feature quantization method in a

DSR framework. But here we first examined the effect of quantization and compression on

recognition accuracy, so we assume that the environmental noise was present with the input

speech, but there were no transmission errors. For comparison, recognition accuracies for

MFCC features with quantization and compression using the standard SVQ [17], the well-

known transform coding [19, 21] (i.e. performing quantization in the transformed domain)

followed by SVQ (TC-SVQ), the cascade of the HEQ front-end with SVQ (HEQ-SVQ), and

the proposed HQ (actually two-dimensional HVQ) for bit rates 4.4, 3.9, 3.3, and 2.7 kbps

are listed respectively in Table 3.2 for clean-condition training, averaged over all ten types

of noise and all SNR values in sets A, B, and C. The recognition accuracies for baseline

experiments with original MFCC features without quantization is 61.08%. Because all these

results are averages over all SNR values from 20 down to 0 dB, the numbers here are not

very high. Note that the performance of HQ was consistently and significantly better than

SVQ, TC-SVQ, and HEQ-SVQ under all transmission bit rates. For example, at bit rate of

2.7 kbps, the overall accuracy of HQ (82.08%) represented relative error rate reductions of

26.93%, 62.62%, and 64.57% respectively, as compared to those with HEQ-SVQ (75.47%),

TC-SVQ (52.06%), and SVQ (49.43%). It is even significantly higher (with an error rate

reduction of 53.96%) than the original unquantized MFCC (61.08%). This was clearly due

to the robust nature of HQ, as discussed previously. Note that the original uncompressed

MFCC degraded seriously under noisy conditions, but HQ held up quite well. Also note that

the performance of SVQ, TC-SVQ, and HEQ-SVQ all degraded significantly under lower

bit rates, while the performance of HQ remained very stable for different bit rates, or the
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Table 3.2: Recognition accuracies for feature quantization and compression with clean-
condition training, averaged over all SNR values and noise types in sets A, B, and C for
different bit rates (4.4 kbps to 2.7 kbps).

Bit rates (kbps) 4.4 3.9 3.3 2.7
unquantized MFCC 61.08

SVQ 56.51 55.74 51.13 49.43
TC-SVQ 63.41 62.53 60.33 52.06

HEQ-SVQ 79.79 78.89 78.35 75.47
HQ 81.87 81.95 81.74 82.08

performance of HQ is actually relatively insensitive to the quantization resolution N in Eq.

(3.1). These results indicate that, with the conventional distance-based quantization (SVQ),

even with the more robust feature transformation front-end (TC or HEQ), the quantization

distortion and environmental noise still jointly degraded the performance seriously. The HQ

approaches, however, were able to reconstruct the feature parameters based on the order

statistics or histogram, which automatically absorbed many of the disturbances, therefore

offering a much better recognition accuracy.

The results in Table 3.2 are averaged over all SNR values and all noise types in sets

A, B, and C. Further, we see in Fig. 3.6(a1)–(a4) the detailed accuracies obtained in exactly

the same experiments, but separated for different noise types and averaged over all SNR

values for different bit rates (4.4, 3.9, 3.3, and 2.7 kbps) respectively. From Fig. 3.6(a1)–

(a4), we can find that HQ (the last bar in each set) consistently performed much better

than the other approaches compared in Table 3.2 (the first 4 bars in each set). HQ can even

handle non-stationary disturbances as well to a good degree, clearly because it is based on

the dynamic histogram of the most recent past values. For example, in the case of 3.3 kbps in

Fig. 5(a3), HQ is actually significantly better than HEQ-SVQ (78.82% vs. 73.69%, 79.40%

vs. 73.77%, 83.80% vs. 79.37%, and 83.12% vs. 77.82% for babble, restaurant, airport, and

train-station noise cases respectively), and the corresponding numbers for MFCC, SVQ,

and TC-SVQ approaches were much lower.
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3.5.3 Further Analysis of Bit Rates vs. SNRs for HQ as a Feature Quan-

tization Method

To see how quantization distortion (or bit rate) mixed with the environmental

noise (SNR) in the input speech jointly influences the recognition performance of a DSR

system (assuming no transmission errors), the respective accuracies for the same experi-

ments mentioned in section 3.5.2 and listed in Table 3.2 are further analyzed respectively

for different bit rates and different SNRs as shown in Fig. 3.6(b1)–(b6) for clean to 0 dB

SNR. For clean speech, SVQ performed the best (although slightly lower than unquantized

MFCC) under higher bit rates (4.4, 3.9, and 3.3 kbps), while for other approaches (TC-SVQ,

HEQ-SVQ, and HQ) feature transformation more or less changed the speech characteristics,

and therefore inevitably slightly degraded the performance for clean speech. At a lower bit

rate such as 2.7 kbps, however, HQ offered better performance than other approaches. This

is probably because SVQ is more sensitive to quantization distortion, so the performance

of SVQ, TC-SVQ, and HEQ-SVQ all degraded for lower bit rates. On the other hand, the

dynamic nature of HQ makes it relatively insensitive to the quantization resolution (or bit

rates), as can be verified in the clean speech case in Fig. 3.6(b1). Under noisy environ-

ments (SNR from 20 dB all the way down to 0 dB), HQ consistently performed better than

other approaches for all SNR values and all bit rates. Under very poor SNR conditions,

the noisy disturbances were very serious, but still well absorbed by the HQ histogram. For

example, in the case of 5 dB SNR and 2.7 kbps bit rate, HQ offered an accuracy of 77.61%

compared to 22.30% for SVQ, 28.31% for TC-SVQ and 69.07% for HEQ-SVQ. HQ offered

an accuracy of higher than 50% (55.27%) even at 0 dB SNR and the low bit rate of 2.7 kbps.

These results indicate that for SVQ the mismatched codebooks significantly increase the

quantization distortion, especially under poorer SNR conditions. The performance of HQ,

however, remains relatively high and even very stable for different bit rates for SNR de-

grading from 20 dB to 0 dB. This verified that HQ is very robust against both quantization
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distortion and environmental noise.

3.6 Summary

In this chapter, a new approach of Histogram-based Quantization (HQ) is proposed

for robust and distributed speech recognition (DSR). HQ has shown to be robust for all

types of noise and all SNR conditions. For future personalized and context-aware DSR

environment, the proposed HQ can be adapted to network and terminal capabilities, with

recognition performance optimized based on environmental conditions.
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Figure 3.6: Recognition accuracies for feature quantization and compression with clean-
condition training: (a1)-(a4) averaged over all SNR values but separated for different types
of noise at bit rates of 4.4 kbps to 2.7 kbps; (b1)-(b6) averaged over all types of noise but
separated for different bit rates (4.4 kbps to 2.7 kbps) at different SNR values.
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Chapter 4

Joint Uncertainty Decoding (JUD)

for HQ

4.1 Introduction

For both cases of robust and/or distributed speech recognition, feature vectors

corrupted by both the environmental noise and the quantization errors can be viewed as

random vectors with uncertainty. Unlike the standard Viterbi decoding process in which

such vectors are considered as deterministic, the uncertainty decoding approach considers

the uncertainty of these random vectors [11, 13, 14, 15, 16]. Approaches for robust ASR

have been modified in the past to estimate such uncertainty produced by the environmen-

tal noise [11, 13, 14]. Extended Cluster Information Vector Quantization (ECI-VQ) was

also developed to estimate the uncertainty generated in the quantization process [15, 16].

However, for DSR it is actually better to jointly consider the uncertainty for the quantized

feature vectors caused by both the environmental noise and the quantization errors.

In this chapter, we consider both cases of robust and/or distributed speech recog-

nition. We jointly estimate the uncertainty caused by both the environmental noise and
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the quantization errors in an ASR system using Histogram-based Quantization (HQ), and

perform the Joint Uncertainty Decoding (JUD) at the recognizer. Below in Section 4.2

we introduce the basic idea and formulation of uncertainty decoding. The estimation of

uncertainty caused by the environmental noise and the quantization errors is described in

section 4.3. Histogram-shift compensation is then introduced in section 4.4. Experimental

results are offered in Sections 4.5, with the summary finally given in Section 4.6.

4.2 General Formulation of Uncertainty Decoding

In standard HMM decoding, the probability bj(w) for observing a feature vector

w at a state j is

bj(w) =
M∑

m=1

cjmN(w; µjm,Σjm), (4.1)

where m is the mixture index, and cjm, µjm, Σjm are respectively the mixture weight, mean,

and covariance for the m-th Gaussian mixture in state j. There have been slightly different

approaches in formulating the concept of uncertainty decoding [11, 14]. In the approach

used here [13, 15, 16], instead of evaluating the observation probability bj(w) only for a

single feature vector w, uncertainty decoding treats the observed feature vector w as being

corrupted, and therefore considers the uncorrupted but unobservable feature vector o as a

random variable with a distribution p(o|w) during decoding. The probability of observing

w, bj(w), can then be defined as the expected value of bj(o) with respect to the distribution

p(o|w) [13, 15, 16],

bj(w) = Eo|w([bj(o)]) =
∫

o
p(o|w)bj(o)do. (4.2)

Assuming p(o|w) to be Gaussian with mean µo|w and covariance matrix Σo|w, p(o|w) ∼
N(o; µo|w, Σo|w), where both µo|w and Σo|w can be estimated in various ways, the integration

in Eq. (4.2) can be reduced to [13]

bj(w) =
M∑

m=1

cjmN(µo|w; µjm, Σjm + Σo|w). (4.3)
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Thus the standard HMM decoding using Eq. (4.1) remains unchanged, except that the vari-

ance of each Gaussian in the HMMs is increased by Σo|w, the uncertainty of the unobservable

vector o. In this way, the Viterbi decoding can be based more on reliable parameters with

a smaller variance Σo|w. The observed feature vector w can be taken as the estimated value

of µo|w for simplicity, as is done here in this section. But µo|w can also be estimated based

on previous feature vectors as in the three-stage error concealment approaches as discussed

later on. Below, we present the approaches used here to estimate the uncertainty of the

unobservable feature vector o, or the covariance matrix Σo|w.

4.3 Joint Uncertainty Decoding (JUD) for HQ

There are two sources of uncertainty in HQ-based features: quantization errors

and environmental noise. Here we first separately estimate them and then consider them

jointly.

4.3.1 Quantization Error Uncertainty

In an HQ partition cell, the representative value zi is the observed corrupted feature

vector w in Eq. (4.2), and all the possible samples in the corresponding i-th partition

cell [vi−1, vi] are these samples for the uncorrupted unquantized feature vectors o in Eq.

(4.2) collected at the client, which are unobservable at the server. The variance Σq,i
o for

quantization errors in the i-th partition cell to be used to take the place of Σo|w in Eq. (4.3)

can thus be estimated using a clean speech training set. Taking the one-dimensional HQ as

in Fig. 3.1 as an example,

Σq,i
o =

1
Li

∑
vi−1<yt<vi

(C−1
0 [C(yt)] − zi)2, (4.4)

where the summation is over all Li feature parameters yt in the i-th partition cell [vi−1, vi]

in the training set. Eq. (4.4) can be easily extended to HVQ for more dimensions. Because
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the representative value zi was obtained via the Lloyd-Max algorithm (or LBG algorithm

[60] in the case of HVQ) based on the histogram C0(•) for a standard Gaussian distribution,

all parameters yt in the partition cell need to be transformed first by C(•) then transformed

back via C−1
0 (•) to evaluate Σq,i

o . Because the Lloyd-Max algorithm produces tightly quan-

tized levels in high density regions and loosely quantized levels in low density regions to

minimize total distortion, uncertainty decoding automatically increases the Gaussian vari-

ances for the loosely quantized levels. In this way, Σq,i
o can be trained in advance for all

partition cells [vi−1, vi].

4.3.2 Environmental Noise Uncertainty

Under low SNR conditions, disturbances may be very serious. For example, in

Fig. 3.1 vi−1 and vi may be changed to v′′i−1 and v′′i and C(v) to C ′′(v), or there may be

a histogram shift which cannot be well absorbed by the dynamic histogram. Inevitably,

then, HQ’s performance deteriorates. Such a histogram shift may be reasonably estimated

by C−1
t (0.5), because C−1

0 (0.5) = 0 for a standard zero-mean Gaussian. For server-side

histograms constructed based on the quantized codewords, the average values of |C−1
t (0.5)|

under all types of noise for the AURORA 2 testing environments for different SNR values

are shown in Table 4.1. Clearly, the histogram shift increases with lower SNR values. This

is reasonable because under lower SNR conditions, the order statistics and histograms of the

original speech samples collected at the client in the respective moving segments change very

rapidly; thus the quantized HQ codewords based on these histograms also change quickly

and significantly with time. As a result, the server-side histogram constructed using the

quantized HQ codewords also change quickly and significantly with time, introducing a

significant and fast fluctuating bias or shift |C−1
t (0.5)| in each short segment, even if the

original noise added to the signal samples is zero-mean in the long term. Hence we can take

the histogram shift |C−1
t (0.5)| as a simple indicator for the SNR condition: that is, higher
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Table 4.1: Averaged histogram shift for HQ under different SNR conditions.

SNR Clean 20 dB 15 dB 10 dB 5 dB 0 dB
Histogram shift

|C−1
t (0.5)| 0.016 0.038 0.053 0.090 0.109 0.132

such shifts correspond to lower SNR values. Therefore, the variance Σn,t
o for uncertainty

caused by environmental noise at time t — used in place of Σo|w in Eq. (4.3) — can be

reasonably estimated as

Σn,t
o = α(C−1

t (0.5))2, (4.5)

where α is an empirically determined scaling factor, and is fixed for all SNR values and

noise conditions in our experiments. In fact, the value of Σn,t
o only indicates the relative im-

portance of feature parameters in Viterbi decoding — we found in preliminary experiments

that recognition performance is not very sensitive to the value of α chosen here. Ct(•) is the

histogram for the HQ-quantized codewords zi for all feature parameters yt in the moving

segment Yt,T at frame t. In this way, in the DSR case, Σn,t
o can be estimated at the server

easily for each time t without any extra bit rate costs. This allows us to solve the problem

where the environmental disturbances are hidden in codewords and cannot be estimated

directly.

4.3.3 Joint Uncertainty Decoding (JUD) for HQ

The above two types of uncertainties should be jointly considered [50]. A rea-

sonable assumption is that for higher SNR conditions the quantization error uncertainty

Σq,i
o dominates, while for lower SNR conditions, the environmental noise uncertainty Σn,t

o

dominates. Therefore the joint uncertainty Σi,t
o for a codeword zi in the i-th partition cell

at time t can be estimated as

Σi,t
o = max(Σq,i

o , Σn,t
o ), (4.6)
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where Σq,i
o is pre-trained for the i-th partition cell using Eq. (4.4), and Σn,t

o is estimated in

real time using Eq. (4.5). This value of Σi,t
o can then be used as Σo|w directly in Eq. (4.3).

4.4 Histogram-Shift Compensation

As mentioned previously, histogram shift occurring at lower SNR values inevitably

results in seriously degraded HQ performance. As a result, in addition to the uncertainty

decoding as mentioned above, we can also shift the histogram horizontally to have

C−1
t (0.5) = 0 (4.7)

for each time t. A large portion of the serious disturbances can be absorbed by such a shift,

as will be verified by the experiments below.

4.5 Experimental Results

4.5.1 HQ and JUD for Robust Speech Recognition

Here we consider a complete HQ-based robust speech recognition system under

noisy conditions, outside of the DSR or client-server framework. The input speech features

were first transformed by HQ just as was presented in section 3.2. In addition, in this

section JUD as discussed in sections 4.2-4.4 was further applied at the decoder, including the

histogram shift plus the uncertainty estimated for the environmental noise and quantization

errors.

The results are plotted in Fig. 4.1. Note that in Fig. 4.1(b) the plots for 5 and

0 dB SNR are shown in different scales so as to make the differences easier to observe.

The four bars in each set in Fig. 4.1(a), (b), and (c) are respectively for the accuracies

obtained with the proposed HQ feature transformation alone (one-dimensional with bit rate

(resolution) 3.9 kbps, exactly the same as the last bar in Fig. 3.5 presented in section 3.5.1),
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Table 4.2: Accuracies and error rate reductions for HQ alone (one-dimensional, 3.9 kbps)
and HQ-s,n,q (with complete JUD) for different testing sets in Fig. 4.1(c).

Accuracy Set A Set B Set C Overall
HQ (one-dimensional) 80.85 82.17 81.86 81.58

HQ-s,n,q (Complete JUD) 82.40 83.81 83.11 83.67
Relative error reduction (%) 8.09 9.14 6.89 8.27

HQ plus histogram shift (HQ-s, section 4.4), HQ with histogram shift plus uncertainty for

environmental noise (HQ-s,n, sections 4.4 and 4.3.2), and HQ with complete JUD including

histogram shift and uncertainty for environmental noise and quantization errors (HQ-s,n,q,

sections 4.4 and 4.3). It can be found in Fig. 4.1(a), (b), and (c) that with the various

JUD approaches proposed in sections 4.3 and 4.4 performed at the decoder, accuracies

can be consistently improved step-by-step in all cases. There was almost no performance

degradation for clean speech, and slight improvements at high SNR conditions (Fig. 4.1(b)):

this implies uncertainty decoding for HQ is able to preserve the discrimination among

HMMs. In other words, it is clear that the quantization process produces quantization

errors, but with proper design of the quantizer and the uncertainty decoding, quantization

errors and environmental disturbances can in fact be well absorbed and compensated for to

a good extent. Accuracies for the first and the last bars in Fig. 4.1(c) (HQ alone and HQ-

s,n,q with complete JUD) are also compared in Table 4.2. It can be found that significant

error rate reduction was actually achieved in all three testing sets.

4.5.2 HQ and JUD for Distributed Speech Recognition

Here we consider a complete DSR system based on the proposed HQ approaches.

HQ was first applied at the client end to quantize and compress the input speech features.

The quantized codewords were then transmitted to the server. JUD was then applied at

the server to improve accuracies.

Conventionally, in DSR this is done using SVQ [17]. If noise can be properly

handled to a good degree by cascading an HEQ process at the front, we can also compen-
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Figure 4.1: Performance improvements obtained by the various JUD approaches as com-
pared to HQ alone: (a) averaged over all SNR values but separated for different noise types
in sets A, B, and C; (b) averaged over all noise types but separated for each SNR value;
and (c) averaged over all SNR values and noise types but separated into sets A, B, and C.

sate for quantization errors caused by SVQ using some conventional approaches associated

with SVQ, for example the well-known Extended Cluster Information Vector Quantization

(ECIVQ) [16]. Therefore we need to compare the proposed HQ followed by JUD with such

conventional approaches associated with SVQ first. The results are in Fig. 4.2(a), (b), and

(c). The six bars in each set in Fig. 4.2 are respectively for SVQ alone, ECIVQ alone,

the cascade of HEQ front-end and SVQ (HEQ-SVQ), the cascade of HEQ front-end and

ECIVQ (HEQ-ECIVQ), HQ (two-dimensional), and the same HQ with complete JUD in-

cluding histogram shift (HQ-s,n,q), all with bit rates 4.4 kbps. The 1st, 3rd, and 5th bars

in Fig. 4.2 are the same as the 2nd, 4th, and 5th bars of the first 4.4kbps group in Fig. 3.6.

We can find from Fig. 4.2 that ECIVQ (2nd bar) performed better than SVQ (1st

bar) for sets A and B, but slightly worse for set C, and the same trend can be observed
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Figure 4.2: Comparison of different approaches discussed in this paper for DSR: (a) averaged
over all SNR values but separated for different noise types in sets A, B, and C; (b) averaged
over all noise types but separated for different SNR values; and (c) averaged over all SNR
values and noise types but separated for sets A, B, and C.

when HEQ is performed as a front-end of SVQ (HEQ-SVQ, 3rd bar v.s HEQ-ECIVQ, 4th

bar). This is probably because ECIVQ considers quantization errors only, but the channel

mismatch for set C might move the feature vectors to different partition cells, for which

the cluster variance used in ECIVQ was not able to help. HEQ offered very significant

improvements when cascaded with SVQ or ECIVQ (HEQ-SVQ or HEQ-ECIVQ, 3rd or 4th

bar), but the HQ (5th bar) proposed here consistently provided better performance in almost

all cases, and the complete JUD proposed here including histogram shift (HQ-s,n,q, 6th bar)

offered additional improvements consistently in almost all cases. The accuracies for HEQ

cascaded with ECIVQ (HEQ-ECIVQ, 4th bar) and HQ with JUD (HQ-s,n,q, the last bar)

are further compared in Table 6.1. The relative error rate reductions shown in the last row

are significant and consistent for all SNR values, including the clean and 20 dB cases. The

above experimental results are for a 4.4 kbps bit rate. Further analysis was then performed
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Figure 4.3: Comparison of different approaches discussed in this paper for DSR (but without
transmission errors) under different bit rates and SNR values: (a) clean, (b) 20 dB, (c) 15
dB, (d) 10 dB, (e) 5 dB, and (f) 0 dB.

Table 4.3: Accuracies and error rate reductions for HEQ-ECIVQ and HQ-s,n,q (with com-
plete JUD) at 4.4 kbps for different SNR values in Fig. 4.2(b).

SNR Clean 20 dB 15 dB 10 dB 5 dB 0 dB
HEQ-ECIVQ 98.19 95.25 92.65 86.01 75.96 53.28

HQ-s,n,q(Complete JUD) 98.50 96.38 93.99 89.04 78.34 57.01
Relative error reduction(%) 17.13 23.79 18.23 21.66 9.90 7.98

for several better approaches found above with respect to different bit rates (4.4, 3.9, 3.3, and

2.7 kbps) at all different SNR values. The results are shown in Fig. 4.3(a)–(f) for different

SNR from clean to 0 dB, each with different bit rates. The four bars in each set in Fig. 4.3

are respectively for ECIVQ considering quantization error uncertainty for SVQ, the cascade

of transform coding (TC) and ECIVQ (TC-ECIVQ), the cascade of HEQ and ECIVQ (HEQ-

ECIVQ), and HQ with complete JUD including histogram shift (HQ-s,n,q). Here, except for

the clean speech case at higher bit rates, HQ-s,n,q consistently performed better for all SNR

values and all bit rates than other combinations of the front-end feature transformation (TC
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or HEQ) or back-end compensation considering quantization uncertainty (ECIVQ). Also,

the performance of ECIVQ, TC-ECIVQ, and HEQ-ECIVQ are all more sensitive to lower

bit rates, while HQ-s,n,q is relatively insensitive to different bit rates at all SNR conditions.

4.6 Summary

In this chapter, Joint Uncertainty Decoding (JUD) under the framework of Histogram-

based Quantization (HQ) is proposed here in this paper for robust and/or distributed speech

recognition. Improved recognition performance was obtained consistently under all types

of noise at all SNR values.
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Chapter 5

Three-Stage Error Concealment

(EC) for HQ-Based DSR Systems

5.1 Introduction

Here we consider the approaches to handling the transmission errors added to the

received HQ codewords under the DSR framework [51]. In this chapter, a three-stage EC

approach is developed, as presented below. In Section 5.2 we introduce the frame and sub-

vector error detection by HQ-consistency check. The estimation of the detected erroneous

subvectors are presented in section 5.3, considering the prior speech source statistics, the

channel transition probability, and the reliability of the received subvectors. In section

5.4, we introduce the reliability estimation and uncertainty decoding. Section 5.5 gives the

overview of the three-stage error concealment (EC) framework. Experimental results are

offered in Sections 5.6, with the summary finally given in Section 5.7.
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5.2 Stage 1 - Error Detection

In the ETSI DSR standards, every two frames are grouped together and protected

with 4-bit CRC[17]. In this way, the entire frame-pair is labeled erroneous even if only a

single bit error occurs in the frame-pair packet. Adding check bits at the subvector level is

helpful for subvector level error detection, but comes at the cost of additional bandwidth

[21]. A more efficient way is to make use of the speech signal characteristics at the subvector

level. The data consistency test checks the continuity of the parameters in two neighboring

subvectors [35]. When the difference between two consecutive values of a feature parameter

in a subvector exceeds a pre-determined threshold obtained from some training corpus, the

subvector is classified as inconsistent. However, if the statistics of the testing features are

time-varying and different from those of the training corpus, this approach becomes less

reliable. With environmental noise, the parameters are likely to be classified as inconsistent

even if they are correctly received.

HQ performs feature parameter quantization based on the local histogram (or

order statistics), so the quantized codewords represent the local order-statistic information

of the original parameters. The quantization process does not change the order statistics

of the parameters, and if there are no transmission errors, the histogram for the subvector

codewords received at the server should be similar to the histogram for the original feature

parameters at the client. Thus the partition cell obtained by re-performing HQ on the

received subvector codeword, based on the dynamic histogram for these received codewords,

should be the original partition cell. If not, it is very possible that the order statistics

have been changed and the received subvector codeword may be erroneous. Based on this

observation, the consistency test in the HQ framework proposed here is as follows. Taking

a two-dimensional HVQ as an example, zi = (z(1)
i , z

(2)
i ) is a received subvector codeword

at some time, and HQ{(z(1)
i , z

(2)
i )} represents the representative value for the subvector

(z(1)
i , z

(2)
i ) assigned by HQ performed at the server based on the histogram for the received
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codewords. The subvector (z(1)
i , z

(2)
i ) is then classified as consistent if

HQ{(z(1)
i , z

(2)
i )} = (z(1)

i , z
(2)
i ). (5.1)

In other words, if these two parameters are correctly received, their order statistics at the

server should be similar to the order statistics for the original values before quantization at

the client, and therefore similarly quantized into the same HQ partition cell.

Figure 5.1: (a) Recall and (b) Precision rates for error detection using SVQ with the
conventional data consistency check and HQ with the HQ-based consistency check proposed
here.

We compared the error detection accuracy of the conventional SVQ scheme with

the data consistency check [35] and the proposed HQ with the HQ-based consistency check

mentioned above under all different noise conditions for the AURORA 2 testing environ-

ment with the transmission errors introduced by the General Packet Radio Service (GPRS)

wireless environment. The averaged recall (percentage of detected errors out of all errors)

and precision (percentage of correct errors out of all detected errors) rates for error detection

are shown in Fig. 5.1(a) and (b). For lower SNR cases, it is clear that the noise seriously

affects the SVQ with data consistency check as verified by the precision degradation in Fig.

5.1(b) (from 66% at clean down to 12% at 0 dB). With the proposed HQ-based consistency

check approach, however, the precision rate is much more stable at all SNR values, and

both recall and precision rates are higher.

Note that when Eq. (5.1) is not satisfied, it is also possible that the present
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codeword is actually correctly received, but instead the dynamic histogram, on which the

HQ in Eq. (5.1) is based, is disturbed by erroneous received codewords in the past T frames.

This is one good reason why the precision rate in Fig. 5.1(b) for HQ with the proposed

consistency check is slightly less than 70%, i.e. some detected inconsistencies are actually

correctly received codewords. But this precision is much higher than SVQ with conventional

approach. In fact, the probability that the inconsistency in Eq. (5.1) is due to the disturbed

histogram rather than the considered codeword being erroneous is lower, because the effect

of the erroneous codewords in the past T frames is reasonably absorbed by the histogram

(the order statistics of a large number of codewords) as well as the partition cells in HQ. In

other words, with erroneous codewords in the past T frames, the change of the histogram

may not be very serious and the partition cell that the present codeword being considered

belongs to may remain unchanged. This is verified in Fig. 5.1(b) where the precision rate,

although much less than 100%, remains almost the same from clean speech to 0 dB SNR.

5.3 Stage 2 - Erroneous Feature Vector Estimation

Different techniques for estimating the detected erroneous feature vectors have

been proposed. Repetition and interpolation only use the correctly received feature vectors

[23], while statistical-based techniques use prior knowledge about speech source in addition,

and have been shown to offer better performance [28].

The erroneous subvector estimation proposed here under the HQ framework is

based on the maximum a posteriori (MAP) criterion, which determines the estimated value

ŝt of a certain transmitted subvector codeword st at time t, which is detected as erroneous

(here both ŝt and st are certain codewords zi mentioned above for some i respectively).

This MAP estimation is conditioned on the present and previously received correspond-

ing subvector codewords rt and rt−1 (here both rt and rt−1 are also certain codewords zi
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mentioned above for some i respectively),

ŝt = argmax
zi

{P (st = zi|rt, rt−1)}, (5.2)

where st = zi denotes that st is the i-th HQ codeword out of the N possible codewords. The

maximization here is over all of these codewords. If we assume rt and rt−1 are independent,

P (st|rt, rt−1) ≈ P (st|rt−1)P (st|rt)
P (st)

=
P (st|rt−1)P (rt|st)

P (rt)
. (5.3)

With the denominator in Eq. (5.3) left out in the maximization in Eq. (5.2), the probability

in Eq. (5.2) can be approximated by the codeword bigram P (st = zi|rt−1) and the channel

transition probability P (rt|st = zi),

ŝt = arg max
zi

{P (st = zi|rt−1)P (rt|st = zi)}. (5.4)

In Eq. (5.4), the codeword bigram P (st = zi|rt−1) can be estimated by the bigram of

the considered subvector codewords P (st = zi|st−1) trained from a clean training set (for

example, the clean training set of AURORA 2). Also, the channel transition probability

P (rt|st = zi) in Eq. (5.4) can be estimated from the bit error rate (BER) of the present

frame being considered,

P (rt|st = zi) = BERd[b(zi),b(rt)] ∗ (1 − BER)K−d[b(zi),b(rt)], (5.5)

where BER is estimated as the total number of inconsistent subvectors (in simulation analy-

sis, it was found that in most cases there is only one bit error in an erroneous codeword, and

therefore this number can be used to estimate the total number of erroneous bits) detected

in the first stage (discussed in section 5.2) in the present frame divided by the total number

of bits in the frame, K is the total number of bits in the received subvector codeword rt,

b(zi) and b(rt) are respectively the bit patterns for the codewords zi and rt, and d(•, •)
represents the Hamming distance between two bit patterns. The value of P (rt|st = zi) in

Eq. (5.5) is actually the probability of zi being changed to rt if BER can be accurately
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estimated. With Eq. (5.5), when rt is less reliable (or has a larger BER), the values of

P (rt|st = zi) for all possible codewords zi with different i become closer to each other (i.e.,

the difference in P (rt|st = zi) is insignificant for different Hamming distances d(•, •)). On

the other hand, when rt is more reliable (or has a smaller BER), P (rt|st = zi) is larger

for only few values of i. In this way, more emphasis can be put on the codeword bigram

P (st = zi|rt−1) than on the channel transition probability P (rt|st = zi) in Eq. (5.4) when

the channel condition is less reliable.

Because the basic principle here is to exploit the short-time correlation between

consecutive frames in speech signals to estimate the lost subvectors, the robustness of HQ

as mentioned in section 3.4 is very helpful. If the quantization process is less robust,

the environmental noise may move the feature vectors to a different partition cell and

the subvector transition relationship in speech signals may be disturbed. This problem is

actually lessened by the HQ’s robustness, as can be verified by the mutual information I(st,

st−1) between the present and previous subvector codewords st and st−1,

I(st, st−1)=H(st) − H(st|st−1), (5.6)

where

H(st)=
N∑

j=1

−P (st = zj)log[P (st = zj)] (5.7)

and

H(st|st−1)=
N∑

i=1

N∑
j=1

−P (st=zj , st−1=zi)log[P (st=zj |st−1=zi)] (5.8)

are respectively the degree of uncertainty for the present subvector st, and the remaining

degree of uncertainty for st after the previous subvector st−1 is known. Thus the mutual

information I(st, st−1) in Eq. (5.6) shows how much the codeword bigram model reduces

uncertainty for the subvectors st. In other words, a bigram model with higher mutual

information implies that predicting the present subvector st given the previous subvector

st−1 is easier. The mutual information for the conventional SVQ and the proposed HQ
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Table 5.1: Mutual information I(st, st−1) for SVQ and HQ.

I(st, st−1) c1, c2 c3, c4 c5, c6 c7, c8 c9, c10 c11, c12 c0, logE

SVQ 1.365 0.998 0.791 0.652 0.611 0.568 1.455
HQ 1.473 1.110 0.856 0.722 0.678 0.619 1.541

averaged for different subvectors from the three testing sets of AURORA 2 is listed in Table

5.1. We can see that HQ’s mutual information is always higher than that of SVQ, which

indicates that the HQ framework allows for more precise estimation of the lost subvectors.

5.4 Stage 3 - Uncertainty Decoding

The uncertainty decoding discussed in section 4.2 can be used here in the final

stage. Consider section 4.2: the above received codeword rt is taken as the observed cor-

rupted feature vector w in Eq. (4.2), and all of the possible transmitted codewords, st = zi,

i = 1, 2, . . . , N, are the possible samples of the uncorrupted but unobservable feature vector

o in Eq. (4.2). The distribution of the probability P (st = zi|rt, rt−1) obtained in Eq. (5.2)

then characterizes the uncertainty of the observed codeword. With the estimated codeword

ŝt in Eq. (5.2) taken as the mean µo|w and the covariance estimated using the probability

distribution P (st = zi|rt, rt−1) taken as the covariance Σo|w, both used in Eq. (4.3), un-

certainty decoding can then be directly performed within the HQ framework as presented

previously by increasing the variance of each Gaussian mixture by Σo|w in the HMMs as in

Eq. (4.3) [50]. In this way, HMM decoding puts more emphasis on more reliable subvectors,

i.e. those with lower covariance Σo|w for the probability distribution P (st = zi|rt, rt−1) in

Eq. (5.2).

5.5 Three-Stage EC under the HQ Framework

As shown in Fig. 5.2, the three stages of EC under the HQ framework can be

easily integrated. At the first stage, the received frame-pairs are first checked with CRC
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Figure 5.2: The three-stage error concealment (EC) framework.

to detect errors at the frame level. The erroneous frame-pairs are then further checked at

the subvector level by the HQ consistency test as mentioned in section 5.2. At the second

stage, the erroneous subvectors detected at the first stage are estimated and reconstructed

as presented in section 5.3. At the third stage, uncertainty decoding in the Viterbi search

process makes the HMMs less discriminative for subvectors with higher uncertainty as

presented in section 5.4.

5.6 Experimental Results

Here we finally consider a complete DSR system based on the proposed HQ ap-

proaches. HQ was first applied at the client end to quantize and compress the input speech

features. The quantized codewords were then transmitted via wireless networks to the

server. There were inevitable transmission errors introduced by the wireless channels, and

the three-stage error concealment (EC) was applied.
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5.6.1 HQ-Based DSR over Wireless Channels with Transmission Errors,

but without Error Concealment (EC)

We first compared the robustness of SVQ and HQ against environmental noise at

the client end plus the transmission errors at a client traveling speed of 3 km/hr, assuming

no Error Concealment (EC) approach was used. Fig. 5.3 is the averaged results over all

different types of noise but separated for different SNR values. The first three bars are

the results for the standard SVQ, SVQ followed by HEQ front-end (HEQ-SVQ), and HQ

(two-dimensional), all at 4.4kbps and without transmission errors, exactly the same as the

1st, 3rd, and 5th bars in Fig. 4.2(b), and the next three bars are those suffering from GPRS

transmission errors (SVQg, HEQ-SVQg, HQg: the label ”g” indicates GPRS). For SVQ,

the performance degradation caused by GPRS (1st bar compared to 4th bar) is larger when

SNR is lower, even with HEQ (2nd bar compared to 5th bar, e.g. 98.07% to 87.78% for clean

speech, 91.97% to 76.74% for 15 dB SNR, and 85.86% to 68.73% for 10 dB SNR). Clearly,

features corrupted by noise are more susceptible to transmission errors. The improvements

that HQ offered over HEQ-SVQ when transmission errors were present (6th bar to 5th bar)

are consistent and significant at all SNR values. For example, in the case of 10 dB SNR

with GPRS, HQ (6th bar) offered an accuracy of 78.69% while the number was 69.84% for

HEQ-SVQ (5th bar). This verified that HQ is robust against both environmental noise and

transmission errors.

To analyze the degradation of recognition accuracy caused by transmission errors,

we examined the percentage of words which were correctly recognized without transmission

errors, but incorrectly recognized after transmission. The comparison of this percentage

for SVQ, HEQ-SVQ and HQ for exactly the same experiments as reported in Fig. 5.3

are shown in Fig. 5.4. The rapid increase of this percentage for SVQ when input speech

SNR is degraded indicated that the noise-corrupted SVQ symbols were very susceptible to

transmission errors. HEQ-SVQ was much better, while HQ was the best in all cases.
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The above results in Fig. 5.3 are for a 4.4 kbps bit rate. Further analysis was then

performed for several better approaches found above with respect to different bit rates (4.4,

3.9, 3.3, and 2.7 kbps) for all SNR values (from clean to 0 dB) as shown in Fig. 5.5(a)–(f).

The four bars in each set in Fig. 5.5 are respectively for SVQg, transform coding followed

by SVQ (TC-SVQg), the cascade of HEQ and SVQ (HEQ-SVQg), and HQg, all with GPRS

transmission errors. Here HQ consistently performed better than different versions of SVQ

enhanced by some feature transformation approaches (TC or HEQ) for all SNR values and

all bit rates. With SVQ, features with environmental noise and quantization distortion are

more sensitive to lower bit rates when transmission errors are present. For example, in

the case of 5 dB SNR, the performance of HEQ-SVQ degraded from 56.66% at 4.4 kbps to

51.88% at 2.7 kbps. On the other hand, the performance of HQ is very stable for different

bit rates in all cases of SNR, even with the presence of transmission errors. This verified

that HQ is robust against not only quantization distortion and environmental noise, but

transmission errors as well.

Figure 5.3: Comparison of SVQ, HEQ-SVQ and HQ, and those with GPRS transmission
errors (SVQg, HEQ-SVQg, HQg), averaged over all types of noise, but separated for each
SNR value.

5.6.2 HQ-Based DSR over Wireless Channels with Error Concealment

(EC)

The next set of experiments tried to examine the effectiveness of the three-stage EC

techniques for HQ. Fig. 5.6 shows the results with GPRS transmission errors at a speed of 3
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Figure 5.4: Comparison of SVQ, HEQ-SVQ and HQ with the percentage of words which
were correctly recognized if without transmission errors, but incorrectly recognized after
transmission.

km/hr, without and with the different Error Concealment (EC) approaches. The five bars in

each set are respectively for SVQg, HEQ-SVQg, HEQ-SVQ with GPRS and with repetition

(HEQ-SVQgr: the label ”r” indicates the ETSI-recommended error mitigation strategy by

repetition), HQg, and HQ with GPRS and the three-stage EC techniques propose here

(HQgc: the label ”c” indicates three stage EC), all at bit rate of 4.4 kbps. Fig. 5.6(a)

are those averaged over all SNR values but separated for different noise types in sets A,

B, and C, (b) are those averaged over all types of noise but separated for different SNR

values, and (c) are those averaged over all types of noise and all SNR values but separated

for sets A, B, and C. It can be found that the ETSI repetition technique actually degraded

the performance of HEQ-SVQg (3rd bar vs. 2nd bar), probably because the whole feature

vectors including the correct subvectors are replaced by estimations that are very possibly

inaccurate. Under GPRS, HQg without any EC techniques (4th bar) actually outperformed

the first three bars for all cases. Applying the proposed three-stage EC techniques (HQgc,

5th bar) then further improved the performance significantly for all cases. This verified that

the three-stage EC framework is robust against not only transmission errors, but against

environmental noise as well.

The above results in Fig. 5.6 are for a 4.4 kbps bit rate. Further analysis was

then performed with respect to different bit rates (4.4, 3.9, 3.3, and 2.7 kbps) for all SNR
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Figure 5.5: Comparison of SVQg, TC-SVQg, HEQ-SVQg and HQg (all with GPRS trans-
mission errors), for different bit rates and SNR values: (a) clean, (b) 20 dB, (c) 15 dB, (d)
10 dB, (e) 5 dB, and (f) 0 dB.

values as shown in Fig. 5.7(a)–(f). The four bars in each set in Fig. 5.7 are respectively

for SVQ with GPRS errors and with repetition (SVQgr: the label ”r” indicates the ETSI-

recommended error mitigation strategy by repetition), TC-SVQ with GPRS errors and with

repetition (TC-SVQgr), HEQ-SVQ with GPRS errors and with repetition (HEQ-SVQgr),

and HQ with GPRS and the three-stage EC techniques propose here (HQgc). Here HQgc

consistently performed better than all other approaches for all SNR values and all bit rates.

For example, in the case of 10 dB SNR and a 3.3 kbps bit rate, HQgc offered an accuracy of

81.57% compared to 38.92% for SVQgr, 53.34% for TC-SVQgr and 64.97% for HEQ-SVQgr.

HQgc offered an accuracy of higher than 65% (67.42%) even at 5 dB SNR and the low bit

rate of 2.7 kbps. These indicate that HQ with the three-stage EC is robust against both

environmental noise and transmission errors, and is insensitive to different bit rates.

The above results in Fig. 5.6 and 5.7 are for a client traveling at a speed of 3

km/hr. We then consider other different client traveling speeds at 4.4 kbps in Fig. 5.8.
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Figure 5.6: Comparison of SVQ under GPRS (SVQg), HEQ-SVQ under GPRS without
and with repetition (HEQ-SVQg and HEQ-SVQgr), HQ under GPRS without and with EC
techniques (HQg and HQgc): (a) averaged over all SNR values, but separated for different
noise types in sets A, B, and C; (b) averaged over all types of noise, but separated for each
SNR value; and (c) averaged over all SNR values and noise types but separated for sets A,
B, C.

Here the four cases shown in each figure are for HEQ-SVQ under GPRS, without and with

ETSI repetition (HEQ-SVQg and HEQ-SVQgr), and HQ under GPRS, without and with

the three-stage EC (HQg and HQgc), at traveling speeds of 3, 50, 100, and 250 km/hr. Only

two typical types of input speech noise, car for stationary and babble for non-stationary

were taken as examples, since for some noise types such as exhibition or restaurant a client

traveling speed above 3 km/hr does not make sense. The results for two typical values of

SNR, 15 dB and 5 dB plus those results averaged over all SNR values for car/babble noise

are shown in Fig. 5.8 (a1)/(a2), (b1)/(b2) and (c1)/(c2), respectively. The superiority of

HQ with EC (HQgc) is obvious as verified by the highest curves in all cases. As an example,

for 15 dB car noise at 100 km/hr as shown in Fig. 5.8(a1), the performance of HEQ-SVQ

degraded seriously (78.74%), applying ETSI repetition on HEQ-SVQ did not help (72.89%),
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Figure 5.7: Comparison of SVQgr, TC-SVQgr, HEQ-SVQgr (all under GPRS with repe-
tition), and HQgc (under GPRS with error concealment) for different bit rates and SNR
values: (a) clean, (b) 20 dB, (c) 15 dB, (d) 10 dB, (e) 5 dB, and (f) 0 dB.

and HQ is much better (86.04%) while the three-stage EC offered very good improvements

(92.80%). As another example, for 5 dB car noise as shown in Fig. 5.8(b1), the performance

of HEQ-SVQ degraded seriously at high traveling speeds (e.g. 59.20% at 100 km/hr); here

HQ was much better (e.g. 66.24% at 100 km/hr), and the three-stage EC further improved

the performance significantly (e.g. 78.29% at 100 km/hr). On the other hand, as one

more example in Fig. 5.8(a1) the HEQ-SVQ features with noise disturbances were more

susceptible to higher transmission errors due to higher client traveling speeds (81.82% at 3

km/hr and 78.74% at 100 km/hr), while HQ features were more robust in this case (87.33%

at 3 km/hr and 86.04% at 100 km/hr). This is why the curves for HQg are quite flat in

almost all the six figures in Fig. 5.8, while those for HEQ-SVQg and HEQ-SVQgr decline

faster as the client traveling speed increases. The curves for HQgc are also quite flat for

car noise (Fig. 5.8 (a1)/(b1)/(c1)), but less flat for babble noise (Fig. 5.8 (a2)/(b2)/(c2));

the non-stationary nature of the babble noise is probably more difficult to handle with EC
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techniques.

5.7 Summary

In this chapter, a three-stage error concealment (EC) framework based on the

Histogram-based Quantization (HQ) for Distributed Speech Recognition (DSR) is proposed.

Improved recognition performance was obtained consistently for a wide variety of environ-

mental noise and transmission error conditions.
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Figure 5.8: Comparison of HEQ-SVQ under GPRS without and with repetition, HQ under
GPRS without and with EC, at traveling speeds of 3, 50, 100, and 250 km/hr: (a1)/(a2) for
car/babble noise at 15 dB SNR; (b1)/(b2) for car/babble noise at 5 dB SNR; and (c1)/(c2)
for car/babble noise averaged over all SNR values.
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Chapter 6

Dynamic Quantization II -

Context-dependent Quantization

6.1 Introduction

When considering the characteristics of speech signals, it is a well-known fact that

the high correlation existing in speech signals is very helpful in various speech processing

applications. It is also well-known that for human perception, speech is recognized based on

not only the present signal values, but also on the changes in context [20]. Transform cod-

ing and differential encoding take context into consideration when performing quantization,

and have been widely used for decades [20, 21, 18]. These approaches exploit inter-frame or

intra-frame correlations among feature vectors and have been shown to reduce transmission

rates significantly. These facts indicated that quantization approaches not using context

information are relatively inadequate, because in such approaches, feature parameters with

different context are quantized or transformed to the same representative value as long as

they are in the same partition cell; thus signal information is not fully utilized. There-

fore, properly utilizing context information in quantization to improve robustness against
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transmission errors and environmental noise is an important issue.

In this chapter, we propose a new concept of context-dependent quantization, in

which the representative parameters for each partition cell are not fixed, but are depen-

dent on the context codewords. Below in Section 6.2.1 we introduce the basic idea and

formulation of Context-dependent Quantization. In section 6.2.2, the context-dependent

quantization is integrated with Histogram-based Quantization (HQ). Experimental results

are offered in Sections 6.3, with the summary finally given in Section 6.4.

6.2 Proposed Approach

6.2.1 Context-dependent Quantization

In conventional (scalar or vector) quantization, a parameter yt at time t (either a

scalar or a vector) is mapped to a representative parameter zi (either a scalar or a vector),

which is in turn represented by a codeword or bit pattern wt, if yt is within a certain

partition cell Qi,

yt → Q(yt) = zi, wt = b(Q(yt)) = b(zi), if yt ∈ Qi, (6.1)

where Q(·) is the quantization process and b(·) represents the index of codeword or bit

pattern. The concept of context-dependent quantization is very simple. It keeps all the

original partition cells unchanged, except now the representative parameters zi are not fixed,

but are dependent on the left and right context [61]. Assume in addition the parameter

yt has a left context parameter yt−1 with codeword m and a right context parameter yt+1

with codeword n, yt−1 → Q(yt−1), b(Q(yt−1)) = m, yt+1 → Q(yt+1), b(Q(yt+1)) = n. The

representative parameter for the middle frame yt in the partition cell Qi is then the average

of all such parameters yt within the partition Qi with the left and right context m and n
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respectively,

zmn
i =

1
Lmn

i

∑
yt∈Qi

b(Q(yt−1))=m

b(Q(yt+1))=n

yt, (6.2)

which is dependent on the context m and n, where Lmn
i is the total number of such pa-

rameters yt in the training set. Thus zmn
i is the average of the parameters with the same

context codewords. This representative parameter zmn
i can be trained with a clean speech

corpus. In this way, context dependency among speech signals is automatically included in

the quantization process. Note that assuming there are N partition cells, for each partition

cell there are now N2 different representative parameters because there are N2 context con-

ditions (m,n ∈ {1, 2, . . . , N}). Therefore using the left and right contexts allow for much

finer representation of the parameters, although the number of bits needed remains the

same. Also, the computational complexity and memory requirement on the client side are

the same as those for conventional quantization because the number of partition cells is still

N . This is shown in Fig. 6.1, in which a partition cell has many representative parameters

zm,n
i for different contexts m and n, as compared to conventional quantization, in which

a partition cell has only a single representative parameter zi. Also, in this scheme for a

received codeword sequence, every codeword is decoded considering its context codeword

on both sides, and there is no problem regarding the order of decoding. For example, for

the received codeword sequence, {w1, w2, w3, . . .}, w1w2w3 are used to decode w2, w2w3w4

are used to decode w3, and so on.

The above context-dependent quantization can actually be extended to decode

speech signals corrupted by noise as well. Assume a noisy speech codeword sequence

[b(Q(yt−1)) = m, b(Q(yt)) = i, b(Q(yt+1)) = n] is observed, where yt−1, yt, yt+1 are all

noisy parameters, and assume that the correct codeword for the corresponding clean speech

parameter ŷt in the middle is b(Q(ŷt)) = k, where ŷt is the clean speech version of yt, and the

N possible values of the codeword k has a distribution {Pmn
i (k), k = 1, 2, . . . , N}. In other
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words, Pmn
i (k) is the probability of the correct codeword being k (that is, b(Q(ŷt)) =

k) when the observed noisy speech codeword sequence is [b(Q(yt−1)) = m, b(Q(yt)) =

i, b(Q(yt+1)) = n]. These probabilities {Pmn
i (k), k = 1, 2, . . . , N} can be easily estimated

based on the frequency counts of such codeword sequences [b(Q(yt−1)) = m, b(Q(yt)) =

i, b(Q(yt+1)) = n] and [b(Q(yt−1)) = m, b(Q(ŷt)) = k, b(Q(yt+1)) = n] in a corpus including

corresponding noisy and clean speech for some noisy conditions. With these probabili-

ties, minimum mean squared error (MMSE) estimation for the codewords for clean feature

parameters can be obtained as the conditional expectation values,

ẑmn
i =E[zmn

i | b(Q(yt−1))=m, b(Q(yt))= i, b(Q(yt+1))=n]

=
∑

k

Pmn
i (k)zmn

k , (6.3)

where zmn
i is the context-dependent representative parameter obtained in Eq. 6.2, and ẑmn

i

is the MMSE estimate of the representative parameter from noisy codewords considering

context dependency.

Note that the above formulation is for quantization under the DSR framework,

but it applies equally to feature transformation for robust speech recognition apart from

DSR, in which each original feature parameter yt is transformed into zmn
i for recognition

purposes based on the quantization and its context.

All the above applies equally to all different quantization schemes. Below we apply

it to Histogram-based Quantization (HQ).

6.2.2 Context-dependent HQ

In Eq. 6.2 the representative parameter zmn
i is determined given a set of partition

cells. However, for HQ the partition cells are dynamic and varying for every time t; that

is, every yt in Eq. 6.2 is associated with a different set of partition cells. Fortunately, as in

Fig. 6.2, we see that even if the partition cells Qi for HQ are dynamic on the horizontal

scale, there are another set of partition cells Di on the vertical scale which are fixed. The
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Figure 6.1: Context-dependent quantization with left and right context codewords m and
n.

dynamic histogram C(v) defines the relationship between the two sets of partition cells Qi

and Di. As a result, context-dependent HQ is easily achieved by performing Eq. 6.2 on

the vertical scale, and then transforming it back to the horizontal scale using the standard

Gaussian histogram C0(v). In other words, for context-dependent HQ we can have

z̄mn
i =

1
Lmn

i

∑
yt∈Qi

b(Q(yt−1))=m

b(Q(yt+1))=n

C(yt) (6.4)

and

zmn
i = C−1

0 (z̄mn
i ). (6.5)

Thus the contextual information represented by zmn
i as obtained from Equations 6.4 and

6.5 is very similar to that of Eq. 6.2.

The context dependency relationships for HQ as analyzed above can then be

similarly extended as in Eq. 6.3 to estimate the representative parameters ẑmn
i from

noisy codewords. Here, zmn
i obtained from Eq. 6.5 can be used with the probabilities
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Figure 6.2: Context-dependent Histogram-based Quantization (HQ).

{Pmn
i (k), k = 1, 2, . . . , N} estimated from corresponding clean/noisy corpus for MMSE es-

timation as in Eq. 6.3.

6.3 Experimental Results

6.3.1 Context-dependent HQ as a Robust Feature Transformation Method

In the first set of experiments, we considered the case of robust speech recognition

apart from the DSR environment, in which context-dependent HQ was used as a feature

transformation technique, that is, each feature parameter yt, either clean or disturbed by

noise, is transformed to the representative parameter zmn
i in Eq. 6.5 or ẑmn

i in Eq. 6.3,

for the corresponding partition cell considering the context codewords m,n, to be used for

recognition. Note that the multi-condition training set and the corresponding clean speech

training set in AURORA 2 were used to estimate the probabilities {Pmn
i (k)} used in Eq.

6.3.

The results in Fig. 6.3 were all under clean-condition training, organized in three

parts: (a) averaged over all SNR values (20 dB to 0 dB) but separated for different types
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Figure 6.3: Word accuracies for HEQ, HQ, HQ-cd and HQ-mmse under clean condition
training: (a) averaged over all SNR values (20 dB to 0 dB) but separated for different types
of noise; (b) averaged over all types of noise but separated for different SNR values; and
(c) averaged over all types of noise and all SNR values (20 dB to 0 dB) for different testing
sets.

of noise, (b) averaged over all types of noise but separated for different SNR values, and

(c) averaged over all types of noise and all SNR values (20 dB to 0 dB) for testing sets

A, B, and C, respectively. The first two bars in each set in Fig. 6.3 are respectively

the recognition word accuracies for the well-known histogram equalization (HEQ) alone

[43, 44], and the original HQ [46, 50, 51, 52], which transforms each feature parameter yt

to the HQ representative value zi without considering the context codewords. The next

two bars are then those for context-dependent HQ, using context-dependency trained from

a clean speech corpus with Eq. 6.5 for the third bar (HQ-cd) and using MMSE estimates

trained with a multi-condition training corpus with Eq. 6.3 for the last bar (HQ-mmse).

All the experiments reported here for HQ were based on order-statistics over segments of
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the most recent parameter values as mentioned in section 6.2.1, so there was no time delay.

Although better results were obtainable if the no-delay condition was removed, they are not

shown here due to space limitations. Here HEQ was performed in exactly the same way as

HQ, based on a moving segment of the most recent T parameters, and the same value of

T = 100 was used.

It can be found that HQ (2nd bar) consistently outperformed HEQ (1st bar), while

context-dependent HQ (both HQ-cd and HQ-mmse in the 3rd and 4th bars) consistently and

significantly outperformed HEQ: in particular MMSE estimation trained with a noisy corpus

(4th bar) resulted in much more robust features for recognition. Increasing improvements

are apparent in Fig. 6.3 in all cases. In addition, context-dependent HQ trained with clean

speech (HQ-cd, 3rd bar) offered greater improvement than original HQ (HQ, 2nd bar) for

speech-like noise such as babble, restaurant, and airport, probably because the context-

dependent characteristics for these types of noise have been more or less included in the

transformation. Furthermore, HQ-mmse (4th bar) consistently outperforms HQ-cd (3rd

bar) (Fig. 6.3(c)), which verifies that the context dependency trained from noisy corpora

is useful even for unseen noisy environments (e.g. sets B and C).

SNR Clean 20 dB 15 dB 10 dB 5 dB 0 dB
TC 98.31 95.16 89.55 70.94 43.79 18.75

HQ-mmse 98.37 96.05 93.66 88.71 78.24 56.80
TCg 93.84 84.35 73.55 52.38 27.81 9.29

HQ-mmseg 97.20 93.99 91.09 84.77 72.51 49.60

Table 6.1: Comparison of Transform coding (TC) and HQ-mmse, without and with GPRS
transmission errors (TCg and HQ-mmseg) for different SNR values.

6.3.2 Context-dependent HQ as a Feature Quantization Method for DSR

We next considered context-dependent HQ as a feature quantization method in

DSR. In Fig. 6.4 in each set the first three bars are respectively the word accuracies for the

well-known HEQ followed by the conventional SVQ (HEQ-SVQ), original HQ (the same as
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Figure 6.4: Comparison of HEQ-SVQ, HQ, and HQ-mmse, and those with GPRS transmis-
sion errors (HEQ-SVQg, HQg, and HQ-mmseg): (a) averaged over all SNR values (20 dB
to 0 dB) but separated for different types of noise; (b) averaged over all types of noise but
separated for different SNR values; and (c) averaged over all types of noise and all SNR
values (20 dB to 0 dB) for different testing sets.

the 2nd bar in Fig. 6.3), and context-dependent HQ with MMSE estimation (HQ-mmse,

the same as the 4th bar in Fig. 6.3), all at 4.4 kbps without transmission errors, and the

next three bars (HEQ-SVQg, HQ-g, HQ-mmseg: the label ”g” indicates GPRS) are those

suffering from GPRS transmission errors for a client traveling at 3 km/hr. Fig. 6.4 (a)

is averaged over all SNR values (20 dB to 0 dB) but separated for different types of noise,

(b) is averaged over all types of noise but separated for different SNR values, and (c) is

averaged over all types of noise and all SNR values (20 dB to 0 dB) for testing sets A, B,

and C, respectively.

We first examined the effect of quantization and compression on recognition ac-

curacy, assuming there were no transmission errors. The performance of original HQ (2nd
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bar) consistently outperformed HEQ-SVQ, while HQ-mmse (3rd bar) was consistently and

significantly better than original HQ, as shown in Fig. 6.4(a)-(c). This verifies the effective-

ness of context-dependency. Improvements were even more significant for lower SNR cases

(Fig. 6.4(b)), and for several types of non-stationary noise (Fig. 6.4(a)), which indicates

where context-dependency is more helpful. We then examined the effect of transmission

errors in the last three bars in Fig. 6.4. For HEQ-SVQ, the performance degradation caused

by GPRS (4th bar compared to 1st bar) is more serious for lower SNRs. Clearly, features

corrupted by noise are more susceptible to transmission errors. The improvements that HQ

and context-dependent HQ offered over HEQ-SVQ when transmission errors were present

(5th, 6th bars to 4th bar) are consistent and very significant. For example, in the case

of 10 dB SNR with GPRS, HQ-mmseg (6th bar) offered an accuracy of 84.77% compared

to 69.84% for HEQ-SVQg (4th bar). In addition, it is interesting that the improvements

offered by HQ-mmse over HQ when transmission errors were present (6th bar to 5th bar)

are much more significant as compared to those comparison without transmission errors

(3rd bar to 2nd bar). This indicates that context-dependency among speech codewords is

actually very strong, and remains helpful even after heavy disturbance due to environmental

noise and transmission errors, and the error propagation problem is not serious here. This

is probably because even if there are erroneous context codewords, they may only change

the representative parameter zmn
i of the current frame within the same partition cell Qi in

Fig. 6.2, which is actually very limited. Also, the decoding here used only local context

codewords, i.e., based on the two neighboring undecoded codewords only; thus erroneous

codewords actually do not propagate. It is clear from Fig. 6.4 that HQ-mmse is robust

against both environmental noise and transmission errors.

Also shown in Table 6.1 are the detailed word accuracies of transform coding

(TC) [21] compared with HQ-mmse, either without or with GPRS transmission errors for

all SNR values, average over all noise types. The performance of TC seriously degrades
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when transmission errors are present (3rd row vs. 1st row), probably because exploiting

speech correlation by grouping several consecutive frames into one block and quantizing

them together may be sensitive to transmission errors. In contrast, error propagation is not

a serious problem here for HQ-mmseg (the performance degradation is much smaller for the

comparison of 4th and 2nd rows).

6.4 Summary

In this chapter, We have proposed context-dependent quantization, a new concept

for distributed and/or robust speech recognition. Improved recognition performance was

obtained consistently across a wide range of environmental noise and transmission error

conditions.
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Chapter 7

Application of Dynamic

Quantization on image features for

photograph retrieval

7.1 Introduction

With the growing popularity of digital cameras, many people have saved huge

collections of digital images. A resulting challenge is how to exactly to find a desired photo,

because it is simply impossible to browse through the entire collection. This calls for an

efficient photo retrieval approach.

Content-based image retrieval has been an active research area for years, many

successful approaches of which are based on low-level image features, implemented using

“query by example” [62, 63]. However, this is not very attractive in practice, because it

requires that the user provide an example photo as the query. In fact, most users prefer

high-level semantic descriptions of photos that use words as queries, such as who, what,

when, where (objects/events) and so on, but again, this is not an attractive solution if it
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requires manual annotation of each individual photo. This observation has led to the idea

of annotating photos with speech [64, 65]. When such a spoken photo annotation is taken

as a spoken document, the problem becomes one of spoken document retrieval.

Many spoken document retrieval approaches have been successful in spotting the

query term in the spoken documents, but these approaches usually suffer from the problem

of word usage diversity, i.e., the query and its relevant documents may use different sets

of words. This problem is especially serious for photo retrieval as considered here, because

the annotation may describe location (where), but the query may ask for a person (who),

i.e., both annotation and query are typically free-form and vary significantly. In spoken

document retrieval, semantic matching strategies have been developed to solve the word

usage diversity problem by discovering latent topics inherent in the query and documents.

Latent semantic indexing (LSI) and probabilistic latent semantic analysis (PLSA) are two

typical examples [66, 67]. In both cases the relevance score between a query term and the

spoken documents can be obtained via a set of latent topics, and relevant documents can

be retrieved even using query terms that are completely different from those used in the

documents. This is because common topics are usually found in sets of documents that

each include a set of similar terms, or in sets of terms that each appear in a set of similar

documents, and such topical information is used in retrieval.

The above semantic matching methods have not solved the photo retrieval problem

described here either. Assume that photo annotation can be formulated into six categories:

who, what (object and event), when, where, and others. When labeling a photo, users

typically select only one or two categories. As such, related photos may not be labeled using

similar terms (e.g., some may be labeled by where and some by who), and the relationships

among terms in different categories cannot be trained using latent topics. For example,

given a where query, many photos taken at that location may not be retrieved if they are

annotated with words in other categories. Also, users generally annotate far too few photos
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to train such topic models. Moreover, it is even difficult to define what a “topic” should

be for photos. For example, should photos of different people taken at the same location

belong to the same topic, or should photos of the same people but taken at different locations

belong to the same topic? In other words, the above six categories of labels are orthogonal,

but user annotations are usually very sparse. Thus the photo retrieval problem is quite

different from the well-investigated spoken document retrieval problem, even if photos have

spoken annotations.

Considering all the above, user annotations could not provide enough information

to build the semantic relationships among photos. If we could extract some similar “terms”

from image features for photos of the same topic, the semantic link among photos with sparse

annotations would become stronger through the extracted image “terms.” Note that the

terms used in semantic analysis are discrete, while low-level image features are continuous.

Therefore, how to quantize these image features to “terms” is a key issue before semantic

analysis.

The image feature quantization considered here aims to extract common “terms”

from photos having the same topic and distinguished “terms” from photos with different

topic. This is because common terms could build stronger semantic relationship for photos

with the same topics, and distinguish terms could discriminate photos with different topics.

Conventional quantization with fixed and pre-trained codebook cannot well represent image

features. On one hand, if the partition cells for defining a color bin are fixed, the same

scene taken from different cameras may have very different color histogram features. In this

situation, the same scene taken from different cameras could not be retrieved because their

image “terms” would be quite different with fixed quantization codebook. Therefore, it is

important to apply the concept of dynamic quantization to define dynamic partition cells

for photos taken from different cameras. On the other hand, if the representative codewords

for the color histogram features and Gabor texture features are fixed, photos with different



76

topics may locate on close positions in some feature dimensions, and they would be quantized

to the same codewords in these dimensions. Extracting common terms from photos with

different topics is harmful for semantic analysis because the topical information for photos

would become less clear. Therefore, it is important to dynamically define the representative

codewords to preserve the discriminative information in the quantization process.

Considering all the above, in this chapter we propose a user friendly semantic-based

photo retrieval approach using Fused image/speech/text features. We use low level image

features to derive the basic links among photos, since these features are really the universal

language describing photos. But we train semantic models to analyze the topics of the pho-

tos using PLSA. Because the ”terms” in PLSA has to be discrete, while the low level image

features have continuous real values, for each given photo we use low level image features to

select a group of “cohort photos” from the photo archive with similar image characteristics

as the “terms” describing the image characteristic of the photo, which is then fused with

speech/text features if some annotation is added by the user. The speech/text annotation

can be very “sparse,” i.e., only very few words regarding the semantics (e.g. where or who)

are needed for only a small portion of photos. In this way, the image/speech/text features

are fused with PLSA topic analysis, to be used in PLSA semantic-based retrieval. The

sparse text/speech annotation serve as the interface for the user to access the whole photo

archive, since the other photos not annotated are actually linked by the semantics of the

image features based on PLSA.

The rest of this chapter is organized as follows. Section 7.2 introduces the overall

photograph retrieval system. Section 7.3 describes the basic formula of PLSA. Color feature

extraction with dynamic partition cells and texture features are introduced in Sections 7.4.

In section 7.5, we introduce how to extract image “terms” from low-level image features by

using dynamically defined representative codewords. In section 7.6, we construct document

for each photo based on photo annotations and the image “terms” and use PLSA to analyze
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the topics of photos for photo retrieval. In section 7.7, we perform image clustering based

on PLSA model. Experimental settings and results are offered in Section 7.8. Conclusions

are given in the last section.

7.2 Overview of the proposed approach

As shown in Fig. 7.1, the proposed approach includes a preparation phase (left

part) and a retrieval phase (right part). In the preparation phase, the low level image

features are first extracted and used to select the “cohort photos” (Block (B) and (C),

middle of the figure) for each photo in the photo archive (Block (A), upper left corner).

The cohort photos, used as “terms”, together with the text/speech annotation by the user,

if available, are then fused to construct a ”document” for each photo (Block (D), lower right

corner). These “documents” and their “terms” are then used to train the PLSA topic model

(Block (E) and (F), upper right corner). The user query can then include only very few

words, in either speech or text form. Semantic-based retrieval by PLSA gives the desired

photo in the retrieval phase on the right.

7.3 Probabilistic latent semantic analysis (PLSA)

Probabilistic latent semantic analysis (PLSA) is a probabilistic framework for

semantic-based retrieval that uses a set of latent topic variables, zk, k = 1, 2, . . . , K, to

characterize the term-document co-occurrence relationships as shown in Fig. 7.2 [67]. A

query Q is treated as a sequence of n observed terms, Q = t1t2 · · · tj · · · tn, while docu-

ment di and term tj are both assumed to be independently conditioned on an associated

latent topic zk. The conditional probability of observing term tj in document di thus is
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Figure 7.1: The proposed approach: preparation phase includes document construction for
each photo and PLSA model training for photo documents, while retrieval phase is based
on PLSA.

parameterized as

P (tj |di) =
K∑

k=1

P (tj |zk)P (zk|di), (7.1)

where the probabilities P (tj |zk) and P (zk|di) are obtained from the PLSA model, which is

trained using the EM algorithm by maximizing a total likelihood function. When the terms

in the query Q are further assumed to be independent given the document, the relevance

score between the query and document is then expressed as

P (Q|di) =
n∏

j=1

[
K∑

k=1

P (tj |zk)P (zk|di)

]
. (7.2)

In this way, retrieval is based on topics rather than on terms, i.e., topically rele-

vant documents can be retrieved even using a different set of terms. Such a latent semantic

concept of retrieval is highly desired in the photo retrieval problem here, but there are

obvious limitations when using it as-is. For photos, topics clearly have to do with scene

and image features such colors and textures, since these—rather than the few words in the

annotation—are the universal language that describes all photos. However, these image
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features are represented using real numbers, while terms in the PLSA model are discrete.

That is why we use such image features to select cohort photos with similar image charac-

teristics, and use these cohort photos as the discrete terms in PLSA document construction,

as we explain below in section 7.6.

Figure 7.2: PLSA-based retrieval model

7.4 Low-level image feature extraction

7.4.1 Dynamic color features from the images

Color histogram popularly used in image retrieval is adapted here [68]. Each photo

k can be represented by a color histogram Hk, in which each entry Hk(i) is the number

of pixels belonging to the color bin i. The HSV color space is quantized into 166 colors,

including 18 levels of hues (H) * 3 levels of saturation (S)* 3 levels of values (V) + 4 levels of

grays [68]. The distance dk,l between two photos k and l is then defined by the L2 distance
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measure,

dk,l =
i=N−1∑

i=0

(Hk(i) − Hl(i))2, (7.3)

where N=166 here. If we use fixed quantization for the color space (H,S,V plus grays) for

all photos, the same scene from different cameras may have very different color histograms.

This is why we developed dynamic quantization schemes to derive dynamic color features

in order to handle photos taken by different cameras.

Figure 7.3: Dynamic color features defined by histogram-based quantization.

The dynamic quantization for color space uses the histogram-based quantization

(HQ) in section 3, previously developed for distributed and/or robust speech recognition.

In this scheme as shown in Fig. 7.3, the partition boundary vi of a color bin i, whether

for H, S, V or gray, for a camera c is based on the histogram of the pixel values for photos

taken by the camera c. The pixel values of photos taken by camera c are first sorted

to produce a cumulative distribution function Cc(v), or histogram, for H, S, V or gray,

which is different for different camera, where Cc(v0) = b0 = 0 and Cc(vN ) = bN = 1, v0

and vN are respectively the minimum and maximum pixel values. On the other hand, N

partition cells, {Di = [bi−1, bi], i = 1, 2, ..., N} are uniformly defined on the vertical scale
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[0, 1]. They are transformed to the horizontal scale by the dynamic histogram Cc(v), to be

the N partition cells {[vi−1, vi], i = 1, 2, ..., N} on the horizontal scale for the quantization

of the pixel values, where Cc(vi) = bi. Thus the partition cell [vi−1, vi] on the horizontal

scale is defined differently for different camera c. As shown in Fig. 7.3, when a different

histogram Cc(v) is used for a different camera c, the partition cell on the horizontal scale

is changed to [v′i−1, v
′
i], where C ′

c(v
′
i−1) = bi−1 and C ′

c(v
′
i) = bi. It has been shown that the

quantization defined in this way is more robust because the different statistical behaviors

of photos from different cameras are absorbed by the histograms [46, 50].

7.4.2 Texture features from images

The Gabor texture features previously proposed and frequently used for image

retrieval, produced by a bank of Gabor filters at multiple scales and orientation [69] are

adapted here, including four scales and six orientations.

7.5 Document generation for photos

7.5.1 Image “terms” extraction and “Cohort Photos” selection from low-

level image features

Two photos with different topic have different color histograms, but the difference

may be significant only on certain color bins. If these two photos both have few pixels on

many color bins, the quantized results on these bins would be the same, and there would be

many common “terms” for these photos with different topics. To solve the above problems,

the representative codewords should be dynamically defined to distinguish the difference in

main color bins and ignore other color bins in the photo quantization process.
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Figure 7.4: Image feature quantization with fixed and dynamic codewords

As shown in Fig. 7.4, to distinguish photos with different topics (Pearl Harbor and

Hanauma Bay), the difference in blue color bins should be more important than other bins.

With fixed representative codewords, the codewords may be uniformly distributed on each

color bin, and the quantization resolution is the same for all bins. Two photos with different

topics may be quantized to the same codeword and two photos with the same topic may

be quantized to different codewords. These image “terms” extracted by the quantization

process with fixed codeword cannot well represent the topical information of the photo,

and they may cause ambiguity in latent semantic analysis. By contrast, with dynamic

representative codewords, the color bins with rich information would be quantized finer and

other color bins with less information would be quantized looser. Because the difference in

the distinguished color bin is emphasized in the quantization process, two photos with the

same topic can be quantized to the same codeword and two photos with different topics can

be quantized to different codewords.

To make the representative codewords more discriminative on the color bins with

rich information, a simple way is to use each photo feature vector as a codeword in the
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feature space. For example, in the album of Hawaii traveling each photo in the photo album

is taken as a codeword and these codewords could provide more discriminative information

on blue color bins than other color bins. With all photos in the album as the representative

codewords, each photo could be represented as a group of “cohort photos” from the photo

archive with similar image characteristics. We use a total of three methods to select cohort

photos. The L2 distance in Eq. 7.3 is used as the distance measure for both color features

in Section 7.4.1 and texture features in Section 7.4.2. The first method is based simply on

the combination of ranks (i.e., the closest top 15 photos) with respect to color and texture

features. In the second and third methods, we use one set of features (color or texture)

to select the top 30% photos as the candidates, and then use the other set of features to

re-score (or re-rank) the selected photos. These three methods are actually complementary

to each other, so they are respectively used to generate a total of three sets of cohort photos

for each given photo, to be used to construct the photo documents as presented below.

7.5.2 Construction of “Documents” with fused features for the photos

Each photo in the archive must be represented as a document described by the

discrete terms used in PLSA modeling. We first define as a term every photo in the archive

(thus we have discrete terms), and then we further represent each photo as a document

composed of the terms for all of its cohort photos, which are formed as described above using

color and texture features. These terms jointly describe the image and scene characteristics

of each photo.

As described above in Section 7.5.1, we use three methods to extract cohort photos

based on image similarity. For each method, the terms for the top 15 most similar photos

are included in the document for a given photo. When the same photo appears in more

than one of the three top-15 lists, the corresponding term frequency in the photo document

is raised to emphasize its salience.
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On the other hand, the speech/text annotation for a given photo is also included

in its document. This is straightforward: we simply define word, character, and syllable

as terms (the annotation is in Mandarin Chinese) for word- and subword-level indexing as

in conventional spoken document retrieval. The subword units (character and syllable) are

used to handle OOV words as usual. For speech annotation, utterances are represented in

word- and subword-based lattices and all arcs of the lattices with posterior probabilities are

included as the terms. These word and subword terms in the lattices are given less weight

in PLSA training, in order to reduce interference from noisy word/subwords, but still add

indexing functionality if that term appears with greater weight in the lattices. In this way,

we construct photo documents with fused image/speech/text features.

7.6 Latent semantic photo retrieval with fused image/speech/text

features

The PLSA model is then trained with the constructed documents with terms based

on fused image/speech/text features. Because few photos are annotated, the obtained topics

are based primarily on image semantics, i.e., photos of the same topic look similar. The input

query can be in either speech or text form, represented as a sequence of observed word- or

subword-based terms, and the relevance score with respect to each photo (i.e., the document

with fused image/speech/text features as discussed in Section 7.5) is then calculated based

on PLSA as in Eq. 7.2. Note that there are four types of terms in each photo document:

image terms, word terms, character terms, and syllable terms. For unannotated photos,

the latter three types of terms are simply blank. The central idea of PLSA-based latent

semantic retrieval is that a query and a document may have a high relevance score even

if they do not share any terms in common, as long as they share the same topic. In this

way, unannotated photos that have no terms in common with the text/speech query (since
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the query contains only word/character/syllable terms) can also be retrieved, because the

matching is not based on term co-occurrences but on latent topics.

7.7 Image Clustering

Given the above PLSA model, the likelihood that di addresses the latent topic Tk

(i.e. P (Tk|di)), we could classify each image (document i) to the topic (or cluster k) with

the highest likelihood.

ci = arg max
k

P (Tk|di). (7.4)

On the other hand, the representative images Rk of each cluster (i.e. topic k) could

be selected as the word (i.e. term tj) which maximize the term frequency in the latent topic

Tk (i.e. P (tj |Tk)).

Rk = arg max
j

P (tj |Tk). (7.5)

7.8 Preliminary Experimental Results

7.8.1 Photo archive

In the preliminary experiments, an achieve of 347 photos for a trip to Hawaii was

used. They were taken by two different cameras, a Fujitsu and a Canon. Only 12% of these

photos were annotated by the users with text labels, in which each photo was annotated by

only one of the six categories: who, what (object and event), when, where, and others. Each

annotation includes 1 to 5 Chinese words or 2 to 6 Chinese characters. Speech annotation

was not done for lack of time.
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7.8.2 Dynamic color features across cameras

The first experiment measured how the dynamic color features using histogram-

based quantization presented in Section 7.4 can help users easily sharing photos taken by

different cameras. We arbitrarily took 18 scenes, each with a photo taken by the two

different cameras respectively, Fujitsu and Canon (F1, F2 ,..., F18 from Fujitsu, and C1,

C2,..., C18 from Canon, (Fk, Ck) are pictures taken from the same scene k). For each

given photo from one of the camera (i.e., Fk), the distance measure in Eq. 7.3 using the

color features described in Section 7.4 was used to select the closest photos from all the

other 346 photos in the archive. The rank of the corresponding photo for the given scene

k taken by the other camera (i.e., Ck) was then obtained. The average rank for these 36

images is 6.5 using the fixed color features, and 4.8 using the proposed dynamic features

with histogram-based quantization. This verified that the proposed dynamic color features

can reduce the mismatch of pixel value distributions between different cameras.

7.8.3 Latent semantic photo retrieval

Fig. 7.5 shows one example of the first 9 photos retrieved by the text query

“Hanauma Bay (in Chinese)”. In fact only one photo in the archive was annotated with

“Beautiful Hanauma Bay (in Chinese),” but many related photos were actually correctly

retrieved because of the fused image/speech/text features and semantic approach of PLSA.

However, in Fig. 7.5, photos of ranks (5) and (8) were actually taken at “Pearl Harbor,”

and are therefore irrelevant, but probably only the user can identify such difference. This

is why the performance of semantic-based photo retrieval is difficult to evaluate, because

very often only the users themselves can determine whether a photo is relevant or not. As

another example, the query “sun rise” may retrieve many photos of “sun set,” while only

the user knows which one is which. This is different from the task of “query by example”
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Figure 7.5: Retrieved photos by the text query ”Hanauma Bay”

retrieval system, in which the relevant images are simply those close to the query example.

This is why here we didn’t evaluate the overall precision/recall rates.

In our preliminary experiment, two users participated in the test, each giving 40

text queries and 40 speech queries. Each query includes 1 to 5 Chinese words, or 2 to 6

Chinese characters (or syllables). 30% of the speech queries include OOV words. For each

query, the system displayed a ranked list of the retrieved photos. The users were asked to

identify the first 5 photos along the given list he or she recognizes as irrelevant, from which

5 precision rates were calculated from rank 1 photo to each of the 5 irrelevant photos. For

example, if the second irrelevant photo was of rank 8, the corresponding precision rate is

0.75. Table 7.1 summarizes the results. For example, for text query the second irrelevant
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Table 7.1: Average precision and rank for the first few irrelevant photos retrieved (with
dynamic codewords)

First few irrelevant photos
Average precision (avg. rank for the irrelevant photo)

Text query Speech query
1st 0.776 (4.5) 0.437 (1.8)
2nd 0.764 (8.5) 0.422 (3.5)
3rd 0.744 (11.7) 0.417 (5.1)
4-th 0.715 (14.0) 0.403 (6.7)
5-th 0.678 (15.5) 0.380 (8.1)

Average of five 0.735 0.412

Table 7.2: Average precision and rank for the first few irrelevant photos retrieved (with
fixed codewords)

First few irrelevant photos
Average precision (avg. rank for the irrelevant photo)

Text query Speech query
1st 0.241 (1.3) 0.132 (1.2)
2nd 0.319 (2.9) 0.174 (2.4)
3rd 0.233 (3.9) 0.147 (3.5)
4-th 0.220 (5.2) 0.134 (4.6)
5-th 0.234 (6.5) 0.157 (5.9)

Average of five 0.249 0.149

photos have an average rank of 8.5 and a corresponding precision of 0.764, and the speech

queries gave relatively lower performance clearly due to the OOV words and very high

word error rates. Table 7.2 shows the results for photo retrieval with fixed representative

codeword. There are many irrelevant photos retrieved in the top rank, for example for text

query the second irrelevant photos have an average rank of 2.9 and a corresponding precision

of 0.319, and the speech queries gave worse retrieved results. These results shows the “image

terms” extracted from image features quantized with fixed codebook are very harmful for

latent semantic retrieval. This is because many irrelevant photos may share many common

image “terms,” and these terms would cause confusing in PLSA. In contrast, the “image

terms” extracted with dynamic codebook indeed help for latent semantic analysis as shown

in Table 7.1.
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Table 7.3: Evaluation for Image clustering

1 2 3 4 5

67% 19% 8% 4% 2%

7.8.4 Image clustering

The goal of the image clustering is to help the user to reduce the number of images

to be browsed before getting the desired image. So we design the experiment to evaluate

the performance. The system clusters all the photos into 21 clusters (i.e. about 17 photos

in one cluster in average), and then displays four representative photos for each cluster.

Giving the user a photo as the desired image, and count the number of browsed clusters

before the user find the given image. There are three users, 40 queries per user, and 120

queries are performed totally.

It can be observed from Table 7.3 that the about 67% of the desired images are

found in the first cluster. The result is pretty good because the system could help the user

find the image in an efficient way. The number of clusters user have browsed before finding

the desired image is almost below 3, only 6% exceed 3 as shown in Table 7.3.

7.9 Summary

In this chapter, we apply the concept of dynamic quantization on image features for

photograph retrieval. The PLSA model, based on image terms extracted through dynamic

quantization, significantly improves the photo retrieval results.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

Conventionally, quantization and robustness techniques are considered as two sep-

arate problems to solve. Feature quantization is for data compression and robustness tech-

niques for handling noise disturbances. Most of all quantization methods obtain good results

for clean speech and/or matched vector quantization (VQ) codebook conditions. However,

the problems for environmental noise and transmission errors are not considered in the

quantization process, because these issues are usually left out and are taken care of by

robust front-end/back-end and error concealment techniques.

In this dissertation, a novel approach of dynamic quantization is proposed, au-

tomatically includes the desired robustness in the quantization process for robust and dis-

tributed speech recognition (DSR). The dynamic codebook could well represent noisy speech

features and absorb the noise disturbance in the quantization block. These two dynamic

quantization methods, Histogram-based Quantization (HQ) and context-dependent quanti-

zation, have been shown to be robust for all types of noise and all SNR conditions for either

conventional speech recognitions systems, or DSR at all bit rates. In particular, context-

dependent HQ utilizing strong speech correlation offered significant improvements and is
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very robust against transmission errors. The configuration of HQ or context-dependent HQ

could be easily scalable based on bandwidth or noise conditions. For future personalized

and context-aware DSR environments, HQ or context-dependent HQ can be adapted to

network and terminal capabilities, with recognition performance optimized based on envi-

ronmental conditions. In addition, dynamic quantization applied on image features could

extract image “terms,” and these terms well represent the semantics of photos for PLSA to

build the semantic link among photos. In the experiments, while only 12% photos have very

“spares” annotations, the retrieval results are very encouraging. This verified that dynamic

quantization provides very distinguished image terms for PLSA training.

8.2 Future Works

Although many issues of environmental noise and transmission errors have been

investigated in the dynamic quantization, there are still several important topics opened

for further research. Each of our proposed approaches in the above five major chapters in

this thesis may be further studied to determine some possible contributions. Following list

is just to depict some issues of the dynamic quantization framework:

1. Extend the definition of quantization distortion measure to discriminate repre-

sentative codewords for speech recognition,

2. Better integration of uncertainty source in Distributed speech recognition frame-

work,

3. Jointly optimization of dynamic quantization (source coding) and channel cod-

ing,

4. Combination of various front-end feature processing approaches for improving

the accuracy of the speech recognition system.

Based on the results and techniques that we have investigated and built-up, there are several

topics that we could extend our current work for further research in dynamic quantization.
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In Chapter 3, we successfully jointly consider the issues of compression and robust-

ness, and the integration could be applied for both robust and distributed speech recogni-

tion. Another interesting idea is to jointly consider compression and discrimination issues.

In Chapter 3, the hidden codebook on the vertical scale is derived based on uniform, Lapla-

cian and Gaussian distribution via Lloyd-Max algorithm, which aims to minimize the overall

quantization distortion. Every data point is treated with the same importance in the quan-

tization process. However, there may be some regions in the feature space more critical

than other regions. The critical region has smaller margin among HMM models and small

distortion for samples in these critical regions could cause recognition errors. Therefore, the

samples in the critical region should be carefully considered to enlarge the margin among

HMM models. On the other hand, quantization distortion in some features may be more

important than distortions in others. The quantization distortion sensitivity for different

feature parameters should be integrated in the quantization distortion measure to optimize

the recognition performance.

In Chapter 4, we jointly consider the uncertainty caused by both environmental

noise and quantization errors. In Chapter 5, the reliability of received feature vectors

is considered in Viterbi decoding in the third stage of error concealment. For distributed

speech recognition, it would be better to jointly consider these three source of uncertainties:

quantization distortion, environmental noise and transmissions. The above uncertainty

estimation is derived from feature perspective. On the other hand, the reliability could

be estimated based an entropy-based measure to determine the discriminating ability of a

feature parameter in identifying the correct acoustic models [70, 72, 71]. The uncertainty

or reliability estimated from feature or model perspective could be further integrated in

Viterbi decoding to improve the recognition performance.

In the three-stage error concealment(EC) framework in Chapter 5, the error de-

tection is based on the characteristics of HQ features. There is no channel coding scheme
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applied on the encoded HQ symbols. If the source coding and channel coding are considered

jointly, the recall and precision rates of error detection could be further improved. Also,

with channel coding, the soft decision decoding at receiver could offer channel reliability

information for weighted Viterbi decoding.

In Chapter 6, the context-dependent quantization exploiting speech correlation in

the quantization process improves the robustness against environmental noise and transmis-

sion errors. This is probably because the speech context change could provide additional in-

formation for human perception and speech recognition. The concept of context-dependency

could be also applied to other feature transformation methods. For example, the transfor-

mation of Histogram equalization (HEQ) could depend on not only the order-statistics of

the current feature parameter, but also the left and right context parameter. The cor-

relation of order-statistics in consecutive frames could improve the robustness of feature

parameters.

To the best of our knowledge, the above concept has not been reported in the

literature yet. These future works are very important and meaningful in the research area

of robust and distributed speech recognition.
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