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摘 要 

 

本篇論文旨在設計一個能從多肽序列擷取資訊的自動分類器，以預測轉錄因

子上會與 DNA 之鹼基產生鍵結的殘基。正如最近一些研究所揭露的，有大量轉錄

因子之三級結構是不穩定序(disordered)，因此若能只純粹利用序列的資訊，進而預

測轉錄因子與 DNA 之關鍵殘基，將非常有助於下一步的實驗。 

 

有鑑於此，設計、發展一個預測器並使之能夠分辨與 DNA 進行專一性結合的

殘基更形迫切需要。此外，專一性結合不僅能反應基因上的特異序列辨識，在正

確的基因調控中也扮演極重要的角色。 

 

本論文呈現的設計混合了兩種不同方法，分別是以 SVM 為主的機器學習方式

以及原先應用於預測蛋白質域(protein domain)的演算法。觀察後發現兩個方法的預

測表現在不同的蛋白質二級結構上各有優劣，於是我們嘗試設計一套機制以混合

兩種方法的輸出結果以取得最佳的成績。在本文最終的實驗結果，呈現的新預測

器能提供 59.5%的涵蓋度、77.4%的精確度，以及 98.8%的專一度(specificity)。 
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ABSTRACT 

 

This thesis presents the design of a polypeptide sequence based predictor aiming to 

identify the residues in a transcription factor that are involved in specific binding with 

the DNA. As a recent study has revealed that the tertiary structures of a large number of 

transcription factors are mostly disordered, the capability to identify the residues in a 

transcription factor that play key roles in interaction with the DNA based purely on 

analysis of the polypeptide sequence is highly desirable. In this respect, it is further 

desirable to have a predictor capable of distinguishing those residues involved in 

specific binding with the DNA, since specific binding corresponds to sequence-specific 

recognition of a gene, which is essential for correct gene regulation. The design of the 

proposed predictor is distinctive by employing a hybrid approach. That is, two 

prediction mechanisms specialized for making predictions in different types of protein 

secondary structures have been incorporated. In the experiments reported in this thesis, 

the proposed hybrid predictor delivered precision of 77.4%, sensitivity of 59.5%, and 

specificity of 98.8% 
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Chapter 1 INTRODUCTION 

In the field of molecular biology, a transcription factor (sometimes called a 

sequence-specific DNA binding factor) is a protein that binds to specific parts of DNA 

using DNA binding domains and is part of the system that controls the transfer (or 

transcription) of genetic information from DNA to RNA [1, 2]. The importance of 

transcription factors lies in that, without transcription factors, the creation of new RNA 

from DNA cannot occur. Transcription factors perform this function alone, or by using 

other proteins in a complex, by increasing (as an activator), or preventing (as a repressor) 

the presence of RNA polymerase, the enzyme which activates the transcription of 

genetic information from DNA to RNA [3-5]. Transcription factors are one of the 

groups of proteins that read and interpret the genetic "blueprint" in the DNA. They are 

the key to determining where the DNA chain becomes "unzipped," creating a single 

strand to which RNA can be bound while it's being built. They bind DNA and help 

initiate a program that decreases or increases gene transcription. As such, they are vital 

for many important cellular processes. Transcription factors at least involve in these 

important functions and biological roles below: 

Basal transcription regulation [6, 7]: In eukaryotes, an important class of transcription 

factors called general transcription factors (GTFs) which are necessary for transcription 

to occur. Many of these GTFs don’t actually bind DNA but are part of the large 
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transcription preinitiation complex that interacts with RNA polymerase directly. These 

GTFs are, for example, TFIIA, TFIIB, and TFIID. 

Development: Many TFs in multicellular organisms are involved in development. 

Responding to cues (stimuli), these TFs turn on or turn off the transcription of the 

appropriate genes which in turn allows for changes in cell morphology or activities 

needed for cell fate determination and cellular differentiation. For example, the Hox 

transcription factor family (which is important for proper body pattern formation) and 

the TF encoded by the Sex-determining Region Y (SRY) gene [8] (which plays a major 

role in determining gender in humans) can be regarded in this category. 

Response to environment: Not only do transcription factors act downstream of 

signaling cascades related to biological stimuli, but they can also be downstream of 

signaling cascades involved in environmental stimuli. Examples include heat shock 

factor (HSF) [9] which upregulates genes necessary for survival at higher temperatures, 

hypoxia inducible factor (HIF) [10, 11] which upregulates genes necessary for cell 

survival in low oxygen environments, and sterol regulatory element binding protein 

(SREBP) which helps maintain proper lipid levels in the cell. 

Cell cycle control: Many transcription factors, especially some that are oncogenes or 

tumor suppressors, help regulate the cell cycle and as such determine how large a cell 

will get and when it can divide into two daughter cells. One example is the Myc [12] 
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oncogene, which has important roles in cell growth and apoptosis. 

 

In recent years, prediction of residues in a protein chain that may be involved in 

interaction with the DNA has been a research topic that attracts a high level of interest 

[13-15]. Some of the studies were purely based on analysis of the polypeptide sequence 

[13, 15-18], while the others took the structural information into account [17, 19]. In 

this respect, as it has been reported in a recent article that the tertiary structures of a 

large number of transcription factors (TF) are mostly disordered [20], the capability to 

identify the residues in a TF that play key roles in interaction with the DNA based 

purely on analysis of the polypeptide sequence is highly desirable. Concerning 

protein-DNA interactions, there are two binding mechanisms involved: specific binding 

and non-specific binding [21]. Fig. 1 shows an example of these two binding 

mechanisms. Specific binding occurs between protein side chains and nucleotide bases, 

while non-specific binding occurs between protein side chains and the DNA 

sugar-phosphate backbone. In this thesis, we define the residues with heavy atoms 

which are within 4.5 Å from the bases of the DNA as the “specific-binding residues”, or 

“base-specific binding residues”. According to previous literature, many had set the 

distance with the range from 4 Å to 6 Å. With the point not to include too much noise 

and retain fidelity, we set the distance to 4.5 Å in determining a base-specific binding 
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residue. 

 

In molecular biology, specific binding corresponds to sequence-specific recognition of a 

gene and therefore is essential for correct gene regulation. Therefore, in this thesis, we 

have aimed to design a polypeptide sequence based predictor capable of identifying 

those residues in a TF that are involved in specific binding with the DNA. The design of 

the proposed predictor is distinctive by employing a hybrid approach. In the hybrid 

predictor, two prediction mechanisms specialized for making predictions in different 

types of protein secondary structures have been incorporated. Based on the experiments 

reported in this thesis, the hybrid predictor can deliver precision of 77.4%, sensitivity of 

59.5%, and specificity of 98.8% with the following definitions: 

,
FPTN

TN y specificit

 ,
FNTP

TP y sensitivit

, 
FPTP

TP  precision

+
=

+
=

+
=

 

where 

TP = the number of correctly classified specific binding residues; 

TN = the number of correctly classified non-specific binding residues; 

FP = the number of non-specific binding residues incorrectly classified as specific; 

FN = the number of specific binding residues incorrectly classified as non-specific. 
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This thesis is organized as follows: in Chapter 2 we introduce the related works in 

which many researchers had studied the characteristics of DNA-binding proteins and 

the properties of DNA-binding residues. In wake of this, many predictors have been 

developed in order to provide clues for the correct binding sites on proteins. In Chapter 

3, we first exhibit the overall architecture of the proposed hybrid predictor with the 

purpose that the operational flow can help one easily understand the process much more 

clearly. Then we describe the primary SVM predictor and the auxiliary SSEP predictor. 

The way to utilize both and finding a proper solution of integration is elaborated in the 

end of this chapter. In Chapter 4, we exhibit our experimental results. It contains 

numerous tables, figures and discussions. The outcomes from the view point of 

secondary structure of protein or of TF-DNA interaction type are also included. We give 

our conclusions and future works in Chapter 5. 
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Fig. 1 Different mechanisms of specific and non-specific binding. This 

picture shows the specific binding and non-specific binding residues. 

The residues have specific binding occur between protein side chains 

and nucleotide bases are colored in blue. The residues have non-specific 

binding occur between protein side chains and the DNA sugar-phosphate 

backbone are colored in green. 
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Chapter 2 RELATED WORK 

In this chapter, we first introduce the related studies and the history concerning 

DNA-binding site prediction. We introduce two different systems, one is based on 

protein sequence and the other is based on three-dimensional structure of protein. Then 

we illustrate the ideas of the SVM classifier and the SSEP-Domain algorithm, both are 

critical components involved in our solution. Finally, we describe the feature sets 

including PSSMs and predicted secondary structure, which are the learning materials 

for our approach to capture the characteristics of base-specific binding residues. 

 

2.1 OVERVIEW 

Many studies have recently attempted to use structural and even sequence properties of 

unbound proteins to predict protein-protein interface [13-17, 19, 22]. Ahmad et al. [16] 

made first attempt to adopt sequence and evolutionary features for predicting 

DNA-binding sites in DNA-binding proteins. Since then, some methods using 

three-dimensional structure of the protein were also proposed [15, 19, 22]. Though 

those articles deal with not exactly the same problem as we are addressing 

(base-specific binding residues of proteins), there are some standard procedures and 

useful mechanisms which can’t be ignored. In the following paragraphs, we will go 

through those DNA-binding site predictors and have basic knowledge of their working 
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principles. 

 

For DNA-binding site predictors which are based on structural information of proteins, 

there are some studies: in 2003, Jones et al. [17] used electrostatic potentials to predict 

DNA-binding sites on DNA-binding proteins. They collected a dataset composed of 56 

non-homologous DNA-binding proteins and achieved 68% correction prediction of the 

dataset. The result reveals that the electrostatic potentials are strong and significant 

features for prediction. Later in 2004, Tsuchiya et al. [19] proposed a structure-based 

predictor for DNA-binding sites on proteins using the empirical preference of 

electrostatic potential and the shape of molecular surfaces. They obtained the 

electrostatic potentials by solving the Poisson-Boltzmann equation numerically, which 

may consume a lot of time for calculating. They focused on 63 protein-DNA complexes 

and in the end developed prediction schemes with 86% and 96% accuracy for 

DNA-binding and non-DNA-binding proteins, respectively. It is interesting that the 

result still supports the importance of electrostatic potentials on protein surfaces. 

Recently in 2007, Tjong , H. and Zhou, H.-X [15] analyzed 264 protein-DNA 

complexes, rather then electrostatic potentials, they featured position-specific sequence 

profiles, solvent accessibilities of each residue and its spatial neighbors to the neural 

network. Overall, they claimed the predictor achieved accuracy over 80% and coverage 
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over 60% of actual DNA-contacting residues. 

 

For those which are based on sequence and evolutionary information of the proteins, in 

other words, the three-dimensional structure of the query protein is not required, take 

some for representatives: DISIS [14], BindN [23], and DP-Bind [24]. We will give a 

brief description of these tools below. 

1) DISIS [14] predicts DNA-binding sites directly from amino acid sequence and hence 

is applicable for all known proteins. It is based on the physcochemical properties of the 

residue and its environment, predicted structural features and evolutionary data. 

2) BindN [23] makes a prediction based on chemical properties of the input protein 

sequence.  

3) DP-Bind [24] combines multiple methods to make a consensus prediction based on 

the profile of evolutionary conservation and properties of the input protein sequence. 

Profile of evolutionary conservation is automatically generated by this web-server.  

 

As mentioned in the introduction, a large number of transcription factors (TF) may be 

mostly disordered, which may make it difficult for researchers in the laboratories to 

have those TFs crystallized or structured. This is the reason why it’s necessary and 

crucial to develop an accurate specific-binding site predictor from sequence only. 
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2.2 CLASSIFIER 

In this thesis, we hybridize two learning mechanisms to obtain optimal performance. 

One is LIBSVM [25] and the other one is SSEP-Domain predictor. In this section we 

will focus on introducing the core concepts or these two algorithms, leaving their 

detailed operations during methods later in chapter 3.  

 

LIBSVM is a learning machine based on statistical learning theory. The advantages of 

translating the training set into a high-dimensional space as Fig. 2 and avoiding 

overfitting make LIBSVM well-known and powerful, especially in addressing 

biological problems. The basic idea can be described briefly as follows. First, the inputs 

are formulated as feature vectors, of which each is associated with one of two classes. In 

the training procedure, the class of each input vector is known in advance. In prediction, 

the class is the output of SVM. Secondly, the feature vectors are mapped into a feature 

space (possibly with high dimensionality) by a kernel function, either linearly or 

nonlinearly. Thirdly, a division is computed in the feature space to optimally separate 

the two classes of training vectors. SVM training always automatically seeks global 

optimum and avoids over-fitting. These characteristics make it particularly suitable to 

deal with large numbers of features.  
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Fig.2 Basic idea of SVM working principals. The basic idea of SVM is to 

employ a mapping function to transform data from the input space to a feature 

space where the border can be represented by a linear optimal separation 

hyperplane. 

 

As mentioned in pervious, SUM is a binary classification tool that uses a non-linear 

transformation to map the input data to a high dimensional feature space where linear 

classification is performed. It is equivalent to solving the quadratic optimization 

problem: 

∑+⋅
i

ibw
Cww

i

ζ
ζ 2

1min
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Where xi is a feature vector labeled by yi ∈{+1, -1}, {xi,yj}, i=1,…,m, and the penalty 

parameter of the error term C, also called the cost. It does the classification by 

generating a separating hyper-plane using the equation f(x) = Φ(x)．w + b = 0. Use Σj

Φ(xj) to represent w, we obtainΦ(xi)．w = ΣjαiΦ(xj)．Φ(xi). This provides an 

efficient approach to solve SVM without the explicit use of the non-linear 

transformation. Further K(xi,xj) ≡ Φ(xi)TΦ(xj) is called the kernel function and it is this 

function that maps the data to a higher dimension. There are several kernel types 

including linear, polynomial, radial basis function, sigmoid. In this thesis, public 

available LIBSVM was used to build a classifier with a radial basis function kernel and 

a set of parameters. 

 

For SSEP-Domain predictor, the initial goal was to search for protein domain boundary 

and to conduct domain prediction. Because of its high sensitivity and precision of single 

domain, we adopted its idea and made some modification to suite our purpose of finding 

specific-binding sites. The fundamentals of the whole process include two major steps. 

The first step is searching for domain boundary, picking up suitable and significant 

domains in the template library created beforehand; the other one is scoring of domain 

regions, which introduces a technique called profile-profile alignment (PPA). The 

details of the implementation are elaborated by psudeo-code of this algorithm: 
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Step 1: Domain Boundary Search 

1: // initialization  

2: Centers ← centers of coil regions predicted on target t 

3: Regions ← {rij = t[ci..cj]}│ci,cj ∈ Centers ∧ ci < cj} 

4: Images ← {} 

5: PFAM_DNAbindings ← Domains annotated as DNAbinding by PFAM 

6: Domains ← PFAM_DNAbindings 

7: // generation of domain images 

8: For all template domains d ∈ Domains do 

9:  // get highest scoring region of similar length 

10:  smax(d) ← maxrij∈Regions∧|rij|≈|d| SSEA(d, rij) 

11:  //significance filtering: score high enough? 

12:  if smax(d) > sthresh(d) then 

13:   add corresponding region rij to Images 

14:   with score(rij) ← smax(d) 

15:  end if 

16: end for 

17: // accumulative scoring of coil centers 

18: ∀c ∈ Centers : score(c) ← 0 
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19: for the top-scoring rij ∈ Images do 

20:  score(ci) ← score(ci) + score(rij) 

21 :  score(cj) ← score(cj) + score(rij) 

22: end for 

23: select the top-scoring coil centers 

 

Line 2 to line 6 is initialization. In this we create several sets: Centers, Regions, Images, 

PFAM_DNAbindings and Domains. Line 8 to line 16 is the generation of domain images. 

For every template domain in Domains set, we perform secondary structure element 

alignment (SSEA) with each element in Regions set. We perform significance filtering 

by discarding low-scoring pairs. Line 18 to line 23 is the determination of proper 

domain boundary by calculating the top-scoring coil centers. 

 

Step 2: Scoring of Domain Regions 

1: Regions ← potential domain regions 

2: For all r ∈ Regions do 

3:  // score fold classes by highest-scoring members 

4:  for all fold classes Fold ⊂ Domains do 

5:   score(Fold ) ← maxd∈Fold∧|d|≈|r| SSEA(r, d) 
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6:  end for 

7:  // select members of potential fold classes 

8:  Dtop ← members of top-scoring fold classes 

9:  // score normalization for multiplicative scoring  

10:  scoreraw(r) ← maxd∈Fold∧|d|≈|r| PPA(r, d) 

11:  scorefinal(r) ← scoreraw(r)/(10log|r|) 

12: end for  

 

Line 3 to line 6 we perform SSEA between each element in Fold set and each element in 

Regions set. Line 8 to line 12 the potential fold classes were selected by performing 

profile-profile-alignment (PPA). 

 

2.3 FEATURE SET 

In our study, we use two strong features to capture the characteristics of base-specific 

interaction residues. They are position specific scoring matrix (PSSM) and secondary 

structures of the protein. The power of the first feature may be due to its enriched 

conservation information of a protein chain. And the power of the second feature may 

contribute to the stability of the structures and the unique composition of secondary 

structure elements which may reveal the preference of base-specific interaction. 
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Position specific iterative BLAST (PSI-BLAST) [26] was executed and a profile (or 

position specific scoring matrix, PSSM) is constructed (automatically) from a multiple 

alignment of the highest scoring hits in an initial BLAST search. The PSSM is 

generated by calculating position-specific scores for each position in the alignment. 

Highly conserved positions receive high positive scores and weakly conserved positions 

receive scores near zero or negative. The profile is used to perform a second BLAST 

search and the results of each "iteration" used to refine the profile. This iterative 

searching strategy results in increased sensitivity. To obtain evolutionary profiles, we 

first aligned each protein in our dataset against a filtered version of all currently known 

sequences using PSI-BLAST with three iterations [27] (cut-off at 10-3).  

 

HYPROSPII [28] is a knowledge-based hybrid method for protein secondary structure 

prediction based on local prediction confidence. PSIPRED [26] is another protein 

secondary structure predictor which is based on position-specific scoring matrices. We 

used both outputs to the evaluation. Outcomes showed HYPROSPII was more accurate 

in predicting β-sheet segments which is crucial for some specific DNA-binding sites. In 

this respect, we submitted each protein chain to HYPROSPII and then its generated 

secondary structure profile was stored. 
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Chapter 3 THE PROPOSED HYBRID PREDICTOR 

In this chapter, we first exhibit the overall structure of the proposed method. The 

observation during the experiments that evolves and results in the hybrid method will 

also be elaborated. Then we introduce the primary SVM predictor and auxiliary SSEP 

predictor, their performance will also be discussed. Concerning the problem of 

integration, the solution to combine and utilize two different mechanisms will be 

described in the end of this chapter. 

The query TF chain

The SVM based
primary predictor

The SSEA algorithm
based auxiliary 

predictor

Merge the prediction 
outputs based on 

secondary structure 
segments

 

Fig.3 The overview of the proposed hybrid method. Each testing case 

was delivered to two different predictors, SVM and SSEP-Domain, 

simultaneously. It is their innate design that SVM and SSEP-Domain 

may learn the characteristics of specific-binding sites in different way.  
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3.1  OVERVIEW 

Fig. 3 presents an overview of the hybrid predictor proposed in this thesis. The entire 

hybrid predictor consists of the primary predictor and the auxiliary predictor. The 

primary predictor is a support vector machine (SVM) with its parameter settings 

optimized for delivering high precision. As a result, one can expect that sensitivity of 

the SVM-based primary predictor is traded, since one common phenomenon in tuning 

the parameters of a predictor is that raising precision typically means that sensitivity is 

traded and vice versa. In fact, it has been observed in our experiments that the SVM 

with the parameter settings employed in this thesis is capable of delivering reasonably 

well precision with respect to identifying those residues in α-helix and coil types of 

secondary structures that are involved in specific binding with the DNA. On the other 

hand, it has also been observed that the SVM hardly identifies the residues in a β-sheet 

segment that are involved in specific binding with the DNA. Therefore, one 

straightforward way to improve the overall sensitivity of prediction is to incorporate a 

mechanism that can accurately identify those binding residues in a β-sheet segment.  

As shown in Fig. 3, in the proposed hybrid predictor, we have incorporated a 

mechanism based on secondary structure element alignment (SSEA) to complement the 

prediction power of the SVM. The hybrid predictor then take the union of the predicted 

binding residues output by the primary and auxiliary predictors as its output. 
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For training the hybrid predictor presented in Fig. 3, we have created a data set 

containing 228 TF-DNA complexes extracted from the 691 protein-DNA complexes 

that Yanay Ofran et al. [14] collected from the protein data bank (PDB) [29]. In this 

process, we included only those complexes in the Ofran collection that contain a TF.  

We then queried the PFAM server [30] to exclude those complexes in which no 

polypeptide segment is within the DNA-binding domains predicted by the PFAM server.  

In this respect, we submitted the full sequences of the proteins in the complexes to the 

PFAM server and adopted only those predicted binding domains with the p-value 

computed by the PFAM server smaller than 0.01. Through this process, we excluded 

those complexes in which the polypeptide segments just happen to be in the proximity 

of the DNA but are not really involved in binding with the DNA. It might happen that 

we accidently exclude some TF-DNA complexes with real TF-DNA interactions.  

Nevertheless, it is our intention to be conservative. In the end, 228 out of the 691 

complexes initially in Ofran collection remained. This collection of 228 TF-DNA 

complexes is then adopted to generate the training data set and testing data set in the 

experiments reported in this thesis. 
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3.2  PRIMARY SVM PREDICTOR 

For the design of the primary predictor, we have employed the LIBSVM [25] package 

with the Gaussian kernel. The model of the SVM has been generated based on a training 

data set derived from the data set containing 228 TF-DNA complexes described above. 

The training data set was generated by associating each residue in the 228 protein chains 

with a position specific scoring matrix (PSSM) computed by the PSI-BLAST package 

with window size set to 11 [15]. In addition, each residue was labeled based on whether 

it is involved in specific binding with the DNA. As a result, the training data set 

contains a total of 22097 samples. 

 

As mentioned earlier, the parameters of the SVM in the first stage of the proposed 

predictor have been set to deliver high precision. In this respect, we have set parameters 

C and g with the Gaussian kernel to 32 and 0.03125, respectively. 
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3.3  AUXILIARY SSEP PREDICTOR 

As mentioned earlier, the auxiliary predictor has been designed with a mechanism based 

on secondary structure element alignment (SSEA) and profile-profile alignment (PPA), 

which was firstly proposed in CASP 6 and CASP 4 [31]. The kernel of the SSEA-based 

mechanism refers to a template library containing β–sheet segments involved in specific 

binding with DNAs. The template library has been created with the following steps. 

(1) Each protein chain in the data set containing 228 TF-DNA complexes was submitted 

to the HYPROSP II server, which is a predictor of protein secondary structures. 

Then, each residue in the predicted β–sheet segments was examined to determine 

whether it is involved in specific binding with the DNA.   

(2) Each DNA-binding domain with one or more β–sheet segments involved in specific 

binding with DNA was deposited into the template library and each residue in the 

domain was labeled by the HYPROSP II as one of the following three types of 

residues: α–helix, β–sheet, and turn. 

 

With the template library, we then can invoke the following procedure to predict the 

specific binding residues in β–sheet segments of the query transcription factor.   

(1) Invoke the HYPROSP II server to label each residue in the query transcription factor 

with one of following three types: α–helix, β–sheet, and turn. 
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(2) Invoke the BLAST package [26] to align the sequence of the labels of the query 

transcription factor with the sequence of labels of each template in the library. The 

similarity score between the query TF and a template is then computed as follows. 

 

 (3) 

 

The principle is to compare two PSSM matrices of two aligned protein chain sequences. 

The higher the score is, the more similarity these two PSSM matrices have. In this 

respect, we obtained the score by calculating equation (1), where αi is a row vector of 

PSSM representing the characteristics of an amino acid, and βi is a row vector of PSSM 

representing the characteristics of an amino acid which is aligned to αi. Prel is a function 

which can be derived from BLOSUM62 to indicate the preference to substitute the type 

of amino acid i to the type of amino acid j. The denominators, Pi and Pj stand for 

background probability of the occurrence of amino acid i and amino acid j, which could 

also be derived from BLOSUM62. It is important to understand that the score was 

calculated by two aligned, corresponding residues, and to make the work finished, we 

have to sum up all individual scores to make it meaningful. At this moment we are 

spending time elaborating on the idea of scoring function but the fraction Prel(i,j)/PiPj, 

which has important statistical and biological meanings, is still missing. Thus we tried 
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to find practical ways to solve the problem as follows. 

 

  (4) 

 (5) 

 

In BLOSUM62 matrix, the value of each cell was determined by equation (4), where Pab 

is the related probability as described previously. Pa and Pb stands for background 

probability of the occurrence of different amino acids. It is mentioned in nature 

biotechnology website that λ is set as 0.347 for creating BLOSUM62 matrix. We 

adopted the value and because now we have the exact value of the constant λ, we can 

immediately modify equation (4) and transform it into equation (5). Prel(i,j)/PiPj is then 

substituted into equation (3) to obtain the final score. 

 

(3) The positions of the specific binding residues in the 5 templates that give the highest 

similarity scores are then superimposed to predict the position of the specific 

binding residues in the query TF. 
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Fig. 4 Ideas of the merging process. In the merging process, the type of secondary 

structure of each residue in the protein chain was first predicted by a secondary 

structure program where each residue could come out as helix, sheet, or coil. As 

mentioned previously, SSEP-Domain had better accuracy in predicting β-sheet 

residue, SVM rendered good performance in predicting α-helix residues. In this 

respect we take union of the outputs from these two predictors according to which 

type of secondary structure this residue belongs to. 

 

In the phase of “merging the output”, the process could be better depicted as in Fig. 4. 

For a residue which is of helix or coil type in the query protein chain, we refer to SVM 

for prediction. On the other hand, for a residue which is of sheet type in the query 

protein chain, we use the other one, SSEP predictor to obtain the result. 
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Chapter 4 EXPERIMENTAL RESULTS 

In this chapter, we first depict how the performance of prediction is evaluated. Then we 

arrange residues into different groups according to their secondary structure type: 

α-helix, coil, and β-sheet. We also have breakdowns of residues in respect of their 

different TF-DNA interaction. Then we show the results of each individual classifier 

and the hybrid predictor. In the end of this chapter, we exhibit a real scenario of 

TF-DNA interaction and discuss the corresponding predicted result. 

 

4.1 DESIGN OF EXPERIMENTS 

In our study, we have conducted experiments to evaluate the performance of the 

proposed approach. The evaluation was conducted following the leave-one-out practice. 

Accordingly, the protein chain in each of the 228 TF-DNA complexes was used as the 

testing case once. In order to avoid bias caused by homologous protein chains, the 

training data set for the SVM and the template library for the SSEP algorithm were 

re-generated for each testing protein chain with the protein chains in the remaining 227 

TF-DNA complexes that has a sequence identity higher than 20% when aligned with the 

testing protein chain removed. In our experiment, the bl2seq package was invoked to 

obtain a score of sequence identity between two protein chains. 
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Table 1. Prediction results with the SVM based primary predictor. 

Prediction results Type of the 

secondary 

structure element 

# in 

residues 

tested 

TP TN FP FN Prec. Sens. Spec. 

Helix 12781 573 11670 156 382 0.786 0.6 0.987 

Sheet 1465 0 1358 3 104 0.0 0.0 0.998 

Coil 7921 186 7506 58 171 0.762 0.521 0.992 

 

4.2 RESULTS AND DISCUSSIONS 

Table 1 shows how the SVM based predictor in Fig. 3 performed in the leave-one-out 

process. As mentioned earlier, the parameters of the SVM based predictor has been 

tuned to deliver high precision. As a result, sensitivity was traded. The results in Table 1 

reveal that the SVM based predictor, to a certain extent, is capable of identifying the 

specific DNA-binding residues in α-helix and coil elements. On the other hand, the 

SVM based predictor can hardly identify the specific DNA-binding residues in β-sheet 

elements. Therefore, in order to raise sensitivity of prediction, we have resorted to the 

SSEA based mechanism to complement the prediction power of the SVM. Table 2 

shows how the SSEA based predictor performed in identifying the specific 

DNA-binding residues in β-sheet elements. Combining the results in Tables 1 and 2, one 
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can easily conclude that the prediction power of the SSEA based mechanism 

complements that of the SVM. With the SVM based predictor and the SSEA based 

predictor integrated as shown in Fig. 3, the hybrid predictor has been able to deliver the 

performance shown in Table 3. Table 4 shows a breakdown of the experimental results 

with the hybrid predictor based on the classification of TF-DNA interactions proposed 

by J.M. Thornton et al. [32]. It should not be a surprise to observe that the hybrid 

predictor can deliver superior prediction accuracy when dealing with certain types of 

interactions and delivers inferior prediction accuracy with the other types. In this respect, 

what a biologist or chemist really cares about is whether the predictor could deliver 

extremely poor performance with certain types of interactions. The results reported in 

Table 4 show that the hybrid predictor does not suffer such kind of deficiency. 

 

Table 2. Prediction results with the SSEA based auxiliary predictor. 

Prediction results Type of the 

secondary 

structure 

element 

# in residues 

tested 

TP TN FP FN Prec. Sens. Spec. 

Sheet 1465 83 1329 32 21 0.722 0.798 0.984 

As 
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Table 3. Prediction results with the hybrid predictor. 

Prediction results Type of the 

secondary 

structure element 

# in 

residues 

tested 

TP TN FP FN Prec. Sens. Spec. 

Helix 12781 573 11670 156 382 0.786 0.6 0.987 

Sheet 1465 83 1329 32 21 0.722 0.798 0.976 

Coil 7921 186 7506 58 171 0.762 0.521 0.992 

Overall 22167 842 20505 246 574 0.773 0.594 0.988 

NO 

Table 4. Breakdown of the prediction results with the hybrid predictor in respect of 

different types of TF-DNA interactions 

Prediction results Type of the 

DNA-binding 

group 

# of chains 

involved 

# in residues 

tested TP TN FP FN Precision Sensitivity Specificity

Zipper-type 44 3109 213 2821 30 45 0.876 0.826 0.989 

Helix-turn-helix 97 12480 316 11712 123 329 0.72 0.49 0.99 

Zinc-coordinating 57 4792 230 4332 74 156 0.757 0.596 0.983 

β-hairpin/ribbon 30 1786 83 1640 19 44 0.814 0.654 0.989 

Overall 228 22167 842 20505 246 574 0.774 0.595 0.988 
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The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins 

containing the basic region leucine zipper (bZIP) DNA-binding motif. The bZIP dimer 

is a pair of continuous alpha helices that form a parallel coiled coil over their 

carboxy-terminal 30 residues and gradually diverge toward their amino termini to pass 

through the major groove of the DNA-binding site. The coiled-coil dimerization 

interface is oriented almost perpendicular to the DNA axis, giving the complex the 

appearance of the letter T. There are no kinks or sharp bends in either bZIP monomer. 

Numerous contacts to DNA bases and phosphate oxygens are made by basic region 

residues that are conserved in the bZIP protein family. As shown in Fig.5, the atoms 

with colors but white (light gray) are base-specific interaction residues according to our 

definition. Non-specific binding residues are determined by literature and then colored 

white (light gray). It is clear to see that the base-specific interaction residues are much 

closer to DNA bases than others. The same TF-DNA complex was tested by using our 

approach, and the prediction result is presented in Fig.6. As in this case of Zipper-type 

domain, our predictor gives 85% (6/7) sensitivity and 100% precision. 
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Fig. 5 An example of TF-DNA interaction with PDB ID 1YSA. The atoms with colored but 

white (light gray) are the heavy atoms in the sidechains which are within 4.5 Å from the 

bases of the DNA. The atoms colored by white (light gray) are the heavy atoms in the 

sidechains of the non-specific DNA-binding residues. 

 

No 

No 
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Fig .6 A prediction result of query protein chain with PDB ID 1YSA. The atoms with 

colored but white (light gray) are the heavy atoms in the sidechains which are 

“predicted” as the specific DNA-binding residues. The atoms colored by white (light 

gray) are the heavy atoms “predicted” in the sidechains of the non-specific 

DNA-binding residues. 
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Arc repressor [33] is one member of β-hairpin/ribbon family, and it acts by the 

cooperative binding of two Arc repressor dimmers to a 21-base-pair operator site. Each 

Arc dimmer uses an antiparallel beta-sheet to recognize bases in the major groove. As 

depicted in Fig. 7, two antiparallel beta-sheet are the binding interface stretched to the 

major groove [33]. In this case, our predictor gives 50% (3/6) sensitivity and 100% 

precision. 

 

Fig. 7 An example of TF-DNA interaction with PDB ID 1BDV. There is an Arc 

domain, containing beta-sheet to recognize bases in the major groove, which is a 

DNA-binding domain in each protein chain. The atoms colored in blue are heavy 

atoms which are within 4.5 Å from the bases of the DNA. 
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The helix-turn-helix clan contains many members; HTH_3 is one of these members, and 

it is a large family of DNA binding helix-turn helix proteins that include a bacterial 

plasmid copy control protein, bacterial methylases, various bacteriophage transcription 

control proteins and a vegetative specific protein from Dictyostelium discoideum (Slime 

mould). Fig. 8 depicted one example of protein with HTH_3 domain interacts with 

DNA. In this case, our predictor gives 50% (4/8) sensitivity and 100% precision. 

 

Fig.8 An example of TF-DNA interaction with PDB ID 1RPE. There is a HTH_3 

which is a DNA-binding domain in the protein chain. The atoms colored in blue 

are heavy atoms which are within 4.5 Å from the bases of the DNA. There are 

many helix-turn-helix motifs in the protein chain, while only some of these can be 

the DNA-binding domain. 
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Zf-C4 is a member of the Zinc-coordinating family, also a zinc finger. In nearly all cases, 

this is the DNA binding domain of a nuclear hormone receptor. The alignment contains 

two Zinc finger domains that are too dissimilar to be aligned with each other. 

The DNA-binding domain can elicit either an activating or repressing effect by binding 

to specific regions of the DNA known as hormone-response elements [34, 35]. These 

response elements position the receptors, and the complexes recruited by them, close to 

the genes of which transcription is affected. The DNA-binding domains of nuclear 

receptors consist of two zinc-nucleated modules and a C-terminal extension, where 

residues in the first zinc module determine the specificity of the DNA recognition and 

residues in the second zinc module are involved in dimerisation. The DNA-binding 

domain is furthermore involved in several other functions including nuclear localization, 

and interaction with transcription factors and co-activators [34]. This is a rather 

sophisticated DNA-binding domain which involved in many functions, as depicted in 

Fig. 9. Our predictor failed in locating the correct specific-binding residues, rendering 

0% sensitivity (0/5) and 0% precision (0/2). 
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Fig.9 An example of TF-DNA interaction with PDB ID 1LAT. 
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Chapter 5 CONCLUSIONS AND FUTURE WORKS 

This thesis presents the design of a sequence-based predictor aiming to identify the 

specific DNA-binding residues in a TF. As a recent study has revealed that the tertiary 

structures of a large number of transcription factors are mostly disordered, a sequence 

based predictor is essential for analyzing how a TF interacts with the DNA. Furthermore, 

it is highly desirable to have a predictor capable of identifying those residues involved 

in specific binding with the DNA, since specific binding corresponds to 

sequence-specific recognition of a gene, which is essential for correct gene regulation. . 

 

In the experiments reported in this thesis, the proposed hybrid predictor delivered 

overall precision of 77.4%, sensitivity of 59.5%, and specificity of 98.8%. The 

experimental results further show that the proposed hybrid predictor is capable of 

delivering the same level of prediction accuracy when dealing with different types of 

TF-DNA interactions. It is anticipated the prediction accuracy delivered by the hybrid 

predictor will continue to improve as the number of TF-DNA complexes deposited in 

the PDB continues to grow and therefore the number of training samples that can be 

exploited continues to increase. Nevertheless, it is our primary objective to continue to 

develop more advanced prediction mechanisms. In this respect, we believe that, as the 

number of TF-DNA complexes deposited in the PDB increases, we can obtain more 
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insights about the key physiochemical properties that play essential roles in TF-DNA 

interactions and then we will be able to develop more advanced prediction mechanisms 

accordingly. 

 

Besides those four types of DNA-binding domains in TFs mentioned in the study, there 

are other DNA-binding domains such as P53, GATA..etc, which also play important role 

in regulatory network. An obvious way to support new forthcoming DNA-binding 

domains is to continuously update and enlarge the training data set, therefore the hybrid 

predictor could support more groups of TFs and the enlarging would also possibly 

enhance the performance. It is also possible to adopt new different learning methods or 

features for the unique traits of new TFs. With the information of binding sites and 

candidate domain type being provided, biologists may receive more information for 

conjecturing and understating the functionality of given protein chain. Because of the 

high precision and reliability, the proposed method in the thesis would be deserving of 

extension or application in the future, making contribution to connecting some 

DNA-binding domains with specific functions.  
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APPENDIX 

 

Chain ID start End Bits score E-value Pfam-A Chain Length 

Number of  

specific-binding 

residues 

1A0A_A 2 58 55.6 1.70E-13 HLH 63 7 

1A0A_B 2 58 55.6 1.70E-13 HLH 63 6 

1AM9_A 6 56 71.4 3.10E-18 HLH 80 6 

1AM9_B 6 56 71.4 3.10E-18 HLH 76 7 

1AM9_C 6 56 71.4 3.10E-18 HLH 82 6 

1AM9_D 6 56 71.4 3.10E-18 HLH 76 7 

1AN2_A 3 54 81.9 2.00E-21 HLH 86 4 

1NKP_A 6 58 73.5 7.20E-19 HLH 88 6 

1NKP_B 2 53 81.9 2.00E-21 HLH 83 5 

1NKP_D 6 58 73.5 7.20E-19 HLH 85 5 

1NKP_E 2 53 81.9 2.00E-21 HLH 83 5 

1NLW_B 1 52 81.9 2.00E-21 HLH 76 6 

1NLW_E 1 52 81.9 2.00E-21 HLH 76 5 

1HLO_A 12 63 81.9 2.00E-21 HLH 80 5 



 

 44

1HLO_B 12 63 81.9 2.00E-21 HLH 80 6 

1AN4_A 5 60 66.7 7.60E-17 HLH 65 6 

1AN4_B 5 60 66.7 7.60E-17 HLH 65 5 

1MDY_A 12 63 69.6 1.00E-17 HLH 68 5 

1MDY_C 6 57 69.6 1.00E-17 HLH 62 5 

1MDY_D 6 57 69.6 1.00E-17 HLH 62 5 

1NLW_A 1 53 56.4 9.80E-14 HLH 79 5 

1NLW_D 1 53 56.4 9.80E-14 HLH 77 6 

1A02_F 2 52 28.9 1.80E-05 bZIP_2 55 5 

1FOS_E 1 51 28.9 1.80E-05 bZIP_2 60 4 

1FOS_G 1 51 28.9 1.80E-05 bZIP_2 60 6 

1A02_J 1 55 53.1 9.90E-13 bZIP_1 56 5 

1FOS_F 1 60 72.4 1.50E-18 bZIP_1 60 5 

1FOS_H 1 60 72.4 1.50E-18 bZIP_1 60 6 

1JNM_A 1 60 72.4 1.50E-18 bZIP_1 56 6 

1JNM_B 1 60 72.4 1.50E-18 bZIP_1 57 6 

1IO4_A 12 65 82 2.00E-21 bZIP_2 73 7 

1IO4_B 12 65 82 2.00E-21 bZIP_2 76 7 

1H88_A 12 65 82 2.00E-21 bZIP_2 78 6 
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1H88_B 12 65 82 2.00E-21 bZIP_2 78 7 

1H8A_A 12 65 82 2.00E-21 bZIP_2 76 6 

1H8A_B 12 65 82 2.00E-21 bZIP_2 76 7 

1H89_A 1 51 67 6.40E-17 bZIP_2 64 6 

1H89_B 1 51 67 6.40E-17 bZIP_2 64 7 

1HJB_A 12 65 82 2.00E-21 bZIP_2 75 6 

1HJB_B 12 65 82 2.00E-21 bZIP_2 76 7 

1HJB_D 12 65 82 2.00E-21 bZIP_2 77 6 

1HJB_E 12 65 82 2.00E-21 bZIP_2 77 7 

1YSA_C 2 56 66.2 1.10E-16 bZIP_1 58 6 

1YSA_D 2 56 66.2 1.10E-16 bZIP_1 57 7 

1CGP_A 20 111 104.7 2.90E-28 cNMP_binding 205 5 

1CGP_B 20 111 104.7 2.90E-28 cNMP_binding 205 5 

1LB2_A 20 111 104.7 2.90E-28 cNMP_binding 209 6 

1CF7_A 7 73 137.1 5.00E-38 E2F_TDP 72 4 

1CF7_B 7 88 155.4 1.50E-43 E2F_TDP 90 4 

1C0W_A 2 62 106.4 8.60E-29 Fe_dep_repress 222 7 

1C0W_B 2 62 106.4 8.60E-29 Fe_dep_repress 225 7 

1C0W_C 2 62 106.4 8.60E-29 Fe_dep_repress 221 7 



 

 46

1C0W_D 2 62 106.4 8.60E-29 Fe_dep_repress 221 7 

1DDN_A 3 63 106.4 8.60E-29 Fe_dep_repress 120 6 

1DDN_B 3 63 106.4 8.60E-29 Fe_dep_repress 120 7 

1DDN_C 3 63 106.4 8.60E-29 Fe_dep_repress 120 5 

1DDN_D 3 63 106.4 8.60E-29 Fe_dep_repress 120 7 

1F5T_A 3 63 106.4 8.60E-29 Fe_dep_repress 121 6 

1F5T_B 3 63 106.4 8.60E-29 Fe_dep_repress 121 7 

1F5T_C 3 63 106.4 8.60E-29 Fe_dep_repress 121 7 

1F5T_D 3 63 106.4 8.60E-29 Fe_dep_repress 121 8 

1L3L_A 17 161 164.5 2.80E-46 Autoind_bind 234 6 

1L3L_B 17 161 164.5 2.80E-46 Autoind_bind 234 6 

1L3L_C 17 161 164.5 2.80E-46 Autoind_bind 234 5 

1L3L_D 17 161 164.5 2.80E-46 Autoind_bind 234 5 

1H9T_A 12 75 90.2 6.80E-24 GntR 243 8 

1H9T_B 12 75 90.2 6.80E-24 GntR 234 8 

1HW2_A 8 71 90.2 6.80E-24 GntR 228 8 

1HW2_B 8 71 90.2 6.80E-24 GntR 228 8 

1AKH_A 6 61 41.5 3.00E-09 Homeobox 60 6 

1YRN_A 6 61 41 4.10E-09 Homeobox 60 6 
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1LE8_A 2 53 30.7 5.40E-06 Homeobox 53 6 

1MNM_C 30 87 29.9 9.50E-06 Homeobox 87 7 

1MNM_D 30 87 29.9 9.50E-06 Homeobox 87 5 

1AKH_B 5 62 29.9 9.50E-06 Homeobox 78 7 

1APL_C 5 62 29.9 9.50E-06 Homeobox 62 8 

1APL_D 5 62 29.9 9.50E-06 Homeobox 62 7 

1LE8_B 5 62 19.8 0.00013 Homeobox 78 6 

1YRN_B 5 62 29.9 9.50E-06 Homeobox 78 7 

1K61_A 1 58 29.9 9.50E-06 Homeobox 60 6 

1K61_B 1 58 29.9 9.50E-06 Homeobox 59 6 

1K61_C 1 58 29.9 9.50E-06 Homeobox 58 4 

1K61_D 1 58 29.9 9.50E-06 Homeobox 58 6 

1CQT_A 4 78 190.5 4.20E-54 Pou 163 13 

1AU7_A 1 71 167.6 3.40E-47 Pou 146 14 

1AU7_B 1 71 167.6 3.40E-47 Pou 146 15 

1HF0_A 1 75 185.4 1.40E-52 Pou 158 13 

1HF0_B 1 75 185.4 1.40E-52 Pou 158 12 

1B72_B 2 61 71.4 2.90E-18 Homeobox 75 5 

1PUF_B 2 61 71.4 2.90E-18 Homeobox 73 5 
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1B8I_B 2 61 70 7.80E-18 Homeobox 62 4 

1FJL_A 19 75 115.3 1.80E-31 Homeobox 81 6 

1FJL_B 19 75 115.3 1.80E-31 Homeobox 75 5 

1FJL_C 19 75 115.3 1.80E-31 Homeobox 75 5 

1PUF_A 14 70 110.6 4.80E-30 Homeobox 77 6 

9ANT_A 4 60 113.7 5.40E-31 Homeobox 62 6 

1HDD_C 4 60 105.5 1.60E-28 Homeobox 61 6 

1HDD_D 4 60 105.5 1.60E-28 Homeobox 61 3 

2HDD_A 4 60 101.5 2.70E-27 Homeobox 61 4 

2HDD_B 4 60 101.5 2.70E-27 Homeobox 59 3 

1JGG_A 2 58 109.2 1.30E-29 Homeobox 59 7 

1JGG_B 2 58 109.2 1.30E-29 Homeobox 59 9 

3HDD_A 2 58 105.5 1.60E-28 Homeobox 59 4 

3HDD_B 2 58 105.5 1.60E-28 Homeobox 58 4 

1DU0_A 1 56 89.6 1.00E-23 Homeobox 57 4 

1DU0_B 1 56 89.6 1.00E-23 Homeobox 56 4 

1LLI_A 21 76 53.5 7.10E-13 HTH_3 92 5 

1LLI_B 21 76 53.5 7.10E-13 HTH_3 92 11 

1LMB_3 21 76 50.4 6.10E-12 HTH_3 92 5 
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1LMB_4 21 76 50.4 6.10E-12 HTH_3 92 10 

1PER_L 6 59 56.1 1.20E-13 HTH_3 63 9 

1PER_R 6 59 56.1 1.20E-13 HTH_3 63 6 

1RPE_L 6 59 56.1 1.20E-13 HTH_3 63 8 

1RPE_R 6 59 56.1 1.20E-13 HTH_3 63 6 

2OR1_L 6 59 56.1 1.20E-13 HTH_3 63 9 

2OR1_R 6 59 56.1 1.20E-13 HTH_3 63 8 

1GDT_A 3 139 199.4 8.80E-57 Resolvase 183 13 

1GDT_B 3 139 199.4 8.80E-57 Resolvase 183 10 

1D5Y_A 7 53 48.3 2.80E-11 HTH_AraC 292 5 

1D5Y_B 7 53 48.3 2.80E-11 HTH_AraC 292 2 

1D5Y_C 7 53 48.3 2.80E-11 HTH_AraC 292 5 

1D5Y_D 7 53 48.3 2.80E-11 HTH_AraC 292 0 

1JWL_A 4 29 48.2 2.80E-11 LacI 330 6 

1JWL_B 4 29 48.2 2.80E-11 LacI 330 6 

1KU7_A 7 60 90.9 3.90E-24 Sigma70_r4 73 7 

1JT0_A 7 53 69.6 1.10E-17 TetR_N 189 7 

1JT0_B 7 53 69.6 1.10E-17 TetR_N 189 7 

1JT0_C 7 53 69.6 1.10E-17 TetR_N 189 7 
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1JT0_D 7 53 69.6 1.10E-17 TetR_N 186 7 

1TRO_A 17 104 146.5 7.60E-41 Trp_repressor 108 7 

1TRO_C 17 104 146.5 7.60E-41 Trp_repressor 108 7 

1TRO_E 17 104 146.5 7.60E-41 Trp_repressor 108 7 

1TRO_G 17 104 146.5 7.60E-41 Trp_repressor 105 6 

1TRR_A 16 103 145.6 1.30E-40 Trp_repressor 105 9 

1TRR_B 16 103 145.6 1.30E-40 Trp_repressor 105 3 

1TRR_D 16 103 145.6 1.30E-40 Trp_repressor 105 9 

1TRR_E 16 103 145.6 1.30E-40 Trp_repressor 105 8 

1TRR_G 16 103 145.6 1.30E-40 Trp_repressor 105 9 

1TRR_H 16 103 145.6 1.30E-40 Trp_repressor 105 6 

1TRR_J 16 103 145.6 1.30E-40 Trp_repressor 105 9 

1TRR_K 16 103 145.6 1.30E-40 Trp_repressor 105 3 

1BDT_A 4 53 123.2 7.40E-34 Arc 52 5 

1BDT_B 4 53 123.2 7.40E-34 Arc 53 5 

1BDT_C 4 53 123.2 7.40E-34 Arc 50 6 

1BDT_D 4 53 123.2 7.40E-34 Arc 50 6 

1BDV_A 4 53 116.2 9.80E-32 Arc 52 4 

1BDV_B 4 53 116.2 9.80E-32 Arc 53 6 
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1BDV_C 4 53 116.2 9.80E-32 Arc 49 4 

1BDV_D 4 53 116.2 9.80E-32 Arc 50 6 

1PAR_A 4 53 123.2 7.40E-34 Arc 52 5 

1PAR_B 4 53 123.2 7.40E-34 Arc 53 5 

1PAR_C 4 53 123.2 7.40E-34 Arc 50 6 

1PAR_D 4 53 123.2 7.40E-34 Arc 53 6 

1B01_A 4 42 53.5 7.20E-13 RHH_1 43 3 

1B01_B 4 42 53.5 7.20E-13 RHH_1 43 4 

1EA4_A 4 42 53.5 7.20E-13 RHH_1 43 3 

1EA4_B 4 42 53.5 7.20E-13 RHH_1 41 6 

1EA4_D 4 42 53.5 7.20E-13 RHH_1 43 3 

1EA4_E 4 42 53.5 7.20E-13 RHH_1 44 5 

1EA4_F 4 42 53.5 7.20E-13 RHH_1 45 3 

1EA4_G 4 42 53.5 7.20E-13 RHH_1 42 5 

1EA4_H 4 42 53.5 7.20E-13 RHH_1 45 3 

1EA4_J 4 42 53.5 7.20E-13 RHH_1 44 7 

1EA4_K 4 42 53.5 7.20E-13 RHH_1 43 3 

1EA4_L 4 42 53.5 7.20E-13 RHH_1 44 4 

1CMA_A 1 104 305.2 1.20E-88 MetJ 104 2 
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1CMA_B 1 104 305.2 1.20E-88 MetJ 104 2 

1MJM_A 1 104 301.7 1.40E-87 MetJ 104 2 

1MJM_B 1 104 301.7 1.40E-87 MetJ 104 2 

1MJP_A 1 104 301.7 1.40E-87 MetJ 104 3 

1MJP_B 1 104 301.7 1.40E-87 MetJ 104 3 

1KB2_A 7 82 166.6 6.50E-47 zf-C4 95 5 

1KB2_B 7 82 166.6 6.50E-47 zf-C4 91 4 

1KB4_A 7 82 166.6 6.50E-47 zf-C4 99 5 

1KB4_B 7 82 166.6 6.50E-47 zf-C4 105 4 

1KB6_A 7 82 166.6 6.50E-47 zf-C4 99 5 

1KB6_B 7 82 166.6 6.50E-47 zf-C4 106 4 

2NLL_B 2 79 176.9 5.00E-50 zf-C4 103 5 

1A6Y_A 8 84 184.2 3.20E-52 zf-C4 85 8 

1A6Y_B 8 84 184.2 3.20E-52 zf-C4 88 7 

1DSZ_A 5 80 195 1.90E-55 zf-C4 80 4 

1DSZ_B 6 81 190.2 5.20E-54 zf-C4 84 5 

1HCQ_A 5 80 180.2 5.20E-51 zf-C4 74 5 

1HCQ_B 5 80 180.2 5.20E-51 zf-C4 74 5 

1BY4_A 6 81 190.2 5.20E-54 zf-C4 82 4 
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1BY4_B 6 81 190.2 5.20E-54 zf-C4 82 5 

1BY4_C 6 81 190.2 5.20E-54 zf-C4 82 4 

1BY4_D 6 81 190.2 5.20E-54 zf-C4 81 4 

1LAT_A 5 80 168.6 1.60E-47 zf-C4 75 5 

1LAT_B 5 80 168.6 1.60E-47 zf-C4 77 6 

1R0N_A 4 79 185.8 1.10E-52 zf-C4 81 4 

2NLL_A 1 66 145.9 1.20E-40 zf-C4 66 4 

1F2I_G 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1F2I_H 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1F2I_I 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1F2I_J 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1F2I_K 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1F2I_L 20 44 35.9 1.40E-07 zf-C2H2 73 7 

1G2D_C 5 29 32.5 1.50E-06 zf-C2H2 89 14 

1G2D_F 5 29 32.5 1.50E-06 zf-C2H2 88 14 

1G2F_C 5 29 32.5 1.50E-06 zf-C2H2 89 14 

1G2F_F 5 29 32.5 1.50E-06 zf-C2H2 88 15 

1MEY_C 5 27 45.4 2.00E-10 zf-C2H2 84 13 

1MEY_F 5 27 45.4 2.00E-10 zf-C2H2 84 13 
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1MEY_G 5 27 45.4 2.00E-10 zf-C2H2 83 0 

1P47_A 4 28 35.9 1.40E-07 zf-C2H2 87 12 

1P47_B 4 28 35.9 1.40E-07 zf-C2H2 85 13 

1LLM_C 4 26 27.8 4.00E-05 zf-C2H2 87 8 

1TF6_A 13 37 23.7 0.0007 zf-C2H2 188 15 

1TF6_D 13 37 23.7 0.0007 zf-C2H2 188 15 

2DRP_A 11 34 21.3 0.0037 zf-C2H2 65 11 

2DRP_D 11 34 21.3 0.0037 zf-C2H2 66 9 

1D66_A 9 47 59.1 1.50E-14 Zn_clus 64 4 

1D66_B 9 47 59.1 1.50E-14 Zn_clus 64 3 

1HWT_C 8 48 37.1 6.30E-08 Zn_clus 74 8 

1HWT_D 8 48 37.1 6.30E-08 Zn_clus 74 4 

1HWT_G 8 48 37.1 6.30E-08 Zn_clus 74 7 

1HWT_H 8 48 37.1 6.30E-08 Zn_clus 74 4 

2HAP_C 8 48 28.7 2.20E-05 Zn_clus 76 4 

2HAP_D 8 48 28.7 2.20E-05 Zn_clus 76 6 

1QP9_A 8 48 37 6.70E-08 Zn_clus 76 6 

1QP9_B 8 48 37 6.70E-08 Zn_clus 75 5 

1QP9_C 8 48 37 6.70E-08 Zn_clus 74 4 



 

 55

1QP9_D 8 48 37 6.70E-08 Zn_clus 75 5 

1PYI_A 5 44 56.6 8.80E-14 Zn_clus 90 3 

1PYI_B 5 44 56.6 8.80E-14 Zn_clus 72 3 

1ZME_C 2 39 59 1.60E-14 Zn_clus 70 3 

1ZME_D 2 39 59 1.60E-14 Zn_clus 70 7 

 


