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Abstract

In this thesis, mode solvers for one-dimensional (1D) and 2D waveguides, and
photonic crystals (PCs) with new electromagnetic formulations are developed. The
new penalty-type boundary conditions are derived to work with new formulations,
and the pseudospectral Legendre method is adopted to perform spatial discretization
for its accurate approximation property.

Unlike many waveguide mode solvers which are based on Helmholtz equations,
we propose new formulations which combine Maxwell’s curl and divergence equa-
tions to derive the eigenvalue problem. For the interface boundary condition treat-
ment, penalty-type boundary conditions are employed and mathematically proved
that they can stablize the scheme.” Athlough: pseudospectral time-domain (PSTD)
methods with penalty-type bound‘ary conditidiis have been known to offer good con-
vergence property, the related frequeﬁcy‘domam formulatlons developed in this work
prossess intrinsic difference. In time: c|l101°'1r‘i"'t n $1mulat10ns the electromagnetic fields
considered are all real quantltles Wl{l he 1;1 Ifre(lqtlency demain analysis, the fields are
complex ones with the phasor technlque And -new penalty-type boundary condi-
tions in the frequency-domain mode analy31s of 1D and 2D waveguides, and PCs,
are respectively derived.

Numerical examples are considered to examine the efficieney and numerical con-
vergency property of the proposed algorithms. Optical structures in these examples
include slab waveguides, partial-filled waveguide, fiber waveguides, channel waveg-
uides with sharp corners, rib waveguides, PCs with square lattice, and PCs with
triangular lattice. Spectral convergence property with very high-accuracy modal
effective index and eigenfrequency calculation is achieved. In particular, for the
dielectric waveguide with corners, higher numerical accuracy than reported results
is obtained without doing field singularity treatment at the corners as in the lat-
ter. This represents significant advancement in the numerical analysis of optical

waveguide problems.
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Chapter 1

Introduction

1.1 Motivations

For constructing various guided-wave devices and components in optical commu-
nication systems, optical waveguides andysin recent years, photonic crystals (PCs)
have been played important roles. In”the désign of these waveguides and PCs, it
is important to understand agenrate propagation characteristics of electromagnetic
waves in these structures. But unfortu@,erly, \according to Maxwell’s equations, it
is impossible to have analytical sollitiion_sr,t:}for 'Ifnost waveguides and PCs with vari-
ous cross-sections and materialéi 'z_xlnlcll :We oftenl' .Ih_ged computer numerical analysis to
understand the performance of maﬁy Hew ty}:;es of these structures.

There are various types of numerical analysis methods for waveguide analysis,
which directly solve the eigenvalue problems associated with the corresponding prob-
lems. Typical methods include the spectral index method (SIM) [Stern et al., 1990],
the finite element methods (FEMs) [Cendes and Silvester, 1970; Rahman and Dauvis,
1984; Lee et al., 1991], the finite difference methods (FDMs)|Bierwirth et al. 1986;
Liisse et al., 1994; Hadley and Smith, 1995], and the integral equation methods
[Sphicopoulos et al., 1985; Baken et al., 1990]. Although the SIM is easy to use, it
is not adequate for solving more and more sophisticated structures. And although
both the FEM and FDM are well developed and robust methods, they often need
a lot of mesh grids for obtaining better numerical results. Comparing with these

numerical methods, spectral methods to be employed in this research can offer more



precise solutions with the same amount of mesh grids.

The prototype of spectral methods for the solution of differential equation prob-
lems is the well-known Fourier method in fluid mechanics. In 1970s, the Fourier
method was first applied to direct numerical simulation of turbulence [Orszag and
Patterson, 1972]. This success was fundamental for a fast calculation technique of
the nonlinear terms through the “pseudospectral” methods (PSMs). In the Fourier
method, the differentiations are made in the spectral space (the space of the expan-
sion coefficients) and the products are performed in the physical space (the space
of the values of the unknowns). But the Fourier method is unable to handle non-
periodic problems due to the nonuniform convergence of the Fourier series at the
extremities of the domain, known as the Gibbs oscillation. So for the nonperiodic
problems, the Chebyshev and Legendre polyp_omials [Boyd, 1999] are used. Through
the PSMs based on Fourier, Chebyshev and .Lege.ndré polynomials, we can transfer
differential operators into high- order n.qmem(:a,l dlfferentlal matrices.

,_.- =

In recent years, PSMs have bee|n| e”fgndb;i to the analysis of electromagnetic
problems both in time- domaln Yé{ng et al. %I,1999 Hesthaven et al., 1999] and
frequency-domain [ Wu, 2003; Chiang; 2007} In frequency-domain, Chiang [2007]
has developed mode solvers for two-dimensional (2D) waveguides and 2D PCs us-
ing PSMs, in which conventional-type boundary conditions were used. However,
conventional-type boundary conditions can not be proved to stabilize numerical
scheme. Although Wu [2003] used penalty-type boundary conditions [Funaro and
Golttlieb, 1988] for 1D-waveguide analysis, which can be mathematically proved to
stabilize numerical scheme, he used the boundary conditions derived in time-domain.
But there exists intrinsic difference between time-domain and frequency-domain
methods in that the electromagnetic fields considered are all real quantities in time-
domain simulations, while in frequency-domain analysis, the fields are complex ones

with the phasor technique. In this thesis, we have redrived the penalty-type bound-

ary conditions for frequency-domain in details.



Channel waveguides have been known hard to solve due to the presence of corners
and the associated singular field behavior [Sudbo, 1992]. According to the previous
works conducted by Hadley [2002] and Thomas et al. [2007], it was reported that
a local expansion of the field near the corners was required to produce higher order
numerical convergence. In this thesis, we propose a new algorithm which can achieve

high order convergence without doing special treatment around corner points.

1.2 Chapter Outline

There are seven chapters following this chapter.

In Chapter 2, we derive the formulation for the transverse electric (TE) mode for
1D (slab) waveguides. The boundary conditions are imposed by using the penalty
method with characteristic Variables The three different types of boundary con-
ditions, including perfect electrlc conductor (PEC) perfect magnetic conductor
(PMC), and dielectric boundary CO;lditmn{; xwﬂl be shown Since the transverse
magnetic (TM) mode can be drived |11‘1 f}; salme Wy, we do not show its details.

In Chapter 3, we derive the: fornllulatlon f(!)][ the 2D waveguides. And just as in
Chapter 2, the boundary condltlons are also 1mposed by using the penalty method
with characteristic variables. The derivation will be combined with the transfinite
element method. How to decrease the number of equations from six to three is
discussed in the last section.

In Chapter 4, we derive the formulation for 2D PCs. Since the derivation is very
similar to the one for 2D waveguides, we will not present it in details. Readers can
refer to Chapter 3 for relevent formulae. The TM mode can be derived in the same
way, and only the final results are given in the last two sections.

In Chapter 5, we introduce the fundamental concepts of the collocation methods
and the pseudospectral Legendre method [Teng et al., 2008] which we use to analyze

problems. In the second part of this chapter, we introduce the shifted inverse power

method (SIPM) which we will use to solve eigenvalue problems. We have done some



modification on the SIPM in our applications.

In Chapter 6, 1D and 2D optical waveguides are numerically analyzed. Numerical
results for several types of waveguides, including slab waveguides, fiber waveguides,
channel waveguides, and rib waveguides are examined for examining the accuracy
of the mode solver.

In Chapter 7, PC structures are numerically analyzed. Band diagrams of typical
square-lattice and triangular-lattice PCs are examined. Since the modified SIPM is
employed for solving eigenvalue problems, we can save much memory space.

The conclusion of this work is summarized in Chapter 8.




Chapter 2

Mathematical Formulation for 1D
Waveguide Analysis

This chapter is devoted to explain the whole process of deriving the formulation for

the 1D waveguide structure from Maxwell’s equations.

2.1 Equations Used for 1D, Waveguide Structure

From Maxwell’s curl equations; we hav#é_';,lihe equations for the transverse electric

(TE) case assuming the material strﬁ:ctui?_é is uniformin the y direction:

)

Ho ot = E~ (2.1a)
OH, " 0E,

Ho 872 = ?_x ) (2.1b)
EﬁEy _ 0H, OH, (2.1¢)

ot 0z ox

where H, and H, are the magnetic field components while Ey represents the electric
field, pg is the peameability of non-magnetic material, € is the permittivity, and z is
the propagation direction. We have just used Maxwell’s curl equations so far. There

exists a Maxwell’s divergence equation written as

OH, OH,
5% T, = O (2.2)

Therefore there are four equations for the 1D TE waveguide structure. Prior works

used to take the three Maxwell’s curl equations as the basic equations for analysis.



In this work, we replace (2.1b) with (2.2). Then the new three euations appear to

be
0H, OE, OH,
8% =€ (9t~+ %% (2.3a)
0H, 0H,
= — 2.
o2 o (2.3b)
OE, B OH,

Before proceeding to the next section, we find it is more convenient to deal with

the equations if we apply the following tranformation

. 1 . 1 .
H,=———H, H =———H, E,=E,

This transformation makes (2.3) appear/as

S~
o 5, W (242)

g -f—‘-“-. \ \
| 8;; -:q:ifi.é } (2.4b)
% | 1@!{{1 !I= (24 )

|
where €, is the relative permittivifj} defined ias e €/€o and c is the speed of light

In vaccuin.

2.2 Well-posedness Analysis

Rewriting (2.4) into the complex form, we have

0 , €rr + i€ O , 0 ,
g(H$T + ZHM) —TE(EZ/T + ZEyi) + 8_x(HZT + ZHM) (25&)
0 , 9, .

0 _ 10 .

&(Eyr -+ ZEyi) —Ea(er + ZH;M) (25C)

where the subscripts r and ¢ denote the corresponding real and imaginary compo-



nents. Equation (2.5) can then be written as

0 10 0

6 _a<€rrEyr - EriEyi) - a_x<_Hzr)

8 1 0 0

a ( rrEyi - EriEyr) - 8_ZL‘(_HZZ>
0 8
&(_Hzr) - a er
0 0
@(_HZi) =~ 5 —H,;

Op 10

oz ¥ cot ™"

0 10

9z o = gy et
Equation (2.6) can be expressed in the matrix form:

0 _M o0, 00
8z_c'l_8t_ T Ox

(2.6a)
(2.6b)
(2.6¢)
(2.6d)
(2.6e)

(2.6f)

(2.7)

where § = [H,, Hyy — H,, — Hzi"'E_yr.Eyi]T, M. '_isfthe material matrix defined as

Ay F N Tk

0| __.p_- _rQﬁ'l IE’I"I‘ TEr
= i I__';-II '
R Q'(lolif” Y Cix 8
a= | .
ol 0.0 YRS <0
RN G0 b/
0 07°0. 050 .40
1000 0 0
0100 0 0
and ~ _
0 0 —-1 0 00
0 0 0 —-100
-1 0 0 0 00
A, =
0 -1 0 0 00
0 0 0 0 00
0 0 0 0 00

(2.8)

(2.9)

Let ¢(z,2,t) = q(x, 2) - /@2 where 3 is propagation constant, (2.7) becomes

—zﬁq—z—M g+ A, - gg;_ZkOM + A, - 3q

7

oz

(2.10)



where kg is the wavenumber in free space. Since —ifq and ikyMq are low-order
terms, they can be eliminated from the well-posedness analysis, as will be done
below.

Since A, = AT

», where the superscript denotes the transpose, there exists a

matrix S such that

ST.A,-S=A (2.11)

where ST represents the transpose matrix of S. From linear algebra, we know
that for an symmetrix matrix A,, we can create such matrix S by arranging all

eigenvectors of A, {s;|i = 1,...,6}, in the form:

S = [81 S9g S3 S4 S5 86] (212)
which is found to be & = =
R,
A T ~TNGG
0=l
0 F'-n’fi;iﬁ 00
i1} ||p LR
s=| .8 | w2 /o (2.13)
O P e
09500 071 0
0O 0 0 0 01
Notice that ST = S and
1 1 1 1
7 0 7 0 00 7 0 7 0 00
1 1 1 1
0 7 0 7 0 0 0 7 0 7 0 0
L 0o = 0 00 L 0 =2 0 00
ST =| V2 V2 V2 V2 =7 (2.14)
1 -1 1 -1
0 7 0 7 0 0 0 7 0 7 0 0
O 0 0 0 10 O 0 0 0 10
O 0 0O 0 01 O 0 0 0 01




where [ is the identity matrix and

1 1
7 0 % 0 00 0O 0O -1 0 0O
1 1
0 7 0 % 00 O 0 0 —-100
L 0 =2 0 00 -1 0 0 0 00
STAS =| V2 V2 (2.15)
1 —1
0 % 0 % 00 0O -1 0 0 00
0O 0 0 0 10 O O 0O 0 00O
0O 0 0 0 01 O 0O 0O 0 00O
1 1
% 0 % 0 00 -1 0 0 00O
1 1
0 % 0 % 00 0 -1 0 0 0O
1 -1
7 0 % 0 00 _ 0O O 1 00O A
1 —1
0 7 0 % 0.0 0 0 0100
0O 0 0 40.1"0 0+-0 0O0O0O0
0 0 0 40 Ox.__lk A~ 00 00 0 O
'“-:-J|— ]
Before we proceed, we define a new lvfect"érR for latter use
| n | Wy
1 1 g
%er_;ﬁler Rl
51 177
EHQ’L_ %sz RQ
LHQL‘T’_’_LHZT’ R
R=ST.q=| V2 V2 =7 (2.16)
1 1
%Hxi‘f—j@[{zi Ry
Eyr RB
Ey'i RG

which is called the characteristic state vector with its elements named as the char-

acteristic variables.

2.3 The Energy Method

If we multiply ¢? from the left to (2.10), we have

dq

0 :qTAxg. (2.17a)



Then, if we adopt local coordinate transformation defined in Fig. 2.1 and integrate

over ¢ € [—1, 1], the equation becomes

1 aq
0= TA=—= . d 2.18a
JRET X (2150)

1
=3 [ (@A), + (1) (" Ae0)| |
_1[0¢/0x |0¢| 1 —08/0x | 0| 1
=3 |o¢/as] |92 @ A0l * agjau] | 02| @ A Dlems
1] [0 0
=5 |7a a—i (4" Aeq)|_y + 1o a_i‘ (qTAzq)\g__l}
nx|g:1 0[S T T T nx‘&z—l )3 T T T
= — (¢ S-S"AS-S"q)|._, + = (¢ S-S"A,S-S"q)|._
2 or =1 }5_1 2 ox =1 |£_
_ Maler | O€ T Mole s |06 T
=— &E&du% A RH&1+._2 2 &tﬁkluz AR)|,_,
nale_y | O€ e N
= || [F(RTRY — (B3 + (Rl + (BRI Ra)] |,
e=1 e ~
Nale__q | O€ M= 40\ |
— |5 [—(RlTRl)—li(l%ﬁﬁ)lﬁlr (Ry Rs) & (BRI R)]|,__,
¢=—1 1

no|| :

where A; = Az% and n, is the unit'l (luthérd IV:Ie(:to-r at boundary points. Note that
w5 N 1P

the eigenvalues corresponding to Rs and Rg-are zeros, as seen in (2.15). Closely

looking at (2.18), since the left side is'zero, for the equation to be meaningful, the

right side should be zero, or we need the conditions
RIR +RIRy =RIR; + RTR, at ¢=1 (2.19a)
RIR +RIRy =RIR; + RIR, at &= —1. (2.19D)

We must follow (2.19) when designing the boundary conditions to make the equa-

tions be well-posed.

2.4 Characteristic Representations of Physical
Boundary Condtion

We now consider the representation of physical boundary conditions. Since for 1D

structures, we define y and z directions as tangential directions and the x direction

10

1



as the normal direction, the characteristic variables can be represented in this way:
Re(ii x H) (2.20a)
Im(ii x H) (2.20b)
Re(7i x H) (2.20c)
Ry =—=Im(7i - H) + —=Im(7 x H) (2.20d)

where 77 denotes the unit normal vector in the x direction. Because the corresponding
eigenvalues of R5 and Rg are zeros, we just neglect them.
For the perfect electric conductor (PEC) boundary condition, there are two con-

ditons the fields should satisfy (considering isotropic non-magnetic media):

no% E b (2.21a)
B N\ (2.21b)
NI B
Closely looking at (2.20), we observe [ ==& 11
- | | = |
R\% Ry —v2R4(i JH) (2.22a)
S\ W\
T | S
Ry + R, =2 (e 1) (2.22Db)

Then the PEC boundary condition has a characteristic representation as

Ripc = —R3, Ropc = —IRy
(2.23)
Rspe = —Ri, Rapc = —R»
For the perfect magnetic conductor (PMC) boundary condition, there are also

two conditions needed to be satisfied:

ii- E =0 (2.24a)
i x H =0 (2.24D)
Again, from (2.20), we have
Ry — Ry = — V2Re(it x H) (2.25a)
Ry — Ry = — V2Im(7 x H) (2.25h)

11



and the characteristic representation for the PMC boundary condition is

Ripc = R3, Ropc = R4

(2.26)
Rspc = Ri1, Rupc = R»
For source-free dielectric media, the physical boundary conditions are
it x ET =it x EM (2.27a)
it e, Bl =i - ey BT (2.27Db)
it x H =it x H" (2.27¢)
ii-H! =i H! (2.27d)

with the superscripts I and I denoting different dielectric regions on the two sides

of the interface, respectively. From (2_.2_0), we have

| & K N
R{ =—4Re (") — —8

Re (77l % [’ 92.98
NG A U0\ (2.280)

1 A= ) [L o
RIT =& Re(a!! | = L _Re(7ilIx H'T). 2.28b
- S R ) (2250)
Because 71’ and 7! are in opposite '[dire(';tr-ions;‘,:, let 3! & 7' — 7 and add (2.28a)

to (2.28b) to obtain

—

Re(7i x (H' — H'Y) (2.29)

Sy

T
~
|

T
3
|

1
R{+ Ry = ERe(

which through (2.27) yields
Rl = R (2.30)

By doing the same procedure to Ry, R3, and Ry, we can get

1/1T 11/1
Riph = —Ry"

I/11 11/1
1BC — R/ _—Rg/

LR (2.31)

I/11 11/1 I/11 11/1
R31/BC = — Ry / ) R4/BC =—hR, /
2.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations for anal-

ysis. Starting from (2.10) with some boundary terms, we have at grid point 4,

12



t =0,..., N, within the representation domain M as shown in Fig. 2.2,

)
—if q|, = ikoMq|, + AI£ — 607 SB(R|,_, — Rpc) (2.32)

7

— 5NiT+SB+(R|x:b — RBC)~

The symbols and variables in (2.32) are explained as follows. §;; is the Kronecker
delta function defined as

1, ifi=j

0, ifi# 7.
7~ and 77 are constant numbers and their values will be delivered latter. S is the

matrix defined in (2.13). a and b are lower and upper limits plotted in Fig. 2.1. B~

and BT are boundary inflow/outflow operators defined as

by 0 0 0,00 |0 0 0 00
0 b, 0 0400 . 6% 0 0 00
|00 0.0 ( grwl. 0lo st 0 00 250
— | ; -'_I: .
0 0 0 b70 o:ll = 0@ 0 v 0o
i | .II_ ._
000 0 0200 Y90 0 0 00
00 0 0 00 0 0 0 0 00

R is the characteristic state vector defined in (2.16) and Rpc is defined in the
previous section for every physical boundary condition.
Next, we write the energy rate equation (2.18) in the discrete form and add the

boundary terms

N

0= Z w; {qiTAx %‘ — 607 (R"TB™R)|__ —dontt (R"B*R)| _, (2.35a)
i=0 i
N g
— Z wiql Ay 5| —wor (R"B™R)|,_, —wnTt (R"B*R)|__,
i=0 i

where Y is the discrete form of integral, and w; is the weight of the discrete integral.

The value of w; will be delivered in Chapter 5. From (2.18), we can obtain
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0=t | (R R) — (BB + (B o)+ (RIR], (2.361)
P | [SRIR) — (R + (R Ry + (RERY]),
—wor” (R"B™R)|__ —wy7" (R"B*R)| _,
= (BB, (G | ) (R ® s
RER),, (5 | ) (RERY) Gl )
R (G (G| ) - R (G (5| )
~ (RER),_, (G |2 o) = (RTR), g o)
which means
S o R — i = (2.37a)
% % » - wNTer;' = (2.37b)
_71 % . + woT = bi [ 32 - +avgT by =0 (2.37¢)
% % o+ wor—b;_ s 1 _ +_z§07—b; — 0. (2.37d)
From (2.37), we define
and
br=—1, bf=-1, bi=1, bi=1 039)

bi=1, by =1, b;=-1, b; =1
Substituting the values in (2.39) into (2.34), we thus determine matrices B~ and
BT,

2.6 Final Form of the Formulation

There is only one step left: making the equations become a standard eigenvalue
problem. Here we just take the PEC boundary condition as an example. The other

two boundary types can be derived in the same manner.
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We start from (2.32). By substituting the matrices M, A,, S, and B, and

replacing (R— Rp¢) with the condition (2.23), we can get the following six equations:

. . 0H,,
_Zﬂ Hf”’|z :Zl{io(err Ey?"|l' — €pg Eyllz) + o (240&)
_Zﬁ Hm|z :Zk:()(err Eyz|l + € Eyr|i) + Oz (240b)
OH o¢
B H,| =— ] s | [QHW, } 2.40
0 8ol == 0| <o |gh]  Prelen] e
o€ r
61' t= 2 Hzr — ]
+ OiNT p L ’5_1
0H,; o€ I
—if Hal, = — ——| — 0T |5 2 Hyile_ } 2.40d
Zﬁ |7, ax . oT ax - |§7—1 ( )
o€ r
T o
—i8 E,|, —ikio Hopl S\ (2.40e)
o alh i/—‘\ N TN

Then multiplying (2.40b), (240d), [a d--JI(I%AOl[Ei by i(= v—1) and adding them to

(2.40a), (2.40c), and (2.40e), rééﬁeo:tiyely. We obtai

. . 0H.
_Zﬁ Har;|z :ZkOGTEy + W i (241&)
. 0H, _ | 0¢
i H| == | =67 |5 . [2 H$|£:_1] (2.41b)
o¢
P o a3
+ OiNT o - [2 Hx|§:1]
—if Ey\i =iko H,| (2.41c)

where H, = H,,+iH,;, and so on. Equation (2.41) represents a standard eigenvalue
problem.

For the case of the dielectric boundary condition, the eigenvalue formulation

15



with the following equations can be derived:

i 12|, =ikoe, 7L+ 22 i o . (1l — HY)] (2420
ot % ¢r=1 [l = e
—ig H!| = a;f = o % . [Hg ey — HY| 5,,21] (2.42b)
+ ot | e =
—if} B, |, =iko Hj|, . (2.42¢)
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Mapping

Domain M

Domain 2

1
Domain 1 i=0

Figure 2.2: The grid points in domain M.
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Chapter 3

Mathematical Formulation for 2D
Waveguide Analysis

This chapter is devoted to, just like in the previous chapter, the process of derivation

of formulation for 2D waveguide problem.

3.1 Equations Used for 2D, Waveguide Structure

From the Maxwell’s curl equations

-l

EBEHE.E_ OH, | o
Yol By | _:.(92
OF, " QHy: OH.
c ot 0z Ox
€8EZ _0H, O0H,

ot Ox oy
OH, O0FE, OE,

Ho = -
ot 0z dy
0H, OE. OF,
7o T or oz
0H, O0E, O0E,

Ho = -
ot oy ox

(3.1a)

(3.1b)

(3.1c)
(3.1d)

(3.1e)

(3.1f)

where E, | E’y, and E, are the electric field components while H,, ﬁy, and H,

represent the magnetic field components, o is the peameability of non-magnetic

material, € is the permittivity, and z is the propagation direction. And as in the 1D

formulation, we replace (3.1c) and (3.1f) with the other two divergence equations to

18



get the following equations, with the order of equations being rearranged:

a;;x _ ‘“0%}? . ?a% (3.2a)
% _ Moagx 6@% (3.2b)
aaf?z _ _68? B 0531 (3.2¢)
a;? _ Eaab;y~ n 361? (3.2d)
% _ _Ea;ix 8;; (3.2¢)
8;? _ _6;? B 0;;;_ (3.2f)

Before proceeding to next section, we do the following transformation to make

the derivation easier

(3.4a)
08, 108, , . iy
o5, _ 5. _0F, e
9 - o oy (3.4¢)

where €, is the relative permittivity defined as €. = €/¢y and ¢ is the speed of light

in vaccum.
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3.2 Well-posedness Analysis

First, rewriting (3.4) in the following form on purpose:

=D (By) = o () + ()
L (B = L)+ (B
g (B) = 5 () + 5 ()
(1) = OB, + ()
S (H) =~ Do ) + 5 (1)
-5 (HL) = 5L () + (1),
Next, we write (3.5) in the matrix for_m_: -
w3, G NN o

.-'_\ f\'.

where § = [¢,E, e, E, E, Hy H, H]Tl

Lo o0 ool e 00 0 -1
oéoo'oo 0 001 0
00 - 00 0 0 000 0
MIZ 7M2:
00 0 10 0 0 100 0
00 0 01 0 1000 0
00 0 00 -1 0 000 O
and ~ _ ~ _
001000 000000
000000 001000
10000 0 010000
A, = A, =
00000 1 000000
000000 00000
000100 000010

20

0
0
0
0
0
0

ﬂﬁ’hMl, ,]\/[2, z, and A, are defined as

(3.5a)
(3.5b)
(3.5¢)

(3.5d)

(3.5¢)

(3.5)



Let 4(z,y,2,t) = q(x,y) - €« then (3.6) becomes

dq dq
T I
ox Ay dy

where kg is the wavenumber in free space defined as ky = w/c.

If we use the same process as in the previous chapter to conduct the well-
posedness analysis, we must deal with a 12 x 12 matrix. Instead of dealing with
12 x 12 matrix, we take another way do the prove.

Since the low order term does not affect the wellposedness of the original problem

we thus neglect the term in the following analysis

9q 9q
0=A,-—+A, - —. 3.8
ox + Y ay ( )
We define a new matrix A(n), which will be used in the next section:
Mm:m@&@@ (3.9)

with 7 = (n,, n,) representingza unit {,normalqvector directed outward on the bound-

ary of a considered domain. Since A(Tz) ﬁ('lm)T there exists a matrix S such that
|| | r"! I :
l 1 :
|
STA s“ (3.10)

where ST is the transpose matrix of-S. From linear algebra, we know that for

a symmetric matrix A(n), we can create such matrix S by arranging all of the

eigenvectors of A(n) as

S == [81 S9 S3 S4 S5 86] (311)

where {s;|i = 1,...,6} are the eigenvectors of A(n). The matrix S is obtained as

Lo, 000
Beotop, 000
go|mowm 000 512)
0 0 0 m
0 0 0 -n %M
KU )




and

STS =

STA(n)S

SE ok

S

ny -1
V2 V2
ny 1
V2 V2
y —Ng 0
0 0
0
0

s
ny—n
0O O
0O O
0O O
Vi V2
-1 1
2 V2
0O O
0 O
0 O

0 0
0
0 0
Ny —MNg
=1 and
=L o
7 0
0 0
0 ny
£ %
: 0'. %
—n; 0
0 0
0 Ny
0 —ng
0 0

0

0

0

0

1

7

-1

2] L
0 0
0 0
T
=n, 0
| P3d= AL |
e | |
|||\/§‘lr!:5;\/§"y,
o |
0 . 0%
0 0
0 0
AR
Ve
1o
RS

o o o Bl ok

\/ii 0
0 0
0 0
0 0
0 0 ng,
0 0 n,
ng ny, 0
“00.0 0
0 0
0 0 O
——1 0 0
0O 1 0
0 0O
0 0O
0 0 O
0 0 O

o O

S-Sl SE

—1

o O

SIL S OSE

(3.13)

Before we proceed, we define a new vector R, the characteristic state vector, for

22



latter use:

nye, By — nye. B,
nyH, —n,H,
\/%H +\[H +fH

2 H,+ 3 H, — 5

3.3 The Energy Method

Based on (3.8), we can create the following equations:

dq dq
=A, A
! a+y@ 2
oq g
— gl " 4 | O1
dq' 0" w1014

e Fy + %erEy — \%E’Z
Ny n 1
EETEI -+ T%GTEy + TiEz

S5 H.

Ry
Rg
Ry
Rs

(3.14)

(3.15a)
(3.15b)
(3.15¢)

(3.15d)

where ¢* is the Hermitian of q. .Sunf:l.mi"rig up'(3.15b) and (3.15d) and using the local

coordinates (£, 1) transformation plotted in Fig. 3.1, we have

ozq*Agag ¢ AL aq %qg
= a%(q A + 5 (q Anq)
where
&:&%+@%,A—Ag

23
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Integrating over Q € {—1 < ¢ <1, =1 <n <1}, (4.16) becomes

o o
0= [ s+ 5wan] as (3.180)

= | ¢"(neAe + nyAy)q - di (3.18b)

l—szS‘Q T [nn <%’ %) - (Aq, Ay)} q-dl if ng =0

e 9¢ e
q" |ne | 52 (Ag, Ay q-dl ifn, =0
I sz‘Q [ ¢ <8 8y) Y ] K
[ ny |Vl gt A(n)g - dl if ng =0

=y 7" (3.18d)
| ne|VE g*A(n)q - di if n, =0

L 1=60

[ ny |Vl (¢*S)A(S*q) -dl  if ne =0

=1 , (3.18¢)
| ne|VE (¢8)A(SH) - d i, = 0

(3.18¢)

\ [=6Q
1

,.-_\

e (3.18f)
/ [Vl [ R1R1 +Rl|§R%¢+ ﬁ;Rg, B R, - S
/ e [, +}Ez i +ngR5 ReRo)_ - di

+ /_ 11 Vé| [~ R} Ry + RyREERERs — RyRql,_, - dn

where (ng, n,) is a unit normal vetor directed outward at the boundary J€2 of €.
Note that the eigenvalues corresponding to R3 and R, are zeros, as seen in (3.13).
Closely looking at (3.18), since the left side is zero, for the equation to be meaningful,

the right side should be zero, or we need the condition
RIR, + RRy = R3R3 + RyR, at the boundary. (3.19)

We must follow (3.19) when designing the boundary conditions to make the equa-

tions be well-posed.
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3.4 Characteristic Representations of Physical
Boundary Condtions

We now consider the representations of physical boundary conditions for 2D struc-
ture. Assume there is an interface seperating two domains. At this interface, we
define the unit vector 7 = (n,, n,) pointing outward from the first domain to the

second domain. Then from (3.14), the R variables can be represented in this way

1 4 1 -
Ry =——ii- (eE)) — — 3.20a
G (& L) 551 (3.20a)
1., = 1 -
Ry :—n~(erE||)+— n (320b)
2 2
Ry ———ii - i+ —H (3.20¢)
=—n- — .20c
5 5 I NG 1
Re — il [ (3.20d)
==t e .
6 B -2 Il \/5 1

where the subscript of the Ell mean§ the diregtion of the electric field is in the z-y

plane and the subscript of E | means the:'gl_j_refc_:‘qion of the electric field is perpendicular

to the x-y plane. Because the corr@aipoqﬂi;lg: eigenvalues of Rz and Ry are zeros,

they are ignored. 2| 1

For the PEC boundary condition, e have (éonsidering isotropic non-magnetic

media)
ixE =0, E =0 (3.21a)
7i - Hy =0. (3.21b)
From (3.20), we can obtain
Ry — Ry =—2E, (3.22a)
Rs + Re =V/27i - Hy. (3.22b)

Then with (3.21) the PEC boundary condition has a characteristic representation

as

Ripc = Ry, Ropc =My
(3.23)

Rspc = —Rg, Re¢pc = —Rs
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For the PMC boundary condition, we have

ii- Ej =0 (3.24a)
X ﬁH =0, HL =0. (324b)
From (3.20), we have
Ry + Ry =V2it - (¢, E)) (3.25a)
— Rg =V2H | (3.25D)

leading the characteristic representation for the PMC boundary condition as

RlBC = _R2> R2BC = _Rl
(3.26)

Ispc =ls," "Repe, = It

For source-free dielectric med-i‘a,_ thie physieal‘boundary conditions between two

domains are O\ )
| m__ '-i | |

n X E” JIE:II Ibl = EJI_I (327&)

EIEH ﬁ EI]E")I] H‘..;__: ; (327b)

n X HH —n X H” ! HJ_ = ﬁij (327C)

i Hf =i Hf’ (3.27d)

where the superscripts I and I denoting different dielectric regions on the two sides

or two domains of the surface interface, repectively. From (3.20), we have

E! (3.28a)

1 1 =
Ry =—i" (e, E") + —=E1". 3.28b
2 \/5 ( I ) \/5 1 ( )
Because i/ and 7!! are in opposite directions, let 7/ = —7i/! = 7. Then, adding
(3.28a) to (3.28b), we obtain
1 1 = o
R+ Ry = —ii- (e1Ef — ¢nEf") — —=(ET — E1'). (3.29)

V2 V2
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Using (3.27), (3.29) yields
Rl = —RI. (3.30)

After doing the same procedure to Ry, R5, and Rg, we can get the characteristic
representation as

1/11 11/1
RipL =Ry

I/11 II/1
1BC — R/ _—R1/

LR (3.31)

I/11 I1/1 I/11 I1/1
R5/BC = — Ry / ) Rm/gc = —R; /
3.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations. Consider

(3.7) with boundary terms for grid point (z;, y;)

. . Jq
—iBM - q‘(xzwyj) = ikoMa ; q’(ffi'yyj) - Am 8_;13

dq
A, — 3.32
+ Y ay (Ii’yj) ( )

(mir.yj)

B 53R i)

(=a) |
where i, j € {0,1,..., N} represents t|hIF numbering of grid points, §(x;,y;) is defined
| | :

b))

6(z;,95) = O O 5;03' + Onj.

as

T is a real constant number with its values to be delivered latter, S is the matrix

defined in (3.12), B is the boundary inflow/outflow operator defined as

by 0 0 0 0 0
0 by 00 0 0
00000 0
B = (3.33)
00000 0
00 00 by O
00 00 0 b

where by, b9, b5, and bg are all real, R is the characteristic state vector defined in
(3.14), and Rpc is defined in the previous section for every physical boundary con-

dition.
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Next, we ignore the low-order terms of (3.32). And like the low-order terms, the

inhomogeneous term Rpc can be neglected. Using (3.15b) and (3.15d) to obtain

* dq * dq "
0=l Ao go|  + 0l y| S (BBR) (3
Ti)Yj TiyYj
0= B ( )Am T gy + By ( )Ay 0|2y — 0@, y;)T(R*BR). (3.35)
Ti)Yj5 Ti,Yj

Summing up (3.34) and (3.35), integrating the equation in the discrete form, and

basing on (3.18), we have

N N
a * 8 * k
0=y 3wt |50 Au) + 0" )~ 2 )R BR)
=0 i=0

N N
= Z + Z we; [VE| [-R{ Ry + B3Ry + Ry R5 — Ry Re
= =
N N N . DA
1D+ fwy V| [— R} By N5 By + RERs — Ry
= VAT
v e\ | |
— | Wyo Z +wy, N Z ,Ljéié%(R{kBR).
GO\ | e
N v e 5
— | weo > +wen Y [0, 27(R*BR) (3.36)
§=0 j=0
§=—1 £=1

where ) is the discrete form of integral and w,; and w,; are the weights of the

discrete integrals (which will be delivered in Chapter 5). The values of w,; and w,;
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depend on the numerical method employed. Write (3.36) as

N
0= wei[(— V€| = 2wyorh1) Ri Ry + (V€| = 2wo7bo) B3 Ry

n=-1

+ (|Vf| - 2wn0Tb5)R;R5 + (— |V€| - 2wn07_b6)RZR6]

N
+ > wei [(— [VE] = 2wynth) )Ry Ry + (IVE| — 2w,n7bs) R5 Ry
n=1

+ (|V€| = 2wynTbs) RERs + (— |VE| — 2w,nTbs) RE Re|

N
+ E wy; [(— |Vn] — 2weorhy) Ri Ry 4 (| V] — 2weobe) Ry Ry
i=0
e=—1

+ (|V7]| — 2w§0Tb5)R;R5 + (— |V7’]| — 2w50766)R§R6]

N
+ Z wh; [(— |Vl — 2wesdrbe) B Risr (V| — 2wenby) Ry Re

+ (V] = thgNTb T Rs 20— [Nl = 2wenmho) B R
[amzé 11

_,f-r';:‘

In order to make the right side of (3I T?) ‘E be zeto, we define

and

Substituting the values in (3.39) into (3.33), the matrix B is determined.

(o I )
zwol Vgliwhenn = —1

! ]Vfl, when n =1

F= 2wnN
2%0 |Vn|, when = —
\ % |Vn|, when & =1

(blz—l, 62:1, bg,:l, b6:—1)

3.6 The Final Form of The Six-Equation

The boundary conditions have been discussed in detail in previous sections.

we substitute all variables obtained to form a standard eigenvalue problem.

Version
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(3.38)

(3.39)
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We start with the case of the PEC boundary condition. First, substituting the
matrices My, M, A,, Ay, S, and B into (3.32), and replacing (R— Rp¢) with (3.23),

we can obtain the following six equations:

—ifE, = —ikoH, + ;EZ — 0(zy, ;)T [2n, B (3.40a)
b
—ifE, =ikoH, + %Ez — (i, y5)T 20y E,] (3.40b)
0 0
—ifF, = ——F, — —F, 3.40
—ifH, = ikoe, E, + %Hz (3.40d)
—ifH, = —ikoe, B, + agHz (3.40e)
Yy
. 0 0
x Yy

For the case of the PMC boundary ‘ondition, .b~y replacing (R— Rpe) with (3.26),

we can get the following equations:”

i/—‘\". ll/-hxll
o4l
—iBE, = —ikoH, % A= \ (3.41a)
2l Wt
~i05, = i kpsfl o |1/ % (3.410)
: 0 @& g v
—ipE, = —%Ex - 8_yEy + 0(z95)7 [2(ns By + 1y Ey)] (3.41c)
—ifH, = ikoe, By + 831{2 — 0(z, ;)7 [2n, H,] (3.41d)
T
—ifH, = —ikoe, B, + gHZ — 0(zy, ;)T [2n, H,| (3.41e)
Y
0 0
", = _H — —H. A1t
OH. =~ He— 5 H, (3.41f)

Finally, by replacing (R — Rpc) with (3.31), we have the following equations for
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the dielectric boundary condition:

0

—iBE! = — ikOHyI + %Ei — 8" (wi, y;)7" [nL(EL — EIN)] (3.42a)
B} =ikul] + 5B — 8! (a1, )" [oh(EL - EI1) (3.420)
0 d
o EI — _EI EI
iHE; or * oy Y
+ 8" (i, y)r! | n(BE = LB 4 nl(E) - LB (3.420)
€rl €rl
—i3H] =ikoe,1 E. + %Hj — 6" (zi,y;)7" [nl(H! — HT)] (3.42d)
—iBH} = — ikoe,  EL + aQHZf — 6" (s, yy)7! [nl(H! — HI)] (3.42¢)
0 %,
—iBH! = - —H! - —H]
iSH, oxr " Oy
+ 51(:ci,yj)7' [nx(Hi 2 Hil) + nf/(H; — H;I)] ) (3.42f)

3.7 The Final Fox_'_rfl of Thre‘e-xEquation Version

We have demostrated the formulatlollls _ﬁrﬁﬁ) wavegunide problems in the previous

1
section. In fact, we can decrease thT lﬂumber of equatlons from six to three. First,
¥

we start from (3.40) by ertmgllt. in the contl_nu'ous form:

—ifE(z,y) = —ikoHy(z,y) + %E;(a:, y) — (z,y)7 [2n, E.] (3.43a)

—ipE,(z,y) = ikoH,(v,y) + %Ez(w, y) — 0(z,y)T [2n, E.] (3.43Db)
0 0

—iBE.(2,y) = —5-Eu(z,y) — a—yEy(ﬂc, y) (3.43¢)

—ifH,(z,y) = ikoe, Ey(z,y) + %Hz(l’, Y) (3.43d)

_iﬂHy(xa y) = _ikOETEx(xa y) + %Hz(‘x7 y) (3436)
0 0

—ifH (z,y) = —ng(x, y) — 6—yHy(x,y) +0(z,y)7 [2(n. Hy + nyHy)]  (3.43f)

where 0(z,y) is defined as

0(z,y) = lo(x) +In(z) +lo(y) + In(y).
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Here, the [ function, for example, lo(x), is the basis function we use to interpolate
an unknown function. lo(x) will look like as shown in Fig. 3.2 which is equal to 1
at x = xg and 0 at other grid points.

We multiply (3.43d), (3.43¢), and (3.43c) with i3 and replace i E,(z, y), i6E,(x,y),
and i0H,(z,y) with (3.43a), (3.43b), and (3.43f), respectively, to obtain

0? 0?
B°H,(x,y) kyerHa(2,y) — 55 Ha(w,y) — 5= 3y Hy(z,y) (3.44)
) 0 0
+ lkoera_yEz(xa y) + %5(1;’ y)T[Z(TLsz + nyHy)]
— tkoe 0(z,y)7[2n, E,]
) ) 82 2
. 0 (9
- Zkoe,,%Ez(x,'y) + 5_5('3:’ y)T[Q(anx +nyH,)]

+ zkoeré Qn E,

82
_/62Ez<x7y) - ZkO 4&@&08 y) a QE (.T y) (346)
(T y

,%1 QM i o 3(0.0)| 2B

Finally, we rewrite (3.44)—(3.44) 1n-dls_cre‘ge _forrn as

—3*H _—]{7261‘[—6—2[’[. o ——H, + tkoe aE (3.47)
x — otriiz 8x2 T (91’(9 Oray z .
0 ,
+ %6(331, y;)T[2(ny Hy + nyHy)| — tkoe 0(z4, y;)7[2n, ]
0? 0? 0
— 2 [ 2 e — —_ — —_
B°H, kger H, axany B, H, zkoerasz (3.48)
0
t gy 00 Yi) TR0 He oy Hy )] + ko€ (2, yj )20, B
0 0 0? 0?
—3E, = — zkoa H, + zkoa H, — @EZ — a—yQEZ (3.49)

0 0
+7|n —5(:vi,yj)+nya—y5(xi,yj) [2E.].

Tox
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For the case of the PMC boundary condition, we can derive

—*H ——kQEH—a—zH > ———H, + ikoe aE (3.50)
xr — 0Crtix 81’2 a a 0 ray z .
+ (i, ;)T 20 (QH + 2H)
z7y] T T ax x ay Yy
0? 0? 0
—(*H, = — ke,H, — ——H, — —H, — ikoe, —F 51
B°H, kye, H, ey~ gty zkoerax . (3.51)
0 0
+ 0(z4, y;)T Zny(%Hz + (9_yHy>
0 0 0? 0?
—ﬂQE = — Zkoa H + Zkoa Hy — @Ez — a_y2EZ (352)
. 0 0
+ (@i, ;)T [—ZQko(any —ny,H,) + 2(n$£ + nya_y)EZ

and for the case of the dielectric boundary condition, we can derive

o? 0? 0 i

—3*H! = — k2e, H! — —Hf — a—a“HI Hikoe, = % E! (3.53)
) - '
+ 50" (@i )7 [l ,&g ) A ( =l

JL
£C)
I I I 9 '.'E"'H
+ 07 (i, )" g | Am(He - H
IR i _
= 6" (i ;)" [ (8" G 5”(@,.% “) (ne(H) = H) + ny(Hy — H}"))]
L "':'82; L e Mol
5o T gt~ Py I (3.54)
+ agél(mi, yi) ! [ng(Hy = H') + ny(H, — H,")]
Y
0 0
g [ (0L = HE) 4 0] = 1))+ el (B — B

aﬁ( H”)> — ikoeTnf/(Ei — B

—°H] = — kje, H) —

— 51(@-, yj)TI [ni (6I(xi, yj)TI — 6H(xi, yj)TH) (ni(H:ﬁ — Hf) + né(Hé — H;I))]
0 0 0? 0?

_52E£ = — Zk?()a H + Zkoa$HI — @El — ﬁEl (355)
+ 7! {nxagy(fci,yj) +n 8251(:6‘@-,%)] (B! - B!

I
T .
+ 6" (x, yj); [—iko (erl(niﬂyl — néHi) — eTH(ngIUH;I - niHiI))

0 0
+ (nl— —I—nl—) (ETIEZI — eTHEZH)
x Yy

- (51(901'7 yj)TI@J - 51[(5%%)7[ GrH) (EI E;fl)] .
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Figure 3.1: Transformation b@ﬁw@iy global and local coordinates.
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Figure 3.2: The characteristic of ly(z).
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Chapter 4

Mathematical Formulation for 2D
Photonic Crystal Analysis

This chapter is devoted to the process of derivation of the formulation for the 2D

photonic crystal (PC) problem. Since we have demostrated the whole process of

derivation in details in the lasti echapter; in this chapter we will only describe some

important parts of the whole deriyation.

4.1 Equations Used fprPC Structure

We start from the Maxwell’s curl equations for the TE mode:

OB " OHy
“ot 0z
OFE. 0H,
o 0w

0H, OE. O0F,

M08 = ox oz
with the following transformation:

. 1 _

Hy = —Hy7 E:c = Emy
Vv ,uo/Eo
(4.1) will appear as
& OFE, _aHy
c Ot 0z
e OF, B 0H,
c ot Oz

10H, OB, OE,

c Ot oz 0z
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(4.1a)
(4.1b)

(4.1c)

(4.2)



where ¢, is relative permittivity defined as €, = €/¢.

4.2 Well-posedness Analysis

We write (4.3) in matrix form:

MG

9q g
Tl p A2 4.4
c Ot Ox * 0z (4.4)
where § = [E, E, Hy]T and M, A,, and A, are defined as
e 0 0 000 0 0 —1
M=109¢ 0], 4%=]001|4A4=]0 0 0 |- (45
0 0 1 010 -1 0 0
Let ¢(z,2,t) = q(z,2) - ¢! and (4.4) becomes
. o O  W0q
kiWgq = Ap—as 1 As o™ 4.
h ko — ] & I/—'-»."I II_,.""\.; l'
where kg = w/c (ki)
Now we neglect the low-order terrzls"ﬁ%{i’é’hi do not affect the well-posedness anal-
ysis. Then (4.6) becomes 1 ; ||1
| )
AR
0= ~— +A ==
Oz 8 0z

(4.7)
Define a new matrix A(n)
An) =n, A, +n.A

(4.8)

where (n,, n,) represents the unit normal vector directed outward on the boundary

of the considered domain. Since A(n) = A(n)?, there exists a matrix S such that

ST A(n)- S = A.

(4.9)
For a symmetric matrix A(n), we can define such matrix S as
S = —le e op, (4.10)
1 1
v
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From (4.10), we have

-1 0 0
STS=1, STAm)S=| 0 1 0
0O 00

where y/n2 +n? = 1 has been used. We define a new vector R, the characteristic

state vector, for latter use

Nz — Ng 1
B E, — E, + LH, R
R=S"-q=| %p, - %p - LH, | = | R
anz + nZEZ Rg

4.3 The Energy Method

Based on (4.7), we have the fol_lov;]ing equations: -

9z

Summing up (4.13) and (4.15) and using the local coordinates (&,

shown in Fig. 3.1, we have

0 qh4§a€ ¢ Ayt aq 2% 2§;Aﬂq
Z(%(q*flw) + a%(q*AnQ)
where
A§:A$%+AZ%, Ay = A, g A, gz.
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(4.12)
(4.13)
(4.14)

(4.15)

n) transformation

(4.16)

(4.17)



Integrating over Q € {—1 < ¢ <1, =1 <n <1}, (4.17) becomes

0 0
o~ | [a—gmmnga—n(qmn@} ds (4.184)
_ / ¢ (neAe +nyA,)g - dl (4.18b)
=69

= [ Vil RiR R, de [RGB, dg
+ /_ 11 Vel [-RiRy + iRl - di + /_ 11 VE|[-RiRy + RiRaly - i
For the right side to be zero, we need the condition
RIRy = R;Ry  at boundary. (4.19)

And we must follow (4.19) when e design the boundary condition to make the

equations be well-posed.

~

4.4 Characterlstlc Repgesentatlons of Physical
Boundary Condt'1|ori's |

!|
I X

We now consider the representatlons of physical boundary conditions for PC struc-
ture. Unlike the waveguide problem, there are only two types of boundary con-
ditions, the dielectric boundary condition and the periodic boundary condition,
involved in the PC structure. Consider an interface seperating two domains, and
define the unit vector @7 = (n,, n,) pointing from the first domain to the second

domain. Then from (4.11), we can rewrite the R variables as

1
Ry =il

D]L

1
1 L = 1

where the subscript of EII means the direction of the electric field is in the z-z plane,

RQZ

and the subscript of H, means the direction of magnetic field is perpendicular to

xz plane. We ignore R3 because its corresponding eigenvalue is zero.
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For the case of dielectric boundary condition, we have (considering isotropic

non-magnetic media)

i x Ef =i x Eff, E{ = EY! (4.21a)
i e Bf =it er B[’ (4.21b)
i x Hi =i x H{!, Hf = A (4.21c¢)

ﬁﬁHf :ﬁ.ﬁHU (4.21d)

where the superscripts I and I denote the varibales are defined in different regions.

From (4.20), we have

1 I
Rl =—i! x Bl + —H! 4.22a
1 \/§ I \/5 € ( )

1 e ] -
R 8= il HEE— S H{'. (4.22b)

Because 7’ and 71'! are in opposite divections, letting @@ = 7t
| Na=s0) |
(4.22a) to (4.22b), we obtain - e || '
R N
RI—l—RH:—'ﬁxl B BNy A esfH! — A1,
A i &y \b \/5( L —HY)

By using (4.21a) and (4.21c), the above ezluation becomes

= —7i!! and adding

I 7
Rl - _R2 .
Consequently, we have the characteristic representation
1/11 1)1 1/11 1)1
( ngc =R / ) R2/BC =R / ) : (4.23)

Because of the periodic geometry character of the PC structure, the field distri-

bution should satisfy Bloch theorem
Y(F + ia) = e IFRey (7) (4.24)

or

V(& + nga, 2 + nya) = eI Makatnakay, (g ) (4.25)
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where a is the lattice constant of the PC and & is the wave vector in the z-z plane.

And (4.23) should be modified to be

RI/H _ _e—j(nzkz—i-nzkz)aRII/I
i | ) (4.26)
RIIT — _minakatnke)a pII/T

as the periodic boundary condition.

4.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations. Start

from (4.6) with boundary terms for a grid point (z;, z;)

. dq
thoM q’(mivzj) = A o

9

A,
+ 0z

(xivzj)

— 6(x;,2;)TSB(R — Rpce) (4.27)

(I?J.Zj)

where i,j € {0,1,...N} represents the.numbéring' of grid points, 6(z;, ;) is defined

as Y &/ ONVE
. [ =5
O, 7) =| i ¥ - 0o 0Ny

7 is a real constant number with“its values to be' determined latter, S is a matrix

defined in (4.10), B is the boundary inflow/outflow operator defined as

by 0 0
B=10 b, 0 (4.28)
0 0 0

where b; and by are both real, R is the characteristic state vector defined in (4.11),
and Rpc is defined in the previous section for every physical boundary condition.

Next, we ignore the low-order terms of (4.27), and use (4.13) and (4.15) to obtain

; dq . dq \
0= gq |($i7yj) A, E - +q |(Zi7y]_) A, y - — 0(z4,y;)T(R*BR) (4.29)
Zi,Yj Z5,Y5
0= P ( )Am Tz T 3_y ( )Ay q |(zi,y]-) — 0(z,y;)T(R*BR). (4.30)
Zi,Yj Zi,Yj
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Summing up (4.29) and (4.30), integrating the equation in the discrete form, and

basing on (4.18), we have

0- Zwmzwm{ (0 420) 4 50 420) — 20(as )7 (B

N N N
= Z+Z war [Vl [R{Ry + R3Ra] + | Y+ | w; [VE| [-RiRy + R3Ry)]

z=—1 Z:1 rz=—1 z=1

— | wso Z +szZ wWei2T(R*BR) — | wyo Z +waZ w,;27(R*BR)

= =0
z_—l z:l T——l x=1

(4.31)
where ) is the discrete form of integral and w,; and w,; are the weights of the
discrete integrals (which will be delivered in Chapter 5). The values of w,; and w,;
depend on the numerical method_xempl(-)yed."-..'VVrit_e (4.31) as

0= Z Wy [(— | V| = waorbl)'R*Rl f (]vm 2w, 7hy) Ry Ry

.—-- I

szl e {F;; I

u-'.!

I
—+ Zwm |V7]| = 2wyN7*A1 R1 T|‘ (|V7]| 3 2’wyNTb2)R Rg]

- '1 '

N L 3
+ ) wy (= V€| - 0 RSV E| — 2s7h) R

7=0
r=—1

N
+ Z wy; [(— [VE] = 2wuntb) BRI Ry + (V] — 2w, nThe) R5 Ry - (4.32)

Jj=0
z=1

In order to make the right of (4.32) to be zero, we define

(

|Vnl, when z=—1

2w0

\Y when z =1
T = oy V71 (4.33)
V¢, when x = —1

2wa:0

——|V¢|, whenz =1

\QWN

and

( by=—1, by=1 ) . (4.34)

Substituting the values in (4.34) into (4.28), the matrix B is determined.
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4.6 The Final Form of The Three-Equation
Version

Now we substitute all variables obtained to form a standard eigenvalue problem.
We start with the dielectric boundary condition. First, substituting the matrices
M, A, A,, S, and B into (4.27), and replacing (R— Rpc) with (4.23), we can obtain

the following three equations

~10H i

.l I I r

ikoE, = P —|— o (xl,zj)erl [n. (H, — H}")] (4.35a)
1 aHI 1

.l I I s

ikoE, =  or 0 (x4, zj)eﬂ [n. (H, — H,")] (4.35b)
OBl OFE!

: I __ z T

ihoHy == — == (4.35¢)

+ 0% (4, 27 [nz(EI BY) —n, (El - EIN)].

We can do the same procedure for the perlodlc boundary condition and obtain

ey r“.
—10H
ikoEL = + 6 (ay, zj [ @L—r ekt ngkz)a priny ] (4.36a)
1 OH! f ||
ik Bl =— 0 _ 61 (a, zj.)'f— . (H ge J(”zkﬁnz’fﬁaﬂﬂ)} (4.36D)
€rJ ox S By
OFT  OE! L N
k HI — z x 4
0y oz 0z (4.36¢)

+ 5I(xl-, Zj)TI [(nZEi — anZI) — eI (nakatnzkz)a (anil - anf)} )

Similarly, for TM mode we can derive for the dielectric boundary condition:

- I aEz,I/ I I I I
ikoH, = — 5 + 6" (25, )" [n. (E) — E,))]
8EI
ikoH! = S 8 (z, 2;)T I [nm (E; - Eyn)]
. 1 9H! 1 9H! 7l
Zk’oE; :;% - a O~ + 51((EZ, Z])ET,[ [nz (HI H£1> (HI HII)]
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and for the periodic boundary condition:

E! ‘
' ! I 1 1 —j(naketnzk.)a Il
ikoHy = — =+ 0" (w3, 2)7" [n- (B, — e inekatnski)a pITy ]
szHI é?EI — 61(331 2T 1 [nz (Ef _ e*j(nzkﬁnzkz)aEn)}
O Bt y Y
1 0H! 1 oH!

€1 Ox €1 0z

I
+ 07 (x4, Z])Z— [(nZHi — anZI) — e I (nakotnzks)a (nsz — anZH)} .
rl

4.7 The Final Form of the One-Equation Version

We have demostrated the formulations for the PC problem in the previous section.
In fact, we can decrease the number of equations from three to one. First, we start

from (4.35) by writing it in the continuous form

iko Bl (x, 2) = ei %HI(SL‘ z) + 6I(x z):: [ % (HI - H;I)} (4.39a)
ikoE!(z, )zé(%H[(x 2) f“;s-_‘ }l [ ( — BN (4.39b)

ikoH, (z,z) aﬁEl (£, 2 —ngﬁﬁg(x zl o, (4.39¢)

+ 6" (, z) 4 [nz_ (BT = EH) n, (B! — EM]
where 0(z, z) is defined as
d(x, 2) =lo(z) + In(x) + lo(2) + In(2).

We multiply (4.39¢) with ik and replace ikoE,(z, z) and ikoE,(z, z) with (4.39a)

and (4.39b), respectively, to obtain

—k2H!(x, 2) _t il Hl(z,2) + 1o H)(z,2) (4.40)
0y = B e 022 v '
0 d I 7! I T
— — |H' — H
( "5 —l—nzaz) 5 (:r,z)eﬂ [H, 2

8 a HI HII
Y I o o y  Hy
0 (z, 2)T [(nzax + nzaz) (e” -

(Pt Sty ]

€rl €rll
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Finally, we rewrite (4.40) in simplified form

—k{H) —v 2H! — (i 8") — [Hf Hl' (4.41)

€rr €rl
HI HII 5i1 S AIT

ot v () (T )
€rl €rll €rr1 €rlT

For the periodic boundary condition, we can get

1 Tt
—koH) = v> H,) — (it vaf) [H’ AH]'| (4.42)
HI HiI sl LI
_ 5l A—2L | — — HI — AR
o [n v (67«1 €7~H) < Erl €Erll > ( v v )

Where A = e_j(nzkz'i‘nzkz)a'

The above is for TE mode. For the TM mode, we can derive

(4.43)

for the periodic boundary condition.
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Chapter 5

Pseudospectral Method and
Shifted Inverse Power Method

This chapter is devoted to the introduction to the numerical methods we use for
numerical analysis, including the pseudospectral method and the shifted inverse

power method (SIPM).

5.1 The Pseudospectral Method

The spectral method [Hendiksen, et d?., 2%107] is known as high-efficiency and high-
accuracy method in numerical édml):utation. Th_e bagic idea of the spectral method
is to use a set of interpolation polynomiéls to approximate a function of interest.
There are two types of spectral method: Galerkin methods and collocation methods
(which we call pseudospectral methods). We usually use pseudospectral methods
since it is simpler than the other.

For interpolation polynomials, there are mainly three kinds of polynomials used
in this method: Fourier, Legendre, and Chebyshev polynomials. The collocation
points are different in each polynomial method. We will only describe the Legendre

collocation method in detail since we only use this polynomial in our research.

5.1.1 Overview of the Pseudospectral Method

Assume we want to solve the equation:

Lu(x) = f(x) (5.1)



where L is a differential operator, u(z) is the solution to the differential equation,
and f(z) is a known function. Since u(z) is an unknown function, one of possible
ways to solve it is to use a set of functions, called basis functions, to approximate

u(z). In other words, we can let

u(z) = uy(z) = Zuk¢k(x) (5.2)

where ¢y (z)’s are the basis functions and w;’s are complex numbers. By substituting

(5.2) into (5.1), we can define a residual function as
Ry (z) = Luy(z) — f(x). (5.3)

Now the question becomes: how to minimize the residual function.
For the pseudospectral method, we let the residual function to be zero at the

N + 1 collocation points w;,4 = 0,45..., N, so that

r Fs

Lin{zh) = fi(ggg,-;s;,:: o4 .+ (5.4)
Y :

| |
| 1%

> urLérka) =5f (@i i=0,1,...,N (5.5)
k=0

Therefore,

which is an algebratic system with N + 1 coefficients, ug, £ = 0,1,..., N, to be
determined. In other words, we transform the differential equation problem into an
algebratic equation problem. The collocation points and differential operators will

be delivered in the next subsection for Legendre funcitons.

5.1.2 The Pseudospectral Legendre Method

The Legendre polynomial of order N, Py(x), is defined as

1 dV(x? - 1)N

oM@y st (56)

PN(x)

We consider the collocation mehtod that is the same as described by Hesthaven and

Gottlieb, [1996] with the collocation points given as the Legendre-Gauss-Lobatto

46



points, defined as the roots of the polynomial (1 — z?) P} (z). There exists no ana-
lytical formula for these roots.
The choice of Gauss-Lobatto points is for the purpose of using the Gauss-Lobatto

quadrature formula which means that if f(z) is a polynomial of degree 2N — 1, then

N 1
> flagwi = [ f(&)dg (5.7)
i=0 -1
where x;’s are the Legendre-Gauss-Lobatto collocation points, and the Gauss-Lobatto

weights, w;, are given as

2 1
w; = — , 1<i<N-1 5.8a
2
— e 5.8b
W =UN T NN T 1) (5.8b)

In the pseudospectral Legendre'method or'-.'_the'Legendre collocation method, the

function f(x) is approximated by'Legendre-Lz;grgnge interpolating polynomials.

4 N\ s
Thus, we can construct an Nth order .gl_@_g@i;@(?gendre interpolant, Ly, to obtain an
& <= |
approximation to the function as | ‘ n | I
R ll g N .'H‘- )
(B ()=t () () (5.9)
& =0

where the interpolationg Legendre-Lagrange polynomail g;(z) is given as

(1 —2?)Py(x)

NN + 1)@ — 2:) P (1) (5.10)

gi(x) = —
Note that by this construction,
(Lnf) (@) = f (). (5.11)

The spatial derivatives of (Ly f)(z;) can be achieved by a matrix operator, with the

matrix entries given as

([ NN+ .
— 1=75=0
Pn(zs) 1 ; ;
Dij = gj(w;) = { vl s (5.12)
7o N(N+1) i—i—=N
4 ) =)=
\ 0, i=j7€[l,N—1]
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such that the derivative of f(x) at a collocation point, x;, is approximated as

df(z;)  d(Lnf)(z:
f;z)z Nf z:) ZDmf (). (5.13)

We can use (5.13) for 1D waveguide problems, but for 2D waveuguide and PC

problems we must introduce transfinite elements.

5.1.3 Curvilinear Representation of The Pseudospectral Method

Consider a 2D setting and define the approximation to f(z,y) as

N N

[z, y) = F(@i95)9:(2)9;(y) (5.14)

i=0 j=0

where the Legendre-Gauss-Lobatto grid y; has been introduced. The approach has
the benefit that the derivatives can-be caleulated through the 1D formula and thus
the differential formula at the 2D ¢6llocation Iij-oinjcs arranged in a rectangular domain

can be expressed as in the following mtrix,-multipﬁeation form

\

f
I

8 rec
f : :Ifl (N[-I»l)x N+1)frect (5158,)
8fpec | I ;
) & i'frect-D(j\f_|_1)><(N_H) (515b)
Y
where . )
DOO DOl Tt DON
- Dy Dy -+ Din
Dininyx(n+1) = ' ‘ ' . (5.16)
L Dno Dni1 -+ Dnw |

The entries of 5(N+1)><(N+1) have been defined in (5.12). frect isan (N+1)x (N+1)
matrix with entries f(z;,y;),7=0,1,2,..., N,and j = 0,1,2, ..., N, corresponding to
collocation points in rectangular arrangement. However, the employment of matrix
products is still restricted by the nature of rectangular grids. And since we define
(5.6) in the range x € [—1,1], (5.15) can only be adopted in a unit square [—1, 1] x
[—1, 1] area which restricts our computation. In order to surpass this restriction, we

must introduce the transfinite transformation.
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By applying the transfinite blending function presented by Doncker [2000], each

curvilinear quadrilateral in Cartesian (x,y) coordinates can be mapped into a unit

square area [—1, 1] x [—1, 1] in curvilinear (£, n) coordinates under the transformation

£ - £(x,y),

And we define four new matrices,

nx

ny —

- 0&(z0,90)/0x
0&(x1,y0)/0x

0&(xn,yo)/Ox

(o, yo)/al'
on(z1,yo)/0x

On(xn,yo) /0x

- 0&(z0,%0)/ Y
0&(x1,90)/0y

9¢(xn,y0) /Oy

377(5507 yo)/ay
on(x1,40) /0y

| On(zn, y0) /0y

86(1'0, yl)/Gm
0&(x1,y1)/0x

0¢(zn,y1)/0x

onf@o, y1)/ 0z

O} D

NI

(%(5.517!/1)/‘811 g v

85(:61\;, yl)/ay

on(xo, 1)/ 0y
aﬁ(xh yl)/ay

an(xNayl)/ay

n=n(z,y).

¢ (o, yn)/Ox
0&(x1,yn)/0x

(N, yn)/0x |

on(xo, yn)/0x
on(x1,yn)/O0x

(@, yn)/0x i

 O&(0, yw) /Dy

a£(x17 yN)/ay

0 (zn,yn)/0y

877(1307yN)/ay
677(%7 yN)/ay

a77($N7 yN)/ay

(5.17)

(5.18a)

(5.18b)

(5.18c¢)

(5.18d)

From the fundamental differential principle, the approximations for the derivatives

of f(x,y) in the (£, n) coordinates can be written as

(5.19a)

(5.19b)



where ” @ 7 symbols Schur product defined as (A e B);; = a;;b;;, and D equals
Z:?( N+1)x(n+1) defined in (5.16). Here the matrix fcur is in general different from fmt
in (5.15) in that the latter has been defined on rectangular grids while the former is
on deformed locations of grids adapted to the shape of the sub-domain.

Since we want to form a standard eigenvalue problem, the unknown function
must be a vector. Unfortunately, fuu is an (N + 1) x (N -+ 1) matrix, so we must
convert (5.19) into a resolvable form. First, we rearrange the (N + 1) x (N + 1)

matrix fuy into the [(N + 1)(N + 1)] column vector fu, as below

foo
- 7 J10
foo for - fon
= fio fu - fin . -
fcur = ) ) A ;,_. :> fcur = fNO
£~ for
P il _/"‘\._
i fvo fn b | (NMW%} !.
; | ':.-,_‘-. | |I
J }1 ', ii; i L un d (v (V1) x 1.
- |. il.
Then, we define M¢,, Mm, ng, \ 'M,,y as l' &
YT 85(370;%) af(xlayo) éf(.fémyo) af(xoayl) JTN,Z/N
Mea =diag ( or > ox 7 9x 7 Ox
~ 877(1’073/0) 877(:51,3/0) 877(56N,yo) a'0(9[50,2/1) JJN,Z/N
Mye =diag ( or  Ox 7 dx 7 0ox
~ . 35(5170,90) af(l'byo) 35($N,yo) 35(1'0,3/1) xN,yN
M. =
& =diag ( oy oy ’ oy ’ oy
~ 377(530790) 877(9131:?/0) 877(1'N,yo) 677(330,%) 3?7(33N,Z/N
M. —=d ... AN, INT
ny 18 ( oy oy ’ dy ’ oy ’ oy

where diag(a, b, ...) repersents a diagonal matrix which has a,b, ... as the diagonal

elements of the matrix and zero otherwise. Next, we rewrite (5.19) with slight

modification
achur ~
=D, four 5.20
o ~Dif (5.200)
afcur ~ L
=Dy feur- 5.20b
8y yf ( )
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In (5.20), the definitions of D, and D, are

Dy =Meo[Iin11)x(n41) @ D] 4+ MyelD ® Iini1yx(nsn)] (5.21a)

Dy =Me,[I(v+1)x(n+1) ® D] + Myy[D @ Iinvs1yx(v-1)] (5.21b)

where J(ni1)x(n41) represents an identity matrix with dimension (N +1) x (N +1)

and ® symbols Kronecker product defined as

Gooé G01§ aONé
_ a0B a1 B ainB
Ao B — 10 11 1N (5'22>
i aNOE CLN1§ Tt aNNE i

And we can use (5.20) to constructsthe matrix. we need for 2D waveguide and PC

problems.

5.2 The Shifted Inverfse Power Method

The shifted inverse power rnethod SIL)M) IS & numerlcal method to solve the eigen-

value problem. It is widely used because of 1_.ts fast convergent property. We have

developed some techniques to improve'its practicability.

5.2.1 The Algorithm of SIPM

Consider an eigenvalue problem:
Azr = px (5.23)

where A is a known square matrix, x is an eigenvector, and p is the corresponding

eigenvalue. We can use the SPIM to find  and p. The algorithm of the SIPM is
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given below:

choose p*, (5.24)

for n=1 to max_it

(A— u*[)x(”ﬂ) =z (5.25)
K ( (nt1) )
x(n—i—l) (n+1)

|x(n+1)|

where max_it represents the maximam iteration time, [ is an identity matrix whose
dimension is the same as A, and 6(z) is an arbitrary linear function which follows the
rule: §(ax+pPy) = ab(x)+[F0(y). Please note that (5.25) is to solve a linear system.
Usually we use the LU decomposition_n_lethc_)d to.solve this linear system. But since
the matrix A we deal with is alifvays'a. spallr:se matrix, it is not so appropriate to

use LU decomposition because it will-Comsurie enoIous memory space. Instead of

!
"'_\r- l-f. |

using the LU method, we chooseé,to u:fe &Efati\’{e methods to solve the linear system
: . M1
with the benefit that they allow us 1{(] allecate lonly the entries which are nonzero.

. 1%
5.2.2 The Iterative Method )

The iterative method includes a wide range of techniques that use successive ap-

proximations to solve a linear system. They can be classifed as:
e Stationary iterative methods

— The Jacobi method
— The Gauss-Seidel method

— The symmetric successive overrelaxation method
e Nonstationary iterative methods

— Conjugate gradient method (CG)

— MINRES and SYMMLQ
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CG on the normal equations, CGNE and CGNR

— Generalized minimal residual (GMRES)

BiConjugate gradient (BiCG)

— Quasi-minimal residual (QMR)

— Conjugate gradient squared method (CGS)

— BiConjugate gradient stabilized (Bi-CGSTAB)

— Chebyshev iteration.
Stationary methods are older, simpler to understand and implement, but usually not
as effective. Nonstationary methods appeared from relatively recent development;
their analysis is usually harder to under§1:andZ but they can be highly effective. From

our test, stationary methods are not appropll":la_tq for our linear system because they

do not converge in every casel So we-choose the Bi_@G method as our linear solver

| 15 .'I_h
algorithm. | o || lI
Consider a linear system. ©~ l H‘* H
" | / & :
Az=b (5.26)
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where A is a known square matrix, x is an unknown vector, and p is a known vector.

We can use the BiCG to find z. The algorithm of BiCG is as follows.

choose 2

PO —p_ Ag©) O = 0

for

end

n=1 to max_t

P — pn) (n)

if 7=1 then

) = p O 50 = 0

p p

else

2 = (=1 | o)) 1«(”){ L&l AP AL ) = 1) _ g g(m)

By using the BiCG method, we do not need large memory space to do the calculation.

In fact, all analysis cases in this thesis can be run under a normal personal computer

with 4GB memory.

5.2.3 Guessing the Initial Eigenvector Using Former Data

This technique is to modify step (5.24). Step (5.24) requires us to guess the initial

eigenvector. For higher-degree of polynomials, the initial eigenvector can be obtained

from interpolating the eigenvector at lower degree.

For example, if we want to solve the 2D waveguide problem at the polynomial

degree of seven, we can solve the same problem at the polynomial degree of three
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first. Then we use the eigenvector computed at degree three to interpolate the initial
eigenvector for degree seven. The whole process is shown in Fig. 5.1. Using this
technique can speed up the SIPM algorithm since the initial eigenvector is quite

accurate.
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Computed Eigenvector Initial Eigenvector

Figure 5.1: Using former data to interpolate initial eigenvector
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Chapter 6

Numerical Results For Waveguide
Problems

In this chapter, we will analyse several 1D and 2D waveguide structures including
slab waveguides, partially filled waveguides, circular waveguides, fiber waveguides,
channel waveguides, and rib waveguides usiﬁg- the formulations discussed in previous

chapters.

6.1 Symmetric Slab W?ﬁféguides

5)

First, we examine the simple éymr;n.etric ’Wé'algly” guiding slab waveguide. The
structure considered is the same as .the oné considered by Hadley [1998], as shown in
Fig. 6.1. We take the wavelength to be 1 um and the waveguide width of waveguide
is W=2 pum. The refractive index for the core area is n.,. = v/11.088 and the
refractive index for the cladding area is ngeq = V/11.044. The PEC boundary
condition is put at the +15 um positions and the whole structure is divided into
five sub-domains. For this structure, the exact effective indices are neffezact =

3.3270509487737 and 3.3270445145126 for the TE and TM modes, respectively. The

effective index is defined as
5}
Ne ff = /{Z_O (61)

where (3 is propagation constant and kg is wavenumber in free space.

Because the field profiles of this symmetric structure for TE and TM modes are
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almost the same, we just show the field profile of TE mode in Fig. 6.2. Figure 6.3
shows the relative errors in the calculated effective index with respect to the degree

of polynomial in each of the five sub-domains. The relative error is defined as

RE. — Neff — Neffexact (6 2)
Nef fexact

Here neffezact T€presents the calculated effective index. From Fig. 6.3 , we can
see that both convergence lines for TE and TM modes show spectral convergence

characteristics. They reach the orders of 107! and 1073, respectively.

6.2 Asymmetric Slab Waveguides

The second case we examine is the asymmetric "strongly” guiding slab waveguide.
We take the wavelength to be 1.55 ,um and the Waveguide width W = 0.75 um. The

refractive index for the core area i8Mcore = 3 3704 and the refractive indices for the

-

cladding areas are nguq1 = 3. 17 and m»lwg 3: 1 0. The PEC boundary condition is
put at the -5 pm and 2 pym posmohf anﬂ th,e‘ Whole structure is divided into five
sub-domains. The exact effective 1ndlces are |neff aet = 3.290296220624705 and
3.27555088010413 for the TE and TM modes; respectlvely [Hadley, 1998].

Figures 6.4 and 6.5 illustrate the field profiles for the TE and TM modes. Figure
6.6 shows the relative errors in the effective index for the two modes with respect
to the degree of polynomial. It can be seen that because there is an interface
with high contrast in the refractive index, we need higher degrees of polynomial
(degree =19 ~ 23) to get the same precision as in the symmetric slab waveguide

case (10713 ~ 1071).

6.3 Partially Filled Metallic Waveguides

From now on, we discuss 2D waveguide structures. We first consider a half-filled
metallic waveguide structure. Figure 6.7 shows the cross-section of this waveguide.

The cross-section is divided into two domains and the width of the waveguide is
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twice of the height. For this kind of waveguide, the modes can be classified into
longitudinal-section electric (LSE) and longitudinal-section magnetic modes (LSM).
The exact value of the effective index can be obtained by solving transcendental
equations [Collin, 1960]. Figure 6.8 shows the mesh division. The refractive indices
for the dielectric and air regions are ny = 1.5 and ny = 1.0, respectively. And we
have the PEC boundary condition at all four edges.

The exact value of the effective index is neffezaee = 1.27575556678727 when
the wavelength is chosen to be 27 pm. Figure 6.9 shows the relative errors of the
calculated effective index for the LSE;q mode obtained using the six-equation and
three-equation formulations, respectively. These two convergence lines are quite
close to each other in Fig. 6.9 and they are both on the order of 107* ~ 10715 with

the ninth degree polynomial in each demaine

6.4 Circular Met'allio--Wq,veguides

— .'.H | |
In order to check if the PEC boundalrfl CO‘[ldltI]OIl can Work on curvilinear boundary,
we choose the circular metallig’, walvegmde tbl do ‘the test. Figure 6.10 shows a
quarter of the cross-section of thls Wavegulde Due to the geometrical sysmmetry,
we only need to consider a quarter of the waveguide cross-section. The radius of this
waveguide is R = 0.5 ym. Figure 6.11 shows the mesh division. The whole structure
is divided into three domains. Two of the three domains are transformed using the
curvilinear mapping to match the circular boundary. We put the PEC boundary
condition at the circular edge, and the PEC and PMC boundary conditions at the
other two edges, respectively.

The exact value of the effective index for the fundamental TE; mode is nef £ epact =
0.956102174410419337 at the wavelength of 0.2 ym. Figure 6.12 shows the relative
errors of the effective index for this fundamental mode with respect to the degree of

polynomial for both six-equation and three-equation formulations. It can been seen

that both formulations can achieve numerical accuracy on the order of 10713 ~ 1071
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when we use polynomials of degree=11 ~ 13 in each sub-domain. Notice that the
three-equation formulation does not converge when we adopt higher order degrees
of polynomial, and we can see this property in other cases. The distributions fo all

the sic field components for this mode are shown in Fig. 6.13.

6.5 Fiber Waveguides

The fiber waveguide is a circular dielectric waveguide which is know to be more
complicated than the circular metallic waveguide discussed in the previous subsec-
tion in the mode analysis. Figure 6.14 shows a quarter of the cross-section of the
fiber waveguide. Just as in the pervious case, we only need to consider a quarter
of the waveguide cross-section because of geometrical symmetry. The core radius
is R = 0.6 ym and the fiber is With'_hjgh refractive-index difference, namely, the
refractive index of the core is _nco;me = /8 and txh.aixz 6f the surrounding cladding is
Nspace = 1. The mesh division "fér thef-i;&geﬁé;g meth-OId is shown in Fig. 6.15 where
five sub-domains are adopted Thel ta:fﬁ:; of |the computatlonal window is taken
to be Rpc = 2.5 um. Note that wel must puﬁtlthe boundary of the computational
window far enough to avoid &gmﬁcant perturbatlon of the circular PEC boundary
on the calculated mode fields.

The exact effective index for fundamental HE;; mode of the fiber waveguide is
Neffezact = 2.68401932160108 at the wavelength of 1.5 ym. Figure 6.16 shows the
relative error in the effective index with respect to the degree of polynomial for both
six-equation and three-equation formulations. It shows that both formulations can
achieve high accuracy with the relative error on the order of 107!° when the degree
of 23 is used in each sub-domain. The accuarcy of the six-equation formulation
can be better than the other of 107! using the degree of 27. It is again observed
that when using higher degrees, the convergence of the three-equation formulation
shows some unstable property as in circular metallic waveguide case. Therefore, we

can say that the six-equation formulation has better convergent property than the
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three-equation one. Figure 6.17 shows distributions of all the six field components
for this mode, from which, we can see that the fields are well confined in the core
region with negligible field near the circular boundary, and the PEC boundary of

the computational window is appropriately located.

6.6 Channel Waveguides with Sharp Corners

The channel waveguides with sharp dielectric corners is a simple structure. Here we
consider a square channel waveguide. Figure 6.19 shows a quarter of its cross-section
as the computational domain with the considered boundary conditions. Again,
because of the geometrical symmetry, we only need to consider a quarter of the
whole structure. Although the geometry is simple, there exists no analytical exact
mode solutions and exact effective index‘valués arenot available. The width of corner

waveguide is assumed to be 1pm. The refractivesiindex of the core is ngpe = 1.5 and

F

that of the surrounding spaceﬂ is nspaég '*ﬁ—.. f ‘We put. PEC boundary conditions at
two edges of the computational dOIﬂlTln and Ithe PMC boundary conditions at the
other two, as shown in Fig. 6.18: thure 6. 19 shows the mesh division where four
domains are adopted.

Although the exact effective index is not available, Hadley [2002] has conducted
an elaborative numerical analysis by carefully treating the electric field singularity
behavior at the sharp corners and provided n.;; = 1.27627404 4 1078 for the funda-
mental mode at the wavelength of 1.5 um. Using Hadley’s result as a reference, we
show in Fig. 6.20 the relative errors of our calculated effective index with respect
to the degree of polynomail for both six-equation and three-equation formulations.
It is seen that six-equation formulation converges, but the convergent rate of the
three-equation formulation appears to be quicker. One thing which is worth being
noticed is that we just need 4 x (7 + 1) x (7 + 1) = 256 grid points to reach the
108 accuracy using the six-equation formulation, compared to 150 x 150 = 22500

grid points used by Hadley [2002] for reaching the 10~7 accuracy. This is quite a
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significant advancement in numerical analysis of optical waveguides. We also use the
calculated effective index at degree of 45 (n.sr = 1.27627403774) as the reference
and show the corresponding results in Fig. 6.21. From this figure, it is seen that the
six-equation formulation can converge faster than the three-equation one at higher
degrees. Figures 6.22-6.27 show profiles along ¢ = 45° of all the six field compo-
nents. The figures reveal that even under very low degree of polynomial as degree
two, the field profiles have been quite close to those using high degree of polynomial.
Finally, we show the distributions of all the six field components in Fig. 6.28 for
this channel waveguide. The rapid-varying characteristics of the E, field component
near the corner, due to the field singularity property, as seen in Figs. 6.23 and 6.28,
would make the calculated effective index hard to converge to high precision, and

we need to use higher degrees of polynemialito better approximate the field profiles.

6.7 Rib Waveguides ~

Y= ()

We have demostrated that tﬁe new_!flr)fn.rg_i_l*e;ti(;)ns canl deal with waveguides with a
single corner in the computational dd;u;nai.n.. Wéla jmow' consider rib waveguides that are
multi-corner structure. Figure 6.2§ ';%hows a half Sf the cross-section of the rib waveg-
uide with PECs as the boudnaries of the computational domain. This structure can
provide z-direction and y-direction confinement by using high refractive-difference
in both directions. The refractive indices of the cover, the guiding layer, and the
substrate are n. = 1, ny = 3.44, and n, = 3.4. Figure 6.30 shows the mesh division
where we divide whole structure into twelve sub-domains.

Again, there exists no exact effective index for the mode on this waveguide,
and we use Hadley's calculation [Hadley, 2002] as the reference value, which for
fundamental mode is about n. sy = 3.413132 when the wavelength is 1.15 pm. Figure
6.31 shows the relative errors of the effective index with respect to the degree of

polynomial for six-equation and three-equation formulations. We can see that the

new formulations can easily provide calculated effective indices of accuracy on the
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order of 107% for the multi-corner rib waveguide. Figure 6.32 shows distributions of

all the six field components for the fundamental mode of the rib waveguide.
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Figure 6.1: Sketch of a slab waveguide.
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Figure 6.2: Field profile for the TE mode of the symmetric waveguide.
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Figure 6.3: Relative errors in the effective index for the TE and TM modes of
symmetric slab wavegudie with respect to the degree of polynomial in each domain.

65



0.3

0.25 |-

0.2 -

]
Te}
—

o

Anisusyui pai4

]
—
o

0.05 -

Transverse position(um)

Figure 6.4: Field pr(')ﬁlzé"' for TE'mode of the asymmetric waveguide.

"

LY
iz |
-

Fal™ ..l

a

0.3

0.25 |-

0.2 -

]
Te}
—

o

Anisusyui pai4

0.1 -

0.05 -

Transverse position (um)

Figure 6.5: Field profile for TM mode of the asymmetric waveguide.

66



10
10"
Pa
()]
o L
IS
-6
2 1w
5
qq__) L
5
S 100 F
o I
=
o 10
(¢)) . -
> 10
© I
(6]
m 10-12 |
10'14 ] ] ] ] ] ]

3 7 11 15 19 23
Degree of polynomial

Figure 6.6: Relative errors in the effective index for the TE and TM modes of
asymmetric slab wavegudie with respect to the degree of polynomial in each domain.

67



PEC

glo @)
EApY g=1 W
PE
€ C >
6um

y (um)
[
[

-3 -2 -1 0 1 2 3
X (um)

Figure 6.8: Mesh division of the partially filled metallic waveguide of Fig. 6.6.
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Figure 6.9: Relative error in the effective index for the fundamental LSE;q mode of
the partially filled metallic waveguide of Fig. 6.7.
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Figure 6.11: Mesh division for the structure of Fig. 6.10.
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Figure 6.13: Distributions of the six field components of the fundamental (TEj;)
mode of the circular metallic waveguide of Fig. 6.10.
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Chapter 7

Numerical Results For Photonic
Crystal Problems

This chapter is devoted to the analysis of PC structures using the proposed new
formulations. We consider two cases, namely, the PC with square lattice and that

with triangular lattice.

7.1 Square-Lattice Photonic Crystals

First, We examine a PC with square ]gattﬁ:'e, with its-¢ross-sections as shown in Fig.
7.1. The structure is formed by i)arailél alfiina rodswith refractive index n = V8.9
surrounded by air (n = 1.0). The rédius of eachi#od is r = 0.4 pm = 0.2a, where a is
the lattice constant. Figure 7.2 shows the mesh division for the unit cell that is also
computational domain, which is divided into thirteen sub-domains. The periodic
boundary conditions are put at all four sides, as shown in Fig. 7.1.

The band diagrams for the TE and TM modes are shown in Figs. 7.3 and 7.4,
respectively. The results are obtained using the three-equation formulation with
degree 13 of polynomial in each sub-domain. The Brillouin zone is shown as the

inset in the figures. The normalized frequency is defined as

Normalized frequency = ;—a. (7.1)
T

Using the degree-21 three equation formulation calculation results as the refer-

ence, we show in Fig. 7.5 relative errors in the calculated eigen grequency versus
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the degree of polynomial for both three-equation and one-equation formulations for
the first TE and TM modes at M point where k, = 7/a and k, = 7/a. The spectral
convergence behavior is seen for all four situations. Figure 7.6(a), (b), and (c) show
the field distributions at M point for the first TE mdoe and Fig. 7.6(d), (e), and (f)

shows those for the first TM mode.

7.2 'Triangular-Lattice Photonic Crystals

Next, we analyze the PC with triangular lattice, with its cross-section as shown in
Fig. 7.7. The refractive index of each rod is n = v/11.4, which is surrounded by air.
The radius of each rod is » = 0.4 um = 0.2a, where a is lattice constant. Figure 7.8
shows the mesh division for the unit cell where fourteen sub-domains are adopted.
The periodic boundary condition_s are émployed at all six edges.

The band diagrams for TE and TM mod@s. are_shown in Figs. 7.9 and 7.10,

respectively. The results are obtained usiig fthe three-equation formulation with

2

degree 13 of polynomial in e.a_ch sul_b ;d-o1[n1;1:fcmin:1 | We The Brillouin zone is shown at
the inset in the figures. Cons_iderit;he .-f.i-rst '.TE and TM modes at the K point
where k, = 27/v/3a at k, = 27r/..3'd. Using t’he..:degree—Zl three-equation formula-
tion calculation result as the reference, we show in Fig. 7.11 relative errors in the
calculated eigen frequency versus teh degree of polynomial for both three-equation
and one-equation formulations for the first TE and TM modes. Again, the spectral
convergence behavior is observed for all four situations. Figure 7.12(a), (b), and

(c) illustrate the field distributions at the K point for the first TE mode and Fig.

7.12(d), (e), and (f) illustrate those for the first TM mode.
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Chapter 8

Conclusion

New formulations for analyzing 1D and 2D waveguides have been presented in this
thesis. The boundary conditions are imposed by the penalty method in each of
the 1D, 2D-waveguide, and PC problems. In order to get high-accuracy results,
pseudospectral Legendre method is adopted,l_for all.three cases.

Since the frequency-domain ﬁroblem is difféfent' from the time-domain prob-
lem, we have redrived the pe.h.alty—tfy-,.l;);é:;b_(gi}ﬁdary conditions in Chapters 2-4 for
the frequency-domain problerhs. Thpid-é.{ngf;e:dil})oundary conditions are very simple,
compared to the original ones used ir} tifilr(-a- dcilllp_ain. Although the boundary condi-
tions are simple, they offer enough '.restric_tion's for governing equations to calculate
the modes. For 2D waveguides, we actually propose two sets of equations: the six-
equation form and the three-equation form, and we have proved that both of them
can be used to analyze 2D-waveguide problems in Chapter 6. Similarly, we propose
the three-equation form and one-equation form for the 2D-PC problem, both of
which are proved to be valid in numerical examples in Chapter 7.

In Chapter 5, we briefly describe the pseudospectral Legendre and SIPM numer-
ical methods. Since this thesis does not focus on the fundamental concept of the
pseudospectral method, readers can refer to [Boyd, 2000] for more information.

In Chapter 6, in order to examine the feasibility of new 1D and 2D waveguide
algorithms, we have analyzed some waveguide structures. For the 1D algorithm,

we examine both the symmetric and asymmetric slab waveguides. Compared to the
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exact solutions, we find the relative errors in the effective index are both on the order
of 1071, For the 2D algorithm, we first investigate the partial filled waveguide. By
comparing with the exact effective index of the LSEy; mode, the relative error is
found to be on the order of 107!% which is the maximum limit the double precision
unit in computer can handle. Next, in order to examine the circular PEC boundary
condition, a circular metallic waveguide is investigated. The relative error in the
effective index is also on the order of 1071% comparing to the exact solution. The
well-known fiber waveguide is also investigated. From comparing with the exact
effective index, the numerical errors are found to be on the order of 10~'* and 10~1°
for six-equation and three-equation forms, respectively. Then, we have examined the
structures with dielectric corners which have no analytical solutions, i.e., the channel
waveguide and the rib waveguide.' For fche ehannel waveguide, we found that even
using low degree of polynomial t-he effective.inde.x is quite accurate. The obtained
field distributions also show good agre@ment with those obtained with high degree
of polynomial. For the rib Waveguldp tﬁf’errbr in the effective index can reach the
order of 1079 which is the most accqrate resul‘q wesean find in the literature.

In Chapter 7, we examine two' 2D:PC st-ructures to check the validity of the
algorithm for PCs. We calculate the band diagrams of the square-lattice PC and the
triangular-lattice PC for both TE and TM modes. By comparing the band diagrams
with the calculations of other methods, the band diagrams are found to have good
argeement with the finite-difference frequency-domain (FDFD) analysis [Yu and
Chang, 2004] and the plane wave expansion (PWE) method analysis [Johnson and
Joannopoulos, 2001].

There is one important issue which we do not consider in this thesis: incorpora-
tion of perfectly matched layers (PMLs)[Berenger, 1994] around the computational
domain for treating leaky waveguide problems.

In summary, we have successfully implemented pseudospectral mode solvers for

1D waveguides, 2D waveguides, and 2D-PCs using penalty-type boundary condi-
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tions.
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