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Abstract

Although numerous attempts have been made on bivariate failure times, however,
there is little attention on the study of relation between failure time(claiming time)
and mark variable(medicare reimbursement). Meanwhile, from the viewpoints of
brokers and the management in insurance company, it is more attractive and en-
grossing to capture the dynamic pattern'so that our research interest would focus on
the joint distribution of claiming time'and t'ﬁ_e corresponding medicare reimburse-
ment. Based on survival cenSorededata, We; propose two estimation procedures:
the inverse probability Welghtmg (IPW) method and the imputation method. Fur-
thermore, it is meaningful tg accommodate termlnal events occurring prior to the
realization of failure time and the LIPﬁ-method could “lead to the resolution of
this obstacle. Moreover, the limiti Gaﬂss_lanl processes of estimated distributions
and the estimators of Varlance—coleglance funcglons are-developed and enable us to
construct approximated regions: ToE 1nvest1gate thse ﬁmte sample properties of pro-
posed estimators and the performance of inference procedures, a class of simulations
would be conducted. An application to the colorectal cancer data retrieved from
the Surveillance, Epidemiology, and End Results (SEER) Medicare database is also
presented. In the end, we provide a brief discussion and further research topics of

interest.
KEY WORDS: bivariate distribution, mark variable, medical cost, censoring, termi-

nal events, inverse probability weighting (IPW), imputation, U-statistics, Gaussian

processes
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Chapter 1

Introduction

Bivariate failure time data are often encountered in many biomedical contexts, for
example, times to blindness in_.both“eyes of diabetic retinopathy patients or gap

times to successive stages ifiithe/progression of acquired-dmmunodeficiency syndrome.

lgirvariate survival times can be found

Estimation methods for dealing Witl“;i p:
‘ |

m |l .
in Campbell (1981), Tsai] et al.i 198_61}} Bullrlge (1988), Dabrowska (1988), and

Akritas, et al.(2003), amorié -Qt}}e!r;. Statistiéa;!l -:a_malyses for bivariate serial gap
times include the works of Wang, et al (1998) ‘and Lin, et al. (1999). Distinguished
from bivariate failure time data, an overwhelming emphasis is placed on health care
cost controlling and fiscal accountability in medicine, and a brand new survival-
type data structure emerge, called the cost data. The cost data consist of claiming
time (time to the occurrence of medicare reimbursement) and the mark variable
(medical cost or reimbursement), which is possibly correlated to claiming time and
not observed until the corresponding claiming time fulfills. Rather than censoring,

the marker would be missing due to the loss of follow-up or drop-out. Thus, it is

inappropriate to use the existing statistical methods for bivariate failure time data.



Even though medical cost management has received immense attention, re-
searchers merely highlighted the topic in two primary aspects over the past decades.
One is mean cost evaluation within the period of interest based on complete or cen-
sored data. The other is cost-effectiveness (CE) ratio, the ratio of the mean difference
in costs to the mean difference in effectiveness. CE ratio is a practical measurement
for the trade off between budget constraints and patient benefits. In contrast, from
the viewpoints of brokers and the management in insurance company, it is more cru-
cial and appealing to explore the joint distribution of the claiming time X° versus
the medicare reimbursement Y % Fewrai.;'temp"éé hayf) made at this sort of phenomena

except for Huang and Louis::'(1998) and.Hudgens, et al (2007) Based on the censored

-

cost data {X;, ¢;, Y}, *with X, )@f;@ill IV, = 0,2, 6; = [(X? < C;) being
! |

m 1

the censoring status, and Crbein% he e"e?'l'sorin$ time, Huang and Louis obtained

| 1

the estimator for joint distribution F(£w) = P(X° £ 1,Y° < u) by estimating

g

cumulative mark-specific hazard funetion A(¢,«). For this data setting, we propose
an inverse probability weighting (IPW) estimator and an imputation estimator via
using the induced binary responses B;(t,u) = I[(X? <t,Y? <wu), i=1, ---, n.

In a colorectal cancer cohort study, the clinical trial might be terminated be-
fore the study endpoint is reached. The terminal events, such as death, preclude
any further medical costs and definitely relate with (X° Y°). For instance, it is
instinctive to anticipate that poor health patients prone to death might raise larger
medical costs. As long as the death arises before the first claim, the medicare

reimbursements of the departed would be zero rather than missing. Instead of



only considering the joint distrbution of claiming times and reimbursements, it is
more meaningful to exploit the joint distribution for those who have medicare re-
imbursement prior to death, say, F*(t,u) = P(X° < t,Y° < u|D > X°), where
D denotes the terminal time. In this study, our research focuses on seeking for

an appropriate estimation method of F*(¢,u) based on the transformed cost data

{Xz*7 6Xz‘o’ 501., Y ?:1, where Xz* = Xlo /\Cz /\Di; Y* = Y;O(SX;«, 5)(;) = [(Xz* = Xio),

(2 (2

and 0¢, = I(X} = ;). In addition, we provide the estimator for the probability of

cost occurring before death P(D > X)) andsthe mean cost of patients, which can

e

be derived as E[Y] = { [ ailly, Fx(t, u)pPED=.X°).;

We divide the rest of tHi&/thesis int_the following parts In Chapter 2, we briefly
| J -

-, [~
B I - [

[}
1

] LER
reviews the estimation method of Huang-Feuis iillld propose the IPW and imputation

n ||

estimators for F'(t,u). Moreover, tlre asyfh"ﬁjcotic %ﬂopeytiés and inference procedures

H

are developed in this chapter. -"Irgi:Chapter 3, we further deal with the occurrence

of terminal events in estimation. In Chapter 4, a class of simulations to investigate
the finite-sample properties of the estimators and the performance of our proposed
procedures. We present an application of our methods to the colorectal cancer data
retrieved from the Surveillance, Epidemiology, and End Results (SEER) Medicare
database in Chapter 5. Finally, a concise discussion and a further research topic are

provided in Chapter 6.



Chapter 2

Estimation and Inference
Procedures without a Terminal

Event

2.1 Review of Huang-Louis| Estimator

e

Baed on the data {(Xj, 9;); 1@-}2;1, ﬁ'il_ang and Louis: (1998) proposed a non-
parametric estimator Fyp(f ) fo:r‘.F (Lsw). Bef@re itroducing their estimation
method, some concise notations are presented firsts Let Sxo(t) = 1—-F(t,00), Sx(t) =
P(X > 1), Fxy(t,u) = P(X <t,Y <u,§ =1), Sc(t) = P(C > t), and A(t,u) =
f; Sxs(8)dsF(s,u) be the cumulative cost-specific hazard function, where [ d F (s, u)
is a Lebesgue-Stieltjes integration over s for fixed u. It was derived that F'(t,u) can

be expressed as

F(t,u) = / S (8)dA(s, ) = / [0 - ddxe@)}dh(sw),  (211)
0 0 [0,5)

where [] denotes the product integral and Ax.(v) = A(v, 00).

Under the assumption of random censorship (Al: C is independent of (X°,Y?)),



one has
Sx(t) = Sxo(t)Sc(t) and di Fxy (t,u) = Sc(t){d F(t,u)}. (2.1.2)

Substituting the empirical estimators Fiy (f,u) = n! S 0:Bi(t,u) and Sx(t) =
n~tY" (X > t) for Fyy(t,u) and Sx(t), an estimator for A(t, u) was proposed
by

At,u) = /0 % (2.1.3)

It is straightforward to obtain an estimator from (2.1.1) and (2.1.3) as

“ﬂd'f}(s u), (2.1.4)

dorem, \we-state the uniform consis-

Lo Py

1 tri&}frf“i;ons

_:I'!. l__ 4:‘_’
and F(t,u) are absolutely'-%onf‘iﬁuoqsf-lon !g:‘x {('?,ull

=N
¥ )1. 0 <t<r, u>0} with
B < >

Ry ey T (i
7 = sup{t : Sx(t) > € > 0} for some € > b) ‘are made throught the thesis for the

main results.

Theorem 2.1.1. Supposed that assumptions (A1)-(A3) are satisfied. Then,

sup | Fiyp(t,u) — F(t,u) |- 0, (2.1.5)
(t,u)eQ

and n'/2(Fyp(t,u) — F(t,u)) converges weakly to a mean zero Gaussian process with
variance-covariance function I'y(wy, wy) = Cov(Zi(wy), Z1(ws)) for w; = (tj,u;) €
¢

Q, j=1,2, where Zi(t,u) =[5 F(s,u)dyp(s, 00)+ [y Sxo(s7)dsip(s,u) = F(t,u)p(t, u)

and p(t,u) = Sy (X)0B(t,u) — [7 S3(sT) (X > s)d,Fxy(s,u).



2.2 IPW Estimator

The TPW technique has been widely adopted in estimation for dealing with the
biased sample due to censoring. The main idea is to use subjects with available
Bi(t,u)’s and weight each observation by the inverse of the selection probability
m, = P(V, = 1|1X°), where V, = Vi, + Vo, with Vi, = I(X > t) and Vo = I(X <
t,6 = 1). Under the validity of random censorship (A1), the selection probability m;

is desired to be ViS¢ (t) + Vo Sc(X°). By the property,

E (Bl ) B, )= 0 (2.2.1)
and substituting a consistent estimator §c(t) for'Set) .an IPW estimator for F'(t, u)
Ll P oy %)
oo Y l"i = il
| ii'ﬂm-'_ ol
can be constructed as L — 8 |
< |

(2.2.2)

) —n | /\_L )
I ZZ:]II it Pt 74

) 7"1-

where 7; = V;US’\C( t) + V;gtSC(X 0) Naturallyz the Kaplan Meier estimator is used
to estimate S¢(t). The asymptotic Gaussian process of n*/2(Fypy (¢, u) — F(t, u)) is

established below.

Theorem 2.2.1. Suppose that assumptions (A1)-(A3) hold. Then, n'/?(Fypy (t,u)
— F(t,u)) converges weakly to a Gaussian process with mean zero and variance-
covariance function I'y(wy, wa) = Cov(Zig(wr), Zia(w2)), where Zia(t, u) = E;;(t, u)+

bji(t, )| (X3, 6:), Y3)] with Me,(t) = I(X; < t)(1— &)+ [5 I(X; > v)d(InSe(v)) and

Vi l thCj(S) Viot l X dMC]-(S) (fw)—
wlt) = (g + o [ 0By S L [ )

F(t,u)).



Proof. From (2.2.2), one has

~ n123" VumsY(Bi(t,u) — F(t,u
n1/2(Flpw(t, U) - F(t, U)) = szl fzzé ( ‘/g A,)l ( )) . (223)
i=1 Vit

By the boundness of Vj;’s, the uniform convergence of :S'\C(t), and the Euclidean class
of {Viymi;t 1 0 <t < 7} (cf. Akrita (1994), Pakes and Pollard (1989), and Pollard

(1990)), it is entailed that n=t>°" | Vi, ' uniformly converges to one. Thus,

n' 2 (Fypw(t,u) — F(t,u)) =n~/? Z Vi, (Bt u) — F(t, ) + rin(t,w),

(2.2.4)
where sup |ri,(¢,u)] = ou(1). The first ordér"Taylor expansion of the dominating
(tu)eQ A= L
term in (2.2.4) with respect; to " e Qﬂ Sc(t) ylelds tha‘(‘:

!. ,-,_; 1

_1/22‘/“%\2_151 {/Ztﬂ-zt F<t7u))_
. 0 lll

,1/22{ zlt i ‘l/ gg( dl|)ll 1)}(B(t u) — F(t,u)) + o, (t),

T

(2.2.5)

where sup |ro,(t)| = 0,(n"/?). Since {go(t)/SC(t) — 1} can be uniformly approx-
te(0,7]

imated by {—n~' 30, 5 dMe,(u)/Sx(u")} (cf. Fleming and Harrington (1991)).

It follows from (2.2.4)-(2.2.5) that

n2(Fypw (t,u) — F(tw) = {n'?(n— D} Y 0N "yt u) + raalt,u),  (2.2.6)
i#£]

where sup |rs,(t,u)| = o,(n"1/?). By the Euclidean class of {ty;(t,u) : (¢,u) € Q},
(t,u)eQ

the decomposition of a U-statistic into the sum of degenerate U-statistics, and

Corollary 4 of Sherman (1994), n'/2(Fypyw (t,u) — F(t,u)) can be uniformly approx-

imated by the term of independent and identically distributed random quantities

7



n~Y23"" | Zi(t,u). By the functional central limit theorem (Pollard (1990)) and
the uniform convergence of n=* > {Vi;/m} to one, the proof for Theorem 2.2.1 is

completed. n

2.3 Imputation Estimator

Applying the method of Buckley and James (1979), we propose a alternative es-
timator based on the considered data setting. In this estimation method, the

unavailable statuses B;(t,u)’s are substituted by the corresponding expectations

e

E[B,(t,u)|X;, 8 = 0]'s. Let:BF(t, u) = F(Viy =) B(t, ) 1(Vir = 0) E[By(t, w)| X, 6; =

0]. A direct calculation ensures thatp_

!

| L
E[B; (t,u)X;,6,] }FEEH:@ |u5|Xz,5z [ (Vie= k)
A | W

=Y E[Bi(t;u) |X,{52]I EB (t )| X;, 6, (2.3.1)

which implies that E[B(t,u)] = E[Bz-(t, )] # F( yu). Under assumption (Al), we

further derive that
E[B,(t,u)|X, = 2,6, = 0] = Sh@){F(t,u) — F(e,u)}.  (23.2)

Following from (2.3.1)-(2.3.2), an estimation procedure for F'(t,u) is proposed. The

imputation estimator Fy M (t,u) is obtained via solving
n

S (Bt w) — F(t,w)

i=1

=n" Z{(Bi(t, w) = Ft,u)) (Vi = 1) +

2, (2.3.3)



where Syo (t) is the Kaplan-Meier estimator of Sxo(t).

Note that F(X;,u) in (2.3.3) is unknown when Vj; = 0. Generally, a consistent
estimator (X;,u) is substituted for F'(X;,u). Let A; be the collection of ordered
censoring times Cy < Cg) < --- < C,) < t with size k;. The joint distribution

F(Cny,u) is first estimated by

n

ﬁ[M(C(l), U) = n_l Z BZ(C(1)7 U) (234)

Subsequently, the estimator for F/(C(;),u), j=2,-- -, k¢, can be obtained as

2o Bi(@), )(qu)—l‘) ZJ 85:(Cy )ﬁ(Ql)aU).

ﬁIM(C( ) u) = (2.3.5)
] S Vil - 5N )R Sx(Co)
An explicit expression for the estlma:ealig!f [F (’t' 'u is then derived to be
b | = i; '

z:;l I(mt = 1) ]zf By O<Xi>p - s;o<xi>>f<vit o)
Remark: Since the number of 'c"e'hsq'ringitime'_s prlor ‘;0 t is random and might be
considerably large, it becomes cumbersome to develop the inference procedure for
F(t,u) based on Fyy(t,u). Currently, there is still no existing statistical methodol-

ogy to facilitate this obstacle.

2.4 Inferences Procedures

In this subsection, pointwise and simultaneous confidence bands for F'(t,u) are con-
structed based on the asymptotic Gaussian processes of Fyp,(t,u) and Fypy (t, u). As
shown in Theorem 2.1.1, the limiting process nl/Q(ﬁHL(t, u) — F(t,u)) is uniformly

asymptotically equivalent to n=Y/23"" | Z,,(¢,u). The variance-covariance function

9



of ﬁHL(t, u) is suggested to be estimated by fl(wl, wy) =n"tY " Zl (wl)Zl(wg),
where

~

Zi(t,u) :/o FHL(S u)dspi(s) / SXO (s)dspi(s, u) — FHL(t w)@i(t,u) (2.4.1)

with 3i(t,u) = Sy (Xi)8;B(t,u) — [y Sx2(s)1(X; > s)dsFxy(s,u). Similarly, the
limiting process of n'/2(Fypw (t, u)—F (t,u)) is asymptotically equivalent to n /2 32" | Z
(t,u). Let ]\/ZCj( t)=I1(X; <t)( +f0 (X; >v)d )d(InS¢(v)). An estimator for

the variance-covariance function I'y(wy, ws) is proposed to be

7
rj f;_

1 ' —:Z;g(wl)g zglug) (2.4.2)

theorem.

Theorem 2.4.1. Supposed that assumptions (A1)-(A3) hold. Then,

sup | Ty(wy, wy) — Dy(wy, ws) | == 0, asn — oo,l = 1,2. (2.4.3)
wi, w2 €Q

Proof. By the uniform convergence of empirical estimators (Pollard (1990)), we can
show that Fiy (t,u) and Sx(t) converge to Fyy (t,u) and Sy (¢) uniformly in (¢,u).
Together with (2.4.1), Theorem 2.1.1, and the boundness of ¢; B;(t, u)’s, it is ensured

that

sup | Gi(t,u) — pi(t,u) [ 2= 0asn — oo,i=1,--- ,n. (2.4.4)
(t,u)eQ

10



One further derives by the intergration by parts that

sup | Zu(t,u) — Zun(t,u) | 2> 0asn — o0o,i=1,--- ,n. (2.4.5)
(t,u)eQ

From (2.4.8), Theorem 2.2.1, and the inequality

| f1('LU17’U)2) — F1(w1,w2) | < | fl(wl,w2) — n_l ZZil(wl)Zil(w2) |
i=1
107ty Zia(wi) Zi (wz) = Da(wn,wy) |, (2.4.6)
=1

the uniform consistency of T, (w1, ws) is obtained.

For the uniform consistency Cffﬁg(iu_lfw'{) Lt is implied from (2.4.2) and Theorem
& . o

2.2.1 that

(2.4.7)

The expression of I'y(wy, wy) i
- s =] 1.
= T g - 4\

and Fypw (t,u) entail that Ty (w';, wy) }g}lmjfogm}y :zlipproximated by

N

{n(n =1)(n=2)} Y Wiy(wr) + a(wn)) (Win(wz) + g (ws)). (2.4.8)
i#j#k
Since {t;;(t,u) : (t,u) € Q} is Euclidean, the term in (2.4.8) converges to E[(v;;(w;)+

Wii(w1)) (Vi (w2) + VYri(we))] = E[Zio(w1) Zia(w2)] uniformly in (wy, ws). O

The limiting Gaussian processes in Theorems 2.1.1 and 2.2.1 as well as the esti-
mated variance-covariance functions enable us to construct an approximated (1 — «)

pointwise confidence interval for F'(¢,u) via either
~ ~1/2 ~ ~1/2
Frp(w) £ z1-ap2l') " (w,w) or Frpw(w) & 21-q /0Ly " (w, w), (2.4.3)

11



where 2;_, is the 100(1 — a)th percentile of a univariate standard normal distribu-
tion and w = (t,u). To draw inference on the pattern of F(t,u), a simultaneous

confidence band can also be established based on the quantities:

n V2 M Zg(w)

K, = sup | = l,l=1,2, (2.4.4)
wex )% (w)
where T is a region of interest within Q, and {M; : i = 1,--- n} are independent

realizations of standard normal variable and are independent of {(X;,d;), Y;}? ;. An
approximated (1 — o) simultaneous confidence band for F'(¢,u) is then constructed

via either

o,

P

N 7 o ' _r_: :__'
based on a large number of geerations o . {%‘,l;\ =12
?f:-:"-r:= -:i;- L :L'—_" il

s SFEE)E ]i'ﬂ
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Chapter 3

Estimation and Inference

Procedures with Terminal Events

By adapting the IPW method.mentiened in“Chaptet-2 for the appearance of termi-

nal events, we use subjectslwith avaﬂable Bi(t, u)'s"and weight each subject with

m = P(0xe = 1/X7?)"s. Under the asls:?::f;fé'tion of random censorship (AAl: C is
i

independent of (X° Y% D)) and %stumb%ibn (;AA2: The fbtribution functions of

X° C and D do not have jump points in Corﬁnién), m; is derived to be S¢(X7).

Using
E[0xo S5 (X°)(B(t,u) — F*(t,u))] =0 (3.1.1)

and replacing Sc(t) by a consistent estimator §C(t), F*(t,u) is proposed to be

estimated by

- " SxeSot(X0)Bl(t,
F*(t,u): szl X C( z) ( u) (312>

S Oxe St (XY)

Generally, it is reasonably to estimate Sc(t) by the Kaplan-Meier estimator. Based

on (3.1.2), the probability P(D > X°) and the mean cost E[Y°] are naturally

13



estimated by

P(D>X)=n""Y 6xeS5!(Xi) and E[Y?] =n 'Y 0xe S (XP)Yy.  (3.1.3)

i=1 i=1 Z
To establish the asymptotic properties of n'/2(F*(t, u) — F*(t,u)), the condition
(AA3: Sc(t), Sp(t), and F*(t,u) are absolutely continuous on (0,7*] and Q* =
{(t,u) : 0 <t <7 u>0} with 7* = sup{t : Sx«(t) > € > 0} for some ¢ > 0. ) is
further made in the following theorem.

Theorem 3.1. Suppose that assumptlons_( 1)-(AA3) are satisfied. n'/2(F*(t,u)—

B U j’ A
‘I"=1, ___4'.':" ’r
F*(t,u)) converges weakly tQ;a means; zero Ga;ussmn p‘rogess with variance-covariance
F .-"'f - -..k_. w -'—

Wit}

function I'*(wy,wq) = bm;(Z*
T "‘1:‘_."!' j

,WE‘Q*, where Zf(t,u) =

L

.
(%) o
b

L]

u) + 5 (W) (X7, xanbes

and B

5Xo i
Se(XP(D = X))

Uit u) =

Proof. From (3.1.2), n*/2(F*(t,u) — F*(t,u)) can be re-expressed as

n 2 S0 Oxe Se (XP) (Bt w) — F*(t,u)
n=t Y Oxe SEH(XP)

(3.1.4)

By the boundedness of dxo’s and the uniform convergence of §C(t), the denominator

term in (3.1.4) is shown to be asymptotically equivalent to P(D > X°). Thus,

nY2S Sxe S (XE)(By(t,u) — F*(t,u))
P(D > X°)

nV2(F(tu) — F*(tu)) = 7 (),

(3.1.5)

14



where sup |r],(t,u)| = 0,(1). Applying the Taylor expansion theorem to the nu-
(t,u)eQ*

merator term in (3.1.5) with respect to Se(t) = Se(t), it can be derived to be

n-1/2 - L “(h o)) = =1/ " Sy e
;%(Xf)w( u) = F7 {6 w) ZSC<X0)(BZ(@ ) — F*(t,u))
0 S e Sy~ DB P ) 816

where sup |r3,(t)] = 0,(n~Y/?). Together with (3.1.5) and the proof argument for
te(0,7*]

Theorem 2.2.1, we obtain that

nM2(F*(t,u) — F*(t, )) ,{nquzf_ {+1/E,Z:¢Utu Fri),  (3.17)

I"‘*

where sup |ri(t)] = 0} e asymp \stﬂ;ﬁsra_n process of F*(t,u) is
te(0,7%] G "___‘ -
X -

developed. 2. O]
r.'.-l [ ] L] I.

Let Mg, (t) = 5017’( n§s@) i =1,---,n, and

N :r L, s
Sx«(t) =n"t3", (X* ? t) The‘v‘eﬁat&ance function T'*(wy, ws) is sug-
; "n

x.f

gested to be estimated by F*(wl,.-wg)r 7}*1'2" =7 Z*( ) F(wy) with Zf*(t,u) =
(n— 1)~ 32 (5(t,u)

JFi
+ ]*Z(t,u)) and

X7 d]\//f*, S —~
Byt = o (Selx) 0 > x| WES) ) - B (1)),

n Sx+(s7)
(3.1.8)
The uniform consistency of T (w1, wy) is given in the following theorem.
Theorem 3.2. Supposed that assumptions (AA1)-(AA3) hold. Then,
sup | T (wy, ws) — Ti(wy, wy) | == 0, as n — . (3.1.9)

w1 ,wa EN*

15



Proof. By using the techniques in the proof of Theorem 3.1, the uniform convergence
of P (D > X°) is obtained. Paralleling the argument for the uniform consistency of

T, (w1, ws) in Theorem 2.4.1, the uniform consistency of T (wy,ws) is developed. [

Similarly to the aforementioned procedure, approximated (1 — a)) pointwise and

simultaneous confidence intervals are seperately constructed via

F*(w) £ 21020 (w, w) and F*(w) + 1 2Q1_o (KT (w,w),  (3.1.10)

where

o

with T* is a region of s n) are independent re-

E_'_‘-

=H

alizations of standard Iﬁrmdl I endent of (X dxo,0c,), Vi by
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Chapter 4

Numerical Studies

In this chapter, we conduct two simulation scenarios to investigate the finite sample
properties of proposed estimators and fhe pef’fbrmanpe of inference procedures. One
is for the case of censoring data and _the other accom;r}odates the appearance of
terminal events. In the simulation proé@@téare repeatedly generated 500 times

\ n |
with the sample sizes of 200 and 4(;)4, andthe densoringrates of 30% and 50%. The

1 1 |

i | L J
leeted gridepoints, (¢, u), where u takes values of

estimators are evaluated atrthe'se
0.25, 0.5, 0.75, and 1, and t takes values;of 0.2231, 0.5108, 0.9163, and 1.6094 with

the cumulative probabilities of X being 0.2, 0.4, 0.6, and 0.8.

4.1 Simulation Setting of (X Y?)
The pair random vector (X°,Y°) is specified from the Frank’s bivariate family (Gen-
est (1987)), in which

" log, {1+ (™) — 1)@ —1)/(a = 1)}, a#1
Fxoyo(tau) =

Fo(t) Fyo(u), a=1.

17



Simulations are implemented with a = exp(—10), which implies a positive associa-

tion between the claiming time and the medical cost.

4.2 Senario [ - Without a terminal event

In the section, we examine the finite sample properties of Fy L(t,u), F pw (t,u), and
ﬁ[M(t, u), and evaluate the inference procedures based on ﬁHL(t, u) and I*A}pw(t, u).
The censoring time C' is independently generated from an exponential distribution
with different scale parameters 0.5 and. 1 .for the expected censoring rates of 30%
and 50%. , =, -")i

Tables 4.1-4.6 exhibitrthe averages and standard d’e_viations of 500 estimates,

\ |
=~ | Fa'

sad on (21.4),2.2.2), and (23.7) at

1
A l

the selected points. We detect tlja the.qaveragfes of 500 estimates F’ [Pw(t u) are
! |

more close to F'(t,u) than those of 1{5 erpl)s espemally for a higher censoring rate.

Furthermore, F’ IM(t, u) is found to hz;ve larger biases at points of (1.6094, 0.75) and
(1.6094, 1.0) when the sample size is small and the censoring rate is high. The biases
of these estimators are negligible when the sample size is large enough. The stan-
dard deviations of three estimates are almost the same. As expected, the standard
deviations decrease with increasing sample size and decreasing censoring rate. It is
revealed in these tables that the averages of 500 standard errors of F wr(t,u) and
F\[pw(t, u) are very close to the standard deviations of their 500 estimates. Note
that the averages of 500 standard errors of Fy .(t,u) diverge from the standard de-

viations of estimates as the value of time is large, while those of F. Tpw (t,u) seem

18



to be relatively accurate. In tables 4.7-4.8, 0.95 pointwise confidence intervals and
the corresponding empirical coverage probabilities are provided. Generally, the cov-
erage probabilities of 0.95 pointwise confidence intervals based on (2.2.2) are fairly
close to the nominal level. However, the empirical coverage probability of confidence

intervals based on (2.1.4) are much higher than the expected nominal level.

4.3 Senario I/ - With terminal events

In this simulation study, the finite sample properties of F Fow(t,u) and the per-
formance of inference procedure arejinvestigated as_terminal events arise. For the

design of mixture rates of .censoring and death, Cis, independently generated from

g

an exponential distribution with pata 1

T Q and the texminal time D is designed

= |

- l
to follow an exponential dlstrlbutxio Wltgk “ratd l?] (X% <41,¥° < 0.5) +b. The pa-

rameters (a,b) are set to be (0: 5 0{01 and (0!6I 0:3) s;) that the mixture rates of
30% and 50% are achieved in the sin;ulated da;ta.

Tables 4.9-4.10 display the averages and standard deviations of 500 estimates,
and the averages of 500 standard errors based on (3.1.2) at the considered points.
The averages of 500 estimates generally close to the true values of F*(¢,u)’s. The
biases are apparently reduced when the sample size is large or the mixture rate
is small. Moreover, the variation of estimator will decrease and the accuracy of
estimated variances will be improved as the sample size increases or the mixture rate

decreases. Table 4.11 exhibits the empirical coverage probabilities of 0.95 pointwise

confidence intervals for F*(¢,u). The probabilities are generally around the nominal

19



level of 0.95. It is revealed in these tables that the closeness of empirical coverage

probabilities to the nominal level relies on the sample size and the censoring rate.

20



Table 4.1: The averages and the standard deviations (SD) of 500 estimates ﬁHL(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 30%

7 200 o+ 400

t u  F(t,u)  Mean ' __SD-._ SE~ "Mean SD SE
02231 025 0.158 0/156° 0.0279 00269 0.156 0.0182 0.0190
0.5108 0.25 02317 0231 0.0320 _0.0345 <0232 0.0227 0.0237
0.9163 0.25 0247 0.249° 00328 010395 6248 0.0237 0.0278
16094 0.25 0250 (0251 [0.08315 00564 10250 0.0238 0.0394
02231 050 096 0.19 ioﬁﬁ?‘ 0.02954 0.193" 0.0195 0.0209

0.5108 0.50 0369, 0371 | 0.0874 0.0397  0:369 0.0262 0.0282
0.9163 050 0469 0469 | 0.0379 00512 0.470° 0.0278 0.0362
1.6094 0.50 0.496 ¢ 0.496 | 0.0385 0.0914 “0.497 0.0281 0.0638
02231 0.75 0.200 . 0497 0008107 0.0297 .0.197 0.0198 0.0211
0.5108 0.75 0.397 0:399 400374 “0:04041 0.398 0.0261 0.0286
0.9163 0.75 0.581  0.5797:0:0376-70:0477 0.580 0.0273 0.0338
1.6094 0.75 0.708 0.703 0.0400 0.0865 0.708 0.0280 0.0607
02231 1.0 0200 0.198 00311 0.0298 0.197 0.0198 0.0211
0.5108 1.0 0400 0402 0.0376 0.0405 0.400 0.0263 0.0287
09163 1.0 0.600 0.598 0.0374 0.0461 0.598 0.0277 0.0327
1.6094 1.0 0.800 0.795 0.0357 0.0458 0.796 0.0265 0.0324
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Table 4.2: The averages and the standard deviations (SD) of 500 estimates
Frpw(t,u) and the averages of 500 standard errors (SE) at the selected points with
the sample sizes (n) of 200 and 400, and the censoring rate of 30%

n 00 -k B 400

t u  F(t,u)  Mean ' SB-.,_~ SE-. "Mean SD SE
0.2231 0.25 0.158 0:158 0.0279 0.0265 0.158 0.0183 0.0187
0.5108 0.25 0.2317 0234 _0.0321 _0.0318 +0.234 0.0227 0.0224
0.9163 0.25 0247 0.250° 00329 010334 6:250° 0.0238 0.0236
1.6094 0.25 0.250 | 0.252 F OEE%Q 0.0345 10.252+ 0.0239 0.0243
0.2231 0.50 0.196 0.196 | Oﬁ" 0.02894 0.196 - 0.0195 0.0204
0.5108 0.50  0:369 0.373 l 00&25 0.0371 0371+ 0.0263 0.0262
0.9163 0.50 0.469 '0.47¥ ‘ 0.0379 0.0409 0.471 0.0279 0.0289
1.6094 0.50 0.496 “+0.497 | 0.0386 q.(5440 0.498 0.0281 0.0311
0.2231 0.75 0.200 . 0200 0.0313°0.0292 .0.200 0.0197 0.0206
0.5108 0.75 0.397 0:401 =:0:0374 “0.0377+ 0.399 0.0262 0.0267
0.9163 0.75 0.581 0.583 0:0373- 10.0416 0.584 0.0275 0.0294
1.6094 0.75 0.708 0.705 0.0400 0.0441 0.711 0.0279 0.0311
0.2231 1.0 0.200 0.200 0.0315 0.0292 0.200 0.0198 0.0206
0.5108 1.0 0.400 0.403 0.0377 0.0378 0.402 0.0264 0.0267
0.9163 1.0 0.600 0.602 0.0372 0.0415 0.602 0.0278 0.0294
1.6094 1.0 0.800 0.799 0.0358 0.0406 0.800 0.0264 0.0287
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Table 4.3: The averages and standard deviations (SD) of 500 estimates ﬁIM(t, u) at
the selected points with the sample sizes (n) of 200 and 400, and the censoring rate
of 30%

n v %200 B 400

t u. B(t,u) _Mean._ - SD- Mean  SD
02231 025 0158  0.158 0.0279 0.158 0.0183
0.5108 0257 0231 _ 0.234 _0.032%, <0232 0.0227
0.9163 0.25" (0.247 _ 0,249/ 010328 ' 0248 0.0238
1.6094 0.25 | 0.250 | 02515 00330 10.250° 0.0238
0.2231 050 10.196 | 07196~ 0.03104 0.196 0.0195
0.5108 0.50- 0:369 | 0.572 0.037 ;370 0.0263
0.9163 0.50 0469 = 0470 0.0378 _0.471 0.0278
16094 05050196 | 0.495 0038470497 0.0280
02231 0.75 . 0200 0200 0.0313 .0.200 0.0197
0.5108 0.75 0:397 -0.400 “0:0374 1 0.399 0.0262
0.9163 0.75  0.581 10:582:70.0373 0.583 0.0274
1.6094 0.75 0.708 0.702 0.0399 0.709 0.0279
02231 1.0 0.200 0.200 0.0314 0.200 0.0198
0.5108 1.0 0.400 0.403 0.0376 0.402 0.0264
0.9163 1.0  0.600 0.601 0.0372 0.602 0.0278
1.6094 1.0 0.800 0.795 0.0356 0.798 0.0264
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Table 4.4: The averages and standard deviations (SD) of 500 estimates ﬁHL(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 50%

n 200 ++ 400

t u  F(t,u)  Mean ' __SD-._ SE~ "Mean SD SE
0.2231 0.25 0.158 0:154 0.0263 0.0273 0.156 0.0192 0.0196
0.5108 0.25 0.2317 01230 _0.0323 _0.0349, <0.230 0.0228 0.0248
0.9163 025 0247 ' 0.246 00344010427 6246 0.0244 0.0304
1.6094 0.25 0.250 |0.248 F OEE48 0.0696 10.249 0.0248 0.0488
0.2231 0.5  0.196 0.193 i O.’Uﬁa 0.0302¢ 0.192 0.0210 0.0215

0.5108 0.5 0369, 0.367 | 0.0803 0.0417  0:366. 0.0271 0.0296
0.9163 0.5 0469 0466 | 0.0431 0.0565 . 0.467 0.0306 0.0400
1.6094 0.5 0.496 7 0.494 | 0.0456 0.1181 ©0.494 0.0324 0.0821
0.2231 0.75 0.200 . 0196 0:029870.0304 .0.196 0.0212 0.0217
0.5108 0.75 0.397 0:395 —0:0447 “9.0423" 0.394 0.0272 0.0300
0.9163 0.75 0.581  0.577 10:0457-70.0518 0.576 0.0307 0.0369
1.6094 0.75 0.708 0.703 0.0508 0.1123 0.703 0.0362 0.0790
0.2231 1.0 0.200 0.196 0.0299 0.0305 0.196 0.0213 0.0217
0.5108 1.0  0.400 0.398 0.0418 0.0423 0.396 0.0273 0.0300
0.9163 1.0 0.600 0.595 0.0458 0.0498 0.594 0.0310 0.0353
1.6094 1.0 0.800 0.794 0.0492 0.0537 0.793 0.0349 0.0382
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Table 4.5: The averages and standard deviations (SD) of 500 estimates ﬁ[PW(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 50%

n 200 .+ 400

t u  F(t,u)  Mean ' __SD-._ SE~ "Mean SD SE
02231 0.25 0.188 0/15% 0.0264 00274 0.158 0.0193 0.0193
0.5108 0.25 02317 0281 _0.0325 _(.0340, <0232 0.0229 0.0239
0.9163 0.25 0247 0.247 01034600371 248" 0.0245 0.0260
1.6094 0.25 0250 [0.249 [0.03505 D.0405 10250 0.0249 0.0284
0.2231 0.5  0.196 0.193iox§5§' 0.03004 0.195" 0.0212 0.0211

0.5108 0.5 0369, 0.369 | 0.0400 0.0405 0:368 0.0273 0.0286
0.9163 05 0469 0469 | 0.0431 00481 0.470° 0.0307 0.0340
1.6094 0.5  0.496 ¢ 0.496 | 0.0458 0.0576 “0.497 0.0325 0.0405
02231 0.75 0.200 0499 00301 0.0302 .0.199 0.0214 0.0213
0.5108 0.75 0.397 0:398 ~0°0419 “0:0414 0.396 0.0273 0.0292
0.9163 0.75 0.581  0.5817:0:0461-70:0503 0.581 0.0308 0.0355
1.6094 0.75 0.708 0.707 0.0512 0.0626 0.707 0.0365 0.0443
02231 1.0 0200 0.200 0.0301 0.0302 0.199 0.0214 0.0213
0.5108 1.0 0.400 0400 0.0419 0.0415 0.399 0.0274 0.0293
0.9163 1.0 0.600 0.600 0.0461 0.0503 0.600 0.0313 0.0356
1.6094 1.0 0800 0.800 0.0494 0.0598 0.800 0.0349 0.0425
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Table 4.6: The averages and standard deviations (SD) of 500 estimates ﬁIM(t, u) at
the selected points with the sample sizes (n) of 200 and 400, and the censoring rate
of 50%

n %200 B 400
t u. B(t,u) _Mean._ - SD- Mean  SD
0.2231 025 0/158 0.157 0.0264 0.158 0.0193
0.5108 0257 0231 _ 0.231 _0.0324 <0231 0.0229
0.9163 10.25" 0.247 _ 0,245/ 010344 ' 0247 0.0244
1.6094 0.25 | 0.250 [ 02445 0.0345 10.247 0.0247
0.2231 0.5 10.196 | 07195  0.03004 0.195 0.0211
0.5108 05, 10.369 | 0.368 0.0399  0:368 0.0273
0.9163 0.5 0469 07467 0.0432  0.469 0.0306
16094 05 % 0.496 | 0486 0,0450 0492 0.0323
0.2231 0.75 . 0200 _0.199" 0.0300' .0.199 0.0213
0.5108 0.75 0:397 -£0.397 “0.0418 0.396 0.0273
0.9163 0.75  0.581 10:578-70.0459 0.580 0.0308
1.6094 0.75  0.708 0.694 0.0507 0.701 0.0365
02231 1.0 0200 0.199 0.0301 0.199 0.0214
0.5108 1.0 0.400 0.399 0.0419 0.398 0.0274
0.9163 1.0 0.600 0.597 0.0459 0.598 0.0312
1.6094 1.0 0.800 0.786 0.0490 0.793 0.0349
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Table 4.7: The empirical coverage probabilities of F wr(t,u) at the selected points
with the sample sizes (n) of 200 and 400, and the censoring rates (c.r.) of 30% and
50%

MPRg [l

C.T. i {35% e B0%

t & {f
0. 2231
0. 5‘10& '~
0.9163
1.6094
0.2231

16094 10750
0.2231 0. 755‘ 0:952 09&4 "
0.5108 0.75 })968 " 0.972. 0954 0.958
0.9163 0.75 0986 0988 0.974 0.974
1.6094 0.75 1.000 1.000 0.998 1.000
0.2231 1.0 0.952 0.954 0.950 0.960
0.5108 1.0 0.968 0.970 0.958 0.952
0.9163 1.0 0.982 0.984 0.972 0.962
1.6094 1.0 0.994 0.976 0.970 0.968

95@' 0.960
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Table 4.8: The empirical coverage probabilities of F 1pw(t,u) at the selected points
with the sample sizes (n) of 200 and 400, and the censoring rates (c.r.) of 30% and
50%

cr. i P30% L is0%

n _h;;;‘:f_ 200 400 26@, 400
t A e
0.2231. W . 954 0,946
05‘1081'~ 968 0.952:10.942
09163 0. g;?h_ 9!

1.6094 0. 0.

0.2231

0.5108" .9
0.9163 rﬁ" . 962 0.964
1.6094- '0.50-. ~0:988.40.982
0.2231 fo75=:f 0.954 0.9 944 0.956
0.5108  0.75:.0.966 " 0.940 b@=9‘58 0.962
0.9163 0.75 0956 0.954 0.956 0.966
1.6094 0.75 0.970 0.964 0.976 0.984
02231 1.0 0.954 0.948 0.946 0.958
0.5108 1.0 0.970 0.936 0.956 0.966
0.9163 1.0 0.968 0.956 0.968 0.962
1.6094 1.0 0.964 0.964 0.968 0.978
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Table 4.9: The averages and standard deviations (SD) of 500 estimates ﬁI*PW(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the mixture rate of 30%

n LETEE 400

t u  F*(t,u) Mean' .SD-._ SE« "Mean SD SE
02231 0.25 0.159 0.158 0.0282 00288 0.160 0.0196 0.0204
0.5108 0.25  0.2337 0:232__0.0326_0.0351 <0:235 0.0239 0.0248
0.9163 0.25  0.249 [0.247 010337 . 0.0364" '0:250. 0.0246 0.0257
1.6094 0.25 0.252 | 0.250 | 0:8340: 00366 | 0.252° 0.0248 0.0259
0.2231 050 0.198 0.1ggi 0:0316° 0.03210 0.198 0.0219 0.0226

0.5108 0.50  0.372_. 10.37( o.dlril,g 0.0439 9:373 0.0311 0.0309
0.9163 0.50 0.472 ’0.47p‘ 0.0474 00488 . 0.473 0.0336 0.0344
1.6094 0.50  0.498 “°0.497 | 0.0498 0.0499:0.499 0.0341 0.0351
0.2231 0.75 0.202 . 0200 0.0318 0.0324 .0.201 0.0220 0.0229
0.5108 0.75  0.400 0:398 --0.0424 0.0453  0.401 0.0327 0.0320
0.9163 0.75 0.584  0.582 10:0503 70.0528 0.586 0.0367 0.0372
1.6094 0.75 0.711  0.708 0.0538 0.0545 0.713 0.0385 0.0384
0.2231 1.0 0202 0.201 0.0318 0.0324 0.202 0.0219 0.0229
0.5108 1.0  0.403  0.400 0.0425 0.0455 0.404 0.0328 0.0321
0.9163 1.0  0.603 0.600 0.0504 0.0533 0.604 0.0373 0.0375
1.6094 1.0 0.803 0.799 0.0530 0.0539 0.805 0.0385 0.0380
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Table 4.10: The averages and the standard deviations (SD) of 500 estimates
Fipw(t,u) and the averages of 500 standard errors (SE) at the selected points with
the sample sizes (n) of 200 and 400, and the mixture rate of 50%

n 200 -+ & 400

t u  F*(t,u) Mean' SD-._ - SE« "Mean SD SE
02231 0.25 0.204 0.205 0.0348 0.0374 0.203 0.0256 0.0265
0.5108 0.25  0.2867, 0:287 _0.0420 _0.0442 <0:285 0.0299 0.0314
0.9163 0.25 0301 [0.301 010439 . 0.0453" '0.299 0.0308 0.0323
1.6094 0.25 0.303 | 0.303 | 0:0443: 10,0454 | 0.301. 0.0311 0.0324
0.2231 0.50 0.252 0.25@' 00385 0l0414° 0.250° 0.0285 0.0293
0.5108 0.50  0.444_. " 0.44¢ l 0.0514 DI0534 0441 0.0374 0.0382
0.9163 0.50 0535 _ 0538 0.0567 000569 . 0.533 0.0404 0.0411
1.6094 0.50  0.559 “°0.561 | 0.0570 0.05757:0.558 0.0396 0.0416
0.2231 0.75 0.257 . 02259 0.0387 0.0418 .0.256 0.0289 0.0296
0.5108 0.75 0.478 0:481-20.0521770.0549. 0.476 0.0383 0.0394
0.9163 0.75 0.662  0.664 10:059270.0596 0.661 0.0417 0.0435
1.6094 0.75 0.782  0.783 0.0605 0.0575 0.779 0.0425 0.0428
02231 1.0 0.257 0.259 0.0388 0.0418 0.256 0.0289 0.0297
0.5108 1.0 0.482 0.485 0.0523 0.0550 0.479 0.0384 0.0395
09163 1.0 0.683 0.686 0.0592 0.0598 0.682 0.0417 0.0437
1.6094 1.0 0.870 0.873 0.0573 0.0526 0.869 0.0405 0.0404
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Table 4.11: The empirical coverage probabilities of F Fow (t,u) at the selected points
with two sample sizes (n) of 200 and 400, and the mixture rates of censoring and
death (m.r.) of 30% and 50%

m.r. '8{5%;:‘ - _r' e 50%

=

n _k_:l:f'_ 200 400 200 . 400

t A& I e
0.2231 .02 48 0.95 64{,,*0"948
0.5108 4. 0@ 6',20.96(

-0.960
0.9163 025 ! 0.954 0.958
1.6094+ 0 0.958
02231 0 0. 9,50
0.5108 /0. g, Q§2
0.9163. 0:5! 0,946 0952
1.6094 +0.50,

36" 0.962

0.2231
0.5108
0.9163
1.6094

0
0.75/:0,966 . 938 0958

0.75 0.956 0044 0.944
0.75 0948 0.942 0.904

' 9
0.944 0.956. 0 %56"& 0.958

0.958
0.956
0.960

0.2231
0.5108
0.9163
1.6094

1.0 0944 0.960 0.956
1.0 0.962 0.936 0.954
1.0 0.952 0.946 0.942
1.0 0944 0940 0.864
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Chapter 5

Application to Colorectal Cancer

Data

The used colorectal cancer datararisedrom the.SEER-Medicare database. A total of
71,519 patients with the SEER registties werg systemagically recruited since January
:7":;:-.?" i "

1, 1983. The repeated niedicare reﬁmhdﬁéﬁents (dellars) and the corresponding

| L m | ,
times (months) were recorded between J’éﬁuary 1, 1983 and August 31, 1993. Here,
it { | 1 —
we apply our proposed methods rtlo estimate the distribution of first pair of medicare
reimbursement and claiming time of patients. The baseline covariates age and cancer
stage are considered in our analysis. Moreover, the time to colorectal cancer-related
death and last follow-up are included. The stage variable is the American Joint
Committee on Cancer (AJC) clinical stage of disease, which ranges from 0 to 4
according to the severity of disease. The age variable is further categorizd into three
layers (61-70, 71-80, and >80). More detailed explorations of data can be found in

Bang (2005).

In this chapter, a random sample of size about 2000 is selected and analyzed. The

32



range of patients’ age in this sample is mainly from 65 to 103 years old. The features
of sub-sample table 5.1 show the representative of whole data. The aim of our study
is to estimate the joint distributions of claiming time and medicare reimbursement
under different age layers and clinical stages of disease. Moreover, the mean medicare
reimbursement and the probabilities of claiming time occurring before the death
time are evaluated. Evidenced by the numerical studies, the low mixture rate of
censoring and death (< 2%) in this sample will ensure the accuracy and precision of
estimated distributions and related quantities: The results summarized in table 5.2
indicate that patients with elder age df morg sev_e{@ disease stage tends to receive

larger reimbursements fron’ medicaresIt is further detg(-:j;ed that the greatest costs

|| Pl 1l

occur in the age layer of 71-80 and h@eﬁsl? stage/8. Those patients with older
: |

| m | ‘;-

age or more severe disease stage a+e profé to claim rqimgursements prior to death.
2\ i !I P' , K

The reason might be that older"q‘r less healthy patients tend to be ailing and raise
medical expenditure. In table 5.3, the probabilities of claiming time prior to death
are generally high, especially in the groups of older age and more severe disease
stage. Patients with disease stage 4 receive the greatest medicare reimbursements
in the age layer of 61-70, while the greatest reimbursements for patients with age
more than 70 occur in the disease stage 3.

The patterns of joint distributions in various age layers and disease stages are
displayed in figures 5.1-5.2. The marginal distribution of claiming time and reim-

bursement for patients with the first reimbursement prior to death are also presented

in figures 5.3-5.4. Figure 5.3 reveals that the claiming times of patients with age

33



Table 5.1: The characteristics of the colorectal cancer data and subsample

Full data Sub-sample

Male 51.5% 52.5%
Female 48.5% 47.5%
Age 61-70 23.0% 22.1%
71-80 47.4% 46.7%
> 80 29.6% 31.2%
Stage 0 6.7% 7.8%
1 22.6% 22.5%
2 31.0% 30.4%
3 22.5% 23.7%
4 17.1% 15.8%

-.1'.311. W‘EU"fn‘fUE oy

more than eighty are shor‘%?lfl?—% an "bhgse ﬁ&; young%_, atients. As for the reim-
J.._'n )f \'< -%‘?

bursements, patients Wl.gff age 1m

g @

younger patients. In fg,ure 54, no apparent.difference etwe%g the estimated curves

"h-..l I e
of claiming time is de’éej:’ﬁel.d‘ [ ri 3 stag _jl_ﬁ;ﬁc@_lfltrast, patients in dis-
= ' i

ease stage 0 reasonably?gg

stages.
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Table 5.2: The estimates of P(D > X°) and E(Y?°) under different age layers and
disease stages

P(D>X°) E(Y°)

Age 61-70 0977 491437
71-80  0.990  5632.27
>80 0997  5403.41
0 0.985  2168.10

1 0.981  4935.75

2 0.990  5561.14

3 0.991  6436.52
5876.16

"‘
..q-f_'.;.
3
|
F
7 4
=y

)

!'-_:2"'@ ?_

' a jl‘

-

W E S

-

Table 5.3: The estima
groups L N

Age :

61-70 0
1
2
3
4

71-80 0 0.99 2521.0
1 0.99 5035.7
2 0.98 5882.6
3 1.00 6740.7
4 1.00 6025.1

>80 0 0.96 1967.8
1 1.00 5363.2
2 1.00 5077.1
3 1.00 6837.3
4 1.00 5621.1
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Figure 5.1: The joint distributions of claiming time and reimbursement for different

age layers and disease stages
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Figure 5.2: The joint distributions of claiming time and reimbursement for different

age layers and disease stages
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Distributions of Claiming Time
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Figure 5.3: The estimates of P(X° < t|D > X°) and P(Y° < u|D > X°) for
patients with age layers of 61-70(solid line), 71-80(dashed line) and > 80(dotted
line)
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Distributions of Claiming Time
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Figure 5.4: The estimates of P(X° < t|D > X°) and P(Y° < u|D > X°) for
patients with disease stages of 0(solid line), 1(dashed line), 2(dotted line), 3(dotted-
dash line) and 4(long-dashed line)
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Chapter 6

Discussion

In this thesis, we propose several estimators for the joint distribution function of
claiming time and medicare reimbursement -based on two types of cost data. The

limiting Gaussian processeé”.of the eszt,imators,are also déveloped with the uniformly

i

consistent estimators of the asymptotlje‘:pri.aﬁqe covariapces. Without the occur-
rence of a terminal event] our ntimllerlcg} Studlps reveal that the IPW estimator
n |

surpasses the Huang-Louis and lmptutatlon estlmators in computation cost. More-
over, the IPW estimation has more éccurate estimator of the variance-covariance
than the Huang Louis estimation. The performance of inference procedures are
shown to be satisfactory.

In our application, an appropriate regression model would be helpful to investi-
gate the influences of ages and disease stages on the joint distribution of claiming
time and medicare reimbursement. The nonparametric IPW estimation approach

will be reasonably extended to the estimation of parameters in the considered re-

gression model. To solve the problem of asymmetric information or moral hazard in
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health economics, our further research will focus on seeking for the optimal compos-
ite factors to minimize the medical cost conditioning on the claiming time of interest.
It is expected to help insurance companies to discriminate crafty policyholders.

As in the analyzed data, the claiming times and medicare reimbursements are
intermittently occurring during the study period. Under the assumption that the

recurrent pairs are independent and identically distributed conditioning on a la-

tent variable, the estimation method of Huang and Wang (2005) can be applied
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