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平面網路上防疫問題之近似演算法

研究生 : 邱冠凱 指導教授 : 呂學一博士

國立臺灣大學電機資訊學院資訊工程學研究所

摘 要

給兩個數字 c 和 k , 以及 n 個點的一般網路 G , 防疫問題的定義為 : 求出由 G 當中最

多 k 個點所組成的點集合 S , 使得 c · m + 1
n

∑
i n

2
i 的值為最小 , 其中 m 為 S 的點個

數 , ni 為 G \ S 的第 i 個連通單元 。 對於這個 NP-完備的問題 , 目前已知最好的結果是

由 Aspnes 、 Chang 和 Yampolskiy 提出的 O(log1.5 n) 倍比率的近似演算法 。 我們在本

篇論文中證明當 G為平面網路時 , 這個問題仍是 NP-完備 , 並且提出一個 O(log n) 倍比

率的近似演算法 。
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Abstract

For numbers c and k and an n-node graph G, the inoculation problem is to compute an

S consisting of at most k nodes of G such that c · m + 1
n

∑
i n

2
i is minimized, where m

is the cardinality of S and ni is the number of nodes in the i-th connected component

of G \ S. The best previously known result, due to Aspnes, Chang, and Yampolskiy,

for this NP-complete problem is an O(log1.5 n)-approximation algorithm. In the present

article, we focus on the special case that G is planar: We show that the problem remains

NP-complete and give an O(log n)-approximation algorithm for the problem.
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Chapter 1

Introduction

For any set S, let |S| denote the cardinality of S. For any node subset S of G, let G \ S

denote the graph obtained from G by deleting the nodes in S and the edges incident to the

nodes in S. For any node subset S of G, let

φ(S) =
∑

i

n2
i ,

where ni is the number of nodes in the i-th connected component of G\S. See Figure 1.1

for an example.

Given an n-node graph G and two numbers c and k, the inoculation problem is to find

a node subset S of G with |S| ≤ k that minimizes

c · |S| + 1

n
· φ(S).

To address a game-theoretical model of network security (see, e.g., [2, 3, 6–8, 10–18, 20]),

Aspnes, Chang, and Yampolskiy [4] formulated the problem with k = n to describe

the following scenario of virus attack. Suppose that each infected node incurs 1 unit

of penalty and it takes c units of cost to secure a node by, say, installing an anti-virus
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Figure 1.1: If G is the graph as shown in the left and S = {a, b, c}, then φ(S) = 23.

software. The virus spreads by infecting some initial node chosen uniformly at random.

An insecure node gets infected if any of its neighbors in the graph is infected. If S consists

of the secured nodes, then c·|S| is the inoculation cost and 1
n
·φ(S) is the expected penalty

incurred by all infected nodes.

Aspnes et al. [4] ensured the NP-completeness of the problem. They also showed that

it takes in Õ(n4) time1 to compute an O(log2 n)-approximation solution for the problem

with k = n. In the journal version [5], they further reduced the approximation ratio to

O(log1.5 n) while raised the time complexity Õ(n6.5). Moscibroda, Schimid, and Watten-

hofer [19] studied the problem for highly regular and low-dimensional G.

The present article focuses on planar G, for which case we show that the problem

remains NP-hard and obtain an approximation algorithm as summarized in the following

theorem.

Theorem 1.1. For any n-node planar graph G, any number c, and any positive constant

ε, it takes Õ(n6+ε) time to compute an O(log n)-approximate solution for the inoculation

problem with k = n.

Similar to the method of Aspnes, Chang, and Yampolskiy [4, 5], our approach repeat-

1The Õ(·) notation suppresses the polylog(n) factors.
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edly removes a near-optimal sparse vertex cut from some connected component of the

current graph. The near-optimal sparse vertex cut causes a sufficient decrease of risk per

removed node, quantified as its cost effectiveness. We compute a node set with sufficient

cost effectiveness by resorting to the approximation algorithm of Amir, Krauthgamer, and

Rao [1] that finds a near optimal solution for the minimum quotient vertex cut problem

for planar graphs.

The rest of the paper is organized as follows. Chapter 2 gives the preliminaries. Chap-

ter 3 gives our algorithm. Chapter 4 concludes the paper.
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Chapter 2

Preliminaries

For the rest of the paper, let G be the input n-node planar graph.

2.1 Hardness

The following lemma ensures that the inoculation problem with k = n remains NP-hard

even if G is planar.

Lemma 2.1. The inoculation problem for an n-node planar graph G with k = n and

1
n

< c < 3
n

is NP-hard.

Proof. The proof is modified from that of Aspnes et al. [5, Theorems 3 and 10]. Since

computing the minimum cardinality of vertex cover for planar G is NP-complete [9], it

suffices to show that the cardinality of any optimal solution for the inoculation problem

with k = n and 1
n

< c < 3
n

for G is the same as the cardinality of any minimum vertex

cover of G. S is a minimum vertex cover for G if and optimal solution of the inoculation

problem with c = 2
n

.
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Let S1 be a minimum vertex cover for G. Let S2 be an optimal solution for the

inoculation problem for G with k = n and 1
n

< c < 3
n

. Aspnes et al. [5, Theorem 10]

guarantees that S2 is a vertex cover of G. Therefore,

|S1| ≤ |S2|. (2.1)

Since S1 and S2 are both vertex covers of G, we have

φ(S1) = n − |S1| (2.2)

φ(S2) = n − |S2|. (2.3)

Since S1 is a feasible solution for the inoculation problem, we have

c · |S2| + φ(S2)

n
≤ c · |S1| + φ(S1)

n
.

It follows from c > 1
n

and Equations (2.2) and (2.3) that

|S2| ≤ |S1|. (2.4)

Combining Inequalities (2.1) and (2.4), we have |S1| = |S2|. The lemma is proved.

2.2 Minimum quotient cut

〈A,B, R〉 is a cut of a graph H if A, B, and R with |A| ≤ |B| form a partition of the

nodes of H such that H does not have any edge with one endpoint in A and the other

endpoint in B. The quotient of 〈A,B,R〉 is

θH(A,B,R) =
|R|

|A| + |R| .

The minimum quotient cut problem for H is to find a cut of H with minimum quotient.

5



Lemma 2.2 (Amir et al. [1]). For any n-node planar graph H and any positive constant ε,

it takes O(n4+ε) time to compute a 4
3
(1+ 1

ε
+o(1))-approximate solution for the minimum

quotient cut problem for H .
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Chapter 3

Our algorithm

3.1 A reduction

For numbers α, β ≥ 1, a node subset S of G is a bicriterion (α, β)-approximate solution

for the inoculation problem for G if the following conditions hold for S, α, and β:

• Condition B1: |S| ≤ α · k.

• Condition B2: φ(S) ≤ β · φ(Ŝ) holds for any node subset Ŝ of G with |Ŝ| ≤ k.

Therefore, a β-approximate solution for the problem is a (1, β)-approximate solution for

the problem. Our result is based on the following reduction of Aspnes et al. [5], which

ensures that it suffices to focus on finding an (α, β)-approximate solution for the problem

with c = 0.

Lemma 3.1 (Aspnes et al. [5, Corollary 13]). If an (α, β)-approximate solution for the

inoculation problem with c = 0 can be computed in O(f(n)) time, then it takes O(n·f(n))
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time to compute a max(α, β)-approximate solution for the inoculation problem with k =

n.

3.2 Finding a bicriterion approximate solution

Given a number γ ≥ 1, we show how to compute an (O(γ · log n), O(γ))-approximate

solution for the inoculation problem with c = 0. Observe that if k ≥ n, then the node

set of G is a trivial (O(γ · log n), O(γ))-approximate solution. Therefore, the rest of the

section assumes k < n. For any node subsets S and R of G, the cost effectiveness of R

with respect to S is

μ(R,S) =
φ(S) − φ(S ∪ R)

|R| .

With the following conditions, Algorithm 1 gives the main procedure.

• Condition C1: μ(R,S) < 1
(γ+1)k

· φ(S).

• Condition C2: |S ∪ R| ≥ min{n, (1 + (γ + 1) log2(n − k)) · k}.

• Condition C3: μ(R, S) ≥ 1
γ
·μ(Ŝ, S) holds for any node subset Ŝ of G with |Ŝ| ≤ k.

Observe that Algorithm 1 can only abnormally abort at the step of finding a node subset

R of the current G \ S such that Condition C3 holds. If Algorithm 1 does not abnormally

abort, then the following lemma ensures the correctness of Algorithm 1.

Lemma 3.2. If Algorithm 1 does not abnormally abort, then it takes Algorithm 1 at most

n iterations to output an (O(γ · log n), O(γ))-approximate solution for the inoculation

problem with c = 0.

8



Algorithm 1 main procedure

Let S initially be an arbitrary node subset of G with |S| = k. The algorithm proceeds in

iterations, each of which computes a nonempty node subset R of the current G \ S such

that Condition C3 holds. If neither of Conditions C1 and C2 hold for the current S and

R, then the algorithm lets S = S ∪ R and proceeds to the next iteration. Otherwise, the

algorithm halts. The output depends on Condition C1 for the final S and R:

• If Condition C1 holds, then the algorithm outputs the final S.

• If Condition C1 does not hold, then the algorithm outputs the final S ∪ R.

Proof. Observe that each iteration of Algorithm 1 increases the size of S by at least one.

By definition of Condition C2, Algorithm 1 halts in at most n iterations. The rest of the

proof argues that Algorithm 1 computes an (O(γ · log n), O(γ))-approximate solution.

Consider the final S and R at the last iteration of Algorithm 1. We first show that

|S| = O(γ · log n) · k, (3.1)

which holds trivially if Algorithm 1 runs for exactly one iteration. If Algorithm 1 runs for

at least two iterations, let S ′ (respectively, R′) be the set S (respectively, R) at the second-

to-last iteration. Since Condition C2 does not hold for S ′ and R′, we obtain Equation (3.1)

as follows.

|S| = |S ′ ∪ R′| < min{n, (1 + (γ + 1) log2(n − k)) · k} = O(γ · log n) · k.

The following case analysis is according to whether Condition C1 holds for S and R.

Case 1: Condition C1 holds for the final S and R. We prove the lemma by showing that

Conditions B1 and B2 hold with S = S, α = O(γ · log n), and β = γ + 1. Note that

9



Condition B1 is immediate from Equation (3.1). To see that φ(S) ≤ (γ + 1) · φ(Ŝ) holds

for any node subset Ŝ of G with |Ŝ| ≤ k, observe that Conditions C1 and C3 hold for S

and R. Thus,

φ(S)

(γ + 1)k
> μ(R, S) ≥ μ(Ŝ, S)

γ
=

φ(S) − φ(S ∪ Ŝ)

γ · |Ŝ| ≥ φ(S) − φ(Ŝ)

γ · k .

Therefore, we have Condition B2.

Case 2: Condition C1 does not hold for the final S and R. By definition of Algorithm 1,

Condition C2 holds for S and R. We prove the lemma by showing that Conditions B1

and B2 hold with S = S ∪ R, α = O(γ · log n), and β = 1. We first prove Condition B1,

i.e., |S ∪ R| = O(γ · log n) · k. By Equation (3.1), it remains to ensure |R| ≤ (γ + 1) · k

as follows

φ(S)

|R| ≥ φ(S) − φ(S ∪ R)

|R| = μ(R,S) ≥ φ(S)

(γ + 1)k
,

where the last inequality is by the assumption that Condition C1 does not hold for S and

R.

We next prove Condition B2, i.e., φ(S ∪R) ≤ φ(Ŝ) holds for any node subset Ŝ of G

with |Ŝ| ≤ k. Let Si (respectively, Ri) be the set S (respectively, R) at the i-th iteration of

Algorithm 1. Let δ be the number of iterations executed by Algorithm 1. For notational

brevity, we define Sδ+1 to be the final S ∪ R. For each i = 1, . . . , δ, one can verify that

Si+1 = Si ∪ Ri, we have

μ(Ri, Si) =
φ(Si) − φ(Si ∪ Ri)

|Ri| =
φ(Si) − φ(Si+1)

|Si+1| − |Si| .

Since Condition C1 never holds throughout the execution, we have

φ(Si) − φ(Si+1)

|Si+1| − |Si| ≥ φ(Si)

(γ + 1)k
.

10



Thus,

φ(Si+1) ≤
(

1 − |Si+1| − |Si|
(γ + 1)k

)
φ(Si). (3.2)

Note that Condition B2 holds trivially, if Condition C2 holds with |S ∪ R| = n. For the

rest of the proof, we have Condition C2 holds with

|S ∪ R| ≥ (1 + (γ + 1) log2(n − k)) · k.

Since it may not disconnect G by removing S1 from G with |S1| = k , we have φ(S1) ≤

(n − k)2. Since it may divide G into n − |Ŝ| nodes by removing Ŝ from G with |Ŝ| ≤ k,

we have φ(Ŝ) ≥ n − k. Thus, we have the following result.

φ(S ∪ R) = φ(Sδ+1)

≤ φ(S1) ·
δ∏

i=1

(
1 − |Si+1| − |Si|

(γ + 1)k

)

≤ (n − k)2 ·
δ∏

i=1

(
1 − |Si+1| − |Si|

(γ + 1)k

)

≤ (n − k)2 ·
δ∏

i=1

(
1 − 1

(γ + 1)k

)|Si+1|−|Si|

= (n − k)2 ·
(

1 − 1

(γ + 1)k

)|Sδ+1|−|S1|

≤ (n − k)2 ·
(

1 − 1

(γ + 1)k

)(γ+1)k log2(n−k)

< (n − k)2 ·
(

1

2

)log2(n−k)

= (n − k)

≤ φ(Ŝ),

where the first inequality is by Inequality (3.2). Therefore, we have Condition B2.

11



3.3 Finding a node set with good cost effectiveness

The following lemma ensures the feasiblity of each iteration of Algorithm 1.

Lemma 3.3. For any positive constant ε, if γ = 8(2 + 1
ε
), then each iteration of Algo-

rithm 1 requires O(n4+ε) time and does not abnormally abort.

Proof. Clearly, it suffices to focus on the step to compute a node subset R of the current

G \ S such that Condition C3 holds. At first, for each connected component H of G \ S,

we compute a node subset R of H such that the following condition holds.

• Condition D1: μ(R, S) ≥ 1
γ
· μ(R̂, S) holds for any node subset R̂ of H .

The detail is left to the second part. Then, by choosing the one with maximum μ(R, S)

over all R, we can derive the node subset R such that Condition D1 holds with R = R for

any H of G \ S. Let VH be the node subset of H . By definition of φ, we have

φ(S) − φ(Ŝ) =
∑

H∈G\S

(
φ(S) − φ(S ∪ {Ŝ ∩ VH})

)
,

then

μ(Ŝ, S) =
φ(S) − φ(S ∪ Ŝ)

|Ŝ|

=

∑
H∈G\S

(
φ(S) − φ(S ∪ {Ŝ ∩ VH})

)
|Ŝ|

=

∑
H∈G\S

(
μ(Ŝ ∩ VH , S) · |Ŝ ∩ VH |

)
|Ŝ| .

Since Ŝ ∩ VH is a node subset of H , and Condition D1 holds with R = R for any H of

12



G \ S, Condition C3 holds by the follows

μ(Ŝ, S) =

∑
H∈G\S

(
μ(Ŝ ∩ VH , S) · |Ŝ ∩ VH |

)
|Ŝ|

≤
∑

H∈G\S
(
γ · μ(R,S) · |Ŝ ∩ VH |

)
|Ŝ|

≤ γ · μ(R, S).

The rest of the proof proves that, for any connected component H of G \ S, it takes

O(|VH |4+ε) time to compute a node subset R of H such that Condition D1 holds. There-

fore, we can derive R in O(n4+ε) time, which proves Lemma 3.3.

For any node subset R̂ of H , let 〈Â, B̂, R̂〉 be a cut of H , and |Â| is maximized with

respect to R̂. We give the proof in three parts.

1. μ(R̂, S) ≤ 3|VH |
θH(Â,B̂,R̂)

.

2. A cut 〈A, B, R〉 with θH(A, B, R) ≤ 4(2+ 1
ε )

3
· θH(Â, B̂, R̂) can be computed in

O(|VH |4+ε) time.

3. θH(A, B, R) ≥ |VH |
2·μ(R,S)

.

Combining the three statements, we can compute a node subset R of H in O(|VH |4+ε)

time such that

μ(R̂, S) ≤ 3|VH |
θH(Â, B̂, R̂)

≤ 4
(
2 + 1

ε

) |VH |
θH(A, B, R)

≤ 8

(
2 +

1

ε

)
· μ(R, S) = γ · μ(R, S).

Therefore, we have Condition D1.

Let V i
H be the node set of the i-th connected component of the remaining graph in-

duced by removing R̂ from H . By definition of φ, we have

φ(S) − φ(S ∪ R̂) = |VH |2 −
∑

i

|V i
H |2. (3.3)

13



Since R is a node subset of H , Equation (3.3) also holds with R̂ = R for the rest of the

proof.

The first statement can be proved by two cases of |B̂|.

• |B̂| ≤ 2|VH |
3

. From Equation (3.3), we have

μ(R̂, S) =
φ(S) − φ(S ∪ R̂)

|R̂|
=

|VH |2 −
∑

i |V i
H |2

|R̂|
≤ |VH |2 −

∑
i |V i

H |
|R̂|

=
|VH |2 − (|Â| + |B̂|)

|R̂|

=
|VH |2 − (|VH | − |R̂|)

|R̂|
=

|VH |(|VH | − 1)

|R̂| + 1

=
|VH |(|Â| + |B̂| + |R̂| − 1)

|R̂| + 1

=
|VH |(|Â| + |R̂|)

|R̂| +
|VH |(|B̂| − 1)

|R̂| + 1

≤ |VH |
θH(Â, B̂, R̂)

+
2|VH |(|VH | − |B̂|)

|R̂|

=
|VH |

θH(Â, B̂, R̂)
+

2|VH |(|Â| + |R̂|)
|R̂|

=
|VH |

θH(Â, B̂, R̂)
+

2|VH |
θH(Â, B̂, R̂)

=
3|VH |

θH(Â, B̂, R̂)
.

• |B̂| > 2|VH |
3

. We prove that there is only one connected component in B̂. As-

sume for contradiction that B̂ consists of more than one connected components.

The following two cases show that there exists a cut 〈A′,B′, R̂〉 with |A′| > |Â|,

contradicting to that |Â| is maximized with respect to R̂.

14



– If there exists a connected component Hb of B̂ with |Hb| ≤ |VH |
3

, we let A′ =

min{Â ∪ Hb, B̂ \ Hb}, then |A′| > |Â|.

– Otherwise, we let A′ be any connected component of B̂, then |A′| > |VH |
3

>

|Â|.

Thus, we have

μ(R̂, S) =
φ(S) − φ(S ∪ R̂)

|R̂|
=

|VH |2 −
∑

i |V i
H |2

|R̂|

=
|VH |2 − |B̂|2 − ∑

V i
H∈Â |V i

H |2
|R̂|

≤ |VH |2 − |B̂|2 − |Â|
|R̂|

=
|VH |2 − (|VH | − |Â| − |R̂|)2 − |Â|

|R̂|

=
2|VH |(|Â| + |R̂|) − (|Â| + |R̂|)2 − |Â|

|R̂|

<
2|VH |(|Â| + |R̂|)

|R̂|
=

2|VH |
θH(Â, B̂, R̂)

,

where the second equality is by Equation (3.3).

The second statement follows immediately from Lemma 2.2. We then prove the third

statement. Since |A| ≤ |B|, we have

|B| ≥ |A| + |B|
2

=
|VH | − |R|

2
. (3.4)
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From Equation (3.3) and Inequality (3.4), we have

μ(R, S) =
φ(S) − φ(S ∪ R)

|R|
=

|VH |2 −
∑

i |V i
H |2

|R|
≥ |VH |2 − |A|2 − |B|2

|R|
=

(|A| + |B| + |R|)2 − |A|2 − |B|2
|R|

=
2|A||B| + 2|VH ||R| − |R|2

|R|
≥ 2|A||B| + |VH ||R|

|R|
≥ |A|(|VH | − |R|) + |VH ||R|

|R|
=

|VH |(|A| + |R|)
|R| − |A||R|

|R|
≥ |VH |

θH(A, B, R)
− |VH |(|A| + |R|)

2|R|
=

|VH |
2 · θH(A, B, R)

.

3.4 Proving Theorem 1.1

Proof. Lemmas 3.2 and 3.3 together ensure that an (O(log n), O(1))-approximate solu-

tion for the inoculation problem with c = 0 can be found in O(n5+ε) time. The theorem

follows immediately from Lemma 3.1.
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Chapter 4

Concluding remarks

We leave open the approximability of the inoculation problem for general parameter k.

It would be interesting to see if our techniques can be extended to work for this general

version for planar graphs.
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