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Abstract

Two topics are covered by this thesis: the maximum likelihood method and molecular

dynamics simulations of general anesthetics, halothane.

For the first topic, I introduce the maximum likelihood method and its application

in analyzing time series data, and then test it with simulated data.

For the second topic, I introduce molecular dynamics (MD) simulations and the

method of energy representation to general anesthetic research. Using the MD simula-

tions and the method of energy representation, I have calculated the free-energy change

of inserting a halothane molecule into different depths of a hydrated dimyristoylphos-

phatidylcholine (DMPC) bilayer at pressures of 1 atm, 200 atm and 400 atm. It is found

that halothane preferentially resides in the region between the headgroup and the lipid

tails, between 10 Å and 15 Å from the centre of the membrane. It is also found that

pressure has no detectable effect on the free-energy change of inserting a halothane from

bulk water to DMPC, and does not change the regional preference of halothane, either.

Keywords: maximum likelihood, data analysis, energy representation, molecular

dynamics simulations, halothane, DMPC, free-energy change
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摘摘摘要要要

此此此篇篇篇論論論文文文包包包含含含兩兩兩個個個部部部份份份：：：最最最大大大似似似然然然法法法以以以及及及全全全身身身麻麻麻醉醉醉藥藥藥（（（三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷）））的的的分分分子子子動動動

力力力學學學模模模擬擬擬。。。

第第第一一一部部部份份份，，，介介介紹紹紹最最最大大大似似似然然然法法法在在在分分分析析析時時時間間間序序序列列列資資資料料料上上上的的的應應應用用用，，，並並並且且且以以以電電電腦腦腦模模模擬擬擬的的的

資資資料料料加加加以以以測測測試試試。。。

第第第二二二部部部份份份，，，介介介紹紹紹分分分子子子動動動力力力學學學模模模擬擬擬以以以及及及「「「交交交互互互作作作用用用能能能量量量泛泛泛函函函法法法」」」應應應用用用在在在全全全身身身麻麻麻醉醉醉

藥藥藥的的的研研研究究究。。。利利利用用用分分分子子子動動動力力力學學學模模模擬擬擬以以以及及及交交交互互互作作作用用用能能能量量量泛泛泛函函函法法法，，，我我我計計計算算算了了了在在在不不不同同同壓壓壓力力力

下下下將將將三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷（（（Halothane）））溶溶溶入入入 dimyristoylphosphatidylcholine（（（DMPC）））水水水

合合合物物物的的的自自自由由由能能能改改改變變變，，，壓壓壓力力力分分分別別別為為為 1 大大大氣氣氣壓壓壓、、、200 大大大氣氣氣壓壓壓以以以及及及 400 大大大氣氣氣壓壓壓。。。結結結果果果顯顯顯

示示示三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷偏偏偏好好好待待待在在在 DMPC 的的的前前前頭頭頭原原原子子子群群群與與與碳碳碳鏈鏈鏈尾尾尾端端端之之之間間間的的的區區區域域域，，，介介介於於於距距距

細細細胞胞胞膜膜膜中中中央央央 10 埃埃埃至至至 15 埃埃埃的的的距距距離離離。。。另另另外外外也也也發發發現現現壓壓壓力力力對對對於於於三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷從從從純純純水水水溶溶溶入入入

DMPC 的的的自自自由由由能能能改改改變變變所所所造造造成成成的的的影影影響響響很很很小小小，，，且且且對對對於於於三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷的的的偏偏偏好好好區區區域域域沒沒沒有有有可可可

觀觀觀的的的影影影響響響。。。

關關關鍵鍵鍵詞詞詞：：：最最最大大大似似似然然然法法法，，，資資資料料料分分分析析析，，，交交交互互互作作作用用用能能能量量量泛泛泛函函函法法法，，，分分分子子子動動動力力力學學學模模模擬擬擬，，，全全全

身身身麻麻麻醉醉醉藥藥藥，，，三三三氟氟氟氯氯氯溴溴溴乙乙乙烷烷烷，，，自自自由由由能能能變變變化化化
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Part I

Maximum Likelihood Method in

Time Series Data Analysis
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Chapter 1

Introduction

When seeking the mechanism behind Nature, we often have to analyze a series of

observations ordered in time. This is called a time series.

The data in a time series have an internal structure: the observables could be ran-

dom, or there may be correlation between the observables. The structure of the time

series data could reveal to us the underlying mechanism driving the processes which,

in turn, give rise to the observables. If we already have a number of hypotheses about

the mechanism, how do we know which one is more probable and what are the values

of the parameters related to this hypothesis?

In this work, we have to propose candidate mechanisms, and apply statistical meth-

ods to see which mechanism would be in the best position to give the observations. We

use statistical methods to achieve this.

In a seminal paper on the application of statistics in the natural sciences, R.A. Fisher

divided the problems of statistics into three types [1]:

(1) Problems of Specification. These arise in the choice of the mathe-
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matical form of the population (the term ‘population’ in this case refers

to the distribution of the values of observables).

(2) Problems of Estimation. These involve the choice of methods of cal-

culating from a sample statistical derivates, or as we shall call them

statistics, which are designed to estimate the values of the parameters

of the hypothetical population.

(3) Problems of Distribution. These include discussions of the distri-

bution of statistics derived from samples, or in general any functions

of quantities whose distribution is known.

The problem of generating candidate mechanisms or hypotheses is not done mathemat-

ically; it relies on humans to suggest them. The problem of proposing mathematical

forms for candidate mechanisms belongs to the first problem. Once the mathematical

form has been determined, the values of the parameters are evaluated, and this is the

problem of the second type, that of estimation. In this work, I focus mainly on problems

of this type, and the data I aim to analyze is a time series.

A time series data with an internal structure can usually be described by a probabil-

ity distribution function. For example, take a time series data of an ion channel which

has an open and a closed state. In this case, the data are the time durations of the

open state, or open time durations. Suppose an ion channel is closed at the beginning

of the time series, and remains closed for the next second, then opens for 2 s, closes for

1 s and then opens for 3 s, we obtain two opening time durations, one of 2 s and the

other of 3 s (Fig. 1.1). In my research, the time series is much longer and consists of a

3



large number of observations of open time durations. In the case of ion channels, it has

been observed that the open time durations has a large variation. Its order ranges from

several µs to several ms. However, for most ion channels, the probability of having a

short open time duration is large, and it drops as the open time duration increases. It

can be shown that the probability distribution of the open time durations follows an

exponential decay.

Open

Closed
1S 1S

2S 3S

Figure 1.1: An example of time series data.

The analysis of ion channel data is, of course, not limited to quantifying the prob-

ability distribution of ion channel opening time duration. We could justifiably define

the probability distribution of ion channel closed time durations. More sophisticated

analysis would investigate the probability distribution of time duration of a sequential

state of the channel being open and then closed. This is known as two-dimensional

analysis, because if the data are plotted out, in addition to the time axis, there are

two more axes, one for open time durations and the other for closed time durations.

Naturally, this kind of analysis can be extended to more complicated sequential states,

leading to higher-dimensional analyses.
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Chapter 2

Methods

When we have a candidate mechanism to account for a time series, we propose a prob-

ability distribution for these data. We then need to know how well the probability

distribution generated from this candidate mechanism agrees with the observed prob-

ability distribution. In this process, we need to determine the numerical values for the

parameters of the probability distribution.

2.1 Maximum Likelihood

The probability distribution we wish to know can be written as a probability density

function (pdf) p of the observables, y1, y2, ..., yn, with some parameters, θ1, θ2, ..., θm

which describe this probability density function:

p(y1, y2, ..., yn|θ1, θ2, ..., θm) ≡ p(ŷ|θ̂) (2.1.1)

where ŷ is an n-dimensional vector representing one datum and θ̂ an m-dimensional

vector representing a set of parameters. The line between ŷ and θ̂ means “ŷ given θ̂”,
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and denotes a conditional probability. In practice, however, we are given a number of

data ŷ and we wish to find what the best values for the parameters θ̂ are.

So R.A. Fisher introduced a quantity named “likelihood” [1]:

The likelihood that any parameter (or set of parameters) should have any

assigned value (or set of values) is proportional to the probability that if

this were so, the totality of observations should be that observed.

Simply put, likelihood is a quantity to show how likely, in a relative sense, a set of

parameters are responsible for a set of observed data. If the total number of data are

k, and ŷi denotes the ith datum, we can define likelihood as:

L(θ̂|{ŷi}) ≡ p({ŷi}|θ̂)

= p(ŷ1|θ̂)× p(ŷ2|θ̂)× ...× p(ŷk|θ̂)

=
k∏
i=1

p(ŷi|θ̂) (2.1.2)

where {ŷi} denotes a set of data, i = 1, ..., k.

Given a set of observed data {ŷi}, and a postulated pdf p(ŷ|θ̂), with undetermined

parameters θ̂, the most probable values of those parameters will maximize the likelihood

L(θ̂|{ŷi}). Hence we can find the most probable values of the parameters by maximizing

its likelihood.

In practice, we often maximize the logarithm of the likelihood or log-likelihood,

l(θ̂|{ŷi}), instead of the likelihood because of the less computing time cost in doing

addition than doing multiplication. The log-likelihood is defined as:

l(θ̂|{ŷi}) ≡ logL(θ̂|{ŷi}) =
k∑
i=1

log p(ŷi|θ̂) (2.1.3)

6



2.2 Maximization of Functions

In this work the downhill simplex method [2, 3] was used to maximize the log-likelihood

function.

The problem of maximization is actually equivalent to the problem of minimization.

By adding a negative sign, the maximum becomes minimum. To make the picture

easier, minimization is discussed instead of maximization in this chapter.

If there are N undetermined parameters, θ1...θN , we can say they form an N -

dimensional parameter space. Each point in the parameter space represents a set of

parameters and in the log-likelihood case, there exist a corresponding log-likelihood

with respect to that point. What we wish to find is a point with the maximum value

of log-likelihood, or equivalently, the minimum value of negative log-likelihood.

The concept of the downhill simplex method is simple. Like rolling a ball down

from a hill, this method ‘rolls’ a simplex in an N -dimensional parameter space, so that

in the end the simplex will stop at a minimum. A simplex in an N -dimensional space

is a geometric object with N + 1 points, or vertices. For example, a simplex in two

dimensions is a triangle and in three dimensions a tetrahedron. To find the minimum

value of the negative log-likelihood, we first give an initial simplex, or initial guess, in

the N -dimensional parameter space, then let the simplex roll. For each computational

step, a simplex will try to take one of the following four actions in order to make the

highest (worst) point lower (better): (a) reflection, (b) reflection and expansion, (c)

contraction, (d) multiple contraction. See Fig. 2.1 for the four possible actions in a

two-dimensional space, in which case the simplex is a triangle, and Fig. 2.2 for the

7



algorithm flowchart.

The advantage of the downhill simplex method is that there is no need to evaluate

the first derivatives of the function, only the values of the function itself is needed.

Therefore this method can be used regardless whether the function is differentiable. In

situations where we do not know the ‘landscape’ of the function, a method which does

not require the function to be differentiable is more suitable and ‘safer’.

Like many other minimization methods, the downhill simplex method also suffers

from a local minimum problem. The ‘rolling’ simplex can be easily ‘trapped’ by a local

minimum (Fig 2.3). Unfortunately there is no simple solution to the local minimum

problem. We can only use some techniques to enhance our confidence in the minimum

we found. For example, we can choose several different initial guesses and perform the

minimization several times to see if the results are consistent, or we can draw a profile

of log-likelihood with respect to each parameter to see if the minimum we found, at

least in this particular scale and resolution, is really the global minimum.

2.3 Log Likelihood Ratio Test

In most cases, we cannot suggest a specific mechanism to account for the observed data.

Hence we do not have a complete pdf to describe the experimental data. All that we

can do is to suggest that the hypothetical pdf has a certain mathematical form. But the

pdf can be an addition of multiple components, say, an addition of three exponential

terms. If we do not know how many components there are in the pdf, we do not

know how many parameters we should use to evaluate the log-likelihood. Sometimes

8



(a)

(b)

(c)

(d)

high
low

reflection

reflection and expansion

contraction

multiple contraction

Figure 2.1: Four possible actions for a step in the downhill simplex method are shown.

At the beginning of the step, the initial simplex, in this case a triangle, is shown on top.

At the end of the step, the simplex can take any one of the four actions according to the

log-likelihood change of the highest point, (a) a reflection away from the high point, (b) a

reflection and expansion away from the high point, (c) an one-dimensional contraction from

the high point, or (d) an overall contraction towards the low point.
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Figure 2.2: The algorithm flowchart of the downhill simplex method. The terminating

condition can be (1) whether the fractional change of the vector distance moved in this

step is less than a pre-defined tolerance or (2) whether the fractional difference between the

highest and the lowest log-likelihood is less than a pre-defined tolerance. The symbols (a)

(b) (c) (d) denote the four actions.
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A

B

C

θ1 θ2 θ3

− 
Lo

g-
lik

el
ih

oo
d

Parameter

Figure 2.3: A schematic plot of the log-likelihood function with only one parameter. Point

B is the global minimum while points A and C are local minima. Three initial guesses are

shown. When the initial guesses are θ1 and θ3, the searching will be trapped at A and C

respectively. Only when the searching is starting from θ2, the global minimum B can be

found.

we can determine the number of components by visually inspecting the diagram of the

experimental data, but most of the time it is not that simple. What we then need is a

statistical approach: the log likelihood ratio test.

The log likelihood ratio test is based on the following theorem. Let l1(θ̂n1) and

l2(θ̂n2) be two log-likelihood functions with n1 and n2 parameters, respectively, and

n2 > n1. Define a quantity R, called the log likelihood ratio (logarithm of the ratio of

the likelihoods)

R ≡ l2 − l1 = logL2 − logL1 = log

(
L2

L1

)
. (2.3.1)

It can be shown [4] that:

If the most appropriate number of parameters is n1 and the number of data

11



is large, the quantity 2R will have a χ2 distribution with n2− n1 degrees of

freedom.

The χ2 distribution is explained in the next paragraph. Note that R is defined only

when L2/L1 > 1, i.e. R > 0. This is very reasonable since the more parameters we

use to fit the data, the higher the likelihood can be. From the definition, we can see

that R is a quantity describing the increase of the ‘goodness of fit’ when the number of

parameters is increased.

Before proceeding further, the χ2 distribution should be defined. A χ2 distribution

is actually a special case of Γ distribution with parameters α = ν/2 and β = 2. The

cumulative distribution function (cdf) of a Γ distribution is

Fγ(x;α, β) =
γ(α, x/β)

Γ(α)
≡ P (α, x/β) (2.3.2)

where Γ(α) is the gamma function, x ≥ 0 and α, β > 0

Γ(α) ≡
∫ ∞

0

xα−1e−αdx , (2.3.3)

γ(α, x) is the incomplete gamma function ,

γ(α, x) ≡
∫ x

0

x′
α−1

e−αdx′ (2.3.4)

and P (α, x) is the regularized incomplete gamma function

P (α, x) ≡ γ(α, x)

Γ(α)
(2.3.5)

and ν, in the log likelihood case mentioned above, equals n2 − n1 , which means ‘the

degrees of freedom’. Therefore, by inserting the parameters α = ν/2 and β = 2 into

12



the cdf of a Γ distribution, Eq. (2.3.2), we have the cdf of a χ2 distribution

Fχ2(χ2; ν) = P

(
ν

2
,
χ2

2

)
(2.3.6)

By differentiating the cdf we obtain the pdf

pχ2(χ2; ν) =
(1/2)k/2xk/2−1e−x/2

Γ(ν/2)
(2.3.7)

Fig. 2.4 shows the pdf and cdf of a χ2 distribution.
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Figure 2.4: χ2 distribution

With the value 2R and its χ2 distribution, how do we use them to decide the most

appropriate number of parameters ? First we need to ask the question: what does it

mean by ‘the most appropriate’? Since we know in general the fitting will be better and

better if we use more and more parameters, it is natural to say that when the number

of parameters reaches the most appropriate one, any further increase of the number

of parameters will have a large probability to make only an insignificant increase in

the likelihood and hence a small value of 2R. An insignificant increase means there is

a large probability that this amount of increase is only a result of chance. The value

of that probability can be obtained from another function Q(α, x), also confusingly
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named the regularized incomplete gamma function, or the regularized complementary

incomplete gamma function for discrimination. Q(α, x) is defined as:

Q(α, x) ≡ Γ(α, x)

Γ(α)
= 1− P (α, x) (2.3.8)

where Γ(α, x) is the (complementary) incomplete gamma function

Γ(α, x) ≡
∫ ∞
x

xα−1e−αdx = Γ(α)− γ(α, x) (2.3.9)

We can write Q(α, x) in the χ2 case as

Q(α, x) = Q

(
ν

2
,
χ2

2

)
≡ Q(χ2|ν) (2.3.10)

This so called χ2 probability function, Q(χ2|ν), is the probability that an increase of

the ‘goodness of fit’, 2R, due to the increase of the number of parameters, ν, is only

a result of chance. So when Q is small, it means that the increase of the number of

parameters is necessary to give a better description of the data. Usually the value of Q

is also called P value. See Fig. 2.5 for pictures of P and Q.

In practice, we often require the acceptance value of Q to be smaller than 0.05, 0.01

or even 0.001. For example, when we increase the number of parameters from four to

five and obtain the log likelihood ratio 2R1, we have Q(2R1|1) = Q

(
1

2
, R1

)
≡ Q1.

We again increase the number of parameters from five to six and obtain Q2. If we set

our standard to be 0.05, and Q1 < 0.05 while Q2 > 0.05, this means that the most

appropriate number of parameters is five. However, if Q2 is still less than 0.05 when the

number of parameters is six, then we shall need to increase the number of parameters

further.
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x0

P(α,x)

∞ x0

Q(α,x)

∞

Figure 2.5: P (α, x) and Q(α, x) are actually integrations of the pdf of χ2 distribution.

The integration range of P is from 0 to x and that of Q is from x to ∞.

2.4 Generation of Non-Uniform Random Numbers

In order to test the maximum likelihood method with some simulated data, we must

generate some random numbers with a certain pre-defined pdf, which is more complex

than a simple uniform pdf.

Continuous uniform random (actually pseudo-random) numbers can be easily ob-

tained by using the intrinsic random number generators of many programming lan-

guages. It is not that easy, however, to obtain non-uniform random numbers directly.

We have to use some techniques to generate non-uniform random numbers out of uni-

form random numbers. There are two common methods for doing so, the inverse

transform method [3] and the rejection method [3, 5].

2.4.1 Inverse Transform Method

The inverse transform method is based on the proposition that, given an invertible

cumulative distribution function (cdf) F (x) and a uniform random number U with
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range (0, 1), the random number X ≡ F−1(U) has a cdf F (x). It can be proved as

follows. Define the cdf of X as F
X

(x):

F
X

(x) ≡ Prob(X < x)

= Prob(F−1(U) < x)

= Prob(F (F−1(U)) < F (x))

= Prob(U < F (x))

≡ F (x) (2.4.1)

at the third equality, we have used a property of cdf that it is a monotonically increasing

function.

With the knowledge above, we can generate a random number X with a cdf F (x)

by the following procedure:

Step 1: Find the inverse function F−1(u) = x.

Step 2: Generate a uniform random number U .

Step 3: X ≡ F−1(U) is the random number we wish to find.

For example, to obtain a random number X with pdf

f(x) =
1

λ
e−

x
λ , (2.4.2)

we first integrate the pdf to obtain its cdf

F (x) =

∫ x

0

f(x′)dx′ = 1− e−
x
λ (2.4.3)

and find the inverse function

F−1(u) = −λ ln(1− u) , (2.4.4)
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so we obtain

X = −λ ln(1− U)

= −λ ln(U) . (2.4.5)

Since U is a uniform random number with range (0, 1), 1−U is also uniform on (0, 1).

We can therefore equivalently use 1− U to save computing time.

2.4.2 Rejection Method

This method is first proposed by John von Neumann in 1951 [5]. Suppose we already

have a method to generate a random number with a pdf g(x), and we wish to generate

a random number X with a pdf f(x). We can first generate a random number Y with a

pdf g(x) and accept this Y with a probability proportional to f(Y )/g(Y ). The accepted

Y , defined to be X, will then have a pdf f(x).

The protocol is as follows:

Step 0: Find a constant c (the lower the better) such that
f(x)

g(x)
≤ c for all x.

Step 1: Generate Y with pdf g(x).

Step 2: Generate a uniform random number U .

Step 3: If U ≤ f(Y )

cg(Y )
, X = Y , otherwise return to Step 1.

Note that c can never be less than 1. We can see this by integrating the inequality of

Step 0, f(x) ≤ c g(x), over all values of x.

The validity of this protocol can be proved as follows. Define the pdf of X as p
X

(x):
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p
X

(x)dx = Prob{X → x+ dx}

= Prob{Y → x+ dx | Acceptance}

=
Prob{Y → x+ dx, Acceptance}

Prob{Acceptance}

=

Prob

{
Y → x+ dx, U ≤ f(x)

cg(x)

}
Prob{Acceptance}

=

Prob {Y → x+ dx}Prob

{
U ≤ f(x)

cg(x)

}
Prob{Acceptance}

by independence

=

{p
Y

(x)dx}
{
f(x)

cg(x)

}
1/c

= g(x)dx
f(x)

g(x)

= f(x)dx (2.4.6)

where

Prob(Acceptance) =

∫
f(x)dx∫
cg(x)dx

=
1

c
(2.4.7)

See Fig. 2.6 for some specific pictures about this method.

In order to generate the target random numbers quickly, the number of the rejection

events should be as few as possible. Since the more the rejection events, the longer the

time we need to collect a required number of random numbers. Therefore the efficiency

of the rejection method is proportional to the probability of acceptance, 1/c. Hence we

should always try to make the constant c be as close to unity as possible.

Compared with the inverse transform method, the rejection method may be slower

since it has to generate two random numbers (often several times) to get only one
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f(x)

g(x)

x’ x

f(x) cg(x)

x’ x

(a) (b)

Δ

Figure 2.6: (a) f(x) is the desired pdf, g(x) the pdf we can already get, x′ the point that

makes f(x)
g(x) maximum, i.e. f(x)

g(x) ≤
f(x′)
g(x′) ≡ c. Note there is always at least one cross point

between f(x) and g(x) because the areas of f(x) and g(x) are both normalized to unity. (b)

The multiplier c makes the curve cg(x) cover all the area under f(x). The Prob
{
U ≤ f(x)

cg(x)

}
is equal to the ratio of the dark gray area f(x)∆, to the whole gray area cg(x)∆.

desired random number. But the rejection method is more versatile than the inversion

method since the target pdf of the latter has to be an invertible function while that of

the former does not.
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Chapter 3

Simulation and Analysis

In this chapter, a demonstration is presented, in which the maximum likelihood method

and the log likelihood ratio test were used to analyze the simulated time series data

whose pdf was known.

3.1 Simulated Data

The simulated data used have a pdf with five exponential components. The pdf p(t) is:

p(t) =
5∑
i=1

aipi(t) =
5∑
i=1

ai

(
1

τi
e
− t
τi

)
(3.1.1)

where ai is the weight of ith component with a condition
∑5

i=1 ai = 1, and τi is the ith

characteristic time constant. The total number of independent parameters are therefore

5× 2− 1 = 9 with one dependent parameter a5 = 1−
∑4

i=1 ai.

The procedures of the generation of the simulated data are as follows. First, one

of those five exponential components is chosen with a probability proportional to its

weight, ai. The inverse transform method is then used to generate a random number
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obeying the exponential pdf just chosen, 1
τi
e
− t
τi . This whole process of choosing an

exponential component and then generating a random number obeying that exponen-

tial pdf is repeated until the required number of random numbers has been generated.

These procedures, of course, can be easily extended to generate random numbers whose

pdf have arbitrary number of exponential components. In this work the uniform ran-

dom numbers, which were needed by the inverse transform method, were generated by

the intrinsic subroutines, RANDOM SEED() and RANDOM NUMBER(), of Intel R©

Fortran compiler.

The parameters of the simulated data used are listed in Table 3.1, and the histogram

of the data is shown in Fig. 3.1a.

number of data points: 100000

a1 = 0.023 τ1 = 0.002

a2 = 0.068 τ2 = 0.04

a3 = 0.227 τ3 = 0.5

a4 = 0.455 τ4 = 0.8

a5 = 0.227 τ5 = 5

Table 3.1: The parameters of the simulated data are listed here. The values of the weights

ai’s are actually assigned in a relative manner, which before normalization and rounding

are 0.1, 0.3, 1, 2, 1, respectively.

3.2 Logarithmic Histograms

Histograms with linear axes such as Fig. 3.1a are actually not so informative. Another

more illuminative way to plot the histograms with a logarithmic time axis was first
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(a) (b)

Figure 3.1: Two histograms of the same simulated data with different binning scales are

shown. (a) Linear histogram. Events are binned with a constant bin width in linear scale.

(b) Logarithmic histogram. Events are binned with a constant bin width in logarithmic

scale and the histogram is plotted with a logarithmic x-axis and a square-root y-axis. The

pdf and the corresponding parameters of the simulated data are shown in Eq. (3.1.1) and

Table 3.1, respectively.

proposed by Blatz and Magleby [6] and developed further by Sigworth and Sine [7].

In this work Sigworth and Sine’s method is used to plot the logarithmic histograms.

With this method, histograms are plotted with bins which have a constant width in

the logarithmic scale. Note that this is not the same as simply doing a logarithmic

transformation to the time axis of a linear histogram, because the transformation is

done before the events are binned.

Here is the explanation of this method. Considering a pdf with n components:

p(t) =
n∑
i=1

ai
τi
e
− t
τi (3.2.1)

where the symbols are defined in the same way as Eq. (3.1.1). A logarithmic transfor-

mation to the time axis is:

x = log10(t) (3.2.2)

Here base 10 was used for consistency. First we note that if t < t′, log10(t) < log10(t
′).
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Therefore the cdf becomes

F (t) ≡ Prob{t < t′}

= Prob{log10(t) < log10(t
′)}

= Prob{x < x′)}

≡ Flog(x) (3.2.3)

where Flog(x) is the cdf with a logarithmic time axis. In other words, we found that

the cdf’s of t and x are the same. Finally, the pdf of x, plog(x) can be obtained by

differentiating the cdf Flog(x) with respect to x:

plog(x) ≡ dFlog(x)

dx

=
dF (t)

d log10(t)

=
dt

d log10(t)

dF (t)

dt

=
n∑
i=1

t ln(10) p(t)

=
n∑
i=1

ai ln(10)

τi
exp

(
ln t− t

τi

)

=
n∑
i=1

ai ln 10

τi
exp

(
ln 10x − 10x

τi

)
(3.2.4)

The shape of plog(x) when n = 1 is like a skewed-bell. If n > 1 the shape will be

a superposition of each component’s shape (Fig 3.1b). The advantage of this kind of

histograms is that the peak of each component’s shape indicates the corresponding

characteristic time constant of that component. This can be seen by differentiating

plog(x) with respect to x and equating it to zero.

In addition to the transformation of the time axis, Sigworth and Sine also changed
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the ordinate of the histograms from the linear scale to the square-root scale. It is done

by simply taking the square-root of the events number after they are binned. This

change of the ordinate makes the standard deviation for each bin equal. [7]

3.3 Data Analysis

After generating 100000 simulated time series data, the test analysis was performed

without using the pdf as part of the input. It was tested how the proposed method

could recover the underlying patterns of the simulated time series data.

Initially I assessed the logarithmic histogram of the simulated data to give a rough

solution (Solution 1). The other three solutions (Solutions 2, 3 and 4) were obtained

by simply adding more parameters with some deviation from the existing parameters.

Using these four rough solutions as the initial guesses of the maximum likelihood, four

optimized solutions with respect to each number of components were obtained. The

results are shown in Fig. 3.2 and Table 3.3. From Fig. 3.2 we see that the data were

not well fitted with three components, but they seemed to be better fitted with four,

five and six components. So which one was the most appropriate choice for describing

the simulated data? With the help of the log likelihood ratio test, we can see from

Table 3.2 that the most appropriate number of components should be five. When the

number of components increased from five to six, the fit slightly improved. However,

the probability of this improvement being due to chance became much larger. This

means that the increase of the number of components from five to six was unnecessary.

In contrast, the other two increases (from three to four, and then from four to five) were
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necessary because the probability of the improvement of the fit being due to chance was

negligibly small. Hence this demonstration also showed the advantage of using the log

likelihood ratio test: even if all the fitting histograms seem very good, the log likelihood

ratio test can still give us quantitative indexes to help us make judgement.

It is found that the most appropriate number of components is five. The optimized

values of the corresponding parameters are listed in Table 3.3, Solution 3. We can

compare the original parameters with the parameters determined from the simulated

data. In the following discussion, we define the parameter values we originally put into

the simulation to be the ‘original values’, and we define the parameter values obtained

from the simulated data using the maximum likelihood method the ‘recovered values’.

It can be seen that, for the first, second and fifth components, the difference between

the original values and the recovered values are small (<5% of each other). However,

for the third and fourth components, the difference between the original and recovered

values can be larger than 20%. Note also that the characteristic time constants for

the first, second and fifth components are very different from each other; they are

orders of magnitude apart. The characteristic time constants for the third and fourth

components are more or less the same. This makes it difficult to separate the third and

fourth components. This is a general problem of data analysis, and is not an indication

of any specific weakness of this method.

The other difficulty in using this method arises when the number of parameters

is large, say 15 or 20. Under these conditions, the maximization of the log-likelihood

will often become unstable. In other words, different initial guesses will easily give

wildly different maximization points. However, the problem is not in the maximum
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likelihood method itself, it is in the maximization. The maximization can be trapped

in a local maximum. Future work includes investigating other maximization methods

to see if they will make the maximum likelihood method more stable. The Monte Carlo

method, for example, allows the searching to jump out of the local maximum and hence

can avoid the local maximum problem.

components R P value

3→ 4 647.934 4.034× 10−282

4→ 5 18.649 7.959× 10−9

5→ 6 0.150 8.603× 10−1

Table 3.2: The results of the log likelihood ratio test. The first column is the change of the

number of components, the second column the log likelihood ratio and the third column the

value of the χ2 probability function Q(χ2 = 2R|ν = 2). Note that the degrees of freedom

ν are the number of the increased independent parameters, which are 2 for all three cases

here.
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Simulated Data

Solution 1
3 components

Solution 2
4 components

Solution 3
5 components

Solution 4
6 components

Figure 3.2: The logarithmic histogram of the simulated data is shown on top. The other

four histograms are obtained by the maximum likelihood method with different solutions of

number of components. In these five histograms, the red step-lines all denote the distribu-

tion of the events and the superimposed blue solid lines are the sum of the blue dashed lines.

In the top histogram the blue dashed lines denotes the five pdf components of the simu-

lated data, while in the other four histograms the blue dashed lines are the pdf components

obtained by the maximum likelihood method.
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Chapter 4

Conclusion

In this work, the maximum likelihood method is described, which is a powerful tool

for time series analysis. It can provide the user with numerical results to describe the

observed events. However, experiments are still required to define the actual physical

processes responsible for these events. Unfortunately, limitation of time does not allow

me to apply this method on real experimental data. Future work would include using

this method on real data to further study its performance.
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Part II

Molecular Dynamics Simulations of

a General Anesthetic inside a

Membrane
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Chapter 5

Introduction

General anesthesia (GA) is a state of complete unconsciousness caused by drugs. It was

first publicly demonstrated by Morton in Massachusetts General Hospital in 1846. The

first general anesthetics used were chloroform and ether. However, the former was quite

toxic and the latter was highly inflammable. Later, safer alternatives such as isoflurane

and enflurane were developed, and they remain some of the most commonly used drugs

in clinical medicine. Unlike regional or local anesthesia, the exact mechanism of GA is

still an unsolved problem.

At the turn of the 19th and 20th centuries, Meyer and Overton independently pro-

posed a hypothesis which described the correlation between the efficacy of an anesthetic

and its solubility in lipids. This hypothesis, which states that the logarithm of the ef-

ficacy of a general anesthetic was proportional to the logarithm of its lipophilicity, was

subsequently called the Meyer-Overton rule. This rule suggests a lipid-rich region of

the body was involved in GA.

There was little progress in elucidating the mechanism of action of general anes-
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thetics until the middle of the 20th century. Johnson and Flagler [8] placed tadpoles in

a container and administered ethanol to them. The animals became anesthetized and

fell to the bottom of the container at atmospheric pressure. When the pressure was

raised to over 100 atm, they observed that GA was reversed, and the tadpoles started

to swim. This was repeated on a number of living organisms and on a large variety of

general anesthetics [9, 10, 11]. The only report of pressure reversal in humans appeared

in 1979 [12].

Pressure reversal is not a universal phenomenon, as species variation has been ob-

served [13]. For example, Paton and his co-workers discovered that in the common frog,

Rana temporaria, in the presence of general anesthetics, activity increased as pressure

increased. This is what we would expect from pressure reversal. However, in the fresh-

water shrimp, Gammarus pulex, increased pressure reduced the swimming activity in

the presence of general anesthetics.

J.R. Trudell et al. spin-labelled phosphatidylcholine, mixed them with water and

organic solvents, sonicated the mixture and produced a translucent vesicle suspension.

Halothane was added to this suspension at concentrations of 49mmol, 147mmol or

490mmol per mole of lipid, whilst the concentration of methoxyfluorane was 58mmol,

174mmol or 580mmol per mole of lipid. Electron spin resonance (ESR) spectra were

measured, and they showed that anisotropic motion of phosphatidylcholine within the

phospholipid bilayer was increased. There was a concomitant decrease of the order

parameter S ′n as the concentration of anesthetic increased [14]. On application of

pressure up to 274 atm by increasing helium, a non-anesthetic gas at these pressures,

in the container, these changes were reversed: S ′n increased and the spectra shifted
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back [15]. The mechanism of this change, however, remained unclear, but the most

likely cause seemed to be restriction of motion caused by phospholipid molecules coming

closer together.

The results of these experiments lead to two conclusions: the cell membrane is prob-

ably involved in general anesthetic action, and ambient pressure affects general anes-

thetic action. To clarify the effect of pressure on the distribution of general anesthetics

in the cell membrane, many scientists have performed experiments and simulations to

determine the location of general anesthetics in the membrane.

K. Tu et al. [16] performed a 1.6-ns simulation of 64 DPPC molecules hydrated in

1792 water molecules, with 4 halothane molecules in this system. After equilibration,

they found that halothane was preferentially located about 10 Å from the center of

the membrane. The halothane molecules exhibited no orientational preference. Koubi

et al. [17] performed a 2-ns simulation of 64 DPPC molecules hydrated in 1792 wa-

ter molecules, but with 32 halothane molecules. After equilibration, they found that

halothane was preferentially located about 10 Å from the center of the membrane. How-

ever, the concentration of halothane used in these studies were several times in excess

of the concentration of halothane used in clinical work.

Subsequently, Pickholz et al. [18] developed a coarse-grained model, and applied it

to simulate hydrated DOPC at different halothane concentrations. Their results also

showed that halothane was always preferentially located at about 10 Å from the center

of the membrane. They also evaluated the potential of mean force of extracting a

halothane from its equilibrium position into the solution. They found that this was

largest when the halothane was just below the headgroup of the phospholipid.
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However, none of them have explored the effect of pressure. In this work, we per-

formed a series of molecular dynamics simulations on a model membrane, DMPC, and

a model general anesthetic, halothane. The chemical structure of these two molecules

are shown in Fig. 5.1(a) and Fig. 5.1(b). We evaluated the free energy change of in-

serting halothane into a membrane of fully hydrated DMPC at different depths, and at

different pressures. The following diagrams show the molecules used in our study:

F

C

Br

Cl

CF

F

H

(a) Halothane

O

O

O

O

O
O

O

O

P N+

-

(b) Dimyristoylphosphatidylcholine

Figure 5.1: (a) Halothane, CF3CHClBr, IUPAC name 1,1,1-trifluoro-2-chloro-2-bromo-

ethane, is a nonflammable, halogenated, hydrocarbon anesthetic [19]. It is in liquid state and

volatile at room temperature. (b) Dimyristoylphosphatidylcholine, a phospholipid which

consists of polar head and two non-polar tails.
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Chapter 6

Methods

Methods used in this work are explained in this chapter. We used the molecular dy-

namics (MD) simulation method to generate samples of the configurations of the solute

(halothane) and solvent (hydrated DMPC bilayer) system. Then we apply the method

of energy representation of solution theory (ERnST) to calculate the solvation free en-

ergy of halothane into the lipid bilayer or in bulk water. To carry out MD simulations,

we used the program DL POLY version 2.15, developed by the Daresbury Laboratory,

UK [20]. In the following sections, the methods of molecular dynamics (MD) simu-

lations employed in the DL POLY program is firstly introduced. These include the

Verlet integration scheme, the empirical force fields, the Nosé-Hoover thermostats and

barostats, and the Ewald summation method [21]. Although the Monte Carlo method

is not used in this work, it is still introduced together with the MD simulations for

completeness. Then, the introduction to the ERnST follows.
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6.1 Molecular Dynamics Simulations

What is a simulation? In a simulation, the researcher invokes a system, and allows

components of the system to interact according to defined rules. These days, all the

required calculations are usually performed by a computer. By making these rules sim-

ilar to how a real system would behave, the researcher can collect useful data on these

artificial systems, and use them to gain insight into the real system under study. The

results of the simulation can be validated by evaluating macroscopic parameters from

the simulation, and comparing their values from experiments. Commonly used param-

eters including free energy changes, molecular diffusion coefficients and re-orientational

coefficients.

There are many atomistic simulations methods, but they come under two main

categories: molecular dynamics and Monte Carlo. Both methods are the same in that a

large number of molecular configurations are generated, but the procedures of moving

from one configuration to another are different.

In molecular dynamics, the position and velocity of each molecule are noted, and

the force on each evaluated. Each step consists of using this information to calculate

the position, velocity and force on each atom a very short time interval away, typically

of the order of femtoseconds. This is repeated many many times, and one builds up a

time series of molecular configurations. The whole trajectory describes the evolution

of the molecular system in time. Observing these configurations would be similar to

watching a film depicting molecular motion. The advantage of molecular dynamics is

that one observes how a system changes in time, and one can also obtain velocity and
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force data from the simulation. However, if the model used is such that the velocity

and the force cannot be calculated, then molecular dynamics would fail. Monte Carlo

becomes then the only method possible.

In Monte Carlo simulations, a random process determines how a configuration is

changed to another. The advantage of Monte Carlo is that, under certain circumstances,

it samples more configurations than molecular dynamics, so it is useful for exploring,

e.g., the possible conformers of a molecule. Neither velocity nor force calculations are

required, so many more models can be applied to this method than molecular dynamics.

One usually assumes that the system is ergodic. Hence, it does not matter what the

starting position is, because one will always obtain the same result for the ensemble

averages if a Monte Carlo simulation is performed for a sufficiently large number of

steps.

Otherwise the main ingredients of the two methods are essentially the same. Both

require a model describing how these atoms interact, sometimes called a potential or

a force-field. Both require a method of advancing from one configuration to the other.

And, last but not least, both require good analysis methods to analyze the collection of

configurations produced. Since performing a simulation and obtaining molecular con-

figurations have become much less difficult with the rapid increase of computer program

packages, the challenge is then to perform intelligent analyses by optimally using the

collection of configurations (or, in the case of molecular dynamics, the trajectory), and

thus to obtain useful scientific understanding.

The general use of simulations should not be simply to reproduce experimental

findings. After all, if an observable can be obtained by experiments, there is little point
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in obtaining that information using a more roundabout and potentially less reliable way.

Simulations are best used to perform ‘impossible’ experiments or to gain insight into a

system. For example, if one wants to study the effect of size on the hydration of non-

polar solutes, one could, of course, place inert gases of different sizes in water, and study

their hydration pattern. However, by replacing one molecule with another, one is not

merely changing the size, but also altering the electronic properties. Simulations allow

us to circumvent this problem by allowing us to invent spheres whose only difference

is the size, with everything else kept identical [22]. Another example is to study the

solvation properties of simple solutes with different electric charges. Simulations allow

scientists to keep other properties constant, whilst the charge and size of the particles

are considered as dynamic variables using an extended Lagrangian [23]. The selectivity

of micropores for ions of different sizes has been used as models to study the selectivity

of ion channels [24]. Thus simulations can be used to isolate factors contributing to an

effect, and give researchers a better understanding.

Simulations can be used to investigate events and mechanisms inaccessible by ex-

periments. However, in this sort of simulations, there are still certain quantities which

are measurable by experiments. The simulation values of those quantities should be

compared with the experimental values. If they agree, there is a higher probability that

the simulation potentials are correct. The scientist can then use the system to generate

data which can only be obtained by simulations.
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6.1.1 Development of the Monte Carlo method

The first simulation method invented was the Monte Carlo method. It was developed

by Stanislaw Ulam and Nicholas Metropolis [25]. Ulam was convalescing from an illness

when he started to ponder about the probabilities of winning a game of solitaire. He

realized that, instead of going through the combinatorics, he could just lay out the

cards many many times and observe the outcome. This was also the era when the

first computers were being used, so he discussed the idea with John von Neumann and

started planning actual calculations.

This work was expanded a few years later to calculate the equation of state of N

hard discs in two dimensions. Metropolis et al. [26] then applied their own method

to a system of 224 idential discs in a square with periodic boundary conditions, and

calculated the area occupied by the discs. Periodic boundary conditions [27] mean that

the squares are laid out in a ‘container’, so that a particle leaving the ‘container’ on

the left side will re-enter it on the right side. The effect is to create an infinite space

using a finite number of particles. Note that in the evaluation of interaction between

atoms, there is a maximum distance, rcut. Beyond the distance rcut, even though two

atoms could interact, their interaction is considered zero, to simplify calculations.

The work of Metropolis et al. [26] was extended by Wood and Parker [28] a few

years later, in a paper which studied the equation of state of Lennard-Jones molecules

in three dimensions. These are spherical molecules which interacted with each other

according to the relation:

ULJ(r) = ε

[(
r

ro

)−12

− 2

(
r

ro

)−6
]

, (6.1.1)
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where ε is a constant, ro the radius of the Lennard-Jones potential well, and r the

distance between the two atoms. They chose a set of Lennard-Jones parameters to

model argon, and set the temperature at 55◦C. Using 32 or 108 molecules in a cubic box

with periodic boundary conditions, they performed the simulation 31 times, each lasting

from 27000 to 261000 configurations, at different densities. The authors discovered

that their simulation results agreed well with some experimental data but not with

others. They also observed a phase transition, but not at the pressure that it would

occur under experimental conditions. This work shows that even a simple simulation

system is capable of reproducing features of an experimental system qualitatively, and

sometimes even quantitatively.

Wood and Parker [28] also carefully considered the problem of using periodic bound-

ary conditions. They chose a truncation scheme called the minimum-image distance

method, namely any pairwise interactions among the fundamental set of N molecules

are included, but for each pair, only the smallest distance between any images of the

two molecules are taken. This method of minimum-image distance was subsequently

adopted in almost all simulations using periodic boundary conditions.

Wood and Jacobson [29] subsequently repeated some of the Monte Carlo simulations

with longer chain length, and compared their results with the first molecular dynamics

simulation of the same system, the work of Alder and Wainwright [30]. They found

good agreement between the two methods.
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6.1.2 Development of Molecular Dynamics

The first detailed description of the molecular dynamics method was not published

until two years later [31]. In this and a subsequent paper [32], Alder and Wainwright

described the scheme used for molecular dynamics simulations, and evaluated the prop-

erties of a number of elastic spheres at different densities.

The work of Alder and Wainwright used hard spheres, which have not generally

been used to simulate biological molecules. Atoms in biological systems are usually

approximated by the Lennard-Jones potential, which was first applied by Rahman [33]:

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

, (6.1.2)

where ε is a constant, σ the optimum distance between two atoms of these types and

r the distance between the two atoms. In this work, Rahman developed a time-step

algorithm to solve the time-dependent differential equations.

In any molecular dynamics simulations, the position of each atom is pre-determined,

the velocity either assigned from a Maxwell distribution or from previous trajectory,

and the force on each atom can thus be evaluated. A time-step algorithm uses these

data at time t to obtain the positions, velocities and forces of the atoms at t + δt. In

Rahman’s original algorithm [33], three equations were applied:

rp(t+ δt) = r(t− δt) + 2δtv(t) (6.1.3)

v(t+ δt) = v(t) +
δt [a(t+ δt) + a(t)]

2
(6.1.4)

r(t+ δt) = r(t) +
δt [v(t+ δt) + v(t)]

2
, (6.1.5)

where r(t), v(t), a(t) are the position, velocity and acceleration of a particle at time t,
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r(t+ δt), v(t+ δt), a(t+ δt) are the position, velocity and acceleration of a particle at

time t+ δt, and rp(t+ δt) the predicted position of the particle at time t+ δt.

Eq. (6.1.3) provides a guess at the new position, and from this the acceleration

a(t + δt) can be evaluated. The new velocity and new calculated position can be

evaluated using Eq. (6.1.4) and Eq. (6.1.5). The acceleration is then re-calculated and

Eq. (6.1.4) and Eq. (6.1.5) iterated to provide a more accurate result.

Rahman’s algorithm is not the most efficient, because it requires a few passes

through Eq. (6.1.4) and Eq. (6.1.5), and it also requires force calculations which are

expensive in computer time. A few years later, more efficient time-step algorithms were

developed by Verlet [34] and Gear [35].

Verlet’s method is as follows. Let the position of a particle at time t in the simulation

be r(t), and its acceleration be a(t). Then the position of this particle at a short time

δt before and after t can be evaluated using Taylor’s expansion:

r(t+ δt) = r(t) + δtv(t) +
δt2a(t)

2
+ . . . (6.1.6)

r(t− δt) = r(t)− δtv(t) +
δt2a(t)

2
− . . . . (6.1.7)

Adding Eq. (6.1.6) and Eq. (6.1.7) and re-arranging, one obtains:

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) . (6.1.8)

Thus the estimate of position r(t+ δt) is correct except for errors of order δt4.

The Gear predictor-corrector method, on the other hand, uses a series of equations
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for predicted values (subscripted with p):

rp(t+ δt) = r(t) + δtv(t) +
δt2a(t)

2
+
δt3b(t)

6
+ . . . (6.1.9)

vp(t+ δt) = v(t) + δta(t) +
δt2b(t)

2
+ . . . (6.1.10)

ap(t+ δt) = a(t) + δtb(t) + . . . (6.1.11)

bp(t+ δt) = b(t) + . . . , (6.1.12)

where b denotes the third time derivative of r. This is the predictor step.

In order to obtain the correct values, corrections are required. For example, from

the predicted positions rp(t + δt), one can calculate the forces on the particle, and

a corrected acceleration acor is obtained. This will, in general, be different from the

predicted acceleration. The corrected position is:

rcor = rp(t+ δt) + fcor [acor(t+ δt)− ap(t+ δt)] , (6.1.13)

where fcor is a correction factor, and its choice has been extensively discussed by

Gear [35]. Using a similar method, the corrected velocities and accelerations at t + δt

can be evaluated. This is a second-order predictor-corrector, because the acceleration

(second-order time derivative) is used to correct the position. Higher-order predictor-

correctors can be constructed using the same principles. In practical use, often the

correction protocol is executed more than once to obtain better corrected values.

The advantages of the Verlet method is that it requires less storage space in the com-

puter, and it is executed in one step. The Gear predictor-corrector requires more stor-

age, and at least two steps are executed to obtain the corrected values. Van Gunsteren

and Berendsen [36] performed simulations on the bovine pancreatic trypsin inhibitor,
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with or without constrainted bond lengths, and with the Gear predictor-corrector or

the Verlet algorithm. They found that for non-constrained dynamics, a high-order (at

least fourth order) Gear predictor-corrector was more accurate than the Verlet algo-

rithm when the time-step was smaller than about 1.5 fs, but at larger time-steps, the

Verlet algorithm was more accurate. For constrained dynamics, the Verlet algorithm

was more accurate when the time-step was longer than 1 fs. A detailed evaluation of

the two methods can be found in Fincham and Heyes [37]. In this work, the Verlet

method was used for all molecular dynamics simulations.

6.1.3 Simulation of Biological Molecules

By the 1960’s, both Monte Carlo and molecular dynamics methods had been well

developed. The simulation engine of going from one configuration to the other was

efficient. Nevertheless, it was difficult to simulate biological molecules because they

often consisted of long chains of atoms, capable of dihedral rotations. Potentials had

to be developed to describe the properties of biological molecules before any simulation

could be done.

6.1.3.1 Pure protein simulations

The incentive to develop a potential to describe the properties of biological molecules

came from crystal structure refinement. In the 1960’s, the structure of a protein was

refined using a geometric method [38]. Levitt and Lifson [39] proposed an alternative

refinement method using an energy minimization scheme. The energy of the protein
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was considered to be a sum of different contributions:

E =
∑
bonds

kb
2

(b− bo)2 +
∑
angles

kθ
2

(θ − θo)2 +
∑

dihedrals

kφ
2

[1 + cos(nφ− δ)]

+
∑

non−bonded

ε

[(
ro

r

)12

− 2

(
ro

r

)6
]

+
∑

all coords

w

2
(xi − xo)2 . (6.1.14)

The first term describes the bond energy, where bo is the ‘ideal’ bond length and b

the actual bond length, and kb an empirical constant. The second term is similar to

the first term, except that bond angles deviations are being considered. The third is a

dihedral angle term, where kφ, n and δ are constants. The fourth term considers the

interaction between atoms separated by at least three bonds, and takes on the usual

form of the Lennard-Jones 12-6 potential (Cf. Eq. (6.1.1)), with ro being a constant

and r the distance between the non-bonded atoms. The last term is a constraining

force, where xo is the crystallographic coordinate of an atom, and xi the coordinate

after refinement.

In Levitt and Lifson’s scheme, hydrogen atoms were combined with the heavy atoms

(united atom potential). The energy was minimized by steepest descent. They applied

this method to the heavy atom coordinates of lysozyme and myoglobin, and obtained

refined coordinates which deviate, respectively, from the crystallographic coordinates

by 0.22 Å and 0.086 Å r.m.s. The results for myoglobin were in good agreement with

the uncertainty of the experimental data which was 0.1 Å r.m.s. Levitt and Lifson

subsequently simplified the energy function in the same paper, and eliminated the w-

term, and modified the Lennard-Jones potential:
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E =
∑
bonds

kb
2

(b− bo)2 +
∑
angles

kθ
2

(θ − θo)2 +
∑

dihedrals

kφ
2

[1 + cos(nφ− δ)]

+
∑

non−bonded

ε

[(
Ro

Rij

)12

− 2λ

(
Ro

Rij

)6
]

, (6.1.15)

where λ was an interaction function (0 < λ < 1), Ro was a constant and Rij was the

distance between the non-bonded atoms. Using this modified energy scheme, they ob-

tained refined myoglobin coordinates which deviate by 0.15 Å from the crystallographic

coordinates.

This work showed that this energy function, LL69, obtained from educated guesses,

was capable of reproducing essential features of a protein. The work was later extended

by Levitt [40] with a more complicated bond angle term. Better refinement of the

structures were obtained.

6.1.3.2 Simulation of membrane bilayers

The first simulation of membrane bilayers was performed by van der Ploeg and Berend-

sen [41]. In this system, they used a simple model for the phospholipid. Only three

types of atoms were defined: head groups, methylene units and methyl end groups. Even

with such a united-atom potential, the researchers were able to reproduce some essen-

tial features of the structure of phospholipids, for example, the bond order parameter

of the alkyl CH2 groups.

A few years later, Egberts and Berendsen [42] performed a simulation of another

system consisting of 76 decanol molecules, 52 decanoate ions, 52 Na+ ions and 526 water

molecules. Unlike the previous work, the system was treated in full atomic detail in the
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head groups, and the whole system had total 3166 atoms. Due to the increase of the

detail, this research gave a better match between the dynamical variables of simulations

and that of experiments than previous simulations of membrane bilayers did.

Subsequently, more sophisticated models were developed for phospholipid molecules.

In this work, we used the CHARMM potential for DMPC [43].

6.1.4 Thermodynamics Ensembles

For more sophisticated simulations, we might want to simulate a system at constant

pressure and constant temperature, to mimic most experimental conditions. To achieve

this, molecular dynamics methods allow the incorporation of thermostats and barostats

into the propagation protocol. In this work, we used exclusively the Nosé-Hoover [44]

thermostat and a modified form of the Nosé-Hoover barostat, mainly because they give

a true NPT ensemble, rather than just keeping the temperature and pressure constant.

6.1.4.1 Thermostat

Normally, Newton’s equations of motion can be written as:

dr(t)

dt
= v(t) (6.1.16)

dv(t)

dt
=

F(t)

m
, (6.1.17)

where r(t), v(t) and m are the position, velocity and mass of each atom in the system

respectively.
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In the Nosé-Hoover formulation, an additional term is added to the second equation:

dv(t)

dt
=

F(t)

m
− χ(t)v(t) , (6.1.18)

where the frictional constant χ(t) is defined by

dχ(t)

dt
=

1

τ 2
T

(
T

Treq
− 1

)
(6.1.19)

with τT a constant and Treq the requested temperature.

The integration of these equations requires several iterations.

6.1.4.2 Barostat

The barostat we used in our work is a modified form of the Nosé-Hoover barostat. The

constant-temperature equations of motion become:

dr(t)

dt
= v(t) + η(r(t)−R0)

dv(t)

dt
=

F(t)

m
− [χ(t) + η(t)]v(t)

dχ(t)

dt
=

1

τ 2
T

(
T

Treq
− 1

)
dη(t)

dt
=

1

NkBTreqτ 2
P

V (t)(P − Preq)

dV (t)

dt
= [3η(t)]V (t) , (6.1.20)

where η is the barostat friction constant, R0 center of mass of the system, τP a time

constant, P the instantaneous pressure, Preq the requested pressure and V the volume

of the system. As the case of thermostat, the integration needs several iterations to

achieve convergence.
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6.1.5 Ewald Summation

The Coulomb potential of two charged atoms is a long-range potential proportional to

the inverse of the distance between them. Since we use periodic boundary conditions

in our simulations, the Coulomb potential could sum to infinity. To prevent this from

happening, we use the Ewald summation method [45]. In this method, each charged

atom is firstly neutralized by superposing a spherical gaussian cloud of opposite charge

on its center which makes the combined-potential short range and summable. Secondly

another set of gaussian charges are superposed again to nullify the effect of the first

gaussian charges. The two sets of Gaussian charges cancel each other, so the total

charges summed are not changed. However, the original infinite sum is changed to two

finite sums, and this can avoid the problem of summing to infinity.

6.2 Energy Representation of Solution Theory

In the evaluation of free energy change of solvation, in principle only the initial and final

states of a process are required for the calculation. However, the two commonly used

methods, thermodynamic integration (TI) and free energy perturbation (FEP), both

require a large number of intermediate states for evaluating free energy changes. The

method of energy representation of solution theory (ERnST), which was developed by

Matubayasi [46, 47, 48], does not require intermediate states, so is 40–200 times faster

than either TI or FEP, and yet its results are within 5% those obtained from FEP.
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6.2.1 Basic Derivation

In this method, we first construct an instantaneous distribution of the solvent molecules

relative to a solute molecule ρ̂f defined as:

ρ̂f (x) =
∑
i

δ(x− xi) , (6.2.1)

where xi is the full coordinates of ith solvent molecule which include positions, orien-

tations and, if they exist, the intramolecular degrees of freedom, and δ the Dirac delta

function. The summation is taken over all the solvent molecules. The superscript f

emphasizes that the full coordinates are used.

When the solute-solvent interaction potential is u, the distribution function ρf can

be generated from taking an ensemble average over the instantaneous distribution func-

tion:

ρf (x;u) =
〈
ρ̂f (x)

〉
u

, (6.2.2)

where the subscript u denotes that the ensemble average is taken in the solution with

solute-solvent interaction potential u. This potential u can take a subscript λ so that

when λ = 1, uλ is the normal potential, but when λ = 0, uλ denotes a zero potential. In

FEP and TI, λ is varied gradually to take the system from the initial state to the final

state. This is not performed in ERnST, but this variable is used in the derivation.

ERnST is introduced by changing the coordinates of the solvent molecules from full

coordinates to solute-solvent interaction energies:

ρ̂e(ε) =

∫
dxδ

(
vf (x)− ε

)
ρ̂f (x) =

∑
i

δ
(
vf (xi)− ε

)
, (6.2.3)
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where v ≡ u(λ=1)

ρe(ε;u) = 〈ρ̂e(ε)〉u =

∫
dxδ

(
vf (x)− ε

)
ρf (x;u) . (6.2.4)

ERnST evaluates the free-energy change ∆µ of a process, without having the need

to invoke intermediate states. The basic principle of this method draws analogy from

density functional theory, and starts from the Kirkwood charging formula [49, 50, 51],

which is an integration over the coupling parameter λ:

∆µ =

∫ 1

0

dλ

∫
dx
∂uλ(x)

∂λ
ρf (x;uλ) , (6.2.5)

where λ changes from 0 to 1 in going from the initial to the final state. Integration by

parts gives

∆µ =

∫
dxv(x)ρf (x; v)−

∫ 1

0

dλ

∫
dxuλ(x)

∂ρf (x;uλ)

∂λ

≡
∫
dxv(x)ρf (x; v)− F f

[
ρf (x;uλ)

]
, (6.2.6)

where F f is a density-functional as defined above. By introducing the indirect part ωf

of the potential of mean force, and defining ρf (x;uλ) ≡ ρfλ(x):

ρfλ(x) = ρf0(x) exp

{
−β
[
u(x; ρfλ) + ωf (x; ρfλ)

]}
. (6.2.7)

Eq. (6.2.6) and Eq. (6.2.7) lead to

F f [ρf (x)] = kBT

∫
dx

[(
ρf (x)− ρf0(x)

)
− ρf (x)log

(
ρf (x)

ρf0(x)

)

− β
(
ρf (x)− ρ0(x)

)∫ 1

0

dλωf (x; ρfλ)

]
. (6.2.8)

After applying ERnST we can show that the Kirkwood charging formula becomes

∆µ =

∫ 1

0

dλ

∫
dε
∂uλ(ε)

∂λ
ρe(ε;uλ) . (6.2.9)
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It can be proved that

∆µ =

∫
dε ερe(ε)− kBT

∫
dε

[(
ρe(ε)− ρe0(ε)

)
− ρe(ε) log

(
ρe(ε)

ρe0(ε)

)

−
{
α(ε)F (ε) +

(
1− α(ε)

)
F0(ε)

}(
ρe(ε)− ρe0(ε)

)]
, (6.2.10)

where

F (ε) =


βwe(ε) + 1 +

βwe(ε)
exp
(
−βwe(ε)

)
− 1

when we(ε) ≤ 0

1
2
βwe(ε) when we0(ε) ≥ 0

(6.2.11)

F0(ε) =


−log

(
1− βwe0(ε)

)
+ 1 +

log
(
1− βwe0(ε)

)
βwe0(ε)

when we0(ε) ≤ 0

1
2
βwe(ε) when we0(ε) ≥ 0

(6.2.12)

α(ε) =


1 when ρe(ε) ≥ ρe0(ε)

1−
(
ρe(ε)− ρe0(ε)
ρe(ε) + ρe0(ε)

)2

when ρe(ε) ≤ ρe0(ε) .

(6.2.13)

In addition,

we(ε) = −kBT log

(
ρe(ε)

ρe0(ε)

)
− ε (6.2.14)

and

we0(ε) = −kBT
∫
dη

(
δ(ε− η)

ρe0(ε)
− (χe0)

−1 (ε, η)

)(
ρe(η)− ρe0(η)

)
, (6.2.15)

where χe0 is the correlation matrix defined as

χe0(ε, η) =
〈
ρ̂e(ε)ρ̂e(η)

〉
0
−
〈
ρ̂e(ε)

〉
0

〈
ρ̂e(η)

〉
0

. (6.2.16)

The solvation free energy can be evaluated from Eq. (6.2.10) – (6.2.15), with the

inputs (ρe, ρe0, χ
e
0) given by Eq. (6.2.4) and Eq. (6.2.16).

53



Chapter 7

Simulation and Analysis

Previous work suggests the relation between general anesthetics and membranes, so the

following simulations were performed to study this question.

7.1 Approach

We used hydrated DMPC as a model of the cell membrane, halothane as a model

GA molecule and pure water as a model of the body fluid. The DMPC lipid bilayer,

the halothane molecule, and the surrounding water were put in an orthorhombic box

whose size is 54 Å(x direction) by 54 Å(y direction) by 63 Å(z direction). The lipid

bilayer is positioned perpendicularly to the z direction and thus the DMPC molecules

are arranged in the x-y direction. The origin of the z-axis is so chosen that the x-y

plane bisects the box in the z direction. The bisecting plane of the lipid bilayer is then

fixed to coincide with the x-y plane. Applying the orthorhombic periodic boundary

condition [21], the system we actually simulated looks like a set of infinitely extending
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bilayers in the x-y direction, and such planes repeat themselves for infinite number of

times in the z direction. The initial configuration of the hydrated DMPC bilayer we

used was obtained from previous work done by Zubrzycki et al. [52].

To find out where the halothane molecule is most likely to be in the cell membrane,

the membrane was divided along its z-axis into four regions. They are defined as follows:

1. region I

−5 Å< z <5 Å

2. region II

−10 Å< z < −5 Å and 5 Å< z <10 Å

3. region III

−15 Å< z < −10 Å and 10 Å< z <15 Å

4. region IV

−20 Å< z < −15 Å and 15 Å< z <20 Å

The hydrated DMPC membrane and the divisions are visualized in Fig. 7.1.

The free-energy change of a halothane molecule being moved from vacuum into any

of these regions in the membrane was evaluated. Another set of calculations are also

performed to evaluate the free-energy change of inserting a halothane from vacuum into

water. The complete procedure was first performed at atmospheric pressure (105 Pa),

and then repeated at 2× 107 Pa (200 atm) and at 4× 107 Pa (400 atm).

To evaluate the free energy change, ERnST was used. In this method, there were

two kinds of simulations. One is to insert the solute from vacuum into an equilibrated
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Figure 7.1: Diagram of a hydrated DMPC membrane. The oxygen atoms are shown in

red, the hydrogen atoms in white, the phosphorus atoms in orange and the carbon atoms

in gray. The scale on the left shows the divisions of the membrane into different regions.

environment (called the ‘reference solvent’ system) and calculate the interaction energy

between the solute and molecules in the environment. The other is to equilibrate a sys-

tem consisting of the solute dissolved in the environment, and evaluate the interaction

energy between the solute and molecules in this equilibrated environment. This system

is called the solution system.

The interaction energy distributions of both the reference solvent and the solution

are needed by ERnST to evaluate the free-energy change of inserting a solute into the

environment. The interaction energies were binned to obtain the interaction energy
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distributions. The binning was performed in a special way which had four segments:

1. From −1.3× 10−19 J to −1.5× 10−21 J with interval 2.5× 10−22 J

2. From −1.5× 10−21 J to +1.5× 10−21 J with interval 1.0× 10−23 J

3. From +1.5× 10−21 J to +7.0× 10−20 J with interval 2.5× 10−22 J

4. From +7.0× 10−20 J to +7.0× 10−11 J with 200 logarithmic intervals.

It means that the bin width is a constant under the logarithmic axis and the

number of bins is 200.

The free-energy change of moving a halothane molecule from water into the mem-

brane was divided into two parts: one is the free-energy change of moving a halothane

from water into vacuum, and the other is the free-energy change of moving it from

vacuum into the membrane. The addition of both parts is the free-energy change we

wish to get. Finally, the layer with the most negative value of the free energy change

would be the one the halothane most likely to be in.

7.2 Conditions of the Simulations

All the simulations were performed in the isotropic NPT ensemble [53], where the

number of molecules, the pressure and the temperature were kept constant. The tem-

perature used was 310 K, and the thermostat time constant was 1 ps. The pressure used

was either 105 Pa, 2× 107 Pa or 4× 107 Pa. The barostat time constant was 5 ps.

The CHARMM potential [43], the TIP3P model [54, 55] and the Scharf-Laasonen

model [56] were used for DMPC, water and halothane, respectively. Non-bonded forces
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were cut off at 13 Å with long-range correction. Particle-mesh Ewald summation was

applied to evaluate electrostatics, with a real-space cut-off of 13 Å, the Ewald conver-

gence parameter being 0.24374, and the k-vector (8, 8, 8). The details of simulations

are shown in Table 7.1.
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Chapter 8

Results and Discussion

Fig. 8.1 shows the free-energy change of inserting a halothane into different environ-

ments and Fig. 8.2 shows the structures of the membrane at different pressures.
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Figure 8.1: Two diagrams showing the same results with different presentation methods.

Bulk: free-energy change of moving a halothane from vacuum into bulk water. Region I–IV:

free-energy change of moving a halothane from vacuum into the respective regions. The

standard deviations are shown by the error bars.

The free-energy change of inserting a halothane from vacuum into bulk water is

about 10 kJmol−1. This value increases from 9.1 kJmol−1 at 105 Pa, to 11.0 kJmol−1 at
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Figure 8.2: Diagram showing the probability of finding an atom in the z-direction of the

hydrated membrane. The blue line shows the distribution of the choline nitrogen, the gray

line displays the distribution of the methylene carbon of the alkyl tail, and the red line

shows the distribution of water oxygen atoms. The solid line denotes data at 105 Pa, the

dashed line denotes data at 2× 107 Pa, and the dotted line denotes data at 4× 107 Pa. We

can see from this diagram that the structures of the membrane are basically the same at

different pressures.

4× 107 Pa. This change is statistically significant.

The free-energy change of inserting a halothane from vacuum into hydrated DMPC

is dependent on the region. In region I (−5 Å< z < 5 Å), as the pressure increases

from 105 Pa to 2 × 107 Pa, the free-energy change increases from −19.6 kJmol−1 to

−17.4 kJmol−1. However, at 4 × 107 Pa, the free-energy change is −19.3 kJmol−1. In

region II (−10 Å< z < −5 Å and 5 Å< z < 10 Å), as the pressure increases from 105 Pa

to 2 × 107 Pa, the free-energy change increases from −22.7 kJmol−1 to −21.8 kJmol−1.

However, at 4 × 107 Pa, the free-energy change slightly reduces to −21.9 kJmol−1. In

region III (−15 Å< z < −10 Å and 10 Å< z < 15 Å), as the pressure increases from
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105 Pa to 2 × 107 Pa then to 4 × 107 Pa, the free-energy change increases monoton-

ically from −26.2 kJmol−1 to −25.3 kJmol−1 then to −24.6 kJmol−1. In region IV

(−20 Å< z < −15 Å and 15 Å< z < 20 Å), the free-energy change also increases

monotonically from −24.0 kJmol−1 to −23.6 kJmol−1 then to −20.0 kJmol−1 when the

pressure increases from 105 Pa to 2× 107 Pa then to 4× 107 Pa.

The free-energy change of inserting a halothane from bulk water into the most

favorable region of hydrated DMPC is −35.3 ± 2.5 kJmol−1, −35.0 ± 1.8 kJmol−1 and

−35.6 ± 1.9 kJmol−1 at 105 Pa, 2 × 107 Pa and 4 × 107 Pa, respectively. These values

most reflect the movement of the general anesthetic from the bloodstream into the

brain. With the result of Fig. 8.2, we thus conclude that we are not able to detect

any statistically significant difference in the free-energy change of halothane going from

bulk water to hydrated DMPC nor the structure of the hydrated membrane when the

pressure changes.
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Chapter 9

Conclusion

The site and mechanism of action of general anesthetics are still not fully understood.

Research work dating back to the 19th century suggests that the phospholipid mem-

brane is involved, but its role is unclear. Recent view has shifted towards a site of

action in the membrane proteins [57]. In this work, we aim to quantify the interaction

of general anesthetics with a model membrane, the hydrated DMPC bilayer.

Previous experimental studies of the location of halothane have used different am-

phipathic model molecules. Baber et al. applied nuclear magnetic resonance (NMR)

methods to measure the effect of halothane and a number of halo-alkane general anes-

thetics on a palmitoyl-oleoyl-phosphatidylcholine (POPC) membrane, and they discov-

ered that halothane preferentially stays in the region of the membrane-water interface,

and in the region of the upper portion of the acyl chain [58]. Yoshino et al. used

sodium dodecyl sulphate (SDS), and applied NMR to locate the anesthetic near the

polar head of the SDS molecules. They concluded that halothane did not penetrate

into the hydrophobic core [59].
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Tu et al. performed molecular dynamics simulations on a halothane-DPPC system.

They placed 4 halothane molecules into 64 phospholipids and 1792 water molecules [16],

or 32 halothane molecules into the same hydrated DPPC system [17], and carried

out simulations for 1.5 ns on both systems. Halothane did not appear to exhibit any

preferred location from their first set of results, but they reported that halothane was

located preferentially to the more peripheral part of the acyl chains. In clinical use, the

concentration of halothane is about 0.1 that of the membrane phospholipids. Therefore,

the concentration of halothane used in the later simulation was considerably higher than

clinical dosage.

Koubi et al. performed molecular dynamics simulations of 3.7 ns on a system consist-

ing of 64 molecules of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC),

1760 water molecules and 16 molecules of halothane [60]. They discovered that halothane

exhibited three peak distributions within the membrane, one at the centre of the mem-

brane in its lipid core, and two at the head of the acyl chains of SDPC. Pickholz et al.

developed a coarse-grained model of DMPC, and performed simulations on system con-

sisting of 512 phospholipids, 4384 water molecules and halothane [18]. The number of

halothane molecules used were, respectively, 0, 64, 128, 256, 384 and 512. The authors

observed that halothane always partitioned to the upper part of the acyl chain. Sub-

sequently, Vemparala et al. performed molecular dynamics on system consisting of 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) with embedded helical peptide bundles

based on the transmembrane domains of the nicotinic acetylcholine receptor [61]. Using

steered molecular dynamics, they also evaluated the free energy profile of halothane in

a hydrated system of 72 DOPC molecules.
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This work has applied ERnST to evaluate the free-energy change of inserting a

halothane from bulk water to different regions of a hydrated DMPC bilayer, at pressures

of 105 Pa, 2×107 Pa and 4×107 Pa. The simulations results indicate that the influence of

pressure on the free-energy change is very small and so is that on the regional preference

of halothane in membrane.

This work has only touched upon the effect of pressure on the free-energy change

of insertion of halothane. Previous work [62] suggests that as the pressure increases,

halothane tends to aggregate inside the cell membrane. However, those simulations

were rather short (less than 1 ns) and the concentration of halothane used was well

above clinical concentrations. It would be interesting to perform longer simulations

of hydrated DMPC with a clinical concentration of halothane, to see if aggregation is

indeed observed at higher pressures. If so, we could extend the application of ERnST to

evaluate the free-energy change of aggregation. In addition, the phospholipid molecules

are not limited to DMPC, other molecules such as DPPC, POPC, etc. should also be

used in simulations for comparison.
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[27] M. Born and T. von Karman, “Über schwingungen in raumgittern,” Physikalische

Zeitschrift, vol. 13, pp. 297–309, 1912.

[28] W. W. Wood and F. R. Parker, “Monte carlo equation of state of molecules in-

teracting with the lennard-jones potential. i. a supercritical isotherm at about

twice the critical temperature,” The Journal of Chemical Physics, vol. 27, no. 3,

pp. 720–733, 1957.

[29] W. W. Wood and J. D. Jacobson, “Preliminary results from a recalculation of the

monte carlo equation of state of hard spheres,” The Journal of Chemical Physics,

vol. 27, no. 5, pp. 1207–1208, 1957.

69



[30] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,”

The Journal of Chemical Physics, vol. 27, pp. 1208–1209, 1957.

[31] B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. I. general

method,” The Journal of Chemical Physics, vol. 31, pp. 459–466, 1959.

[32] B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. II. behavior

of a small number of elastic spheres,” The Journal of Chemical Physics, vol. 33,

no. 5, pp. 1439–1451, 1960.

[33] A. Rahman, “Correlations in the motion of atoms in liquid argon,” Physical Review,

vol. 136, pp. A405–A411, Oct 1964.

[34] L. Verlet, “Computer ”experiments” on classical fluids. i. thermodynamical prop-

erties of lennard-jones molecules,” Phys. Rev., vol. 159, p. 98, Jul 1967.

[35] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations.

Upper Saddle River, NJ, USA: Prentice Hall PTR, 1971.

[36] W. F. van Gunsteren and H. J. C. Berendsen, “Algorithms for macromolecular

dynamics and constraint dynamics,” Molecular Physics, vol. 34, no. 5, pp. 1311–

1327, 1977.

[37] D. Fincham and D. Heyes, “Integration algorithms in molecular dynamics,” CCP5

Quarterly, vol. 6, pp. 4–10, 1982.

[38] R. Diamond, “A mathematical model-building procedure for proteins,” Acta Crys-

tallographica, vol. 21, no. 2, pp. 253–266, 1966.

70



[39] M. Levitt and S. Lifson, “Refinement of protein conformations using a macro-

molecular energy minimization procedure,” Journal of Molecular Biology, vol. 46,

no. 2, pp. 269–279, 1969.

[40] M. Levitt, “Energy refinement of hen egg-white lysozyme,” Journal of Molecular

Biology, vol. 82, no. 3, pp. 393–420, 1974.

[41] P. van der Ploeg and H. J. C. Berendsen, “Molecular dynamics simulation of a

bilayer membrane,” The Journal of Chemical Physics, vol. 76, no. 6, pp. 3271–

3276, 1982.

[42] E. Egberts and H. J. C. Berendsen, “Molecular dynamics simulation of a smectic

liquid crystal with atomic detail,” The Journal of Chemical Physics, vol. 89, no. 6,

pp. 3718–3732, 1988.

[43] A. MacKerell, D. Bashford, M. Bellott, R. Dunbrack, J. Evanseck, M. Field, S. Fis-

cher, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. Lau,

C. Mattos, S. Michnick, T. Ngo, D. Nguyen, B. Prodhom, W. Reiher, B. Roux,

M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-

Kuczera, D. Yin, and M. Karplus, “All-atom empirical potential for molecular

modeling and dynamics studies of proteins,” Journal of Physical Chemistry B,

vol. 102, no. 18, pp. 3586–3616, 1998.

[44] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,”

Phys. Rev. A, vol. 31, pp. 1695–1697, Mar 1985.

71



[45] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,”

Annalen der Physik, vol. 369, pp. 253–287, 1921.

[46] N. Matubayasi and M. Nakahara, “Theory of solutions in the energetic repre-

sentation. I. Formulation,” The Journal of Chemical Physics, vol. 113, no. 15,

pp. 6070–6081, 2000.

[47] N. Matubayasi and M. Nakahara, “Theory of solutions in the energy representa-

tion. II. Functional for the chemical potential,” The Journal of Chemical Physics,

vol. 117, pp. 3605–3616, Aug 2002.

[48] N. Matubayasi and M. Nakahara, “Theory of solutions in the energy representa-

tion. III. Treatment of the molecular flexibility,” The Journal of Chemical Physics,

vol. 119, pp. 9686–9702, Nov 2003.

[49] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids. Academic Press,

2006.

[50] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford University

Press, 1989.

[51] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms

to Applications. Academic Press, 2002.

[52] I. Z. Zubrzycki, Y. Xu, M. Madrid, and P. Tang, “Molecular dynamics simulations

of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline

phase,” The Journal of Chemical Physics, vol. 112, no. 7, pp. 3437–3441, 2000.

72



[53] S. Melchionna, G. Ciccotto, and B. L. Holian, “Hoover npt dynamics for systems

varying in shape and size,” Molecular Physics, vol. 78, pp. 533–544, 1993.

[54] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,

“Comparison of simple potential functions for simulating liquid water,” The Jour-

nal of Chemical Physics, vol. 79, no. 2, pp. 926–935, 1983.

[55] A. R. Leach, Molecular Modelling: Principles and Applications. Prentice Hall,

2nd ed., 2001.

[56] D. Scharf and K. Laasonen, “Structure, effective pair potential and properties of

halothane,” Chemical Physics Letters, vol. 258, no. 1-2, pp. 276–282, 1996.

[57] L. Nelson, T. Guo, J. Lu, C. Saper, N. Franks, and M. Maze, “The sedative

component of anesthesia is mediated by GABAA receptors in an endogenous sleep

pathway,” Nature Neuroscience, vol. 5, pp. 979–984, August 2002.

[58] J. Baber, J. F. Ellena, and D. S. Cafiso, “Distribution of general anesthetics in

phospholipid bilayers determined using 2h nmr and 1h-1h noe spectroscopy,” Bio-

chemistry, vol. 34, no. 19, pp. 6533–6539, 1995.

[59] A. Yoshino, T. Yoshida, H. Okabayashi, H. Kamaya, and I. Ueda, “19f and1h nmr

and noe study on halothane-micelle interaction: Residence location of anesthetic

molecules,” Journal of Colloid and Interface Science, vol. 198, no. 2, pp. 319–322,

1998.

[60] L. Koubi, L. Saiz, M. Tarek, D. Scharf, and M. Klein, “Influence of anesthetic

and nonimmobilizer molecules on the physical properties of a polyunsaturated

73



lipid bilayer,” Journal of Physical Chemistry B, vol. 107, no. 51, pp. 14500–14508,

2003.

[61] S. Vemparala, L. Saiz, R. G. Eckenhoff, and M. L. Klein, “Partitioning of Anes-

thetics into a Lipid Bilayer and their Interaction with Membrane-Bound Peptide

Bundles,” Biophys. J., vol. 91, no. 8, pp. 2815–2825, 2006.

[62] P.-L. Chau, P. N. Hoang, S. Picaud, and P. Jedlovszky, “A possible mechanism

for pressure reversal of general anaesthetics from molecular simulations,” Chemical

Physics Letters, vol. 438, pp. 294–297, 2007.

74


