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中文摘要  

 

 本篇論文提出利用增強性方向梯度直方圖(Augmented Histograms of Oriented 

Gradients (AHOG))於移動式平台上進行多人偵測，在本篇研究中，我們利用人體

的幾何特徵來加強方向梯度直方圖(Histograms of Oriented Gradients (HOG))描述人

型外觀的能力，其中我們把直立人型中存在的對稱性，每個身體部位的相對距離，

以及人型在梯度特徵中的密度分佈加入 HOG 特徵中，來提升 HOG 特徵的描述能

力，包含了上述人型特徵的 HOG 在此篇研究稱為 AHOG，接著利用串接式

AdaBoost 演算法建立ㄧ個人型串接式分類器，用來對輸入影像中的可能區域進行

偵測，由此人型分類器所決定之區域，則被考慮為人型可能區域，除此之外，利

用串接式分類器的架構，可以減少偵測人型的時間；最後人型可能區域會再經由

人型輪廓驗證，來確信此區域確實有人型存在，並且減少因為由複雜背景所引發

的錯誤訊息，藉此降低錯誤偵測的發生。在此研究實驗中，於多種不同的實驗環

境中，都可以提供可靠的人型偵測準確率。 
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ABSTRACT 

 

 In this thesis we introduce an Augmented Histograms of Oriented Gradients 

(AHOG) feature for human detection from a non-static camera. This research tries to 

increase the discriminating power of original Histograms of Oriented Gradients (HOG) 

feature by adding human shape properties, such as contour distances, symmetry, 

gradient density, and shape approximation. The relations among AHOG features are 

characterized by the contour distances to the centroid of human. By observing on the 

biological structure of a human shape, we impose the symmetry property on every HOG 

feature and compute the similarity between feature itself and its symmetric pair so as to 

weigh HOG features. After that, the capability of describing human features is greatly 

improved when being compared with that of traditional one, especially when the 

moving humans are under consideration. Besides, we also augment the gradient density 

into AHOG to mitigate the influences caused by repetitive backgrounds. Moreover, we 

reject the false detections via an elliptical verifier learned when one tries to approximate 

a human shape. In the experiments, our proposed human detection method demonstrates 

highly reliable accuracy and provides the comparable performance to the state-of-the-art 

human detector on different databases. 
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Chapter 1 Introduction 

Nowadays, computers in various forms appear almost everywhere in our daily 

lives, and they perform tasks of repetitively computing a huge amount of data, more 

efficiently and more accurately than humans. It is natural to try to extend the computing 

capabilities to do more intelligent tasks such as interpretation of visual scene or speech, 

logical inference, and reasoning. Let’s take the human visual system as an example. 

There are thousands of objects ranging from man made classes, like cars, bicycles, 

buildings, windows, to natural ones, like dogs, cows, trees, leaves, mountains and 

humans. Any one of these has large intra-class variation. For example “car” is used to 

denote the vehicles which have four wheels. Many various sub-categories are included 

in this class like a sedan, roadster, jeep or trunk. However, different sizes, colors, or 

viewpoints, will not affect the human’s capability to recognize vehicles. In the same 

way we have ability to find people even though they are under widely varied conditions, 

such as with difficult clothes, accessories, poses, partial occlusions, levels of 

illumination or kinds of background clutter. Currently, the capability of computers is 

still far behind that of humans when performing such tasks. Thus, one objective of this 

research is to enable computers to interpret human objects in the images or videos. In 

fact, many applications will follow this sharp ability, for example, human computer 

interaction, autonomous robotics, automatic analysis of digital media content, and 

pedestrian warning system. 

In this chapter, we introduce the problem of object detection, especially in 

detecting people. We start in Sect. 1.1 with the motivation of human detection, and then 

in Sect. 1.2 we discuss objectives and some difficulties of this work. We also review 

some researches related to this problem and summarizes the contributions of them in 
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Sect 1.3. Finally, the outline of this thesis is given in Sect 1.4. 

1.1  Motivation 

Understanding human activity from a video is an active research in the field of 

computer vision in the last few years and it has applications in various fields, such as 

surveillance, intelligent user interface, and pedestrian warning system for intelligent 

vehicle. Before recognizing the human activity, we have to know where the humans are. 

Once the human is detected, the system can do further processing to analyze the human 

activity. For an example of pedestrian safety, the most serious problems that lead to 

traffic accidents are often due to carelessness of the driver on the pedestrian. Actually, 

during recent five years, there are about 14,000 people who were killed out of the 

13,300 fatal accidents in Taiwan, referring to Table 1.1. Thus, a pedestrian warning 

system based on an advanced human detection mechanism is needed to reduce the 

number of accidents caused by unawareness, since it constantly reminds the driver to 

take care of all the relevant traffic participants like pedestrians or motorbike riders. 

 

Year Number of Fatal Accidents Killed (Persons) Injured (Persons) 

2003 2,572 2,718 1,262 

2004 2,502 2,634 1,248 

2005 2,767 2,894 1,383 

2006 2,999 3,140 1,301 

2007 2,463 2,573 1,006 

Total 13,303 13,959 6,200 

Table 1.1 Traffic Accidents in Taiwan Area  

(Source: National Police Agency, Ministry of the Interior of R.O.C.) 
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1.2  Challenges of Human Detection 

The human category in object detection is probably one of the most difficult cases 

because it combines the difficulties of dealing with a moving camera, a broad range of 

deformable object appearances and poses, various types of human clothes, complex 

backgrounds, and highly varied illumination conditions in the outdoor environments. In 

the following, we discuss and analyze each difficulty of this problem. 

First, the general image formation suppresses 3D depth information of the objects. 

Different camera viewpoints slightly changes positions and orientations of the objects in 

the image. In other words, the object image could have large variations in varied scales. 

Thus, a sound object detector has to tackle the problems of changing viewpoints and 

scales. 

Second, unstable illumination and various object colors also affect decision made 

by the object detector. For example, objects appearing directly under sunlight or trees 

may affect the target region due to possible blending of tree shadows. A sound object 

detector must handle the color changes and provide an invariant method to 

accommodate a broad range of illumination changes. 

Third, natural objects usually have high intra-class variations, like mankind. 

Because human is an articulated object, its pose generally varies with time. Besides that, 

human appearances often change with clothes or accessories he or she wears. A reliable 

object detector must be independent of these variations. 

Fourth, complex background varies with time while the camera is non-stationary. 

For example, the videos are taken under various setting, such as in outdoor 

environments in cities or within indoor scenes. Moreover, there are many patterns which 

repetitively occurr in the background, like the trunks of trees, windows on the wall, and 
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streetlamps. These factors in the background may lead to many false detections. In order 

to alleviate the effects caused by these factors, more strict decision rules are needed, but 

these strict measures may conflict with the previous challenge. That is, because of the 

high intra-class variations, the system should loosen the decision rules to reduce the 

number of missed detection of targets. Therefore, a robust object detector must possess 

the capability of distinguishing targets from the clutter background. 

Fifth, partial occlusions cause further difficulties since parts of the object become 

invisible and the remaining parts contain insufficient information for subsequent 

processing. 

Fig. 1.1 shows some examples to indicate the difficulties of human detection. It 

includes a wide range of variation in scales, illumination, clothing, pose, appearance, 

and environment. The targets in the figures almost all have partial occlusions and some 

targets are even the dummies. 

Finally, detecting objects in the video has additional challenges, although the 

motion feature can provide extra information for helping object detection, the feature 

becomes useless in the static images. The first challenge is how to remove adverse 

imaging due to sudden jump of the camera and which usually occurs on the scraggy 

ground, like pits, drain covers, or tiles. Fig. 1.2 shows image examples taken subjected 

to unstable shaking of camera while the camera platform crosses the slowdown 

roadblocks. By observing the sequence of images, we know that the height of object 

with respect to image coordinate is very unstable in a short time. Another challenge is 

hard to compute the target’s motion vector very clearly when the velocity of camera is 

much faster than that of the target sometimes on when the target motion is unobvious 

and the target is far from the camera. The third challenge is that the problem caused by 

interlaced process while the camera captures the data. This interlaced process causes 



some adverse effects, such as an edge flicker, an interline flicker, and a line crawling, 

which especially occurs when object’s moving direction is different from that of the 

camera. Fig. 1.3 reveals some adverse effects on images due to the problem with 

interlaced process on objects’ boundary. These artifacts make the object’s appearance 

more uncertain as that the object becomes harder to be recognized. For these reasons, a 

reliable object detector has to use a robust feature set to cope with the above difficulties 

and to achieve reliable detection. 

 

 

   

   

 5



    

Fig. 1.1 Examples include targets with a variety of difficult factors. 

 

 

    

    

    

Fig. 1.2 Camera moves up and down while crossing the slowdown roadblocks. 
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Fig. 1.3 Examples of interlaced problem 
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1.3  Related Work 

In recent years, these have been widespread interests in studying problems with 

human detection, and many researches results have been repeated. So far, the proposed 

various methods can be classified into motion-based type and appearance-based type 

according to the way the targets are represented. 

The motion-based approach observes the human’s motion in human movement 

through video sequences. The most direct way is to learn the typical motion patterns of 

human movement. For example, Viola et al. [1] compute the different directions 

between successive images as human motion patterns, which and then learned by 

AdaBoost algorithm to obtain a set of decision rules for detecting people. Little and 

Boyd [2] take the optical flow of two successive images as feature points of the human’s 

motion and analyze the motion periodicity to confirm the existence of moving human. 

In [3], Heisele and Woehler extract the corresponding regions of two successive images 

through region tracking technique and use the Time-Delay Neural Network to detect the 

changing frequency of the width of the observing region to achieve human detection. 

Through observation of image sequences, it is known that the gait of human’s walking 

is a distinct feature as suggested by Wang et al.[4]. Therefore, some researches put this 

periodic motion feature – gait – in use. In Cunado et al.[5], there are detailed 

descriptions and definitions about human gaits. They propose a pendulum model to 

describe the process of human’s walking. Curio et al. [6] combine texture and contour 

information extracted from video sequences along with motion patterns of humans’ 

gaits. Niyogi and Adelson [7] compute the differences of human silhouette in XYT-axis 

frame to obtain the gait pattern for gait detection. Based on the results in [8], Yang Ran 

et al. [9, 10] proposed a Twin-Pendulum Model to represent the gait of walking people. 
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They use image processing techniques to find the maximal and minimal angles between 

two limbs as the periodical motion features. 

On the other hand, the appearance-based approach uses a set of appearance 

features of static human image to detect the existence of the target. This category uses 

low-level features to represent the possible human looks and apply standard pattern 

recognition process to find the corresponding appearance for detecting humans. Broggi 

et al. [11] use vertical symmetry properties of human shape to detect the position and 

the size of a human. Hayfron et al. [12] detect the humans by analyzing the symmetry 

information in spatio-temporal domain. Wu and Yu [13] proposed a two-layer statistical 

field model combining the Boltzman model and Markov model to describe the features 

of the non-rigid human shape. Their approach still works even when some parts of the 

human body are self occluded. Besides, the two-layer statistical field model flexibly 

describes the observations from the image. Another solution of appearance-based 

approach is based on template matching, which constructs the human templates from 

different viewing angles and poses and detects the humans by comparing the appearance 

feature with the constructed templates. For representing human appearance, Gavrila et 

al. [14, 15] and Liu et al. [16] characterize the human shape by silhouette or edge image 

and then transfer them into distance transformed images. But the above approaches fail 

to detect partially occluded humans due to the fact that they only take the global 

features – entire human shape. Thus, many researches detect humans via detection of 

each part of the human body and analysis of the relations among them to reconstruct the 

human shape. An example is by Mohan et al. [17], where they use an Adaptive 

Combination of Classifiers (ACC) to detect all kinds of body parts and integrate all 

part-classifiers to classify the humans. For more examples, Ramanan et al. [18] propose 

a pose model based on the human body parts, and they use a set of human poses to lock 
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the human candidates who are then tracked through detecting of the model generated 

from each image. Leibe et al. [19] propose an Implicit Shape Model (ISM) to model the 

relations between body parts and body centroid, and then apply a voting process to 

determine the human’s position. In order to tackle the problem with translation, scale, 

and orientation, many low-level features are proposed as well. For example, Oren et al. 

[20] propose Haar vertical and horizontal wavelets to compute the intensity variations of 

the target’s appearance. The results by Wu and Nevatia [21] and by Sabzmeydani and 

Mori [22] use the edgelets and shapelets as the local features to describe the human 

shape. The edgelet feature is constructed by comparing the similarity between images 

and predefined edgelet templates, which differ in number of edge, orientations, single or 

pair. Similar to edgelet feature, shapelet feature is a set of edgelet feature. In another 

word, shapelet feature is a piece of shape. In addition, the work by N. Dalal et al.[23] is 

the first one which uses the Histograms of Oriented Gradients (HOG) to represent the 

features of people and becomes the performance benchmark in the field of human 

detection. Based on [23], Zhu et al.[24] use variable feature types to describe humans 

more flexibly and also improve the processing time by changing single complex 

classifier into a cascaded set of simple classifiers. Wang et al. [25] rotate each HOG 

feature according to its orientation to achieve the invariance of geometrical translation 

and rotation. 

Recently, many automobile manufacturers including Toyota, DaimlerChrysler, 

BMW, Volvo, Honda, etc…have spent many efforts on transferring the technology of 

human detection to develop a pedestrian warning system on an intelligent vehicle. For 

example, the Mobileye [26] has developed maturity products that are equipped on 

advanced vehicles, but the prices of the entire system are still expensive because the 

system includes various types of sensors, like radar, laser, and camera. The related 
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information and materials of their work can be found on their respective web sites. 

 

1.4  Objective 

This thesis research aims at the problem of human detection in visual images and 

videos. In particular, we address the topic as how to constructing a human detector from 

a view point of computer vision, where the detector is used to search through the input 

images or videos for humans and their locations. For being more precise, we can see a 

human detector as a combination of two parts: a feature extraction algorithm which 

encodes image regions or parts of videos as feature vector, and a detector which uses the 

computed feature vector to determine whether the object is human or non-human. We 

give the formal problem definition in the Section 2.1. 

 

1.5  Organization 

This chapter introduces a brief background of object detection in computer vision, 

gives the reason why we need to detect humans, and discusses what difficulties in 

human detection. We also introduce the state-of-the-art results in the field and give the 

summaries of these pieces of work. The remaining chapters are organized as follows: 

Chapter 2 describes the problem of human detection and some preliminary 

knowledge about machine learning. In final section, we give the overview of our 

approach. 

Chapter 3 describes the computation of Augmented Histograms of Oriented 

Gradients (AHOG) feature vector in detail. It discusses the human shape properties and 

also presents the steps of training and detection. 

Chapter 4 presents the approximation of human candidates detected from 
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classifier mentioned in Chapter 3. It describes the details of calculating the features of a 

human shape, such as connected components and moments. 

Chapter 5 gives the details of experiment and also introduces the benchmark 

human databases. The performance and the discussion are presented in the final section. 

Chapter 6 concludes the salient features of our approach and provides a discussion 

of the advantages and the limitations of the work. It also suggests some directions for 

future work in this research. 



Chapter 2 Preliminaries 

This chapter states with the mathematical definition of human detection problem, 

and them introduces preliminary knowledge about some relevant learning algorithms. 

Specially, support Vector Machine (SVM) and AdaBoost algorithm are used in the 

training process in this research work and their details are given in sections 2.2 and 2.3. 

In section 2.4, we provide an approach overview of the proposed approach and describe 

the relations between different functions. Finally, the contributions of this thesis are 

summarized in section 2.5. 

 

2.1  Problem Definition 

The problem of human detection using a monocular camera can be described as 

follows. Given the currently observed image frame, the objective is to estimate a 

collection of parameters that encode the positions of exactly N humans in each image. 

Here, the location of each human is encoded by a set of ellipse parameters, namely, (xc, 

yc) being centroid of ellipse, θ being its orientation, and a and b are lengths of the major 

and minor axes, respectively. In order to determine the parameters {xc, yc, θ, a, b}, a 

detecting window W is first used to scan the entire image and is then further classified 

as human or non-human window by a classifier H(.), that is , 

. ( ) {human, non human}H W ∈ −

We adopt the AdaBoost algorithm [27] to construct the classifier H(.) by selecting a 

set of K discriminative features {fi | i=1,…,K} and their associated weak classifiers {hi | 

i=1,…,K}. Each weak classifier is of the form:  
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i 1 if ( )
( )

0 otherwise
i i i

i i

p f p
h f

ϕ τ<⎧
= ⎨
⎩

 (2.1) 



where (.)ϕ  is a mapping function that maps a feature to a real value, 

( ,i )τ ∈ −∞ ∞  is the classification threshold, and pi=±1 indicates the direction of 

inequality sign. Then, the classifier H(.) can be further formulated as follows.  

 1 1

1human ( )
( ) 2

non human otherwise

K K

i i i i
i i

h f c
H W

α α
= =

⎧
≥ +⎪= ⎨

⎪ −⎩

∑ ∑  (2.2) 

where αi is the selected weight of the weak classifier hi, which is inversly proportional 

to the error rate computed by AdaBoost algorithm, and c is a constant for adjusting the 

thresholds to meet the need of the desired detecting criteria. 

The following section gives the formal definition and mathematical inference of 

the Support Vector Machine (SVM) theory and also describes how to use the SVM to 

construct the weak classifiers h based on the given feature set. Following brief review of 

SVM, we introduce the main idea of the AdaBoost algorithm in the further section, 

which specifically goes over the objective and the theory of the AdaBoost and then 

presents the detail about the steps of selecting discriminative weak classifiers while 

adopting the AdaBoost algorithm. Besides, for saving the detecting time, how we apply 

the cascaded AdaBoost algorithm is also described here. 

 

2.2  Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning algorithm proposed by 

Vapnik [28] based on statistical learning theory, and it is used to perform data 

classification or regression. SVM has many particular advantages in solving the pattern 

recognition problems with small number of samples, or being non-linear and 

high-dimensional, and it also has been used in many practical applications, such as face 

recognition, 3D object recognition, text categorization, and image classification. 
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2.2.1 Objective of SVM 

The idea of SVM is that given two sets of classified data, SVM first acquires a 

classification model after the training process, and then uses the classification model 

trained by the given data to predict the class to which the non-classified data belong. In 

simple terms, the objective of SVM is to find a hyperplane to separate data of two sets 

(i.e. black dots and white dots) in the feature space, referring to Fig. 2.1. Notice that the 

distance between two parallel solid lines, also called “margin”, in Fig. 2.1 (a) is shorter 

than that in Fig. 2.1 (b), that is, the margin in Fig. 2.1 (b) is greater than that in Fig. 2.1 

(a). Clearly, the margin being greater is better because our goal is to find a hyperplane to 

separate the two classes clearly, and hence the ideal hyperplane should be the one in Fig. 

2.1 (b) in this example. The following context provides the formal definition of the 

problem. 

 

 

Fig. 2.1 Comparison of two hyperplanes 
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Fig. 2.2 Concept of SVM 

 

2.2.2 Preliminary Knowledge of SVM 

Since SVM is a supervised learning approach, we need to label each training 

datum before training process. We formulate the problem as follows: given the training 

data set:{( , ) | 1, 2,..., }i ix y i n= , , { 1, 1d
i ix y }∈ ∈ + −R , xi is the feature vector which 

represents the datum i and yi indicates the class label of the datum. The goal is to find a 

line ( ) Tf x w x= + b to separate all data points with label -1 into the region of ( ) 0f x <  

and, on the contrary, all data points with label +1 into the opposite region, namely, 

region of . Therefore, the sign of f(x) determines which class the training data 

belong to. This line is called separating hyperplane, and the separating hyperplane with 

the maximum margin is the optimal separating hyperplane. The concept of SVM is 

shown in 

( ) 0f x >

Fig. 2.2, where the support hyperplane (blue line) is the hyperplane which is 

parallel to separating hyperplane and is closest to the data points. The support 
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hyperplanes are formulated as follows: 

 
T

T

w x b
w x b

δ

δ

+ =

+ = −
 (2.3) 

where w is the normal vector of the hyperplane and b is the bias which is the shift 

distance from the origin. The above equations leads to a over-parameterized problem, 

that is, supposing we multiply x, b,δ by some arbitrary constant, the equations remain 

essentially identical, which means that there are infinite sets of parameters x, b,δ that 

can satisfy the equations. In order to eliminate the uncertainty and simplify the problem, 

we multiply a constant to scale the parameters and thus the equations can be rewritten 

as: 

 1
1

T

T

w x b
w x b

+ =

+ = −
 (2.4) 

Finding the optimal separating hyperplane is equivalent to finding the support 

hyperplanes with the maximum margin. Thus, we have to maximize the margin = 2/||w||, 

as to minimize ||w||/2. By recalling the property of the separating hyperplane, can 

reformulate eq. (2.4) as follows: 

 
1  , if 1

1  , if 1

T
i

T
i i

w x b y

w x b y
i+ ≤ − ∀ = −

+ ≥ + ∀ = +
 (2.5) 

 ( ) 1T
i iy w x b 0+ − ≥  (2.6) 

To sum up from the discussions given above, we obtain the objective function: 

minimize ||w||/2 subjected to ( ) 1 0,  T
i iy w x b i+ − ≥ ∀ , which comprises the primal 

problem of SVM. Because the objective function is a quadratic function, which can be 

solved by Quadratic Programming, the Lagrange Multiplier Method is used to solve the 

quadratic function with constraints. Specifically, the objective function is transformed to 

( , , )L w b α : 
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1( , , ) || || ( ) 1   where 0
2

n
T

i i i i
i

L w b w y w x bα α
=

⎡ ⎤= − + −⎣ ⎦∑ α ≥  (2.7) 

where iα  is the Lagrange multiplier. To minimize the function L, one applies partial 

differentiation on L w.r.t. w and b, namely, 

 1

1

0

0

n n

i i i i i i
i

n

i i
i

L w y x w y
w
L y
b

α α

α

=

=

∂
= − = ⇒ =

∂
∂

= =
∂

∑ ∑

∑
1i

x
=  (2.8) 

Therefore, the optimal separating hyperplane: ( ) Tf x w x b= +  can be represented as: 

 
1

( )
n

T
i i i

i

Tf x w x b y x x bα
=

= + = +∑  (2.9) 

Now if 0iα ≥ , datum i is on the support hyperplane and it is also called support 

vector. After obtaining the support vectors, we use them to determine the class to which 

the datum x belong by following the classification function below: 

 
1

( ) sgn
n

T
i i i

i
f x y xα

=

x b⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑  (2.10) 

 

2.3  AdaBoost Algorithm 

The AdaBoost algorithm, first introduced by Freund and Schapire [29], constructs 

a strong classifier which contains a set of weak classifiers, each of which only needs to 

have classification rate better than random guess (i.e. error rate < 50%). In computer 

vision, AdaBoost algorithm is commonly used to find a reliable object detector because 

it has many advantages: fast and easy to program, only one parameter to tune (the 

number of iteration), no need to acquire prior knowledge about the weak classifier, and 

theoretical assurance of obtaining reliable weak hypothesis with sufficient data. Since 

no prior knowledge is required, the weak classifier can be flexibly combined with any 
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means for finding weak hypotheses. Thus, many researches have proposed to fuse 

various types of feature under the AdaBoost framework and several applications have 

been accomplished under this framework, such as text categorization, natural language 

processing, general object detection, and face detection seen nowadays on many 

commercial digital cameras. 

 

2.3.1 Objective of AdaBoost Algorithm 

The objective of AdaBoost algorithm is to find a strong classifier consisting of a 

set of weak classifiers chosen from a given training data set containing positive and 

negative data. For each iteration of AdaBoost algorithm, the best weak classifier is 

chosen according to the error rate that relates to the weight of training data. The main 

idea of the algorithm is to focus on the incorrectly classified data, called hard examples, 

by increasing the weight of them to force the algorithm to concentrate on these hard 

examples. Finally, the selected weak classifiers are combined after their weights are 

summarized, each is computed by its corresponding error rate w.r.t. training data, so as 

to construct the final strong classifier. 

 

2.3.2 Preliminary Knowledge of AdaBoost Algorithm 

AdaBoost is also a supervised learning algorithm for a given train set: {(xi, yi) | 

i=1,…,m}, where , { | instance space}ix X∈ { 1, 1}iy Y∈ = − + . The algorithm generates 

a weak classifier for each iteration, 1,...,t T= , and also maintains a distribution of 

weights over the training set. The distributed weight on the training datum i in iteration t 

is denoted as . At the beginning, we initialize all weights of the training data by 

assigning them to an identical value and after each iteration, the weights of incorrectly 

( )tD i
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1}

classified data are increased to make the algorithm choose the best weak classifier 

according to the weights of the training data at the current iteration. Based on increased 

of the weights of the hard examples, the algorithm can still maintain the high accuracy 

with low false positives. 

The job of a weak classifier is to determine the label of the training datum X with 

certain weights. Thus a mapping function that maps a set of real values to real number is 

. The criterion for selecting a weak classifier is dependent on its error 

on the training data. The error 

: { 1,th X → − +

tε of weak classifier t is computed by the following 

equation and the AdaBoost algorithm pseudocode is given in Fig. 2.3

 [ ]~
: ( )
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t i i

t i D t i i t
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Pr h x y D iε
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= ≠ = ∑  (2.11) 
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where  is a normalization factor (chosen so that  will be a distribution)
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Fig. 2.3 Pseudocode of AdaBoost algorithm 

 

2.3.3 Preliminary Knowledge of Cascaded AdaBoost Algorithm 

In order to reduce the classification time cost by the strong classifier learned from 

the AdaBoost algorithm, we adopt the cascaded AdaBoost algorithm proposed by Viola 

and Jones [27]. The cascaded AdaBoost algorithm is used for constructing a cascaded 

weak classifiers which achieves increased classification performance and extremely 

decreases the computation time. The main idea of the cascaded classifier is to use the 

simpler classifiers to reject the majority of non-targets before more complex classifiers 
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are invoked in order to achieve low false positive rates. Besides that, the detection rate 

is maintained as well by means of adjusting the threshold of a weak classifier to achieve 

a false negative rate that is close to zero. The cascaded classifier can be seen as a 

general decision tree, as shown in Fig. 2.4. A positive result passes all stages of the 

cascaded classifier and on the contrary negative results are rejected at some stage 

immediately. The structure of the cascaded classifier reflects that a large number of 

negative examples are eliminated with very little processing in the previous stages and 

additional negative examples are eliminated by the subsequent stages. After several 

stages, the number of examples has been reduced drastically and hence the detecting 

time has been greatly improved. Different from the AdaBoost algorithm, the training 

data will change with different stage except at the first iteration. Because of the decision 

tree-like structure, subsequent classifiers are trained from those training examples which 

pass all stages up to the current one. Of course, in the further classifiers will face a more 

difficult task than the previous ones. 

 

Stage
1

Stage
2

Stage
n

All
examples

Acceptance
examples

Rejection examples
(Negative)

(Positive)

 

Fig. 2.4 Cascaded classifier 

 

To obtain efficient cascade to meet false positive rate F and detection rate D, the 

optimal way is to minimize the expected number of features evaluated. Since this 

 22



 23

optimization is extremely difficult, in practice, a simple framework is to choose the 

maximum acceptable false positive rate and the minimum acceptable detection rate per 

stage. Each stage is trained by adding weak classifiers until the required detection rate 

and false positive rates are met. These rates are measured by testing the classifier on a 

validation set. The final cascaded classifier stops adding stages whenever the overall 

detection rate and the false positive rate meet the requirement. The detailed pseudocode 

of the cascaded AdaBoost algorithm is given in Fig. 2.5. 
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Fig. 2.5 Pseudocode of cascaded AdaBoost algorithm 
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2.4  Approach Overview 

There are two fundamental steps for detecting a human target in our approach. In 

the beginning, we use grid search over the entire image employing detecting windows 

with varied scales, and the window’s scale in fact varies with the distance between the 

camera and the objects, which is also called depth. We represent a detecting window by 

a set of Augmented Histograms of Oriented Gradients (AHOG) features and generate 

the AHOG feature vectors as the inputs to the cascaded classifier learned by the 

cascaded AdaBoost algorithm. The detecting windows passing all stages are considered 

as the human candidates. The human candidates generated from the classifier need 

further validation that is accomplished via approximation of the connected components 

of the human candidates. The moments of the connected component are used to find a 

fitting ellipse, which is parameterized by size and the orientation. Finally, an ellipse 

verifier trained by SVM with the given these ellipse parameters is adopted to reject 

some false candidates for improving the false positive rates. Fig. 2.6 gives the overview 

of our approach. 

 

2.5  Summary of Contributions 

The contributions of this thesis are summarized in the following. The first is the 

symmetry property of human shape is taken as the weight for each HOG feature. Many 

noises caused by the complex background may influence measurement of the symmetry 

property, and thus we add the gradient density to alleviate the noise effects. Besides that, 

we also transfer the distance between centroid and contour into HOG features to model 

the geometrical relation between features and centroid. After modeling the relations 

among features and centroid, the more reliable representing power of a target is 



provided. Moreover, the further human shape approximation by moments of candidate’s 

connected components increases the detection performance. The difference from the 

related work is to integrate these human shape properties into HOG features for 

increasing accuracy while detecting humans. The contributions of our approach are 

combining human shape properties and HOG to form Augmented HOG features which 

one then used to represent humans and to verify the candidates by an elliptical verifier 

to reduce false positives. 

 

 

Fig. 2.6 Approach overview 

 26



 27

Chapter 3 Human Candidate Detection 

This chapter presents the details of generating human candidates. It includes the 

proposed Augmented Histogram of Oriented Gradient (AHOG) feature set, which 

describes the feature types, human shape properties, and how to construct an AHOG 

feature vector. In the next, it gives the description of the training process and analyzes 

the learned discriminative AHOG features used to illustrate a detecting window. Finally, 

it presents the method of generating a varied size detecting window for classifying the 

detected object into a human candidate or a non-human one. 

 

3.1  Augmented Histograms of Oriented Gradients 

In this section, we describe two major types of the AHOG encoding method and 

present the key parameters involved in each type. Section 3.1.1 defines the AHOG 

feature type, and section 3.1.2 describes the gradient computation. The human shape 

properties are presented in sections 3.1.3~3.1.5, which includes the symmetry, gradient 

density, and contour distance. Geometrical rotation invariance and feature vector 

construction are given at the end of this section. The overview of constructing 

Augmented Histograms of Oriented Gradients is shown in Fig. 3.1, which gives the 

flow path between each section. 

 



 

Fig. 3.1 Overview of AHOG construction 

 

3.1.1 Feature Type 

There are two types of AHOG feature used in this work, namely, Rectangular 

AHOG (R-AHOG) and Circular AHOG (C-AHOG). Note that R-AHOG feature block 

uses rectangular grids of cell whereas C-AHOG feature block is divided into grids of 

cell of log-polar form. The AHOG feature structure is shown in Fig. 3.2. The left one is 

R-AHOG composed of four grids of cell which divide a feature block evenly. On the 

contrary, C-AHOG is shown on the right hand side and it is formed with a central cell 

and three semi-tire shape cells. 

R-AHOGs are similar to the SIFT feature as proposed by Lowe [30], but they are 

actually quite different. SIFT features are computed at a sparse set of scale-invariant key 
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points with a Gaussian weighted mask, whereas R-AHOGs are calculated in grids at a 

certain scale without calling for a Gaussian weighted mask. Moreover, the cell position 

of the block encodes spatial position relative to the detecting window in the final feature 

vector. SIFTs are optimized for sparse wide baseline matching, whereas R-AHOGs for 

dense robust coding of spatial form. 

Besides, C-AHOGs are used to encode the shape context into feature vector and 

allow fine coding of nearby structure to be combined with coarser coding of broader 

context. The C-AHOG structure has four parameters to denote a layout: center’s 

position of the block, radius of outer circle, radius of central cell, and expansion angles 

for subsequent radii. 

 

 

Fig. 3.2 AHOG feature structure 

 

Besides different types of dividing a block in different forms of cells, we use 

variable size features for feature selection. Because using multiple scales of blocks and 
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cells improves capability of describing an object reported in Dalal’s approach [23], for a 

64 × 128 detecting window, we allow the size of all blocks vary from 12 × 12 to 64 × 

128. The aspect ratio between block width and block height can be one of the following 

choices, ( 1 : 1 ), ( 2 : 1 ), and ( 1 : 2 ), for each block. Fig. 3.3 shows the AHOG feature 

blocks with different aspect ratios, sizes, and the cell order (ci: ith. cell). Some aspect 

ratios may correspond to some meaningful ratios of human body, and Fig. 3.4(a) gives 

some examples, say, ( 1 : 1 ) and ( 1 : 2 ), which correspond to human’s head and 

shoulder and entire human body, respectively. Three interval sizes, 4, 6, 8 pixels of 

overlapped block locations are used to form a dense grid of overlapping blocks depends 

on the block size. It means that if the block size is large, the interval should be small in 

order to well represent the detecting window, and Fig. 3.4(b) illustrates such idea. 

 

 

Fig. 3.3 AHOG feature type 
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Fig. 3.4 Illustration of aspect ratio and block location interval 

 

3.1.2 Gradient Computation 

This section describes gradient computation for each pixel. It is accomplished by 

applying discrete derivative kernels in two directions, horizontal kernel Gh=[-1, 0, 1] 

and vertical kernel Gv= [-1, 0 ,1]T, to obtain the horizontal difference dh(x, y) and 

vertical difference dv(x, y) at location (x, y). The illustration of gradient computation is 

given in Fig. 3.5. 

 
( , ) ( , )
( , ) ( , )

h

v v

d x y f x y G
d x y f x y G

h= ∗
= ∗

 (3.1) 

 

Fig. 3.5 Illustration of gradient at (x, y) 
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where ﹡denotes convolution operator. Moreover, the gradient magnitude mag(x, y) is 

calculated by square root of squares sum of horizontal difference and vertical difference, 

and the orientation of gradient is computed by the following equations: 

 2( , ) ( , ) ( , )h vmag x y d x y d x y= + 2  (3.2) 

 1 ( , )( , ) tan ( )
( , )

v

h

d x yx y
d x y

θ −=  (3.3) 

 

Fig. 3.6 Symmetry exists in humans. 

 

 

Fig. 3.7 Comparison of symmetric weighted and Gaussian weighted (intensity of 

block means the weighted values). (a) Feature block. (b) Symmetry weight. (c) 

Gaussian weight. 
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3.1.3 Symmetry 

Many researches have shown that representing the human local feature by HOGs is 

effective in human detection, but it lacks for encoding the beneficial geometric 

properties, such as symmetry and the relative positions between each part and the 

human body. We discover that the highly symmetric property exists in human shape no 

matter whether the human is walking or is standing. Take a walking person for an 

example; the swinging limbs are at about the same height and are symmetric with 

respect to human center (other examples are shown in Fig. 3.6 ).  

Here, the idea behind our work is to focus on the informative parts of human body 

rather than the center of each block, and Fig. 3.7 gives an example on the lateral view of 

a walking human. As can be seen, if the Gaussian weighted window is applied, the 

feature will only focus on the central part which corresponds to the useless ground plane. 

Hence, we take the similarity values of two feature blocks which have symmetric 

coordinates with respect to the vertical symmetry axis as the new weights used in 

multiplying the gradient magnitude while constructing the orientation histograms. We 

assume the symmetry axis is in the vertical center of detecting window. The similarity 

values are obtained by computing the distance of each pixel of two blocks. In order to 

be insensitive to slight shift and rotation affection, we not merely think about the 

similarity of single pixel, but also consider the pixels in the neighborhood instead. The 

similarity computation flow is shown in Fig. 3.8, and its value similar(x, y) of location 

(x, y) is measured by the Bhattacharyya distance as follows: 

 ( , ) '( , ) ( , )similar x y f x y m x y= ×  (3.4) 

where f ’(x, y) is the flipped block which flips all pixels over in the original block and 

m(x, y) is the mirror block at symmetric coordinates. The symmetry weighted value 
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SymWeight(x, y) of location (x, y) is computed by the following equations: 

 ( ', ') ( , )

( ', ')
( , )

#( ( , ))
kx y N x y

k

similar x y
SymWeight x y

N x y
∈=
∑

 (3.5) 

 0( , ) {( ', ') | '  and ' }
2 2 2k
k k kN x y x y Z x x x y y y+

2
k

= ∈ − ≤ ≤ + − ≤ ≤ +  (3.6) 

where Nk(x, y) means the set of pixels in the neighborhood of (x, y), k is the size of 

neighbors,  is the set of non-negative integers, and #(N0
+Z k(x, y)) is the number of 

pixels in the neighborhood. Thus, we express the equation of symmetry weighted value 

in another way as: 

 ( ', ') ( , )
( ', ')

( , )
4 2

2

kx y N x y
similar x y

SymWeight x y
k

∈=
⎢ ⎥ +⎢ ⎥⎣ ⎦

∑
 (3.7) 

The visualization of symmetry weighted values of a human can be set in two views 

as shown in Fig. 3.9, which are generated by overlapped grids of smallest cell. The 

enhanced symmetry part of gradients is given in Fig. 3.10. As can been seen, the 

discriminative part – shank – is clearly revealed after multiplying the gradients by 

symmetry weighted window. 
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Fig. 3.8 Flow of computing symmetry weighted window. 

 

Fig. 3.9 The symmetry weighted values in longitudinal and lateral views. 
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Fig. 3.10 Weighted gradient image 

 

3.1.4 Gradient Density 

In practice, there are many repetitive patterns that may cause symmetry 

computation to fail in the usual scenario. Fig. 3.11 gives some samples of repetitive 

patterns which occur in the usual scene and these possibly affect the decision of 

determining the object’s class. To alleviate this affection, combining symmetry and 

gradient density makes it possible to concentrate on the objects with certain intensity. 

Consequently, the gradient density of a block is given by the number of gradient 

magnitude which is greater than a threshold and then divided by the number of non-zero 

gradient magnitude. The density value densityblock is given in equation (3.8). Thus, 
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combining symmetry and gradient density eases off the influence caused by repetitive 

patterns in the background. ( #(.) denotes the number of elements ) 

 
{ }( )

{ }( )
# ( , ) | ( , )

# ( , ) | ( , ) 0block

x y block mag x y threshold
density

x y block mag x y
∈ >

=
∈ ≠

 (3.8) 

 

 

Fig. 3.11 Repetitive patterns 

 

3.1.5 Contour Distance 

In order to represent the biologic structural relations among AHOG features, we take 

the distance between AHOG and human centroid into consideration. Moreover, some 

human parts might not be symmetric because human could have strange poses, and thus, 

the symmetric weights of non-symmetric parts will be insignificant, namely, the 

non-symmetric parts will not be considered afterward. But in practice, non-symmetric 

parts may have some informative relations between them and human body. 
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For the purposes of representing the biological structure relations among AHOG 

features and keeping the information of non-symmetric parts, we encode the contour 

distance into AHOG by defining the contour distances as weighted distances between a 

cell and the centroid of a feature block. Different from [24, 25], we describe the 

structural relations among AHOGs by adding contour distance into feature vector. On 

the other hand, our approach is an implicit way of part-based detection under ISM [19] 

framework if we use AHOGs to detect human body parts separately. Fig. 3.12 shows the 

contour distance of a block consists of four distances: cell ci, i=1,…,4, and we calculate 

the cell distances Disti by the following equations: 

 2( , ) ( ) ( )Edist x y x x y y= − + − 2  (3.9) 

 ( , )

( , ) ( , )
ix y c

i

mag x y Edist x y
Dist

L
∀ ∈

×
=
∑

 (3.10) 

note that Edist(x, y) means the Euclidean distance between (x, y) and centroid ( , )x y . 

Each distance is multiplied by the pixel gradient magnitude, mag(x, y), and is 

normalized to 0~1 by a constant L. 

 

 

Fig. 3.12 Contour distance 
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3.1.6 Dominant Orientation Rotation 

Because the highly intra-class variations in the human category, such as swinging 

limbs at different positions that may confuse human detector (see Fig. 3.13). In order to 

provide invariance to some affection of the rotational and geometrical variations of a 

human body, we rotate blocks to its dominant orientation before constructing the 

orientation histograms. Moreover, the human detector with dominant orientation 

rotation can use less number of features to represent the same body part even at 

different positions. 

The dominant orientation is determined by the orientation histograms of the feature 

block. The orientation histograms are constructed from accumulating the weighted 

gradients (as shown in Fig. 3.10) according to gradient orientation θ. The illustration of 

constructing orientation histograms is given in Fig. 3.14. The dominant orientation is 

the angle of the maximum accumulated magnitude (red bar in the figure). 

 

 

Fig. 3.13 Limb variation 
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Fig. 3.14 Orientation histograms 

 

After acquiring the dominant orientation, we rotate the entire block to align the 

dominant angle with the horizontal, that is, 0°. The histograms of rotated block are 

shown in Fig. 3.15. From the illustration in Fig. 3.15, two non-rotated histograms of left 

and right legs are dissimilarity, but after rotating them to their dominant angles, two 

rotated histograms become more similar. Thus, applying dominant orientation rotation 

to each feature block not only guarantees invariance to different positions of the body 

parts but also use the same feature to represent the same body part. 
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Fig. 3.15 Flow of dominant orientation rotation 

 

3.1.7 Orientation Histogram Construction 

In this section, we describe the way of constructing the AHOG feature vector, 

which includes gradient density, contour distance, and orientation histograms. First, we 

calculate four orientation histograms for each cell in a feature block. For time saving, 

we quantize the orientation into 9 ranges, that is, 40° a range (see Fig. 3.16). Therefore, 

there are four 9 dimensional orientation histograms within a feature block. The 

visualization of the four 9-D histograms and entire detecting window with overlapped 

9-D histograms are shown in Fig. 3.17. We concatenate the gradient density value, four 

contour distances, four 9-D orientation histograms to form the final AHOG feature 

vector for further training and classification. 
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Fig. 3.16 Quantized orientation histograms 

 

 

Fig. 3.17 Visualization of orientation histograms 
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3.2  Training 

Human candidate detection consists of a training process and a detecting process. 

Here, we discuss the human candidate training process based on the AHOG features. We 

construct a cascaded human classifier as mentioned in subsection 2.3.3 with some 

modifications. Each feature block is described by a 41-D feature vector, which is the 



input vector of SVM as mentioned in subsection 2.2 We use linear SVM provided by 

libSVM [31] to find the separating hyperplane of weak classifier used in cascaded 

AdaBoost algorithm. There are more than 14,000 possible AHOG blocks to be 

evaluated in each stage, but it is very time consuming. So we adopt a sampling approach 

as suggested by Scholkopf and Smola [32]. They showed that choosing from a small set 

(5%) of all estimations can obtain a feasible estimation which achieves 95% 

performance of the best solution. Thus, we select the best weak classifier from 5% of all 

kinds of weak classifiers, that is, about 700 weak classifiers trained by linear SVM in 

each iteration. 

 

3.3  Detection 

Human candidates are those detecting windows which pass all stages of the 

cascaded human classifier as described above. Before classifying a detecting window, 

we should generate detecting windows with reasonable sizes. The human candidates are 

determined for further validating step via the candidate verifier. In the following 

sections, are given the way of classifying the generated potential detecting windows. 

 

3.3.1 Human Potential Location 

In this section, we describe how to generate detecting windows with different sizes 

varied with depths. We adopt the estimation proposed by Hoiem et al. [33] with some 

modification, which tolerate little errors due to non-flat plane or different human heights. 

The height of the detecting window hd relative to depth is given by: 

 
'

'

( )d vanish target
d

camera

p p h
h

h
− ×

=  (3.11) 
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where pd is the bottom position of the detecting window, pvanish is the position of the 



vanishing line,  and  are the real heights of human and camera, 

respectively, On our case,  and  are estimated to be 1.7 meters and 1.2 

meters, respectively. 

'
targeth '

camerah

'
targeth '

camerah

In order to tolerate the slightly changing size of the target, the accepted potential 

size of the detecting window can be slightly larger or smaller than the computed size. 

All potential detecting windows are shown in Fig. 3.18. 

 

 

Fig. 3.18 Potential detecting windows 

 

3.3.2 Classification 

The classification step uses the cascaded human candidate classifier to classify all 

potential detecting windows. For detecting windows whose sizes are different from 64 × 

128, we normalized them to 64 × 128 to maintain the relative position between feature 

block and detecting window. The resulting human candidates with different depth may 
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correspond to the same target, and thus we merge the classified results by MeanShift 

algorithm. Therefore, the final fused results are the human candidates for further 

verification process. 
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Chapter 4 Human Candidate Verification 

Feature classification and verification are two of the most important modules of 

vision-based human detection system, because they are critical to the performance of 

the system.  

In last chapter, we discuss the human detection processes by classifying the AHOG 

features which represent the targets. Although most of candidates are humans in practice, 

there are still some false detections that occur. Based on the analysis of the false 

detections, we find that there exist some parts which are similar to real human patterns, 

but not the entire region. Fig. 4.1 shows some falsely detected candidates. The reason is 

because we only use the local features (AHOGs) to represent the targets, but some 

non-humans patterns which contain sufficient discriminative features might be 

considered as humans. Hence, we impose a global feature – human shape 

approximation – for overcoming the shortcomings of using local features. 

This chapter gives steps of verifying the remaining detecting windows - human 

candidates. In the beginning, the ellipse approximation of a detecting window is given 

and is then need to train the estimated elliptic parameters to obtain a human candidate 

verifier for further verification. 

 



 

Fig. 4.1 False detected candidates 

 

4.1  Ellipse Approximation 

This section presents the way of fitting an ellipse to a region of interest – human 

candidate. Finding a fitting ellipse can be done by calculating the second moments of 

the entire region. Before computing the moment, we have to group pixels which belong 

to the same region. Thus, we adopt connected component procedure on detecting 

windows first for estimating a best-fit ellipse. 

 

4.1.1 Connected Components 

Before approximating the merged candidates by an ellipse, we find the connected 
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components in each detecting window of human candidates. In our case, we find the 

contour of the region provided by OpenCV [34] at first, and then take the interior 

regions as the connected components. To fill the holes in the connected components, we 

apply the morphological opening operation and remain components with enough sizes 

and reasonable positions (see Fig. 4.2). 

 

 

Fig. 4.2 Connected component 

 

4.1.2 Moments 

This section describes the way of finding a best-fit ellipse estimation of the 

adequate component in each detecting window and its respective elliptic parameters. A 

best-fit ellipse can be found by calculating the second order moments of the connected 

component. A fitted ellipse is represented by a centroid ( , )x y , principal angle φ , and 

length of semi-major and minor axes a and b, respectively. The moment of order p + q 

(where p and q are integers) of a region G is calculated by the following integral 

evaluation over the area of G: 
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  (4.1) ( , ) p q
pq G

m f x y x y dxdy= ∫∫

The central moments are used to compute the elliptic parameters. The following 

gives the equation of central moments: 

 ( ) ( ) ( , )p q
pg G

u x x y y f x y d= − −∫∫ xdy  (4.2) 

 10 01

00 00

 , m mx y
m m

= =  (4.3) 

where the centroid ( , )x y  of ellipse is obtained after computing the zero-order and 

first-order spatial moments. The principal angle, which is an included angle between the 

major semi-axis and the horizontal axis, gives the orientation of the ellipse and it can be 

calculated with the central moments of the second order, namely, 

 1 11

20 02

2tan ( )u
u u

ϕ −1
=
2 −

 (4.4) 

In order to evaluate the length of semi-major and minor axes of the ellipse, we 

compute the least and the greatest moments of inertia, Imin and Imax, respectively. They 

can be figured out by the following equations as shown in [35]. 

 
2 2

20 02 20 02 11( ) 4
2min

u u u u u
I

+ − − +
=  (4.5) 

 
2 2

20 02 20 02 11( ) 4
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u u u u u
I

+ + − +
=  (4.6) 

the length of semi-major axis a and semi-minor axis b of ellipse are evaluating by 

equations (4.7) and (4.8). A best-fit ellipse estimation of connected components is 

represented by an elliptic vector: { , , , , }x y a bϕ , as shown in Fig. 4.3. 

 
1

1 3 8
4

m i n

( )4( ) m a xIa
Iπ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (4.7) 
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Fig. 4.3 Best-fit ellipse estimation 

 

4.2  Training & Verification 

The human candidate verification involves training of the elliptic verifier and 

verifying of the approximated ellipses of candidates. We also use the linear SVM to 

learn an elliptic verifier based on the estimated elliptic vectors over the training data. 

The elliptic verifier rules out many false candidates who might have apparent 

vertical gradient features or human-like patterns. Combining the local feature 

classification and global feature verification not only improves the reliability of the 

detected results but also reduces the high false positive rates due to dense grids of 

detecting widows. Besides, the best-fit ellipse estimation also provides appropriate sizes 
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of the bounding boxes on the detected human. The detected results are the detecting 

windows which pass all stages of cascaded classifier and are validated by the final 

elliptic verifier. 

 



Chapter 5 Experiment 

5.1  Environment Description 

Our proposed approach is developed and evaluated on a personal computer and the 

details of the equipments are listed in Table 5.1. The Intel Open Source Computer 

Vision Library (OpenCV) is used to assist in developing the system. The camera is 

mounted on a vehicle as the camera platform, referring to Fig. 5.1. 

 

Processor Intel Pentium 4 CPU 3.0GHz 

Memory 1.0GB 

Operating System Microsoft Windows XP 

Table 5.1 Platform details 

 

Fig. 5.1 Camera configuration 

 

5.2  Database 

We evaluate the performance of our approach based on two human databases, one 

provided by MIT [36] and one made by our laboratory 

The poses of the people in MIT database are limited to frontal and rear views. Each 

image is scaled to the size 64×128 and is aligned so that the person’s body is at the 
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center of the image. Some examples are shown in Fig. 5.2(a). 

We generate our human database from video sequences of traffic scenes taken at 

Taipei city and on NTU campus under a variety of weather conditions. In this dataset, 

people have various poses and views and their sizes are different with the distances, as 

shown in Fig. 5.2 (b). 

We select 9 video sequences of different scenarios to be evaluated in this work. 

The half of the video sequences are used for learning a cascaded human candidate 

classifier and a candidate ellipse verifier, and the remaining video sequences are used 

for evaluating the performance of system. 

 

 

Fig. 5.2 Human Databases 

 

5.3  Training 

The total number of positive images and negative images used for training are 

2,390 and 14,496, respectively. The positive samples include a variety of poses, clothes, 

and varied viewpoints. On the other hand the negative samples contain many 

non-human objects which have apparent edges or human-like patterns. 
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The resulting cascaded human candidate classifier has 24 stages and about 500 

weak classifiers, and the training process takes a few days. The details of the cascaded 

classifier are shown in Fig. 5.3 and Fig. 5.4. As can be seen, there are about 90% 

detecting windows rejected by the first five stages, and after the 15th stage the rejection 

rate is close to 100%. With the increasing number of stages, more features are added to 

reduce the false positives rate to nearly zero, but it still maintains the high detection rate 

in the meantime. 
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Fig. 5.3 Number of weak classifier of each stage 
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Fig. 5.4 Rejection rate of each stage 
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5.3.1 Discussion of Training Process 

In order to find the threshold used in computing block density, we analyze the 

intensity distribution of feature block of positive and negative images. In Fig. 5.5, it 

gives statistical results of three feature blocks corresponding to different human parts. In 

right figure, red/green line represents the positive/negative data. Thus, it can be seen 

that the number of negative gradients is greater than that of positive gradients if the 

magnitude is greater than the threshold (threshold = 50 in this case). On the contrary, if 

the magnitude is less than the threshold, the number of positive gradients is greater than 

that of negative gradients. In left-bottom of the figure, the computed block density 

values prove the difference between positive and negative images. 

For comparing the performance with the other human detector, we also implement 

the work by Dalal [23] and that by Zhu [24]. Zhu’s work is based on the framework of 

Dalal [23] with similar performance, but the former computation is much faster than 

Dalal’s because of the cascaded structure of the classifier. Thus, we compare the 

differences between the training results with two feature types, HOG used by Zhu and 

AHOG used by us. We inspect our number of feature type with aspect ratio (2:1) 

selected by the cascaded AdaBoost algorithm is greater than Zhu’s in the previously 

stages. We observe that the AHOG features with aspect ratio (2:1) well represent the 

lower parts of a human body, such as shanks, and Fig. 5.6 gives the visualization of the 

selected features in longitudinal and lateral viewpoints, where (a),(c)/(b),(d) are the 

selected HOG/AHOG feature image at the stage 5, 6. In Zhu’s work [24], he only 

selected 4 feature types, but our method utilize all feature types. Therefore, after we 

encode the symmetry weighted window into construction of AHOG features, the 

probability of selecting the features with aspect ratio (2:1) becomes higher, and in 

another word our approach brings each type of feature into full play better than [23-25], 



which only focuses on the center of block by multiplying Gaussian weighted window. 

 

 

Fig. 5.5 Intensity histograms of feature block 
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(a)         (b)            (c)             (d) 
Fig. 5.6 Visualizing the selected HOG and AHOG. 

 

5.4  Experiment Results 

We implement various experiments with our approach to evaluate the performance 

on different databases and in different environments. Besides that, we also compare the 

performance with the state-of-the-art human detector Dalal and Triggs [23] on MIT 

database and our human database. Two criteria are used to measure the performance of 

our approach. They are defined as: 

 number of detected humansDetection rate  
Total number of humans

=  (4.9) 

 number of detected non-humans(FP) False Positive rate  
Total number of detected results

=  (4.10) 

 

5.4.1 Performance of MIT Database 

Fig. 5.7 shows the Receiver Operating Characteristic (ROC) curves of Dalal’s and 

our approach on MIT database. During testing of all positive images on MIT database, it 

is limited since humans are always at the image center with frontal or rear views. 

However, the performances of two approaches are robust. From the ROC curve, we 
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know that the detection rate of our method is about 98% with 1% false positive rate, but 

the detection rate of Dalal’s is only near 90% with the same false positive rate. 

Therefore, our approach has better performance than Dalal’s on MIT database. 

 

 

Fig. 5.7 ROC curve 

 

5.4.2 Performance of Our Database 

We evaluate and compare the performance of Dalal’s and our method on our 

human database. We choose 9 video sequences according to 3 criteria: number of 

humans, illumination, and human moving direction. We assume that the targets are in 

the range from 5 meters to 40 meters without any occlusion. Some detecting results are 

shown in Fig. 5.8. 
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Table 5.2 shows the performance of each video sequence and the criteria are 

denoted by following format: Illumination – # human – Moving direction – 

Environment condition. Two labels for each criterion, Illumination: High (H), Low (L); 

# human: Single (S), Multiple (M); Moving direction: Longitude (L), Cross (C). 

Environment condition denotes other surroundings that may affect the performance. 

 

Dalal [23] Our 
Criteria # humans Detection 

rate (%) 
FP rate 

(%) 
Detection 
rate (%) 

FP rate 
(%) 

H-S-L 909 94.28 1.95 99.66 1.41 
H-S-C 204 80.39 13.66 93.62 8.6 
L-S-C 118 88.98 12.50 99.15 0.8 

L-S-C-brick ground 73 93.15 11.25 97.26 10.12 
L-S-C-repetitive 

background 212 86.79 18.75 89.62 11.21 

L-S-L-under trees 110 83.58 22.22 89.09 16.94 
L-S-L-wet ground 244 81.96 8.55 88.93 5.65 
L-M-C- repetitive 

background 83 97.59 3.57 98.79 1.2 

L-M-L-under trees 229 92.57 11.02 90.82 3.7 
Overall 2182 90.52 7.9 95.33 4.85 

Table 5.2 Performance of each video. 

 

In Table 5.2, our performance is better than Dalal’s performance under the same 

experimental conditions. The overall detection rate is improving about 5% and also 

reducing the false positive rate about 3%, especially when humans are moving across. 

The average detection rate increases by about 6.378% with decreasing false positive rate 

5.56% while the humans are at lateral view. In other words, the AHOG has better 

capability of representing than HOG, particularly in characterizing the humans at lateral 

view. Thus, these results substantiate that encoding the human shape properties into 

HOG features provides more reliable information of human detection. The average 

number of windows for densely scanning a 360×240 image is about 10,000 and another, 



there are 10.77 blocks needed to be evaluated in each detecting window. The detecting 

time is about 0.42 seconds with densely scanning detecting windows, which is faster 16 

times compared to the Dalal’s method that has to evaluate 105 blocks for each detecting 

window. The following figures show some detection results of each video. 

 

High illumination – Single target – Longitudinal moving 

 

 

High illumination – Single target – Cross moving 

 

 

Low illumination – Single target – Cross moving 
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Low illumination – Single target – Cross moving – Brick ground 

 

 

Low illumination – Single target – Cross moving – Repetitive background 

 

 

Low illumination – Single target – Longitudinal moving – Under trees 

 

 

Low illumination – Single target – Longitudinal moving – Wet ground 
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Low illumination – Multiple targets – Cross moving – Repetitive background and wet 
ground 

 

 

Low illumination – Multiple targets – Longitudinal moving – Under trees 

 

Fig. 5.8 Experiment results 
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Chapter 6 Conclusion 

In this thesis, we present a monocular vision-based multi-human detection 

approach on a moving camera platform. A discriminative feature, AHOG is proposed 

for human detection, which provides reliability in illumination and appearance 

variations, complex background, and different views of people. Since the symmetry of 

human shape is encoded in AHOG, the capability of representing a human has been 

improved a lot especially in a lateral view of human. Besides that, many false detections 

caused by clutter background are discarded by means of measuring of the gradient 

density. Based on the gradient density information, we also alleviate the affection of 

repetitive patterns while we are computing the symmetric weights. The contour distance 

is imposed to AHOG not only to represent the biological structure relations between 

AHOG and human body but also to keep the information of non-symmetric human parts. 

Integrating these human shape properties into AHOG makes it a more discriminative 

feature for human detection. In addition to local feature, we employ AHOG to 

characterize the human shape by a global feature, ellipse, as well. Estimating a best-fit 

ellipse of human shape reduces many false detections which may have some local 

features that are similar to humans. The experimental results show our proposed human 

detection approach has better performance than that of the state-of-the-art human 

detectors. These appealing results also confirm reliable accuracy and stable performance 

of our proposed approach even under the strict environment. 

Our future work is to take the spatio-temporal knowledge and motion information 

of target into account. The spatio-temporal knowledge can be used to increase the 

stability of detection and the motion information can improve the shortcomings of 

appearance features. 
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