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Abstract

; -1.__)|L'?.f-‘-jf'£ﬂ.fl:’_:
Two topics are covered b '“ﬂh he maX m IML d method and molecular
&

5 . e =
dynamics &mulaﬂo&g‘g‘f genéral anesthe ot ot . ".;l
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For the first c I 1ntr : its application

o I
in analyzing time ser
‘f}‘? A | B

b 4 g - - 5
For the s%d fopig ar D) gunﬁktlons and the

LS : 1 : by
method of ene,gg';Y represe ion tolgeneralranesthetic res ..'g_si_n%g\ﬁ}e MD simula-
tions and the m‘ﬁhod of energ -energy change

B 20N
of inserting a haloﬁga;?nble};. 6 ‘
g "f:'-:!l

; - J;". F
ayti{ at {;Efész,sures of ]L%%n Eii j;rﬁ-ﬁld 400 atm. It is found

phatidylcholine DMP@%
e

that halothane preferentially r@w@lﬁfﬁﬁtﬁﬁﬁm the headgroup and the lipid

tails, between 10 A and 15 A from the centre of the membrane. It is also found that

_nl.ﬂ' 'i|

pressure has no detectable effect on the free-energy change of inserting a halothane from
bulk water to DMPC, and does not change the regional preference of halothane, either.
Keywords: maximum likelihood, data analysis, energy representation, molecular

dynamics simulations, halothane, DMPC, free-energy change
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Chapter 1
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Introduction

7%, o
i

‘ﬁr‘ A
When seeking 'ﬁaﬁ Q;E’ a,:@a%yze a series of
v -]
Lo

u.--.

series data could Tﬂ};eﬂ%’é}u t " nisn drfv-rﬁrg t;hq, processes which,
. n f
in turn, give rise to t%hbséii_ esl; ‘ alread avﬁﬁﬁhmﬁffr of hypotheses about

L)

—m

the mechanism, how do We% e.?!g)ﬂh'"ble and what are the values
of the parameters related to this hypothesm'?
In this work, we have to propose candidate mechanisms, and apply statistical meth-
ods to see which mechanism would be in the best position to give the observations. We
use statistical methods to achieve this.
In a seminal paper on the application of statistics in the natural sciences, R.A. Fisher

divided the problems of statistics into three types [1]:

(1) Problems of Specification. These arise in the choice of the mathe-
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matical form of the population (the term ‘population’ in this case refers

to the distribution of the values of observables).

(2) Problems of Estimation. These involve the choice of methods of cal-
culating from a sample statistical derivates, or as we shall call them

statistics, which are designed to estimate the values of the parameters

of the hypothetical populati
yp g el IS DTN
:l ._'JJ ‘{ LE1F
(3) Problems of -Ib]strlbut‘bﬁ&ﬁ These_ég_ﬂude dls@#l:ésllons of the distri-
. L
bution ()Z?‘Siatlﬁ{f “dexi | b@{'g‘ener&ﬂ' any functions
.e'{ '

roposiﬁ;g‘-mathematical
.I:"..-' l"\..!
. Ote ﬂ}e mathematical
i'r it
1S’ are evaluat d and this is the

” a'p,,i-_:
problem of the Second type fh‘& of @mmatlon In-t‘hls WO I f“'ol'\;us mainly on problems
of this type, and the data T 3ﬁ“rt lyze is a_ t - eries

A “f’ i

A time series data with an internal structure can usually be described by a probabil-

ity distribution function. For example, take a time series data of an ion channel which
has an open and a closed state. In this case, the data are the time durations of the
open state, or open time durations. Suppose an ion channel is closed at the beginning
of the time series, and remains closed for the next second, then opens for 2, closes for
1s and then opens for 3s, we obtain two opening time durations, one of 2s and the
other of 3s (Fig. 1.1). In my research, the time series is much longer and consists of a

3



large number of observations of open time durations. In the case of ion channels, it has
been observed that the open time durations has a large variation. Its order ranges from
several us to several ms. However, for most ion channels, the probability of having a
short open time duration is large, and it drops as the open time duration increases. It

can be shown that the probability distribution of the open time durations follows an

exponential decay.

state of the channel bemg o@@ﬁ}en clo ﬁfﬁ% known as two-dimensional
=2

analysis, because if the data are plotted out, in addition to the time axis, there are
two more axes, one for open time durations and the other for closed time durations.
Naturally, this kind of analysis can be extended to more complicated sequential states,

leading to higher-dimensional analyses.



Chapter 2

%}\%mpose a prob-

he probability

5)
ith the observed prob-

-

ability distrib' on for
%l ‘

ability distribution. & ; eed- t 4000 ' et values for the

The probability distribution we wish to know can be written as a probability density
function (pdf) p of the observables, y1,¥s, ..., yn, With some parameters, 6;,0s,...,0,,

which describe this probability density function:

p(y17y27,yn|91702;79m) Ep(@ﬂé) (211)

where gy is an n-dimensional vector representing one datum and 6 an m-dimensional
vector representing a set of parameters. The line between § and 6 means “y given 07,
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and denotes a conditional probability. In practice, however, we are given a number of
data y and we wish to find what the best values for the parameters g are.

So R.A. Fisher introduced a quantity named “likelihood” [1]:

The likelihood that any parameter (or set of parameters) should have any
assigned value (or set of values) is proportional to the probability that if

this were so, the totality of obs .,.sh_ould be that observed.
1.__:uﬁr T ' "’.{l:’_: S e
L'h.l *"

Simply put, hkehhood ﬁ\g-tluantlt?' E show@ 'llkely, : relatlve sense, a set of
et L

3 iﬁ?{h\(‘e toi’,q,'l!!number of data are

parameters are re&p\m&bl

k, and §' denot f}th i--~
:- Wi
& el
fEé!: ) ‘I"F.'ll‘
'“(':'l o 'if:a‘d
' ’3:: » 'IS‘ 2.1.2
';Ei;- i . Bl b “::"r'. | ( M )
-t Y ¢ .}l::-.! '“.‘."I
by "4'“ el
where {'} denote “a ™ r,-*'i:f-;"
.-:-I
Given a set of obse od a'i;ér {y-' ‘é'\nd a poﬁ.@‘ted p ﬂé with undetermined
-'|:-. r — l_'.-

I'-ﬁl

parameters 0 the most probaﬁle“"é‘lﬂg @;m Biileters will maximize the likelihood

L(0]{7'}). Hence we can find the most probable values of the parameters by maximizing
its likelihood.

In practice, we often maximize the logarithm of the likelihood or log-likelihood,
100|{4"}), instead of the likelihood because of the less computing time cost in doing

addition than doing multiplication. The log-likelihood is defined as:

1(01{9'}) = log L(6{3'} Zlogp i'10) (2.1.3)



2.2 Maximization of Functions

In this work the downhill simplex method [2, 3] was used to maximize the log-likelihood

function.

The problem of maximization is actually equivalent to the problem of minimization.

By adding a negative sign, the maximum becomes minimum. To make the picture

e
easier, minimization is dlscusised ﬁﬂéﬂ%ad of ma_ fﬁﬂz&flﬁ}}ln this chapter.

4 oy B e

If there are N unl'l'gte ‘ﬁnned para _'%: IHN, we{calf' say they form an -
“L"‘W' B

dimensional para.iis}eter spaée

—

_g
; LY>
point in the \%er spacefe_presents a set of

4 -"-l'
parameters and 111 'blié."lo -likeli ist a ¢ réspgndrng log-likelihood
u"'_b;! ‘ - -]
with respect tg'phat point. What w i i ith the{ﬁ@ximum value
N . pl L
of log—hkelihoc')‘d- or equi e log—lilgcﬁfihood.
'-n-. * ..: T ru-s.,.
The concept of 15’-7:1" d leé rql.uhg a ball down
|I 1 .-‘- ‘ |': .:rl. g
from a hill, this methodf"mlls Si imensional” parami%ter space, so that
_ F e J “I._- 0, .'."||
L EI L I'J.
in the end the mmplex—ﬂmll step at .@’mlmmum .EAzsnnp} X l1n. N-dimensional space
l". - _ir. - *

is a geometric object with N"' + j’p jl.nts or ver.tlllqesb 'F!ar example, a simplex in two
dimensions is a triangle and in three d1mens10ns a tetrahedron. To find the minimum
value of the negative log-likelihood, we first give an initial simplex, or initial guess, in
the N-dimensional parameter space, then let the simplex roll. For each computational
step, a simplex will try to take one of the following four actions in order to make the
highest (worst) point lower (better): (a) reflection, (b) reflection and expansion, (c)
contraction, (d) multiple contraction. See Fig. 2.1 for the four possible actions in a
two-dimensional space, in which case the simplex is a triangle, and Fig. 2.2 for the

7



algorithm flowchart.

The advantage of the downhill simplex method is that there is no need to evaluate
the first derivatives of the function, only the values of the function itself is needed.
Therefore this method can be used regardless whether the function is differentiable. In
situations where we do not know the ‘landscape’ of the function, a method which does
not require the function to be differentiable is more suitable and ‘safer’.

o LS

Like many other mlmimzhﬁoL me‘s,pods th&ﬂoéxhﬁ Slmplex method also suffers
| I-'—;F . _.‘i: [ 11 n.'.'n L

he * lex can] b:e eas;];y ‘trapped’ by a local

from a local mlnlmum }»ol‘q’l,?m T

minimum (Fig 2! 3‘-) Unfortl there is no si

ution tO'@e local minimum
"m.,- A%

D'H | i \ g L e
problem. We c%n on 'a's some t%to @ce our ¢ Inﬁ'i;l-é‘r'lcé in the minimum
R ! .

we found. Forﬁ_g:Xample, e can cho Se ffere ues‘ses and perform the
= 8

o+
= |

r we can draw a profile

minimization several ti eq i the

re ts are ca
of 10g—hkehhood‘w1th res er t

e IR

-yl -
e I'ﬂ"'im-],}.m we found, at

|| & |T'.-:r|"-'5 .i!. p
least in this partlcular %‘al-e Tefolutio really ¢k globaI-Tnlnl um.
.! _:.P‘ . 'EI__J;-II i?!lr.i 3 "'Illi ""

.-"’ - = o

2.3 Log leellhOOd?%ﬁ!b TG&

In most cases, we cannot suggest a specific mechanism to account for the observed data.
Hence we do not have a complete pdf to describe the experimental data. All that we
can do is to suggest that the hypothetical pdf has a certain mathematical form. But the
pdf can be an addition of multiple components, say, an addition of three exponential
terms. If we do not know how many components there are in the pdf, we do not

know how many parameters we should use to evaluate the log-likelihood. Sometimes



high

low

Figure 2.1: Four possible actions for a step in the downhill simplex method are shown.
At the beginning of the step, the initial simplex, in this case a triangle, is shown on top.
At the end of the step, the simplex can take any one of the four actions according to the
log-likelihood change of the highest point, (a) a reflection away from the high point, (b) a
reflection and expansion away from the high point, (¢) an one-dimensional contraction from

the high point, or (d) an overall contraction towards the low point.



Initial guess

Terminating condition

Sort and assign the highest, second
highest and the lowest points
to point HI, SHI, and LO

v

Find reflection point (RE)
and replace HI if RE < HI

(@
or
(b)

Find expansion
point (EX) and
replace HI if EX < HI

Assign temp point
TMP = HI

A

Find contraction point (CO)
and replace HI if CO < HI

Multiple contraction

(d)

Figure 2.2: The algorithm flowchart of the downhill simplex method. The terminating
condition can be (1) whether the fractional change of the vector distance moved in this
step is less than a pre-defined tolerance or (2) whether the fractional difference between the
highest and the lowest log-likelihood is less than a pre-defined tolerance. The symbols (a)
(b) (c) (d) denote the four actions.
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— Log-likelihood

found.

. 4 ¥ ‘. Fu ‘.I.-_t\. i
inspecting the diagram of the
O e

1.".. _L rj .
' ,%fb,le. Mfi"t we then need is a
Ii|u‘:ll ‘ﬁ.\f_n

experimental data, b\ii;;)mos‘g-pf,‘ ‘
statistical approach: the'ﬁ‘g‘ Lkehhaﬂ!d ratie tes&"'feliL :l_;::

¥y ‘E |

The log likelihood ratio test 1s-gﬁg@ﬁg%ﬂowmg theorem. Let ll(Gnl) and

we can determme,gbe nua_:j_b >

L.

I5(6,,) be two log-likelihood functions with n; and ny parameters, respectively, and
ne > ny. Define a quantity R, called the log likelihood ratio (logarithm of the ratio of
the likelihoods)

L
R=1ly—1; =log Ly — log L; = log (;) . (2.3.1)

1

It can be shown [4] that:

If the most appropriate number of parameters is n; and the number of data

11



is large, the quantity 2R will have a x? distribution with ny — n; degrees of

freedom.

The x? distribution is explained in the next paragraph. Note that R is defined only
when Ly/L; > 1, i.e. R > 0. This is very reasonable since the more parameters we
use to fit the data, the higher the likelihood can be. From the definition, we can see

that R is a quantity describing the in

]

parameters is increased, \
r i

Before proceeding | rth%r ’ : “def A x? distribution

(2.3.2)
where I'(«) i

1]
Al“' 2.3.3
#ﬁ’ (2.3.3)

’y(a,x)E/ 2 remoda! (2.34)
0

(2.3.5)

and v, in the log likelihood case mentioned above, equals ny — n;, which means ‘the
degrees of freedom’. Therefore, by inserting the parameters o = v/2 and 8 = 2 into

12



the cdf of a I distribution, Eq. (2.3.2), we have the cdf of a x? distribution

v X
Ratein) =P (5.5)

By differentiating the cdf we obtain the pdf

Fig. 2.4 shows the pdf and cdf gt

0.8

0.7 |

06

0.5

04

03 |

02

0.1

0

With the value 2

pe(x*v) =

(1/2)]{3/21.]6/2—16—1/2

[(v/2)

0

06

04

R‘?@i '%;? d].sm{‘aumn g %S(L

(2.3.6)

(2.3.7)

H_f- Y
&3&
q;

em to decide the most

appropriate number of paral‘g%%w:ﬂk the question: what does it

mean by ‘the most appropriate’? Since we know in general the fitting will be better and

better if we use more and more parameters, it is natural to say that when the number

of parameters reaches the most appropriate one, any further increase of the number

of parameters will have a large probability to make only an insignificant increase in

the likelihood and hence a small value of 2R. An insignificant increase means there is

a large probability that this amount of increase is only a result of chance. The value

of that probability can be obtained from another function Q(«,z), also confusingly

13



named the regularized incomplete gamma function, or the regularized complementary

incomplete gamma function for discrimination. Q(«,x) is defined as:

=1-Pla,x) (2.3.8)

where I'(«, z) is the (complementary) incomplete gamma function

I,z _.)( : .E?‘ﬂ-?ﬂ&ﬂz@%) (2:3.9)
"ur:i* ) _g-
We can write Q(« w}.&vth cas - "
y ﬁf’vﬁ
(2.3.10)
This so callec% is the probability th:f%n increase of
the ‘goodnessh f it f param@ers, v, is only
I | ) et
a result of Chalﬁ b?" ow rea‘éeqf the number of

E:'} i R :L'*

essar o

parameters is nec

1-.-..

he datﬂf"U

ﬁﬁ%ﬂy the value of

# . : - ! _._\
s i':'1
is also called P valueréke F!'lg.;Q 5 fqr_plctures %% an'%‘. ,ﬂ,,

- |:-| e “"E ' i |

In practice, we often requﬁ@@aﬁ %{5&?{ ﬂﬂﬁ})ﬁ to be smaller than 0.05, 0.01

or even 0.001. For example, when we increase the number of parameters from four to
five and obtain the log likelihood ratio 2R;, we have Q(2R;|1) = @ (%,R1> = Q.
We again increase the number of parameters from five to six and obtain Q5. If we set
our standard to be 0.05, and (); < 0.05 while Q)5 > 0.05, this means that the most
appropriate number of parameters is five. However, if ()5 is still less than 0.05 when the
number of parameters is six, then we shall need to increase the number of parameters
further.

14



2.4 Geng&@ion _ ‘Numbers
N :

& ar/

In order to tes

with some 1mulaté§ata, we must

generate f?v ndem i r, which s@_"',.lmore complex
' ' i
T : =
than a simple uniform pc | : ._,t._:. J‘@\:

| Pae
Continuous gjw orm -ranc ‘ ) _?ef'si_@an be easily ob-

"? ﬂ'||

programming lan-

tained by using "'- ; insi __._i' 0 f
b 2

&
guages. It is not that eaﬁaqweverﬁé obtain E’]#ﬁndom numbers directly.

We have to use some technlques hiform random numbers out of uni-
form random numbers. There are two common methods for doing so, the inverse

transform method [3] and the rejection method [3, 5].

2.4.1 Inverse Transform Method

The inverse transform method is based on the proposition that, given an invertible

cumulative distribution function (cdf) F(z) and a uniform random number U with

15



range (0,1), the random number X = F~'(U) has a cdf F(z). It can be proved as

follows. Define the cdf of X as F, (z):
F, () = Prob(X < z)

= Prob(F~1(U) < )

— Prob(F(F~Y(U)) < F(x))

(2.4.1)

f(x) = ie—i , (2.4.2)
we first integrate the pdf to obtain its cdf
F(x) = /09«’ f(@)da' =1 —e> (2.4.3)
and find the inverse function
F ' u)=-AIn(1 —u), (2.4.4)

16



so we obtain

X =-An(1-0)

= —AIn(U) . (2.4.5)

Since U is a uniform random number with range (0,1), 1 — U is also uniform on (0, 1).

We can therefore equivalently use 1 — U to save computlng time.

\ Wadls ,@
Ch a— < c for all x.
Step 1: Generate Y with pdf g(:z:) o

Step 2: Generate a uniform random number U.

Y
Step 3: f U < M, X =Y, otherwise return to Step 1.
cg(Y)

Note that ¢ can never be less than 1. We can see this by integrating the inequality of
Step 0, f(x) < cg(x), over all values of .

The validity of this protocol can be proved as follows. Define the pdf of X as p, (x):

17



Py (2)dx = Prob{X — x + dz}

= Prob{Y — x + dz | Acceptance}

_ Prob{Y — x + dx, Acceptance}
B Prob{Acceptance}

f(x)

Prob{Y—>x+dw U<

- .ﬁ“" | .:A;IJU:\J ":-Eg:. .-- |
Pro a‘-:’,\_ S +J:E§Prob
A cg xL 1
— =N o 1_\ 0 r_, dependence

(2.4.6)

where

(2.4.7)

In order to generate the target random numbers quickly, the number of the rejection
events should be as few as possible. Since the more the rejection events, the longer the
time we need to collect a required number of random numbers. Therefore the efficiency
of the rejection method is proportional to the probability of acceptance, 1/c. Hence we
should always try to make the constant ¢ be as close to unity as possible.

Compared with the inverse transform method, the rejection method may be slower
since it has to generate two random numbers (often several times) to get only one

18



i (b)

Figure 2.6: (a) f(v) is the desired pdf; g(a) the pdfwe can already get, ' the point that
makes £2 maximum, i.c. & <1 Sl
g(m) ’ |’ i

between f(z) and g(z) be

han the inversion

on while that of
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Chapter 3

@;E?I@JE@I%.
Slmulatlom\@%cﬁﬁn

‘@‘; ,

In this chapter, @e@ i ,ioni ( i max 1iF."@hhood method

and the log h@lhood ratio test . e the simu lated @e series data

@ L
whose pdf Waﬁilnown

3.1 Simu e‘q'.‘l:

The simulated data useci‘—ﬂ?lj__a Egp-?"h five exg'gentla,l lﬁwonents The pdf p(t) is

C:-

p(t) = 2?' %ﬂ ?—e T (3.1.1)

where a; is the weight of 1th component with a condition Zle a; = 1, and 7; is the ith
characteristic time constant. The total number of independent parameters are therefore
5 x 2—1=9 with one dependent parameter a5 =1 — Z?Zl a;.

The procedures of the generation of the simulated data are as follows. First, one
of those five exponential components is chosen with a probability proportional to its
weight, a;. The inverse transform method is then used to generate a random number

20



obeying the exponential pdf just chosen, Tlie_%'. This whole process of choosing an
exponential component and then generating a random number obeying that exponen-
tial pdf is repeated until the required number of random numbers has been generated.
These procedures, of course, can be easily extended to generate random numbers whose
pdf have arbitrary number of exponential components. In this work the uniform ran-

dom numbers, which were needed by the inverse transform method, were generated by
= EfE 42r;

the intrinsic subroutines, B‘I?LNHWI\%%)ED g‘

The parametefﬁ,of the si

F‘{A.E!LQQM NUMBER(), of Intel®
o

Fortran compiler.

Ty
of the data is slmwn'*l!f::!'F'

L _.a

Table 3.1: The parameters of%ﬁiﬂﬁr@wfﬁ% a‘.?mi&e,fd:kere The values of the weights
= RS ke

a;’s are actually assigned in a relative manner, which before normalization and rounding

are 0.1, 0.3, 1, 2, 1, respectively.

3.2 Logarithmic Histograms

Histograms with linear axes such as Fig. 3.1a are actually not so informative. Another
more illuminative way to plot the histograms with a logarithmic time axis was first

21
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Figure 3.1: Two hlstograrns qﬁ.:t;‘]@tmg Wlth different binning scales are

shown. (a) Linear hlstog hventsgara-'blnned .%-a co{gt_%#a bin width in linear scale.

(b) Logarithmic histo vents hi"e-aned a conag%nat- Wldth in logarithmic
S :

scale and the hlstoi@{'fn is plotted and a s-qﬁ;xle root y—ax1s The

pdf and the corrégwndmg par

ik
_"F-

§

w

proposed by 10] Slgworﬁx and Sine [7].

In this work Sig: o__r_th al ] d} ’ t o,g—a‘r'thic histograms.

'
' LK il

_uchﬁstant width in

the logarithmic sca%}

Slmpl{q&iomg a logarithmic

i"fh!l

transformation to the%.ams of_a- I"I!near hls@hm lbec_t;"n:lese the transformation is

-|:-| r

o
done before the events are bmne&-? ﬁ}@?@j{ﬁﬂu#l

Here is the explanation of this method. Considering a pdf with n components:
plt)=) —e (3.2.1)

where the symbols are defined in the same way as Eq. (3.1.1). A logarithmic transfor-

mation to the time axis is:

Here base 10 was used for consistency. First we note that if ¢ < #', log,,(t) < logyo(t).
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Therefore the cdf becomes

F(t) = Prob{t < ¢'}
= Prob{log,,(t) < log,o(t')}
= Prob{z < 7')}

= Flog(2) (3.2.3)

where Fog(z) is the cdf with'a lc writhmi her words, we found that

I':i'll'l 4
r 'I,

the cdf’s of ¢ and z are

si:;r:T,'

L

& cdf Fog ()

|i:ll ' 4

differentiating t

(3.2.4)

The shape of pig(z) when n = 1 is like a skewed-bell. If n > 1 the shape will be
a superposition of each component’s shape (Fig 3.1b). The advantage of this kind of
histograms is that the peak of each component’s shape indicates the corresponding
characteristic time constant of that component. This can be seen by differentiating
Piog () With respect to x and equating it to zero.

In addition to the transformation of the time axis, Sigworth and Sine also changed
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the ordinate of the histograms from the linear scale to the square-root scale. It is done
by simply taking the square-root of the events number after they are binned. This

change of the ordinate makes the standard deviation for each bin equal. [7]

3.3 Data Analysis

| i - 'E_ .'3' r flu.
After generating 100000 &miﬂattﬂ Lq_e series- dlatd{ tIrz' te,_st analysis was performed
e i

. 5
without using the pd-f"‘ars p of tljl 71 ﬂi{Vas testéd,:— hoﬁ- the proposed method

n*‘- r

could recover the-"\mderlylng

ks
UH y % 'a' 4 — L =
Initially I assessé'd- the'logarithmic hi i ‘ed-data to give a rough

solution (Solu'i{_é:on 1). | i lutions 2, 3 ar!.lld 4) were obtained

= '1“.
by simply addmg more with seme he existing parameters.
‘_l . ol m\
Using these four'rpugh SO the initial" maxlﬁlurq' likelihood, four
i g ‘ 5
|J & .i'

optimized solutlon&.;\mtﬁ nesp ;
|-l—

results are shown in F-lg 3. 2’ a;zi(li ']Fibl,e 3.3. Freﬁﬂ.;-_lF 1giﬂ%" ii:vé'l"s-e: that the data were
_,.- -
not well fitted with three coﬁ;ﬁdjbm;ﬁ, but'theyjeerped]to be better fitted with four,
five and six components. So which one was the most appropriate choice for describing
the simulated data? With the help of the log likelihood ratio test, we can see from
Table 3.2 that the most appropriate number of components should be five. When the
number of components increased from five to six, the fit slightly improved. However,
the probability of this improvement being due to chance became much larger. This
means that the increase of the number of components from five to six was unnecessary.

In contrast, the other two increases (from three to four, and then from four to five) were
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necessary because the probability of the improvement of the fit being due to chance was
negligibly small. Hence this demonstration also showed the advantage of using the log
likelihood ratio test: even if all the fitting histograms seem very good, the log likelihood
ratio test can still give us quantitative indexes to help us make judgement.

It is found that the most appropriate number of components is five. The optimized
values of the corresponding parameters are listed in Table 3.3, Solution 3. We can

ol IS ST

B L&}

compare the original para,m,it;teirs1 Wlth.-,'yhe paranieters’-dgtermmed from the simulated
L

_}'F q i = [

arameter .}falues we originally put into

=-.;< -

e paramefel" values obtained

data. In the followmg-('ﬂ,x-sc a.%mon Wilﬂl-
\.

)
the simulation to-“be the ‘origi
‘7.- ] -\.‘_‘-

Ty |.||

from the s1mul&j;,ed 'dm’c-a' L 4 aximum li ehh‘ od met} oq__thé f(-:c;overed values’.

the original Vé?f}'Iies and
for the third and d fourth c

f each oﬂler). However,
b I
he or"'lgm;l and recovered

3r(1d Val

S, the

fali, '.-=- £ _:.-I. I'
values can be largel; thﬁn LQO I Note alsouthat t ‘racter,}stm 1ﬁ'!me constants for
I._% W "l".
the first, second and -{lrfth ca‘éiponents are Ver¥ d_lffer il fro"fi} each other; they are
lf. - _*r. - 3" "h

orders of magnitude apart. Tile ﬁhﬁl}a“c}?j‘IStlj. t1ull,1 .ansiants for the third and fourth
components are more or less the same. This makes it difficult to separate the third and
fourth components. This is a general problem of data analysis, and is not an indication
of any specific weakness of this method.

The other difficulty in using this method arises when the number of parameters
is large, say 15 or 20. Under these conditions, the maximization of the log-likelihood
will often become unstable. In other words, different initial guesses will easily give

wildly different maximization points. However, the problem is not in the maximum
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likelihood method itself, it is in the maximization. The maximization can be trapped
in a local maximum. Future work includes investigating other maximization methods
to see if they will make the maximum likelihood method more stable. The Monte Carlo
method, for example, allows the searching to jump out of the local maximum and hence

can avoid the local maximum problem.

number of co i third column the

value of the ili i f w2 Rive ses of freedom
v are the number T8 11 three cases
here. Lo
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Simulated Data

square root of events per bin
&
N

T = T
107! 10°

~
o
I

Solution 1

square root of events per bin
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S
I
T

square root of events per bin
N
o
I
T

—= ——— e T
1072 1072 1071 10° 1075 107* 1072 1072 10~ 10°
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1075 107*

Figure 3.2: The logarithmic histogram of the simulated data is shown on top. The other
four histograms are obtained by the maximum likelihood method with different solutions of
number of components. In these five histograms, the red step-lines all denote the distribu-
tion of the events and the superimposed blue solid lines are the sum of the blue dashed lines.
In the top histogram the blue dashed lines denotes the five pdf components of the simu-
lated data, while in the other four histograms the blue dashed lines are the pdf components

obtained by the maximum likelihood method.
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Simulated data

ap = 0023 7 = 0.002
az = 0.068 7= 0.04

e ] 1 (B

i ..“1. af = 0227 715=

results
a; = 0.024 T = 0.002
az; = 0.074 7= 0.045
a3 = 0.671 73 = 0.689
ay 0.231 714= 4.87

= —117673.798

initial guess
a1 = 0.167 7 =
as = 0.5 Ty =
a3 = 0333 m3=

Log-likelihoo

=T
T_

6 components

Solution : 3
.. results
nitial guess a = 0024 7= 0002
Mo no 4= 0065 7= 0039
° H O.HH% ° H asz = 0.300 T3 = 0.504
Mw H O.wmw Hw H ay = 0.392 T4 = 0.872
DM H OMW@ q.» H as = 0.216 75 = 4.982
A ° R 3 ag = r__m. a; = 0003 75= 7.833
Log-likelihood = —117655. .n,. . .._n [ ] r B ~ -:rr.u m.._h:w@:rooa ETT———
= 1
=S i =
e Lo 2

Table 3.3: The parameters of the simulated data are mwoén_ n # ﬁdw ﬁm_&m for comparison. The other four tables contain the initial
guesses and the corresponding maximum likelihood results. *These a,’s are not free parameters and are obtained by the equation:

n—1
Q\SHH|MNHH a; .
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Chapter 5

General anesth&_gi"h‘ig edﬁy drugs. It was
5

first publicly Ml 111 1846. The

first general aﬁ“thetms mer was quite

toxic and the 1 ir Y&?z:s highly i : na r\}es., ch as isoflurane

il 1'.""!- A

and enflurane were developed, and they remai 2 0 the most cgﬁnonly used drugs
%
in clinical medicine. %r@bna}@ . local anest 81a, ¥ X%p"f mechanlsm of GA is
—‘; |:.| b L L.
still an unsolved problem. 1':3' p '*1‘:
-L? Y i w-_f'.-'?t'{"-jpﬂ':‘

At the turn of the 19th and 20th centuries, Meyer and Overton independently pro-
posed a hypothesis which described the correlation between the efficacy of an anesthetic
and its solubility in lipids. This hypothesis, which states that the logarithm of the ef-
ficacy of a general anesthetic was proportional to the logarithm of its lipophilicity, was
subsequently called the Meyer-Overton rule. This rule suggests a lipid-rich region of
the body was involved in GA.

There was little progress in elucidating the mechanism of action of general anes-
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thetics until the middle of the 20th century. Johnson and Flagler [8] placed tadpoles in
a container and administered ethanol to them. The animals became anesthetized and
fell to the bottom of the container at atmospheric pressure. When the pressure was
raised to over 100 atm, they observed that GA was reversed, and the tadpoles started
to swim. This was repeated on a number of living organisms and on a large variety of
general anesthetics [9, 10, 11]. The only report of pressure reversal in humans appeared
il g ISy i -

in 1979 [12]. Bl 15 = o
‘_‘ '.. =d %’ .12?:.:?“ iy ‘.'l:.;.

N
- _;.

Pressure reversal i }S ,1&102.%- “universal_ n(m as Sp@meér Varlatlon has been ob-

L

'.H:-‘ L ™ I!| I .
Rana tempomma, 1n"‘i'h'e" itics, ac v1ty,-}ﬂcréa$ed as pressure

increased. Thg;s what
5 »

water shrimp, Gammar €T, INCTeasedy pressur e swimming activity in

- ol |
ARy, A
the presence of &{gnetal an I "-‘:N'
£ |': .:rl o -
J.R. Trudell e't'zﬂ s'ﬁ-nn—lab | phosﬁidylck#)l ne, mlxedf the 1 with water and
.." oy ke . 'd".
= i' ‘l-. i)

organic solvents, somceeted t'fte.,mlx‘ﬁ?g and proiuced a%a;ls]ﬂkent vesicle suspension.
- =
Halothane was added to thfg S’éﬁp jlon ;t Qonfwvat;ons of 49mmol, 147mmol or
490mmol per mole of lipid, whilst the concentratlon of methoxyfluorane was 58mmol,
174mmol or 580mmol per mole of lipid. Electron spin resonance (ESR) spectra were
measured, and they showed that anisotropic motion of phosphatidylcholine within the
phospholipid bilayer was increased. There was a concomitant decrease of the order
parameter S’,, as the concentration of anesthetic increased [14]. On application of
pressure up to 274 atm by increasing helium, a non-anesthetic gas at these pressures,

in the container, these changes were reversed: S increased and the spectra shifted
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back [15]. The mechanism of this change, however, remained unclear, but the most
likely cause seemed to be restriction of motion caused by phospholipid molecules coming
closer together.

The results of these experiments lead to two conclusions: the cell membrane is prob-
ably involved in general anesthetic action, and ambient pressure affects general anes-
thetic action. To clarify the effect of pressure on the distribution of general anesthetics

Sl e

in the cell membrane, many" *me’lﬁsts .#ave perfcgmed.e:gperlments and simulations to

111"_1 i _%c; meme;;;;.
1 -“'“If: ,‘-'ﬂ

PPC mql'é’qules hydrated in

determine the locatlon\'pf a_.,:aeral a
T’g‘:‘x

i' |
halothane was prefereniémlly Im;ated.- a:bout 10 f{Qm the%enteﬁpf the membrane. How-
= -f. " - o --".'

ever, the concentration of hai'éthﬁl'}e e(il'I 1411_ ;1-168? St'lidlels were several times in excess
of the concentration of halothane used in clinical work.

Subsequently, Pickholz et al. [18] developed a coarse-grained model, and applied it
to simulate hydrated DOPC at different halothane concentrations. Their results also
showed that halothane was always preferentially located at about 10 A from the center
of the membrane. They also evaluated the potential of mean force of extracting a
halothane from its equilibrium position into the solution. They found that this was

largest when the halothane was just below the headgroup of the phospholipid.

34



However, none of them have explored the effect of pressure. In this work, we per-
formed a series of molecular dynamics simulations on a model membrane, DMPC, and
a model general anesthetic, halothane. The chemical structure of these two molecules
are shown in Fig. 5.1(a) and Fig. 5.1(b). We evaluated the free energy change of in-
serting halothane into a membrane of fully hydrated DMPC at different depths, and at

different pressures. The following diagrams show the molecules used in our study:
&
el JE@I%-@

-1-

':':}

‘ i-"'l-.
Kﬁﬁa‘dﬁbhne
"hl,!_ ._::,
Figure 5.1: ! F ‘ClBr TUPAC n ; l:t'r;nl_ﬁ--}ﬂ01;%.!'}'&1oro 2-bromo-
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volatile at room te @{cur 0Spl atlﬁh\)hgﬂ"ﬁ phospholipid which
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consists of polar head a
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Chapter 6

.j':‘-‘
Methods

1 s

)

@ -
Methods used% this we

- e

namics (MD) &ﬂlatlon

L L= =

o
(halothane) and s@ \%#'hsrdr o

".-?-;-Il

oné'g:l't@t%ns of the solute
L F oo i
te Thén ﬁ\apply the method

c%fcqls& the solvation free en-

IE}'- , . D
ergy of halothane into the lipid bilay ﬂ;k’o carry out MD simulations,

of energy representat%%gf s

we used the program DL_POLY version 2.15, developed by the Daresbury Laboratory,
UK [20]. In the following sections, the methods of molecular dynamics (MD) simu-
lations employed in the DL_POLY program is firstly introduced. These include the
Verlet integration scheme, the empirical force fields, the Nosé-Hoover thermostats and
barostats, and the Ewald summation method [21]. Although the Monte Carlo method
is not used in this work, it is still introduced together with the MD simulations for

completeness. Then, the introduction to the ERnST follows.
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6.1 Molecular Dynamics Simulations

What is a simulation? In a simulation, the researcher invokes a system, and allows
components of the system to interact according to defined rules. These days, all the
required calculations are usually performed by a computer. By making these rules sim-
ilar to how a real system would behave, the researcher can collect useful data on these
artificial systems, and use thfm 1Q"gl£ﬁl '!hsig‘h’c lﬁiﬁd,.ﬂne. real system under study. The

o | e %’ 'L[:!":m '-'.'i.-n.

=
results of the 31mulat1qin_ can be V&l}d&f@d by eﬁ@amng mé,crn’gscoplc parameters from
LT % -

—

the simulation, ar‘de %omparﬂn

eters including ﬂ:ée g%é‘hgy

"l.. i
coefficients.
|

]
. Ty A i .
ons:methods, come unider two main

There are 9‘1_'1-_r‘any ato ic si nwlatl u
& i e
L

ds'dre t{];e same in that a
large number of mdeou*éf g rFLtions re generated ut"f[;}i{e‘ pfai;edures of moving
F o : -J-I'.-‘ .':.|.'u‘ u '.j:h-u:
from one conﬁguratlon _,1:0 aho’eher age. 5 é - L

.-'. 2 -f. - -'n"'“"

In molecular dynamics, tﬁ'e QESlt?n and velafxtybdf Lach molecule are noted, and

categories: moIe:E}ul:a-ﬁd‘yn di Mo

the force on each evaluated. Each step con31sts of using this information to calculate
the position, velocity and force on each atom a very short time interval away, typically
of the order of femtoseconds. This is repeated many many times, and one builds up a
time series of molecular configurations. The whole trajectory describes the evolution
of the molecular system in time. Observing these configurations would be similar to
watching a film depicting molecular motion. The advantage of molecular dynamics is
that one observes how a system changes in time, and one can also obtain velocity and
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force data from the simulation. However, if the model used is such that the velocity
and the force cannot be calculated, then molecular dynamics would fail. Monte Carlo
becomes then the only method possible.

In Monte Carlo simulations, a random process determines how a configuration is
changed to another. The advantage of Monte Carlo is that, under certain circumstances,
it samples more configurations than molecular dynarmcs so it is useful for exploring,

il SIEE

e.g., the possible conformers bf-" 3! ‘mole:clt_ule Neg,therﬁ;eloﬁti; nor force calculations are

r-‘ — _‘%Yl L --E
required, so many moréi,mo F.rsls can i)e 2) s methqd than molecular dynamics.
J}'ﬂ 7 “ms
One usually assufnes that t 1t does n_o_‘t‘_nmatter what the
B o
starting posmof;r'ls “‘be:?a se one / the same 'result for the ensemble
X ‘ v =
averages if a M'onte Carlo simulation or a sufficiently 'iécge number of
o ¥ i .:.r'
e -
steps. = (7
- bl
Otherwise the main in sséritla,lljg:;the same. Both
Y [ |' o
require a model d"— grl‘o]ﬂng. ho . these atoms inter metlmes ca‘ﬂed a potential or

a force-field. Both reol;ure a H@thod;@f. advancmg_f-romi%ﬁ Ii'oﬂﬁguratlon to the other.
.-" =t

And, last but not least, both f'eqwé %POd onalysli Eithollds to analyze the collection of
configurations produced. Since performing a simulation and obtaining molecular con-
figurations have become much less difficult with the rapid increase of computer program
packages, the challenge is then to perform intelligent analyses by optimally using the
collection of configurations (or, in the case of molecular dynamics, the trajectory), and
thus to obtain useful scientific understanding.

The general use of simulations should not be simply to reproduce experimental

findings. After all, if an observable can be obtained by experiments, there is little point
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in obtaining that information using a more roundabout and potentially less reliable way.
Simulations are best used to perform ‘impossible’ experiments or to gain insight into a
system. For example, if one wants to study the effect of size on the hydration of non-
polar solutes, one could, of course, place inert gases of different sizes in water, and study
their hydration pattern. However, by replacing one molecule with another, one is not

merely changing the size, but also altering the electronic properties. Simulations allow

a lﬂ H ¥ r:"'f(_n.
us to circumvent this problelil..f)gﬂ' {Bgmg us totméh:t!,s:pheres whose only difference
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Simulations can be used to investigate events and mechanisms inaccessible by ex-
periments. However, in this sort of simulations, there are still certain quantities which
are measurable by experiments. The simulation values of those quantities should be
compared with the experimental values. If they agree, there is a higher probability that
the simulation potentials are correct. The scientist can then use the system to generate

data which can only be obtained by simulations.
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6.1.1 Development of the Monte Carlo method

The first simulation method invented was the Monte Carlo method. It was developed
by Stanislaw Ulam and Nicholas Metropolis [25]. Ulam was convalescing from an illness
when he started to ponder about the probabilities of winning a game of solitaire. He
realized that, instead of going through the combinatorics, he could just lay out the
cards many many times and obseer ﬁ“f Q Qolr'nll X This was also the era when the

first computers were belng usled SOJbe'ikilscussed' ﬁbe 1dea "Wmh John von Neumann and

~i - J I.-—“‘F r
started planning ag‘qgal Cale‘fl:la,tlo ;_ﬁ
| 3 i i

This work wa;s expande th_g_equamon of state of N

I
hard discs in bugp dlmenplons then a'pﬁﬁed thei.r own method
to a system 0H24 ddenti iscs i a s | un(hry?:;(h)ndltlons and
calculated the é('rea_occu iscs. [Periodi ond.1t101?.§; [27] mean that

. ’T -?F i Ly

the squares a,re"lald out 1n leavmg ’Ehe ‘container’ on

o0, Fi2or R
the left side will re—énté: it on. t :’- tois to cne‘e.te an infinite space

.EI "1! & Y

using a finite number '(')I.f‘ aztitld'fes ?j.etﬁthat 1n1t']§_e e\;;'luiz.;tlio;\of interaction between
o i
atoms, there is a maximum dlustdﬁceﬂ% BF‘;{mjd ‘t]ﬂe d’llstance Teut, €ven though two
atoms could interact, their interaction is considered zero, to simplify calculations.

The work of Metropolis et al. [26] was extended by Wood and Parker [28] a few
years later, in a paper which studied the equation of state of Lennard-Jones molecules

in three dimensions. These are spherical molecules which interacted with each other

according to the relation:

Ups(r) = e [(;) -, <Tﬁ> _6] , (6.1.1)



where € is a constant, r, the radius of the Lennard-Jones potential well, and r the
distance between the two atoms. They chose a set of Lennard-Jones parameters to
model argon, and set the temperature at 55°C. Using 32 or 108 molecules in a cubic box
with periodic boundary conditions, they performed the simulation 31 times, each lasting
from 27000 to 261000 configurations, at different densities. The authors discovered
that their simulation results agreed well with some experimental data but not with

el T,

others. They also observed+ q;pﬂase tn"a__mswlon,_liu’t‘qb'ﬂﬁt the pressure that it would
n.ﬂ\.‘_ ¥ R -

occur under experlme.ﬁaf € dltloﬂs

-%ﬁ\hows t*h;:x_t e:ﬁ-ép a simple simulation

::..Er —— \ﬁ L
system is capable'g'éf reprodugi ; al systeﬁrquahtatwely, and
| :\-'I' -’“l' 7 LT Bﬂ
sometimes even aqua'ﬁiﬁ'l ! :_T.‘-' o
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Wood and Rskker_'pS o_;fj%‘silhg-;};ieriodic bound-
'- | ! | u

ary conditions. They Cha__,s ation scheme called the; m_l-th'm—lmage distance

‘--: =:F h 4 T .
method, namely an;'halrvvﬁe. lmm fﬁ'&lamenﬁsﬂ' set of N molecules
¥ =,

rbkrs
are included, but for eacl?];)a'lr, onl-y"'.the smallesﬁ%ﬁlstani@ 'I!Etween any images of the

II.I

_I'\..(

two molecules are taken. This meth&i‘-i ﬁmjjm—lmage distance was subsequently

adopted in almost all simulations using periodic boundary conditions.

Wood and Jacobson [29] subsequently repeated some of the Monte Carlo simulations
with longer chain length, and compared their results with the first molecular dynamics
simulation of the same system, the work of Alder and Wainwright [30]. They found
good agreement between the two methods.
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6.1.2 Development of Molecular Dynamics

The first detailed description of the molecular dynamics method was not published
until two years later [31]. In this and a subsequent paper [32], Alder and Wainwright
described the scheme used for molecular dynamics simulations, and evaluated the prop-
erties of a number of elastic spheres at different densities.

._.: r"

The work of Alder and Wainwri h_tqﬂ i spheres which have not generally
LRI Y
i
been used to simulate blqlﬂgkea'l mpléhﬂes gms in ﬁr@ébg}cal systems are usually
T |'.:

, Which w, LS.I irst apﬂn.ed by Rahman [33]:
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In any molecuf"—'dyiﬁmlcs 1

) e positi ) eacE Bto:[;i\s pre-determined,
ot
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the velocity either assag:qed “fmm af,-i‘Mglxwell dlsHIbutldn or fﬂ\m previous trajectory,
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and the force on each atom s"an be evaluated: t e-step algorithm uses these
Lty P e 12

data at time ¢ to obtain the positions, velocities and forces of the atoms at ¢t + dt. In

Rahman’s original algorithm [33], three equations were applied:

r(t+8t) = r(t—ot) + 20tv(t) (6.1.3)
Stla(t + ot) + a(t)]

v(t+8t) = v(t)+ . (6.1.4)
(4 ot) = r(t)+ [V(t+gt)+v(t)] , (6.1.5)

where r(t), v(t), a(t) are the position, velocity and acceleration of a particle at time ¢,
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r(t+ ot), v(t + dt), a(t + dt) are the position, velocity and acceleration of a particle at

time ¢ + dt, and r,(t + dt) the predicted position of the particle at time ¢ + dt.

Eq. (6.1.3) provides a guess at the new position, and from this the acceleration
a(t + ot) can be evaluated. The new velocity and new calculated position can be

evaluated using Eq. (6.1.4) and Eq. (6.1.5). The acceleration is then re-calculated and

Eq. (6.1.4) and Eq. (6.1.5) iterated to pr ﬁéﬁ a more accurate result.
1.__:||L? ‘:‘!CJ-

ﬁ%w requires a few passes
1@:06{{4_culatlons which are

th@_“.n?'pst effici

."H
Rahman’s algorlthmc_.l&ﬂLt
i | '- = :

through Eq. (6.1. 4}\1 \(f
i

expensive in con@ferhtime. ,
"'Hr Y

Tgghi i
developed by ‘@letﬁ 2

.iﬂ i
algorlthms were

Verlet’s mqfs'jlod-is as follows. of i infe ¢ in the simulation

be r(t), and itq:. 7_#_. 1 ion of this parti ],Bﬁ't a short time

ot before and aﬁt ca@ >
-ﬂ'_ g‘% g

QT D

..':T}-j :j;;!".!]

%ﬁ) ﬁﬁﬁ 6tv( )R

i e " =¥ 2

r(t — ot) . ﬁ%ﬁ@]@ﬂféﬁ— . (6.1.7)

Adding Eq. (6.1.6) and Eq. (6.1.7) and re-arranging, one obtains:

r(t + 0t) = 2r(t) — r(t — ot) + 6t2a(t) . (6.1.8)

Thus the estimate of position r(t + d0t) is correct except for errors of order §t*.

The Gear predictor-corrector method, on the other hand, uses a series of equations
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for predicted values (subscripted with ,):

dt?a(t)  6t°b(t) N

r,(t+0t) = r(t)+otv(t) + 5 T 5 (6.1.9)
t?b(t
vp(t+0t) = v(t)+ dota(t) + g 2( ) + (6.1.10)
a,(t+0t) = a(t)+otb(t) +... (6.1.11)
b,(t+dt) = b(t)+. (6.1.12)
= n-'"!._ Hlf'-l_ﬁ Eﬂafu L,-- .
where b denotes the thlrck'tqrib er]iiatpve of r %} edictor step.
Lﬁ' “I E_"]-. "
In order to obtg,km%ﬁ )jf rrect val 'ns are}’fﬁquﬁfédﬁ For example, from
I:._I : "l i

the predicted p@ﬂqg‘s_ r,(t

Sl AN o !
a corrected ac;éerat Aeop | ined. i8 will} i a]i,-'b'le dfﬁ.erent from the

F"| I:ll
predicted acceﬁatlon I,?'
IE;r'C?"': - e ' !_:T-'.'- (6113)
= y
by, a ‘ e !
where f.,. is a com;ec"‘e'ﬁ&ns fac , land itgtchoice r‘een extenf;hely discussed by

rl-_‘;.l ‘\
i%ploﬁs an'ﬂ;acceleratlons at t + 0t

Gear [35]. Using a snng@r m&i{od,rqhg correcte
s

-
_|1_ —h

can be evaluated. This is a Sgt;}agil.uqﬁie ?p %lgfﬁfﬂlm or because the acceleration

(second-order time derivative) is used to correct the position. Higher-order predictor-
correctors can be constructed using the same principles. In practical use, often the
correction protocol is executed more than once to obtain better corrected values.

The advantages of the Verlet method is that it requires less storage space in the com-
puter, and it is executed in one step. The Gear predictor-corrector requires more stor-
age, and at least two steps are executed to obtain the corrected values. Van Gunsteren
and Berendsen [36] performed simulations on the bovine pancreatic trypsin inhibitor,
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with or without constrainted bond lengths, and with the Gear predictor-corrector or
the Verlet algorithm. They found that for non-constrained dynamics, a high-order (at
least fourth order) Gear predictor-corrector was more accurate than the Verlet algo-
rithm when the time-step was smaller than about 1.5fs, but at larger time-steps, the
Verlet algorithm was more accurate. For constrained dynamics, the Verlet algorithm
was more accurate when the time-step was longer than 1fs. A detailed evaluation of

e

ham an.d

the two methods can be fouf,ucﬂ' 111;1:L eéé&',@ﬁ? In this work, the Verlet

__,l,h 5 K
method was used for a;!l],.m@l ular ély

'F .

:u,.l \ -
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developed. T}E'slmg.l-atl 9 ;anﬁon E%'"lthe other was

—!l

efficient. Nevertfn%less 1,15} v
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Cﬂ'I".‘['IIIOIQ(;.l.ﬂeS because they

|
lIIJI
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_I ﬂ- B : . r; l
to be developed to descrlbé'.tl}e pro*peftles of bloloﬁcal le&ﬂes before any simulation

T —

dlhﬁgﬁ T taft!’bns Potentials had
could be done.

6.1.3.1 Pure protein simulations

The incentive to develop a potential to describe the properties of biological molecules
came from crystal structure refinement. In the 1960’s, the structure of a protein was
refined using a geometric method [38]. Levitt and Lifson [39] proposed an alternative
refinement method using an energy minimization scheme. The energy of the protein
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was considered to be a sum of different contributions:

E:Zk b—b,) Z + Y %[1+Cos(n¢—5)]

bonds angles dihedrals

LEE 6

non—bonded
u.-'ll[_ H'-ﬂ:l ét—i
The first term describes theL nd energy, Whieri_’b'{isljhe 1deal’ bond length and b

+ Y %(mi—xo)z. (6.1.14)

all coords

the actual bond lengt,lh
H-\r.

the first term, exﬁq"p’c that bo
l"“ j

'I - £ % i - ‘“
ag?fkb an lempiri fant. "E,hfz S@Eond term is similar to

les deviations ing conmd,ﬁaed The third is a

| f"’"

||

Ty
dihedral angle teirm“%;:he

i

':

interaction b en atoms separatéd ‘ fhiee bonds) and tam on the usual

j:-'_::. e -
form of the LEj_t_hard—Jo ith r, l_')lang a constant
and r the dlstaﬂée F’EW st Eehn{s'"a constraining

ot - o
Pl 1 i ) "\
"T;"-.. Ll 4 %—‘5 ;
after refinement ¥ R _"'\

QY B, B "
In Levitt and Lifson’s sché'i':h A bined with the heavy atoms
’eﬁyﬁ%iﬁﬁ o ?Wﬂfle@m y

(united atom potential). The energy was minimized by steepest descent. They applied
this method to the heavy atom coordinates of lysozyme and myoglobin, and obtained
refined coordinates which deviate, respectively, from the crystallographic coordinates
by 0.22 A and 0.086 A r.m.s. The results for myoglobin were in good agreement with
the uncertainty of the experimental data which was 0.1 A r.m.s. Levitt and Lifson
subsequently simplified the energy function in the same paper, and eliminated the w-
term, and modified the Lennard-Jones potential:
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F=Y %(b—bo)2+ 3 %(9—90)% 3 %[l—i-cos(nqﬁ—&)]

bonds angles dihedrals

Ro\ 12 Ro\©
—2)
o) <Rz'j> <Rz'j>

non—bonded
where A was an interaction function (0 < A < 1), R, was a constant and R;; was the

, (6.1.15)

distance between the non-bonded atoms. Using this modified energy scheme, they ob-

.n.L SlElEte,;

tained refined myoglobin COLP!E | from the crystallographic

coordinates.

'u' .
was capable of {ﬁpro'ﬂéfa

f”'-ﬂ,l.:-,

iy

protein. The work “fa.;,later extended

= - L}
by Levitt [40}:|_S'Uith a ' ( . Better refinement of the
u'-..::I i '-H_-I\:.I
structures Wefne obtaine ?r_b-'
6.1.3.2 Slmula n. me ane bilayers c'_:t.ﬂ_:,'- !
NG E

The first simulation of-aq:i@mbra;{e b}lq;{grs was p?z%m;?ﬁy vaﬂ;der Ploeg and Berend-
'..r| i =

sen [41]. In this system, the‘sg-!qgkt.i 7§1 7}3'1_(_3 Eno?%;‘i@;r-lhe I;hosphohpld Only three
types of atoms were defined: head groups, methylene units and methyl end groups. Even
with such a united-atom potential, the researchers were able to reproduce some essen-
tial features of the structure of phospholipids, for example, the bond order parameter
of the alkyl CH, groups.

A few years later, Egberts and Berendsen [42] performed a simulation of another
system consisting of 76 decanol molecules, 52 decanoate ions, 52 Na* ions and 526 water
molecules. Unlike the previous work, the system was treated in full atomic detail in the
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head groups, and the whole system had total 3166 atoms. Due to the increase of the
detail, this research gave a better match between the dynamical variables of simulations
and that of experiments than previous simulations of membrane bilayers did.

Subsequently, more sophisticated models were developed for phospholipid molecules.

In this work, we used the CHARMM potential for DMPC [43].

6.1.4 Thermodynﬁ' '@!
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-

|-r|
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-
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: 1 !1' »."'i"”
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' i)

6.1.4.1 Thermosta ':' 3

-&ff}}f’ %E%J y R -
Normally, Newton’s equations of motion written as:

dr(t)

7 =v(t) (6.1.16)
dv(t) F(t)
7 —_— 7 9 (6.1.17)

where r(t), v(t) and m are the position, velocity and mass of each atom in the system
respectively.
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In the Nosé-Hoover formulation, an additional term is added to the second equation:

av(t) _F(t)

- e ENONOR (6.1.18)

where the frictional constant x(t) is defined by

(6.1.19)

er barostat. The

a1

dt = NkBTreqTI%V(t)(P - Preq)
%Et) — BV ) (6.1.20)

where 7 is the barostat friction constant, Ry center of mass of the system, 7p a time
constant, P the instantaneous pressure, F,¢, the requested pressure and V' the volume
of the system. As the case of thermostat, the integration needs several iterations to

achieve convergence.
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6.1.5 Ewald Summation

The Coulomb potential of two charged atoms is a long-range potential proportional to
the inverse of the distance between them. Since we use periodic boundary conditions
in our simulations, the Coulomb potential could sum to infinity. To prevent this from
happening, we use the Ewald summation method [45]. In this method, each charged
atom is firstly neutralized by su_p‘agpd!smg s{;hetr 'e’gt_‘l_u;ga.}lsman cloud of opposite charge

| Jh o .L:"_- '--.4

on its center which ma}&aé tTle combjned:ppotentaﬂ;short range a_pd summable. Secondly

l-.
. !'
—

6.2 Energy Eeyréserftatmn gﬁ S(ﬁ"ﬁl tan Theory

h';-'?._-j._u! j" jhk l
In the evaluation of free energy change of solvation, in principle only the initial and final
states of a process are required for the calculation. However, the two commonly used
methods, thermodynamic integration (TI) and free energy perturbation (FEP), both
require a large number of intermediate states for evaluating free energy changes. The
method of energy representation of solution theory (ERnST), which was developed by
Matubayasi [46, 47, 48], does not require intermediate states, so is 40-200 times faster

than either TT or FEP, and yet its results are within 5% those obtained from FEP.
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6.2.1 Basic Derivation

In this method, we first construct an instantaneous distribution of the solvent molecules

relative to a solute molecule p/ defined as:

= Z&(x—xi), (6.2.1)

where x; is the full coordmates_;qﬁjft{@ﬂlé’r{lﬁw which include positions, orien-

,.r
ular d@%es of freﬁéfpﬁ and 0 the Dirac delta

- 1,
function. The su ‘étlo is taken o t%]‘ecul’@&'r The superscript f

-b-

emphasizes that,@lek?l'l- co0

r'\.L

tations and, if they ex1st-i,'ljﬁé 1ntrafﬁ

(6.2.2)

2N
where the subscript u-égglcegi'hatr_ﬂi’e ensemble . rag:g _,‘q’@'ﬁan in the solution with
_.!'E
E i'!}- ol

solute-solvent interaction po ﬁ}h}?? ﬁwﬂﬁ;}&n take a subscript A so that

when A = 1, u) is the normal potential, but when A\ = 0, u, denotes a zero potential. In

FEP and TI, X is varied gradually to take the system from the initial state to the final

state. This is not performed in ERnST, but this variable is used in the derivation.

ERnST is introduced by changing the coordinates of the solvent molecules from full

coordinates to solute-solvent interaction energies:

p°(e) = /dxc5 (v/(x) —€) p! (x) = Zé(vf(xi) —€), (6.2.3)
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where v = upo)

prlesn) = (1 (€), = [ dxd (07— ) pl i) (6.2.4)

ERnST evaluates the free-energy change Ay of a process, without having the need
to invoke intermediate states. The basic principle of this method draws analogy from

density functional theory, and starts from the Kirkwood charging formula [49, 50, 51],

(6.2.5)
where )\ change he fin {QJ.ST@ Integration by
l""'ﬂ
parts gives 1
(6.2.6)

where F/ is a de @mn las| definedsa

of the potential of m@%’or@h ,5@{21
J‘Il
-

in roduﬁgng!é#z indirect part w/
o

. f)}} | (6.2.7)

-

PA( x) = pp (X

Eq. (6.2.6) and Eq. (6.2.7) lead to

f X
P/ ) = ko [ [ (/60 = i) — o/ (<)leg (ngxi)

=3¢/ (%) = po(x)) /0 i p’;)] : (6.2.8)

After applying ERnST we can show that the Kirkwood charging formula becomes

Ap = /d)\/ &“ ) (euy) | (6.2.9)




It can be proved that

Ap = /deepe(e) —kBT/de

(0°(6) — () — () log ( ”e(e))

~{a(OF(©) + (1= a(0) Fofe) }(p(e) - ps<e>>] . (6210)

where
F(e) (6.2.11)
<0
Fy(e) = (6.2.12)
> 0
(6.2.13)
In addition,
(6.2.14)

and

wi(e) = - / s B (6.2.15)

where x§ is the correlation matrix defined as

Xo(e,n) = (p°(€)p () — (6°(€))o (A (m)), - (6.2.16)

The solvation free energy can be evaluated from Eq. (6.2.10) — (6.2.15), with the

inputs (p°, p§, x§) given by Eq. (6.2.4) and Eq. (6.2.16).
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Chapter 7
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We used hydrated D%% a's-;éf mfﬁ:sj of the eellim EE arf.eﬂ]“ialothane as a model

ﬂ.:-. =

GA molecule and pure Wate%ﬁﬁ}%ﬂﬁ ﬂmﬂ The DMPC lipid bilayer,
=

the halothane molecule, and the surrounding water were put in an orthorhombic box
whose size is 54 A(x direction) by 54 A(y direction) by 63 A(z direction). The lipid
bilayer is positioned perpendicularly to the z direction and thus the DMPC molecules
are arranged in the z-y direction. The origin of the z-axis is so chosen that the z-y
plane bisects the box in the z direction. The bisecting plane of the lipid bilayer is then
fixed to coincide with the z-y plane. Applying the orthorhombic periodic boundary
condition [21], the system we actually simulated looks like a set of infinitely extending
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bilayers in the x-y direction, and such planes repeat themselves for infinite number of
times in the z direction. The initial configuration of the hydrated DMPC bilayer we
used was obtained from previous work done by Zubrzycki et al. [52].

To find out where the halothane molecule is most likely to be in the cell membrane,

the membrane was divided along its z-axis into four regions. They are defined as follows:

1. region I @;}E&}I@-‘E@Z%
5 5 ’t?g} ' <&
—5A<z<5A 53?}9 | J %.%

2. region II ’%‘\

4. region IV 1%’ \%‘L\ -
—20A< z < YA <
C'-'J-
The hydrated DMPC membl’g‘r %ﬁ?{@ﬂs ahzed in Fig. 7.1.

The free-energy change of a halothane molecule being moved from vacuum into any
of these regions in the membrane was evaluated. Another set of calculations are also
performed to evaluate the free-energy change of inserting a halothane from vacuum into
water. The complete procedure was first performed at atmospheric pressure (105 Pa),
and then repeated at 2 x 107 Pa (200 atm) and at 4 x 107 Pa (400 atm).

To evaluate the free energy change, ERnST was used. In this method, there were
two kinds of simulations. One is to insert the solute from vacuum into an equilibrated
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z-direction
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4 T
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environment (called the ‘reference:solvent’ systerr!)'an"d_ calculate the interaction energy
Qo ey o iy LK

between the solute and molecules in the environment. The other is to equilibrate a sys-
tem consisting of the solute dissolved in the environment, and evaluate the interaction
energy between the solute and molecules in this equilibrated environment. This system

is called the solution system.

The interaction energy distributions of both the reference solvent and the solution
are needed by ERnST to evaluate the free-energy change of inserting a solute into the
environment. The interaction energies were binned to obtain the interaction energy
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distributions. The binning was performed in a special way which had four segments:
1. From —1.3 x 10719 J to —1.5 x 107! J with interval 2.5 x 10722
2. From —1.5 x 1072*J to +1.5 x 10721 J with interval 1.0 x 10723 J
3. From +1.5 x 10721 J to +7.0 x 1072° J with interval 2.5 x 10722 ]

4. From +7.0 x 1072°J to +7.0 x 1_0 ..IIEJ ith 200 logarithmic intervals.

8 nn:n iy {
It means that the bin L«'ldthis*-& constal :}nder-'t'h?logarlthmlc axis and the
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7.2 Conditions of t'hef Sim ﬁigtlons

All the simulations were performed in the isotropic NPT ensemble [53], where the
number of molecules, the pressure and the temperature were kept constant. The tem-
perature used was 310 K, and the thermostat time constant was 1 ps. The pressure used
was either 10° Pa, 2 x 107 Pa or 4 x 107 Pa. The barostat time constant was 5 ps.

The CHARMM potential [43], the TIP3P model [54, 55] and the Scharf-Laasonen

model [56] were used for DMPC, water and halothane, respectively. Non-bonded forces
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were cut off at 13 A with long-range correction. Particle-mesh Ewald summation was
applied to evaluate electrostatics, with a real-space cut-off of 13 A, the Ewald conver-
gence parameter being 0.24374, and the k-vector (8, 8, 8). The details of simulations

are shown in Table 7.1.
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Chapter 8

Results ant

A
, ﬁﬁige € angenot insertinga ane difo different environ-

Fig. 8.1 shows
ents and Fig ‘.2 shows the stru od O the
ments an 1 7 ﬁ ;‘:i..

Au/ kJmol™

n v

Pressure region

(a) Histogram (b) Line plot

Figure 8.1: Two diagrams showing the same results with different presentation methods.
Bulk: free-energy change of moving a halothane from vacuum into bulk water. Region I-1V:
free-energy change of moving a halothane from vacuum into the respective regions. The

standard deviations are shown by the error bars.

The free-energy change of inserting a halothane from vacuum into bulk water is
about 10kJmol~!. This value increases from 9.1 kJmol~! at 10° Pa, to 11.0 kJmol™! at
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hydrated mem rane. i istribution of th chﬁhﬁe nﬂrogen the gray

line displays t@iﬁ distribution of t Jcarbon of the all yl tail, alifi the red line
shows the dlsb?z)utlpn 0 water o ( - solid line d otes-dat__éf-:at 10° Pa, the

dashed line de"t;ltes data 3 s data a’;:z:x 107 Pa. We

can see from t'l!é d-la.g}a i : arﬁb‘asurﬂy the same at
different pressunas!. ] ‘ .
Loy
-f-:l-s.- .:.‘L
L j:a - .
4 x 10" Pa. This Chaﬁg’.'e"‘ls S’CaI;Stlcaﬁy .31gn1 cant. KT : _"'\
. 2" . Bp » &
The free-energy change of"r ti 10 L m cuum into hydrated DMPC

is dependent on the region. In region I (—5 A< z < 5A), as the pressure increases
from 10° Pa to 2 x 107 Pa, the free-energy change increases from —19.6kJmol™! to
—17.4kJmol~!. However, at 4 x 107 Pa, the free-energy change is —19.3 kJmol™. In
region IT (—10A< 2z < =5 A and 5A< 2 < 10 A), as the pressure increases from 10° Pa
to 2 x 107 Pa, the free-energy change increases from —22.7kJmol™! to —21.8kJmol ™.
However, at 4 x 107 Pa, the free-energy change slightly reduces to —21.9kJmol~!. In
region 11T (—=15A< 2z < —10A and 10A< z < 15A), as the pressure increases from
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10° Pa to 2 x 107 Pa then to 4 x 107 Pa, the free-energy change increases monoton-
ically from —26.2kJmol™' to —25.3kJmol™! then to —24.6kJmol~!. In region IV
(—20A< z < —15A and 15A< 2 < QOA), the free-energy change also increases
monotonically from —24.0kJmol™! to —23.6 kJmol~! then to —20.0 kJmol~! when the
pressure increases from 10° Pa to 2 x 107 Pa then to 4 x 107 Pa.

The free-energy change of inserting a halothane from bulk water into the most

w ~35.0 + 1.8kJmol~! and
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Chapter 9
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phipathic model molecules.'%-ﬁ.d?aﬂ%leeil m[ magnetlc resonance (NMR)
C TG

methods to measure the effect of halothane and a number of halo-alkane general anes-
thetics on a palmitoyl-oleoyl-phosphatidylcholine (POPC) membrane, and they discov-
ered that halothane preferentially stays in the region of the membrane-water interface,
and in the region of the upper portion of the acyl chain [58]. Yoshino et al. used
sodium dodecyl sulphate (SDS), and applied NMR to locate the anesthetic near the
polar head of the SDS molecules. They concluded that halothane did not penetrate
into the hydrophobic core [59].
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Tu et al. performed molecular dynamics simulations on a halothane-DPPC system.
They placed 4 halothane molecules into 64 phospholipids and 1792 water molecules [16],
or 32 halothane molecules into the same hydrated DPPC system [17], and carried
out simulations for 1.5ns on both systems. Halothane did not appear to exhibit any
preferred location from their first set of results, but they reported that halothane was
located preferentially to the more peripheral part of the acyl chains. In clinical use, the

g 1E ey
hat of th.e!L élb]iane phospholipids. Therefore,
.nl'

TS
concentration of halothane 15' h'bolﬂ’, O ]‘5;9

- T
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the concentration of hab?:h ;?e used lin t _%nulatlon- gfas c" n51derab1y higher than

clinical dosage. .-“H.__;
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xithm& én
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75&5‘011 a system consist-

1760 water moiffi:ules an
o W
exhibited three g_eaki' distr
L%, ".'“'

brane in its lipid core *a]ird twi .

at %he c;eq‘tre of the mem-

amé .Crf SDPC Pickholz et al.

developed a coarse- gra-l-ﬂed m&ﬂbl of 'I)MPC andEParfor éil s1§1’\,11at10ns on system con-
= = - = o B

sisting of 512 phospholipids, 'i%f.ﬂva o1 f.'rlloleculef a,n'd hLlothane [18]. The number of

r'"’

halothane molecules used were, respectlvely, 0, 64, 128, 256, 384 and 512. The authors
observed that halothane always partitioned to the upper part of the acyl chain. Sub-
sequently, Vemparala et al. performed molecular dynamics on system consisting of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) with embedded helical peptide bundles
based on the transmembrane domains of the nicotinic acetylcholine receptor [61]. Using
steered molecular dynamics, they also evaluated the free energy profile of halothane in
a hydrated system of 72 DOPC molecules.
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This work has applied ERnST to evaluate the free-energy change of inserting a
halothane from bulk water to different regions of a hydrated DMPC bilayer, at pressures
of 10° Pa, 2x 107 Pa and 4 x 10" Pa. The simulations results indicate that the influence of
pressure on the free-energy change is very small and so is that on the regional preference
of halothane in membrane.

This work has only touched upon the effect of pressure on the free-energy change

of insertion of halothane as the pressure increases,

us W%k [62]
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