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THESISABSTRACT

Near Optimal Network Planning and Defense Resour ce Allocation Strategies for
Minimizing Quality-of-Service (QoS) Violations under Attacks
Name : Tzu-Chen Hsieh July 2008

Advisor : Yeong-Sung Lin, Ph. D.

With the convenience of Internet, the problem of information security has caught
more and more attentions. Events of witting or unwitting cybercrimes emerge in an
endless stream in past years. Among them, to.'compromise particular servers and then
degrade their process capability is one oj the most popular cybercrimes in order to
further affect the Quality-of-Service (Qc;é) of \the network. For taking precautions
against such attacks, we should .develop effectivé defense strategies such as defense

resources allocation. Besides, the network planning has to be considered in the realm of

information security.

In the thesis, we propose a min-max mathematical programming problem to model
the mutual behavior between a network administrator and an attacker. In the inner
problem, called the ARRAS problem, the attacker would like to maximize the total
penalty the administrator has to pay for due to QoS violations by deciding which node

to attack and allocating the limited attack budget effectively. In the outer problem,



called the NPDRAS problem, the network administrator hopes to minimize the total
penalty by planning awell network and allocating defense resources intelligently under
a limited budget. For obtaining near optimal solutions, we use the Lagrangean
relaxation-based algorithm to solve the ARRAS problem and exploit the solutions of
ARRAS problem and the proposed budget adjustment procedure to solve the NPDRAS

problem.

Keywords: Information Security, Quality-of-Service, Mathematical Programming,

ResourceAllocation, L agrangean.Relaxation, Optimization
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Chapter 1 Introduction
1.1 Background

According to Alvin Toffler’s talkin “The Third Wave’ in 1980 [1], as the first

agrarian revolution ten thousand years _ag:o__and' the second industrial revolution in the

N

nineteen century, people will face the third -Ee'volution which is going to change people’s
lifestyle and economical view iﬁ.the- twentieth éentury, the so-called post-industrial
revolution or information revolution. Indeed, with the popularity of computer and the
rise of internet, the usage of computer extends increasingly from national defense and
science to human entertainment, communication, and commercial affair. Many
applications of emerging technology have also replaced numerous human physical
behaviorsin our daily lives. Due to the extensive usage of e-mail, web phone, electronic
commerce, digital product and so forth, network services are indivisible from our daily
lives. Therefore, the applications on the network services are developed quickly for the

arrival of new age.



Among them, multimedia in the distributed environment is one of the popular
applications on the network services. Common cited examples include
Video-on-Demand (VoD), Multimedia-on-Demand (MoD), distance learning,
videoconferencing, distributed games, distributed databases, and mass mailing [2]. In
such applications, a network service provider has to guarantee the Quality-of-Service
(QoS) requirements requested by users. For this reason, a network planner hopes to
design an optimal communication planning in order to satisfy the QoS requirements,

such as bandwidth, delay, delay jitter, packet |oss, etc.

In order to achieve this oneto-many‘._(_:,omrhunicati on planning, multicast routing is

the most frequent technology. Multicast re?)r@ents the 'data transmission from a single
source to multiple destinations belonging. to th.e same group in a communication
network. Multicast routing refers to the path selection for data transmission which has
to satisfy the QoS requirements requested by the downstream users. Finally, a tree
rooted at a single source and terminated at all destinations is generated, which is the
so-called multicast routing tree. A Steiner Minimal Tree (SMT) is the multicast routing
tree with the minimal overall cost. The algorithm of determining a Steiner minimal tree

is known as NP-Complete problem [3].

However, with the convenience of information, the problem of information



security has caught more and more attentions. Events of witting or unwitting

cybercrimes emerge in an endless stream in past years, which is shown in Figure 1-1

[4]. Besides, nature disasters also damage components in a network to break the data

transmission. Therefore, the network planning has increasingly subsumed the realm of

information security.

By Percent of Respondents
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Figure 1-1. How Many Incidentsin the Past 12 Months?

A great deal of security technologies have been proposed to strengthen the network

robustness against malicious attacks and nature disasters in recent years as Figure 1-2

shows [4]. Nevertheless, because there is no perfect technology and communication

protocol, and the behavior of an attacker is unexpected, the network administrator can’t

guarantee the robustness of the network out and out. The attacker is always capable of

3



finding the vulnerabilities of the network and then maximizing the damage of the
network by the most powerful attacks. However, the network administrator could
change the network planning and defense resource allocation strategies to degrade the
damage of the network under such attacks. In another word, the attacker and the
network administrator could constantly modify their strategies to resist the other side
until the optima defense strategy can be generated to maximize the network

survivability.

Many scholars have researched in'the field of.survivability for a while. However,

the definition and the measurement of n_é.t_wo'rk' survivability are not consistent among

N

them. According to the survey of [5], ‘the (;épability of-a system to fulfill its mission, in
a timely manner, in the presence of attacks, failuré or accidents,” proposed by Ellison

et al. in 1999 [6], is the most frequent definition of survivability.
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1.2 Motivation

In a distributed environment, an attacker can attack the critical points of multicast
routing trees and affect the QoS requested by users. For instance, an attacker could
embed some useless programs in the critical points to degrade their operating
capabilities and then cause slow transmissions or even fail transmissions. The more the
ability to provide reliable QoS under attacks is, the more the users willingness of
paying for network services is. On the contrary, when QoS violations occur, the user

would request the penalty for contract violations, or even cancel the contract.

With the limited budget, a network é@%ninistrator needs to deploy defense budget
effectively to decline the penalty’: due to -E?OS violati.ons. Similarly, an attacker will
alocate attack budget appropriately With the limited attack budget. The two opposites
will constantly change their respective strategies according to the other’s strategy.
Through our surveys, however, there are few theoretical researches using mathematical
manners to discuss the mutual behavior between a network administrator and an attacker.
Therefore, we propose a mathematical model to formulate the mutual behavior and
solve it by our proposed solution approaches. Finally, we will also provide the useful
indicator of defense strategies to a network administrator to minimize the penalty under

attacks.



From related researches, moreover, the defense resource allocation is mostly
considered after network planning. We hope to consider the ream of defense in the
phase of network planning. Therefore, we can implement extra the capacities of links
and nodes by investing some budget to decrease the time of transmissions, and even to

decline the chance of QoS violations.

1.3 Literature Survey

1.3.1 1P Multicast

N

Multicast means the datatransrnissioﬁ.;f-fbm asingle source to multiple destinations
in agroup. In generaly, a spanni ng treeisione-of the most efficient methods to achieve
the data transmission to connect all the members in the group. The agorithm of

constructing a spanning tree for the group is called multicast routing algorithm.

For multicast algorithms nowadays, according to the research proposed by Bin
Wang et al. in 2000 [7], there are two types of tree: the source-based tree and the

core-based tree (Or the share tree [8]), which depends on how atreeis generated.

A source-based tree is a source-rooted tree composed of the shortest paths among

the source and all destinations in a multicast group. That is to say, the source-based tree



can mainly be characterized by a Shortest Path Tree (SPT). Generaly, in a multicast
group, there may have many separate SPTs, one for each source. Reverse Path
Forwarding (RPF) is one of the common routing mechanisms to derive the shortest path
to build a SPT [8]. The Multicast extensions for Open Shortest Path First protocol
(MOSPF) and Distance-Vector Multicast Routing Protocol (DVMRP) are the cited

source-based tree protocols using SPT [6].

Of course, the primary advantage of a SPT is the minimal end-to-end delay from a
source to each destination. The characteristic makes the SPT be suitable to timely

applications, such as videoconferencing,, whi chlare ma nly delay-sensitive and have a

N

high bandwidth requirement [2][3]. With'a large number of multicast groups and
sources, however, the routers’ memories:.could:be éxhausted. In other words, we assume
there are m groups in a network, and »n sources for each group, then mxn routing tables

have to be stored in the routers of the network [9].

In order to solve this storage problem, the core-based tree or the shared tree has
been proposed. There is only a tree used by all the sources of a multicast group. Each
source has to sends data to a single node which called core, center, or Rendezvous Point
(RP) [7] and the RP then forwards the data to the designate destinations. Core Based

Tree (CBT) and Protocol Independent Multicast-Sparse Mode (PIM-SM) are the famous



protocols of core-based tree [6].

The main advantage of a core-based tree is to save the router storages because of
the tree sharing. There are only m routing tables to be stored in the routers while the
network has m groups. But the path from a source to a destination through the RP may
cause much delay than the minimal. Besides, there exists a critical problem for data
transmission, which means traffic concentration. The bottleneck is the RP when all
sources in a group transmit data in the meantime. Furthermore, how to choose the

optimal RPin the core-based treeis.an NP-Compl ete problem [8].

Figure 1-3 [10] shows an exarhblié?}of. traffic eoncentration. There are three
members 4, B, and C, in a multicast'group &)nnect.ed with directed link as Figure 1-3(a)
shows. Among them, node 4 and C ére two'sources with the same sending rate. Figure
1-3(b) shows a core-based tree used by all the sources of the group. Figure 1-3(c)
shows two SPTs, one for each source. Clearly, link CB has two flows in Figure 1-3(b),

but all links have only one flow at most in Figurel-3(c).

In generally, the type of tree is an alternative which depends on the distribution of
destinations throughout a network. A source-based tree is optimized for densely

distributed destinations and a core-based tree is suitable for sparse mode [8].



(a) Sample network (b) Core-based tree

(c) Source-based tree

Figure 1-3. Traffic Concentration Example

1.3.2 QoS Routing

-

With the development of multi mediéf,;ﬁplications, the demand for QoS has been
increasingly considered in multicast r_duti ng. The multicast routing tree has to satisfy the
QoS requirements, such as bandwidth, delay, and delay jitter, requested by users. In
other words, the QoS requirements have to be characterized by some constraints for

solving a problem of multicast routing.

Bin Wang et al. [ 7] propose two categories of such constraints: /ink constraints and
tree constraints. The link constraints are the usage limitations of links while routing. For
example, the total consumed bandwidth of any link cannot exceed the capacity of the
link. The tree constraints include the restrictions of all end-to-end transmissions from

the source to destinations and the limitations between all transmissions in a multicast
10



routing tree. For example, the end-to-end delay of any transmission and the delay jitter

between any two transmissions must satisfy to the requirement request by users.

Clearly, atree constraint is composed of some link metrics along with the multicast
routing tree. According to the relationship between a tree constraint and the
corresponding link metrics, the tree constraints can be divided into three types as

following [7]:

1. Transitive tree constraints (or Concave tree constraints [11]): Available bandwidth
is one of transitive tree constraints. For example, we assume bw(R1—>R>) is the
available bandwidth from node R [to R’gand bw(R>—R3) is the available bandwidth

from node R to R3, then the available bandwidth from node R; to R3 through R; is
bW(R1—>R2—>R3) = min[bw(R1—>R2), bW(R2—>R3)].
2. Additive tree constraints: End-to-end delay is one of additive tree constraints. For

example, we assume d(R;—R») is the delay from node R; to R, and d(R>—R3) isthe

delay from node R to R3, then the delay from node R; to Rz through R, is
d(RlﬁRzﬁR3) = d(R]_ﬁRz) + d(RzﬁR3).
3. Multiplicative tree constraints: Reliability is one of multiplicative tree constraints.

For example, we assume »(R1—R>) is the reliability from node R; to R, and (R~

R3) is the reliability from node R, to Rs, then the reliability from node R; to R3

11



through R, is
F(RlﬁRzﬁRQ = V(R1—>R2) X I"(RzﬁRg).

Besides, a multiplicative tree constraint can be transformed into an additive tree

constraint using logarithm.

Zheng Wang et al. [12] have proved that a path routing problem with multiple
additive tree constraints and/or multiple multiplicative tree constraints in any

combination is NP-Compl ete.

With the difference of constraints and the difference of objective function, the QoS

N

multicast routing problems can be clas%ifiéaihto twelve categories as Table 1-1 shows

[7].
1.3.3 Single-Application Multiple-Stream

In a QoS multicast routing problem, there may have several significantly varied
bandwidth requirements because of the heterogeneity of network and the different
qualities requested by different destinations as Figure 1-4(a) shows. Node s is the
source and node di, d», d3, and d, are destinations in a multicast group where node d;
requests 5 Mbps bandwidth requirement and nodes d», ds, and ds request 2 Mbps

bandwidth requirement respectively.

12



Table 1-1. A Taxonomy of Multicast Routing Problems

No optimization Complexity Example
Null constraint
(1) Link-constrained Polynomial time  Bandwidth-constrained routing
Link constraint - X : T . . .
(2) Multiple-link-constrained Polynomial time Bandwidth- and buffer-constrained routing
_ (3) Tree-constrained Polynomial:.time Delay-constrained routing
Tree constraint - - : : ) - ) )
(4) Multiple-tree-constrained NP-complete  Delay- and interreceiver-delay-jitter-constrained routing
Link and treeconstraints  (5) Link- and tree-constrained Polynomial time~ Delay- and bandwidth-constrained routing
Link optimization Complexity Example

Null constraint

(6) Link optimization

Polyromial time

Link constraint

(7) Link-constrained link optimization

Palynomial time

Tree constraint

(8) Tree-constrained link optimization

Palynomial time

Link and tree constraints

M aximization of the link bandwidth over on-tree links in a multicast tree
The bandwidth-constrained buffer optimization problem

The delay-constrained bandwidth optimization problem

Tree optimization Complexity Example
Null constraint (9) Treeoptimization NP-complete  Minimization of the total cost of a multicast tree
Link constraint (10) Link-constrained tree optimization NP-complete  The bandwidth-constrained Steiner tree problem
Tree constraint (11) Tree-constrained tree optimization NP-complete  The delay-constrained Steiner tree problem
Link and tree constraints  (12) Link- and tree-constrained tree optimization NP-complete  The bandwidth- and delay-constrained tree optimization problem
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Figure 1-4(b) illustrates the transmissions from the source node to all destinations
using unicast video distribution. There is an 11 Mbps bandwidth requirement for the
link from node s to n; and a 6 Mbps bandwidth requirement for the link from node n; to

no.

Figure 1-4(c) shows the transmissions using multicast video distribution. There is
a 7 Mbps bandwidth requirement for the link from node s to n, and a 2 Mbps bandwidth
requirement for the link from node n; to n,. The bandwidth requirement of multicast is

less than this of unicast because many destinations share the same traffic.

With the usage of a video gataNéy"éé-pfogress cader, and the advance of video
encoding and transmission technelogies such asthg multi-layered coding method [14], a
source and video gateways transmit only 6ne signal that is sufficient for the highest
bandwidth requirement of downstream destinations. The concept is called
Single-Application Multiple-Stream (SAMS) [13]. Figure 1-4(d) is an instance of
SAMS. Thus, thereis only a5 Mbps bandwidth requirement for the link from node s to
n1. Therefore, SAMS has attracted more and more attention in multicast routing

problem in recent years.

1.3.4 Survivability

In the generation full of information, the incidents of cybercrime have increased
15



greatly with the growth of internet. The problems of such events are threatening our
daily lives nowadays. Therefore, a large number of businesses and people have
increasingly attached great importance to the domain of information security. By this

trend, the term survivability has appeared in recent years.

The concept of survivability is not equal to this of security. According to [5], an
application with security mechanisms such as encryption is probably dedicate yet
whereas a survivability application has to be capable of surviving under attacks. Hence,

security isincluded to survivability..

A great quantity of researehion suh/i%bi.lity has been proposed in recent years as
Table 1-2 shows. However, the precise definition of ‘survivability is varied. In general,

the definition of survivability isto measure t'he degree of anticipations of all users[15].

The definition of survivability in [6] isthe most common one [5]. The terms system,

mission, attack, failure, and accident are described as follows:

1. System: A system refersto a network or alarge-scale system.

2. Mission: A mission represents a set of very high-level requirements or goals.

3. Attack: Attacks are the potentially damaging events caused by a malicious adversary.
Attacks include intrusions, probes, denials of service (DoS), distributed DoS

(DDo0S), and etc.
16



Table 1-2. Definitions of Survivability

No. Researcher(s) Definition Year Ref.
Louc The ability of a network to maintain or restore
) a, an acceptable level of performance during
1. Pitsllides, and i . , , 1999 [16]
network failure conditions by applying various
Samaras . .
restoration techniques. 7
Th ity of stem to fulfill its mission,
Ellison, Fisher, ec.apauyo asy. em to fulfill its mission
2. _ in a timely manner, in the presence of attacks, 1999 [6]
and Linger . .
fal I ur%, Or mc' dmts- ......................................
The ability to continue to provide service,
) possibly degraded or different, in a given
Knight and _ . .
3. sullivan operating environment when various events 2000 [17]
cause magjor damage to the system or its
operafing environment. 0000000000000
The ability, of a given'system with a given
intended  usage -to-provide a pre-specified
4, Westmark ' St e 2004 [15]

minimum level of servicein the event of one or
more pre-specified threats.

4. Fuailure: Failures are the potentially dafﬁaging events caused by the deficiencies in

the system. Failures include software design errors, hardware degradation, human

errors, corrupted data, and so forth.

5. Accident. Accidents are the potentially damaging events caused by randomly

A natural disaster is an example of accident.

occurring. With the contrast to failures, accidents are generated outside the system.

Westmark divided the measurement of survivability into three categories.

connectivity, network performance, and a function of other quality or cost measures

[15]. We use the performance metric as the measurement of survivability in our model.
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That is to say, the more the degree of satisfying the QoS under malicious attacks is, the

more the survivability is.

1.4 Proposed Approach

We model the problem as a min-max optimization problem, which is also a
nonlinear mathematical programming problem. Because of its high complexity, we are
going to apply the Lagrangean relaxation and the subgradient method, and design

optimization-based heuristics to solve the problem.

1.5 Thesis Organization

The remainder of the thesisis o.rganized asfollows. In Chapter 2, we propose the
NPDRAS and the APRAS problems, and formulate them as mathematical models. In
Chapter 3, we apply the Lagrangean relaxation approach to decompose the APRAS
problem into several subproblems and solve each subproblem optimally. In Chapter 4,
we propose heuristics for the two problems to get primal feasible solutions. In Chapter
5, we present our computational experiments and results for the two problems. Finally,
in Chapter 6, we summary our conclusions and suggest some possible direction for the

future works.
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Chapter 2 Problem Formulation

2.1 Problem Description

The problem we discuss is at the Autonomous System (AS) level. Thereisalot of
network domains such as sets of subnets ixn the ASiand:no connection between any two
domains. A user group is an appllcatrB'n requesti Qg for data transmissions like
multimedia in the AS, which transmits d-a.ta from a single domain called source to
multiple domains called destinations. Each destination of different user groups may
request various QoS requirements including traffic, end-to-end delay, and multiple paths
demands. Therefore, a network administrator has to decide which connections to set and
the capacities of them for data transmissions. In order to illustrate the problem
conveniently, we model the AS as a graph where domains are depicted as nodes and
there is no link between any two nodes. Furthermore, we assume that all nodes in the
AS have video encoding and transmission technologies for data transmissions.

After the AS topology is generated by the network administrator, an attacker
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outside the AS will attack nodes in the AS through entry nodes. A node is compromised
if the attacker applies adequate attack budget to break the nodal defense capability and
finds a path from the attacker’s source to the target node where all intermediate nodes
on the path are compromised. After compromising a node, the attacker can apply extra
attack budget to the node to degrade its capacity. For instance, the attacker could embed
useless programs to a node to exhaust its CPU process capability. The effect of the
degradation of nodal capacity may cause the increment of the end-to-end delay of each
transmission through that node. Once the enq-to-end delay is violated, the network
administrator has to pay for the:penalty tg corresponding destinations. The objective of
the attacker is to maximize the total penalt;' for| which '_[he network administrator has to
pay by deciding which nodesto cbmpfomise and-allocating the attack budget effectively

to degrade nodal capacities within the limited attack budget.

From the network administrator perspective, he/she can allocate defense budget to
protect the network as Figure 2-1 shows. The defense budget can be divided into two
categories. one is to strengthen the nodal defense capability from compromising, and
the other is to enhance the extra nodal capacity. The relationship among the budget for
strengthening the defense capabilities and the extra capacities of nodes is a trade off
because the budget is limited. The objective of the network administrator isto minimize

the total penalty incurred by the attacker by allocating the defense budget appropriately.
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Attacker

/" Nodal Defense Capability )

Compromising Attack

Node

In the worst case scenario, the attacker has compl ete information about the network
and the strategy of the network administrator, and then the attacker can always find the
most powerful attack strategy to maximize the total penalty. In the mean time, the
network administrator also has complete inforfhation about the strategy of the attacker.
In response to the attack, hence, the netw_c‘;&l§ &dministrator can adjust his’her strategy to

minimize the total penalty. The phenoméhon is like+a battle between the network

administrator and the attacker, and it is dynamic¢ until the network administrator finds an

Degradable Attack

{ Nodal Capacity ]

\_ )

Figure 2-1. In-depth defenses against corresponding attacks

optimal solution to minimize the maximized total penalty.
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2.2 Problem Formulation of the NPDRAS Problem

In order to formulate the problem conveniently, we summarize some key points of
problem assumptions and problem descriptions as Table 2-1 and Table 2-2 show
respectively. Furthermore, we denominate the problem as a Network Planning and

Defense Resources Allocation Strategy (NPDRAYS) problem.

Table 2-1. Problem Assumptions of the NPDRAS Problem

Problem Assumptions

® All nodes have video encoding-and-transmission technologies such as a progress
coder or video gateway. :

® Paths which are chosen for connecting the source to a destination in a multicast
group are dis-joint pathsin tefms of link. _

® Both the network administfator.and thé attacker have complete information.

® Both the network administrator/and-thé atacker have budget limitations.

® The objective of the attacker is to- maximize the total penalty caused by QoS
violations in terms of delay by deciding which nodes to attack and allocating
attack budget effectively.

® The objective of the network administrator is to minimize the total penalty
caused by the attacker by choosing which links to set and allocating defense
budget appropriately.

® Only nodal attacks are considered. (No link attacks are considered.)

® Only malicious attacks are considered. (No random errors are considered.)

® A node is only subject to attack if a path exists from attacker’s source to that
node, and all the intermediate nodes on the path have been compromised.

® A node is compromised if the attack budget applied to the node is equal to or
greater than the defense capability of the node.

® The attacker can apply extra attack budget to degrade the nodal capacity only if
the node is compromised.
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Table 2-2. Problem Descriptions of the NPDRAS Problem

Problem Descriptions

@

en:

A set of nodesinthe AS

A set of feasiblelinksinthe AS

A set of multicast groups

The requirements of traffic, end-to-end delay, and multiple paths for each
destination of each multicast group

The implementation cost of each feasible link

The defense capability function of each node

The delay function of each feasible link

The penalty function of each destination of each multicast group
Thetotal defense budget of the network administrator

Thetotal attack budget of the attacker

Objective:

To minimize the maximized total -penalty-caused by QoS violations in terms of
delay. =

Subject to:

Routing constraints
Capacity constraints

Delay constraints

Multiple paths constraints
Attack budget constraints
Defense budget constraints

To Deter mine:

Network administrator:

v' Which links to set and their capacity

v' The defense budget allocation strategy

Attacker:

v" Which nodes to attack and which paths to reach the nodes

v' The amount of attack budget allocated to each compromised node to degrade

the nodal capacity
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We first convert the AS to a directed graph and all domains are depicted as nodes
where no link between any two nodes as Figure 2-2 shows. As the topology is
generated by the network administrator, the attacker could entry the AS by artificia
links to entry nodes as Figure 2-3 shows. In order to measure the nodal capacity, we use
the node splitting technology which splits a node into two dummy nodes and generates
an artificial link between them. For example, Figure 2-4 is converted from Figure 2-3
using node splitting technology. Later we propose a mathematical model to formulate
the mutual behavior and solve it bysour propos_ied solution approaches. It is a min-max

problem where the inner problem;isthe attacker perspective and the outer problem isthe

N

network administrator perspective.

Autonomous System (AS)

Figure 2-2. Graph of the Autonomous System (AS)
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Autonomous System (AS)

® Attacker’s source
——Original link (Ly)

——--Artificial link (L)

Figure 2-3.An Attack Scenario

Autonomous Sistem (AS)

O Dummy node

@ Dummy entry node
® Attacker’s source

—Original link (L1)

[ O Y B Artificial link (Lo)
®./‘/' - Artificial link (Zs)

Figure 2-4. An Attack Scenario with Node Splitting

The given parameters and the decision variables used in the NPDRAS problem are

defined in Table 2-3 and Table 2-4 respectively.
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Table 2-3. Given Parameters of the NPDRAS Problem

Given Parameters

Notation Description
N Theindex set of all nodes
L Theindex set of al links, L=L, UL, UL,
L1 Theindex set of all candidate links
L, Theindex set of all artificia links which are original nodes
Ls Theindex set of al artificial links from attacker’s source node not in
the AS to the entry nodes of AS
G The index set of al multicast groups
D, The index set of al destinations of multicast group g, where ge G
R The index set of all candidate paths which destination d of multicast
o group g may use, where de D,, g€ G
o The indicator function, whichis 1if link /ison path », and O
" otherwise (Where I L, r€ R,)
The delay requirement.ef thedestination < of multicast group g,
“ad wherede Dy, ge G
The traffic requirement o{;,the destination d of multicast group g,
3 ga e
where de Dg, ge'G : _
The multiple paths requi rement of the destination d of multicast
Ted group g, where de D, eeG
Uh The maximum allowable end-to-end delay of the destination d of
o multicast group g, where de D,, ge G
w The index set of al Origin-Destination (O-D) pairs for attack
P, The index set of al candidate paths for O-D pair w, where we W
s The indicator function, whichis 1if link /is on path p, and O
7 otherwise (where le L, pe P,,)
A Thetotal attack budget of the attacker
Af All possiblevalueof a;, wherele L,
B Thetotal defense budget of the network administrator
S; The implementation cost of link /, where le L,
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Table 2-4. Decision Variables of the NPDRAS Problem

Decision Variables

Notation Description
1 if path » is selected to transmit for group g and destined at
Vadr destination d and 0 otherwise, where ge G, de D, € Rgq
The maximum traffic requirement of destinations in multicast group |
el g that are connected from the source through link /, where ge G, /e L
M, The aggregate traffic flow on link /, where /e L
zy 1if link / is selected to implement, and O otherwise (where [e L)
b The budget allocated to link / to enhance the link’s defense
: capability, where /e L, |
be The budget allocated to link / to enhance the link capacity, where
leL
it () The threshold of the attack cost leading to a successful attack, where |
P le L, .
, The attack budgetrall ocated-te.link./ to compromise the link, where |
% le L, ,
. The attack budget aIIoc&;fed to link / to degrade the link capacity,
“ where le L, ey
c,(a;,b;) The capacity of Jink./, where /e L
t{c, M)  Thetraffic delay ofilink /, where /e L
5 The end-to-end delay of the destination d of multicast group g in |
s path r, where ge G, de Dq, € Rga
I The lower bound of end-to-end delay of the destination d of
o multicast group g, where de D,, ge G
6, The maximum allowable link delay for link /

Pegd (hgdh a gd)

Xp

i

The delay penalty of the destination d of multicast group g in path 7,
where ge G, de D, re Rgy

1 if path p is selected as the attack path, and O otherwise (where
PE Py)

1if link / is attacked, and O otherwise (where /e L,)

The NPDRAS problem is then formulated as the following problem (1P 1).
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Objective function:

Zp = min  max . z Z ngdrpgd (hgdr'agd)

e
21k Xy aj aj geGdeD,reR,,;
"€ g

Subject to:

v gd O-rl S mgl

M,=ng,

geG

gdr

M, <c¢/(a;,b;)

0<m_, <£max
gl deDg ﬂgd

z vgdro-rl S Zl

reRy

reRgd

Z, ¥ ol or

Vr =0 OF 1

> t(ci(ag bf) M)W, 0, =hy,

leL

Lhy, < hy, <Uh,

t,(c,(a;,b/),M,)<6,

Db+ (b +2z,5)<B
leL, leL
0<h <B
0<h <B
Daj+Ya <4
leL, leL,
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ngdr F .%gd
7'

Vge G, de Dy, leL

VieL

VieL

Vge G, lelL

Vge G,de Dy, le Ly

V ge G,de D,

VIEL;L

.;‘v’ge G, de Dg, re Ryy

V ge G, re Rgq, de D,

V ge G, re Rgq, de D,

VIELQ

VIELQ

VieL

(IP1)

(IP1.1)

(IP1.2)

(IP1.3)

(IP1.4)

(IP1.5)

(IP1.6)

(IP1.7)

(IP1.8)

(IP1.9)

(IP1.10)

(IP1.11)

(IP1.12)

(IP1.13)

(IP1.14)

(IP1.15)



0<al <a'(b) Viel, (IP116)

a, b))y, <a VielL, (IP1.17)

min{4,} <a; <max{4,} VielL; (IP1.18)
a, € 4/ VielL; (IP 1.19)

a; <y, A VielL; (IP1.20)

;pr% <z Vie L,weW  (IP121)

,,Z,; O SV, VielpweW  (IP122)

peZ’;x,, R Vielyw=(s) (IP123)

;x_e %1 » | YweW  (IP1.24)

x,=0 or;f : | _ VpeP,weW  (IP125)

V) = _0' QU Viel,  (IP1.26)

Explanation of the mathematical formulations:

® Objective Function: The objective is to minimize the maximized total penalty

caused by QoS violationsin terms of delay. In the inner problem, an attacker would

like to maximize the total penalty by deciding which artificial links to attack and

alocating attack budget effectively. In outer problem, the network administrator

would like to minimize the penalty caused by the attacker by choosing which

original linksto set and all ocating defense resources appropriately.
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® Constraints (IP 1.1) ~ (IP 1.4) represent the capacity constraints. In Constraint
(IP 1.1), mg can be interpreted as the “estimate” of the aggregate flows for
multicast group g on link /. Constraint (1P 1.2) denotes that M, refers to the total
aggregate flows for all groups on link /. Constraint (IP 1.3) limits the total
aggregate flows on a link does not exceed its capacity. The capacity of alink is a
function of two parameters, which are the attack budget for degradation applied to
the link by an attacker and the budget for enhancement allocated to the link by a
network administrator. Constraint, (IP ._1.4) is a redundant constraint, which

provides upper bound and:lower bound on the maximum traffic requirement for

N

multicast group g on link /.

® Constraint (IP 1.5) enforces 'Fhat if a.path-is chosen for transmission for an
Origin-Destination pair (O-D pair), adl original links on the path have to be set

® Constraint (IP 1.6) requires that the amount of connection for each O-D pair has
to satisfy its corresponding QoS requirement.

® Constraints (IP 1.7) and (1P1.8) limit the value of z; and v, to 0 or 1. Therefore,
Constraints (IP 1.5) and (IP 1.7) jointly require that an original link has to be
chosen once at most for one multicast group.

® Constraint (IP 1.9) denotes that the end-to-end delay of the transmission of an

O-D pair isthe sum of the traffic delay of al links on the path. The traffic delay of
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a link is a function of two parameters, which are the capacity and the total
aggregate flows of the link.

Constraint (1P 1.10) restricts that the end-to-end delay has to be between the
lower bound and upper bound. It is noted that the Lkg, value is the basic delay
calculated from vy,

Constraint (1P 1.11) restricts that the link delay has to be smaller than or equal to
upper bound. It is noted that the 6, valueis calculated from v, and Lhg,.
Constraint (1P 1.12) restricts that the tota_ll allocated budget, including the budget
for enhancing an artificial link’s defepse capahility; for enhancing the capacity of a
link, and for setting a link, has notw:t'o ‘exceed the total budget of the network
administrator.

Constraint (1P 1.13) restricts that the defense budget for enhancing an artificial
link’s defense capability has to be nonnegative and not exceed the total budget of
the network administrator.

Constraint (IP 1.14) restricts that the budget for enhancing the capacity of a link
has to be nonnegative and not exceed the total budget of the network administrator
and be nonnegative.

Constraint (IP 1.15) restricts that the total allocated attack budget, including the

attack budget for compromising an artificia link and for degrading the capacity of
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an artificial link, has not to exceed the total attack budget of an attacker.
Constraint (1P 1.16) restricts that the attack budget for compromising an artificial
link has to be nonnegative and not exceed the link’s defense capability because it
would be awaste of budget.

Constraint (IP 1.17) enforces that if an artificial link is compromised, the attack
budget for compromising the link has to equal to or greater than the link’s defense
capability.

Constraints (IP 1.18) and (1P:11.19) restri_cts that the attack budget for degrading
the capacity of an artificial link'has tg be_chosen fromtheset 4;.

Constraint (1P 1.20) enforces.that thuen'zattack budget for degrading the capacity of
an artificial link is applied only i.f'the link.is-compromised.

Constraint (IP 1.21) enforces that an o.riginal link is chosen for an attack path only
if thelink is set.

Constraint (IP 1.22) requires that all artificial links on an attack path are
compromised.

Constraint (IP 1.23) enforces that if an artificial link is chosen for attack, the
attacker has to find a path from the source to the targeted link.

Constraint (IP 1.24) enforces that if an artificia link is chosen for attack, the

attack path for it hasto be only one.
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® Constraints (1P 1.25) and (1P 1.26) limit the value of x,, and y; to O or 1.

2.3 Problem Formulation of the ARRAS Problem

In order to solve the NPDRAS problem, we first try to analyze the inner problem
of the NPDRAS problem, that is, the Attack Routing and Resource Allocation Strategy
(ARRAYS) problem. The ARRAS problem is to predict the future action of the attacker.
In another words, in the ARRAS problem,. we assume that the network administrator’s
strategy is given and find the correspending opﬁ mal strategy of the attacker. The result
of ARRAS problem is used as an input t'o'xé_i_,ij_u_st.the strategy of network administrator in
NPDRAS problem and finally. generate a:.;)est strategS/ for the network administrator

against the attacker.

The assumptions of the ARRAS problem are the same as those of the NPDRAS
problem. The given parameters and the decision variables of the APRAS problem are

defined in Table 2-5 and Table 2-6 respectively.
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Table 2-5. Given Parameter s of the ARRAS Problem

Given Parameters

Notation Description
N Theindex set of all nodes
L Theindex set of al links, L=L, UL, UL,
L1 Theindex set of all candidate links
Ly Theindex set of all artificia links which are original nodes
Ly Theindex set of al artificial links from attacker’s source node not in
the AS to the entry nodes of AS
G The index set of al multicast groups
D, The index set of al destinations of multicast group g, where ge G
R The index set of al candidate paths which destination ¢ of multicast
o group g may use, where de D,, g€ G
o The indicator function, whichis 1if link /ison path », and O
otherwise (wherele L, re Rqq)
The delay requirement.of the destination d of multicast group g,
Yol where de Dy g€ G
Ik The lower bound of md-f:g;_erjd delay of the destination d of
o multicast group gywhere de Dy, geG |
Uh The maximum al I _owgble end-totend del ay of the destination d of
s multicast group g, wheredebs, ge G
o, The maximum allowable link delay for link /
w Theindex set of al Origin-Destination (O-D) pairs for attack
P, The index set of all candidate paths for O-D pair w, where we W
s The indicator function, whichis 1if link /is on path p, and O
7 otherwise (where le L, pe P,,)
A Thetotal attack budget of the attacker
Af All possiblevalueof a;, wherele L,
1 if path » is selected to transmit for group g and destined at |
Vel destination d and 0 otherwise, where ge G, de Dy, re Req
M; The aggregate traffic flow on link /, where /e L
zy 1if link / is selected to implement, and O otherwise (where le L) v
be The budget allocated to link / to enhance the link capacity, where
le L ,
i) The threshold of the attack cost leading to a successful attack, where

le Lz




Table 2-6. Decision Variables of the ARRAS Problem

Decision Variables

Notation Description
. The attack budget allocated to link / to compromise the link, where
“ le L,
r The attack budget allocated to link / to degrade the link capacity, |
! where le L,

¢, (a; b)) The capacity of link /, where le L

t/(c;, M) The traffic delay of link /, where le L

The end-to-end delay of the destination ¢ of multicast group g in
path r, where ge G, de Dy, re Rgq

The delay penalty of the destination ¢ of multicast group g in path , |
where ge G, de Dy, re Rgy

1 if path p is selected as the attack path, and O otherwise (wherev
pE Py)

Vi 1if link / isattacked, and O otherwise (where /e L,)

h adr

pgd(hgdr; a gd)

Xp

-

The ARRAS problem isformulated as'fhe followi ng problem (1P 2).

Objective function:

Zipy = max | z z zvgdr‘pgd (hgdr ' agd) =—_min ¢ z z zvgdrpgd (hng ! agd) (IP2)

t
Xp Y14y a; " X0 Y1,0) ,a)
P geG deDgre Ry, P geG deDgre Ry,

Subject to:
M, <c/(a; b)) VielL (IP2.12)
;t, (c,(a;,b;), M )V, 0, =hy, V g€ G, re Ryq, de Dy (1IP2.2)
thd < hgdr < Uhgd V ge G, re Ry, de Dy (IP2.3)
t,(c,(a;,b),M,)<6, VieL, (IP2.4)
Q. +ai <4 (IP2.5)
il el
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0<al <a'(b) Vie L, (IP2.6)

a, b))y, <a VielL, (IP2.7)

min{4,} <a; <max{4,} VielL; (IP2.8)
a, € 4/ Vlie L, (IP2.9)

a; <y, A VielL; (IP2.10)

;pr% <z Vie L,weW  (IP2.11)

pZP: O SV, Viel,weW  (IP212)

;xp i Vielnw=(s,])  (IP213)

;x_e fl » | YweW  (1P2.14)

x,=0 or;f : | _ VpeP,weW  (IP215)

V= _0' QU VieLl,  (IP 2.16)

Explanation of the mathematical formulations:

® Objective Function: The objective function is to maximize the total penalty

caused by QoS Violations in terms of delay by deciding which artificial links to

attack and allocating attack budget effectively. The objective function is also the

inner problem of the NPDRAS problem. For convenience, we transform (IP 2)

from a maximization problem into an equivalent minimization problem and does

not affect the problem structure or the optimality conditions
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Consgtraints (IP 2.1), (IP 2.2), (IP 2.3) and (IP 2.4) are equal to Constraints (IP

1.3), (IP 1.9), (IP 1.10) and (1P 1.11).

Constraints (1P 2.5) ~ (1P 2.16) are the sameto Constraints (1P 1.15) ~ (1P 1.26).
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Chapter 3 Solution Approach

3.1 Lagrangean Relaxation Method

There are a lot of researches on the Lagrangean relaxation method after 1970s
[18][19]. It is one of the most usefﬁl mthodoI ogies to solve large-scale mathematical
programming applications - including Ilﬁéar dynam.i C, and integer programming
nowadays. The concept of the method comes from. the observation that a complicated
programming problem can be sighted as a related easily-solved problem with side
constraints. Because of its reduction of complexity and excellent performance for
solving a difficult programming problem, we exploit the Lagrangean relaxation method

to solve the ARRAS problem proposed in Chapter 2.

The basic idea of the Lagrangean relaxation method is shown in Figure 3-1. First,
some constraints are removed and added into the objective function with corresponding
Lagrangean multipliersin order to convert the primal problem to an easily-solved form,

which is called the Lagrangean relaxation (LR) problem. Then we can use the
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decomposition technique to disintegrate the LR problem into several independent
subproblems which can be solved optimally. By solving the LR problem, we can obtain
a lower bound (LB) of the optimal value for the original minimization problem.
Furthermore, for the sake of getting the best solution, we use the subgradient
optimization technique which is one of the cited Lagrangean dual problemsto derive the

tightest LB by adjusting the Lagrangean multipliers.

From resolving the LR problem, besides, we could obtain some useful information
for designing some proper heuristic approaéhes to get the feasible solutions of the

primal problem, which is also the uppér ._[ggu_r'id"(UB) of the optimal value. Clearly, the

_—
= |

optimal solution of the primal problerﬁ is gﬁaranteed to'be between the LB and the UB.

The detail procedure of Lagrangean relaxation metﬁod isshown in Figure 3-2.

UB > Optimal Solution > LB

1 ? Adjust Lagrangean
L agrangean Multipliers
[ Primal Problem ] Relaxation Lagrangean
Bl Dua Problem
Subproblem o o e Subproblem
Optimal Solution Optimal Solution

Figure 3-1. Idea of Lagrangean Relaxation M ethod
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Initialization

o a0k~ wbdPE

Find Z
Set LB =-oo
Set°=0 ‘Initial multiplier value
Setk=0
Seti=0
Set A’=2

‘Lower bound of primal problem

‘Iteration count
‘Improvement count

‘Initial step size coefficient

‘Initial feasible solution value of primal problem

\ 4

Solve L agrangean Relaxation Problem

Solve each subproblem optimally
Get x*
Get Zp(u")

‘Decision variables of LR problem

‘Optimal value of LR problem

A

A

Get Primal Feasible Solutions

If (x* isfeasiblein primal problem)
UB = Zp(u")
Else
Tuning x* by proposed heuristics

‘Upper bound of primal problem

Adjustment of Multipliers

Update Bounds

1
2.
3.

Set Z =min(Z ,UB)

Set LB = max(LB, Zp( "))

If (LB does not change)
i=i+1l

=

s

If (i = Improvement Count limit)
A=412,i=0

A2 =2,
et

1 =max(0, u* +1, (Ax"* +b))
k=k+1

'

Check Termination

STOP

A

or(LB>Z")

it (2"~ 8|)imin(LBl|z"|)< )

or (k = Iteration Count Limit)

Figure 3-2. Detail Procedure of L agrangean Relaxation M ethod
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3.2 The Solution Approach for the ARRAS Problem

We relax Constraints (IP 2.2), (IP 2.5), (IP 2.12), and (1P 2.13) with associated

Lagrangean multipliers to add into the objective function of (IP 2) and thus the

Lagrangean relaxation problem (LR 1) can be obtained.

3.2.1 Lagrangean Relaxation

Optimization Problem (LR):

Z (g My lg, 1)

_mm—zz ngdrpgd(hgdr’ gd)

geGdeD, reRy,

+ Z z z 'ugdr[zt (c,(ag . b; WM )ngr |

geGdeD, reRy, leL

+ Zz/uwz(zxp pl y1)+z_,,ul (_zxp _yl

weWleL, PEP, leLy e

Subject to:
M, <c,(a;,b;)
vgerhgd < hgd, < vgdrUhgd
t,(c,(a;,b),M,)< 6,
0<a, <a; (b))
a;(b))y, <a
min{4,} <a; <max{4,}
a, € 4/

41

(LR
1)

gdr]+/'l [(Zaz +Za1) A]

leL, leL,

VielL

V ge G, re Rgq, de D,
Yiels

Viels

Viels

Viels

VZGLQ

(LR 1.1)

(LR 1.2)

(LR 1.3)

(LR 1.4)

(LR 1.5)

(LR 1.6)

(LR 1.7)



a; <y, 4

ZJcpé'p, <z,

peP,

w

pr <1

PeR,

xp=0 orl

y,=0o0r1l

VIGLZ

VieL,weW

Ywe W

YV pe P,,we W

Vle Lz.

(LR 1.8)

(LR 1.9)

(LR 1.10)

(LR 1.11)

(LR 1.12)

Among Lagrangean multipliers, g and g, are unrestricted variable where u,

is a three-dimensional vector and u, is a one-dimensional vector. Besides, ux, and

U, arenon-negative variables where u; istwo-dimensional vectors.

We then decompose (LR 1) intd tﬁleee independent optimization subproblems

which are easy-solved as follows.;

Subproblem 1: (related to decision variable x,)

Z g (U3, f4) = MiIN ZZ Zﬂilxp5pl + z z/ufxp

weWleL, peP,

Subject to:

prﬁp, <z

PeR,

pr <1

PER,

xp=0 or 1l

VieL,weW

Ywe W

Y pe P, we W.

(Sub 1)

(Sub 1.1)

(Sub 1.2)

(Sub 1.3)

In the problem, because Constraint (Sub 1.2) enforces only one path to be chosen
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for an O-D pair, we can transform > > u'x, into > > ulx, + > ulx, .

leL, peF wel peF, PeFR; 5

However, no path starts and ends at the same artificial link, so Zﬂfxp can be

PER; )

ignored. Then we can further decomposed the problem into |#] independent

subproblems and one for each O-D pair we W asfollows.

Subproblem 1': (related to decision variable x,)

Z (U 1y) = minp; (gﬂiﬁpj + 4 )x, (Sub 1)
Subject to:
pezpw?ﬁpz E 2, - Vie L,weW (Subl.l)
pezavx,; Sfl- ; Ywe W (Subl.2)
x, =0 or 1 . . Y pe P,,, we W. (Sub 1'.3)

The algorithm for solving (Sub 1) is described bel ow.

Sep 1: By using the values of ufj as the arc weight of the corresponding artificial
link respectively, we use Dijkstra's algorithm to find the shortest path for
each O-D pair we .

Sep 2. For paths which are not chosen for any O-D pair, we assign zero to the
corresponding x,,.

Sep 3:  For the path which is chosen for each O-D pair we W, we examine its total



cost and the ;' value of its destination artificial link. We assign one to the

corresponding x, if the resulting value is non-positive, and zero otherwise.

The time complexity of Dijkstra's algorithm is O(|Lof). Therefore, the

computational complexity of (Sub 1) is O(|W|x|L2).

Subproblem 2: (related to decision varigbley;, a;, a;)

Z gy (s My s, 1Ly) (Sub 2)

= mlnz Z Z ﬂ;-drztl(Cl(alc’blc)’Ml)vgdro-rl +/’12(Za[l + Zalc)

geGdeD, reRy, leL leL, leL,
3 4
- Zzﬂwlyl - quz Vi
welWleL, leL,

= minZ[z Z Zﬂ;drvgdro-rltl (@ (af'1b£f)’M1) +/u2(a1t ta)- (Zﬂil +u*)y,]
leL geGdeD, reRy, = weW

Subject to:
M, < @i be) VielL  (Sub2.1)
t,(c,(a;,b/),M,) <86, VieL, (Sub 2.2)
y=0or1l VieL, (Sub 2.3)
0<a, <a,(b)) VieL, (Sub 2.4)
a, b))y, <a Vlie L, (Sub 2.5)
O0=min{4} <a’ <max{4} VielL; (Sub 2.6)
a, € 4/ Vlie L, (Sub 2.7)
a; <y, A Y le L. (Sub 2.8)



(Sub 2) can be further decomposed into |L| independent subproblems and one for
each link. According to the constraints related to y;, «,,and a;, we can conclude the

relationship among them showed in Table 3-1.

Table 3-1. The Relationship among yi, @, .and a/

yi'svaue a,’svaue a;’svaue

0 [0, a;(b)] 0

M, <c/(a;,b) and
0<a <max{4,} and
1 a(b;)
. a; € A/ and

t,(c,(a;,b),M,)<8

N

Since this is a minimization problerﬁi.'éhd the‘value of 4% is non-negative, the
valueof a! hasto be set to zero when theValue of y, is zero. For each subproblem, we
can examine al the possible combinations of y;, «g;,and a;, and then obtain the

optimal combination result among them to minimize the objective value.

The computational complexity of (Sub 2) is 0(|L| X
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Subproblem 3: (related to decision variable /44,

Zows() =min=>">" v p(hy o) =D > > ut (Sub 3)

geGdeD, reRy geGdeD, reRy

= MmaX z Z Z[ngrpgd (hgdr’agd) +ﬂi;drhgdr]

geGdeD, reRy,

Subject to:



ngthgd < hgdr < ngrUhgd Vge G, re Rgd, de Dg. (SUb 31)

(Sub 3) can be decomposed into |G|x|Dg|x|R.4| independent subproblems and one

for each path r€ R,,. For each subproblem, we can solve it by the exhausted search of

the value of 4, , and then find the optimal value of #,, to maximize the objective

value.

The computational complexity of (Sub 3) is O(|G|x|Dg|*|Rgal*|/gar])-
3.2.2 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duélity theorem [20], for any u,,u; =0,
Z (U iy s, it,) isalBof Z,,,. Foﬁ;pbfaining the tightest LB, we construct the

dual problem (D 1) and solveit by the subg'r‘:édient methbd [18][19] asfollows.

Dual Problem (D 1):

Z, =maxZ, (ty, 1y, Mz, M) (D1

Subject to:
My H3 2 0. (D 1.2)
Let a vector s be a subgradient of Z, (w4, 4,, 15, 1,). Then, in iteration & of the
subgradient optimization procedure, the multiplier vector u" = (uf,us,us, 1) is
updateby u*™t = u* +1t*s"
where
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s* (uy iz g ,uy)

= (ztl(cl(alc'blc)’Ml)vgerrl _hgdr’z(alt +a;)_A’ zxp5pl _yl’ zxp _yl)

leL leL, peP, PEF; )

y) ijz _ZD (luk) .

2
k
I

;andthe step size +* isdetermined by ¢* =

In this equation, Z,,, is the tightest UB of the optima value for the primal

problem obtained by iteration k and A isaconstant where 0< A< 2.

3.2.3 Getting Primal Feasible Solutions

If the solution to (LR 1).s not feasible fo (LP 2); we have to modify it to be a
feasible primal solution by a getting prlmal_,_Ieas ble solutions’ heuristic. To get a primal
feasible solution for (IP 2), the fr_esu!ts ogféi ned from the procedures of Lagrangean
relaxation and the subgradient method may provi dé some useful hints. That isto say, the
solution to (LR 1) and the Lagrangean multipliers gained from (D 1) are useful hints to

the heuristic’s design. The proposed heuristic for getting primal feasible solutions is

shown in Table 3-2 and described below.

The heuristic has two stages. In the first stage (Step 1 to Sep 5), we let each attack
path whose x,,’s value derived from (Sub 1) is equal to one as the candidate attack path.

a(bi) +ai +|N|u’4 where the

We then assign each candidate attack path aweight, min
a; I

artificial link / of @, u, and P, means the target node of the candidate attack path,
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i.e. the terminal node of the candidate attack path from the attack source node. a; (b;)
represents the attack budget allocated to compromise all un-compromised nodes on the
candidate attack path in order to reach the target node and then attack its capacity.
|N |u,“ reflects the punisnment of inconsistency between the values of x, and y;, where
the target node is compromised but there is no attack path to it. The value of «, isthe
attack budget allocated to attack the target nodal capacity and can be tuned to minimize

the weight using the feasible quota which is the remainder of attack budget minus

a;(b)). P, is the total penalty caused by. a, ..The:weight's concept shows mainly the

ratio of the attack cost to the penalty"gained. It isremarkable to address that the less the

weight of a candidate attack path'is, the m't,');:r'é'the effectiveness for attack is. Moreover,

each path whose 4! (b') is greater than thetemainder of attack budget is removed from

candidate attack paths because the attacker can’t afford to compromise the target node.

After assigning the weight of each candidate attack path, we select the one with the
smallest weight among them to attack. We then move it away from candidate attack
paths and re-calculate the weight of each candidate attack path again. The steps are

continued until there is no candidate attack path, and then an attack subtree is generated.

If there is excess attack budget yet, the second stage is performed (Step 6 to Sep

12). We use a,(b/) aseach nodal cost and apply Dijkstra’s algorithm to determine the



minimal cost from the attack subtree to the target node of each un-attacked path. The

paths obtained from Dijkstra’'s algorithm are considered as candidate attack paths. We

can calculate the weight of each candidate attack path, remove the paths which the

attacker can't afford to compromise the target node, and select the one of the smallest

weight to attack, which is the same procedure to the Step 2 to Step 4 of the first stage.

We then remove the attacked path from candidate attack paths, re-apply Dijkstra’s

algorithm, and re-calculate the weight of each candidate attack path again. The steps are

repeated until there is no candidate attack path;.andthen afinal attack tree is generated.

The computational complexity of this hedristic is O(|Z[* +||°

Sep 1.

Sep 2.

Sep 3.

AD.

Table 3-2. The Proposed Heuristicfor getting primal feasible solutions

Let each attack path whose x;;'s vValue is egual to one as the candidate attack

path.

a,(b))+a; +|N|u,4

Use min

aj

as each candidate attack path’s weight, where
i

the artificial link 7 of a/ (b)), a’, u', and P, is the target node of the

candidate attack path, a;(b,) isthe total compromise cost from the attack

source to the target node, P, isthe caused penalty, and the value of «, can

be tuned to minimize this weight.

Remove each candidate attack path whose q,(b;) is greater than the

remainder of attack budget.
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Sep 4.

Sep 5.

Sep 6.

Sep 7.

Sep 8.

Sep 9.

Sep 10.

Sep 11.

Sep 12.

Choose the candidate attack path with the smallest weight to attack.
Remove the attacked path and return to Step 2 until there is no candidate
attack path.

If there is no excess attack budget, go to Step 12; otherwise go to Step 7.
Use a,(b/) aseachnoda cost and apply Dijkstra’s algorithm to determine

the minimal compromise cost from the attack subtree to the target node of
each un-attacked path and the paths obtained from Dijkstra's algorithm are

considered as candidate attack paths.

A +a +|Nu?
Usemln’(’) ! ||1

| 7 as each candidate attack path’s weight.
o ! .

Remove each candidaté aftack pa;h whose q,(b,) is greater than the
remainder of attack budget| | ==

Choose the candidate attack patl;éwith the smallest wei ght to attack.

Remove the attacked .p.ath-and return to Step 8 until there is no candidate
attack path.

Stop.
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3.3 The Solution Approach for the NPDRAS Problem

The solution of the ARRAS problem is the best strategy for attacking a network
where defense resource allocation and network planning strategies are known. That isto
say, with different strategy of a network administrator, an attacker can change his/her
strategy to compromise the network optimally. As mention before, the objective of the
NPDRAS problem is to minimize the total penalty due to QoS violations caused by the
attacker. Therefore, we can use the solution of .the ARRAS problem as the input of the
NPDRAS problem and adjust the étrategy of the network administrator according to
corresponding attack strategy in order| to &;ggrade the total penalty. The two opponents
would change their strategies until a bal anéé is reached.and then the optimal solution of
the NPDRAS problem is obtained. ;rhe concept of solving the NPDRAS problem is

shown in Figure 3-4.

Step 1 R ﬁ\\
[ NPDRAS Problem ) L /<% ARRAS Problem 1

y | sep 2
Step 6 Step 5 Step 4 - N
4 L arangean Relaxation
Adjustment b Sep 3 g
Procedure - B ~
Getting Primal

Solution Heuristic
\\ //

Figure 3-3. Solution Approach for the NPDRAS Problem
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The concept of the adjustment procedure is to let the waste budget to be useful. It
implies that the budget alocated to uncompromised node is too much and a certain
proportion of it can be extracted to some compromised nodes. The extraction ratio of
each uncompromised node is equal to the step size coefficient, denoted as & . Moreover,
the distribution of total extracted budget to each compromised node is according to the
reward ratio of each node. That is, we add excess ten percentage of total defense budget
to each compromised node and calculate the reduced penalty of that node. The
proportion among the reduced penalties of cpmpromised node is exactly the nodal

reward ratio.

N

If the solution of the NPDRAS probi;ém is not improved, it means the extracted
budget of each uncompromised node is too muéh. Then the step size coefficient is
halved to extract the less budget from uncompromised nodes. The adjustment procedure
is executed to improve the defense strategy according to the corresponding attack
strategy repeatedly until the defense is not improved within a certain number of

iterations.

The proposed heuristic of the adjustment procedure is shown in Table 3-3.
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Sep 1.

Sep 2.

Sep 3.

Sep 4.

Sep 5.

Sep 6.

Table 3-3. The Adjustment Procedure

Calculate the reduced penalty of each compromised node by adding excess
ten percentage of total defense budget to the nodes respectively.

Extract 6 ratio of budget from each uncompromised node, where 6 is the
step size coefficient.

Allocate the extracted budget to each compromised node according to the
proportion among the reduced penalties of the nodes.

If the solution is not improved more than a certain number of iterations, go
to Step 6; Otherwise, go to Sep 5;

If the solution is not improved, 6 is halved and go to Step 2; Otherwise, 0 is
set to initial value and goto Sep 1.

Stop.
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Chapter 4 Computational Experiments
4.1 Computational Experimentswith the ARRAS Model
4.1.1 SimpleAlgorithms

For the comparison purpose with _ou_r__probosed heuristic, we develop two ssimple

N

algorithms to solve the ARRAS problem. The two algorithms are shown in Table 4-1

and Table 4-2 respectively.

The two simple algorithms are similar to the second stage of our proposed heuristic,

and the only difference is the weight of candidate attack path. The computational

complexities of them are the same as O(|L|3 + |L|2 A.

Table 4-1. SimpleAlgorithm 1

Sepl. Use g,(h;) aseachnodal cost and apply Dijkstra's algorithm to determine

the minimal compromise cost from the attack subtree to the target node of
each un-attacked path and the paths obtained from Dijkstra’'s algorithm are

considered as candidate attack paths.
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~t

a (b;)+az

c

Sep 2.  Use min— as each candidate attack path’'s weight.
a [

Sep 3.  Remove each candidate attack path whose a4, (b;) is greater than the
remainder of attack budget.

Sep 4. Choose the candidate attack path with the smallest weight to attack.

Sep 5. Remove the attacked path and return to Step 1 until there is no candidate
attack path.

Sep 6. Stop.

Table4-2.SimpleAlgorithm 2

Sepl. Use ag,(b) aseachnodd cost and apply-Dijkstra’s algorithm to determine
the minimal compromise cost ﬁ“’bm the attack subtree to the target node of
each un-attacked path-and the péths obtal néd from Dijkstra's algorithm are
considered as candidate attack paths:

Sep 2. Use the deg, as each candidate attack path’s weight which deg; is the
degree of its target node.

Sep 3.  Remove each candidate attack path which the attacker can’'t afford to
compromise the target node.

Sep 4.  Choose the candidate attack path with the smallest weight to attack.

Sep 5. Remove the attacked path and return to Step 1 until there is no candidate
attack path.

Sep 6. Stop.




4.1.2 Experiment Environment

The agorithms we proposed for ARRAS model are coded in Visual C++ and
implemented on a PC with an INTEL Pentium 4 (3.00 GHz). The Iteration Counter
Limit and Improve Counter Limit are set to 1000 and 20, respectively. The initial UB is

set to 10" to represent the infinity value.

The capacity of each link and node is a function that is monotonically decreasing

to defense budget and monotonically .inereasing to attack budget. For example, we use

¢

20 bt ' . .
theform ¢, (a;,b;) =100xIn(l+ 10Xb’) as theieapacity function.
¥a g

N

Refer to previous research[21],each nodal buffer is modeled as an M/M/1 queue. It
is remarkable to note that the deléy function can be'extended to any non M/M/1 model
with monotonically increasing and convexity performance metrics. For illustration

purpose, the delay function will be based on the M/M/1 model.

In order to observe the effect of penalty function, we adopt three different types of

penalty function which are alinear form, a convex form, and a concave form.

We design two defense budget distribution strategies to determine how to distribute
defense budget to each node is more effective under different scenarios. The first
strategy is “uniform” distribution, where the total defense budget distributes averagely
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to each node. The second strategy is “degree-based” distribution, where each node is
allocated the budget according to the percentage of that node's degree over the total

degree of the network.

For each defense budget distribution strategy, we also perform ten different defense
budget allocation ratio strategies to determine how to allocate the distributed budget to
nodal capacity and nodal defense capability for a node is better. The ratios for the ten
strategies are 0:10, 1.9, ..., and 10:0, respectively. Each strategy is denoted as R;, where

i istheratio to nodal capacity.

The concave function of nodal deféofi:sf-é-capability is considered to be close to redl
situation, say, the marginal nodaldefense capability-is decreased with the addition of
defense budget. For example, we use the form q, (b,) = 2+ 2xIn(10xb, +1) as the

nodal defense capability function.

The test platform, the parameters of LR, and the parameters of the ARRAS model

are shown in Table 4-3, Table 4-4, and Table 4-5, respectively.

Table 4-3. Test Platform

Test Platform
CPU Intel Pentium 4 (3.00 GHz)
RAM 1GB
oS Microsoft Windows X P Professional Version 2002 SP2




Table 4-4. Experimental Parametersof LR

Parametersof LR

Parameter Value
Iteration Counter Limit 1000
Improvement Counter Limit 20
Initial UB 10"
Initial Lagrangean Multipliers ' =u*=u*=u*=0
Initial Scalar of Step Size 2

Table 4-5. Experimental Parameters of the ARRAS M odel

Parameter s of the ARRAS M odel

Par ameter Value
Network Size
25, 64, 100
(Number of Nodes)
Number of Multicast m
Groups 3

N

Number of Destinations 1~ 3(pera multl éast group)

Delay Requirement 0.1~-05 _(sec)-'

Bandwidth Requirement 20 ~ 100 (packet/sec)

Multiple Path Requirement 1~-2

Total Defense Budget 3x|N|
Total Attack Budget 20, 40, 60, 80, 100
Configurationsof 4; 47 ={12,..., 4}
, _ oo 20 b¢
Capacity Function ¢,(a;,b;) =100x In(1+ Trat ) (packets/sec)
a,
N 1
' t,(c,(a;,b),M,)= sec/packet
Delay Function (e, (ay,b7), M) @b M, (sec/packet)
Maximum Allowable
2 (sec)
End-to-End Delay
0 Jif h, <a,
. . h ’ — gar 8
Penalty FunCtlon Llnear pgd( “ agd) {hgdr _agd !if hgd/, > a/gd




O lifhgdrsad

8

By =
Convex pgd( gdr a’gd) {(hgdr _agd)z Jf hgdr >y

0 1if‘hgdrgad

8

Concave p(h,,.0,,)= .
& & & hgdr - agd ’lf hgdr > a’/gd

Defense Budget

o Uniform distribution, Degree-based distribution
Distribution Strategy

0:10, 1.9, ..., 10:0 (denoted as R;, where i istheratio to |
nodal capacity and 10 minus i is the ratio to nodal
defense capability)

Defense Budget
Allocation Ratio Strategy

Nodal Defense Capability @, (b;) =2+ 2xIn(10x b, +1)

4.1.3 Experiment Results

The UB value is obtained from the LE prbceﬁ and the LR value is derived from
the “getting primal feasible solution alg;)rithm”. In“order to illustrate easily, we
transform the two values into ‘being positive. by obtaining the absolute value,
respectively. The two values also represent the upper bound and the lower bound of the

UB-LR

optimal value. The gap between UB and LR is calculated by x100% .

Moreover, the SA; and SA; are the solutions obtained from simple algorithm 1 and

2. The improvement ratios of the two simple agorithms are calculated by

LR-SA, LR-SA,

x100% and

1 2

x100% , respectively.
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Table 4-6. The Experiment Results (A=80, [N|=25, Uniform Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 24.1 19 26.84211 19 0 17.18 10.59371
Ry 24.1 18.7106  28.80399 18.6962 0.077021 17.2106  8.715559 |
R, 22.7719 18.6696 21.97315 18.6696 0 17.2173 8.43512
R3 21.5529 17.261 24.86472 17.2412  0.114841 17.2203  0.236349
Ry 20.3264 17.242  17.88888 17.2355 0.037713 17.222  0.116131
Linear Rs 20.2084 17.2389  17.22558 17.2338  0.029593 17.2232  0.091156
Rs 20.1996 17.2332  17.21329 17.2332 0 17.224  0.053414 |
R 20.1295 17.2335 16.80448 17.2335 0 17.2246 0.05167 |
Rg 19.9604 17.2348 15.81451 17.2348 0 17.2251 0.056313 |
Rg 19.9309 17.2459  15.56892 17.2379  0.046409 17.2255 0.118429 |
Rio 19.9917 17.255 . . 15.86033 17.2485 0.037684 17.2491 0.034205 |
Ry 41.77 33:0168+ 26.514:35 33.0168 0 29.6932 11.19314
Ry 41.77 32.0496 4 30.3_29_24 32.0041 0.142169 29.7996  7.550437 |
R, 39.5746 31.9166" * :22.99_378 29.9188 6.677407 20.8227  7.021162
R3 37.2048 29.9775 5;10908 29._9175 0.200552 29.8329 0.4847 |
Ry 34.7702 29.9124 1624009 29.8952 0.057534 20.8388 0.246659
Convex Rg 34.6021 .29.90.05 15.72415+, 29.888 0.041823 20.8426  0.194018
Rg 34.5888 29.8856 15.73735 29.8856 0 29.8454  0.134694
R 34.4824 29.8863 15.37862 29.8863 0 29.8476  0.129659 |
Rg 34.1765 29.8912 14.33633 29.8912 0 29.8493 0.140372 |
Rg 34.1451 29.926  14.09844 29.9025 0.078589 29.8507 0.252255 |
Rio 34.1859 29.9566 14.11809 29.9428  0.046088 29.9377 0.063131 |
Ry 18.3526 14.4458 27.04454 14.4458 0 13.0973  10.29602
Ry 18.3526 14.3337  28.03812 14.328 0.039782 13.109 9.342436 |
Ry 17.5223 14.3176  22.38294 14.3176 0 13.1115 9.198795
R3 16.7942 13.128  27.92657 13.1202 0.05945 13.1127 0.116681 |
Ry 15.9017 13.1207 21.19552 13.118 0.020582 13.1133  0.056431
Concave Ry 15.5759 13.1195 18.72327 13.1174  0.016009 13.1138  0.043466
Re 15.8288 13.1176  20.66841 13.1171  0.003812 13.1141  0.026689
R 15.8572 13.1179  20.88215 13.1172  0.005337 13.1143 0.027451
Rg 15.6378 13.1181 19.20781 13.1178 0.002287 13.1145 0.027451 |
Ro 15.6451 13.1222 19.2262 13.1189  0.025155 13.1147 0.057188 |
Rio 15.6573 13.1256  19.28826 13.1227  0.022099 13.1233 0.017526 |
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Table 4-7. The Experiment Results (A=80, [N|=25, Degree-based Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 24.1 18.98 26.97576 18.98 0 13.6015 39.54343
Ry 24.1 18.6524  29.20589 18.6294 0.123461 13.6243  36.90538 |
R, 22.8841 17.2142  32.93734 17.2077 0.037774 13.6302 26.29455
R3 22.204 17.2178  28.95957 17.2016  0.094177 13.6328  26.29687
Ry 21.6201 17.2065 25.65077 17.2048 0.009881 13.6363 26.18159
Linear Rs 21.0022 17.2031 22.08381 17.2026  0.002907 13.6354 26.16498
Rs 20.6405 17.2028 19.98337 17.1868 0.093095 13.6361 26.15631 |
R 20.3142 17.2041  18.07767 17.187 0.099494 13.6367 26.16029 |
Rg 20.3578 17.2058 18.3194 17.2034  0.013951 13.6372 26.16813 |
Rg 19.9613 17.2195 15.92265 17.2129 0.038343 13.6375 26.26581 |
Rio 20.3259 18.6962 - . 8.716/45 18.6962 0 13.6378  37.09103 |
Ry 41.77 32:966 26.7063 29.823 10.53885 23.2737 41.64486
Ry 41.77 31.8597 4 31.1_0607 317842 0.237539 23.3547  36.41665 |
R, 39.6604 29.8232" 1 i_3%.98_506 20.8146  0.028845 23.3746  27.58807
R3 38.4219 29.8349 §§78173 29._7937 0.138284 23.3833  27.59063 |
Ry 37.1193 29.804 2454469 29.804 0 23.3948  27.39583
Convex Rg 35.938 .29.79.44 20.61998 1, 29.7944 0 23.3916  27.37222
Rs 35.4944 29.7779 19.197i2 29.7352  0.143601 23.394 27.28862
R 34.9065 20.7821 17.20631 29.7354  0.157052 23.3958 27.29678 |
Rg 34.8473 29.7952  16.95609 29.7952 0 233972  27.34515 |
Rg 34.3772 29.8379 15.2132 29.8299 0.026819 23.3983  27.52166 |
Rio 34.822 32.0061 8.79801 32.0061 0 23.3993 36.7823 |
Ry 18.3526 14.4387 27.10701 14.4371  0.011083 10.4229  38.52862
Ry 18.3526 14.3109 28.24211 14.3019 0.062929 104315 37.18928 |
Ry 17.5725 13.1106  34.03277 13.1064  0.032045 10.4338 25.65508
R3 17.3451 131111 32.29325 13.1041 0.053418 10.4348 25.64783 |
Ry 17.0359 13.1071  29.97459 13.1054 0.012972 10.4361 25.59385
Concave Ry 16.5992 13.1058  26.65537 13.1046  0.009157 10.4358  25.58501
Re 16.2222 13.1057  23.77973 13.0988 0.052677 10.4361 25.58044
R 15.9488 13.1062 21.68897 13.099 0.054966 10.4363  25.58282
Rg 15.4936 13.1069  18.20949 13.105 0.014498 104365 25.58712 |
Ro 15.4082 13.1119 17.5131 13.1086 0.025174 10.4367 25.63262 |
Rio 15.9948 14.3279 11.63394 14.3279 0 10.4368 37.2825 |
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Table 4-8. The Experiment Results (A=80, [N|=64, Uniform Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 46.5516 36.46 27.67855 34.12 6.858148 24.85 46.72032
Ry 44.4793 354696 25.40119 34.6065 2.49404 216632 63.73204 |
R, 43.108 31.7192  35.90507 31.6314 0.277572 21.6394  46.58077
R3 41.4875 31.7958  30.48107 315581 0.753214 21.6307 46.99386
Ry 40.4135 29.9655 34.86676 279759 7.111836 21.6289 38.5438
Linear Rs 40.15 20.7471 34.97114 27.9813 6.310643 21.6293 37.5315
Rs 39.7361 29.7516  33.55954 26.8142  10.95464 21.6312 37.54022 |
R 39.3069 29.7553 32.1005 26.8164 10.95934 21.6347  37.53507 |
Rg 38.7029 28.1897  37.29447 26.8182 5.114064 21.629 30.33289 |
Rg 38.3306 30.3529 26.28316 26.8473  13.05755 21.6272  40.34595 |
Rio 39.553 31:8505 - 4 24.18329 29.7913  6.912085 21.7042  46.74809 |
Ry 79.2949 61:0212+29.94643 58.6912  3.969931 40.9451 49.03175
Ry 76.2776 57.5512 4 32.5_3868 57.5512 0 36.0816 59.5029 |
R, 74.2366 56.0101 * :@%54145 53.13 5.420855 36.1021 55.14361
R3 71.1525 53.4802. 5;04457 52._9066 1.084175 36.1062 48.11916 |
Ry 70.2063 51,9368 3517641 46.4682 11.76848 36.1224  43.78004
Convex Rg 67.7001 .50.37.31 34.39733+:,46.4858 8.362339 36.14 39.38323
Rg 67.6421 49.619 36.32298 451944  9.790151 36.1589  37.22486
R 65.6515 51.5865 27.26489 452115 14.10039 36.1809 42.57937 |
Rg 65.5498 47.1809  38.93292 452255  4.323667 36.17 30.44208 |
Rg 65.4068 494415 32.29129 4533 9.070152 36.1662 36.70637 |
Rio 67.5492 53.6907 25.81173 49.6357 8.169523 36.4349  47.36063 |
Ry 36.1659 28.2871  27.85298 28.2126  0.264066 19.8647 42.39883
Ry 35.18 26.9276  30.64662 26.9276 0 17.169 56.83849 |
Ry 34.405 25,7851  33.42977 24.488 5.29688 16.9978 51.69669
R3 33.5035 245257  36.60568 24.4584  0.275161 16.9548 44.65343 |
Ry 32.6832 23.3907 39.72733 21.7832 7.37954 16.9217  38.22902
Concave Ry 32.0769 23.3427  37.41727 21.7853  7.148857 16.8929 38.18054
Re 31.7193 23.345 35.87192 20.963 11.36288 16.8654  38.41949
R 31.6015 23.3468 35.35688 20.9524 1142781 16.8365 38.66778
Rg 30.8941 21.8658 41.28959 20.9431 4405747 16.7922  30.21403 |
Ry 31.0396 22.1344 40.2324 20.9349 5.729667 16.7567  32.09283 |
Rio 32.3263 245492  31.67965 23.2486  5.594315 16.7858  46.24981 |
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Table 4-9. The Experiment Results (A=80, [N|=64, Degree-based Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 46.4608 353 31.617 353 0 21.6102 63.34879
Ry 43.9162 33.8827 29.61246 33.0255 2.59557 21.6474  56.52088 |
R, 42.1528 31.7286 32.85427 29.9639 5.88942 21.6049 46.85835
R3 40.3476 30.6719  31.54581 29.9696 2.343375 215631 42.24253
Ry 38.6306 30.34 27.32564 299766 1.212279 215831 40.57295
Linear Rs 37.2209 29.9817 24.1454 28.138 6.552349 21.5721  38.98369
Rs 36.2385 28.1636 28.67141 252238 11.65487 215695 30.57141 |
R 35.3686 28.1667 25.56885 25.2238 11.66716 21.584  30.49805 |
Rg 34.7635 28.1755  23.38202 25.2257  11.69363 21.5807 30.55879 |
Rg 34.9121 28.2039  23.78465 25.2307 11.78406 215745 30.72794 |
Rio 36.7644 317765 - 4 15.69682 30.4643  4.307337 21.6317 46.89784 |
Ry 79.6398 601768+ 32.34303 58.6912 2531214 35.7383  68.38182
Ry 75.7481 55.7086 : 35_.9_72 55.0438 1.207765 36.053 54.51863 |
R, 72.4732 53.474 :L3§-.52_979 50.3616  6.180105 35.9784  48.62807
R3 69.2106 52.6852. F513663 50._3775 4.580815 35.8938 46.78078 |
Ry 66.1818 51.5666 2834238 50.4006 2.313465 35.9854  43.29867
Convex Ry 63.975 .50.41.73 26.89097+,48.8846  3.135343 35.9653 40.18318
Rg 61.907 47.0911 31.46221 42,7673  10.11006 35.9697 30.9188
R 60.7093 471011 28.89147 42.7409 10.20147 36.0289 30.73144 |
Rg 59.9154 47.1315 27.1239 42.7473  10.25609 36.0263  30.82526 |
Rg 60.173 47.2307 27.4023 42.7077 10.5906 36.0117 31.15376 |
Rio 63.06 53.6151 17.61612 51.9447  3.215727 36.181 48.18579 |
Ry 36.1418 28.2871  27.76778 27199  4.000515 17.2552  63.93377
Ry 34.5767 259649 33.16708 25.6707 1.146054 17.0706  52.10303 |
Ry 33.5516 24.5245 36.8085 23196 5.727281 16.9975 44.28298
R3 32.7668 234728 39.59477 23.1984 1.18284 16.9397 38.5668 |
Ry 31.1589 23.2015 34.29692 22.2185 4.424241 16.9146  37.16848
Concave Ry 30.464 23.2031 31.2928 22.0001 5.468157 16.8815  37.44691
Re 29.6598 21.8558 35.70677 19.6919 10.98878 16.8533  29.68261
R 29.3399 21.857 34.23571 19.645 11.25986 16.8311 29.86079
Rg 28.9126 21.8604 32.26016 19.6254 11.3883 16.7974  30.14157 |
Ro 28.9741 21.8712 32.47604 19.6433 11.34178 16.735 30.69137 |
Rio 29.8617 245431 21.67045 23.3949  4.907907 16.7584  46.45253 |
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Table 4-10. The Experiment Results (A=80, |[N|=100, Uniform Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 68.6878 52.2525 31.45361 48.34 8.093711 34.74 50.41019
Ry 67.2159 48.3596 38.99184 48.3596 0 34.7163  39.29941 |
R, 65.8161 48.7477  35.01375 48.4092 0.699247 34.7946  40.10134
R3 65.2623 48.4398 34.72867 48.4398 0 34.8519 38.98754
Ry 64.5087 48.4593 33.11934 46.085 5.152002 34.8968 38.8646
Linear Rs 63.9292 46.0923  38.69822 45.1158 2.16443 34931 31.95242
Rs 63.3887 46.1004 37.50141 45114 2.186461 34.9583 31.87255 |
R 63.34 47.616 33.02251 451093 5.556947 34.9812 36.11883 |
Rg 63.4659 476782 33.11304 457552  4.202801 34.9952  36.24211 |
Rg 64.457 49.6313 29.87167 457733  8.428494 35.0107 41.76038 |
Rio 67.0803 55.9246 .4 19.94/75 49.9684 11.91993 41,6626 34.23214 |
Ry 118.451 867671+ 36.51603 81.2892 6.73878 57.7582  50.22473
Ry 115.195 81.87 4 40.7_04_78 81.3406 0.650843 57.8021 41.63845 |
R, 113.136 81.5043 :L3§.8Q985 81.5043 0 58.112  40.25382
R3 112.521 81.7732. 5360132 79._1963 3.253814 58.3211 40.21203 |
Ry 110.477 79,2587 3939665 79.2537 0 58.4706  35.54453
Convex Ry 109.985 .79.27.71 38.73489., 75.9477  4.383806 58.5848 35.32025
Rs 109.108 79.3036 37.58266 75.9684  4.390246 58.6764 35.15417
R 109.259 81.6753 33.77239 75.977  7.500033 58.7532  39.01422 |
Rg 109.132 81.8743 33.29213 76.0521  7.655541 58.7999  39.24224 |
Rg 110.87 83.2993  33.09836 76.0772 9.49312 58.8518 41.54079 |
Rio 115.936 95.6169  21.25053 83.9042  13.95961 69.9661 36.66175 |
Ry 55.918 40.2064 39.07736 37.5372  7.110813 27.3427 47.0462
Ry 53.3066 37.5686 41.89137 37.4081 0.429051 27.1559  38.34415 |
Ry 52.4527 37.56 39.65043 374274  0.354286 27.0765 38.71808
R3 51.7743 37.4394  38.28827 37.4394 0 27.0247  38.53771 |
Ry 51.27 36.5038 40.45113 35.2404 3.58509 27.0422  34.98828
Concave Ry 50.9144 35.2444  44.46096 34.9854  0.740309 27.0555 30.26704
Re 50.4714 35.2464 43.1959 35.1834 0.179062 27.066 30.2239
R 50.2901 36.473 37.88309 35.23 3.528243 27.0749 34.71149
Rg 50.4634 36.4977 38.2646 35.2788  3.455049 27.0804 34.77534 |
Ro 50.9357 37.8992  34.39782 35.4197  7.000342 27.0863 39.92018 |
Rio 53.47 42.9198 245812 38.6778 10.96753 32.2415 33.11974 |
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Table 4-11. The Experiment Results (A=80, |[N|=100, Degree-based Distribution)

Budget Imp. Imp.
Penalty Gap
Allocation UB LR SAl Ratio to SA2 Ratio to
Function (%)
Ratio SA1 (%) SA2 (%)
Ry 65.5123 49.78  31.60366 48.09 3.514244 34.74  43.29303
Ry 61.5098 48.3915 27.10869 48.3915 0 34.6777 39.54645 |
R, 59.6141 476285 25.16476 451912  5.393307 34.7326  37.12909
R3 58.0495 45.022 28.93585 43.807 2.773529 34.7886  29.41596
Ry 56.8219 45.0149  26.22909 41.8377 7.594108 34.8452  29.18537
Linear Rs 55.9744 43.5291 28.59076 41.8524  4.006222 34.8779  24.80425
Rs 55.411 43.7562  26.63577 41.8639 4.520124 34.9049 25.35833 |
R 54.808 435508 25.84843 41.8733 4.006133 34.9277  24.68843 |
Rg 54.8791 435601 25.98479 41.8811 4.008968 34.9477  24.64368 |
Rg 54.6722 43568 25.48705 419126  3.949648 34.9646  24.60603 |
Rio 58.9133 48,5202 -, 21.42015 46.6293 4.055176 35.0153  38.56857 |
Ry 112.765 83:6138 34:8641 83.37  0.292431 57.7582  44.76525
Ry 106.132 81.5542 4 30.1_36_77 81.4876 0.08173 57.6636  41.43099 |
R, 102.636 81.6319 :%.73026 76.3204  6.959476 579172  40.94587
R3 99.7158 75.66§ 5178416 74._4329 1.65666 58.1302 30.16642 |
Ry 98.5721 73.6945 3375774 70.6176 4.357129 58.3193 26.36383
Convex Ry 96.0407 .73.53.61 30.60347 <, 70.6663  4.061059 58.4272  25.85936
Rs 94.5025 734571 28.64992 70.7045  3.893104 58.5168 25.53164
R 94.2325 73.4932  28.21935 70.7356  3.898461 58.5928 25.43043 |
Rg 93.9468 73.5237  27.77757 70.7615  3.903535 58.6598 25.33916 |
Rg 94.6633 73.5501 28.70588 70.8642  3.790207 58.7141  25.26821 |
Rio 100.755 81.9406 22.96102 78.2928  4.659177 58.8679  39.19403 |
Ry 53.1684 38.6927 37.41197 37.4664 3.273066 27.3427 41.51017
Ry 50.4755 37.4682  34.71557 37.418 0.13416 27.1602  37.95259 |
Ry 49.3695 36.4829 35.3223 33.7033 8.247264 27.0622 34.81129
R3 47.9469 349156  37.32229 33.7125 3.568706 26.9989 29.32231 |
Ry 46.9673 34.8974  34.58682 32.3057 8.022423 27.0209  29.14966
Concave Ry 45.8421 33.6594  36.19405 32.3114  4.171902 27.0336 24.5095
Re 45.0782 33.6387  34.00696 32.3159 4.093341 27.0441 24.38462
R 44.4716 33.6182 32.2843 32.3196  4.017995 27.053 24.26792
Rg 44.4675 33.6218 32.25794 32.3226  4.019479 27.0608 24.2454 |
Ry 45.0231 33.6991 33.60327 32.335 4.218649 27.0675 24.50023 |
Rio 48.1487 37.4674  28.50825 36.0959  3.799601 27.0881 38.31683 |
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Table 4-12. The Experiment Results (Rs, IN|=25, Uniform Distribution)
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Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 12.4357 8.23703  50.97311 8.23703 0 8.2289  0.098798
40 17.3813 13.5978 27.82435 13.5978 0 13.5978 0
Linear 60 19.0798 17.2001  10.92842 17.2001 0 13.637 26.12818
80 20.2084 17.2389 17.22558 17.2338 0.029593 17.2232  0.091156 .
100 21.4246 18.7232  14.42809 18.7111 0.064667 17.2432  8.583094
20 21.3717 13.667 56.37448 13.667 0 13.6414  0.187664
40 29.4299 23.2614 26.51818 23.2614 0 23.2614 0
Convex 60 32.7739 29.7681 10.09739 29.7681 0 23.3951  27.24075
80 34.6021 29.9005 15.72415 29.888 0.041823 29.8426  0.194018
100 36.8768 32.0926 14.90749 32.0544 0.119172 209165 7.273912
20 10.505 6.412 63.83344 6.412 0 6.40876  0.050556
40 14.1562 10.4215 35.83649 10.4215 0 10.4215 0 .
Concave 60 15.5567 131047 18.71084 13.1047 0 104365  25.56604
80 15.5759 134195 18.72327 13,1174 0.016009 131138  0.043466
100 16.5796 14.3385 15.62995 14:3337 0.033488 13.1211 9.278186
Table 4-13. The Experiment Results (Rs, IN|£25, Degree-based Distribution)
Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 10.0966 8.20883  22.99682 8.20883 0 8.20883 0
40 15.7101 11.8077  33.04962 11.8077 0 8.20883  43.84145
Linear 60 19.4455 15.2222  27.74435 13.3077 14.38641 13.5661 12.20764
80 21.0022 17.2031 22.08381 17.2026  0.002907 13.6354 26.16498 .
100 23.1579 18.7012 23.83109 18.6569  0.237446 13.6354 37.15183
20 16.8655 13.5777 24.2147 13.5777 0 13.5777 0
40 27.1578 20.0733  35.29315 20.0733 0 135777  47.84021
Convex 60 32.9342 25919 27.06586 22.3233 16.10739 23.1587 11.91906
80 35.938 29.7944  20.61998 29.7944 0 233916  27.37222
100 40.069 32.0226  25.12725 31.8762 0.459277 23.3916  36.89786
20 8.2908 6.40078 29.52796 6.40078 0 6.40078 0
40 13.2771 9.08261 46.18155 9.08261 0 6.40078 41.89849 .
Concave 60 14.8961 11.695 27.37153 10.3074  13.46217 10409  12.35469
80 16.5992 13.1058  26.65537 13.1046  0.009157 104358  25.58501
100 17.6506 14.3298 23.17408 14.3125 0.120873 10.4358 37.31386




Table 4-14. The Experiment Results (Rs, IN|=64, Uniform Distribution)

67

Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 20.3867 14.9526  36.34217 9.90682  50.93239 14.9526 0
40 28.5081 214715 32.77181 16.5584 29.67135 15.0441  42.72373
Linear 60 35.7523 26.677 34.01919 22.7453  17.28577 21.5657 23.70106
80 40.15 20.7471 3497114 27.9813 6.310643 21.6293 37.5315 .
100 44.0658 33.3609 32.08816 31.5797 5.640332 21.6246 54.27291
20 34.6995 24.9576 39.0338 16.569 50.62828 24.9576 0
40 49.2018 35.6269 38.10295 27.6862 28.68108 25.2728  40.96934
Convex 60 60.8959 42.689 42.6501 37.287 14.48762 359512 18.74152
80 67.7001 50.3731  34.39733 46.4858 8.362339 36.14 39.38323
100 75.0461 56.1526  33.64671 52.9796  5.989098 36.1242  55.44317
20 17.1807 11.7271  46.50425 7.69773 52.34491 11.7271 0
40 24.083 16.8308 , 43.08886 12.964 29.82721 11.762  43.09471 .
Concave 60 29.0116 20.6383 " "40.57166 17.9808 14.77965 16.8667  22.36122
80 32.0769 233427 37.41727 21,7853  7.148857 16.8929  38.18054
100 34.7176 25.7991 \34.56904 244669  5.444907 16.891 52.73874
Table 4-15. The Experiment Results (Rs, IN|£64, Degree-based Distribution)
Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 17.6749 9.91032  78.34843 9.91032 0 0.011548 857185
40 24.5236 20.1964 21.4256 18.619 8.471991 15.0439  34.24976
Linear 60 31.7232 23.796 33.31316 22.2378  7.006988 15.0439 58.17707
80 37.2209 29.9817 24.1454 28.138 6.552349 21.5721  38.98369 .
100 42.4587 31.7923  33.55026 31.6326  0.504859 21.6264 47.0069
20 30.206 16.5813  82.16907 16.5813 0 0 - ,
40 42.1667 34.3213 22.85869 31.6759 8.35146 25.2645 35.84793
Convex 60 54.4791 40.82 33.46178 38.2445 6.734302 25.2645 6157058
80 63.975 50.4173  26.89097 48.8846 3.135343 359653  40.18318
100 72.7932 53.6602 35.65585 53.3824 0.520396 36.1237  48.54569
20 14.3266 7.69883  86.08802 7.69883 0 0.151974 4965.886
40 21.2244 15.5488 36.50185 14.4634 7.50446 11.7742  32.05823 .
Concave 60 26.6245 18.2309  46.04051 17.1859 6.080566 11.7742 54.8377
80 30.464 23.2031 31.2928 22.0001 5.468157 16.8815  37.44691
100 33.5619 24.6413 36.20182 24.6413 0 16.904 45.77201




Table 4-16. The Experiment Results (Rs, [N|=100, Uniform Distribution)

Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 29.9533 135986 120.2675 11.663 16.59607 131348  3.531078
40 42.9243 30.1086 42.56492 28.275 6.484881 131818  128.4104
Linear 60 53.9095 39.0077 38.2022 35.3685 10.28938 34.8824 11.82631
80 63.9292 46.0923  38.69822 45,1158 2.16443 34931 31.95242 .
100 69.9599 53.9945  29.56857 499116 8.180263 4153 30.01324
20 50.9125 23.2882 118.6193 19.6113 18.74888 216919  7.358968
40 74.5385 50.7744  46.80331 47.4259  7.060488 21.614 1349144
Convex 60 94.6065 65.9105 43.53783 60.0358 9.785328 58.4412 12.78088
80 109.985 79.2771  38.73489 75.9477  4.383806 585848  35.32025
100 120.498 89.2914  34.94917 83.7163  6.659516 69.5215 28.4371
20 24.8815 10.5869 135.0216 9.09412 16.41478 10.4087 1.712029
40 35.9141 23.3136, 54.04785 22.0174 5.887162 10.5373  121.2483 .
Concave 60 44.1167 29.9215"° " 47.44147 27.3465 9.416196 27.0354  10.67526
80 50.9144 35,2444  44.46096 34,9854  0.740309 27.0555  30.26704
100 55.2724 40.2557 37.30329 38:6557 4.139105 32.1902 25.05576
Table 4-17. The Experiment:Results (Rs, IN|5100;-Degree-based Distribution)
Imp. Imp.
Penalty Attack Gap
UB LR SA1 Ratio to SA2 Ratio to
Function Budget (%)
SA1 (%) SA2 (%)
20 26.9649 13.1532  105.0064 13.1532 0 0.064092 2042241
40 38.7354 28.2391 37.16939 28.2391 0 131748  114.3418
Linear 60 47.9004 36.724 30.4335 35.3023 4.027216 13.3867 174.332
80 55.9744 435291 28.59076 41.8524  4.006222 34.8779 24.80425 .
100 62.3664 47.7158  30.70388 46.6073 2.378383 34.9222  36.63458
20 45.8835 21.8342 110.1451 21.8342 0 0.002993 7294893
40 67.2863 47.3588 42.07771 47.3588 0 215996 119.2578
Convex 60 83.0238 61.7789 34.3886 50.8622 3.201854 21.6372 185.5217
80 96.0407 73.5361 30.60347 70.6663  4.061059 584272 25.85936
100 107.386 84.1488 27.61442 78.2181 7.58226 58.5561 43.70629
20 21.9243 10.2947  112.9669 10.2947 0 0.369273 2687.829
40 316771 21.8838 44.75137 21.8838 0 10.5314  107.7957 .
Concave 60 39.5497 28.5488 38.53367 271975 4.968471 11.1294 156.517
80 45.8421 33.6594  36.19405 32.3114  4.171902 27.0336 24.5095
100 50.7635 38.6569 31.31808 36.0873  7.120511 27.052  42.89849
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4.1.4 Discussion of Results = = |

: (N R
Figures 4-1 to 4-3 show the cau “pen

: _dlnies under different numbers of nodes,
penalty function types, defense byd94 }distri'butild?r], and defense budget allocation ratio
strategies within the attack budget 80 We ¢an observe the penalty caused by
degree-based distribution is less than that caused by uniform distribution in most
situations, that is to say, the defense ability of degree-based distribution is better than
the other. That is because the degree of a node implies the frequency of the node as a

hop-site to connect some O-D pairs. Moreover, the difference between the two

distributions gets more obvious with the growth of the number of nodes.

Since the nodal defense capability function is a concave form, too much budget

allocated to nodal defense capability may be useless. Therefore, the former of each
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curve in these figures may fall by shifting useless budget from nodal defense capability
to nodal capacity. However, the later of each curve may rise because the shifted budget
is too much and the nodal defense capability turns weak quickly. Hence, the curvesin
these figures all tend to convex form but the best ratio strategy which the minimal
values appear at is uncertain under different scenarios. In the experiment cases, the

strategies Rs and Rg are the most robust.

Figures 4-4 to 4-6 show the effect of different attack budget under different
numbers of nodes, penalty function types, and defense budget distribution strategies

within the defense budget allocation ratid_:stratégy Rs. Tt is obvious that all curves tend

N

to concave form with the enlargement|of attack budget'whatever the scenario is. That is

to say, the marginal penalty almost decreases Wheh the attack budget increases.

Moreover, it is also obvious that the penalty caused by convex form is the biggest,
the penalty caused by concave form is the smallest, and the penalty caused by linear

form is between them.

Figure 4-7 compares the performance of our proposed Lagrangean
relaxation-based algorithm with simple algorithm 1 and 2 under different numbers of
nodes and different penalty function types. The value of each point is the average

penalty of two different defense budget distribution and ten allocation ratio strategies
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under the same number of nodes and the same penalty function type within the attack
budget 80. We could observe that the penalty of our proposed heuristic always higher
than that of simple algorithm 1 and 2, namely, our proposed heuristic outperforms the
two simple algorithms and the average improvement ratios to them are 4.5% and 30%
except special cases respectively. The average gap between UBs and LRs is less than
33%. Moreover, the penalty increases with the enlargement of network size. That is

because the more the network sizeis, the more the amount of choicesto attack is.

4.2 Computational Experiments with the NPDRAS M odel
4.2.1 Experiment Environment'z'

The agorithms we proposed for NPDRAS model are coded in Visua C++ and
implemented on a PC with an INTEL Pentium 4 (3.00 GHz). The Iteration Counter
Limit and Improve Counter Limit are set to 50 and 5, respectively. The initial step size

coefficient, @, issetto0.5.

From the results of the ARRAS model, we can obtain that the degree-based
distribution is the best defense budget distribution strategy but the best allocation ratio
strategy is uncertain. We therefore execute the ten defense budget allocation ratio

strategies mentioned in Section 4.1.2 for the degree-based distribution and choose the
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best one as the initial defense strategy for the NPDRAS problem. Besides, the multicast
tree of each group is constructed by the shortest path algorithm to approach the minimal
end-to-end delay from a source to each destination. We use 80 as the attack budget.

Other unmentioned parameters are the same to those in the ARRAS model.

For comparing our proposed adjustment heuristic, denoted as “benefit”
re-distribution, we also execute the “uniform” re-distribution where the extracted budget

distributes averagely to each compromised node.

4.2.2 Experiment Results

N

The Init. P. value is obtained from thel .n.itial defense strategy, the Bef. P. value is
derived from the adjustment procédure, andthe Uni. P. value is gained from the uniform

re-distribution strategy. The improvement ratios of the two re-distributions are

calculated by mem and U“"Iz:t";'t' P 100% , respectively. The
IT. . IT. .

experiments results are shown in Table 4-18.

4.2.3 Discussion of Results

Figure 4-8 show the improvement by performing our proposed adjustment

procedure, and compare the two different re-distributions under different numbers of

nodes and penalty function types. We can observe that the benefit re-distribution
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Table 4-18. The Experiment Resultsfor the NPDRAS M odel

Penalty Number . Imp. Ratio of _ Imp. Ratio of
Function  of Nodes nit. & Bef. P. Bef. P. (%) oni. P Uni. P. (%)
25 17.2028 15.1536 13.52286 15.175 13.36277
Linear 64 28.1636 24.5605 14.6703 25.5333 10.30145
100 43.5291 38.0443 14.41688 39.9285 9.017619 |
25 29.7779 25.7619 15.58891 26.9458 10.51036
Convex 64 47.0911 42.6074 10.52329 43.9118 7.240195
100 734571 63.7719 15.18725 65.2593 12.56189
25 13.1057 11.5909 13.06887 11.6725 12.27843
Concave 64 21.8558 19.5947 11.53934 20.3445 7.428543 |
100 33.6182 28.6033 17.53259 28.7654 16.87027 |
== Init. P. Uni.P. =—@—Bef.P.
»
£ /ﬂ
] : /;‘ ‘,/

25 ‘ 64 ‘ 100 25 ‘ 64 ‘ 100

Linear Penalty Function Convex Penalty Function Concave Penatly Function
Number of Nodes

Figure 4-8. The Improvements under Different Numbers of Nodes

strategy gets more improvement than uniform re-distribution strategy. That is because

the uniform re-distribution does not consider the important of each node and may

allocate the extracted budget to nodes which gain less improvement.

The two re-distributions' improvement ratios to initial value are 14% and 11%,

respectively.
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Chapter 5 Conclusion
5.1 Summary

With the convenience of Internet,'most of petwork services are indivisible from our
daily lives and some of them need txo offer“the-high Quality-of-Service (QoS)
requirements of transmissions. Howev.e.r-,}"-_-i'fhe transmi.ssions may be interfered with
malicious attackers. The network ‘administrator has to endeavor his/her best to guarantee

the QoS of each transmission and to minimize the penalty caused by QoS violations.

The main contribution of this research is that we proposed mathematical
programming problems which are the ARRAS and the NPDRAS problems to
well-model the mutual behavior between a network administrator and an attacker in the
real world. We then develop the Lagrangean relaxation-based algorithm to solve the
ARRAS problem and exploit the solutions of the ARRAS problem and the adjustment
procedure to obtain the near optimal defense strategy for the NPDRAS problem. Most

importantly, the obtained solution for NPDRA'S problem provides the useful indicator of
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defense strategies to the network administrator to strengthen the robustness of the

network.

Moreover, we use a concave defense capability function in the computational
experiments. It is more reasonable and to simulate the real situation more actually. From

the experiment results, we can make some observations:

® The degree-based defense budget distribution is more robust than uniform.
® The best budget allocation ratiotordefense capability and capacity is uncertain.

® Themargina penalty declinés with the enlargement of attack budget.

N

5.2 FutureWork

We address three issues that can be researched further:

® Therequirementsof QoS: In the thesis, we take bandwidth, end-to-end delay,
and multiple paths to be QoS requirements. However, other possible QoS
requirements should be considered, such as delay-jitter, packet loss and so
forth. Besides, we only adopt the unique delay violation, but the combined
violations should be considered for approaching the real situation more

actually.
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The experiences of the attacker: The attacker may gains and accumulates
experiences when he/she compromises a node, and further uses the less attack
budget to compromise other nodes. Thus, the experiences of the attacker may
be considered into the network attack-defense problem in the future.

The attack types of the attacker: In our research, the capacity attack is the
only attack type of the attacker, but there are severa different attack typesin
the real world, such as Distributed Denial of Service (DDo0S). That is to say,
the combined attacks may:be taken ipto account as possible as we can in the
future.

The network topology: The netvu?ork topol 0gy may be the important factor to
affect the defense capabilit.y of sthe, network. The rich connectivity of nodes
can benefit not only the datatrans.mission but also the convenience for attack.

Therefore, the alternative of setting a link is another discussion for resisting

attacks in the realm of network planning.
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