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摘要

目前有關二元分配函數分析的研究, 都集中於處理雙存活時間的資料結構, 以及探討其相關的

統計推論。 有別於目前大部分的研究主題, 在這篇論文中, 我們關心存活時間(申訴理賠時間)

和指標變數(申訴產生的醫療理賠) 的二元分配函數。 根據實際觀測的右設限資料, 我們利用機

率倒數加權法(Inverse Probability Weighting Method) 和替換法 (Imputation Method)

提出了更具延伸性的估計式。 同時, 我們也運用機率倒數加權法, 針對有終點事件 (Terminal

Events) 發生的情況, 提出相關的二元分配函數的估計式。 進一步, 我們更建立上述估計式的

大樣本性質, 利用估計式的高斯過程逼近, 配合著變異矩陣的估計式, 建構其相對應的信賴區

間。 我們執行了一系列的模擬檢證這些估計式以及信賴區間在有限樣本下之特性, 此外, 應用

所提出的估計法在 SEER-Medicare 資料庫有關結腸癌的資料上。

關鍵字: 二元分配函數; 指標變數; 醫療成本; 設限; 終點事件; 機率倒數加權法; 替換法; 高斯

過程

vii



Abstract

Although numerous attempts have been made on bivariate failure times, however,

there is little attention on the study of relation between failure time(claiming time)

and mark variable(medicare reimbursement). Meanwhile, from the viewpoints of

brokers and the management in insurance company, it is more attractive and en-

grossing to capture the dynamic pattern so that our research interest would focus on

the joint distribution of claiming time and the corresponding medicare reimburse-

ment. Based on survival censored data, we propose two estimation procedures:

the inverse probability weighting (IPW) method and the imputation method. Fur-

thermore, it is meaningful to accommodate terminal events occurring prior to the

realization of failure time and the IPW method could lead to the resolution of

this obstacle. Moreover, the limiting Gaussian processes of estimated distributions

and the estimators of variance-covariance functions are developed and enable us to

construct approximated regions. To investigate the finite sample properties of pro-

posed estimators and the performance of inference procedures, a class of simulations

would be conducted. An application to the colorectal cancer data retrieved from

the Surveillance, Epidemiology, and End Results (SEER) Medicare database is also

presented. In the end, we provide a brief discussion and further research topics of

interest.

KEY WORDS: bivariate distribution, mark variable, medical cost, censoring, termi-

nal events, inverse probability weighting (IPW), imputation, U-statistics, Gaussian

processes
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Chapter 1

Introduction

Bivariate failure time data are often encountered in many biomedical contexts, for

example, times to blindness in both eyes of diabetic retinopathy patients or gap

times to successive stages in the progression of acquired immunodeficiency syndrome.

Estimation methods for dealing with parallel bivariate survival times can be found

in Campbell (1981), Tsai, et al. (1986), Burke (1988), Dabrowska (1988), and

Akritas, et al.(2003), among others. Statistical analyses for bivariate serial gap

times include the works of Wang, et al. (1998) and Lin, et al. (1999). Distinguished

from bivariate failure time data, an overwhelming emphasis is placed on health care

cost controlling and fiscal accountability in medicine, and a brand new survival-

type data structure emerge, called the cost data. The cost data consist of claiming

time (time to the occurrence of medicare reimbursement) and the mark variable

(medical cost or reimbursement), which is possibly correlated to claiming time and

not observed until the corresponding claiming time fulfills. Rather than censoring,

the marker would be missing due to the loss of follow-up or drop-out. Thus, it is

inappropriate to use the existing statistical methods for bivariate failure time data.
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Even though medical cost management has received immense attention, re-

searchers merely highlighted the topic in two primary aspects over the past decades.

One is mean cost evaluation within the period of interest based on complete or cen-

sored data. The other is cost-effectiveness (CE) ratio, the ratio of the mean difference

in costs to the mean difference in effectiveness. CE ratio is a practical measurement

for the trade off between budget constraints and patient benefits. In contrast, from

the viewpoints of brokers and the management in insurance company, it is more cru-

cial and appealing to explore the joint distribution of the claiming time Xo versus

the medicare reimbursement Y o. Few attempts have made at this sort of phenomena

except for Huang and Louis (1998) and Hudgens, et al (2007). Based on the censored

cost data {Xi, δi, Yi}n
i=1 with Xi = Xo

i ∧ Ci, Yi = δiY
o
i , δi = I(Xo

i ≤ Ci) being

the censoring status, and C being the censoring time, Huang and Louis obtained

the estimator for joint distribution F (t, u) = P (Xo ≤ t, Y o ≤ u) by estimating

cumulative mark-specific hazard function Λ(t, u). For this data setting, we propose

an inverse probability weighting (IPW) estimator and an imputation estimator via

using the induced binary responses Bi(t, u) = I(Xo
i ≤ t, Y o

i ≤ u), i=1, · · · , n.

In a colorectal cancer cohort study, the clinical trial might be terminated be-

fore the study endpoint is reached. The terminal events, such as death, preclude

any further medical costs and definitely relate with (Xo, Y o). For instance, it is

instinctive to anticipate that poor health patients prone to death might raise larger

medical costs. As long as the death arises before the first claim, the medicare

reimbursements of the departed would be zero rather than missing. Instead of

2



only considering the joint distrbution of claiming times and reimbursements, it is

more meaningful to exploit the joint distribution for those who have medicare re-

imbursement prior to death, say, F ∗(t, u) = P (Xo ≤ t, Y o ≤ u|D > Xo), where

D denotes the terminal time. In this study, our research focuses on seeking for

an appropriate estimation method of F ∗(t, u) based on the transformed cost data

{X∗
i , δXo

i
, δCi

, Y ∗
i }n

i=1, where X∗
i = Xo

i ∧Ci ∧Di, Y ∗
i = Y o

i δX∗
i
, δXo

i
= I(X∗

i = Xo
i ),

and δCi
= I(X∗

i = Ci). In addition, we provide the estimator for the probability of

cost occurring before death P (D > Xo). and the mean cost of patients, which can

be derived as E[Y o] = {∫ uduF
∗(t, u)}P (D > Xo).

We divide the rest of this thesis into the following parts. In Chapter 2, we briefly

reviews the estimation method of Huang-Louis and propose the IPW and imputation

estimators for F (t, u). Moreover, the asymptotic properties and inference procedures

are developed in this chapter. In Chapter 3, we further deal with the occurrence

of terminal events in estimation. In Chapter 4, a class of simulations to investigate

the finite-sample properties of the estimators and the performance of our proposed

procedures. We present an application of our methods to the colorectal cancer data

retrieved from the Surveillance, Epidemiology, and End Results (SEER) Medicare

database in Chapter 5. Finally, a concise discussion and a further research topic are

provided in Chapter 6.

3



Chapter 2

Estimation and Inference

Procedures without a Terminal

Event

2.1 Review of Huang-Louis Estimator

Baed on the data {(Xi, δi), Yi}n
i=1, Huang and Louis (1998) proposed a non-

parametric estimator F̂HL(t, u) for F (t, u). Before introducing their estimation

method, some concise notations are presented first. Let SXo(t) = 1−F (t,∞), SX(t) =

P (X > t), FXY (t, u) = P (X ≤ t, Y ≤ u, δ = 1), SC(t) = P (C > t), and Λ(t, u) =

∫ t

0
S−1

Xo(s)dsF (s, u) be the cumulative cost-specific hazard function, where
∫

dsF (s, u)

is a Lebesgue-Stieltjes integration over s for fixed u. It was derived that F (t, u) can

be expressed as

F (t, u) =

∫ t

0

SXo(s)dsΛ(s, u) =

∫ t

0

∏
[0,s)

{1 − dvΛXo(v)}dsΛ(s, u), (2.1.1)

where
∏

denotes the product integral and ΛXo(v) = Λ(v,∞).

Under the assumption of random censorship (A1: C is independent of (Xo, Y o)),

4



one has

SX(t) = SXo(t)SC(t) and dtFXY (t, u) = SC(t){dtF (t, u)}. (2.1.2)

Substituting the empirical estimators F̂XY (t, u) = n−1
∑n

i=1 δiBi(t, u) and ŜX(t) =

n−1
∑n

i=1 I(Xi > t) for FXY (t, u) and SX(t), an estimator for Λ(t, u) was proposed

by

Λ̂(t, u) =

∫ t

0

dsF̂XY (s, u)

ŜX(s−)
. (2.1.3)

It is straightforward to obtain an estimator from (2.1.1) and (2.1.3) as

F̂HL(t, u) =

∫ t

0

∏
[0,s)

{1 − dvΛ̂Xo(v)}dsΛ̂(s, u), (2.1.4)

with Λ̂Xo(v) = Λ̂(v,∞). In the following theorem, we state the uniform consis-

tency and asymptotic Gaussian process of F̂HL(t, u). Further assumptions (A2:

No common jump points in the distributions SXo(t) and SC(t)) and (A3: SC(t)

and F (t, u) are absolutely continuous on Ω = {(t, u) : 0 < t ≤ τ, u > 0} with

τ = sup{t : SX(t) ≥ ε > 0} for some ε > 0) are made throught the thesis for the

main results.

Theorem 2.1.1. Supposed that assumptions (A1)-(A3) are satisfied. Then,

sup
(t,u)∈Ω

| F̂HL(t, u) − F (t, u) | p−→ 0, (2.1.5)

and n1/2(F̂HL(t, u)−F (t, u)) converges weakly to a mean zero Gaussian process with

variance-covariance function Γ1(w1, w2) = Cov(Z1(w1), Z1(w2)) for wj = (tj, uj) ∈

Ω, j=1,2, where Z1(t, u) =
∫ t

0
F (s, u)dsϕ(s,∞)+

∫ t

0
SXo(s−)dsϕ(s, u)−F (t, u)ϕ(t, u)

and ϕ(t, u) = S−1
X (X−)δB(t, u) − ∫ t

0
S−2

X (s−)I(X ≥ s)dsFXY (s, u).

5



2.2 IPW Estimator

The IPW technique has been widely adopted in estimation for dealing with the

biased sample due to censoring. The main idea is to use subjects with available

Bi(t, u)’s and weight each observation by the inverse of the selection probability

πt = P (Vt = 1|Xo), where Vt = V1t + V2t with V1t = I(X > t) and V2t = I(X ≤

t, δ = 1). Under the validity of random censorship (A1), the selection probability πt

is desired to be V1tSC(t) + V2tSC(Xo). By the property,

E[Vtπ
−1
t (B(t, u) − F (t, u))] = 0 (2.2.1)

and substituting a consistent estimator ŜC(t) for SC(t), an IPW estimator for F (t, u)

can be constructed as

F̂IPW (t, u) =

∑n
i=1 δiŜ

−1
C (Xo

i )Bi(t, u)∑n
i=1 Vitπ̂

−1
it

, (2.2.2)

where π̂it = Vi1tŜC(t) + Vi2tŜC(Xo
i ). Naturally, the Kaplan-Meier estimator is used

to estimate SC(t). The asymptotic Gaussian process of n1/2(F̂IPW (t, u)−F (t, u)) is

established below.

Theorem 2.2.1. Suppose that assumptions (A1)-(A3) hold. Then, n1/2(F̂IPW (t, u)

− F (t, u)) converges weakly to a Gaussian process with mean zero and variance-

covariance function Γ2(w1, w2) = Cov(Zi2(w1), Zi2(w2)), where Zi2(t, u) = E[ψij(t, u)+

ψji(t, u)|((Xi, δi), Yi)] with MCi
(t) = I(Xi ≤ t)(1− δi) +

∫ t

0
I(Xi ≥ v)d(lnSC(v)) and

ψij(t, u) = { Vi1t

SC(t)
(1 +

1

n

∫ t

0

dMCj
(s)

SX(s−)
) +

Vi2t

SC(Xo
i )

(1 +
1

n

∫ Xo
i

0

dMCj
(s)

SX(s−)
)}(Bi(t, u)−

F (t, u)).

6



Proof. From (2.2.2), one has

n1/2(F̂IPW (t, u) − F (t, u)) =
n−1/2

∑n
i=1 Vitπ̂

−1
it (Bi(t, u) − F (t, u))

n−1
∑n

i=1 Vitπ̂
−1
it

. (2.2.3)

By the boundness of Vit’s, the uniform convergence of ŜC(t), and the Euclidean class

of {Vitπ
−1
it : 0 < t ≤ τ} (cf. Akrita (1994), Pakes and Pollard (1989), and Pollard

(1990)), it is entailed that n−1
∑n

i=1 Vitπ
−1
it uniformly converges to one. Thus,

n1/2(F̂IPW (t, u) − F (t, u)) = n−1/2

n∑
i=1

Vitπ̂
−1
it (Bi(t, u) − F (t, u)) + r1n(t, u),

(2.2.4)

where sup
(t,u)∈Ω

|r1n(t, u)| = op(1). The first order Taylor expansion of the dominating

term in (2.2.4) with respect to ŜC(t) = SC(t) yields that

n−1/2

n∑
i=1

Vitπ̂
−1
it (Bi(t, u) − F (t, u)) = n−1/2

n∑
i=1

Vitπ
−1
it (Bi(t, u) − F (t, u))−

n−1/2

n∑
i=1

{ Vi1t

SC(t)
(
ŜC(t)

SC(t)
− 1) +

Vi2t

SC(Xo
i )

(
ŜC(Xo

i )

SC(Xo
i )

− 1)}(Bi(t, u) − F (t, u)) + r2n(t),

(2.2.5)

where sup
t∈(0,τ ]

|r2n(t)| = op(n
−1/2). Since {ŜC(t)/SC(t) − 1} can be uniformly approx-

imated by {−n−1
∑n

i=1

∫ t

0
dMCi

(u)/SX(u−)} (cf. Fleming and Harrington (1991)).

It follows from (2.2.4)-(2.2.5) that

n1/2(F̂IPW (t, u) − F (t, u)) = {n1/2(n − 1)}−1
∑∑

i�=j

ψij(t, u) + r3n(t, u), (2.2.6)

where sup
(t,u)∈Ω

|r3n(t, u)| = op(n
−1/2). By the Euclidean class of {ψij(t, u) : (t, u) ∈ Ω},

the decomposition of a U-statistic into the sum of degenerate U-statistics, and

Corollary 4 of Sherman (1994), n1/2(F̂IPW (t, u)−F (t, u)) can be uniformly approx-

imated by the term of independent and identically distributed random quantities

7



n−1/2
∑n

i=1 Zi2(t, u). By the functional central limit theorem (Pollard (1990)) and

the uniform convergence of n−1
∑n

i=1{Vit/πit} to one, the proof for Theorem 2.2.1 is

completed.

2.3 Imputation Estimator

Applying the method of Buckley and James (1979), we propose a alternative es-

timator based on the considered data setting. In this estimation method, the

unavailable statuses Bi(t, u)’s are substituted by the corresponding expectations

E[Bi(t, u)|Xi, δi = 0]’s. Let B∗
i (t, u) = I(Vit = 1)Bi(t, u)+I(Vit = 0)E[Bi(t, u)|Xi, δi =

0]. A direct calculation ensures that

E[B∗
i (t, u)|Xi, δi] =

1∑
k=0

E[B∗
i (t, u)|Xi, δi]I(Vit = k)

=
1∑

k=0

E[Bi(t, u)|Xi, δi]I(Vit = k) = E[Bi(t, u)|Xi, δi], (2.3.1)

which implies that E[B∗
i (t, u)] = E[Bi(t, u)] = F (t, u). Under assumption (A1), we

further derive that

E[Bi(t, u)|Xi = x, δi = 0] = S−1
Xo(x){F (t, u) − F (x, u)}. (2.3.2)

Following from (2.3.1)-(2.3.2), an estimation procedure for F (t, u) is proposed. The

imputation estimator F̂IM(t, u) is obtained via solving

n−1

n∑
i=1

(B∗
i (t, u) − F (t, u))

= n−1

n∑
i=1

{(Bi(t, u) − F (t, u))I(Vit = 1) +
(1 − ŜXo(Xi))F (t, u) − F (Xi, u)

ŜXo(Xi)
I(Vit = 0)}

� 0, (2.3.3)

8



where ŜXo(t) is the Kaplan-Meier estimator of SXo(t).

Note that F (Xi, u) in (2.3.3) is unknown when Vit = 0. Generally, a consistent

estimator F̂ (Xi, u) is substituted for F (Xi, u). Let At be the collection of ordered

censoring times C(1) < C(2) < · · · < C(kt) ≤ t with size kt. The joint distribution

F (C(1), u) is first estimated by

F̂IM(C(1), u) = n−1

n∑
i=1

Bi(C(1), u). (2.3.4)

Subsequently, the estimator for F (C(j), u), j=2,· · · , kt, can be obtained as

F̂IM(C(j), u) =

∑n
i=1 Bi(C(j), u)I(ViC(j)

= 1) − ∑j−1
l=1 Ŝ−1

Xo(C(l))F̂ (C(l), u)∑n
i=1 I(ViC(j)

= 1) − ∑j−1
l=1 Ŝ−1

Xo(C(l))(1 − ŜXo(C(l)))
. (2.3.5)

An explicit expression for the estimator of F (t, u) is then derived to be

F̂IM(t, u) =

∑n
i=1 Bi(t, u)I(Vit = 1) − ∑n

i=1 Ŝ−1
Xo(Xi)F̂ (Xi, u)I(Vit = 0)∑n

i=1 I(Vit = 1) − ∑n
i=1 Ŝ−1

Xo(Xi)(1 − ŜXo(Xi))I(Vit = 0)
. (2.3.6)

Remark: Since the number of censoring times prior to t is random and might be

considerably large, it becomes cumbersome to develop the inference procedure for

F (t, u) based on F̂IM(t, u). Currently, there is still no existing statistical methodol-

ogy to facilitate this obstacle.

2.4 Inferences Procedures

In this subsection, pointwise and simultaneous confidence bands for F (t, u) are con-

structed based on the asymptotic Gaussian processes of F̂HL(t, u) and F̂IPW (t, u). As

shown in Theorem 2.1.1, the limiting process n1/2(F̂HL(t, u) − F (t, u)) is uniformly

asymptotically equivalent to n−1/2
∑n

i=1 Zi1(t, u). The variance-covariance function
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of F̂HL(t, u) is suggested to be estimated by Γ̂1(w1, w2) = n−1
∑n

i=1 Ẑi1(w1)Ẑi1(w2),

where

Ẑi1(t, u) =

∫ t

0

F̂HL(s, u)dsϕ̂i(s) +

∫ t

0

ŜXo(s)dsϕ̂i(s, u) − F̂HL(t, u)ϕ̂i(t, u) (2.4.1)

with ϕ̂i(t, u) = Ŝ−1
X (Xi)δiBi(t, u) − ∫ t

0
Ŝ−2

X (s)I(Xi ≥ s)dsF̂XY (s, u). Similarly, the

limiting process of n1/2(F̂IPW (t, u)−F (t, u)) is asymptotically equivalent to n−1/2
∑n

i=1 Zi2

(t, u). Let M̂Cj
(t) = I(Xj ≤ t)(1 − δj) +

∫ t

0
I(Xj ≥ v)d(lnŜC(v)). An estimator for

the variance-covariance function Γ2(w1, w2) is proposed to be

Γ̂2(w1, w2) = n−1

n∑
i=1

Ẑi2(w1)Ẑi2(w2), (2.4.2)

where Ẑi2(t, u) = (n − 1)−1
∑
j �=i

(ψ̂ij(t, u) + ψ̂ji(t, u)) and

ψ̂ij(t, u) = (
1

n

Vi1t

ŜC(t)

∫ t

0

dM̂Cj
(s)

ŜX(s−)
+

1

n

Vi2t

ŜC(Xo
i )

∫ Xo
i

0

dM̂Cj
(s)

ŜX(s−)
)(Bi(t, u) − F̂IPW (t, u)).

The uniform consistency of Γ̂1(w1, w2) and Γ̂2(w1, w2) are established in the following

theorem.

Theorem 2.4.1. Supposed that assumptions (A1)-(A3) hold. Then,

sup
w1,w2∈Ω

| Γ̂l(w1, w2) − Γl(w1, w2) | p−→ 0, as n −→ ∞, l = 1, 2. (2.4.3)

Proof. By the uniform convergence of empirical estimators (Pollard (1990)), we can

show that F̂XY (t, u) and ŜX(t) converge to FXY (t, u) and SX(t) uniformly in (t, u).

Together with (2.4.1), Theorem 2.1.1, and the boundness of δiBi(t, u)’s, it is ensured

that

sup
(t,u)∈Ω

| ϕ̂i(t, u) − ϕi(t, u) | p−→ 0 as n −→ ∞, i = 1, · · · , n. (2.4.4)
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One further derives by the intergration by parts that

sup
(t,u)∈Ω

| Ẑi1(t, u) − Zi1(t, u) | p−→ 0 as n −→ ∞, i = 1, · · · , n. (2.4.5)

From (2.4.8), Theorem 2.2.1, and the inequality

| Γ̂1(w1, w2) − Γ1(w1, w2) | ≤ | Γ̂1(w1, w2) − n−1

n∑
i=1

Zi1(w1)Zi1(w2) |

+ | n−1

n∑
i=1

Zi1(w1)Zi1(w2) − Γ1(w1, w2) |, (2.4.6)

the uniform consistency of Γ̂1(w1, w2) is obtained.

For the uniform consistency of Γ̂2(w1, w2), it is implied from (2.4.2) and Theorem

2.2.1 that

Γ̂2(w1, w2) = n−1

n∑
i=1

Ẑi2(w1)Ẑi2(w2)

= {n(n − 1)2}−1
∑
i,j,k

(ψ̂ij(w1) + ψ̂ji(w1))(ψ̂ik(w2) + ψ̂ki(w2)). (2.4.7)

The expression of Γ̂2(w1, w2) in (2.4.7) and the uniform convergence of ŜX(t), ŜC(t),

and F̂IPW (t, u) entail that Γ̂2(w1, w2) is uniformly approximated by

{n(n − 1)(n − 2)}
∑

i�=j �=k

(ψij(w1) + ψji(w1))(ψik(w2) + ψki(w2)). (2.4.8)

Since {ψij(t, u) : (t, u) ∈ Ω} is Euclidean, the term in (2.4.8) converges to E[(ψij(w1)+

ψji(w1))(ψik(w2) + ψki(w2))] = E[Zi2(w1)Zi2(w2)] uniformly in (w1, w2).

The limiting Gaussian processes in Theorems 2.1.1 and 2.2.1 as well as the esti-

mated variance-covariance functions enable us to construct an approximated (1−α)

pointwise confidence interval for F (t, u) via either

F̂HL(w) ± z1−α/2Γ̂
1/2
1 (w,w) or F̂IPW (w) ± z1−α/2Γ̂

1/2
2 (w,w), (2.4.3)
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where z1−α is the 100(1 − α)th percentile of a univariate standard normal distribu-

tion and w = (t, u). To draw inference on the pattern of F (t, u), a simultaneous

confidence band can also be established based on the quantities:

K̂l = sup
w∈Υ

| n−1/2
∑n

i=1 MiẐil(w)

Γ̂
1/2
l (w)

|, l = 1, 2, (2.4.4)

where Υ is a region of interest within Ω, and {Mi : i = 1, · · · , n} are independent

realizations of standard normal variable and are independent of {(Xi, δi), Yi}n
i=1. An

approximated (1 − α) simultaneous confidence band for F (t, u) is then constructed

via either

F̂HL(w) ± n−1/2Q1−α(K̂1)Γ̂
1/2
1 (w,w) or F̂IPW (w) ± n−1/2Q1−α(K̂2)Γ̂

1/2
2 (w,w),

(2.4.5)

where Q1−α(K̂l) is the 100(1 − α)th percentile of realizations of (2.4.4) computed

based on a large number of generations of {Mi : i = 1, · · · , n}, l = 1, 2.
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Chapter 3

Estimation and Inference

Procedures with Terminal Events

By adapting the IPW method mentioned in Chapter 2 for the appearance of termi-

nal events, we use subjects with available Bi(t, u)′s and weight each subject with

πi = P (δXo
i

= 1|Xo
i )′s. Under the assumption of random censorship (AA1: C is

independent of (Xo, Y o, D)) and assumption (AA2: The distribution functions of

Xo, C and D do not have jump points in common), πi is derived to be SC(Xo
i ).

Using

E[δXoS−1
C (Xo)(B(t, u) − F ∗(t, u))] = 0 (3.1.1)

and replacing SC(t) by a consistent estimator ŜC(t), F ∗(t, u) is proposed to be

estimated by

F̂ ∗(t, u) =

∑n
i=1 δXo

i
Ŝ−1

C (Xo
i )Bi(t, u)∑n

i=1 δXo
i
Ŝ−1

C (Xo
i )

. (3.1.2)

Generally, it is reasonably to estimate SC(t) by the Kaplan-Meier estimator. Based

on (3.1.2), the probability P (D > Xo) and the mean cost E[Y o] are naturally

13



estimated by

P̂ (D > Xo) = n−1

n∑
i=1

δXo
i
Ŝ−1

C (Xi) and Ê[Y o] = n−1

n∑
i=1

δXo
i
Ŝ−1

C (Xo
i )Y o

i . (3.1.3)

To establish the asymptotic properties of n1/2(F̂ ∗(t, u)−F ∗(t, u)), the condition

(AA3: SC(t), SD(t), and F ∗(t, u) are absolutely continuous on (0, τ ∗] and Ω∗ =

{(t, u) : 0 < t ≤ τ ∗, u > 0 } with τ ∗ = sup{t : SX∗(t) ≥ ε > 0} for some ε > 0. ) is

further made in the following theorem.

Theorem 3.1. Suppose that assumptions (AA1)-(AA3) are satisfied. n1/2(F̂ ∗(t, u)−

F ∗(t, u)) converges weakly to a mean-zero Gaussian process with variance-covariance

function Γ∗(w1, w2) = Cov(Z∗
i (w1), Z

∗
i (w2)) for w1, w2 ∈ Ω∗, where Z∗

i (t, u) =

E[ψ∗
ij(t,

u) + ψ∗
ji(t, u)|((X∗

i , δXo
i
, δCi

), Y ∗
i )], M∗

Ci
(t) = δCi

I(X∗
i ≤ t) +

∫ t

0
I(X∗

i ≥ v)d(lnSC(v))

and

ψ∗
ij(t, u) =

δXo
i

{SC(Xo
i )P (D > Xo)}(1 +

1

n

∫ Xo
i

0

S−1
X∗(s−)dM∗

Cj
(s))(Bi(t, u) − F ∗(t, u)).

Proof. From (3.1.2), n1/2(F̂ ∗(t, u) − F ∗(t, u)) can be re-expressed as

n−1/2
∑n

i=1 δXo
i
Ŝ−1

C (Xo
i )(Bi(t, u) − F ∗(t, u))

n−1
∑n

i=1 δXo
i
Ŝ−1

C (Xo
i )

. (3.1.4)

By the boundedness of δXo
i
’s and the uniform convergence of ŜC(t), the denominator

term in (3.1.4) is shown to be asymptotically equivalent to P (D > Xo). Thus,

n−1/2(F̂ ∗(t, u) − F ∗(t, u)) =
n−1/2

∑n
i=1 δXo

i
Ŝ−1

C (Xo
i )(Bi(t, u) − F ∗(t, u))

P (D > Xo)
+ r∗1n(t, u),

(3.1.5)
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where sup
(t,u)∈Ω∗

|r∗1n(t, u)| = op(1). Applying the Taylor expansion theorem to the nu-

merator term in (3.1.5) with respect to ŜC(t) = SC(t), it can be derived to be

n−1/2

n∑
i=1

δXo
i

ŜC(Xo
i )

(Bi(t, u) − F ∗(t, u)) = n−1/2

n∑
i=1

δXo
i

SC(Xo
i )

(Bi(t, u) − F ∗(t, u))−

n−1/2

n∑
i=1

{ δXo
i

SC(Xo
i )

(
ŜC(Xo

i )

SC(Xo
i )

− 1)(Bi(t, u) − F ∗(t, u))} + r∗2n(t), (3.1.6)

where sup
t∈(0,τ∗]

|r∗2n(t)| = op(n
−1/2). Together with (3.1.5) and the proof argument for

Theorem 2.2.1, we obtain that

n1/2(F̂ ∗(t, u) − F ∗(t, u)) = {n1/2(n − 1)}−1
∑∑

i �=j

ψ∗
ij(t, u) + r∗n(t), (3.1.7)

where sup
t∈(0,τ∗]

|r∗n(t)| = op(n
−1/2). The asymptotic Gaussian process of F̂ ∗(t, u) is

developed.

Let M̂∗
Ci

(t) = δCi
I(X∗

i ≤ t) +
∫ t

0
I(X∗

i ≥ v)d(lnŜC(v)), i = 1, · · · , n, and

ŜX∗(t) = n−1
∑n

i=1 I(X∗
i > t). The variance-covariance function Γ∗(w1, w2) is sug-

gested to be estimated by Γ̂∗(w1, w2) = n−1
∑n

i=1 Ẑ∗
i (w1)Ẑ

∗
i (w2) with Ẑ∗

i (t, u) =

(n − 1)−1
∑
j �=i

(ψ̂∗
ij(t, u)

+ ψ̂∗
ji(t, u)) and

ψ̂∗
ij(t, u) = δXo

i
{ŜC(Xo

i )P̂ (D > Xo)}−1 1

n

∫ Xo
i

0

dM̂∗
Cj

(s)

ŜX∗(s−)
(Bi(t, u) − F̂ ∗(t, u)).

(3.1.8)

The uniform consistency of Γ̂∗(w1, w2) is given in the following theorem.

Theorem 3.2. Supposed that assumptions (AA1)-(AA3) hold. Then,

sup
w1,w2∈Ω∗

| Γ̂∗
1(w1, w2) − Γ∗

1(w1, w2) | p−→ 0, as n −→ ∞. (3.1.9)
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Proof. By using the techniques in the proof of Theorem 3.1, the uniform convergence

of P̂ (D > Xo) is obtained. Paralleling the argument for the uniform consistency of

Γ̂2(w1, w2) in Theorem 2.4.1, the uniform consistency of Γ̂∗(w1, w2) is developed.

Similarly to the aforementioned procedure, approximated (1− α) pointwise and

simultaneous confidence intervals are seperately constructed via

F̂ ∗(w) ± z1−α/2Γ̂
∗1/2(w,w) and F̂ ∗(w) ± n−1/2Q1−α(K̂∗)Γ̂∗1/2(w,w), (3.1.10)

where

K̂∗ = sup
w∈Υ∗

| n−1/2
∑n

i=1 M∗
i Ẑ∗

i (w)

Γ̂∗1/2(w)
|

with Υ∗ is a region of interest within Ω∗, and (M∗
i : i = 1, · · · , n) are independent re-

alizations of standard normal variable and are independent of {(X∗
i , δXo

i
, δCi

), Y ∗
i }n

i=1.
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Chapter 4

Numerical Studies

In this chapter, we conduct two simulation scenarios to investigate the finite sample

properties of proposed estimators and the performance of inference procedures. One

is for the case of censoring data and the other accommodates the appearance of

terminal events. In the simulation process, data are repeatedly generated 500 times

with the sample sizes of 200 and 400, and the censoring rates of 30% and 50%. The

estimators are evaluated at the selected grid points (t, u), where u takes values of

0.25, 0.5, 0.75, and 1, and t takes values of 0.2231, 0.5108, 0.9163, and 1.6094 with

the cumulative probabilities of Xo being 0.2, 0.4, 0.6, and 0.8.

4.1 Simulation Setting of (Xo, Y o)

The pair random vector (Xo, Y o) is specified from the Frank’s bivariate family (Gen-

est (1987)), in which

F
(α)
XoY o(t, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

logα{1 + (αFXo(t) − 1)(αFY o (u) − 1)/(α − 1)}, α �= 1

FXo(t)FY o(u), α = 1.
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Simulations are implemented with α = exp(−10), which implies a positive associa-

tion between the claiming time and the medical cost.

4.2 Senario I - Without a terminal event

In the section, we examine the finite sample properties of F̂HL(t, u), F̂IPW (t, u), and

F̂IM(t, u), and evaluate the inference procedures based on F̂HL(t, u) and F̂IPW (t, u).

The censoring time C is independently generated from an exponential distribution

with different scale parameters 0.5 and 1 for the expected censoring rates of 30%

and 50%.

Tables 4.1-4.6 exhibit the averages and standard deviations of 500 estimates,

and the averages of 500 standard errors based on (2.1.4), (2.2.2), and (2.3.7) at

the selected points. We detect that the averages of 500 estimates F̂IPW (t, u) are

more close to F (t, u) than those of F̂HL(t, u), especially for a higher censoring rate.

Furthermore, F̂IM(t, u) is found to have larger biases at points of (1.6094, 0.75) and

(1.6094, 1.0) when the sample size is small and the censoring rate is high. The biases

of these estimators are negligible when the sample size is large enough. The stan-

dard deviations of three estimates are almost the same. As expected, the standard

deviations decrease with increasing sample size and decreasing censoring rate. It is

revealed in these tables that the averages of 500 standard errors of F̂HL(t, u) and

F̂IPW (t, u) are very close to the standard deviations of their 500 estimates. Note

that the averages of 500 standard errors of F̂HL(t, u) diverge from the standard de-

viations of estimates as the value of time is large, while those of F̂IPW (t, u) seem
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to be relatively accurate. In tables 4.7-4.8, 0.95 pointwise confidence intervals and

the corresponding empirical coverage probabilities are provided. Generally, the cov-

erage probabilities of 0.95 pointwise confidence intervals based on (2.2.2) are fairly

close to the nominal level. However, the empirical coverage probability of confidence

intervals based on (2.1.4) are much higher than the expected nominal level.

4.3 Senario II - With terminal events

In this simulation study, the finite sample properties of F̂ ∗
IPW (t, u) and the per-

formance of inference procedure are investigated as terminal events arise. For the

design of mixture rates of censoring and death, C is independently generated from

an exponential distribution with parameter a and the terminal time D is designed

to follow an exponential distribution with rate bI(X0 ≤ 1, Y 0 ≤ 0.5) + b. The pa-

rameters (a, b) are set to be (0.5, 0.01) and (0.6, 0.3) so that the mixture rates of

30% and 50% are achieved in the simulated data.

Tables 4.9-4.10 display the averages and standard deviations of 500 estimates,

and the averages of 500 standard errors based on (3.1.2) at the considered points.

The averages of 500 estimates generally close to the true values of F ∗(t, u)’s. The

biases are apparently reduced when the sample size is large or the mixture rate

is small. Moreover, the variation of estimator will decrease and the accuracy of

estimated variances will be improved as the sample size increases or the mixture rate

decreases. Table 4.11 exhibits the empirical coverage probabilities of 0.95 pointwise

confidence intervals for F ∗(t, u). The probabilities are generally around the nominal
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level of 0.95. It is revealed in these tables that the closeness of empirical coverage

probabilities to the nominal level relies on the sample size and the censoring rate.
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Table 4.1: The averages and the standard deviations (SD) of 500 estimates F̂HL(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 30%

n 200 400
t u F (t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.158 0.156 0.0279 0.0269 0.156 0.0182 0.0190
0.5108 0.25 0.231 0.234 0.0320 0.0345 0.232 0.0227 0.0237
0.9163 0.25 0.247 0.249 0.0328 0.0395 0.248 0.0237 0.0278
1.6094 0.25 0.250 0.251 0.0331 0.0564 0.250 0.0238 0.0394
0.2231 0.50 0.196 0.194 0.0307 0.0295 0.193 0.0195 0.0209
0.5108 0.50 0.369 0.371 0.0374 0.0397 0.369 0.0262 0.0282
0.9163 0.50 0.469 0.469 0.0379 0.0512 0.470 0.0278 0.0362
1.6094 0.50 0.496 0.496 0.0385 0.0914 0.497 0.0281 0.0638
0.2231 0.75 0.200 0.197 0.0310 0.0297 0.197 0.0198 0.0211
0.5108 0.75 0.397 0.399 0.0374 0.0404 0.398 0.0261 0.0286
0.9163 0.75 0.581 0.579 0.0376 0.0477 0.580 0.0273 0.0338
1.6094 0.75 0.708 0.703 0.0400 0.0865 0.708 0.0280 0.0607
0.2231 1.0 0.200 0.198 0.0311 0.0298 0.197 0.0198 0.0211
0.5108 1.0 0.400 0.402 0.0376 0.0405 0.400 0.0263 0.0287
0.9163 1.0 0.600 0.598 0.0374 0.0461 0.598 0.0277 0.0327
1.6094 1.0 0.800 0.795 0.0357 0.0458 0.796 0.0265 0.0324
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Table 4.2: The averages and the standard deviations (SD) of 500 estimates

F̂IPW (t, u) and the averages of 500 standard errors (SE) at the selected points with
the sample sizes (n) of 200 and 400, and the censoring rate of 30%

n 200 400
t u F (t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.158 0.158 0.0279 0.0265 0.158 0.0183 0.0187
0.5108 0.25 0.231 0.234 0.0321 0.0318 0.234 0.0227 0.0224
0.9163 0.25 0.247 0.250 0.0329 0.0334 0.250 0.0238 0.0236
1.6094 0.25 0.250 0.252 0.0332 0.0345 0.252 0.0239 0.0243
0.2231 0.50 0.196 0.196 0.0310 0.0289 0.196 0.0195 0.0204
0.5108 0.50 0.369 0.373 0.0375 0.0371 0.371 0.0263 0.0262
0.9163 0.50 0.469 0.471 0.0379 0.0409 0.471 0.0279 0.0289
1.6094 0.50 0.496 0.497 0.0386 0.0440 0.498 0.0281 0.0311
0.2231 0.75 0.200 0.200 0.0313 0.0292 0.200 0.0197 0.0206
0.5108 0.75 0.397 0.401 0.0374 0.0377 0.399 0.0262 0.0267
0.9163 0.75 0.581 0.583 0.0373 0.0416 0.584 0.0275 0.0294
1.6094 0.75 0.708 0.705 0.0400 0.0441 0.711 0.0279 0.0311
0.2231 1.0 0.200 0.200 0.0315 0.0292 0.200 0.0198 0.0206
0.5108 1.0 0.400 0.403 0.0377 0.0378 0.402 0.0264 0.0267
0.9163 1.0 0.600 0.602 0.0372 0.0415 0.602 0.0278 0.0294
1.6094 1.0 0.800 0.799 0.0358 0.0406 0.800 0.0264 0.0287
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Table 4.3: The averages and standard deviations (SD) of 500 estimates F̂IM(t, u) at
the selected points with the sample sizes (n) of 200 and 400, and the censoring rate
of 30%

n 200 400
t u F (t, u) Mean SD Mean SD

0.2231 0.25 0.158 0.158 0.0279 0.158 0.0183
0.5108 0.25 0.231 0.234 0.0321 0.232 0.0227
0.9163 0.25 0.247 0.249 0.0328 0.248 0.0238
1.6094 0.25 0.250 0.251 0.0330 0.250 0.0238
0.2231 0.50 0.196 0.196 0.0310 0.196 0.0195
0.5108 0.50 0.369 0.372 0.0374 0.370 0.0263
0.9163 0.50 0.469 0.470 0.0378 0.471 0.0278
1.6094 0.50 0.496 0.495 0.0384 0.497 0.0280
0.2231 0.75 0.200 0.200 0.0313 0.200 0.0197
0.5108 0.75 0.397 0.400 0.0374 0.399 0.0262
0.9163 0.75 0.581 0.582 0.0373 0.583 0.0274
1.6094 0.75 0.708 0.702 0.0399 0.709 0.0279
0.2231 1.0 0.200 0.200 0.0314 0.200 0.0198
0.5108 1.0 0.400 0.403 0.0376 0.402 0.0264
0.9163 1.0 0.600 0.601 0.0372 0.602 0.0278
1.6094 1.0 0.800 0.795 0.0356 0.798 0.0264
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Table 4.4: The averages and standard deviations (SD) of 500 estimates F̂HL(t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 50%

n 200 400
t u F (t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.158 0.154 0.0263 0.0273 0.156 0.0192 0.0196
0.5108 0.25 0.231 0.230 0.0323 0.0349 0.230 0.0228 0.0248
0.9163 0.25 0.247 0.246 0.0344 0.0427 0.246 0.0244 0.0304
1.6094 0.25 0.250 0.248 0.0348 0.0696 0.249 0.0248 0.0488
0.2231 0.5 0.196 0.192 0.0298 0.0302 0.192 0.0210 0.0215
0.5108 0.5 0.369 0.367 0.0398 0.0417 0.366 0.0271 0.0296
0.9163 0.5 0.469 0.466 0.0431 0.0565 0.467 0.0306 0.0400
1.6094 0.5 0.496 0.494 0.0456 0.1181 0.494 0.0324 0.0821
0.2231 0.75 0.200 0.196 0.0298 0.0304 0.196 0.0212 0.0217
0.5108 0.75 0.397 0.395 0.0417 0.0423 0.394 0.0272 0.0300
0.9163 0.75 0.581 0.577 0.0457 0.0518 0.576 0.0307 0.0369
1.6094 0.75 0.708 0.703 0.0508 0.1123 0.703 0.0362 0.0790
0.2231 1.0 0.200 0.196 0.0299 0.0305 0.196 0.0213 0.0217
0.5108 1.0 0.400 0.398 0.0418 0.0423 0.396 0.0273 0.0300
0.9163 1.0 0.600 0.595 0.0458 0.0498 0.594 0.0310 0.0353
1.6094 1.0 0.800 0.794 0.0492 0.0537 0.793 0.0349 0.0382
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Table 4.5: The averages and standard deviations (SD) of 500 estimates F̂IPW (t, u)
and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the censoring rate of 50%

n 200 400
t u F (t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.158 0.157 0.0264 0.0274 0.158 0.0193 0.0193
0.5108 0.25 0.231 0.231 0.0325 0.0340 0.232 0.0229 0.0239
0.9163 0.25 0.247 0.247 0.0346 0.0371 0.248 0.0245 0.0260
1.6094 0.25 0.250 0.249 0.0350 0.0405 0.250 0.0249 0.0284
0.2231 0.5 0.196 0.195 0.0300 0.0300 0.195 0.0212 0.0211
0.5108 0.5 0.369 0.369 0.0400 0.0405 0.368 0.0273 0.0286
0.9163 0.5 0.469 0.469 0.0434 0.0481 0.470 0.0307 0.0340
1.6094 0.5 0.496 0.496 0.0458 0.0576 0.497 0.0325 0.0405
0.2231 0.75 0.200 0.199 0.0301 0.0302 0.199 0.0214 0.0213
0.5108 0.75 0.397 0.398 0.0419 0.0414 0.396 0.0273 0.0292
0.9163 0.75 0.581 0.581 0.0461 0.0503 0.581 0.0308 0.0355
1.6094 0.75 0.708 0.707 0.0512 0.0626 0.707 0.0365 0.0443
0.2231 1.0 0.200 0.200 0.0301 0.0302 0.199 0.0214 0.0213
0.5108 1.0 0.400 0.400 0.0419 0.0415 0.399 0.0274 0.0293
0.9163 1.0 0.600 0.600 0.0461 0.0503 0.600 0.0313 0.0356
1.6094 1.0 0.800 0.800 0.0494 0.0598 0.800 0.0349 0.0425
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Table 4.6: The averages and standard deviations (SD) of 500 estimates F̂IM(t, u) at
the selected points with the sample sizes (n) of 200 and 400, and the censoring rate
of 50%

n 200 400
t u F (t, u) Mean SD Mean SD

0.2231 0.25 0.158 0.157 0.0264 0.158 0.0193
0.5108 0.25 0.231 0.231 0.0324 0.231 0.0229
0.9163 0.25 0.247 0.245 0.0344 0.247 0.0244
1.6094 0.25 0.250 0.244 0.0345 0.247 0.0247
0.2231 0.5 0.196 0.195 0.0300 0.195 0.0211
0.5108 0.5 0.369 0.368 0.0399 0.368 0.0273
0.9163 0.5 0.469 0.467 0.0432 0.469 0.0306
1.6094 0.5 0.496 0.486 0.0450 0.492 0.0323
0.2231 0.75 0.200 0.199 0.0300 0.199 0.0213
0.5108 0.75 0.397 0.397 0.0418 0.396 0.0273
0.9163 0.75 0.581 0.578 0.0459 0.580 0.0308
1.6094 0.75 0.708 0.694 0.0507 0.701 0.0365
0.2231 1.0 0.200 0.199 0.0301 0.199 0.0214
0.5108 1.0 0.400 0.399 0.0419 0.398 0.0274
0.9163 1.0 0.600 0.597 0.0459 0.598 0.0312
1.6094 1.0 0.800 0.786 0.0490 0.793 0.0349
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Table 4.7: The empirical coverage probabilities of F̂HL(t, u) at the selected points
with the sample sizes (n) of 200 and 400, and the censoring rates (c.r.) of 30% and
50%

c.r. 30% 50%
n 200 400 200 400
t u

0.2231 0.25 0.952 0.948 0.956 0.934
0.5108 0.25 0.958 0.978 0.964 0.948
0.9163 0.25 0.970 0.984 0.984 0.990
1.6094 0.25 0.990 1.000 0.998 1.000
0.2231 0.50 0.952 0.952 0.960 0.958
0.5108 0.50 0.976 0.966 0.972 0.966
0.9163 0.50 0.986 0.990 0.990 0.994
1.6094 0.50 1.000 1.000 1.000 1.000
0.2231 0.75 0.952 0.954 0.950 0.960
0.5108 0.75 0.968 0.972 0.954 0.958
0.9163 0.75 0.986 0.988 0.974 0.974
1.6094 0.75 1.000 1.000 0.998 1.000
0.2231 1.0 0.952 0.954 0.950 0.960
0.5108 1.0 0.968 0.970 0.958 0.952
0.9163 1.0 0.982 0.984 0.972 0.962
1.6094 1.0 0.994 0.976 0.970 0.968
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Table 4.8: The empirical coverage probabilities of F̂IPW (t, u) at the selected points
with the sample sizes (n) of 200 and 400, and the censoring rates (c.r.) of 30% and
50%

c.r. 30% 50%
n 200 400 200 400
t u

0.2231 0.25 0.946 0.952 0.954 0.946
0.5108 0.25 0.968 0.934 0.952 0.942
0.9163 0.25 0.976 0.934 0.966 0.950
1.6094 0.25 0.978 0.944 0.974 0.976
0.2231 0.50 0.962 0.948 0.950 0.964
0.5108 0.50 0.960 0.950 0.970 0.966
0.9163 0.50 0.960 0.942 0.962 0.964
1.6094 0.50 0.970 0.950 0.988 0.982
0.2231 0.75 0.954 0.948 0.944 0.956
0.5108 0.75 0.966 0.940 0.958 0.962
0.9163 0.75 0.956 0.954 0.956 0.966
1.6094 0.75 0.970 0.964 0.976 0.984
0.2231 1.0 0.954 0.948 0.946 0.958
0.5108 1.0 0.970 0.936 0.956 0.966
0.9163 1.0 0.968 0.956 0.968 0.962
1.6094 1.0 0.964 0.964 0.968 0.978
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Table 4.9: The averages and standard deviations (SD) of 500 estimates F̂ ∗
IPW (t, u)

and the averages of 500 standard errors (SE) at the selected points with the sample
sizes (n) of 200 and 400, and the mixture rate of 30%

n 200 400
t u F ∗(t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.159 0.158 0.0282 0.0288 0.160 0.0196 0.0204
0.5108 0.25 0.233 0.232 0.0326 0.0351 0.235 0.0239 0.0248
0.9163 0.25 0.249 0.247 0.0337 0.0364 0.250 0.0246 0.0257
1.6094 0.25 0.252 0.250 0.0340 0.0366 0.252 0.0248 0.0259
0.2231 0.50 0.198 0.197 0.0316 0.0321 0.198 0.0219 0.0226
0.5108 0.50 0.372 0.370 0.0418 0.0439 0.373 0.0311 0.0309
0.9163 0.50 0.472 0.470 0.0474 0.0488 0.473 0.0336 0.0344
1.6094 0.50 0.498 0.497 0.0498 0.0499 0.499 0.0341 0.0351
0.2231 0.75 0.202 0.200 0.0318 0.0324 0.201 0.0220 0.0229
0.5108 0.75 0.400 0.398 0.0424 0.0453 0.401 0.0327 0.0320
0.9163 0.75 0.584 0.582 0.0503 0.0528 0.586 0.0367 0.0372
1.6094 0.75 0.711 0.708 0.0538 0.0545 0.713 0.0385 0.0384
0.2231 1.0 0.202 0.201 0.0318 0.0324 0.202 0.0219 0.0229
0.5108 1.0 0.403 0.400 0.0425 0.0455 0.404 0.0328 0.0321
0.9163 1.0 0.603 0.600 0.0504 0.0533 0.604 0.0373 0.0375
1.6094 1.0 0.803 0.799 0.0530 0.0539 0.805 0.0385 0.0380
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Table 4.10: The averages and the standard deviations (SD) of 500 estimates

F̂ ∗
IPW (t, u) and the averages of 500 standard errors (SE) at the selected points with

the sample sizes (n) of 200 and 400, and the mixture rate of 50%

n 200 400
t u F ∗(t, u) Mean SD SE Mean SD SE

0.2231 0.25 0.204 0.205 0.0348 0.0374 0.203 0.0256 0.0265
0.5108 0.25 0.286 0.287 0.0420 0.0442 0.285 0.0299 0.0314
0.9163 0.25 0.301 0.301 0.0439 0.0453 0.299 0.0308 0.0323
1.6094 0.25 0.303 0.303 0.0443 0.0454 0.301 0.0311 0.0324
0.2231 0.50 0.252 0.254 0.0385 0.0414 0.250 0.0285 0.0293
0.5108 0.50 0.444 0.448 0.0514 0.0534 0.441 0.0374 0.0382
0.9163 0.50 0.535 0.538 0.0567 0.0569 0.533 0.0404 0.0411
1.6094 0.50 0.559 0.561 0.0570 0.0575 0.558 0.0396 0.0416
0.2231 0.75 0.257 0.259 0.0387 0.0418 0.256 0.0289 0.0296
0.5108 0.75 0.478 0.481 0.0521 0.0549 0.476 0.0383 0.0394
0.9163 0.75 0.662 0.664 0.0592 0.0596 0.661 0.0417 0.0435
1.6094 0.75 0.782 0.783 0.0605 0.0575 0.779 0.0425 0.0428
0.2231 1.0 0.257 0.259 0.0388 0.0418 0.256 0.0289 0.0297
0.5108 1.0 0.482 0.485 0.0523 0.0550 0.479 0.0384 0.0395
0.9163 1.0 0.683 0.686 0.0592 0.0598 0.682 0.0417 0.0437
1.6094 1.0 0.870 0.873 0.0573 0.0526 0.869 0.0405 0.0404

30



Table 4.11: The empirical coverage probabilities of F̂ ∗
IPW (t, u) at the selected points

with two sample sizes (n) of 200 and 400, and the mixture rates of censoring and
death (m.r.) of 30% and 50%

m.r. 30% 50%
n 200 400 200 400
t u

0.2231 0.25 0.948 0.950 0.964 0.948
0.5108 0.25 0.960 0.956 0.966 0.960
0.9163 0.25 0.970 0.958 0.954 0.958
1.6094 0.25 0.962 0.954 0.956 0.958
0.2231 0.50 0.950 0.960 0.956 0.950
0.5108 0.50 0.962 0.944 0.944 0.962
0.9163 0.50 0.958 0.954 0.946 0.952
1.6094 0.50 0.958 0.964 0.936 0.962
0.2231 0.75 0.944 0.956 0.956 0.958
0.5108 0.75 0.966 0.938 0.958 0.958
0.9163 0.75 0.956 0.944 0.944 0.956
1.6094 0.75 0.948 0.942 0.904 0.960
0.2231 1.0 0.944 0.960 0.956 0.958
0.5108 1.0 0.962 0.936 0.954 0.954
0.9163 1.0 0.952 0.946 0.942 0.958
1.6094 1.0 0.944 0.940 0.864 0.944
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Chapter 5

Application to Colorectal Cancer

Data

The used colorectal cancer data arise from the SEER-Medicare database. A total of

71,519 patients with the SEER registries were systematically recruited since January

1, 1983. The repeated medicare reimbursements (dollars) and the corresponding

times (months) were recorded between January 1, 1983 and August 31, 1993. Here,

we apply our proposed methods to estimate the distribution of first pair of medicare

reimbursement and claiming time of patients. The baseline covariates age and cancer

stage are considered in our analysis. Moreover, the time to colorectal cancer-related

death and last follow-up are included. The stage variable is the American Joint

Committee on Cancer (AJC) clinical stage of disease, which ranges from 0 to 4

according to the severity of disease. The age variable is further categorizd into three

layers (61-70, 71-80, and >80). More detailed explorations of data can be found in

Bang (2005).

In this chapter, a random sample of size about 2000 is selected and analyzed. The
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range of patients’ age in this sample is mainly from 65 to 103 years old. The features

of sub-sample table 5.1 show the representative of whole data. The aim of our study

is to estimate the joint distributions of claiming time and medicare reimbursement

under different age layers and clinical stages of disease. Moreover, the mean medicare

reimbursement and the probabilities of claiming time occurring before the death

time are evaluated. Evidenced by the numerical studies, the low mixture rate of

censoring and death (< 2%) in this sample will ensure the accuracy and precision of

estimated distributions and related quantities. The results summarized in table 5.2

indicate that patients with older age or more severe disease stage tends to receive

larger reimbursements from medicare. It is further detected that the greatest costs

occur in the age layer of 71-80 and the disease stage 3. Those patients with older

age or more severe disease stage are prone to claim reimbursements prior to death.

The reason might be that older or less healthy patients tend to be ailing and raise

medical expenditure. In table 5.3, the probabilities of claiming time prior to death

are generally high, especially in the groups of older age and more severe disease

stage. Patients with disease stage 4 receive the greatest medicare reimbursements

in the age layer of 61-70, while the greatest reimbursements for patients with age

more than 70 occur in the disease stage 3.

The patterns of joint distributions in various age layers and disease stages are

displayed in figures 5.1-5.2. The marginal distribution of claiming time and reim-

bursement for patients with the first reimbursement prior to death are also presented

in figures 5.3-5.4. Figure 5.3 reveals that the claiming times of patients with age
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Table 5.1: The characteristics of the colorectal cancer data and subsample

Full data Sub-sample

Male 51.5% 52.5%
Female 48.5% 47.5%

Age 61-70 23.0% 22.1%
71-80 47.4% 46.7%
> 80 29.6% 31.2%

Stage 0 6.7% 7.8%
1 22.6% 22.5%
2 31.0% 30.4%
3 22.5% 23.7%
4 17.1% 15.8%

more than eighty are shorter than those for younger patients. As for the reim-

bursements, patients with age more than seventy receive more reimbursements than

younger patients. In figure 5.4, no apparent difference between the estimated curves

of claiming time is detected for various disease stages. In contrast, patients in dis-

ease stage 0 reasonably incur less reimbursements than those in the more severe

stages.
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Table 5.2: The estimates of P (D > Xo) and E(Y o) under different age layers and
disease stages

P̂ (D > Xo) Ê(Y o)

Age 61-70 0.977 4914.37
71-80 0.990 5632.27
> 80 0.997 5403.41

Stage 0 0.985 2168.10
1 0.981 4935.75
2 0.990 5561.14
3 0.991 6436.52
4 1.000 5876.16

Table 5.3: The estimates of P (D > Xo) and E(Y o) under different age-disease stage
groups

Age Stage P (D > Xo) E(Y o)

61-70 0 1.00 1649.8
1 0.96 4293.4
2 0.99 5605.1
3 0.97 5326.5
4 1.00 5788.9

71-80 0 0.99 2521.0
1 0.99 5035.7
2 0.98 5882.6
3 1.00 6740.7
4 1.00 6025.1

> 80 0 0.96 1967.8
1 1.00 5363.2
2 1.00 5077.1
3 1.00 6837.3
4 1.00 5621.1
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Figure 5.1: The joint distributions of claiming time and reimbursement for different
age layers and disease stages
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Figure 5.2: The joint distributions of claiming time and reimbursement for different
age layers and disease stages
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Chapter 6

Discussion

In this thesis, we propose several estimators for the joint distribution function of

claiming time and medicare reimbursement based on two types of cost data. The

limiting Gaussian processes of the estimators are also developed with the uniformly

consistent estimators of the asymptotic variance-covariances. Without the occur-

rence of a terminal event, our numerical studies reveal that the IPW estimator

surpasses the Huang-Louis and imputation estimators in computation cost. More-

over, the IPW estimation has more accurate estimator of the variance-covariance

than the Huang Louis estimation. The performance of inference procedures are

shown to be satisfactory.

In our application, an appropriate regression model would be helpful to investi-

gate the influences of ages and disease stages on the joint distribution of claiming

time and medicare reimbursement. The nonparametric IPW estimation approach

will be reasonably extended to the estimation of parameters in the considered re-

gression model. To solve the problem of asymmetric information or moral hazard in
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health economics, our further research will focus on seeking for the optimal compos-

ite factors to minimize the medical cost conditioning on the claiming time of interest.

It is expected to help insurance companies to discriminate crafty policyholders.

As in the analyzed data, the claiming times and medicare reimbursements are

intermittently occurring during the study period. Under the assumption that the

recurrent pairs are independent and identically distributed conditioning on a la-

tent variable, the estimation method of Huang and Wang (2005) can be applied

to estimate the joint distribution of claiming time and medicare reimbursement. In

biomedical contexts, this assumption seems to be out of reality. In our further study,

we try to extend the developed methods to this issue with more suitable conditions

being made.
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