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ABSTRACT

This thesis presents the design of a polypeptide sequence based predictor aiming to
identify the residues in a transcription factor that are involved in specific binding with
the DNA. As a recent study has revealed that the tertiary structures of a large number of
transcription factors are mostly disordered, the capability to identify the residues in a
transcription factor that play key roles in interaction with the DNA based purely on
analysis of the polypeptide sequence is highly.desirable. In this respect, it is further
desirable to have a predictor capabl-é of distinguishing those residues involved in
specific binding with the DNA, since specnﬁppmdlng corresponds to sequence-specific
Wil A | _
recognition of a gene, which is es_se_nti'fllI for 50rr§qt gene-regulation. The design of the
proposed predictor is distinctive by eﬁlployihg dhybrid approach. That is, two
prediction mechanisms specialized for making predictions in different types of protein
secondary structures have been incorporated. In the experiments reported in this thesis,

the proposed hybrid predictor delivered precision of 77.4%, sensitivity of 59.5%, and

specificity of 98.8%
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Chapter 1 INTRODUCTION
In the field of molecular biology, a transcription factor (sometimes called a
sequence-specific DNA binding factor) is a protein that binds to specific parts of DNA
using DNA binding domains and is part of the system that controls the transfer (or
transcription) of genetic information from DNA to RNA [1, 2]. The importance of
transcription factors lies in that, without transcription factors, the creation of new RNA
from DNA cannot occur. Transcription factors perform this function alone, or by using
other proteins in a complex, by increasing(as.an activator), or preventing (as a repressor)
the presence of RNA polymerase, the enzyme which activates the transcription of
genetic information from DNA to RNA [3';;%.';if}anscription factors are one of the
Wil A | :
groups of proteins that read and il}t_erpllfelt thé: -geﬁlé_tic "blﬁeprint" in the DNA. They are
the key to determining where the DNA chain becoes "unzipped," creating a single
strand to which RNA can be bound while it's being built. They bind DNA and help
initiate a program that decreases or increases gene transcription. As such, they are vital
for many important cellular processes. Transcription factors at least involve in these
important functions and biological roles below:
Basal transcription regulation [6, 7]: In eukaryotes, an important class of transcription

factors called general transcription factors (GTFs) which are necessary for transcription

to occur. Many of these GTFs don’t actually bind DNA but are part of the large



transcription preinitiation complex that interacts with RNA polymerase directly. These
GTFs are, for example, TFIIA, TFIIB, and TFIID.
Development: Many TFs in multicellular organisms are involved in development.
Responding to cues (stimuli), these TFs turn on or turn off the transcription of the
appropriate genes which in turn allows for changes in cell morphology or activities
needed for cell fate determination and cellular differentiation. For example, the Hox
transcription factor family (which is important for proper body pattern formation) and
the TF encoded by the Sex-determining Region. Y (SRY) gene [8] (which plays a major
role in determining gender in humaﬁs) can be regarded in this category.
Response to environment: Not only do trgasgrlptlon factors act downstream of
Wil A | _
signaling cascades related to biological Istinil:ili, but they -can also be downstream of
signaling cascades involved in enviroﬁmentzil stimuli. Examples include heat shock
factor (HSF) [9] which upregulates genes necessary for survival at higher temperatures,
hypoxia inducible factor (HIF) [10, 11] which upregulates genes necessary for cell
survival in low oxygen environments, and sterol regulatory element binding protein
(SREBP) which helps maintain proper lipid levels in the cell.
Céll cycle control: Many transcription factors, especially some that are oncogenes or

tumor suppressors, help regulate the cell cycle and as such determine how large a cell

will get and when it can divide into two daughter cells. One example is the Myc [12]



oncogene, which has important roles in cell growth and apoptosis.

In recent years, prediction of residues in a protein chain that may be involved in
interaction with the DNA has been a research topic that attracts a high level of interest
[13-15]. Some of the studies were purely based on analysis of the polypeptide sequence
[13, 15-18], while the others took the structural information into account [17, 19]. In
this respect, as it has been reported in a recent article that the tertiary structures of a
large number of transcription factors (TE).are.mostly disordered [20], the capability to
identify the residues in a TF that pléfy key roles .in interaction with the DNA based
purely on analysis of the polypeptide sequgpqls highly desirable. Concerning

Wil A | _
protein-DNA interactions, there are twp-lbin-c:l-ing l:ri_lechanisms involved: specific binding
and non-specific binding [21]. Fig. 1 éhows an ekample of these two binding
mechanisms. Specific binding occurs between protein side chains and nucleotide bases,
while non-specific binding occurs between protein side chains and the DNA
sugar-phosphate backbone. In this thesis, we define the residues with heavy atoms
which are within 4.5 A from the bases of the DNA as the “specific-binding residues”, or
“base-specific binding residues”. According to previous literature, many had set the

distance with the range from 4 A to 6 A. With the point not to include too much noise

and retain fidelity, we set the distance to 4.5 A in determining a base-specific binding



residue.

In molecular biology, specific binding corresponds to sequence-specific recognition of a
gene and therefore is essential for correct gene regulation. Therefore, in this thesis, we
have aimed to design a polypeptide sequence based predictor capable of identifying
those residues in a TF that are involved in specific binding with the DNA. The design of
the proposed predictor is distinctive by employing a hybrid approach. In the hybrid
predictor, two prediction mechanisms specialized for making predictions in different
types of protein secondary structurés have been incorporated. Based on the experiments
reported in this thesis, the hybrid predié:fdﬁ@ji.&eliver precision of 77.4%, sensitivity of

I m ||
59.5%, and specificity of 98.8% with tlhle following definitions:

TP

preciSion.= ———,
TP+ FP
o TP
sensitivity = ————,
TP+ FN
specificity = _IN
P "IN+ FP

where

TP = the number of correctly classified specific binding residues;

TN = the number of correctly classified non-specific binding residues;

FP = the number of non-specific binding residues incorrectly classified as specific;

FN = the number of specific binding residues incorrectly classified as non-specific.



This thesis is organized as follows: in Chapter 2 we introduce the related works in
which many researchers had studied the characteristics of DNA-binding proteins and
the properties of DNA-binding residues. In wake of this, many predictors have been
developed in order to provide clues for the correct binding sites on proteins. In Chapter
3, we first exhibit the overall architecture of the proposed hybrid predictor with the
purpose that the operational flow can help one easily understand the process much more
clearly. Then we describe the primary SVM predictor and the auxiliary SSEP predictor.
The way to utilize both and finding a proper selution of integration is elaborated in the
end of this chapter. In Chapter 4, we exhibit our experimental results. It contains
numerous tables, figures and discussioné.ﬁéie; blt_ltcomes from the view point of

Wil A || ¥
secondary structure of protein or of TFI'.ENK -intélzflaction -type are also included. We give

our conclusions and future works in Chapter 5.
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Chapter 2 RELATED WORK

In this chapter, we first introduce the related studies and the history concerning
DNA-binding site prediction. We introduce two different systems, one is based on
protein sequence and the other is based on three-dimensional structure of protein. Then
we illustrate the ideas of the SVM classifier and the SSEP-Domain algorithm, both are
critical components involved in our solution. Finally, we describe the feature sets
including PSSMs and predicted secondary structure, which are the learning materials

for our approach to capture the characteristics.of base-specific binding residues.

2.1 OVERVIEW Eﬂ

_ [ R |}

Many studies have recently attempted to usé:-strlllétural aﬁd even sequence properties of
unbound proteins to predict protein-p.rotein interface [13-17, 19, 22]. Ahmad et al. [16]
made first attempt to adopt sequence and evolutionary features for predicting
DNA-binding sites in DNA-binding proteins. Since then, some methods using
three-dimensional structure of the protein were also proposed [15, 19, 22]. Though
those articles deal with not exactly the same problem as we are addressing
(base-specific binding residues of proteins), there are some standard procedures and

useful mechanisms which can’t be ignored. In the following paragraphs, we will go

through those DNA-binding site predictors and have basic knowledge of their working



principles.

For DNA-binding site predictors which are based on structural information of proteins,
there are some studies: in 2003, Jones €t al. [17] used electrostatic potentials to predict
DNA-binding sites on DNA-binding proteins. They collected a dataset composed of 56
non-homologous DNA-binding proteins and achieved 68% correction prediction of the
dataset. The result reveals that the electrostatic potentials are strong and significant
features for prediction. Later in 2004, Tsuchiya et al. [19] proposed a structure-based
predictor for DNA-binding sites on-\proteins using the empirical preference of
electrostatic potential and the shape of] mo@nlar surfaces. They obtained the

Wil A | _
electrostatic potentials by solving the Ii’(;issgl-q-Bc'l)i_tzmam-l equation numerically, which
may consume a lot of time for calculéting. T'hey.focused on 63 protein-DNA complexes
and in the end developed prediction schemes with 86% and 96% accuracy for
DNA-binding and non-DNA-binding proteins, respectively. It is interesting that the
result still supports the importance of electrostatic potentials on protein surfaces.
Recently in 2007, Tjong , H. and Zhou, H.-X [15] analyzed 264 protein-DNA
complexes, rather then electrostatic potentials, they featured position-specific sequence

profiles, solvent accessibilities of each residue and its spatial neighbors to the neural

network. Overall, they claimed the predictor achieved accuracy over 80% and coverage



over 60% of actual DNA-contacting residues.

For those which are based on sequence and evolutionary information of the proteins, in
other words, the three-dimensional structure of the query protein is not required, take
some for representatives: DISIS [14], BindN [23], and DP-Bind [24]. We will give a
brief description of these tools below.

1) DISIS[14] predicts DNA-binding sites directly from amino acid sequence and hence
is applicable for all known proteins. It is based on the physcochemical properties of the
residue and its environment, predicfed structural features and evolutionary data.

2) BindN [23] makes a prediction based déﬁﬁéﬁical properties of the input protein
¥ 'Eﬂ

sequence. | 'I
3) DP-Bind [24] combines multiple methods.to make a consensus prediction based on

the profile of evolutionary conservation and properties of the input protein sequence.

Profile of evolutionary conservation is automatically generated by this web-server.

As mentioned in the introduction, a large number of transcription factors (TF) may be
mostly disordered, which may make it difficult for researchers in the laboratories to
have those TFs crystallized or structured. This is the reason why it’s necessary and

crucial to develop an accurate specific-binding site predictor from sequence only.



2.2 CLASSIFIER

In this thesis, we hybridize two learning mechanisms to obtain optimal performance.
One is LIBSVM [25] and the other one is SSEP-Domain predictor. In this section we
will focus on introducing the core concepts or these two algorithms, leaving their

detailed operations during methods later in chapter 3.

LIBSVM is a learning machine based on statistical learning theory. The advantages of
translating the training set into a high-dimensional space as Fig. 2 and avoiding
overfitting make LIBSVM wellknownfnd povx.rerful, especially in addressing
biological problems. The basic idea car.l beﬁegcrlbed briefly as follows. First, the inputs
Wil A | _
are formulated as feature vectors, of wllﬁch é:z-lch .lS associated with one of two classes. In
the training procedure, the class of ea.ch input veetor is known in advance. In prediction,
the class is the output of SVM. Secondly, the feature vectors are mapped into a feature
space (possibly with high dimensionality) by a kernel function, either linearly or
nonlinearly. Thirdly, a division is computed in the feature space to optimally separate
the two classes of training vectors. SVM training always automatically seeks global

optimum and avoids over-fitting. These characteristics make it particularly suitable to

deal with large numbers of features.

10
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Fig.2 Basic idea of SVM working principals. The basic idea of SVM is to
employ a mapping function to transform data from the input space to a feature
space where the border can be represented by a linear optimal separation
hyperplane.
As mentioned in pervious, SUMis'a birjar;gé'lassi'ﬁcat_ioh tool that uses a non-linear
transformation to map the input data to a‘high di-mé:ﬁsional feature space where linear

classification is performed. It is equivalent to solving the quadratic optimization

problem:
1
. 1 c A
Moo ogwowrox 4 W
Such that,
y, (@ (x,))w+b)>1-¢, i=1,. m, (2)

. 20 i = 1,.., m
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Where X; is a feature vector labeled by yi € {+1, -1}, {X,Yj}, i=1,...,m, and the penalty
parameter of the error term C, also called the cost. It does the classification by
generating a separating hyper-plane using the equation f(xX) = O®(X) - w+b=0. Use X
@ (X) to represent W, we obtain O (X)) - W= 2; 2iD(X) - O (X). This provides an
efficient approach to solve SVM without the explicit use of the non-linear
transformation. Further K(X;,X) = <I>(X;)Td>(xj) is called the kernel function and it is this
function that maps the data to a higher dimension. There are several kernel types
including linear, polynomial, radial basis funetion, sigmoid. In this thesis, public
available LIBSVM was used to build alassifietwith a radial basis function kernel and

a set of parameters. f,..ﬁ '
¥ i i
I -

For SSEP-Domain predictor, the initiél goal was to'search for protein domain boundary
and to conduct domain prediction. Because of its high sensitivity and precision of single
domain, we adopted its idea and made some modification to suite our purpose of finding
specific-binding sites. The fundamentals of the whole process include two major steps.
The first step is searching for domain boundary, picking up suitable and significant
domains in the template library created beforehand; the other one is scoring of domain
regions, which introduces a technique called profile-profile alignment (PPA). The

details of the implementation are elaborated by psudeo-code of this algorithm:

12



Step 1: Domain Boundary Search

10:

11:

12:

13:

14:

15:

16:

/I initialization
Centers < centers of coil regions predicted on target t
Regions « {rjj = t[ci..ci]} | ci,cj € Centers /\ ¢i<cj}
Images — {}
PFAM_DNADbindings < Domains annotated as DNAbinding by PFAM
Domains — PFAM_DNADbindings
/I generation of domain images
For all template domains.d € Demains d6
I get highest scoring region c.)f slfrglar length
Smax(d) ¢ MaXij< Regions rifk/d| SSE:Z(CL fij)
//significance filtering: scofe high enough?
If Smax(d) > Sthresn(d) then
add corresponding region r;; to Images
with score(rj) <— Smax(d)
end if

end for

17: /I accumulative scoring of coil centers

18:

V¢ € Centers: score(c) «— 0

13



19: for the top-scoring r;; & Images do

20: score(c;) «<— score(c;) + score(r;))
21 score(c;) «<— score(c;) + score(r;)
22: end for

23: select the top-scoring coil centers

Line 2 to line 6 is initialization. In this we create several sets: Centers, Regions, Images,
PFAM_DNAbindings and Domains. Ling 8,to-line 16 is the generation of domain images.
For every template domain in Domains$et, we perform secondary structure element
alignment (SSEA) with each element in R@,ons set. We perform significance filtering

by discarding low-scoring pairs. Line 18 to -l:i-ne 23 is the determination of proper

domain boundary by calculating the top-scor'ing.coil centers.

Step 2: Scoring of Domain Regions
1: Regions < potential domain regions

2:  For all r € Regions do

3: I/ score fold classes by highest-scoring members
4. for all fold classes Fold € Domainsdo
5: score(Fold ) «— maxgcroldd=i SSEA(T, d)

14



6: end for

7 /I select members of potential fold classes

8: Dyop <— members of top-scoring fold classes

9: /I score normalization for multiplicative scoring
10: SCOI€raw(T) «— MaXde=Fold jdi=i PPA(T, d)

11: SCOT€final(T) <— Scoreaw(r)/(10log|r|)

12: end for

Line 3 to line 6 we perform SSEA betwéen eachielement in Fold set and each element in
Regions set. Line 8 to line 12 the potentfdliﬁl_(i ¢lasses were selected by performing

S
profile-profile-alignment (PPA). '

2.3 FEATURE SET

In our study, we use two strong features to capture the characteristics of base-specific
interaction residues. They are position specific scoring matrix (PSSM) and secondary
structures of the protein. The power of the first feature may be due to its enriched
conservation information of a protein chain. And the power of the second feature may
contribute to the stability of the structures and the unique composition of secondary

structure elements which may reveal the preference of base-specific interaction.

15



Position specific iterative BLAST (PSI-BLAST) [26] was executed and a profile (or
position specific scoring matrix, PSSM) is constructed (automatically) from a multiple
alignment of the highest scoring hits in an initial BLAST search. The PSSM is
generated by calculating position-specific scores for each position in the alignment.
Highly conserved positions receive high positive scores and weakly conserved positions
receive scores near zero or negative. The profile is used to perform a second BLAST
search and the results of each "iteration" used.to refine the profile. This iterative
searching strategy results in increased sensitivitysTe obtain evolutionary profiles, we
first aligned each protein in our dataset aga}fnsga filtered version of all currently known

I m ||
sequences using PSI-BLAST with ‘_threle'I iteration's_ [27} (cut-off at 10-3).

HYPROSPII [28] is a knowledge-based hybrid method for protein secondary structure
prediction based on local prediction confidence. PSIPRED [26] is another protein
secondary structure predictor which is based on position-specific scoring matrices. We
used both outputs to the evaluation. Outcomes showed HYPROSPII was more accurate
in predicting B-sheet segments which is crucial for some specific DNA-binding sites. In
this respect, we submitted each protein chain to HYPROSPII and then its generated

secondary structure profile was stored.

16



Chapter 3 THE PROPOSED HYBRID PREDICTOR

In this chapter, we first exhibit the overall structure of the proposed method. The

observation during the experiments that evolves and results in the hybrid method will

also be elaborated. Then we introduce the primary SVM predictor and auxiliary SSEP

predictor, their performance will also be discussed. Concerning the problem of

integration, the solution to combine and utilize two different mechanisms will be

described in the end of this chapter.

The query TF chain

[
l l

The SSEA algorithm
based auxiliary
predictor

l_ll_l

Merge the prediction
outputs based on
secondary structure
segments

The SVM based
primary predictor

Fig.3 The overview of the proposed hybrid method. Each testing case

was delivered to two different predictors, SVM and SSEP-Domain,

simultaneously. It is their innate design that SVM and SSEP-Domain

may learn the characteristics of specific-binding sites in different way.

17



3.1 OVERVIEW
Fig. 3 presents an overview of the hybrid predictor proposed in this thesis. The entire
hybrid predictor consists of the primary predictor and the auxiliary predictor. The
primary predictor is a support vector machine (SVM) with its parameter settings
optimized for delivering high precision. As a result, one can expect that sensitivity of
the SVM-based primary predictor is traded, since one common phenomenon in tuning
the parameters of a predictor is that raising precision typically means that sensitivity is
traded and vice versa. In fact, it has been observed in our experiments that the SVM
with the parameter settings employed.ifi'this the§is is capable of delivering reasonably
well precision with respect to identifyiné tI}_a,se fesidugs in 0-helix and coil types of

: S .
secondary structures that are involved 1n spé:c-:iﬁcl Binding with the DNA. On the other
hand, it has also been observed that tﬁe SVM hafdly identifies the residues in a B-sheet
segment that are involved in specific binding with the DNA. Therefore, one
straightforward way to improve the overall sensitivity of prediction is to incorporate a
mechanism that can accurately identify those binding residues in a 3-sheet segment.
As shown in Fig. 3, in the proposed hybrid predictor, we have incorporated a
mechanism based on secondary structure element alignment (SSEA) to complement the

prediction power of the SVM. The hybrid predictor then take the union of the predicted

binding residues output by the primary and auxiliary predictors as its output.

18



For training the hybrid predictor presented in Fig. 3, we have created a data set
containing 228 TF-DNA complexes extracted from the 691 protein-DNA complexes
that Yanay Ofran et al. [14] collected from the protein data bank (PDB) [29]. In this
process, we included only those complexes in the Ofran collection that contain a TF.
We then queried the PFAM server [30] to exclude those complexes in which no
polypeptide segment is within the DNA-binding domains predicted by the PFAM server.
In this respect, we submitted the full sequences of the proteins in the complexes to the
PFAM server and adopted only those predieted binding domains with the p-value
computed by the PFAM server smallenthian 0.0i. Through this process, we excluded
those complexes in which the polypept.idé‘%ﬁg;;inxents just happen to be in the proximity
of the DNA but are not really involved 1|n bi-l:l-ding._with tﬁe DNA. It might happen that
we accidently exclude some TF-DNA compl'exe.s with real TF-DNA interactions.
Nevertheless, it is our intention to be conservative. In the end, 228 out of the 691
complexes initially in Ofran collection remained. This collection of 228 TF-DNA

complexes is then adopted to generate the training data set and testing data set in the

experiments reported in this thesis.

19



3.2 PRIMARY SVM PREDICTOR
For the design of the primary predictor, we have employed the LIBSVM [25] package
with the Gaussian kernel. The model of the SVM has been generated based on a training
data set derived from the data set containing 228 TF-DNA complexes described above.
The training data set was generated by associating each residue in the 228 protein chains
with a position specific scoring matrix (PSSM) computed by the PSI-BLAST package
with window size set to 11 [15]. In addition, each residue was labeled based on whether
it is involved in specific binding with the DNA. As a result, the training data set
contains a total of 22097 samples. )

: TR . .
As mentioned earlier, the parameters.of 'ithe SVM 1n the ﬁrst stage of the proposed

predictor have been set to deliver high precision.In'this respect, we have set parameters

C and g with the Gaussian kernel to 32 and 0.03125, respectively.
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3.3 AUXILIARY SSEP PREDICTOR

As mentioned earlier, the auxiliary predictor has been designed with a mechanism based

on secondary structure element alignment (SSEA) and profile-profile alignment (PPA),

which was firstly proposed in CASP 6 and CASP 4 [31]. The kernel of the SSEA-based
mechanism refers to a template library containing f—sheet segments involved in specific
binding with DNAs. The template library has been created with the following steps.

(1) Each protein chain in the data set containing 228 TF-DNA complexes was submitted
to the HYPROSP II server, which is a predictor of protein secondary structures.
Then, each residue in the prediéfed B—sheet segments was examined to determine
whether it is involved in specific bmdlgg'?,,vglth the DNA.

(2) Each DNA-binding domain with opei: or}ﬁorélz ._[3—shee-t segments involved in specific
binding with DNA was deposited .into the tefnplate library and each residue in the

domain was labeled by the HYPROSP II as one of the following three types of

residues: o—helix, f—sheet, and turn.

With the template library, we then can invoke the following procedure to predict the
specific binding residues in f—sheet segments of the query transcription factor.
(1) Invoke the HYPROSP II server to label each residue in the query transcription factor

with one of following three types: a—helix, B—sheet, and turn.
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(2) Invoke the BLAST package [26] to align the sequence of the labels of the query

transcription factor with the sequence of labels of each template in the library. The

similarity score between the query TF and a template is then computed as follows.

20 20 o
seore =log 3.3 a7, L2 o
i=1 j=1 ptpj

The principle is to compare two PSSM matrices of two aligned protein chain sequences.
The higher the score is, the more similarity these two PSSM matrices have. In this
respect, we obtained the score by caleulating equation (1), where a; is a row vector of

PSSM representing the characteristics of aﬁ?fﬁino acid, and B is a row vector of PSSM
representing the characteristics of'an.amino acid'-wl:l_ich 18 aligned to . Py 1s a function

which can be derived from BLOSUMG62 to i1.1dicate the preference to substitute the type
of amino acid i to the type of amino acid j. The denominators, P; and P; stand for
background probability of the occurrence of amino acid i and amino acid j, which could
also be derived from BLOSUMSG62. It is important to understand that the score was
calculated by two aligned, corresponding residues, and to make the work finished, we
have to sum up all individual scores to make it meaningful. At this moment we are
spending time elaborating on the idea of scoring function but the fraction Py(1,))/P;P;j,

which has important statistical and biological meanings, is still missing. Thus we tried
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to find practical ways to solve the problem as follows.

1 P
S(a,b)=—log—2 4)
A a’ b
Pra (1) — B0 )
PiP;

In BLOSUMG62 matrix, the value of each cell was determined by equation (4), where Py,
is the related probability as described previously. P, and Py, stands for background
probability of the occurrence of different amin.-o. acids. Itis mentioned in nature
biotechnology website that A is set as 0342'{;-—'591‘ ‘c:r:eating ELOSUM62 matrix. We

1l M :
adopted the value and because now we ﬂlavé:the exact value of the constant A, we can
ol | 1

immediately modify equation (4) and transform it into equation (5). Pri(1,)/PiP;is then

substituted into equation (3) to obtain the final score.
(3) The positions of the specific binding residues in the 5 templates that give the highest

similarity scores are then superimposed to predict the position of the specific

binding residues in the query TF.
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sheet Trust SSEP-Domain
Secondary /
. _—

Structure

Aresidue Program W Trust SVM

Fig. 4 Ideas of the merging process. In the merging process, the type of secondary
structure of each residue in the protein chain was first predicted by a secondary
structure program where each residue could come out as helix, sheet, or coil. As
mentioned previously, SSEP-Domain had better accuracy in predicting B-sheet
residue, SVM rendered good performance in predicting a-helix residues. In this
respect we take union of the outputs from thgse two predictors according to which
type of secondary structure this fesidue belongs. to.

In the phase of “merging the output™; tlh'le pr-(;cessll égul'd be better depicted as in Fig. 4.
For a residue which is of helix or coil type in thé query protein chain, we refer to SVM

for prediction. On the other hand, for a residue which is of sheet type in the query

protein chain, we use the other one, SSEP predictor to obtain the result.
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Chapter 4 EXPERIMENTAL RESULTS

In this chapter, we first depict how the performance of prediction is evaluated. Then we
arrange residues into different groups according to their secondary structure type:
a-helix, coil, and B-sheet. We also have breakdowns of residues in respect of their
different TF-DNA interaction. Then we show the results of each individual classifier
and the hybrid predictor. In the end of this chapter, we exhibit a real scenario of

TF-DNA interaction and discuss the corresponding predicted result.

4.1 DESIGN OF EXPERIMENTS
In our study, we have conducted experinfléé_tﬁj;b. evaluate,the performance of the

_ I m ||
proposed approach. The evaluation was ':coﬁ(:i-uctelzd follo\;ving the leave-one-out practice.
Accordingly, the protein chain in eacﬁ of the 228 TI;‘-DNA complexes was used as the
testing case once. In order to avoid bias caused by homologous protein chains, the
training data set for the SVM and the template library for the SSEP algorithm were
re-generated for each testing protein chain with the protein chains in the remaining 227
TF-DNA complexes that has a sequence identity higher than 20% when aligned with the

testing protein chain removed. In our experiment, the bl2seq package was invoked to

obtain a score of sequence identity between two protein chains.
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Table 1. Prediction resultswith the SVM based primary predictor.

Type of the #in Prediction results
secondary residues TP TN FP FN Prec. Sens. Spec.
structure element tested
Helix 12781 573 11670 156 382 0.786 0.6 0.987
Sheet 1465 0 1358 3 104 0.0 0.0 0.998
Coil 7921 186 7506 58 171 0.762 | 0.521 0.992

4.2 RESULTS AND DISCUSSIONS

. Ty
% f

Table 1 shows how the SVM based predlcq;t:i-'mFlg 3/performed in the leave-one-out
Wil | -
process. As mentioned earlier, the_,parain;lete.-r; of rlthe SVM based predictor has been
tuned to deliver high precision. As a result; s.ensi.tivity was traded. The results in Table 1
reveal that the SVM based predictor, to a certain extent, is capable of identifying the
specific DNA-binding residues in o-helix and coil elements. On the other hand, the
SVM based predictor can hardly identify the specific DNA-binding residues in 3-sheet
elements. Therefore, in order to raise sensitivity of prediction, we have resorted to the
SSEA based mechanism to complement the prediction power of the SVM. Table 2

shows how the SSEA based predictor performed in identifying the specific

DNA-binding residues in B-sheet elements. Combining the results in Tables 1 and 2, one
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can easily conclude that the prediction power of the SSEA based mechanism
complements that of the SVM. With the SVM based predictor and the SSEA based
predictor integrated as shown in Fig. 3, the hybrid predictor has been able to deliver the
performance shown in Table 3. Table 4 shows a breakdown of the experimental results
with the hybrid predictor based on the classification of TF-DNA interactions proposed
by J.M. Thornton €t al. [32]. It should not be a surprise to observe that the hybrid
predictor can deliver superior prediction accuracy when dealing with certain types of
interactions and delivers inferior prediction.accuracy with the other types. In this respect,

what a biologist or chemist really carest@bout iSWwhiether the predictor could deliver

extremely poor performance with certdift tﬁ@g of interactions. The results reported in
. 'R || W

Table 4 show that the hybrid predicter does not éqffer such kind of deficiency.

Table 2. Prediction results with the SSEA based auxiliary predictor.

Type of the # in residues Prediction results
secondary tested
structure
element
TP TN FP FN Prec. Sens. Spec.
Sheet 1465 83 1329 32 21 0.722 0.798 0.984
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Table 3. Prediction resultswith the hybrid predictor.

Table 4. Breakdown of the pr'edictioP

Type of the #in Prediction results

secondary residues TP TN FP | FN Prec. Sens. Spec.
structure element tested
Helix 12781 573 | 11670 | 156 | 382 0.786 0.6 0.987
Sheet 1465 83 1329 32 | 21 0.722 0.798 0.976
Coil 7921 186 | 7506 | 58 | 171 0.762 0.521 0.992
Overall 22167 842 20.50.5 246 574 0.773 0.594 0.988
i:'l._- ’:|

ré's:?i?svf{ith the hybrid predictor in respect of
| V.

differ ent--‘t'y.p._eLiof TFDNA interactions
Type of the | # of chains |# in residues Prediction results
DNA-binding | involved tested TP | TN | FP | FN |Precision [Sensitivity|Specificity
group
Zipper-type 44 3109 213 | 2821 | 30 | 45 0.876 0.826 0.989
Helix-turn-helix 97 12480 316 | 11712 | 123 | 329 0.72 0.49 0.99
Zinc-coordinating 57 4792 230 | 4332 | 74 | 156 0.757 0.596 0.983
B-hairpin/ribbon 30 1786 83 | 1640 | 19 | 44 0.814 0.654 0.989
Overall 228 22167 842 | 20505 | 246 | 574 0.774 0.595 0.988
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The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins
containing the basic region leucine zipper (bZIP) DNA-binding motif. The bZIP dimer
is a pair of continuous alpha helices that form a parallel coiled coil over their
carboxy-terminal 30 residues and gradually diverge toward their amino termini to pass
through the major groove of the DNA-binding site. The coiled-coil dimerization
interface is oriented almost perpendicular to the DNA axis, giving the complex the
appearance of the letter T. There are no kinks or sharp bends in either bZIP monomer.
Numerous contacts to DNA bases and phosphate oxygens are made by basic region
residues that are conserved in the bZIR protein family. As shown in Fig.5, the atoms
with colors but white (light gray) are base-g'ﬁeglﬁc interaction residues according to our
Wil A | _
definition. Non-specific binding r_g:sidulels ar-e:-det'tlz.rmined-by literature and then colored
white (light gray). It is clear to see thét the b'ase-.speciﬁc interaction residues are much
closer to DNA bases than others. The same TF-DNA complex was tested by using our

approach, and the prediction result is presented in Fig.6. As in this case of Zipper-type

domain, our predictor gives 85% (6/7) sensitivity and 100% precision.
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Jmol

B

Fig. 5 An example of TF-DNEA in hﬁSA. The atoms with colored but
= b

Wy

&,
white (light gray) are the heax/%%%\ )
R 2 s

W, T ¢

bases of the DNA. The atoms colored Ey%ﬁ%%gé%ght gray) are the heavy atoms in the

sidechains of the non-specific DNA-binding residues.
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gray) are the heavy atoms “predicted” in the sidechains of the non-specific

DNA-binding residues.
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Arc repressor [33] is one member of B-hairpin/ribbon family, and it acts by the

cooperative binding of two Arc repressor dimmers to a 21-base-pair operator site. Each

Arc dimmer uses an antiparallel beta-sheet to recognize bases in the major groove. As

depicted in Fig. 7, two antiparallel beta-sheet are the binding interface stretched to the

major groove [33]. In this case, our predictor gives 50% (3/6) sensitivity and 100%

precision.

Jmol

Fig. 7 An example of TF-DNA interaction with PDB ID 1BDV. There is an Arc

domain, containing beta-sheet to recognize bases in the major groove, which is a

DNA-binding domain in each protein chain. The atoms colored in blue are heavy

atoms which are within 4.5 A from the bases of the DNA.
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The helix-turn-helix clan contains many members; HTH 3 is one of these members, and

it is a large family of DNA binding helix-turn helix proteins that include a bacterial

plasmid copy control protein, bacterial methylases, various bacteriophage transcription

control proteins and a vegetative specific protein from Dictyostelium discoideum (Slime

mould). Fig. 8 depicted one example of protein with HTH_ 3 domain interacts with

DNA. In this case, our predictor gives 50% (4/8) sensitivity and 100% precision.

Jmol

Fig.8 An example of TF-DNA interaction with PDB ID 1RPE. There isa HTH 3
which is a DNA-binding domain in the protein chain. The atoms colored in blue
are heavy atoms which are within 4.5 A from the bases of the DNA. There are
many helix-turn-helix motifs in the protein chain, while only some of these can be

the DNA-binding domain.
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Zf-C4 is a member of the Zinc-coordinating family, also a zinc finger. In nearly all cases,
this is the DNA binding domain of a nuclear hormone receptor. The alignment contains
two Zinc finger domains that are too dissimilar to be aligned with each other.
The DNA-binding domain can elicit either an activating or repressing effect by binding
to specific regions of the DNA known as hormone-response elements [34, 35]. These
response elements position the receptors, and the complexes recruited by them, close to
the genes of which transcription is affected. The DNA-binding domains of nuclear
receptors consist of two zinc-nucleated modules and a C-terminal extension, where
residues in the first zinc modulé determifie the s.pec*iﬁcity of the DNA recognition and
residues in the second zinc module are 1nv§,,yeﬂ in dimerisation. The DNA-binding

4 ¥ 1] | :
domain is furthermore involved in _sevle}al c-)i[-her :Ifﬁnctioﬁs including nuclear localization,
and interaction with transcription fact.ors and co-acfivators [34]. This is a rather
sophisticated DNA-binding domain which involved in many functions, as depicted in

Fig. 9. Our predictor failed in locating the correct specific-binding residues, rendering

0% sensitivity (0/5) and 0% precision (0/2).
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Jmol

Fig.9 An example of TF-DNAG
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Chapter 5 CONCLUSIONS AND FUTURE WORKS

This thesis presents the design of a sequence-based predictor aiming to identify the
specific DNA-binding residues in a TF. As a recent study has revealed that the tertiary
structures of a large number of transcription factors are mostly disordered, a sequence
based predictor is essential for analyzing how a TF interacts with the DNA. Furthermore,
it is highly desirable to have a predictor capable of identifying those residues involved

in specific binding with the DNA, since specific binding corresponds to

sequence-specific recognition of a gene, whigch. is essential for correct gene regulation. .

In the experiments reported in this thesis’,'{;lilé'g_,'ﬁfoposed hybrid predictor delivered

_ I m || :
overall precision of 77.4%, sensitiyity p:f 59-.:-5%,.Iénd spe-ciﬁcity 0f 98.8%. The
experimental results further show tha‘.c the pri)poéed hybrid predictor is capable of
delivering the same level of prediction accuracy when dealing with different types of
TF-DNA interactions. It is anticipated the prediction accuracy delivered by the hybrid
predictor will continue to improve as the number of TF-DNA complexes deposited in
the PDB continues to grow and therefore the number of training samples that can be
exploited continues to increase. Nevertheless, it is our primary objective to continue to

develop more advanced prediction mechanisms. In this respect, we believe that, as the

number of TF-DNA complexes deposited in the PDB increases, we can obtain more
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insights about the key physiochemical properties that play essential roles in TF-DNA
interactions and then we will be able to develop more advanced prediction mechanisms

accordingly.

Besides those four types of DNA-binding domains in TFs mentioned in the study, there
are other DNA-binding domains such as P53, GATA..etc, which also play important role
in regulatory network. An obvious way to support new forthcoming DNA-binding
domains is to continuously update and enlarge the training data set, therefore the hybrid
predictor could support more group-é of TFs and the<enlarging would also possibly
enhance the performance. It 18 also possfblig—}é;a{dopt new, different learning methods or
Wil A | _
features for the unique traits of new TlfsI Wlth tﬁé inforrﬁation of binding sites and
candidate domain type being providea, bioldgisfs may receive more information for
conjecturing and understating the functionality of given protein chain. Because of the
high precision and reliability, the proposed method in the thesis would be deserving of

extension or application in the future, making contribution to connecting some

DNA-binding domains with specific functions.

37



REFERENCES

l.

Latchman, D.S., Transcription factors: an overview. Int J Biochem Cell Biol,
1997. 29(12): p. 1305-12.

Karin, M., Too many transcription factors: positive and negative interactions.
New Biol, 1990. 2(2): p. 126-31.

Roeder, R.G., Therole of general initiation factorsin transcription by RNA
polymerase Il. Trends Biochem Sci, 1996. 21(9): p. 327-35.

Nikolov, D.B. and S.K. Burley, RNA polymerase Il transcription initiation: a
structural view. Proc Natl AcadsSci U S A, 1997.94(1): p. 15-22.

Lee, T.I. and R.A. Young, Transér'ixﬁgﬁg.n'(.)f eukarg/otic protein-coding genes.
Annu Rev Genet, 2000..34:.p. 77—137

Goodrich, J.A., et al., Drosophila TAF1140 interacts with both a VP16 activation
domain and the basal transcription factor TFIIB. Cell, 1993. 75(3): p. 519-30.
Xiao, H., et al., Binding of basal transcription factor TFIIH to the acidic
activation domains of VP16 and p53. Mol Cell Biol, 1994. 14(10): p. 7013-24.
Poulat, F., et al., The human testis determining factor SRY binds a nuclear factor
containing PDZ protein interaction domains. J Biol Chem, 1997. 272(11): p.

7167-72.

Sorger, P.K. and H.R. Pelham, Yeast heat shock factor is an essential

38



10.

11.

12.

13.

14.

15.

16.

DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell,
1988. 54(6): p. 855-64.

Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995.
92(12): p. 5510-4.

Maxwell, P.H., et al., The tumour suppressor protein VHL targets
hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999.
399(6733): p. 271-5.

Cole, M.D., The myc oncogenerits role in transformation and differentiation.
Annu Rev Genet, 1986. 20: p. 361—@

Yan, C., et al., Predicting DNA:bi nd:i::f.lg sité of brotei ns from amino acid
sequence. BMC Bioinformatiés, 2006, 7:p. 262.

Ofran, Y., V. Mysore, and B. Rost, Prediction of DNA-binding residues from
sequence. Bioinformatics, 2007. 23(13): p. 1347-53.

Tjong, H. and H.X. Zhou, DISPLAR: an accurate method for predicting
DNA-binding sites on protein surfaces. Nucleic Acids Res, 2007. 35(5): p.
1465-77.

Ahmad, S. and A. Sarai, PSSM-based prediction of DNA binding sitesin

proteins. BMC Bioinformatics, 2005. 6: p. 33.

39



17.

18.

19.

20.

21.

22.

23.

24.

Jones, S., et al., Using electrostatic potentials to predict DNA-binding sites on
DNA-binding proteins. Nucleic Acids Res, 2003. 31(24): p. 7189-98.
Ferrer-Costa, C., et al., HTHquery: a method for detecting DNA-binding proteins
with a helix-turn-helix structural motif. Bioinformatics, 2005. 21(18): p.
3679-80.

Tsuchiya, Y., K. Kinoshita, and H. Nakamura, Sructure-based prediction of
DNA-binding sites on proteins using the empirical preference of electrostatic
potential and the shape of molecular. surfaces. Proteins, 2004. 55(4): p. 885-94.
Liu, J., et al., Intrinsic disordewin transéription factors. Biochemistry, 2006.

45(22): p. 6873-88.

. T}

Boyer, R.F., Conceptsin Bi och_éni stry Sfucturé Tutorials, in Conceptsin
Biochemistry. 2005, Wiley. p. .736

Tsuchiya, Y., K. Kinoshita, and H. Nakamura, PreDs: a server for predicting
dsDNA-binding site on protein molecular surfaces. Bioinformatics, 2005. 21(8):
p. 1721-3.

Wang, L. and S.J. Brown, BindN: a web-based tool for efficient prediction of
DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res, 2006.
34(Web Server issue): p. W243-8.

Hwang, S., Z. Gou, and I.B. Kuznetsov, DP-Bind: a web server for

40



25.

26.

27.

28.

29.

30.

31.

32.

sequence-based prediction of DNA-binding residues in DNA-binding proteins.
Bioinformatics, 2007. 23(5): p. 634-6.

Chang, C. and C. Lin, {LIBSVM}: alibrary for support vector machines. 2001.
Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res, 1997. 25(17): p.
3389-402.

Przybylski, D. and B. Rost, Alignments grow, secondary structure prediction
improves. Proteins, 2002. 46(2): p.197-205.

Lin, HN., et al., HYPROSP I1-<a knowl édgebased hybrid method for protein
secondary structure prediction base@on .Iocal prédiction confidence.
Bioinformatics, 2005.21(15): p.l322:%—33..

Berman, HM., et al., The Profein Data Bank. Nucleic Acids Res, 2000. 28(1): p.
235-42.
Finn, R.D., et al., Pfam: clans, web tools and services. Nucleic Acids Res, 2006.
34(Database issue): p. D247-51.

Gewehr, J.E. and R. Zimmer, SSEP-Domain: protein domain prediction by

alignment of secondary structure elements and profiles. Bioinformatics, 2006.

22(2): p. 181-7.

Luscombe, N.M., et al., An overview of the structures of protein-DNA complexes.

41



33.

34.

35.

Genome Biol, 2000. 1(1): p. REVIEWSO001.

Raumann, B.E., et al., DNA recognition by beta-sheetsin the Arc
repressor-operator crystal structure. Nature, 1994. 367(6465): p. 754-7.
Claessens, F. and D.T. Gewirth, DNA recognition by nuclear receptors. Essays
Biochem, 2004. 40: p. 59-72.

Moehren, U., M. Eckey, and A. Baniahmad, Gene repression by nuclear

hormone receptors. Essays Biochem, 2004. 40: p. 89-104.

=W

42



APPENDIX

Number of

Chain ID [start |End| Bits score | E-value Pfam-A Chain Length | specific-binding
residues
IAOA_A| 2 |58| 556 [170E-13] HLH 63 7
1AOAB| 2 | 58| 556 [L70E-13] HLH 63 6
LAMO_A| 6 [ 56| 7L4 |3.10E-18smnHLH 80 6
IAMIB| 6 | 56| 714 4B 1OE 18 HLH 76 7
&1 7 A
IAM9_C| 6 | 56| 714 [3.10E- 15{ j_hﬂirH 82 6
N UITs g
IAM9D| 6 |56 714 .SJOElEF! hH]_H{ ol 76 7
IAN2A| 3 | 54| 819 |.00E21 — HLH 86 4
INKP.A| 6 58| 735 |[720B-19| HLH 88 6
INKP.B| 2 |53| 819 [00E21 HLH 83 5
INKP.D| 6 [58| 735 |[7.20E-19| HLH 85 5
INKPE| 2 |53| 819 [200E21] HLH 83 5
INLW B| 1 |52| 819 [200E21 HLH 76 6
INLW.E| 1 |52| 819 [200E21 HLH 76 5
IHLO_A| 12 | 63| 819 [2.00E21| HLH 80 5
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IHLO.B| 12 | 63| 819 [200E-21| HLH 80
IAN4A| S |60 667 [760E-17| HLH 65
IANAB| 5 |60| 667 [1.60B-17 HLH 65
IMDY_A| 12 | 63| 696 [LOOE-17|  HLH 68
IMDY_C| 6 |57| 696 |LOOE-17| HLH 62
IMDY D| 6 | 57| 696 [LOOE-17| HLH 62
INLW_A| 1 |53| 564 |9.80E-14] HLH 79
INLWD| 1 |53 | 564 [0.80E-l4fsmeHiLl 77
A2 F | 2 | 52| 289 Alsokes b%iP’_Q 55
Li¥ar: S
IFOSE| 1 |51| 289 1.80E-(|5f = 60
o §1IEm
IFOS.G| 1 |51| 289 1;80’13-;!)15 bZIPll__% 60
A0 | 1|55 sa0 9.90E iBjbzp] 56
IFOSF| 1 |60| 724 |LSOE-18| bZIP_I 60
IFOSH| 1 |60 724 |[150B-18| bZIP_I 60
INMA| 1|60 724 |LSOE-18| bZIP_I 56
INMB| 1 [60| 724 |LSOE-18| bZIP_I 57
HO4 A |12 |65| 82 [2008-21] bZIP2 73
04 B | 12|65 82 [.00B21 bZIP2 76
IHS8 A | 12 65| 82 [200E21| bzIP2 78
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1H88_B | 12 | 65 82 |2.00E-21|  bZIP_2 78
IH8A_A | 12 | 65 82 |2.00E-21|  bZIP_2 76
1H8A_B | 12 | 65 82 2.00E-21|  bZIP_2 76
IH89_A | 1 |51 67  |6.40E-17| bZIP_2 64
1H89 B | 1 |51 67  |6.40E-17|  bZIP_2 64
IHIB_A | 12 | 65 82 2.00E-21|  bZIP_2 75
IHIB_B | 12 | 65 82 [2.00E-21|  bZIP_2 76
IHIB_D | 12 | 65 82 |2.00E-21 " bZ_IP_Z 71
IHIBLE | 12 | 65| 82 2OOE21 b;IP'_TZT l 77
I F:‘ fz:\! :
IYSAC| 2 | 56| 662 1.10E-1|'e Sham 1 J |- § s
8 SIEND AT
IYSAD| 2 | 56| 662 1;1‘0’13-.[«5 bZIPll_i Ry 57
ICGP_A | 20 |111| 104.7 [2.90E-28 -;:NMIDI;binding 205
ICGP_B | 20 [111| 104.7 |2.90E-28|cNMP_binding 205
1ILB2_A | 20 |111| 104.7 [2.90E-28|cNMP_binding 209
ICF7_A | 7 | 73| 137.1 |5.00E-38| E2F_TDP 72
ICF7_B | 7 |88 | 1554 |1.50E-43| E2F_TDP 90
ICOW_A| 2 (62| 1064 |8.60E-29|Fe_dep_repress 222
ICOW_B| 2 | 62| 1064 |8.60E-29|Fe_dep_repress 225
ICOW_C| 2 | 62| 1064 |8.60E-29|Fe_dep_repress 221
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ICOW_D| 2 (62| 1064 |8.60E-29|Fe_dep_repress 221
IDDN_A| 3 [ 63| 1064 |[8.60E-29|Fe_dep_repress 120
IDDN_B| 3 | 63| 1064 [8.60E-29(Fe_dep_repress 120
IDDN_C| 3 | 63| 1064 [8.60E-29(Fe_dep_repress 120
IDDN D| 3 |63 | 1064 |8.60E-29|Fe_dep_repress 120
IEST A | 3 |63 ] 1064 |8.60E-29Fe_dep_repress 121
IFST B | 3 | 63| 1064 [8.60E-29Fe_dep_repress 121
IEST.C| 3 | 63| 1064 8.6OE—2? lfe_de.;_)_repress 121
IFST.D | 3 | 63| 1064 86OE29 Fe_dep_fé5£e§g' 121
e
IL3L_A | 17 |161| 1645 2.80E-4|i< Beroind bind |- 234
8 SIERID AT
1L3L_B | 17 |161| 164.5 2..80'5-445 AutoinhLEind.' 234
1IL3L_C | 17 |161| 164.5 |2.80E-46} .Alitoir;d_bind 234
1IL3L_D | 17 |161| 164.5 |[2.80E-46| Autoind_bind 234
IHOT_A | 12 |75 ] 90.2 |6.80E-24 GntR 243
IHOT_ B | 12 | 75| 90.2 |6.80E-24 GntR 234
IHW2_A| 8 |71 | 90.2 |6.80E-24 GntR 228
IHW2_ B| 8 | 71| 90.2 |6.80E-24 GntR 228
IAKH A| 6 |61 41.5 |3.00E-09| Homeobox 60
IYRN_A| 6 |6l 41 4.10E-09] Homeobox 60
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1ILES_A | 2 |53 | 30.7 |5.40E-06] Homeobox 53 6
IMNM_C| 30 | 87 | 299 [9.50E-06] Homeobox 87 7
IMNM_DJ| 30 [ 87| 29.9 [9.50E-06|] Homeobox 87 5
IAKH_B| 5 |62 29.9 19.50E-06| Homeobox 78 7
IAPL.C| 5 | 62| 299 [9.50E-06| Homeobox 62 8
IAPL D| 5 | 62 29.9 19.50E-06| Homeobox 62 7
ILEE B| 5 | 62 19.8 [0.00013 | Homeobox 78 6
IYRN_B| 5 [ 62| 299 9.50E—O§ : Hor.r_leoblox 78 7
K6LA| 1 |58| 299 4050506 HomBBbox |5 60 6
e
IK61B | 1 |58| 299 9.50E-(|5< THomeobos 59 6
S BIE-ED A
IK61C| 1 |58| 299 9;50'5-.(!)45 Home}clk_i?x*: 58 4
IK61_ D | 1 |58 | 299 [9.50E-06f I—iomeobox 58 6
ICQT_A| 4 |78 | 190.5 |4.20E-54 Pou 163 13
1AUT_A| 1 |71 | 167.6 |[3.40E-47 Pou 146 14
IAU7_B| 1 |71 | 167.6 |3.40E-47 Pou 146 15
IHFO_A | 1 | 75| 1854 |1.40E-52 Pou 158 13
IHFO B | 1 | 75| 1854 |1.40E-52 Pou 158 12
IB72. B | 2 |61 714  |2.90E-18| Homeobox 75 5
IPUFE B | 2 | 61 714 |2.90E-18| Homeobox 73 5
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IBIB | 2 |61 70 |7.80E-18| Homeobox 62 4
IFIL_A | 19 | 75| 1153 |1.80E-31| Homeobox 81 6
IFIL_B | 19 | 75| 1153 |1.80E-31| Homeobox 75 5
IFJL.C | 19 | 75| 115.3 |1.80E-31| Homeobox 75 5
IPUF A| 14 |70 | 110.6 [4.80E-30 Homeobox 77 6
OANT A| 4 | 60| 113.7 |[5.40E-31| Homeobox 62 6
IHDD C| 4 | 60| 1055 |[1.60E-28| Homeobox 61 6
IHDD_D| 4 |60 | 105.5 1.6OE—28 : Hor.r_leob.ox 61 3
QHDD_A| 4 | 60| 1015 27OE27 Home(')b'brxt__. 61 4
e
JHDD_B| 4 | 60| 1015 2.70E-2|" Hoieobos 59 3
S BIE-ED A
IGG_A | 2 | 58] 1092 1..303-;& Homelcik_i?x*: 59 7
UGG_B| 2 |58 | 109.2 |[1.30E-29§ I—iomeobox 59 9
3HDD_A| 2 |58 | 105.5 |1.60E-28| Homeobox 59 4
3HDD_B| 2 |58 | 105.5 |1.60E-28| Homeobox 58 4
IDUO_A| 1 | 56| 89.6 [1.00E-23| Homeobox 57 4
IDUOB| 1 |56 89.6  |1.00E-23| Homeobox 56 4
ILLI_A | 21 | 76| 53.5 [7.10E-13] HTH_3 92 5
ILLI.B | 21 | 76| 53.5 [7.10E-13] HTH_3 92 11
ILMB_3| 21 | 76| 504 |6.10E-12| HTH_3 92 5
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ILMB_ 4|21 | 76| 504 |6.10E-12| HTH.3 92 10
IPERL| 6 |59| 561 |1.20B-13] HTH3 63 9
IPERR| 6 | 59| 560 |l.20E-13| HTH.3 63 6
IRPELL| 6 [59| 561 |[L.20E-13| HTH.3 63 8
IRPER | 6 | 59| 560 |l.20E-13| HTH.3 63 6
Q20RIL| 6 |59| 561 |1.20E-13 HTH.3 63 9
Q20RIR| 6 | 59| 561 [120B-13| HTH3 63 8
IGDT_A| 3 |139] 1994 8.80E—57 : Resplvase 183 13
1GDT B| 3 |139| 1994 4550687 Resdlace B ONRLE 10
I F:‘ fz:\! :
IDSY_A| 7 |53 | 483 2.8OE-1||] %ﬁéﬁi}fxraC 3 B 5
. , 1l e - R
IDSY_B| 7 | 53| 483 2..80'*57[1 H}Hjl/lraC 292 2
IDSY.C| 7 |53 ] 483 2.80E—11-. HTH;AraC 292 5
IDSY.D| 7 |53| 483 [2.80E-11| HTH_AraC 292 0
IIWL_A| 4 |29| 482 [2.80E-11|  Lacl 330 6
IIWLB| 4 | 29| 482 [2.80E-11|  LacI 330 6
IKU7_A| 7 | 60| 909 [3.90E-24| Sigma70_r4 73 7
UTOA | 7 | 53| 696 |L10E-17| TetR.N 189 7
UT0OB | 7 |53| 696 |L10E-17| TeR N 189 7
UT0.C | 7 | 53| 696 |[LI0E-17| TeRN 189 7
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UTO_D | 7 |53 | 69.6 |L.10E-17| TetR_N 186
ITRO_A | 17 |104| 146.5 |7.60E-41| Trp_repressor 108
ITRO_C | 17 |104| 146.5 [7.60E-41| Trp_repressor 108
ITRO E | 17 [104| 146.5 [7.60E-41| Trp_repressor 108
ITRO G| 17 |104| 146.5 |7.60E-41| Trp_repressor 105
ITRR_A | 16 |103| 145.6 |1.30E-40| Trp_repressor 105
ITRR_B| 16 [103| 145.6 |1.30E-40| Trp_repressor 105
ITRR_ D| 16 |103] 145.6 |1.30E-40 :Frp_rfapre.ssor 105
ITRR_E | 16 |103| 145.6 1_:3(5‘]'5‘46 Trp_repréééo;__' 105
e
ITRR_G | 16 |103] 1456 1.30E-z|i( Tipzicpressof [ 105
8 SIERD AT
ITRR_H | 16 |103| 1456 1;30’13-4@ Trp_reb}sg_fsdr': 105
ITRR_J | 16 |103| 145.6 |1.30E-40 Tri;_repressor 105
ITRR_K | 16 [103| 145.6 |1.30E-40| Trp_repressor 105
IBDT_A| 4 | 53| 1232 [7.40E-34 Arc 52
IBDT_B| 4 |53 | 1232 |7.40E-34 Arc 53
IBDT_C| 4 |53 | 1232 |7.40E-34 Arc 50
IBDT_D| 4 | 53| 1232 [7.40E-34 Arc 50
IBDV_A| 4 |53 ] 1162 |9.80E-32 Arc 52
IBDV_B| 4 |53 | 116.2 [9.80E-32 Arc 53
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IBDV_C 53| 1162 [9.80E-32|  Arc 49
1BDV_D 53| 1162 [9.80E-32|  Arc 50
IPAR_A 53| 1232 [140E-34|  Arc 52
1PAR_B 53| 1232 [140E-34|  Arc 53
IPAR_C 53| 1232 [140E-34|  Arc 50
IPAR_D 53| 1232 [140E-34|  Arc 53
1BO1_A 42| 535 [7.20E-13| RHH_I 43
1B01_B 42| 535 [1.20E; 13| RHEH, 43
1EA4_A 42 535 720E13 R‘P}H_TIT l 43
Y
IEA4 B 0| 535 7.20E-1||C fﬁd?ﬁlﬁl_l M
Wl m .
1EA4_D 421 535 7‘20ET[$ E{Hﬁ_l 43
1EA4_E 4| 535 7.2OE:13- ‘Rﬁ'H_l 44
1EA4_F 42| 535 |7.20E-13| RHH_I 45
1EA4_G 42| 535 |7.20E-13| RHH_I 42
1EA4_H 42| 535 |7.20E-13| RHH_I 45
1EA4_] 42| 535 |7.20E-13| RHH_I 44
1EA4_K 42| 535 [7.20E-13| RHH_I 43
1EA4_L 42| 535 |7.20E-13| RHH_I 44
ICMA_A 104| 3052 |1.20E-88|  Met] 104
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ICMA_B| 1 |104| 3052 [1.20E-88]  Met 104
IMJM_A| 1 [104] 3017 [1.40E-87]  Med 104
IMJM_B| 1 [104| 3017 [140E-87]  Met 104
IMJP_A| 1 [104] 3017 [140E-87]  Met 104
IMJP.B| 1 |104] 3017 |140E-87]  Met 104
1KB2_A 82| 1666 |6.50E-47]  zf-C4 95
1KB2_B 82| 1666 |6.50E-47]  #f-C4 91
1KB4_A 82| 1666 |6.SOEA4mziCh 99
IKB4 B 82| 1666 Alb.50540 sz4 105
L¥ar. S
IKB6_A | 7 | 82| 1666 6.50E-z|i' =G 99
S S BB A
1KB6_B 82 | 1666 6;50'13-47 zfd4 20 106
ONLL_B 9| 1769 |5.008 S0psmzecd 103
1A6Y_A 84 | 1842 [3.20E-52|  #f-C4 85
1A6Y_B 84 | 1842 [3.20E-52|  zf-C4 88
IDSZ_A 80| 195 [1.90E-55|  zf-C4 80
1DSZ_B 81| 1902 [5.20E-54|  zf-C4 84
IHCQ A| 5 |80 | 1802 [520E51| 264 74
1HCQ B 80| 1802 [5.20E-51)  zf-C4 74
1BY4_A 81| 1902 [S20E-54|  #f-C4 82
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IBY4B| 6 |81 | 1902 [520E-54|  z6-C4 82 5
IBY4C| 6 |81| 1902 [520E-54|  z6-C4 82 4
IBY4D| 6 |81| 1902 [|520E-54  z£-C4 31 4
ILAT A| 5 80| 1686 [1.60E-47  zf-C4 75 5
ILAT B| 5 |80 | 1686 [1.60E-47|  f-C4 77 6
IRONA| 4 | 79| 1858 |L10E-52|  zf-C4 31 4
INLL A | 1 | 66| 1459 [120E-40]  2f-C4 66 4
IF2LG | 20 | 44| 359 |L4OEO7mabCl2 73 7
IF2LH | 20 | 44| 359 14OEO7 zf:lézﬁi 73 7
& Lo ,.a—:: r,:\!
IRL1 |20 | 44| 359 1.40E-(|5’ %ﬁd%HZ 73 7
: , JIL 11 W .
IFLT | 20 | 44| 359 1;.4017:7&7 ;fci;hz 73 7
K |20 44| 359 |1L40E07 bzt 73 7
IFLL | 20 |44 | 359 [140E-07| 2£-C2H2 73 7
1G2D.C| 5 [29| 325 [|1.50E-06] z£-C2H2 89 14
IG2DF| 5 |29| 325 |[1.50E06| z-C2H2 88 14
IG2FC| 5 | 29| 325 [150E-06| 2-C2H2 89 14
IG2FF| 5 |29] 325 [1.50E-06| 2f-C2H2 88 15
IMEY.C| 5 27| 454 [2.00B-10] 2£-C2H2 84 13
IMEY_F| 5 | 27| 454 [200E-10] z£-C2H2 84 13
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IMEY_G| 5 |27 454 2.00E-10| zf-C2H2 83 0
1P47_A | 4 |28 359 |1.40E-07| zf-C2H2 &7 12
1P47_ B | 4 |28 359 |1.40E-07| zf-C2H2 85 13

ILLM_C| 4 | 26 27.8  |4.00E-05| zf-C2H2 &7 8
ITF6_A | 13 | 37 23.7 0.0007 zf-C2H2 188 15
ITF6_D | 13 | 37 23.7 0.0007 zf-C2H2 188 15

2DRP_A | 11 | 34 21.3 0.0037 zf-C2H2 65 11

2DRP_D| 11 | 34 21.3 0.0037 e ZfT_CZH.Z 66 9
ID66_A | 9 |47 59.1 1_..5(511.-3*14; Zril_c'h.fS? l 64 4

LY P
1D66_B | 9 | 47 59.1° 1.50E- 1|4 :fﬁ _{C'!lus 64 3
X = 1

IHWT C| 8 |48 | 37.1 6;SOE-I(L$ Zn. i‘%.f 74 :

IHWT_D| 8 |48 37.1  |6.30E-08f ~Zn_clus 74 4

IHWT_ G| 8 |48 37.1 |6.30E-08| Zn_clus 74 7

IHWT_H| 8 |48 37.1 |6.30E-08| Zn_clus 74 4
2JHAP C| 8 |48 28.7 |2.20E-05| Zn_clus 76 4

2HAP D| 8 |48 28.7 |2.20E-05|  Zn_clus 76 6
1IQP9_A | 8 |48 37 6.70E-08|  Zn_clus 76 6
IQP9_ B | 8 |48 37 6.70E-08|  Zn_clus 75 5
IQPO_C| 8 |48 37 6.70E-08|  Zn_clus 74 4
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1QP9_D 48 37  |6.70E-08|  Zn_clus 75
1IPYI_A 44 1 56.6 |8.80E-14| Zn_clus 90
IPYL_B 44 1 56.6 |8.80E-14| Zn_clus 72
1ZME_C 39 59 |1.60E-14|  Zn_clus 70
1ZME_D 39 59 1.60E-14|  Zn_clus 70
Sy
O N
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