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Abstract

Split Vector Quantization (SVQ) is popularly used in a Distributed Speech Recognition
(DSR) framework, in which the speech features are vector quantized and compressed at
the client, transmitted via wireless networks, and recognized at the server. However,
recognition accuracy is inevitably degraded by environmental noise at the input,
quantization distortion and transmission errors; these three sources of disturbances
naturally mix up with each other and further complicate the problem. The mismatch
between the pre-trained VQ codebook and the constantly changing environmental
conditions at the moving client is one of several major problems. In this dissertation, two
dynamic quantization methods are proposed for both robust and distributed speech
recognition.

The first approach, Histogram-based Quantization (HQ), is a novel approach in
which the partition cells of the quantization are dynamically defined by the histogram or
order statistics of a segment of the most recent past values of the parameter to be

quantized. This dynamic quantization scheme based on local signal order statistics is
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shown to be able to solve to a good degree many problems related to the mismatch with a
fixed VQ codebook. This concept is extended to Histogram-based Vector Quantization
(HVQ). A Joint Uncertainty Decoding (JUD) approach is further developed for it, in
which the uncertainty caused by both environmental noise and quantization errors can be
jointly considered during Viterbi decoding. A three-stage error concealment (EC)
framework based on HQ is also developed to handle transmission errors. The first stage
detects the erroneous feature parameters at both the frame and subvector levels. The
second stage then reconstructs the detected erroneous subvectors by MAP estimation,
considering the prior speech source statistics, the channel transition probability, and the
reliability of the received subvectors. The third stage then considers the uncertainty of the
estimated vectors during Viterbi decoding. At each stage; the error concealment (EC)
techniques properly exploit the inherent robust nature of Histogram-based Quantization
(HQ).

The second approach is context-dependent quantization, in which the representative
parameter (whether a scalar or a vector) for a quantization partition cell is not fixed, but
depends on the signal context on both sides, and the signal context dependencies can be
trained with a clean speech corpus or estimated from a noisy speech corpus. This results
in a much finer quantization based on local signal characteristics, without using any extra
bit rate. The context-dependent quantization could be integrated with HQ proposed above.
Both partition cells and representative values are dynamically defined in the integrated
dynamic quantization process.

These two dynamic quantization techniques are not only useful for DSR, but are also

attractive feature transformation approaches for robust speech recognition outside of a
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DSR environment. In the latter case, the feature parameters are simply transformed into
their representative parameters after quantization. The robust nature of dynamic
quantization is analyzed in detail. HQ performs the transformation by block-based order
statistics, small disturbances of the feature parameters can be absorbed by the histograms
to a good extent. As a result, the proposed HQ scheme can be useful for both robust and
distributed speech recognition. For robust speech recognition, HQ is used as the front-end
feature transformation and JUD as the enhancement approach at the back-end recognizer.
For context-dependent quantization, exploiting high correlation in speech signals also
significantly improves the robustness against transmission errors and environmental
noise.

All the above claims about speech recognition have-been verified by experiments
using the Aurora 2 testing environment, and significant performance improvements for
both robust and/or distributed speech recegnition over conventional approaches have
been achieved. In addition, we-also apply the concept of dynamic quantization on image
features for photograph retrieval. Quantization with dynamic partition cells reduces the
mismatch of pixel value distributions between different cameras; thus photos taken from
different cameras are more easily retrieved. Quantization with dynamic representative
codewords emphasizes more important color bins and texture features; thus the photo
difference in more discriminative feature dimension could be preserved well in the
quantization process as well. Experimental results show that dynamic quantization on

image features can significantly improves photo retrieval results.
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Chapter 1

Introduction

1.1 Background

With the rapid development of network and wireless technologies, people could
access network content from anywhere at anytime via hand-held devices such as personal
digital assistants (PDAs) or cellular phones.  For theses pocket sized devices with smaller
screens and little keyboard, speech input would make it easier for users to interact with
system in a natural manner. A.wide variety of potential applications for automatic speech
recognition (ASR) technologies have been highly anticipated [1]. But the recognition accu-
racy of ASR systems is always the core concern, which is very often seriously degraded by
the mismatch between training and testing environments. This mismatch could come from
the speaker difference (i.e. vocal tract length, dialect), or acoustic conditions (i.e. back-
ground noise, channel effects, room reverberation). Hence robustness for ASR technologies
with respect to environmental disturbances is definitely a key issue when considering real
world applications .

On the other hand, hand-held devices have limited computation resource, mem-
ory, transmission bandwidth, and battery energy. Distributing the speech recognition task

across the network could become an attractive alternative [2]. The client-server framework



for Distributed Speech Recognition (DSR) has been widely accepted, in which speech fea-
tures are extracted and compressed at hand-held clients, transmitted via wireless networks,
and recognition is performed at the server [3]. However, recognition accuracy for DSR is
inevitably degraded by environmental noise at the input, quantization distortion and trans-
mission errors; these three sources of disturbances naturally mix up with each other and
further complicate the problem. The mismatch between the pre-trained VQ codebook and
the constantly changing environmental conditions at the moving client increases the quanti-
zation distortion. Also, speech features corrupted by noise are more sensitive to transmission
errors. Many approaches extract robust feature parameters before quantization at the client
to reduce codebook mismatch in DSR and make features less sensitive to transmission er-
rors. However, the meager computational resources available on hand-held devices should
be considered for many useful advanced robust approaches [4]. The reduction of floating-
point calculation to fixed-point implementation has'to be, considered for filtering-based
robustness approaches [5, 6, 7, 8]. Principle component analysis (PCA), Linear discrim-
inant analysis (LDA) filters are very successful| data-driven robustness approaches which
aim to derive optimal sets of time, filtering coefficients for a:specific recognition task and
environment according to some optimization eriterion {6, 8]. The attractive performance
of these data-driven methods may not be anticipated when the environmental noise and
acoustic conditions are unknown and changing at the moving client. Feature normalization
techniques may not be applied on the client end either under the recommendation of a

standardized VQ codebook [9, 10].

In this dissertation, we aim at solving the problems in DSR, including environ-
mental noise, quantization distortion, and transmission errors. The proposed method can
also be used as a robust feature transformation method for robust speech recognition out-
side of a DSR environment. The primary results obtained in this thesis is presented in the

following section.



1.2 Primary Achievements of this Dissertation

In this dissertation, we propose a dynamic quantization method for distributed
and robust speech recognition. Both partition cells and representative values could be
dynamically defined based on local signal statistics. A Joint Uncertainty Decoding (JUD)
approach is further developed to consider the uncertainty caused by both environmental
noise and quantization errors. A three-stage error concealment (EC) framework is also
developed to handle transmission errors. These approaches are presented in Chapters 3
to 6. The concept of dynamic quantization could be easily applied on image features for

photograph retrieval as described in Chapter 7.

We first review some basic feature quantization and error concealment techniques
in Chapter 2, including the ¢onventional split.vector quantization(SVQ), two-dimensional
discrete cosine transform coding(2D-DCT),-error detection and correction methods, erro-
neous feature estimation techniques;~and reliability estimation in Viterbi Decoding. We
also present the speech/noise corpora used in this dissertation for experiments.

In Chapter 3, Histogram-based Quantization (HQ) is proposed to solve the many
related problems mentioned above..HQ is anovel approach in which the partition cells for
quantization are dynamically defined by the histogram or order statistics of a segment of
recent past samples of the parameter to be quantized. It is actually a dynamic quantiza-
tion, completely based on the local statistics of the signal, not on any distance measure, nor
directly related to any pre-trained codebook. On one hand, in the case of DSR, many of the
above-mentioned problems that arise from a fixed pre-trained VQ codebook in conventional
DSR framework are shown to be solved to a good extent with this new approach, because
the quantization is dynamic and not solely based on a fixed pre-trained codebook at all;
therefore the mismatch between the corrupted feature vectors and a fixed pre-trained code-
book is reduced. This concept of HQ is then further extended to Histogram-based Vector

Quantization (HVQ). On the other hand, HQ is also shown to be useful as a good approach



for robust feature transformation, which can produce more robust features, because most
of the noise disturbances can be automatically absorbed by the dynamic histogram. This
robust nature of HQ against environmental noise is extensively explored and analyzed, in-
cluding considering quantization resolution (or required bit rate), noisy environment and

transmission conditions.

In Chapter 4, Joint Uncertainty Decoding (JUD) is developed to be applied with
HQ for improved recognition accuracy, and the approach was evaluated for both cases of
robust speech recognition and DSR. For both robust and/or distributed speech recognition,
feature vectors corrupted by environmental and/or quantization errors used at the recog-
nizer can be viewed as random vectors with, uncertainty. Uncertainty decoding approaches
have been proposed to consider such uncertainty-[11, 12;:13, 14, 15, 16|, including han-
dling those produced by envirenmental noise [11, 13, 14] and estimating the uncertainty
generated in the quantization process [15, 16]. However, in DSR with environmental noise,
it is naturally better to consider environmental noise and quantization errors jointly. But
this is difficult because environmental noise is hidden in the quantized codewords, or mixed
with quantization errors. In Joint: Uncertainty. Decoding (JUD), we jointly consider the
uncertainty caused by both the environmental noise-and the quantization errors in Viterbi

decoding under the framework of HQ.

Except for quantization errors and environmental noise, transmission errors caused
by communication channel is also a key issue in DSR. In Chapter 5, a three-stage error
concealment (EC) framework based on Histogram-based Quantization (HQ) for DSR is
proposed, in which noisy input speech is assumed and both the transmission errors and
environmental noise are considered jointly. The first stage detects the erroneous feature
parameters at both the frame and subvector levels. The second stage then reconstructs
the detected erroneous subvectors by MAP estimation, considering the prior speech source

statistics, the channel transition probability, and the reliability of the received subvectors.



The third stage then considers the uncertainty of the estimated vectors during Viterbi de-
coding. At each stage, the error concealment (EC) techniques properly exploit the inherent

robust nature of HQ.

In addition to the dynamically defined partition cells in HQ for different environ-
ments, in Chapter 6, we propose a new concept of context-dependent quantization, in which
the representative parameter (whether a scalar or a vector) for a quantization partition cell
is not fixed, but depends on the signal context on both sides. The signal context depen-
dencies can be trained with a clean speech corpus or estimated from a noisy speech corpus.
This results in a much finer quantization based on local signal characteristics, without using
any extra bit rate. This approach is equally applicable to all (scalar or vector) quantization
approaches, and can be used.either for signal compression in DSR or for feature transfor-
mation in robust speech recognition. In the latter case, each feature parameter is simply
transformed into its representative parameter after quantization. This concept is integrated
with HQ, and both partition cells and-representative values of the context-dependent HQ

is dynamic defined based on local statistics.

The concept of ‘dynamic quantization-could be used in other applications. In
Chapter 7, we apply dynamic quantization 6n image features for photograph retrieval. The
partitions of color space are dynamically defined based on the histogram of photos taken
from each camera. Quantization with dynamic partition cells reduces the mismatch of
pixel value distributions between different cameras and photos taken from different cameras
are more easily retrieved. For the quantization of color histogram features and texture
features, we use dynamic representative values to preserve discriminative information. For
each photo, different sets of features are considered with difference importance to select
representative codeword. In this way, the photo difference in the more discriminative feature

dimension could be preserved well in the quantization process.

At last, we conclude this thesis in Chapter 8, by summarizing the works that



we have accomplished. There are still several issues regarding to dynamic quantization
techniques that we have not been able to investigate. These issues will be discussed in the

future works in Chapter 8.




Chapter 2

Preliminaries — Background

Review

2.1 Introduction

In this chapter, we briefly review existing feature quantization approaches in sec-
tion 2.2, including conventional split vector quantization (SVQ) and two-dimensional dis-
crete cosine transform coding (2DDCT). The three categories of error concealment tech-
niques are introduced in Section 2:3, including error detection and correction, erroneous
feature estimation, and weighted Viterbi Decoding. Finally, the speech corpora and wire-
less channel simulation conditions used in this dissertation for experiments are depicted in

Section 2.4.

2.2 Review of Existing Feature Quantization Approaches

2.2.1 Split Vector Quantization (SVQ)

Split Vector Quantization (SVQ) has been recommended by the ETSI-DSR standard[17].

The ETSI-DSR standard defines a feature extraction front-end and an encoding scheme for



compressing speech features. The feature extraction front-end generates a 14-element vector
consisting of 13 cepstral coefficients (C1-C12 and C0) and log Energy. The feature vector is
directly quantized with a split vector quantizer. The 14 coefficients are grouped into 7 pairs,
and each pair is quantized using its own VQ codebook. The VQ codebook is pre-trained and
fixed for each pair. The codebook size is 64 for the first 6 pairs and 256 for the pair CO and
logE. The closest VQ centroid is found using a weighted Euclidean distance to determine
the index, and the weight matrix is identity for the first 6 pairs (C1C2,..., C11C12). For
the pair CO and logE, two sets of weight matrix are defined for different speech sampling

rate.

Each feature vector is quantized to 44 bits via SVQ. Two of the quantized 10 ms
mel-cepstral frames are grouped together as a pair. ‘A" 4-bit CRC is calculated on the frame-
pair and is appended to it, resulting in a 92-bit long frame-pair packet. These packets are
concatenated into a bit-stream"for transmission yia a GSM channel with an overall data

rate of 4.8 kbps.

2.2.2 Transform Coding

The above standard compression method, SVQ, s an intra-frame vector quantiza-
tion. This intra-frame compression is not very effective in bit rate because in the feature ex-
traction front-end the transformation from mel-filter bank output to MFCC lets the MFCC
coefficients uncorrelated. On the other hand, there is high correlation in consecutive frame
because of the overlap of processing window in the front-end processing. The transmission
rate could be further reduced if inter-frame correlation could be properly utilized in the
quantization process [18]. Also, vector quantization performed in a transformed domain
(obtained with transforms such as Discrete Cosine Transform (DCT) [19, 20, 21] has been
shown to be able to efficiently improve the desired robustness for feature vectors under

environmental disturbances.
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Figure 2.1: The system of two-dimensional diserete cosine transform coding (2DDCT).

The two-dimensional discrete cosine transform coding (2D-DCT) method has been
popularly used in image compression. This-2D-DCT scheme was modified for the quan-
tization of speech features [20, 21]:" As*shown in Fig. 2.1, the input features are MFCC
coefficients (i.e., C1 to C12 plus log-energy). First, buffer 6 frames to form 2 (6 x 6) MFCC
matrix (B1 and B2), and then perform 2D-DCT on them to get 2 transformed matrix (S1
and S2). Because the coefficients in the first 2 columns are often with high energy, we
can truncate the last 4 columns and only reserve the first 2 columns. Then, we perform
scalar quantization on the reserved 24 coefficients, and transmit these bit patterns over wire-
less channel. Finally, the log-energy coefficients are quantized by inter-frame V(Q method.
Also, an iterative bit allocation algorithm was carefully designed to make use of every bit
transmitted in an efficient way. [21]. Graceful degradation of recognition performance is

achievable at a bit rate of 3.4 kbps.
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2.3 Review of Existing Error Concealment Approaches

Various packet loss compensation schemes have been proposed for audio stream-
ing applications [22] to reconstruct the time-domain signal. However for DSR applications
the challenge is to maintain good speech recognition performance. Various error conceal-
ment (EC) techniques have been proposed to handle transmission errors problem in DSR.
In section 2.3.1, we would describe the first group of techniques, which aims to reduce
transmission errors through error detection and correction [17, 23, 24]. The second sets of
techniques are presented in 2.3.2, which reconstructs the feature vectors by estimating the
erroneous sub-vectors [25, 26, 27, 28, 29]. The third set of methods consider the reliability
of the estimated vectors at the decoding stage [30;:31, 32], as will be described in section

2.3.3.

2.3.1 Error detection and correction

The ETSI standard uses a 4-bit cyclicredundancy check (CRC) to a pair of MFCC
vectors to detect transmission errors [17]. When a bit error being detected, the pair of
MFCC vectors is declared lost. To aveid consecutive frame-errors, this CRC-based detection
is modified to encode MFCC vectors individually using the 4-bit CRC [24]. This reduces the
number of consecutive frame errors but it requires additional CRC bits. Channel coding and
interleaving is very helpful for reducing the consecutive bit errors [27, 37]. Reed-Solomon
coding is one of the forward error correction methods, and it is very effective in protecting
feature vector stream from channel errors [23]. In particular, using unequal amounts of
error protection is helpful for minimizing the overall word error rate as channel conditions
becoming worsen. A further method investigates that bit errors in feature vectors, which
cause incorrect observation probabilities, have more serious influence on recognition results
than the loss of feature vector [30]. As such a CRC block code is proposed which varies

the level of protection according to the channel conditions in an effort to increase the error
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detection ability for bit errors [30].

2.3.2 Erroneous Feature Estimation

The most simple way to deal with lost vectors is to splice together the sequence of
received vectors and input these into the speech recognizer [25]. A better alternative is to
repeat the vector received immediately before packet loss. This ensures that the timing of
the feature vector stream is maintained and adds no delay to the system. A similar scheme
is to estimate lost vectors by duplicating the nearest correctly received vector either before
or after the loss [26]. There are simple techniques which provide estimates of the static
and/or dynamic component of lost feature vectors. Better methods include interpolation of
the most recently received vector in the event of loss [27, 28]. Estimation of lost vectors by
using speech prior probabilities derived from VQ codebooks has also been shown effective

in achieving performance gains [29}-

2.3.3 Weighted Viterbi Decoding

The final set of error coneealment.methods aims to minimize the degradation of
recognition performance caused by“transmission errors by modifying the decoding process
of the recognizer. With recognition on the server side, the channel characteristics influences
the reliability of the decoded features. When channel characteristics get worse, one can no
longer guarantee the confidence in the decoded feature. The weighted Viterbi recognizer,
presented in [38], modifies the Viterbi algorithm to take into account the reliability in the
decoded feature. In this way, more reliable feature vectors are emphasized in the decoding
process. Scaling the observation probability of a restored feature vector according to its
reliability gives increased robustness over just modifying the features. The reliability used
in weighted Viterbi decoding could be estimated in terms of its temporal distance from

a correctly received vector [30, 31], or based on the soft channel output or the speech
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characteristics [32, 33, 34]. There are several systems deal with lost vectors entirely at the

decoding stage through missing feature theory [39, 40].

2.4 Experimental environments

2.4.1 Speech Corpora

All the experiments reported in this paper were conducted on the AURORA 2
testing environment [41] based on a corpus of English connected digit strings. Two training
conditions (clean-condition and multi-condition) and three testing sets (sets A, B, and C)
were defined in AURORA 2. Both clean and noisy speech signals were prepared by filtering
the TI database 8 (both training and testing) using a telephone-bandwidth bandpass filter.
The testing set A included four types of noise which were used in the multi-condition training
(subway, babble, car and exhibition), while‘the testing set B included another four types of
noise not used in the multi-condition training (restaurant, street, airport and train station).
The testing set C was filtered with a MIRS (Modified Intermediate Reference System, which
simulates the band-pass filtering [300-3400 Hz] behavior of the telephone channels in the
public switched telephone networks [PSTN]) characteristic filter [41, 58] before adding two
additive noise types (subway in set A and stréet in set B). In all sets A, B, and C, the
signal-to-noise ratio (SNR) tested ranged from 20 to -5 dB. The MFCC extraction follows
the WI0OO7 front-end [41] defined in AURORA 2 with frame length 25 ms and frame shift
10 ms, which gives 13 coefficients (C1-C12 and log energy) to be used to obtain the delta

and delta-delta features together for recognition.

2.4.2 Wireless Channel Simulation

General Packet Radio Service (GPRS) was chosen in this research as an example
for wireless channels in the experiments; GPRS was developed by ETSI based on a packet

switching framework to enhance the GSM system. GPRS shares the GSM frequency bands
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and uses several properties of the physical layer of the GSM system. It includes four different
error control coding schemes, CS1-CS4, each with a different code rate.

The GPRS simulation software used in the tests described here was developed by
the Wireless Communication Laboratory of National Taiwan University [32], in which all
complicated transmission phenomena have been carefully simulated in detail, such as the
propagation model, multi-path fading, Doppler spread, etc. The GPRS simulator considers
both large-scale fading (slow fading) and small-scale fading (fast fading) when the client
is travelling. Large-scale fading is caused by diffraction and shielding phenomena due to
terrain variation (e.g. reflections, refractions and diffractions of the signal from buildings,
trees, rocks). The large-scale fading results in relatively slow variations in the mean signal
power over distance. The large-scale fading is modeled as a log-normally distributed random
variable (with a zero dB mean and a standard deviation of 4 to 10 dB) in our experiments.
The experimental results presented below are'based on the following simulation configura-
tions: typical urban (TU, an environment more frequently encountered with a more severe
fading problem), the client traveling at speeds of 3, 50,100, 250 km/hr, single antenna,
hard decision at the receiver, and CS4 (i.e., without. any protection) coding scheme, which
corresponds to a transmission bit error rate of 5.3% for a client traveling at a speed of 3

km /hr.

2.5 Summary

In this chapter, we briefly reviewed several existing feature quantization approaches
and different kinds of error concealment techniques. These two distance-based quantization
method would be implemented to compare with the proposed dynamic quantization in
chapter 3. In chapter 5, the three-stage error concealment techniques would integrate the
idea of these three categories of concealment method. Finally, the speech corpora and

wireless channel characteristics used in this dissertation were also addressed.
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Chapter 3

Dynamic Quantization I -

Histogram-Based Quantization

3.1 Introduction

Various schemes for compression of ASR features have been proposed in recent
years. Distance-based vector quantization (V@) has been found very useful for clean speech
and/or matched VQ codebook conditions [16, 42] and Split Vector Quantization (SVQ) has
been recommended by the ETSI standard[17]. But environmental noise and quantization
distortion naturally tend to jointly degrade recognition performance. The quantization pro-
cess may increase the distance between clean and noisy features, and environmental noise
may also move the feature vectors to a different quantization cell. The quantization dis-
tortion is actually related to the bit rates, which is another key parameter in DSR. The
higher bit rate required for lower quantization distortion naturally becomes another diffi-
cult issue for transmission. Vector quantization or SVQ performed in a transformed domain
(obtained with transforms such as Discrete Cosine Transform (DCT) [19, 20, 21] or His-

togram Equalization (HEQ) [43, 44, 45]) has been shown to be able to efficiently improve
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the desired robustness for feature vectors under environmental disturbances; differential
encoding of transformed coefficients was shown to be very helpful as well [18]. However,
while all these approaches have proven more robust than the conventional SVQ (i.e. per-
forming SVQ on MFCC directly), they are still based on VQ or SVQ, which are distance-
and codebook-based. As long as the quantization is based on a pre-trained codebook and
some distance measure with the codebook, the mismatch between VQ codebook and testing
feature vectors under lower SNR conditions remains a difficult problem.

In this chapter, Histogram-based Quantization is proposed to solve the above
problems. Below in Section 3.2 we introduce the basic idea and formulation of Histogram-
based Quantization (HQ). In section 3.3, the one-dimensional HQ is extended to Histogram-
based Vector Quantization (HVQ). Then, the robust nature of dynamic quantization is
analyzed in detail in section 3.4. Experimental results are-offered in Sections 3.5, with the

summary finally given in Section 3.6.

3.2 General Formulation of HQ

The concept of HQ is to perform.quantization-of a feature parameter y; at time
t based on the histogram or order statistics of that feature parameter within a moving
segment of the most recent past 17" samples, [y, 7.7, Ui g5 Uyl = Y: 7, up to the time
t being considered [46]. As shown in Fig. 3.1, the values of these T' parameters in Y;
are sorted to produce a time-varying cumulative distribution function C'(v), or histogram,
which changes for every time instant ¢, where C'(vg) = by = 0 and C(vy) = by = 1,09
and vy are respectively the minimum and maximum values within Y; 7. Also shown in Fig.
3.1, N partition cells, {D; = [bi—1,bi],7 = 1,2,..., N}, together with their corresponding
representative values, {z;,7 = 1,2,..., N}, are defined on the vertical scale [0, 1], which are
derived from a standard Gaussian N (0, 1) with cumulative distribution Cy(v) via the Lloyd-

Max algorithm [47, 48]. Note that the boundaries {b;,7 = 0,1,2,..., N} on the vertical
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scale can be either uniformly or non-uniformly distributed [46]. In the case of non-uniform
quantization, the Lloyd-Max algorithm can be performed with respect to any distribution,
including the distribution of training sets. Since different training sets may have different
distributions, we performed the Lloyd-Max algorithm based on uniform, Laplacian and
Gaussian distributions in the preliminary experiments. The best performance was obtained
with Gaussian distribution under noisy environments, probably because the distribution of
feature parameters under noisy environments on the vertical scale is closer to a Gaussian
distribution. Using the dynamic histogram C'(v) constructed with Y; 7, these partition
cells on the vertical scale, {D;,i = 1,2,..., N}, are then transformed to the horizontal
scale to be the N partition cells [v;—1,v],4=1,2,..., N on the horizontal scale for the
quantization of y;, where C'(v;) = b;. In-other words, the partition cell [v;_1,v;] on the
horizontal scale is obtained from the partition eell D; = [b;_1, b;] on the vertical scale via
the dynamic histogram C'(v). Thusithe partition cell fv;,_;, v;] on the horizontal scale is
dynamic. However, the representative values {z;,i = 1,2,..., N} for these partition cells
{[vi—1,vi],i = 1,2,..., N} on the horizontal scale are fixed, and are transformed from the
representative values {z;,4.=1,2,..., N} previously eobtained on the vertical scale by the
histogram Cy(v) of the standard Gaussian.

The above formulation indicates that HQ is based on a hidden codebook {(D;, z;),i =
1,2,...,N} derived from a standard Gaussian on the vertical scale, which is then trans-
formed by a dynamic histogram C(v) into time-varying partition cells [v;_1,v;], and by a
fixed histogram Cj(v) into the fixed representative values z;, both on the horizontal scale.
The quantization here is then similar to all conventional quantization processes, in that it
is a mapping relation which maps the present parameter y; to a fixed representative value
z;, if y; is within the partition cell [v;_1,v;], except that this partition cell is dynamically

defined,

Yy — Zi, if by < C(yt) < bi, or v.1 < 1y < v,
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C(Ui_1):bi_1,0(vi):bi,i:1,2,...,N. (3.1)

Note that the quantization codebook here includes a set of dynamic partition cells {[v;_1,v;],i =
1,2,...,N} and a set of fixed representative values {z;,7 = 1,2,..., N}. It will be shown
below that many practical problems mentioned previously can be automatically solved to
a good extent in this way. Also, although here HQ is a quantization process, it can also
be used as a feature transformation process offering the desired robustness as will also be
discussed below, in which each parameter y; is transformed to its representative value z; for

the corresponding partition cell.
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Figure 3.1: The general formulation of Histogram-based Quantization (HQ).

3.3 Histogram-Based Vector Quantization (HVQ)

The above general formulation of one-dimensional HQ in Fig. 3.1 can be eas-
ily extended to HVQ with more than one dimension. Consider SVQ as an example[17],
in which two MFCC parameters (e.g. ¢; and ¢3) can be quantized jointly by a two-
dimensional VQ codebook. Extending from the one-dimensional HQ mentioned above,

a moving segment of the most recent past T samples of the first parameter ygl) up to time
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Figure 3.2: The concept of Histogram=based Vector Quantization (HVQ) using two
dimensions.

t, [yt(i)TH, . ,y,@l, ygl)] = Y;(%F), gives a histogram Cy (v(1) for ygl), and a similar segment

of the past T samples of the second parameter yt(Q) up to time t, Yt(? , gives another his-

togram Co(v(®) for y§2). The formulation below is exactly the same as the one-dimensional
HQ in Fig. 3.1, except that here both the vertical and horizontal axes are no longer one-
dimensional axes, but are extended to vertical and horizontal two-dimensional planes as
shown in Fig. 3.2. On the vertical plane with coordinates (b(1),b(?)), we have a two-
dimensional hidden codebook {(D;, z;),i = 1,2,..., N}, which is derived from a bi-variate
standard Gaussian via the LBG algorithm [60]. Every point (b(),5()) on this plane is then
transformed by the above-mentioned dynamic histograms C;(v(1)), Cy(v(?) back to a point
(v, v?)) on the horizontal plane, where C;(v()) = b, Cy(v?)) = b3, The set of all
these points (v("),v(?)) on the horizontal plane transformed from those points (6", () on

the vertical plane in a certain partition cell D; then forms the dynamic partition cell ¢); on
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the horizontal plane:
(W, @) e @, if 4V, € Dy,

Cr(vWy =M Cy(v®) =p@) i =1,2,...,N. (3.2)

On the other hand, the representative points z; for each partition cell D; on the vertical plane
are similarly transformed back to the fixed representative points z; on the horizontal plane,
except that the transformation is performed by two fixed histograms Co(v™), Cy(v(?)), both
derived from a one-dimensional standard Gaussian. The quantization here is a mapping
relation just as one-dimensional HQ in Eq. (3.1), which maps the present parameter set

( 1 (2

v, ', y;) to a representative value z; for the dynamically defined partition cell Q;,

(", ) — z it (Cid”), Caln™)) € by,

alle” 1) € Q=1,2, ., N. (3.3)

Based on the above, the two-dimensional HVQ can be performed dynamically on
the (v, v()) plane. For the present parameter pair (ygl), yt(2)) at time ¢, the two dynamic
histograms C1 (v(")) and Cy(v®)) based on Y;(? and Y;(:Q,,) give a point (Cl(yt(l)), 02(y§2))) on

the vertical plane. The partition:cell 'D; on the vertical plane to which this point belongs

then determines the partition cell ¢); and representative point z; on the horizontal plane.

3.4 Discussions about Robustness of HQ (and HVQ)

Conventionally, feature quantization is for data compression and robust features
are for handling noise disturbances. The proposed HQ, however, includes the desired ro-

bustness in the quantization process.

3.4.1 The Robust Nature of HQ

Consider the conventional SVQ as in Fig. 3.3: the mismatch between the pre-

trained fixed VQ codebook and the current corrupted testing features may significantly
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Distribution of noisy testing features
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Figure 3.3: Mismatch between the pre-trained fixed VQ codebook and the corrupted testing
features.

increase quantization distortions.~With the-proposed HQ, however, the actual partition
cells are dynamically adjusted according to local statistics.. For example, as shown in Fig.
3.1, C(v) may be changed to C’(v) when disturbances are encountered. The partition cell
on the horizontal scale for the disturbed parameter.y, may also be changed to [v]_y,v]],
where C'(v_;) = b;_1 and C’(v}) = b;, which can be quite different from [v;_1,v;]. Nev-
ertheless, the partition cell D; and the' corresponding representative value z; for y; may
remain unchanged as long as v,_; < y; < v, since D; is fixed on the vertical scale, while
the disturbances from y; to y; are on the horizontal scale, and z; is fixed on the horizontal
scale. Since the actual partition cells are no longer fixed as in conventional SVQ methods,
the codebook mismatch problem mentioned above can thus be avoided to some extent. In
other words, HQ is based on the partition cells D; fixed on the vertical scale and the dy-
namic histogram C(v), and is therefore less sensitive to disturbances on the horizontal scale:
disturbances on the horizontal scale are actually absorbed by the dynamic histogram to a

certain degree. When a segment of parameters Y; 7 are corrupted by small disturbances,

all individual values may be changed (C(v) is disturbed into C’(v)), but the order statistics
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Figure 3.4: The robust nature expressed in terms of HVQ

which produce the partition cells on the horizontal scale may remain similar, and the rep-
resentative values z; remain fixed; therefore the changes tothe quantization results may be
very limited. Such robustness is obtained by local order statistics for the most recent past
values of feature parameter. This is why HQ is able to_handle various noise conditions as

will be shown in the experiments presented: below.

The robust nature of HQ can be better visualized for the case of HVQ mentioned
above as shown in Fig. 3.4. The distribution of (¢, c2) for the testing features may be quite
different from that of the VQ training corpus. This mismatch is the source of the primary
difficulties in the conventional VQ approaches with fixed codebooks. With the proposed
HQ approach, however, we no longer rely on a fixed codebook on the (c1,c2) plane, but
instead we let the quantization codebook (or look-up table) move with the testing data
distributions, because the quantization is now based on the distribution or histogram on
the vertical scale. As can be found in Fig. 3.4, the shift of vectors (¢1, ¢2) due to disturbances

becomes almost irrelevant to the quantization process.
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3.4.2 Comparison with Histogram Equalization (HEQ)

The popularly-used HEQ equalizes the cumulative distributions (or histograms)
of both the training and testing feature parameters in each temporal span, and has been
shown to produce very robust features for recognition [43, 44, 45]. HQ actually borrows the
concept from HEQ. The experiments below will show that HQ can be used as an attractive
feature transformation approach for robustness purposes as well, and it even performs better
than HEQ. It is important to explain why. HEQ actually performs point-to-point feature
transformation based on the order statistics, which can absorb the small disturbances to
a good degree, although some residual disturbances inevitably remain because the point-
based order statistics are in any case more or less disturbed. Quantile-based HEQ [49]
performs a piecewise-linear approximation of HEQ.-It reduces the computation complexity
for histogram estimation, but.does not change the point-based nature of the transformation.
HQ, on the other hand, performs the transformation block by block; therefore, the small
disturbances within each block (D; in Fig. 1 3.1) are absorbed by the block-based order
statistics. The block-based order statistics certainly introduce uncertainty as well, but with
the proper choice of the number of quantization levels N or the block size, this uncertainty
may be compensated for by the stochastic nature of the Gaussian mixtures in the HMMs.
HEQ can be considered the limiting case of HQ when the number of quantization levels NV
becomes infinite. As will be shown below, the recognition performance certainly depends
on the value of N considering the noise conditions and so on, but N being infinite is not

necessarily the best.

3.5 Experimental Results

All the experiments reported here were based on order statistics over segments of
most recent past parameter values as mentioned in section 3.2, so there was no time delay.

Better results were obtainable if this no-delay condition was removed.
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3.5.1 HQ as a Feature Transformation Method

In the first set of experiments, we considered the case of robust speech recognition
apart from the DSR environment, in which one-dimensional HQ was used as a feature trans-
formation technique, that is, each feature parameter y; is transformed to the representative

value z; for the corresponding partition cell as in Eq. (3.1) to be used for recognition.
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Figure 3.5: Accuracies for MFCC baseline and those transformed by MVA filtering, PCA
filtering, HEQ and HQ respectively under clean condition training: (a) averaged over all
SNR values but separated for different types of noise; (b) averaged over all types of noise
but separated for different SNR values; and (c) averaged over all types of noise and all SNR
values for different testing sets.

The results are shown in Fig. 3.5(a), (b), and (c¢). The recognition accuracies

for baseline experiments with original MFCC features, compared to those with MFCC
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parameters filtered by the MVA filter (mean and variance normalization followed by Auto-
Regression Moving-Average (ARMA) filtering) [56] and the Principal Component Analysis
(PCA) filter derived [6, 57], as well as transformed by the well-accepted HEQ [43, 44, 45],
and the proposed one-dimensional HQ are respectively shown in Fig. 3.5 under clean-
condition training for (a) averaged over all SNR values but separated for different types of
noise, (b) averaged over all types of noise but separated for different SNR values, and (c)
averaged over all types of noise and all SNR values for testing sets A, B, and C, respectively.
Here the order of the MVA filter was M =2, the PCA filter was performed with filter length
L=15, and HEQ was performed in exactly the same way as HQ, based on a moving segment
of the most recent 7' past parameters, and the same value of T=100 (or one second) was
used for all experiments for both HEQ and HQ. It has been verified that long term features

derived from one second time interval carry important speech information [59].

Many observations can be made here. First, it is clear that HQ (the last bar)
significantly improved the performance as compared to the baseline MFCC (the first bar)
for all testing sets, all SNR values (except for the clean speech case), and all noise types. For
example, from Fig. 3.5(a), it can be observed that. for speech-like noise such as babble or
restaurant noise, the MFCC baseline aceuracy (around 50%) was much lower as compared
to most other noise types (around 60% or more). HQ was able to absorb the speech-like
variation and improved the performance in such a way that the results for different noise
types were not only much higher, but also were more similar to each other (around 80%). As
another example, in Fig. 3.5(b) the recognition accuracy of HQ was 87.88% as compared to
MFCC baseline 66.95% at 10 dB SNR. The improvements became even more significant for
lower SNRs. Second, HQ proposed here performed consistently better than MVA, PCA, and
HEQ compared here for all testing sets, all noise types, and all SNR conditions (except for
clean speech cases). In particular, HEQ and HQ (the 4th and 5th bars) performed better as

compared to MVA and PCA (the 2nd and 3rd bars). This is probably because HEQ and HQ
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dynamically transform the MFCC features considering the whole distribution locally, while
the filters used in MVA and PCA are fixed, and only the first and second moment statistics
are taken into consideration. Furthermore, in all Fig. 3.5(a), (b), and (c), HQ performed
consistently better than HEQ for all testing sets, all noise types, and all SNR conditions.
For example, in Fig. 3.5(a), HQ turned out to be very helpful for babble/restaurant noise
(78.41%/79.08%) as compared to HEQ (75.95%/76.28%), probably because in such cases
of speech-like noise the order statistics disturbances were better absorbed by HQ’s blocks
than by HEQ’s point-by-point transformation. For subway noise, on the other hand, the
improvement of HQ (81.70%) compared to HEQ (80.86%) is relatively less, probably because

the impulse-like disturbances may very often exceed beyond the blocks.

Table 3.1: The averaged normalized distances between clean and corrupted speech features
under different SNR values for HEQ and HQ (1-dim).
SNR 20dB | 15dB | 10dB | ' 8dB | 0dB | -5dB
HEQ 0.78767| 0.8695+-.0.9516 4-1.0384 [/ 1.1314 | 1.2276
HQ (1-dim)| 0.7172 | 0.7870 |.0.8588.4.0.9362 | 1.0204 | 1.1087

We further compared HEQ with HQ (6ne-dimensional) tested here using a different
metric, the averaged normalized distance between the corrupted feature parameters T; and

the corresponding clean speech feature parameters x;,

1
d= > @ — ), (3.4)

ol
where the average in Eq. (3.4) is performed over all feature parameters in all the testing
speech in sets A, B, C, T is the total number of frames, and o is the standard deviation
for all the clean feature parameters z;. Both T; and x; have been processed by either HEQ
or HQ, so the difference (Z; — x;) indicates how the mismatch caused by noise disturbance
is reduced by either HEQ or HQ for each individual feature parameter. Smaller values of
d imply that the features are less influenced by disturbances, although d is not necessary
directly related to recognition accuracy. The results are listed in Table 3.1 for different SNR

values. We find in the table that the values of d consistently increase as the SNR value
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degrades, which makes very good sense, and HQ clearly gives smaller values of d in all cases.

This may explain from a different perspective why HQ performed better than HEQ.

3.5.2 HQ as a Feature Quantization Method

The next set of experiments considered HQ as a feature quantization method in a
DSR framework. But here we first examined the effect of quantization and compression on
recognition accuracy, so we assume that the environmental noise was present with the input
speech, but there were no transmission errors. For comparison, recognition accuracies for
MFCC features with quantization and compression using the standard SVQ [17], the well-
known transform coding [19, 21| (i.e. performing quantization in the transformed domain)
followed by SVQ (TC-SVQ), the cascade of the HEQ front-end with SVQ (HEQ-SVQ), and
the proposed HQ (actually two-dimensional-HVQ) for bit rates 4.4, 3.9, 3.3, and 2.7kbps
are listed respectively in Table 3.2 for ¢clean-condition training, averaged over all ten types
of noise and all SNR values in sets A; B, and C. The recognition accuracies for baseline
experiments with original MECC features without quantization is 61.08%. Because all these
results are averages over all SNR values from 20-down to 0dB, the numbers here are not
very high. Note that the performance of HQ was consistently and significantly better than
SVQ, TC-SVQ, and HEQ-SVQ under all transmission bit rates. For example, at bit rate of
2.7kbps, the overall accuracy of HQ (82.08%) represented relative error rate reductions of
26.93%, 62.62%, and 64.57% respectively, as compared to those with HEQ-SVQ (75.47%),
TC-SVQ (52.06%), and SVQ (49.43%). It is even significantly higher (with an error rate
reduction of 53.96%) than the original unquantized MFCC (61.08%). This was clearly due
to the robust nature of HQ, as discussed previously. Note that the original uncompressed
MFCC degraded seriously under noisy conditions, but HQ held up quite well. Also note that
the performance of SVQ, TC-SVQ, and HEQ-SVQ all degraded significantly under lower

bit rates, while the performance of HQ remained very stable for different bit rates, or the
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Table 3.2: Recognition accuracies for feature quantization and compression with clean-
condition training, averaged over all SNR values and noise types in sets A, B, and C for
different bit rates (4.4 kbps to 2.7 kbps).

Bit rates (kbps) 44 | 39 | 33 | 27
unquantized MFCC 61.08
SVQ 56.51 | 55.74 | 51.13 | 49.43
TC-SVQ 63.41 | 62.53 | 60.33 | 52.06
HEQ-SVQ 79.79 | 78.89 | 78.35 | 75.47
HQ 81.87 | 81.95 | 81.74 | 82.08

performance of HQ is actually relatively insensitive to the quantization resolution N in Eq.
(3.1). These results indicate that, with the conventional distance-based quantization (SVQ),
even with the more robust feature transformation front-end (TC or HEQ), the quantization
distortion and environmental noise still jointly degraded the performance seriously. The HQ
approaches, however, were able_to reconstruct the feature parameters based on the order
statistics or histogram, which automatically absorbed many' of the disturbances, therefore

offering a much better recognition accuracy:

The results in Table 3.2 are averaged over all SNR values and all noise types in sets
A, B, and C. Further, we see in Fig. 3.6(al)—(a4) the detailed accuracies obtained in exactly
the same experiments, but separated for-different noise types and averaged over all SNR
values for different bit rates (4.4, 3.9, 3.3, and 2.7 kbps) respectively. From Fig. 3.6(al)-
(ad), we can find that HQ (the last bar in each set) consistently performed much better
than the other approaches compared in Table 3.2 (the first 4 bars in each set). HQ can even
handle non-stationary disturbances as well to a good degree, clearly because it is based on
the dynamic histogram of the most recent past values. For example, in the case of 3.3 kbps in
Fig. 5(a3), HQ is actually significantly better than HEQ-SVQ (78.82% vs. 73.69%, 79.40%
vs. 73.77%, 83.80% vs. 79.37%, and 83.12% vs. 77.82% for babble, restaurant, airport, and
train-station noise cases respectively), and the corresponding numbers for MFCC, SVQ,

and TC-SVQ approaches were much lower.
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3.5.3 Further Analysis of Bit Rates vs. SNRs for HQ as a Feature Quan-

tization Method

To see how quantization distortion (or bit rate) mixed with the environmental
noise (SNR) in the input speech jointly influences the recognition performance of a DSR
system (assuming no transmission errors), the respective accuracies for the same experi-
ments mentioned in section 3.5.2 and listed in Table 3.2 are further analyzed respectively
for different bit rates and different SNRs as shown in Fig. 3.6(b1)—(b6) for clean to 0dB
SNR. For clean speech, SVQ performed the best (although slightly lower than unquantized
MFCC) under higher bit rates (4.4, 3.9, and 3.3 kbps), while for other approaches (TC-SVQ,
HEQ-SVQ, and HQ) feature transformation more or less changed the speech characteristics,
and therefore inevitably slightly-degraded the performance for clean speech. At a lower bit
rate such as 2.7 kbps, however, HQ-offered better performance than other approaches. This
is probably because SVQ is more sensitive to quantization distortion, so the performance
of SVQ, TC-SVQ, and HEQ-SVQ all degraded for lower bit rates. On the other hand, the
dynamic nature of HQ makes it relatively insensitive to the quantization resolution (or bit
rates), as can be verified in the clean speech case in Fig. 3.6(bl). Under noisy environ-
ments (SNR from 20dB all the way down to 0dB), HQ consistently performed better than
other approaches for all SNR values and all bit rates. Under very poor SNR conditions,
the noisy disturbances were very serious, but still well absorbed by the HQ histogram. For
example, in the case of 5dB SNR and 2.7 kbps bit rate, HQ offered an accuracy of 77.61%
compared to 22.30% for SVQ, 28.31% for TC-SVQ and 69.07% for HEQ-SVQ. HQ offered
an accuracy of higher than 50% (55.27%) even at 0 dB SNR and the low bit rate of 2.7 kbps.
These results indicate that for SV(Q the mismatched codebooks significantly increase the
quantization distortion, especially under poorer SNR conditions. The performance of HQ,
however, remains relatively high and even very stable for different bit rates for SNR de-

grading from 20 dB to 0dB. This verified that HQ is very robust against both quantization
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distortion and environmental noise.

3.6 Summary

In this chapter, a new approach of Histogram-based Quantization (HQ) is proposed
for robust and distributed speech recognition (DSR). HQ has shown to be robust for all
types of noise and all SNR conditions. For future personalized and context-aware DSR
environment, the proposed HQ can be adapted to network and terminal capabilities, with

recognition performance optimized based on environmental conditions.
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Figure 3.6: Recognition accuracies for feature quantization and compression with clean-
condition training: (al)-(a4) averaged over all SNR values but separated for different types
of noise at bit rates of 4.4 kbps to 2.7 kbps; (b1)-(b6) averaged over all types of noise but
separated for different bit rates (4.4 kbps to 2.7 kbps) at different SNR, values.
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Chapter 4

Joint Uncertainty Decoding (JUD)

for HQ

4.1 Introduction

For both cases of robust and/or distributed speech recognition, feature vectors
corrupted by both the environmental noise and the quantization errors can be viewed as
random vectors with uncertainty.- Unlike the-standard Viterbi decoding process in which
such vectors are considered as deterministic, the uncertainty decoding approach considers
the uncertainty of these random vectors [11, 13, 14, 15, 16]. Approaches for robust ASR
have been modified in the past to estimate such uncertainty produced by the environmen-
tal noise [11, 13, 14]. Extended Cluster Information Vector Quantization (ECI-VQ) was
also developed to estimate the uncertainty generated in the quantization process [15, 16].
However, for DSR it is actually better to jointly consider the uncertainty for the quantized

feature vectors caused by both the environmental noise and the quantization errors.

In this chapter, we consider both cases of robust and/or distributed speech recog-

nition. We jointly estimate the uncertainty caused by both the environmental noise and
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the quantization errors in an ASR system using Histogram-based Quantization (HQ), and
perform the Joint Uncertainty Decoding (JUD) at the recognizer. Below in Section 4.2
we introduce the basic idea and formulation of uncertainty decoding. The estimation of
uncertainty caused by the environmental noise and the quantization errors is described in
section 4.3. Histogram-shift compensation is then introduced in section 4.4. Experimental

results are offered in Sections 4.5, with the summary finally given in Section 4.6.

4.2 General Formulation of Uncertainty Decoding

In standard HMM decoding, the probability b;(w) for observing a feature vector

w at a state j is
M

biw) = _ cjimN (Wittgm, Ziin). (4.1)

m=1

where m is the mixture index, and ¢jp,, fjm+2jm arerespectively the mixture weight, mean,
and covariance for the m-th Gaussian mixturein state j. There have been slightly different
approaches in formulating the coneept of uncertainty decoding [11, 14]. In the approach
used here [13, 15, 16], instead of evaluating the observation probability b;(w) only for a
single feature vector w, uncertainty decoding treats the observed feature vector w as being
corrupted, and therefore considers the uncerrupted but unobservable feature vector o as a
random variable with a distribution p(o|w) during decoding. The probability of observing
w, bj(w), can then be defined as the expected value of b;(0) with respect to the distribution
p(o|w) [13, 15, 16],

b(w) = Eypul[bi(0)]) = / plolw)by(0)do. (4.2)

o

Assuming p(o|lw) to be Gaussian with mean ), and covariance matrix 3, p(ofw) ~
N(0; Hofws Zofw), Where both g, and %, can be estimated in various ways, the integration

in Eq. (4.2) can be reduced to [13]

M
bj(w) = Z ijN(:uohu; Hjm, Ejm + Eo|w)' (43)

m=1



35

Thus the standard HMM decoding using Eq. (4.1) remains unchanged, except that the vari-
ance of each Gaussian in the HMMs is increased by X,,,, the uncertainty of the unobservable
vector o. In this way, the Viterbi decoding can be based more on reliable parameters with

a smaller variance X The observed feature vector w can be taken as the estimated value

olw-
of p,|y for simplicity, as is done here in this section. But f,,, can also be estimated based
on previous feature vectors as in the three-stage error concealment approaches as discussed

later on. Below, we present the approaches used here to estimate the uncertainty of the

unobservable feature vector o, or the covariance matrix 3.

4.3 Joint Uncertainty Decoding (JUD) for HQ

There are two sources of uncertainty in' HQ-based features: quantization errors
and environmental noise: Here we first separately estimate them and then consider them

jointly.

4.3.1 Quantization Error Uncertainty

In an HQ partition cell, the representative value z; is the observed corrupted feature
vector w in Eq. (4.2), and all the possible samples in the corresponding i-th partition
cell [vj_1,v;] are these samples for the uncorrupted unquantized feature vectors o in Eq.
(4.2) collected at the client, which are unobservable at the server. The variance »4" for
quantization errors in the i-th partition cell to be used to take the place of ¥, in Eq. (4.3)
can thus be estimated using a clean speech training set. Taking the one-dimensional HQ as
in Fig. 3.1 as an example,

- Y (GCw - w) (1.4
Vi1 <yr<v;
where the summation is over all L; feature parameters y; in the i-th partition cell [v;_1, v;]

in the training set. Eq. (4.4) can be easily extended to HVQ for more dimensions. Because



36

the representative value z; was obtained via the Lloyd-Max algorithm (or LBG algorithm
[60] in the case of HVQ) based on the histogram Cj(e) for a standard Gaussian distribution,
all parameters y; in the partition cell need to be transformed first by C(e) then transformed
back via Cj 1(o) to evaluate 4. Because the Lloyd-Max algorithm produces tightly quan-
tized levels in high density regions and loosely quantized levels in low density regions to
minimize total distortion, uncertainty decoding automatically increases the Gaussian vari-
ances for the loosely quantized levels. In this way, %' can be trained in advance for all

partition cells [v;_1,v;].

4.3.2 Environmental Noise Uncertainty

Under low SNR conditions, disturbances may ‘be very serious. For example, in
Fig. 3.1 v;_1 and v; may be changed to/.; and v/ and €(v)-to C”(v), or there may be
a histogram shift which cannot he well absorbed by the dynamic histogram. Inevitably,
then, HQ’s performance deteriorates:.Such a histogram shift may be reasonably estimated
by C; 1(0.5), because Cy 1(0.5) = 0 for a standard zero-mean Gaussian. For server-side
histograms constructed based on the quantized codewords; the average values of |C; '(0.5)]
under all types of noise for the AURORA 2 testing environments for different SNR values
are shown in Table 4.1. Clearly, the histogram shift increases with lower SNR values. This
is reasonable because under lower SNR conditions, the order statistics and histograms of the
original speech samples collected at the client in the respective moving segments change very
rapidly; thus the quantized HQ codewords based on these histograms also change quickly
and significantly with time. As a result, the server-side histogram constructed using the
quantized HQ codewords also change quickly and significantly with time, introducing a
significant and fast fluctuating bias or shift |C;!(0.5)| in each short segment, even if the
original noise added to the signal samples is zero-mean in the long term. Hence we can take

the histogram shift |C;1(0.5)| as a simple indicator for the SNR condition: that is, higher
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Table 4.1: Averaged histogram shift for HQ under different SNR, conditions.

SNR Clean |20 dB| 15 dB|10 dB| 5 dB |0 dB
Histogram shift
G (0-5)]

0.016 | 0.038 | 0.053 | 0.090 {0.109 |0.132

such shifts correspond to lower SNR values. Therefore, the variance Yt for uncertainty
caused by environmental noise at time ¢ — used in place of ¥, in Eq. (4.3) — can be

reasonably estimated as

¥t = a(C1(0.5))?, (4.5)

where « is an empirically determined sealing factor, and is fixed for all SNR values and
noise conditions in our experiments. In fact, the value of ot only indicates the relative im-
portance of feature parameters in Viterbi decodinig — we found in preliminary experiments
that recognition performance is notvery sensitive to the value of o chosen here. Cy(e) is the
histogram for the HQ-quantized codewords z; for all feature parameters y; in the moving
segment Y; 7 at frame t. In this way, in the DSR case, Y" can be estimated at the server
easily for each time ¢ without any extra bit rate costs. This allows us to solve the problem
where the environmental disturbances are hidden'in codewords and cannot be estimated

directly.

4.3.3 Joint Uncertainty Decoding (JUD) for HQ

The above two types of uncertainties should be jointly considered [50]. A rea-
sonable assumption is that for higher SNR conditions the quantization error uncertainty
Eg’i dominates, while for lower SNR conditions, the environmental noise uncertainty Yt
dominates. Therefore the joint uncertainty 35t for a codeword z; in the ¢-th partition cell

at time ¢ can be estimated as

S5t = maa(Sg, Tpt), (46)
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where 247 is pre-trained for the i-th partition cell using Eq. (4.4), and Y is estimated in

real time using Eq. (4.5). This value of sut can then be used as Yol directly in Eq. (4.3).
\

4.4 Histogram-Shift Compensation

As mentioned previously, histogram shift occurring at lower SNR values inevitably
results in seriously degraded HQ performance. As a result, in addition to the uncertainty

decoding as mentioned above, we can also shift the histogram horizontally to have
C;710.5) =0 (4.7)

for each time t. A large portion of the serious disturbances can be absorbed by such a shift,

as will be verified by the experiments below.

4.5 Experimental Results

4.5.1 HQ and JUD for Robust Speech Recognition

Here we consider a complete-HQ-based robust: speech recognition system under
noisy conditions, outside of the DSR or client-server framework. The input speech features
were first transformed by HQ just as was presented in section 3.2. In addition, in this
section JUD as discussed in sections 4.2-4.4 was further applied at the decoder, including the
histogram shift plus the uncertainty estimated for the environmental noise and quantization
errors.

The results are plotted in Fig. 4.1. Note that in Fig. 4.1(b) the plots for 5 and
0dB SNR are shown in different scales so as to make the differences easier to observe.
The four bars in each set in Fig. 4.1(a), (b), and (c) are respectively for the accuracies
obtained with the proposed HQ feature transformation alone (one-dimensional with bit rate

(resolution) 3.9 kbps, exactly the same as the last bar in Fig. 3.5 presented in section 3.5.1),
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Table 4.2: Accuracies and error rate reductions for HQ alone (one-dimensional, 3.9 kbps)
and HQ-s,n,q (with complete JUD) for different testing sets in Fig. 4.1(c).
Accuracy Set A | Set B | Set C | Overall
HQ (one-dimensional) 80.85 | 82.17 | 81.86 | 81.58
HQ-s,n,q (Complete JUD) | 82.40 | 83.81 | 83.11 | 83.67
Relative error reduction (%) | 8.09 | 9.14 | 6.89 8.27

HQ plus histogram shift (HQ-s, section 4.4), HQ with histogram shift plus uncertainty for
environmental noise (HQ-s,n, sections 4.4 and 4.3.2), and HQ with complete JUD including
histogram shift and uncertainty for environmental noise and quantization errors (HQ-s,n,q,
sections 4.4 and 4.3). It can be found in Fig. 4.1(a), (b), and (c) that with the various
JUD approaches proposed in sections 4.3 and 4.4 performed at the decoder, accuracies
can be consistently improved step-by-step:in all cases. There was almost no performance
degradation for clean speech; and slight improvements at high SNR conditions (Fig. 4.1(b)):
this implies uncertainty:decoding for HQ is able te preserve the discrimination among
HMDMs. In other words, it is clear:that, the quantization process produces quantization
errors, but with proper design of the quantizer and.the uncertainty decoding, quantization
errors and environmental disturbances:can in fact be well-absorbed and compensated for to
a good extent. Accuracies for the first.and the last bars in Fig. 4.1(c) (HQ alone and HQ-
s,n,q with complete JUD) are also compared in Table 4.2. It can be found that significant

error rate reduction was actually achieved in all three testing sets.

4.5.2 HQ and JUD for Distributed Speech Recognition

Here we consider a complete DSR system based on the proposed HQ approaches.
HQ was first applied at the client end to quantize and compress the input speech features.
The quantized codewords were then transmitted to the server. JUD was then applied at
the server to improve accuracies.

Conventionally, in DSR this is done using SVQ [17]. If noise can be properly

handled to a good degree by cascading an HEQ process at the front, we can also compen-
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Figure 4.1: Performance improvements obtained by the various JUD approaches as com-
pared to HQ alone: (a) averaged over all SNR.values but separated for different noise types
in sets A, B, and C; (b) averaged over all noise types but separated for each SNR value;
and (c) averaged over all SNR values and noise types but separated into sets A, B, and C.

sate for quantization errors caused by - SVQ using some conventional approaches associated
with SVQ, for example the well-known Extended Cluster Information Vector Quantization
(ECIVQ) [16]. Therefore we need to compare the proposed HQ followed by JUD with such
conventional approaches associated with SVQ first. The results are in Fig. 4.2(a), (b), and
(c¢). The six bars in each set in Fig. 4.2 are respectively for SVQ alone, ECIVQ alone,
the cascade of HEQ front-end and SVQ (HEQ-SVQ), the cascade of HEQ front-end and
ECIVQ (HEQ-ECIVQ), HQ (two-dimensional), and the same HQ with complete JUD in-
cluding histogram shift (HQ-s,n,q), all with bit rates 4.4 kbps. The 1st, 3rd, and 5th bars

in Fig. 4.2 are the same as the 2nd, 4th, and 5th bars of the first 4.4kbps group in Fig. 3.6.

We can find from Fig. 4.2 that ECIVQ (2nd bar) performed better than SVQ (1st

bar) for sets A and B, but slightly worse for set C, and the same trend can be observed
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Figure 4.2: Comparison of different approaches discussed in this paper for DSR: (a) averaged
over all SNR values but separated for different noise types in sets A, B, and C; (b) averaged
over all noise types but separated for different SNR values; and (c) averaged over all SNR
values and noise types but separated for-sets A, B, and C.

when HEQ is performed as a front-end of SVQ (HEQ-SVQ, 3rd bar v.s HEQ-ECIVQ), 4th
bar). This is probably because ECIVQ considers:quantization errors only, but the channel
mismatch for set C might move the feature vectors to different partition cells, for which
the cluster variance used in ECIVQ was not able to help. HEQ offered very significant
improvements when cascaded with SVQ or ECIVQ (HEQ-SVQ or HEQ-ECIVQ, 3rd or 4th
bar), but the HQ (5th bar) proposed here consistently provided better performance in almost
all cases, and the complete JUD proposed here including histogram shift (HQ-s,n,q, 6th bar)
offered additional improvements consistently in almost all cases. The accuracies for HEQ
cascaded with ECIVQ (HEQ-ECIVQ), 4th bar) and HQ with JUD (HQ-s,n,q, the last bar)
are further compared in Table 6.1. The relative error rate reductions shown in the last row
are significant and consistent for all SNR values, including the clean and 20 dB cases. The

above experimental results are for a 4.4 kbps bit rate. Further analysis was then performed
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Figure 4.3: Comparison of different approaches discussed in this paper for DSR (but without
transmission errors) under different bit rates and SNR values: (a) clean, (b) 20 dB, (c) 15
dB, (d) 10 dB, (e) 5 dB, and (f) 0 dB.

Table 4.3: Accuracies and error rate reductions for HEQ-ECIVQ and HQ-s,n,q (with com-
plete JUD) at 4.4 kbps for different SNR values in Fig. 4.2(b).
SNR Clean |20 dB|15 dB|10,dB|5 dB| 0 dB
HEQ-ECIVQ 98.19195.25 | 92.65 | 86.01 |75.96|53.28
HQ-s,n,q(Complete JUD) | 98.50 | 96.381 93.99 | 89.04 |78.34|57.01
Relative error reduction(%)| 17:13 | 23.797 18.23 1 21.66 | 9.90 | 7.98

for several better approaches found above with respect to different bit rates (4.4, 3.9, 3.3, and
2.7kbps) at all different SNR values. The results are shown in Fig. 4.3(a)—(f) for different
SNR from clean to 0dB, each with different bit rates. The four bars in each set in Fig. 4.3
are respectively for ECIVQ considering quantization error uncertainty for SVQ, the cascade
of transform coding (TC) and ECIVQ (TC-ECIVQ), the cascade of HEQ and ECIVQ (HEQ-
ECIVQ), and HQ with complete JUD including histogram shift (HQ-s,n,q). Here, except for
the clean speech case at higher bit rates, HQ-s,n,q consistently performed better for all SNR

values and all bit rates than other combinations of the front-end feature transformation (T'C
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or HEQ) or back-end compensation considering quantization uncertainty (ECIVQ). Also,
the performance of ECIVQ, TC-ECIVQ, and HEQ-ECIVQ are all more sensitive to lower

bit rates, while HQ-s,n,q is relatively insensitive to different bit rates at all SNR conditions.

4.6 Summary

In this chapter, Joint Uncertainty Decoding (JUD) under the framework of Histogram-
based Quantization (HQ) is proposed here in this paper for robust and/or distributed speech
recognition. Improved recognition performance was obtained consistently under all types

of noise at all SNR values.
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Chapter 5

Three-Stage Error Concealment

(EC) for HQ-Based DSR Systems

5.1 Introduction

Here we consider the approaches to handling the transmission errors added to the
received HQ codewords under the DSR framework [51]. In this chapter, a three-stage EC
approach is developed, as presented below. In Section 5.2 we introduce the frame and sub-
vector error detection by HQ-consistency check. The estimation of the detected erroneous
subvectors are presented in section 5.3, considering the prior speech source statistics, the
channel transition probability, and the reliability of the received subvectors. In section
5.4, we introduce the reliability estimation and uncertainty decoding. Section 5.5 gives the
overview of the three-stage error concealment (EC) framework. Experimental results are

offered in Sections 5.6, with the summary finally given in Section 5.7.
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5.2 Stage 1 - Error Detection

In the ETSI DSR standards, every two frames are grouped together and protected
with 4-bit CRC[17]. In this way, the entire frame-pair is labeled erroneous even if only a
single bit error occurs in the frame-pair packet. Adding check bits at the subvector level is
helpful for subvector level error detection, but comes at the cost of additional bandwidth
[21]. A more efficient way is to make use of the speech signal characteristics at the subvector
level. The data consistency test checks the continuity of the parameters in two neighboring
subvectors [35]. When the difference between two consecutive values of a feature parameter
in a subvector exceeds a pre-determined threshold obtained from some training corpus, the
subvector is classified as inconsistent. However, if the statistics of the testing features are
time-varying and different from thoge of the training cerpus, this approach becomes less
reliable. With environmental noise, the parameters are likely to be classified as inconsistent

even if they are correctly received.

HQ performs feature parameter quantization based on the local histogram (or
order statistics), so the quantized codewords represent the local order-statistic information
of the original parameters. The quantization process-dees not change the order statistics
of the parameters, and if there are no transmission errors, the histogram for the subvector
codewords received at the server should be similar to the histogram for the original feature
parameters at the client. Thus the partition cell obtained by re-performing HQ on the
received subvector codeword, based on the dynamic histogram for these received codewords,
should be the original partition cell. If not, it is very possible that the order statistics
have been changed and the received subvector codeword may be erroneous. Based on this
observation, the consistency test in the HQ framework proposed here is as follows. Taking
[ INE))

a two-dimensional HVQ as an example, z; = (z; 7, 2,

. ,2;) is a received subvector codeword

at some time, and HQ{(zi(l), zi(2))} represents the representative value for the subvector

(zgl), zl-(z)) assigned by HQ performed at the server based on the histogram for the received
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codewords. The subvector (zi(l), 22

;) is then classified as consistent if

HQ{P, 22} = (1, 2?). (5.1)

In other words, if these two parameters are correctly received, their order statistics at the
server should be similar to the order statistics for the original values before quantization at

the client, and therefore similarly quantized into the same HQ partition cell.

SVQ with HQ with SVQ with HQ with
(&) ?:cau FaiE - conventioanl HQ-based (b) ;;rec}smn Rate W conventioanl HQ based
70 60
60 50
40
50 30
40 20
30 10 —
Clean 20 dB 15 dB 10 dB Clean 20 dB 15 dB 10 dB 5dB

Figure 5.1: (a) Recall'and (b) Precision/rates for error detection using SVQ with the
conventional data consistency check and-HQ with the HQ-based consistency check proposed
here.

We compared the error detection accuracy of the conventional SVQ scheme with
the data consistency check [35] and.the propesed-HQ with the HQ-based consistency check
mentioned above under all different noise conditions for the AURORA 2 testing environ-
ment with the transmission errors introduced by the General Packet Radio Service (GPRS)
wireless environment. The averaged recall (percentage of detected errors out of all errors)
and precision (percentage of correct errors out of all detected errors) rates for error detection
are shown in Fig. 5.1(a) and (b). For lower SNR cases, it is clear that the noise seriously
affects the SVQ with data consistency check as verified by the precision degradation in Fig.
5.1(b) (from 66% at clean down to 12% at 0 dB). With the proposed HQ-based consistency
check approach, however, the precision rate is much more stable at all SNR, values, and
both recall and precision rates are higher.

Note that when Eq. (5.1) is not satisfied, it is also possible that the present
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codeword is actually correctly received, but instead the dynamic histogram, on which the
HQ in Eq. (5.1) is based, is disturbed by erroneous received codewords in the past T' frames.
This is one good reason why the precision rate in Fig. 5.1(b) for HQ with the proposed
consistency check is slightly less than 70%, i.e. some detected inconsistencies are actually
correctly received codewords. But this precision is much higher than SVQ with conventional
approach. In fact, the probability that the inconsistency in Eq. (5.1) is due to the disturbed
histogram rather than the considered codeword being erroneous is lower, because the effect
of the erroneous codewords in the past T frames is reasonably absorbed by the histogram
(the order statistics of a large number of codewords) as well as the partition cells in HQ. In
other words, with erroneous codewords in the past 7' frames, the change of the histogram
may not be very serious and the partition cell that: the present codeword being considered
belongs to may remain unchanged. This is verified in Fig.-5.1(b) where the precision rate,

although much less than 100%, rémains almoest the same from clean speech to 0 dB SNR.

5.3 Stage 2 - Erroneous Feature Vector Estimation

Different techniques for estimating the detected erroneous feature vectors have
been proposed. Repetition and interpolation only use the correctly received feature vectors
[23], while statistical-based techniques use prior knowledge about speech source in addition,

and have been shown to offer better performance [28].

The erroneous subvector estimation proposed here under the HQ framework is
based on the maximum a posteriori (MAP) criterion, which determines the estimated value
§; of a certain transmitted subvector codeword s; at time ¢, which is detected as erroneous
(here both §; and s; are certain codewords z; mentioned above for some i respectively).
This MAP estimation is conditioned on the present and previously received correspond-

ing subvector codewords r; and r;—1 (here both r, and r;_1 are also certain codewords z;
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mentioned above for some i respectively),
§t = argg}ax{P(st = zi|re,me-1) }, (5.2)

where s; = z; denotes that s; is the i-th HQ codeword out of the N possible codewords. The

maximization here is over all of these codewords. If we assume r; and r,_1 are independent,

P(St|Tt_1)P(St|T't) _ P(St’Tt_l)P(Tt’St)
P(St) P(Tt)

P(5t|rt,7't—1) [ (53)

With the denominator in Eq. (5.3) left out in the maximization in Eq. (5.2), the probability
in Eq. (5.2) can be approximated by the codeword bigram P(s; = z;|r;—1) and the channel

transition probability P(r¢|s; = z;)s
§ = arg mZaX{P(st = zi|ri—1) P(rels: = zi) }. (5.4)

In Eq. (5.4), the codeword bigram. P(s; =%z;|r—1).can be estimated by the bigram of
the considered subvector codewords P(s; = zi|s;—1) trained from a clean training set (for
example, the clean training set of AURORA 2).Also, the channel transition probability
P(r¢|sy = z;) in Eq. (5.4). can be estimated from the bit error rate (BER) of the present

frame being considered,
P(ri|sy = z) = BERUG@Al 4 (1 — BER)K—dlb(z:)b(ro)] (5.5)

where BER is estimated as the total number of inconsistent subvectors (in simulation analy-
sis, it was found that in most cases there is only one bit error in an erroneous codeword, and
therefore this number can be used to estimate the total number of erroneous bits) detected
in the first stage (discussed in section 5.2) in the present frame divided by the total number
of bits in the frame, K is the total number of bits in the received subvector codeword 7y,
b(z;) and b(r;) are respectively the bit patterns for the codewords z; and r;, and d(e,e)
represents the Hamming distance between two bit patterns. The value of P(ry|s; = z;) in

Eq. (5.5) is actually the probability of z; being changed to r; if BER can be accurately
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estimated. With Eq. (5.5), when r; is less reliable (or has a larger BER), the values of
P(r¢|sy = z;) for all possible codewords z; with different ¢ become closer to each other (i.e.,
the difference in P(ry|s; = z;) is insignificant for different Hamming distances d(e,e)). On
the other hand, when 7, is more reliable (or has a smaller BER), P(r¢|s; = z;) is larger
for only few values of 7. In this way, more emphasis can be put on the codeword bigram
P(s¢ = zi|r¢—1) than on the channel transition probability P(r:|s; = z;) in Eq. (5.4) when
the channel condition is less reliable.

Because the basic principle here is to exploit the short-time correlation between
consecutive frames in speech signals to estimate the lost subvectors, the robustness of HQ
as mentioned in section 3.4 is very helpful. If the quantization process is less robust,
the environmental noise may move the feature -vectors to a. different partition cell and
the subvector transition relationship in speech signals may be disturbed. This problem is
actually lessened by the HQ’s robustness; as'can be verified by the mutual information (s,

st—1) between the present and, previous subvector codewords s; and s;_1,

I(St,st_l)ZH(St) = H(st]st_l), (56)
where
N
H(st)zz —P(s¢ = zj)log[P (st = zj)] (5.7)
j=1
and
N N
H(s¢|si—1) ZZ —P(si=zj, s1—1=%;)log[P(s1=2;|s1—1=2;)] (5.8)
i=1j=1

are respectively the degree of uncertainty for the present subvector sy, and the remaining
degree of uncertainty for s; after the previous subvector s;_1 is known. Thus the mutual
information I(s¢, s;—1) in Eq. (5.6) shows how much the codeword bigram model reduces
uncertainty for the subvectors s;. In other words, a bigram model with higher mutual
information implies that predicting the present subvector s; given the previous subvector

s¢—1 is easier. The mutual information for the conventional SVQ and the proposed HQ
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Table 5.1: Mutual information I(s;, s¢—1) for SVQ and HQ.

I(s¢,8t-1)] c1,¢2 | €3,¢4 | C5,¢6 | €7,¢8 | €9, C10 |C11,C12|C0, lOgE
SVQ 1.365 | 0.998 | 0.791 | 0.652 | 0.611 | 0.568 | 1.455
HQ 1.473 | 1.110 | 0.856 | 0.722 | 0.678 | 0.619 | 1.541

averaged for different subvectors from the three testing sets of AURORA 2 is listed in Table
5.1. We can see that HQ’s mutual information is always higher than that of SVQ, which

indicates that the HQ framework allows for more precise estimation of the lost subvectors.

5.4 Stage 3 - Uncertainty Decoding

The uncertainty decoding discussed in section 4.2 can be used here in the final
stage. Consider section 4.2:_the above received codeword r; is taken as the observed cor-
rupted feature vector w in Eq: (4.2), and all of the possible transmitted codewords, s; = z;,
i=1,2,..., N, are the possible samples of the uncorrupted but unobservable feature vector
o in Eq. (4.2). The distribution of the probability P(s; = z;|r¢,7;—1) obtained in Eq. (5.2)
then characterizes the uncertainty of the ebserved codeword. With the estimated codeword
$; in Eq. (5.2) taken as the mean Hojw and the covariance estimated using the probability
distribution P(s; = 2;|re,7¢1) taken as the covariance %, both used in Eq. (4.3), un-
certainty decoding can then be directly performed within the HQ framework as presented
previously by increasing the variance of each Gaussian mixture by ¥, in the HMMs as in
Eq. (4.3) [50]. In this way, HMM decoding puts more emphasis on more reliable subvectors,
i.e. those with lower covariance %, for the probability distribution P(s; = zi[rs, 74—1) in

Eq. (5.2).

5.5 Three-Stage EC under the HQ Framework

As shown in Fig. 5.2, the three stages of EC under the HQ framework can be

easily integrated. At the first stage, the received frame-pairs are first checked with CRC
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Figure 5.2: The three-stage error concealment (EC) framework.

to detect errors at the frame level. The erroneous frame-pairs-are then further checked at
the subvector level by the HQ consistency-test as mentioned in section 5.2. At the second
stage, the erroneous subvectors detected at the first stage are estimated and reconstructed
as presented in section 5.3. At ‘the third stage, uncertainty decoding in the Viterbi search
process makes the HMMs less ‘discriminative for subvectors with higher uncertainty as

presented in section 5.4.

5.6 Experimental Results

Here we finally consider a complete DSR system based on the proposed HQ ap-
proaches. HQ was first applied at the client end to quantize and compress the input speech
features. The quantized codewords were then transmitted via wireless networks to the
server. There were inevitable transmission errors introduced by the wireless channels, and

the three-stage error concealment (EC) was applied.
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5.6.1 HQ-Based DSR over Wireless Channels with Transmission Errors,

but without Error Concealment (EC)

We first compared the robustness of SVQ and HQ against environmental noise at
the client end plus the transmission errors at a client traveling speed of 3 km /hr, assuming
no Error Concealment (EC) approach was used. Fig. 5.3 is the averaged results over all
different types of noise but separated for different SNR values. The first three bars are
the results for the standard SVQ, SVQ followed by HEQ front-end (HEQ-SVQ), and HQ
(two-dimensional), all at 4.4kbps and without transmission errors, exactly the same as the
1st, 3rd, and 5th bars in Fig. 4.2(b), and the next three bars are those suffering from GPRS
transmission errors (SVQg, HEQ-SVQg, HQg: the label ”g” indicates GPRS). For SVQ,
the performance degradation caused by GPRS (1st-bar compared to 4th bar) is larger when
SNR is lower, even with HEQ (2nd bar compared to 5th bar, e.g. 98.07% to 87.78% for clean
speech, 91.97% to 76.74% for 15dB 'SNR; and 85.86% to 68.73% for 10dB SNR). Clearly,
features corrupted by noise are mare susceptible to transmission errors. The improvements
that HQ offered over HEQ-SVQ when transmission errors were present (6th bar to 5th bar)
are consistent and significant-at all SNR: values. .For example, in the case of 10dB SNR
with GPRS, HQ (6th bar) offered-an'accuracy of 78.69% while the number was 69.84% for
HEQ-SVQ (5th bar). This verified that HQ is robust against both environmental noise and

transmission errors.

To analyze the degradation of recognition accuracy caused by transmission errors,
we examined the percentage of words which were correctly recognized without transmission
errors, but incorrectly recognized after transmission. The comparison of this percentage
for SVQ, HEQ-SVQ and HQ for exactly the same experiments as reported in Fig. 5.3
are shown in Fig. 5.4. The rapid increase of this percentage for SVQ when input speech
SNR is degraded indicated that the noise-corrupted SVQ symbols were very susceptible to

transmission errors. HEQ-SVQ was much better, while HQ was the best in all cases.
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The above results in Fig. 5.3 are for a 4.4 kbps bit rate. Further analysis was then
performed for several better approaches found above with respect to different bit rates (4.4,
3.9, 3.3, and 2.7kbps) for all SNR values (from clean to 0dB) as shown in Fig. 5.5(a)—(f).
The four bars in each set in Fig. 5.5 are respectively for SVQg, transform coding followed
by SVQ (TC-SVQg), the cascade of HEQ and SVQ (HEQ-SVQg), and HQg, all with GPRS
transmission errors. Here HQ consistently performed better than different versions of SVQ
enhanced by some feature transformation approaches (TC or HEQ) for all SNR values and
all bit rates. With SVQ, features with environmental noise and quantization distortion are
more sensitive to lower bit rates when transmission errors are present. For example, in
the case of 5dB SNR, the performance of HEQ-SVQ degraded from 56.66% at 4.4 kbps to
51.88% at 2.7 kbps. On the other hand, the performance of HQ is very stable for different
bit rates in all cases of SNR, even with the presence of transmission errors. This verified
that HQ is robust against not only quantization distortion, and environmental noise, but

transmission errors as well.

- |0SVQ 0 HEQ-SVQ [ HQ W SVQg M HEQ-SVQg M HQg|

80
60
40
20

I

clean 20 l ‘ ' 0 l avg

Figure 5.3: Comparison of SVQ, HEQ-SVQ and HQ, and those with GPRS transmission
errors (SVQg, HEQ-SVQg, HQg), averaged over all types of noise, but separated for each
SNR value.

5.6.2 HQ-Based DSR over Wireless Channels with Error Concealment
(EC)

The next set of experiments tried to examine the effectiveness of the three-stage EC

techniques for HQ. Fig. 5.6 shows the results with GPRS transmission errors at a speed of 3
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Figure 5.4: Comparison of SVQ, HEQ-SVQ and HQ with the percentage of words which
were correctly recognized if without transmission errors, but incorrectly recognized after
transmission.

km/hr, without and with the different Error Concealment (EC) approaches. The five bars in
each set are respectively for SVQg, HEQ-SVQg, HEQ-SVQ with GPRS and with repetition
(HEQ-SVQgr: the label ”1” indicates the ETSI-recommended error mitigation strategy by
repetition), HQg, and HQ with GPRS and the three-stage EC techniques propose here
(HQgc: the label ”¢” indicates three stage EC), all at bit rate of 4.4 kbps. Fig. 5.6(a)
are those averaged over all SNR values-but separated for different noise types in sets A,
B, and C, (b) are those averaged over:all types of noise but separated for different SNR
values, and (c) are those averaged over-all types-of noise and all SNR values but separated
for sets A, B, and C. It can be found that the ETSI repetition technique actually degraded
the performance of HEQ-SVQg (3rd bar vs. 2nd bar), probably because the whole feature
vectors including the correct subvectors are replaced by estimations that are very possibly
inaccurate. Under GPRS, HQg without any EC techniques (4th bar) actually outperformed
the first three bars for all cases. Applying the proposed three-stage EC techniques (HQgc,
5th bar) then further improved the performance significantly for all cases. This verified that
the three-stage EC framework is robust against not only transmission errors, but against

environmental noise as well.

The above results in Fig. 5.6 are for a 4.4kbps bit rate. Further analysis was

then performed with respect to different bit rates (4.4, 3.9, 3.3, and 2.7 kbps) for all SNR



56

|ESVQg BTC-SVQg [1HEQ-SVQg [ HQg]

(a_) (b) ()

IS Clean B 20—y 20dB _ ]88 _ 15dB_ -
87 M

92 B 79 I
84 M

89 H |

86 L L L —— 1 1 1 L5 1 1 1 L1

@, K 39K 3.3k 2.7k 78 4.4k 3.9k 3.3k 2.7k 1 44k 3.9k 3.3k 2.7k bit rate

T © ®

79 M MMOdB[] Tl 677 [ 5 dB ] 48 0 dB =

68 M ’, H S6 = 11 36 | L

57 ( 45 24 I
34 1

46 B I
23 ik

35

4.4k 3.9k 3.3k 2.7k 12 44k 3.9k 3.3k 2.7k © 4.4k 3.9k 3.3k 2.7k bit rate

Figure 5.5: Comparison of SVQg, TC-SVQg, HEQ-SVQg and HQg (all with GPRS trans-
mission errors), for different bit rates and SNR values: (a) clean, (b) 20 dB, (c) 15 dB, (d)
10 dB, (e) 5 dB, and (f) 0 dB.

values as shown in Fig. 5.7(a)—(f). The four bars in each set in Fig. 5.7 are respectively
for SVQ with GPRS errors and with repetition (SVQgr: the label ”r” indicates the ETSI-
recommended error mitigation strategy-by repetition), TC-SVQ with GPRS errors and with
repetition (TC-SVQgr), HEQ-SVQ with GPRS errors and with repetition (HEQ-SVQgr),
and HQ with GPRS and the three-stage EC techniques propose here (HQgc). Here HQgc
consistently performed better than all other approaches for all SNR values and all bit rates.
For example, in the case of 10dB SNR and a 3.3 kbps bit rate, HQgc offered an accuracy of
81.57% compared to 38.92% for SVQgr, 53.34% for TC-SVQgr and 64.97% for HEQ-SVQgr.
HQgc offered an accuracy of higher than 65% (67.42%) even at 5dB SNR and the low bit
rate of 2.7kbps. These indicate that HQ with the three-stage EC is robust against both
environmental noise and transmission errors, and is insensitive to different bit rates.

The above results in Fig. 5.6 and 5.7 are for a client traveling at a speed of 3

km/hr. We then consider other different client traveling speeds at 4.4kbps in Fig. 5.8.
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Figure 5.6: Comparison of SVQ under GPRS (SVQg), HEQ-SVQ under GPRS without
and with repetition (HEQ-SVQg and HEQ-SVQgr), HQ .under GPRS without and with EC
techniques (HQg and HQgc): (a) averaged over all SNR values, but separated for different
noise types in sets A, B, and C; (b) averaged over all types of noise, but separated for each
SNR value; and (c) averaged over all'SNR values and noise types but separated for sets A,
B, C.

Here the four cases shown' in each figure are.for HEQ-SVQ under GPRS, without and with
ETSI repetition (HEQ-SVQg and HEQ=SVQgr), and HQ under GPRS, without and with
the three-stage EC (HQg and HQgc), at traveling speeds of 3, 50, 100, and 250 km /hr. Only
two typical types of input speech noise, car for stationary and babble for non-stationary
were taken as examples, since for some noise types such as exhibition or restaurant a client
traveling speed above 3 km/hr does not make sense. The results for two typical values of
SNR, 15dB and 5dB plus those results averaged over all SNR values for car/babble noise
are shown in Fig. 5.8 (al)/(a2), (b1)/(b2) and (cl)/(c2), respectively. The superiority of
HQ with EC (HQgc) is obvious as verified by the highest curves in all cases. As an example,
for 15 dB car noise at 100 km/hr as shown in Fig. 5.8(al), the performance of HEQ-SVQ

degraded seriously (78.74%), applying ETSI repetition on HEQ-SVQ did not help (72.89%),
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Figure 5.7: Comparison of SVQgr, TC-SVQgr, HEQ-SVQgr (all under GPRS with repe-
tition), and HQgc (under GPRS with error concealment) for different bit rates and SNR
values: (a) clean, (b) 20 dB, (c) 15 dB, (d) 10 dB, (¢) 5 dB, and (f) 0 dB.

and HQ is much better (86.04%) while the three-stage EC offered very good improvements
(92.80%). As another example, for 5dB car noise as shown in Fig. 5.8(b1), the performance
of HEQ-SVQ degraded seriously at high traveling speeds (e.g. 59.20% at 100 km/hr); here
HQ was much better (e.g. 66.24% at 100 km/hr), and the three-stage EC further improved
the performance significantly (e.g. 78.29% at 100 km/hr). On the other hand, as one
more example in Fig. 5.8(al) the HEQ-SVQ features with noise disturbances were more
susceptible to higher transmission errors due to higher client traveling speeds (81.82% at 3
km/hr and 78.74% at 100 km/hr), while HQ features were more robust in this case (87.33%
at 3 km/hr and 86.04% at 100 km/hr). This is why the curves for HQg are quite flat in
almost all the six figures in Fig. 5.8, while those for HEQ-SVQg and HEQ-SVQgr decline
faster as the client traveling speed increases. The curves for HQgc are also quite flat for
car noise (Fig. 5.8 (al)/(b1)/(cl)), but less flat for babble noise (Fig. 5.8 (a2)/(b2)/(c2));

the non-stationary nature of the babble noise is probably more difficult to handle with EC
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techniques.

5.7 Summary

In this chapter, a three-stage error concealment (EC) framework based on the
Histogram-based Quantization (HQ) for Distributed Speech Recognition (DSR) is proposed.
Improved recognition performance was obtained consistently for a wide variety of environ-

mental noise and transmission error conditions.
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Figure 5.8: Comparison of HEQ-SVQ under GPRS without and with repetition, HQ under
GPRS without and with EC, at traveling speeds of 3, 50, 100, and 250 km /hr: (al)/(a2) for
car/babble noise at 15 dB SNR; (b1)/(b2) for car/babble noise at 5 dB SNR; and (c1)/(c2)
for car/babble noise averaged over all SNR values.
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Chapter 6

Dynamic Quantization II -

Context-dependent Quantization

6.1 Introduction

When considering the characteristics of speech signals, it is a well-known fact that
the high correlation existing in-speech signals-is-very helpful in various speech processing
applications. It is also well-knownthat for human perception, speech is recognized based on
not only the present signal values, but also on the changes in context [20]. Transform cod-
ing and differential encoding take context into consideration when performing quantization,
and have been widely used for decades [20, 21, 18]. These approaches exploit inter-frame or
intra-frame correlations among feature vectors and have been shown to reduce transmission
rates significantly. These facts indicated that quantization approaches not using context
information are relatively inadequate, because in such approaches, feature parameters with
different context are quantized or transformed to the same representative value as long as
they are in the same partition cell; thus signal information is not fully utilized. There-

fore, properly utilizing context information in quantization to improve robustness against
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transmission errors and environmental noise is an important issue.

In this chapter, we propose a new concept of context-dependent quantization, in
which the representative parameters for each partition cell are not fixed, but are depen-
dent on the context codewords. Below in Section 6.2.1 we introduce the basic idea and
formulation of Context-dependent Quantization. In section 6.2.2, the context-dependent
quantization is integrated with Histogram-based Quantization (HQ). Experimental results

are offered in Sections 6.3, with the summary finally given in Section 6.4.

6.2 Proposed Approach

6.2.1 Context-dependent Quantization

In conventional (scalar or vector) quantization, a parameter y; at time ¢ (either a
scalar or a vector) is mapped to a representative parameter z; (either a scalar or a vector),
which is in turn represented-by a codeword 'or bit pattern wy; if y; is within a certain

partition cell Q);,

yr — Qyt) = ziywp = b(Q(yr)) = b(2),if y: € Qi (6.1)

where Q(-) is the quantization process and b(-) represents the index of codeword or bit
pattern. The concept of context-dependent quantization is very simple. It keeps all the
original partition cells unchanged, except now the representative parameters z; are not fixed,
but are dependent on the left and right context [61]. Assume in addition the parameter
yr has a left context parameter y;_; with codeword m and a right context parameter ;11
with codeword n, yi—1 — Q(yi-1), b(Q(Yt-1)) = m, yr+1 — Q(Ye+1), b(Q(ye+1)) = n. The
representative parameter for the middle frame 7; in the partition cell @); is then the average

of all such parameters y; within the partition @); with the left and right context m and n
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respectively,

1
3

Yt€Q;
b(Q(y¢—1))=m
b(Q(yt+1))=n

which is dependent on the context m and n, where L{"" is the total number of such pa-

™ is the average of the parameters with the same

rameters y; in the training set. Thus 2"
context codewords. This representative parameter z;"" can be trained with a clean speech
corpus. In this way, context dependency among speech signals is automatically included in
the quantization process. Note that assuming there are N partition cells, for each partition
cell there are now N? different representative parameters because there are N2 context con-
ditions (m,n € {1,2,..., N}). Therefore using the left and right contexts allow for much
finer representation of the ‘parameters, although: the number of bits needed remains the
same. Also, the computational complexity and memory.requirement on the client side are
the same as those for conventional quantization because the number of partition cells is still
N. This is shown in Fig. 6.1y in which a partition cell has many representative parameters
z"" for different contexts m and n, ‘as compared to conventional quantization, in which
a partition cell has only a single-representative parameter z;. Also, in this scheme for a
received codeword sequence, every:-codeword is decoded considering its context codeword
on both sides, and there is no problem regarding the order of decoding. For example, for

the received codeword sequence, {wy, wa, ws, ...}, wiwews are used to decode wq, wowzwy

are used to decode ws, and so on.

The above context-dependent quantization can actually be extended to decode
speech signals corrupted by noise as well. Assume a noisy speech codeword sequence
B(Q(yi-1)) = m,b(Q(y)) = 4,b(Q(yt+1)) = n] is observed, where y—1,ys,yr+1 are all
noisy parameters, and assume that the correct codeword for the corresponding clean speech
parameter g; in the middle is b(Q(y;)) = k, where ; is the clean speech version of y;, and the

N possible values of the codeword k has a distribution {P/""(k),k =1,2,...,N}. In other
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words, P/ (k) is the probability of the correct codeword being k (that is, b(Q(9)) =
k) when the observed noisy speech codeword sequence is [b(Q(yi—1)) = m,b(Q(y:)) =
i,b(Q(Yt+1)) = n]. These probabilities {P""(k),k = 1,2,..., N} can be easily estimated
based on the frequency counts of such codeword sequences [b(Q(y;—1)) = m,b(Q(y:)) =
i, b(Q(y+1)) = n| and [b(Q(yi—1)) = m, b(Q(9:)) = k,b(Q(y1+1)) = n| in a corpus including
corresponding noisy and clean speech for some noisy conditions. With these probabili-

ties, minimum mean squared error (MMSE) estimation for the codewords for clean feature

parameters can be obtained as the conditional expectation values,

2" =E" | 0(Qyr-1)) =m, b(Q(y:)) =1, b(Q(yt+1)) =7l

= P"(k)zp (6.3)
k

where 2" is the context-dependent representative parameter obtained in Eq. 6.2, and 2"
is the MMSE estimate of the representative parameter from noisy codewords considering
context dependency.

Note that the above formulation is for quantization under the DSR framework,
but it applies equally to feature transformation for robust speech recognition apart from
DSR, in which each original feature parameter y; is-transformed into 2" for recognition
purposes based on the quantization and its’context.

All the above applies equally to all different quantization schemes. Below we apply

it to Histogram-based Quantization (HQ).

6.2.2 Context-dependent HQ

In Eq. 6.2 the representative parameter 2" is determined given a set of partition
cells. However, for HQ the partition cells are dynamic and varying for every time ¢; that
is, every y; in Eq. 6.2 is associated with a different set of partition cells. Fortunately, as in
Fig. 6.2, we see that even if the partition cells Q; for HQ are dynamic on the horizontal

scale, there are another set of partition cells D; on the vertical scale which are fixed. The
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Figure 6.1: Context-dependent quantization with-left and right context codewords m and
n.

dynamic histogram C'(v) defines the relationship between the two sets of partition cells @;
and D;. As a result, context-dependent HQ is easily achieved by performing Eq. 6.2 on
the vertical scale, and then transforming it back to the horizontal scale using the standard

Gaussian histogram Cp(v). In other words, for context-dependent HQ we can have

_ 1
zZ””ZL;m % C(ys) (6.4)
Y i
b(Q(ytt_1>>:m
b(Q(yt+1))=n

and
2 = Oy HEm™). (6.5)

mn

Thus the contextual information represented by z"" as obtained from Equations 6.4 and

6.5 is very similar to that of Eq. 6.2.
The context dependency relationships for HQ as analyzed above can then be
similarly extended as in Eq. 6.3 to estimate the representative parameters 2" from

n

noisy codewords. Here, 2;"" obtained from Eq. 6.5 can be used with the probabilities
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Figure 6.2: Context-dependent Histogram-based Quantization (HQ).

{P™(k),k =1,2,...,N} estimated from corresponding clean/noisy corpus for MMSE es-

timation as in Eq. 6.3.

6.3 Experimental Results

6.3.1 Context-dependent:HQ as a Robust Feature Transformation Method

In the first set of experiments, we'considered the case of robust speech recognition
apart from the DSR environment, in which context-dependent HQ was used as a feature
transformation technique, that is, each feature parameter g, either clean or disturbed by
noise, is transformed to the representative parameter 2" in Eq. 6.5 or 2" in Eq. 6.3,
for the corresponding partition cell considering the context codewords m,n, to be used for
recognition. Note that the multi-condition training set and the corresponding clean speech
training set in AURORA 2 were used to estimate the probabilities {P/""(k)} used in Eq.
6.3.

The results in Fig. 6.3 were all under clean-condition training, organized in three

parts: (a) averaged over all SNR values (20dB to 0dB) but separated for different types
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Figure 6.3: Word accuracies for HEQ, HQ, HQ-cd and HQ-mmse under clean condition
training: (a) averaged over all SNR valties (20 dB to 0 dB) but separated for different types
of noise; (b) averaged over all types-of noise but separated for different SNR values; and
(c) averaged over all types of noise and all SNR values (20 dB to 0dB) for different testing
sets.

of noise, (b) averaged over all types of moise but separated for different SNR values, and
(c) averaged over all types of noise and all SNR values (20dB to 0dB) for testing sets
A, B, and C, respectively. The first two bars in each set in Fig. 6.3 are respectively
the recognition word accuracies for the well-known histogram equalization (HEQ) alone
[43, 44], and the original HQ [46, 50, 51, 52|, which transforms each feature parameter y;
to the HQ representative value z; without considering the context codewords. The next
two bars are then those for context-dependent HQ, using context-dependency trained from
a clean speech corpus with Eq. 6.5 for the third bar (HQ-cd) and using MMSE estimates
trained with a multi-condition training corpus with Eq. 6.3 for the last bar (HQ-mmse).

All the experiments reported here for HQ were based on order-statistics over segments of
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the most recent parameter values as mentioned in section 6.2.1, so there was no time delay.
Although better results were obtainable if the no-delay condition was removed, they are not
shown here due to space limitations. Here HEQ was performed in exactly the same way as
HQ, based on a moving segment of the most recent 17" parameters, and the same value of
T = 100 was used.

It can be found that HQ (2nd bar) consistently outperformed HEQ (1st bar), while
context-dependent HQ (both HQ-cd and HQ-mmse in the 3rd and 4th bars) consistently and
significantly outperformed HEQ: in particular MMSE estimation trained with a noisy corpus
(4th bar) resulted in much more robust features for recognition. Increasing improvements
are apparent in Fig. 6.3 in all cases. In addition, context-dependent HQ trained with clean
speech (HQ-cd, 3rd bar) offered greater improvement than original HQ (HQ, 2nd bar) for
speech-like noise such as babble, restaurant, and airport; probably because the context-
dependent characteristics for these types ofinoise have been'more or less included in the
transformation. Furthermore, HQ-mmse (4th bar) consistently outperforms HQ-cd (3rd
bar) (Fig. 6.3(c)), which verifies that the context dependency trained from noisy corpora

is useful even for unseen noisy environments (e.g. sets B and-C).

SNR Clean |©20'dB. [ '15dB | 10dB | 5dB | 0dB
TC 98.31 | 95.16%| 89.55-1 70.94 | 43.79 | 18.75
HQ-mmse | 98.37 | 96.05 | 93.66 | 88.71 | 78.24 | 56.80
TCg 93.84 | 84.35 | 73.55 | 52.38 | 27.81 | 9.29
HQ-mmseg | 97.20 | 93.99 | 91.09 | 84.77 | 72.51 | 49.60

Table 6.1: Comparison of Transform coding (TC) and HQ-mmse, without and with GPRS
transmission errors (TCg and HQ-mmseg) for different SNR values.

6.3.2 Context-dependent HQ as a Feature Quantization Method for DSR

We next considered context-dependent HQ as a feature quantization method in
DSR. In Fig. 6.4 in each set the first three bars are respectively the word accuracies for the

well-known HEQ followed by the conventional SVQ (HEQ-SVQ), original HQ (the same as
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Figure 6.4: Comparison of HEQ-SVQ,-HQ,; and HQ-mmse, and those with GPRS transmis-
sion errors (HEQ-SVQg, HQg, and HQ-mmseg): (a) averaged over all SNR values (20dB
to 0dB) but separated for different types of noise; (b) averaged over all types of noise but
separated for different SNR values; and (c) averaged over all types of noise and all SNR
values (20dB to 0dB) for-different testing sets.
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the 2nd bar in Fig. 6.3), and context-dependent HQ with MMSE estimation (HQ-mmse,
the same as the 4th bar in Fig. 6.3), all at 4.4 kbps without transmission errors, and the
next three bars (HEQ-SVQg, HQ-g, HQ-mmseg: the label ”g” indicates GPRS) are those
suffering from GPRS transmission errors for a client traveling at 3km/hr. Fig. 6.4 (a)
is averaged over all SNR values (20dB to 0dB) but separated for different types of noise,
(b) is averaged over all types of noise but separated for different SNR values, and (c) is
averaged over all types of noise and all SNR values (20dB to 0dB) for testing sets A, B,

and C, respectively.

We first examined the effect of quantization and compression on recognition ac-

curacy, assuming there were no transmission errors. The performance of original HQ (2nd
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bar) consistently outperformed HEQ-SVQ, while HQ-mmse (3rd bar) was consistently and
significantly better than original HQ, as shown in Fig. 6.4(a)-(c). This verifies the effective-
ness of context-dependency. Improvements were even more significant for lower SNR cases
(Fig. 6.4(b)), and for several types of non-stationary noise (Fig. 6.4(a)), which indicates
where context-dependency is more helpful. We then examined the effect of transmission
errors in the last three bars in Fig. 6.4. For HEQ-SVQ, the performance degradation caused
by GPRS (4th bar compared to 1st bar) is more serious for lower SNRs. Clearly, features
corrupted by noise are more susceptible to transmission errors. The improvements that HQ
and context-dependent HQ offered over HEQ-SVQ when transmission errors were present
(5th, 6th bars to 4th bar) are consistent and very significant. For example, in the case
of 10dB SNR with GPRS, HQ-mmseg (6th bar).offered an accuracy of 84.77% compared
to 69.84% for HEQ-SVQg (4th bar). In addition, it is interesting that the improvements
offered by HQ-mmse over HQ 'when transmission errors were present (6th bar to 5th bar)
are much more significant as compared to those comparison without transmission errors
(3rd bar to 2nd bar). This indicates that context-dependency among speech codewords is
actually very strong, and remains helpful even after heavy disturbance due to environmental
noise and transmission errors, and the‘error propagation problem is not serious here. This
is probably because even if there are erroneous context codewords, they may only change
the representative parameter 2" of the current frame within the same partition cell @Q; in
Fig. 6.2, which is actually very limited. Also, the decoding here used only local context
codewords, i.e., based on the two neighboring undecoded codewords only; thus erroneous
codewords actually do not propagate. It is clear from Fig. 6.4 that HQ-mmse is robust

against both environmental noise and transmission errors.

Also shown in Table 6.1 are the detailed word accuracies of transform coding
(TC) [21] compared with HQ-mmse, either without or with GPRS transmission errors for

all SNR values, average over all noise types. The performance of TC seriously degrades
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when transmission errors are present (3rd row vs. 1st row), probably because exploiting
speech correlation by grouping several consecutive frames into one block and quantizing
them together may be sensitive to transmission errors. In contrast, error propagation is not
a serious problem here for HQ-mmseg (the performance degradation is much smaller for the

comparison of 4th and 2nd rows).

6.4 Summary

In this chapter, We have proposed context-dependent quantization, a new concept
for distributed and/or robust speech recognition. Improved recognition performance was
obtained consistently across a wide:range-of environmental noise and transmission error

conditions.
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Chapter 7

Application of Dynamic
Quantization on image features for

photograph retrieval

7.1 Introduction

With the growing popularity of digital cameras, many people have saved huge
collections of digital images. A resulting challenge is how to exactly to find a desired photo,
because it is simply impossible to browse through the entire collection. This calls for an

efficient photo retrieval approach.

Content-based image retrieval has been an active research area for years, many
successful approaches of which are based on low-level image features, implemented using
“query by example” [62, 63]. However, this is not very attractive in practice, because it
requires that the user provide an example photo as the query. In fact, most users prefer
high-level semantic descriptions of photos that use words as queries, such as who, what,

when, where (objects/events) and so on, but again, this is not an attractive solution if it
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requires manual annotation of each individual photo. This observation has led to the idea
of annotating photos with speech [64, 65]. When such a spoken photo annotation is taken

as a spoken document, the problem becomes one of spoken document retrieval.

Many spoken document retrieval approaches have been successful in spotting the
query term in the spoken documents, but these approaches usually suffer from the problem
of word usage diversity, i.e., the query and its relevant documents may use different sets
of words. This problem is especially serious for photo retrieval as considered here, because
the annotation may describe location (where), but the query may ask for a person (who),
i.e., both annotation and query are typically free-form and vary significantly. In spoken
document retrieval, semantic matching strategies.have been developed to solve the word
usage diversity problem by discovering latent topies inherent in the query and documents.
Latent semantic indexing (LSI).and probabilistic latent semantic analysis (PLSA) are two
typical examples [66, 67]. In both cases the, relevanee score between a query term and the
spoken documents can be obtained via a setvof latent topics, and relevant documents can
be retrieved even using query terms that are.completely different from those used in the
documents. This is because common -topics are usually found in sets of documents that
each include a set of similar terms,.orin sets of terms that each appear in a set of similar

documents, and such topical information is used in retrieval.

The above semantic matching methods have not solved the photo retrieval problem
described here either. Assume that photo annotation can be formulated into six categories:
who, what (object and event), when, where, and others. When labeling a photo, users
typically select only one or two categories. As such, related photos may not be labeled using
similar terms (e.g., some may be labeled by where and some by who), and the relationships
among terms in different categories cannot be trained using latent topics. For example,
given a where query, many photos taken at that location may not be retrieved if they are

annotated with words in other categories. Also, users generally annotate far too few photos
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to train such topic models. Moreover, it is even difficult to define what a “topic” should
be for photos. For example, should photos of different people taken at the same location
belong to the same topic, or should photos of the same people but taken at different locations
belong to the same topic? In other words, the above six categories of labels are orthogonal,
but user annotations are usually very sparse. Thus the photo retrieval problem is quite
different from the well-investigated spoken document retrieval problem, even if photos have

spoken annotations.

Considering all the above, user annotations could not provide enough information
to build the semantic relationships among photos. If we could extract some similar “terms”
from image features for photos of the same topie, the semantic link among photos with sparse
annotations would become stronger through the extracted image “terms.” Note that the
terms used in semantic analysis are discrete, while low-level image features are continuous.
Therefore, how to quantize these image features to “terms” is a key issue before semantic

analysis.

The image feature quantization considered here aims to extract common “terms”
from photos having the same’topie.and distinguished “terms” from photos with different
topic. This is because common terms could build stronger semantic relationship for photos
with the same topics, and distinguish terms could discriminate photos with different topics.
Conventional quantization with fixed and pre-trained codebook cannot well represent image
features. On one hand, if the partition cells for defining a color bin are fixed, the same
scene taken from different cameras may have very different color histogram features. In this
situation, the same scene taken from different cameras could not be retrieved because their
image “terms” would be quite different with fixed quantization codebook. Therefore, it is
important to apply the concept of dynamic quantization to define dynamic partition cells
for photos taken from different cameras. On the other hand, if the representative codewords

for the color histogram features and Gabor texture features are fixed, photos with different
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topics may locate on close positions in some feature dimensions, and they would be quantized
to the same codewords in these dimensions. Extracting common terms from photos with
different topics is harmful for semantic analysis because the topical information for photos
would become less clear. Therefore, it is important to dynamically define the representative

codewords to preserve the discriminative information in the quantization process.

Considering all the above, in this chapter we propose a user friendly semantic-based
photo retrieval approach using Fused image/speech/text features. We use low level image
features to derive the basic links among photos, since these features are really the universal
language describing photos. But we train semantic models to analyze the topics of the pho-
tos using PLSA. Because the ”"terms” in PLSA has to be discrete, while the low level image
features have continuous real values;for each given.photo we use low level image features to
select a group of “cohort photos? from the photo archive with similar image characteristics
as the “terms” describing the image characteristic-of the photo, which is then fused with
speech /text features if some annotation is added by the user. The speech/text annotation
can be very “sparse,” i.e., only very few words regarding the semantics (e.g. where or who)
are needed for only a small portion of photos. In this way, the image/speech/text features
are fused with PLSA topic analysis, to be-used in-PLSA. semantic-based retrieval. The
sparse text/speech annotation serve as the interface for the user to access the whole photo
archive, since the other photos not annotated are actually linked by the semantics of the

image features based on PLSA.

The rest of this chapter is organized as follows. Section 7.2 introduces the overall
photograph retrieval system. Section 7.3 describes the basic formula of PLSA. Color feature
extraction with dynamic partition cells and texture features are introduced in Sections 7.4.
In section 7.5, we introduce how to extract image “terms” from low-level image features by
using dynamically defined representative codewords. In section 7.6, we construct document

for each photo based on photo annotations and the image “terms” and use PLSA to analyze
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the topics of photos for photo retrieval. In section 7.7, we perform image clustering based
on PLSA model. Experimental settings and results are offered in Section 7.8. Conclusions

are given in the last section.

7.2 Overview of the proposed approach

As shown in Fig. 7.1, the proposed approach includes a preparation phase (left
part) and a retrieval phase (right part). In the preparation phase, the low level image
features are first extracted and used to select the “cohort photos” (Block (B) and (C),
middle of the figure) for each photo in the photo archive (Block (A), upper left corner).
The cohort photos, used as “terms”, together with the text/speech annotation by the user,
if available, are then fused to'construct a ”"document” for each photo (Block (D), lower right
corner). These “documents” and their “terms” are then used to train the PLSA topic model
(Block (E) and (F), upper right corner). The user query can then include only very few
words, in either speech or text form. Semantic-based retrieval by PLSA gives the desired

photo in the retrieval phase on the right.

7.3 Probabilistic latent semantic analysis (PLSA)

Probabilistic latent semantic analysis (PLSA) is a probabilistic framework for
semantic-based retrieval that uses a set of latent topic variables, zx, k = 1,2,..., K, to
characterize the term-document co-occurrence relationships as shown in Fig. 7.2 [67]. A
query @ is treated as a sequence of n observed terms, ) = tity---t;---t,, while docu-
ment d; and term ¢; are both assumed to be independently conditioned on an associated

latent topic 2. The conditional probability of observing term t; in document d; thus is
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Figure 7.1: The proposed approach: preparation phase includes document construction for
each photo and PLSA model training for photo documents, while retrieval phase is based
on PLSA.

parameterized as

K

P(tjlds) =Y Pltslze) P(2xd:); (7.1)

k&1
where the probabilities P(t;|z)) and P(zj|d;) are obtained from the PLSA model, which is
trained using the EM algorithm by maximizing a total likelihood function. When the terms
in the query @ are further assumed to beindependent given the document, the relevance
score between the query and document is then expressed as

P(Qld:) H

K

> P(tj|z)P zk|d)] (7.2)

k=1

In this way, retrieval is based on topics rather than on terms, i.e., topically rele-
vant documents can be retrieved even using a different set of terms. Such a latent semantic
concept of retrieval is highly desired in the photo retrieval problem here, but there are
obvious limitations when using it as-is. For photos, topics clearly have to do with scene
and image features such colors and textures, since these—rather than the few words in the

annotation—are the universal language that describes all photos. However, these image
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features are represented using real numbers, while terms in the PLSA model are discrete.
That is why we use such image features to select cohort photos with similar image charac-
teristics, and use these cohort photos as the discrete terms in PLSA document construction,

as we explain below in section 7.6.

Documents Latent Topics Terms
Query Q =tit2... tj...tn

Figure 7.2: PLSA-based retrieval model

7.4 Low-level image feature extraction

7.4.1 Dynamic color features from the images

Color histogram popularly used in image retrieval is adapted here [68]. Each photo
k can be represented by a color histogram Hy, in which each entry Hy(i) is the number
of pixels belonging to the color bin i. The HSV color space is quantized into 166 colors,
including 18 levels of hues (H) * 3 levels of saturation (S)* 3 levels of values (V) + 4 levels of

grays [68]. The distance dj,; between two photos k and [ is then defined by the L2 distance
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measure,
i=N—-1

diy= Y (Hi(i) — H(i))?, (7.3)

i=0
where N=166 here. If we use fixed quantization for the color space (H,S,V plus grays) for

all photos, the same scene from different cameras may have very different color histograms.
This is why we developed dynamic quantization schemes to derive dynamic color features

in order to handle photos taken by different cameras.
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Figure 7.3: Dynamic color features defined by histogram-based quantization.

The dynamic quantization for color space uses the histogram-based quantization
(HQ) in section 3, previously developed for distributed and/or robust speech recognition.
In this scheme as shown in Fig. 7.3, the partition boundary v; of a color bin i, whether
for H, S, V or gray, for a camera c is based on the histogram of the pixel values for photos
taken by the camera c. The pixel values of photos taken by camera c are first sorted
to produce a cumulative distribution function C.(v), or histogram, for H, S, V or gray,
which is different for different camera, where C.(vg) = by = 0 and C.(vy) = by = 1,9
and vy are respectively the minimum and maximum pixel values. On the other hand, N

partition cells, {D; = [b;—1,b;],i = 1,2,..., N} are uniformly defined on the vertical scale
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[0,1]. They are transformed to the horizontal scale by the dynamic histogram C.(v), to be
the N partition cells {[v;—1,v;],7 = 1,2,..., N} on the horizontal scale for the quantization
of the pixel values, where C¢(v;) = b;. Thus the partition cell [v;_1,v;] on the horizontal
scale is defined differently for different camera c. As shown in Fig. 7.3, when a different
histogram C.(v) is used for a different camera ¢, the partition cell on the horizontal scale
is changed to [v,_,,v}], where C.(v,_;) = bj—1 and C.(v]) = b;. It has been shown that the
quantization defined in this way is more robust because the different statistical behaviors

of photos from different cameras are absorbed by the histograms [46, 50].

7.4.2 Texture features from images

The Gabor texture:features previously proposed and frequently used for image
retrieval, produced by a bank of Gabor filters at multiple scales and orientation [69] are

adapted here, including four scales-and six orientations.

7.5 Document generation for photos

7.5.1 Image “terms” extraction and “Cohort Photos” selection from low-

level image features

Two photos with different topic have different color histograms, but the difference
may be significant only on certain color bins. If these two photos both have few pixels on
many color bins, the quantized results on these bins would be the same, and there would be
many common “terms” for these photos with different topics. To solve the above problems,
the representative codewords should be dynamically defined to distinguish the difference in

main color bins and ignore other color bins in the photo quantization process.
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As shown in Fig. 7.4, to distinguish photos with different topics (Pearl Harbor and
Hanauma Bay), the difference in blue color bin_s should be more important than other bins.
With fixed representative codewords, the codéwbrds may be uniformly distributed on each
color bin, and the quantization resolution is the same for all bins." Two photos with different
topics may be quantized to the same- codeword and two photos with the same topic may
be quantized to different codewords. These image “terms” extracted by the quantization
process with fixed codeword cannot well represent the topical information of the photo,
and they may cause ambiguity in latent semantic analysis. By contrast, with dynamic
representative codewords, the color bins with rich information would be quantized finer and
other color bins with less information would be quantized looser. Because the difference in
the distinguished color bin is emphasized in the quantization process, two photos with the
same topic can be quantized to the same codeword and two photos with different topics can

be quantized to different codewords.

To make the representative codewords more discriminative on the color bins with

rich information, a simple way is to use each photo feature vector as a codeword in the
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feature space. For example, in the album of Hawaii traveling each photo in the photo album
is taken as a codeword and these codewords could provide more discriminative information
on blue color bins than other color bins. With all photos in the album as the representative
codewords, each photo could be represented as a group of “cohort photos” from the photo
archive with similar image characteristics. We use a total of three methods to select cohort
photos. The L2 distance in Eq. 7.3 is used as the distance measure for both color features
in Section 7.4.1 and texture features in Section 7.4.2. The first method is based simply on
the combination of ranks (i.e., the closest top 15 photos) with respect to color and texture
features. In the second and third methods, we use one set of features (color or texture)
to select the top 30% photos as the candidates, and then use the other set of features to
re-score (or re-rank) the selected photos. These three methods are actually complementary
to each other, so they are respectively used to generate a total of three sets of cohort photos

for each given photo, to.be used to construct the photo-documents as presented below.

7.5.2 Construction of “Documents” with fused features for the photos

Each photo in the archive must-be represented as a document described by the
discrete terms used in PLSA modeling. We first define as a term every photo in the archive
(thus we have discrete terms), and then we further represent each photo as a document
composed of the terms for all of its cohort photos, which are formed as described above using
color and texture features. These terms jointly describe the image and scene characteristics

of each photo.

As described above in Section 7.5.1, we use three methods to extract cohort photos
based on image similarity. For each method, the terms for the top 15 most similar photos
are included in the document for a given photo. When the same photo appears in more
than one of the three top-15 lists, the corresponding term frequency in the photo document

is raised to emphasize its salience.
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On the other hand, the speech/text annotation for a given photo is also included
in its document. This is straightforward: we simply define word, character, and syllable
as terms (the annotation is in Mandarin Chinese) for word- and subword-level indexing as
in conventional spoken document retrieval. The subword units (character and syllable) are
used to handle OOV words as usual. For speech annotation, utterances are represented in
word- and subword-based lattices and all arcs of the lattices with posterior probabilities are
included as the terms. These word and subword terms in the lattices are given less weight
in PLSA training, in order to reduce interference from noisy word/subwords, but still add
indexing functionality if that term appears with greater weight in the lattices. In this way,

we construct photo documents with fused image/speech/text features.

7.6 Latent semantic photo retrieval with fused image/speech /text

features

The PLSA model is then trained with the constructed documents with terms based
on fused image/speech/text features. Because few photos-are annotated, the obtained topics
are based primarily on image semantics, i.€.;;photos of the same topic look similar. The input
query can be in either speech or text form, represented as a sequence of observed word- or
subword-based terms, and the relevance score with respect to each photo (i.e., the document
with fused image/speech/text features as discussed in Section 7.5) is then calculated based
on PLSA as in Eq. 7.2. Note that there are four types of terms in each photo document:
image terms, word terms, character terms, and syllable terms. For unannotated photos,
the latter three types of terms are simply blank. The central idea of PLSA-based latent
semantic retrieval is that a query and a document may have a high relevance score even
if they do not share any terms in common, as long as they share the same topic. In this

way, unannotated photos that have no terms in common with the text/speech query (since
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the query contains only word/character/syllable terms) can also be retrieved, because the

matching is not based on term co-occurrences but on latent topics.

7.7 Image Clustering

Given the above PLSA model, the likelihood that d; addresses the latent topic T}
(i.e. P(Tx|d;)), we could classify each image (document ¢) to the topic (or cluster k) with

the highest likelihood.

€y = arg max P(Ty\d;). (7.4)

On the other hand, the representative images R}, of each cluster (i.e. topic k) could
be selected as the word (i.e. term t;)which maximize the term frequency in the latent topic

Tk (i.e. P(tj |Tk))

Ry, = arg max P(t;|T},). (7.5)
J

7.8 Preliminary Experimental Results

7.8.1 Photo archive

In the preliminary experiments, an achieve of 347 photos for a trip to Hawaii was
used. They were taken by two different cameras, a Fujitsu and a Canon. Only 12% of these
photos were annotated by the users with text labels, in which each photo was annotated by
only one of the six categories: who, what (object and event), when, where, and others. Fach
annotation includes 1 to 5 Chinese words or 2 to 6 Chinese characters. Speech annotation

was not done for lack of time.
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7.8.2 Dynamic color features across cameras

The first experiment measured how the dynamic color features using histogram-
based quantization presented in Section 7.4 can help users easily sharing photos taken by
different cameras. We arbitrarily took 18 scenes, each with a photo taken by the two
different cameras respectively, Fujitsu and Canon (F1, F2 ..., F18 from Fujitsu, and C1,
C2,..., C18 from Canon, (Fk, Ck) are pictures taken from the same scene k). For each
given photo from one of the camera (i.e., Fk), the distance measure in Eq. 7.3 using the
color features described in Section 7.4 was used to select the closest photos from all the
other 346 photos in the archive. The rank of the corresponding photo for the given scene
k taken by the other camera (i.e., Ck) was then obtained. The average rank for these 36
images is 6.5 using the fixed color features, and-4.8 using:the proposed dynamic features
with histogram-based quantization. This verified that the propesed dynamic color features

can reduce the mismatch of pixel value distributions between different cameras.

7.8.3 Latent semantic photo retrieval

Fig. 7.5 shows one example of the first 9 photos retrieved by the text query
“Hanauma Bay (in Chinese)”. In fact only one photo in the archive was annotated with
“Beautiful Hanauma Bay (in Chinese),” but many related photos were actually correctly
retrieved because of the fused image/speech/text features and semantic approach of PLSA.
However, in Fig. 7.5, photos of ranks (5) and (8) were actually taken at “Pearl Harbor,”
and are therefore irrelevant, but probably only the user can identify such difference. This
is why the performance of semantic-based photo retrieval is difficult to evaluate, because
very often only the users themselves can determine whether a photo is relevant or not. As
another example, the query “sun rise” may retrieve many photos of “sun set,” while only

the user knows which one is which. This is different from the task of “query by example”
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retrieval system, in which the relevant images are simply those close to the query example.
. |

This is why here we didn’t evaluate the o'“ver'alluprecision/recall rates.

In our preliminary experiment, two users participated in the test, each giving 40
text queries and 40 speech queries. Each query includes 1 to 5 Chinese words, or 2 to 6
Chinese characters (or syllables). 30% of the speech queries include OOV words. For each
query, the system displayed a ranked list of the retrieved photos. The users were asked to
identify the first 5 photos along the given list he or she recognizes as irrelevant, from which
5 precision rates were calculated from rank 1 photo to each of the 5 irrelevant photos. For
example, if the second irrelevant photo was of rank 8, the corresponding precision rate is

0.75. Table 7.1 summarizes the results. For example, for text query the second irrelevant
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Table 7.1: Average precision and rank for the first few irrelevant photos retrieved (with
dynamic codewords)

First few irrelevant photos Average precision (avg. rank for the irrelevant photo)
Text query Speech query
Ist 0.776 (4.5) 0.437 (1.8)
2nd 0.764 (8.5) 0.422 (3.5)
3rd 0.744 (11.7) 0.417 (5.1)
Ath 0.715 (14.0) 0.403 (6.7)
5-th 0.678 (15.5) 0.380 (8.1)
Average of five 0.735 0.412

Table 7.2: Average precision and rank for the first few irrelevant photos retrieved (with
fixed codewords)

First few irrelevant photos Average precision (avg. rank for the irrelevant photo)
Text _query Speech query
1st 0.241 (1.3) 0.132 (1.2)
2nd 0.319 (2.9) 0.174 (2.4)
3rd 0.233 (3.9) 0.147 (3.5)
4-th 0.220+(5.2) 0:134 (4.6)
5-th 0.234(6.5) 0.157 (5.9)
Average of five 0.249 0.149

photos have an average rank of 8.5 and, a cerresponding-precision of 0.764, and the speech
queries gave relatively lower performance-clearly due to the OOV words and very high
word error rates. Table 7.2 shows the results for photo retrieval with fixed representative
codeword. There are many irrelevant photos retrieved in the top rank, for example for text
query the second irrelevant photos have an average rank of 2.9 and a corresponding precision
of 0.319, and the speech queries gave worse retrieved results. These results shows the “image
terms” extracted from image features quantized with fixed codebook are very harmful for
latent semantic retrieval. This is because many irrelevant photos may share many common
image “terms,” and these terms would cause confusing in PLSA. In contrast, the “image
terms” extracted with dynamic codebook indeed help for latent semantic analysis as shown

in Table 7.1.
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Table 7.3: Evaluation for Image clustering

1 2 3 4 )
67% | 19% | 8% | 4% | 2%

7.8.4 Image clustering

The goal of the image clustering is to help the user to reduce the number of images
to be browsed before getting the desired image. So we design the experiment to evaluate
the performance. The system clusters all the photos into 21 clusters (i.e. about 17 photos
in one cluster in average), and then displays four representative photos for each cluster.
Giving the user a photo as the desired image, and count the number of browsed clusters
before the user find the given image. There are three users, 40 queries per user, and 120
queries are performed totally.

It can be observed from-Table 7.3-that the about 67% of the desired images are
found in the first cluster. The result is pretty good because the system could help the user
find the image in an efficient way. The mumber of.clusters user have browsed before finding

the desired image is almost below /3, only 6% exceed 3 as shown in Table 7.3.

7.9 Summary

In this chapter, we apply the concept of dynamic quantization on image features for
photograph retrieval. The PLSA model, based on image terms extracted through dynamic

quantization, significantly improves the photo retrieval results.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

Conventionally, quantization and rebustness techniques are considered as two sep-
arate problems to solve. Feature quantization is for data compression and robustness tech-
niques for handling noise disturbances. Most of all quantization methods obtain good results
for clean speech and/or mateched vector quantization (VQ) codebook conditions. However,
the problems for environmental noise and transmission errors are not considered in the
quantization process, because these issues are usually left out and are taken care of by
robust front-end /back-end and error concealment techniques.

In this dissertation, a novel approach of dynamic quantization is proposed, au-
tomatically includes the desired robustness in the quantization process for robust and dis-
tributed speech recognition (DSR). The dynamic codebook could well represent noisy speech
features and absorb the noise disturbance in the quantization block. These two dynamic
quantization methods, Histogram-based Quantization (HQ) and context-dependent quanti-
zation, have been shown to be robust for all types of noise and all SNR conditions for either
conventional speech recognitions systems, or DSR at all bit rates. In particular, context-

dependent HQ utilizing strong speech correlation offered significant improvements and is
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very robust against transmission errors. The configuration of HQ or context-dependent HQ
could be easily scalable based on bandwidth or noise conditions. For future personalized
and context-aware DSR environments, HQ or context-dependent HQ can be adapted to
network and terminal capabilities, with recognition performance optimized based on envi-
ronmental conditions. In addition, dynamic quantization applied on image features could
extract image “terms,” and these terms well represent the semantics of photos for PLSA to
build the semantic link among photos. In the experiments, while only 12% photos have very
“spares” annotations, the retrieval results are very encouraging. This verified that dynamic

quantization provides very distinguished image terms for PLSA training.

8.2 Future Works

Although many issues of environmental noise and transmission errors have been
investigated in the dynamic quantization; there-are still several important topics opened
for further research. Each of our preposed approaches in the above five major chapters in
this thesis may be further studied to determine some possible contributions. Following list
is just to depict some issues of the dynamic quantization framework:

1. Extend the definition of quantization distortion measure to discriminate repre-
sentative codewords for speech recognition,

2. Better integration of uncertainty source in Distributed speech recognition frame-
work,

3. Jointly optimization of dynamic quantization (source coding) and channel cod-
ing,

4. Combination of various front-end feature processing approaches for improving
the accuracy of the speech recognition system.

Based on the results and techniques that we have investigated and built-up, there are several

topics that we could extend our current work for further research in dynamic quantization.
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In Chapter 3, we successfully jointly consider the issues of compression and robust-
ness, and the integration could be applied for both robust and distributed speech recogni-
tion. Another interesting idea is to jointly consider compression and discrimination issues.
In Chapter 3, the hidden codebook on the vertical scale is derived based on uniform, Lapla-
cian and Gaussian distribution via Lloyd-Max algorithm, which aims to minimize the overall
quantization distortion. Every data point is treated with the same importance in the quan-
tization process. However, there may be some regions in the feature space more critical
than other regions. The critical region has smaller margin among HMM models and small
distortion for samples in these critical regions could cause recognition errors. Therefore, the
samples in the critical region should be carefully considered to enlarge the margin among
HMM models. On the other hand, quantization distortion in some features may be more
important than distortions in others. The quantization distortion sensitivity for different
feature parameters should be integrated in/the quantization distortion measure to optimize

the recognition performance.

In Chapter 4, we jointly consider the uncertainty caused by both environmental
noise and quantization errors..'In Chapter 5, the reliability of received feature vectors
is considered in Viterbi decoding in-the third- stage of error concealment. For distributed
speech recognition, it would be better to jointly consider these three source of uncertainties:
quantization distortion, environmental noise and transmissions. The above uncertainty
estimation is derived from feature perspective. On the other hand, the reliability could
be estimated based an entropy-based measure to determine the discriminating ability of a
feature parameter in identifying the correct acoustic models [70, 72, 71]. The uncertainty
or reliability estimated from feature or model perspective could be further integrated in

Viterbi decoding to improve the recognition performance.

In the three-stage error concealment(EC) framework in Chapter 5, the error de-

tection is based on the characteristics of HQ features. There is no channel coding scheme
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applied on the encoded HQ symbols. If the source coding and channel coding are considered
jointly, the recall and precision rates of error detection could be further improved. Also,
with channel coding, the soft decision decoding at receiver could offer channel reliability
information for weighted Viterbi decoding.

In Chapter 6, the context-dependent quantization exploiting speech correlation in
the quantization process improves the robustness against environmental noise and transmis-
sion errors. This is probably because the speech context change could provide additional in-
formation for human perception and speech recognition. The concept of context-dependency
could be also applied to other feature transformation methods. For example, the transfor-
mation of Histogram equalization (HEQ) could depend on not only the order-statistics of
the current feature parameter, but also the left_and right context parameter. The cor-
relation of order-statistics in consecutive frames could improve the robustness of feature
parameters.

To the best of our knowledge, the"above concept has,not been reported in the
literature yet. These future works are very important and meaningful in the research area

of robust and distributed speech recognition.
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