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An Approximation Algorithm for the Inoculation Problem for

Planar Networks

Student : Kuan-Kai Chiu Advisor : Hsueh-I Lu, Ph.D.

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Abstract

For numbers ¢ and k£ and an n-node graph G, the inoculation problem is to compute an
S consisting of at most k£ nodes of G such that ¢ - m + % >~ n? is minimized, where m
is the cardinality of S and n; is the number of nodes in the i-th connected component
of G\ S. The best previously known result, due to Aspnes, Chang, and Yampolskiy,
for this NP-complete problem is an O(log"® n)-approximation algorithm. In the present
article, we focus on the special case that GG is planar: We show that the problem remains

NP-complete and give an O(log n)-approximation algorithm for the problem.
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Chapter 1

Introduction

For any set S, let |S| denote the cardinality of . For any node subset S of G, let G \ S
denote the graph obtained from (G by deleting the nodes in S and the edges incident to the

nodes in S. For any node subset S of G, let

$(S) = Zn?,

where n; is the number of nodeés‘in the i-th connected component of G\ S. See Figure 1.1
for an example.
Given an n-node graph GG and two numbers c and &, the inoculation problem is to find

anode subset S of G with |\S| < k that minimizes
5]+ - 9(5)
c- — - :
n

To address a game-theoretical model of network security (see, e.g., [2, 3, 6-8, 10-18, 20]),
Aspnes, Chang, and Yampolskiy [4] formulated the problem with £ = n to describe
the following scenario of virus attack. Suppose that each infected node incurs 1 unit
of penalty and it takes c units of cost to secure a node by, say, installing an anti-virus

1
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Figure 1.1: If G is the graph as shown in the left and S = {a, b, ¢}, then ¢(S) = 23.

software. The virus spreads by infecting some initial node chosen uniformly at random.
An insecure node gets infected if any of its neighbors in the graph is infected. If S consists
of the secured nodes, then c-|S| is the inoculation cost and + - ¢(.5) is the expected penalty
incurred by all infected nodes.

Aspnes et al. [4] ensured the NP-completeness of. the problem. They also showed that
it takes in é(n4) time' to compute an-O(log” n)-approximation solution for the problem
with £ = n. In the journal version [5], they further reduced the approximation ratio to
O(log"® n) while raised the time complexity O (n®?). Moscibroda, Schimid, and Watten-
hofer [19] studied the problem for highly regular and low-dimensional G.

The present article focuses on planar (&, for which case we show that the problem
remains NP-hard and obtain an approximation algorithm as summarized in the following

theorem.

Theorem 1.1. For any n-node planar graph G, any number c, and any positive constant
€, it takes O(n%+€) time to compute an O(log n)-approximate solution for the inoculation

problem with k = n.

Similar to the method of Aspnes, Chang, and Yampolskiy [4, 5], our approach repeat-

"The O(-) notation suppresses the polylog(n) factors.
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edly removes a near-optimal sparse vertex cut from some connected component of the
current graph. The near-optimal sparse vertex cut causes a sufficient decrease of risk per
removed node, quantified as its cost effectiveness. We compute a node set with sufficient
cost effectiveness by resorting to the approximation algorithm of Amir, Krauthgamer, and
Rao [1] that finds a near optimal solution for the minimum quotient vertex cut problem
for planar graphs.

The rest of the paper is organized as follows. Chapter 2 gives the preliminaries. Chap-

ter 3 gives our algorithm. Chapter 4 concludes the paper.



Chapter 2

Preliminaries

For the rest of the paper, let G be the input n-node planar graph.

2.1 Hardness

The following lemma ensures that the inoculation problem with £ = n remains NP-hard

even if GG is planar.

Lemma 2.1. The inoculation problem for an n-node planar graph G with k = n and

% <c< % is NP-hard.

Proof. The proof is modified from that of Aspnes et al. [5, Theorems 3 and 10]. Since
computing the minimum cardinality of vertex cover for planar G is NP-complete [9], it
suffices to show that the cardinality of any optimal solution for the inoculation problem
with £ = n and % <c< % for G is the same as the cardinality of any minimum vertex
cover of G. S is a minimum vertex cover for G if and optimal solution of the inoculation

problem with ¢ = %



Let S; be a minimum vertex cover for G. Let S5 be an optimal solution for the

inoculation problem for G with k£ = n and % <c< % Aspnes et al. [5, Theorem 10]

guarantees that S is a vertex cover of G. Therefore,
|S1| < 15a].
Since S; and S, are both vertex covers of G, we have
¢(51) = n—I[5]
¢(S2) = n—|[5%]

Since S, is a feasible solution for the inoculation problem, we have

¢S5 —(b(:z) < ¢ W8k —¢(§1).

It follows from ¢ > % and Equations (2:2) and (2:3) that

| 52| B S )

Combining Inequalities (2.1) and (2:4), we have|S;|:=|5;|. The lemma is proved.

2.2 Minimum quotient cut

(2.1)

(2.2)

(2.3)

(2.4)

O

(A, B, R) is a cut of a graph H if A, B, and R with |A| < |B| form a partition of the

nodes of H such that H does not have any edge with one endpoint in A and the other

endpoint in B. The quotient of (A, B, R) is

R

The minimum quotient cut problem for H is to find a cut of H with minimum quotient.

5



Lemma 2.2 (Amir et al. [1]). For any n-node planar graph H and any positive constant e,
it takes O(n**<) time to compute a 5(1+ X + o(1))-approximate solution for the minimum

quotient cut problem for H.




Chapter 3

Our algorithm

3.1 A reduction

For numbers «, 5 > 1, a node subset S of G is a bicriterion (v, 3)-approximate solution

for the inoculation problem for G if the following conditions hold for S, «, and 3:
e Condition BI: |S| < « - k.
e Condition B2: ¢(S) < 3+ ¢(S) holds for any node subset S of G with | S| < k.

Therefore, a -approximate solution for the problem is a (1, 3)-approximate solution for
the problem. Our result is based on the following reduction of Aspnes et al. [S], which
ensures that it suffices to focus on finding an («, 3)-approximate solution for the problem

with ¢ = 0.

Lemma 3.1 (Aspnes et al. [5, Corollary 13]). If an («, 3)-approximate solution for the

inoculation problem with ¢ = 0 can be computed in O( f (n)) time, then it takes O(n- f(n))



time to compute a max(«, (3)-approximate solution for the inoculation problem with k =

n.

3.2 Finding a bicriterion approximate solution

Given a number vy > 1, we show how to compute an (O(7 - logn), O(y))-approximate
solution for the inoculation problem with ¢ = 0. Observe that if £ > n, then the node
set of G is a trivial (O(7 - logn), O(7))-approximate solution. Therefore, the rest of the
section assumes k£ < n. For any node subsets S and R of G, the cost effectiveness of R

with respect to S'is

B(S) =(S U R

((R..S) = IR

With the following conditions, Algorithm, 1 gives the main procedure.
e Condition CI: u(R,S) < m - (9.
e Condition C2: |S U R|2 min{n, (1 +(y +1)log,(n —k)) - k}.

e Condition C3: u(R, S) > L:ju(S,.S) holds for any node subset S of G with | 5| < k.

L
ol
Observe that Algorithm 1 can only abnormally abort at the step of finding a node subset

R of the current G \ S such that Condition C3 holds. If Algorithm 1 does not abnormally

abort, then the following lemma ensures the correctness of Algorithm 1.

Lemma 3.2. If Algorithm 1 does not abnormally abort, then it takes Algorithm 1 at most
n iterations to output an (O(y - logn), O(~))-approximate solution for the inoculation

problem with ¢ = 0.



Algorithm 1 main procedure

Let S initially be an arbitrary node subset of G with |S| = k. The algorithm proceeds in
iterations, each of which computes a nonempty node subset R of the current G \ S such
that Condition C3 holds. If neither of Conditions C1 and C2 hold for the current S and
R, then the algorithm lets S = S U R and proceeds to the next iteration. Otherwise, the

algorithm halts. The output depends on Condition C1 for the final S and R:

e If Condition C1 holds, then the algorithm outputs the final S.

e If Condition C1 does not hold, then the algorithm outputs the final S U R.

Proof. Observe that each iteration of Algorithm 1 increases the size of S by at least one.
By definition of Condition C2, Algerithm 1 halts inat-most n iterations. The rest of the
proof argues that Algorithm 1 computes an (O(~ - logn); O(7))-approximate solution.

Consider the final S and R at the last iteration of Algorithm 1. We first show that
1Si= O(v - logn) - &, (3.1)

which holds trivially if Algorithm 1 runs for .exactly one iteration. If Algorithm 1 runs for
at least two iterations, let S’ (respectively, ') be the set S (respectively, R) at the second-
to-last iteration. Since Condition C2 does not hold for S" and R’, we obtain Equation (3.1)

as follows.
|S| = |S"UR| <min{n, (1+ (y+1)logy(n —k)) -k} = O(y -logn) - k.
The following case analysis is according to whether Condition C1 holds for S and R.

Case 1: Condition CI1 holds for the final S and R. We prove the lemma by showing that
Conditions B1 and B2 hold with S = S, @ = O( - logn), and § = v + 1. Note that

9



Condition B1 is immediate from Equation (3.1). To see that ¢(S) < (7 + 1) - #(S) holds

for any node subset S of G with |5’ | < k, observe that Conditions C1 and C3 hold for S

and R. Thus,
(S) w(S,8)  $(S)—d(SUS) _ $(S) — ¢(5)
(7+1)/<5>M<R’S)Z vy v 1S Sy

Therefore, we have Condition B2.

Case 2: Condition CI does not hold for the final S and R. By definition of Algorithm 1,
Condition C2 holds for S and R. We prove the lemma by showing that Conditions B1
and B2 hold with S = SU R, &« = O(~ - logn), and # = 1. We first prove Condition B1,
ie., |SUR| = O(v-logn) - k. By Equation (3:l), it remains to ensure |R| < (y+ 1) - k

as follows

P(5)— o(SUR)
R

¢(5)
|R|

o(5)
(v+ DE’

> = (R, S) =

where the last inequality is by the assumption that Condition C1 does not hold for .S and
R.

We next prove Condition B2,4.¢;; ¢(S'U R)'< ¢(S) holds for any node subset S of G
with ]S‘ | < k. Let S, (respectively, R;) be the set'S (respectively, R) at the i-th iteration of
Algorithm 1. Let § be the number of iterations executed by Algorithm 1. For notational
brevity, we define Sy, to be the final S U R. Foreach: = 1, ..., §, one can verify that

Sit1 = S; U R;, we have

_0(Si) —9(SiUR;)  9(Si) — ¢(Si)
ulfi 5) = | 1] Sl =S

Since Condition C1 never holds throughout the execution, we have

¢(S;) — ¢(Sit1)
|Siza| =[S

o(Si)
(v+ 1k

>

10



Thus,
1Sl = 1S54]

o) < (1- B

) o(5) (32)

Note that Condition B2 holds trivially, if Condition C2 holds with |S U R| = n. For the

rest of the proof, we have Condition C2 holds with
ISUR| > (1+ (v +1)logy(n —k)) - k.

Since it may not disconnect G by removing S; from G with |S;| = &k, we have ¢(5;) <
(n — k)2. Since it may divide G into n — | S| nodes by removing S from G with |S] < k,

we have ¢(S) > n — k. Thus, we have the following result.

P(SUR) = olS541)

- | Se—1S;)
)
9 |Si+1— bSi]
<\e- 1T HOH @

IA
.
|
—
[\
=r

s
Il
-

&
B~ — AN

1 [Si+11—1S]
1 AL
(et 1)k>

N REN
ol 1)k)

] (v+1)k logs (n—k)
(v + 1)k)

—_

IA
£
|
S
~—
no
TN TN

logy (n—Fk)
< (n—k) %)
= (n—k)
< ¢(9),

where the first inequality is by Inequality (3.2). Therefore, we have Condition B2. [
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3.3 Finding a node set with good cost effectiveness

The following lemma ensures the feasiblity of each iteration of Algorithm 1.

Lemma 3.3. For any positive constant €, if v = 8(2 + %), then each iteration of Algo-

rithm 1 requires O(n*"¢) time and does not abnormally abort.

Proof. Clearly, it suffices to focus on the step to compute a node subset 2 of the current
G \ S such that Condition C3 holds. At first, for each connected component H of G \ S,

we compute a node subset R of H such that the following condition holds.

e Condition DI: (R, S) > 1 . u(R,S) holds for any node subset R of H.

1
5
The detail is left to the second part..Then, by choesing the one with maximum p (R, S)
over all R, we can derive the node subset*/ such that Condition D1 holds with R = R for
any H of G\ S. Let Vg be'the node subset of H. By definition of ¢, we have

8(9) =g(Sy= Y] (908) ASULS AVir}))

HeG\S.

then

Wss) = S —g’(s US)
| ireas (605) = 6(SULSNVi)))
N H
B ZHEG\S (,u(SﬂVH,S)- ‘SHVH’)
N 1] |

Since S N Vy is a node subset of H, and Condition D1 holds with R = R for any H of

12



G \ S, Condition C3 holds by the follows

) > Hears (u(SHVH,S) : ySmVH|)

u(S,s) = 3]
ZHGG\S ('7 (R, S) - |‘§ n VH|>
- B
< 7v-u(R,S).

The rest of the proof proves that, for any connected component H of G \ S, it takes
O(|V|*¢) time to compute a node subset R of H such that Condition D1 holds. There-
fore, we can derive R in O(n4+€) time, which proves Lemma 3.3.

For any node subset 12 of H, let (A, B, R) be a cut of H, and |A| is maximized with

respect to R. We give the proof in three parts.

5 3|V |
L ullS) < 2

4fo42)

4

3

2. A cut (A;B,R) with (A, B, R) "< - 0u(A,B, R) can be computed in

O(|Vy|**€) time.

3. 0u(AB,R) > 7L<,

Combining the three statements, we can compute a node subset R of H in O(|Vy|*+€)

time such that

. 3|V 4(24 1) |Vy ( 1)
R, S) < — < € <8(2+>) uR,S) =~-uR,S).
) 0u(A,B,R) ~ 0u(AB,R) =) - (R, S) =7 (R, 5)

Therefore, we have Condition D1.
Let V}; be the node set of the i-th connected component of the remaining graph in-

duced by removing R from H. By definition of ¢, we have

3(S) = S(SUR) = V> = D [Virl*. (3.3)

]

13



Since R is a node subset of H, Equation (3.3) also holds with R = R for the rest of the

proof.

The first statement can be proved by two cases of | B|.

o |f>’| < %H‘ From Equation (3.3), we have

u(R,S)

IN

$(S) — ¢(S U R)

|R|
Val* = > Val?
|R|
V> = 32 IVE]
|R|
Vul? = (|A] + | BI)
|R]
Va2 — (Vi — [R])
|R|
|VH|(|V:H| — 1y -
||
|V (A + IE:?I +|R| - 1) - %
||
IVHI(\AJ+IRI) IVHI(I{?I —1) L
| R Fid
I}fHJ ) ZIVHI(IVIgI —|Bl)
0 (A, By R) |R|
I}/HJ - 2!VH|(I/}| +|R))
0n(A, B, R) IR|
\Z1 2|Vy|
0u(A B,R) 0y(A B, R)
3|Vl
0u(A, B, R)

e |B| > @ We prove that there is only one connected component in B. As-

sume for contradiction that B consists of more than one connected components.

The following two cases show that there exists a cut (A’, B, R) with |A/| > |A|,

contradicting to that | A| is maximized with respect to R.

14



— If there exists a connected component Hj, of B with |Hy| < Wil we let A’ =

min{A U H,, B\ H,}, then | 4’| > |A].

— Otherwise, we let A’ be any connected component of l%, then |A'| > 'V—f‘ >

~

A

Thus, we have

MR — A oSUR
R
[Val? = 3, Vil
R
Va2 = |B? — Sy, ca Vil
7
VAEABES | 4]
R
Vit (Vs LA 202 - 14
R
2\ViulOAFF | RD) — 44| + |l — 1A
A

IA

2|V | (|A] + | RI)
|R|
2{Vy|
eH(Av B; ‘R)7

where the second equality is by Equation (3.3).

The second statement follows immediately from Lemma 2.2. We then prove the third

statement. Since |A| < |B|, we have

AL+ [B] _ Vil = [R]

B| >
2 2

(3.4)

15



From Equation (3.3) and Inequality (3.4), we have

¢(5) —¢(SUR)

1R, S) R|
_ WVaP =2 VP
R|
o Vul AP - B
B R|
_ (A + B+ [R])* — |A* — |BJ”
IR|
_ 2|A||B| 4 2|V |[R| — [R[?
R|
o 2IA[IB| + [Val[R]
B R|
o [A(Va] = [R]) + [Val|R]
B IR|
o Vel(A] -+ IR) AR
IR |R]
S Val  Tikal(A+R))
7 0, B, R) 2|R|
W |V
2- QH(A,IB,]R)'

3.4 Proving Theorem 1.1

Proof. Lemmas 3.2 and 3.3 together ensure that an (O(logn), O(1))-approximate solu-
tion for the inoculation problem with ¢ = 0 can be found in O(n°"¢) time. The theorem

follows immediately from Lemma 3.1. L]
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Chapter 4

Concluding remarks

We leave open the approximability ofithe inoculation problem for general parameter k.
It would be interesting to see if our techniques can be-extended to work for this general

version for planar graphs.
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