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摘摘摘 要要要

在本篇論文中，我們發展了新的電磁解析模型來分析一維波導、二維波導和

光子晶體結構。同時，我們也推導了新的同步近似項的邊界條件來配合新的方程

式。另外，由於樂勤得（Legendre）內差方程式準確的近似特性，我們也使用了

譜方法中的樂勤得法來對空間分割。

不同於大部分是以赫姆霍茲（Helmholtz）方程式為基礎來解波導模態，我

們提出了一種綜合了馬克斯威爾旋度以及散度方程式的新模型來產生特徵值

（eigenvalue）問題的方法。對於在介面的邊界條件，我們則是使用了同步近似項

的邊界條件，這種邊界條件可以在數學上證明具有穩定數值的效果。雖然在時域

上，使用同步近似項邊界條件的譜方法是一個被證實具有不錯收斂性質的數值方

法，但其使用的方程式跟本篇研究所發展的、在頻域使用的方程式有本質上的不

同。在時域上我們所考慮的電磁場一律是實數，但在頻域上因為使用相位法的因

素，所有的電磁場必須使用複數來表示。所以我們重新推導了分別給一維波導、

二維波導和光子晶體使用的同步近似項邊界條件。

而為了確認新提出演算法的效率程度和數值收歛性，我們做了一些數值實例分

析。這些光實例包括平板波導、部份填滿波導、圓柱形波導、具有尖角的埋入式

波導、肋型波導以及四角晶格和三角晶格這兩種光子晶體結構。利用新的演算法

來解這些結構時，我們可以得到高精度的傳播常數和特徵頻率以及觀察到指數收

斂的特性。另外要特別說明的是，對於有尖角的介質波導，我們在沒有對邊界作

任何特殊處理的情況下，得到了比以往更準確的數值解，這代表了在光波導分析

領域的一項重大突破。



Abstract

In this thesis, mode solvers for one-dimensional (1D) and 2D waveguides, and

photonic crystals (PCs) with new electromagnetic formulations are developed. The

new penalty-type boundary conditions are derived to work with new formulations,

and the pseudospectral Legendre method is adopted to perform spatial discretization

for its accurate approximation property.

Unlike many waveguide mode solvers which are based on Helmholtz equations,

we propose new formulations which combine Maxwell’s curl and divergence equa-

tions to derive the eigenvalue problem. For the interface boundary condition treat-

ment, penalty-type boundary conditions are employed and mathematically proved

that they can stablize the scheme. Athlough pseudospectral time-domain (PSTD)

methods with penalty-type boundary conditions have been known to offer good con-

vergence property, the related frequency-domain formulations developed in this work

prossess intrinsic difference. In time-domain simulations, the electromagnetic fields

considered are all real quantities, while in frequency-domain analysis, the fields are

complex ones with the phasor technique. And new penalty-type boundary condi-

tions in the frequency-domain mode analysis of 1D and 2D waveguides, and PCs,

are respectively derived.

Numerical examples are considered to examine the efficieney and numerical con-

vergency property of the proposed algorithms. Optical structures in these examples

include slab waveguides, partial-filled waveguide, fiber waveguides, channel waveg-

uides with sharp corners, rib waveguides, PCs with square lattice, and PCs with

triangular lattice. Spectral convergence property with very high-accuracy modal

effective index and eigenfrequency calculation is achieved. In particular, for the

dielectric waveguide with corners, higher numerical accuracy than reported results

is obtained without doing field singularity treatment at the corners as in the lat-

ter. This represents significant advancement in the numerical analysis of optical

waveguide problems.
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Chapter 1

Introduction

1.1 Motivations

For constructing various guided-wave devices and components in optical commu-

nication systems, optical waveguides and, in recent years, photonic crystals (PCs)

have been played important roles. In the design of these waveguides and PCs, it

is important to understand accurate propagation characteristics of electromagnetic

waves in these structures. But unfortunately, according to Maxwell’s equations, it

is impossible to have analytical solutions for most waveguides and PCs with vari-

ous cross-sections and materials, and we often need computer numerical analysis to

understand the performance of many new types of these structures.

There are various types of numerical analysis methods for waveguide analysis,

which directly solve the eigenvalue problems associated with the corresponding prob-

lems. Typical methods include the spectral index method (SIM) [Stern et al., 1990],

the finite element methods (FEMs) [Cendes and Silvester, 1970; Rahman and Davis,

1984; Lee et al., 1991], the finite difference methods (FDMs)[Bierwirth et al. 1986;

Lüsse et al., 1994; Hadley and Smith, 1995], and the integral equation methods

[Sphicopoulos et al., 1985; Baken et al., 1990]. Although the SIM is easy to use, it

is not adequate for solving more and more sophisticated structures. And although

both the FEM and FDM are well developed and robust methods, they often need

a lot of mesh grids for obtaining better numerical results. Comparing with these

numerical methods, spectral methods to be employed in this research can offer more
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precise solutions with the same amount of mesh grids.

The prototype of spectral methods for the solution of differential equation prob-

lems is the well-known Fourier method in fluid mechanics. In 1970s, the Fourier

method was first applied to direct numerical simulation of turbulence [Orszag and

Patterson, 1972]. This success was fundamental for a fast calculation technique of

the nonlinear terms through the “pseudospectral” methods (PSMs). In the Fourier

method, the differentiations are made in the spectral space (the space of the expan-

sion coefficients) and the products are performed in the physical space (the space

of the values of the unknowns). But the Fourier method is unable to handle non-

periodic problems due to the nonuniform convergence of the Fourier series at the

extremities of the domain, known as the Gibbs oscillation. So for the nonperiodic

problems, the Chebyshev and Legendre polynomials [Boyd, 1999] are used. Through

the PSMs based on Fourier, Chebyshev, and Legendre polynomials, we can transfer

differential operators into high-order numerical differential matrices.

In recent years, PSMs have been extended to the analysis of electromagnetic

problems both in time-domain [Yang et al., 1999; Hesthaven et al., 1999] and

frequency-domain [Wu, 2003; Chiang, 2007]. In frequency-domain, Chiang [2007]

has developed mode solvers for two-dimensional (2D) waveguides and 2D PCs us-

ing PSMs, in which conventional-type boundary conditions were used. However,

conventional-type boundary conditions can not be proved to stabilize numerical

scheme. Although Wu [2003] used penalty-type boundary conditions [Funaro and

Gottlieb, 1988] for 1D-waveguide analysis, which can be mathematically proved to

stabilize numerical scheme, he used the boundary conditions derived in time-domain.

But there exists intrinsic difference between time-domain and frequency-domain

methods in that the electromagnetic fields considered are all real quantities in time-

domain simulations, while in frequency-domain analysis, the fields are complex ones

with the phasor technique. In this thesis, we have redrived the penalty-type bound-

ary conditions for frequency-domain in details.
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Channel waveguides have been known hard to solve due to the presence of corners

and the associated singular field behavior [Sudbo, 1992]. According to the previous

works conducted by Hadley [2002] and Thomas et al. [2007], it was reported that

a local expansion of the field near the corners was required to produce higher order

numerical convergence. In this thesis, we propose a new algorithm which can achieve

high order convergence without doing special treatment around corner points.

1.2 Chapter Outline

There are seven chapters following this chapter.

In Chapter 2, we derive the formulation for the transverse electric (TE) mode for

1D (slab) waveguides. The boundary conditions are imposed by using the penalty

method with characteristic variables. The three different types of boundary con-

ditions, including perfect electric conductor (PEC), perfect magnetic conductor

(PMC), and dielectric boundary conditions will be shown. Since the transverse

magnetic (TM) mode can be drived in the same way, we do not show its details.

In Chapter 3, we derive the formulation for the 2D waveguides. And just as in

Chapter 2, the boundary conditions are also imposed by using the penalty method

with characteristic variables. The derivation will be combined with the transfinite

element method. How to decrease the number of equations from six to three is

discussed in the last section.

In Chapter 4, we derive the formulation for 2D PCs. Since the derivation is very

similar to the one for 2D waveguides, we will not present it in details. Readers can

refer to Chapter 3 for relevent formulae. The TM mode can be derived in the same

way, and only the final results are given in the last two sections.

In Chapter 5, we introduce the fundamental concepts of the collocation methods

and the pseudospectral Legendre method [Teng et al., 2008] which we use to analyze

problems. In the second part of this chapter, we introduce the shifted inverse power

method (SIPM) which we will use to solve eigenvalue problems. We have done some

3



modification on the SIPM in our applications.

In Chapter 6, 1D and 2D optical waveguides are numerically analyzed. Numerical

results for several types of waveguides, including slab waveguides, fiber waveguides,

channel waveguides, and rib waveguides are examined for examining the accuracy

of the mode solver.

In Chapter 7, PC structures are numerically analyzed. Band diagrams of typical

square-lattice and triangular-lattice PCs are examined. Since the modified SIPM is

employed for solving eigenvalue problems, we can save much memory space.

The conclusion of this work is summarized in Chapter 8.
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Chapter 2

Mathematical Formulation for 1D
Waveguide Analysis

This chapter is devoted to explain the whole process of deriving the formulation for

the 1D waveguide structure from Maxwell’s equations.

2.1 Equations Used for 1D Waveguide Structure

From Maxwell’s curl equations, we have the equations for the transverse electric

(TE) case assuming the material structure is uniform in the y direction:

μ0
∂H̃x

∂t
=

∂Ẽy

∂z
(2.1a)

μ0
∂H̃z

∂t
= −∂Ẽy

∂x
(2.1b)

ε
∂Ẽy

∂t
=

∂H̃x

∂z
− ∂H̃z

∂x
(2.1c)

where H̃x and H̃z are the magnetic field components while Ẽy represents the electric

field, μ0 is the peameability of non-magnetic material, ε is the permittivity, and z is

the propagation direction. We have just used Maxwell’s curl equations so far. There

exists a Maxwell’s divergence equation written as

∂H̃x

∂x
+

∂H̃z

∂z
= 0. (2.2)

Therefore there are four equations for the 1D TE waveguide structure. Prior works

used to take the three Maxwell’s curl equations as the basic equations for analysis.
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In this work, we replace (2.1b) with (2.2). Then the new three euations appear to

be

∂H̃x

∂z
= ε

∂Ẽy

∂t
+

∂H̃z

∂x
(2.3a)

∂H̃z

∂z
= −∂H̃x

∂x
(2.3b)

∂Ẽy

∂z
= μ0

∂H̃x

∂t
. (2.3c)

Before proceeding to the next section, we find it is more convenient to deal with

the equations if we apply the following tranformation

H̃x =
1√

μ0/ε0

Hx, H̃z =
1√

μ0/ε0

Hz, Ẽy = Ey.

This transformation makes (2.3) appear as

∂Hx

∂z
=

εr

c

∂Ey

∂t
+

∂Hz

∂x
(2.4a)

∂Hz

∂z
= −∂Hx

∂x
(2.4b)

∂Ey

∂z
=

1

c

∂Hx

∂t
(2.4c)

where εr is the relative permittivity defined as εr = ε/ε0 and c is the speed of light

in vaccum.

2.2 Well-posedness Analysis

Rewriting (2.4) into the complex form, we have

∂

∂z
(Hxr + iHxi) =

εrr + iεri

c

∂

∂t
(Eyr + iEyi) +

∂

∂x
(Hzr + iHzi) (2.5a)

∂

∂z
(Hzr + iHzi) = − ∂

∂x
(Hxr + iHxi) (2.5b)

∂

∂z
(Eyr + iEyi) =

1

c

∂

∂t
(Hxr + iHxi) (2.5c)

where the subscripts r and i denote the corresponding real and imaginary compo-
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nents. Equation (2.5) can then be written as

∂

∂z
Hxr =

1

c

∂

∂t
(εrrEyr − εriEyi) − ∂

∂x
(−Hzr) (2.6a)

∂

∂z
Hxi =

1

c

∂

∂t
(εrrEyi − εriEyr) − ∂

∂x
(−Hzi) (2.6b)

∂

∂z
(−Hzr) = − ∂

∂x
Hxr (2.6c)

∂

∂z
(−Hzi) = − ∂

∂x
Hxi (2.6d)

∂

∂z
Eyr =

1

c

∂

∂t
Hxr (2.6e)

∂

∂z
Eyi =

1

c

∂

∂t
Hxi. (2.6f)

Equation (2.6) can be expressed in the matrix form:

∂q̂

∂z
=

M

c
· ∂q̂

∂t
+ Ax · ∂q̂

∂x
(2.7)

where q̂ = [Hxr Hxi − Hzr − Hzi Eyr Eyi]
T , M is the material matrix defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 εrr −εri

0 0 0 0 εri εrr

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

and

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0

0 0 0 −1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.9)

Let q̂(x, z, t) = q(x, z) · ei(ωt−βz), where β is propagation constant, (2.7) becomes

−iβq = i
ω

c
M · q + Ax · ∂q

∂x
= ik0M · q + Ax · ∂q

∂x
(2.10)
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where k0 is the wavenumber in free space. Since −iβq and ik0Mq are low-order

terms, they can be eliminated from the well-posedness analysis, as will be done

below.

Since Ax = AT
x , where the superscript denotes the transpose, there exists a

matrix S such that

ST · Ax · S = Λ (2.11)

where ST represents the transpose matrix of S. From linear algebra, we know

that for an symmetrix matrix Ax, we can create such matrix S by arranging all

eigenvectors of Ax, {si|i = 1, ..., 6}, in the form:

S = [s1 s2 s3 s4 s5 s6] (2.12)

which is found to be

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0 0 0

0 1√
2

0 1√
2

0 0

1√
2

0 −1√
2

0 0 0

0 1√
2

0 −1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.13)

Notice that ST = S and

ST S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0 0 0

0 1√
2

0 1√
2

0 0

1√
2

0 −1√
2

0 0 0

0 1√
2

0 −1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0 0 0

0 1√
2

0 1√
2

0 0

1√
2

0 −1√
2

0 0 0

0 1√
2

0 −1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I (2.14)
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where I is the identity matrix and

ST AxS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0 0 0

0 1√
2

0 1√
2

0 0

1√
2

0 −1√
2

0 0 0

0 1√
2

0 −1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0

0 0 0 −1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (2.15)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0 0 0

0 1√
2

0 1√
2

0 0

1√
2

0 −1√
2

0 0 0

0 1√
2

0 −1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Λ.

Before we proceed, we define a new vector R for latter use

R = ST · q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2
Hxr − 1√

2
Hzr

1√
2
Hxi − 1√

2
Hzi

1√
2
Hxr + 1√

2
Hzr

1√
2
Hxi + 1√

2
Hzi

Eyr

Eyi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

R5

R6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

which is called the characteristic state vector with its elements named as the char-

acteristic variables.

2.3 The Energy Method

If we multiply qT from the left to (2.10), we have

0 =qT Ax
∂q

∂x
. (2.17a)
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Then, if we adopt local coordinate transformation defined in Fig. 2.1 and integrate

over ξ ∈ [−1, 1], the equation becomes

0 =

∫ 1

−1

qT Aξ
∂q

∂ξ
· dξ (2.18a)

=

∫ 1

−1

1

2

∂

∂ξ
(qT Aξq) · dξ

=
1

2

[
(qT Aξq)

∣∣
ξ=1

+ (−1) (qT Aξq)
∣∣
ξ=−1

]
=

1

2

[
∂ξ/∂x

|∂ξ/∂x|
∣∣∣∣∂ξ

∂x

∣∣∣∣ (qT Axq)
∣∣
ξ=1

+
−∂ξ/∂x

|∂ξ/∂x|
∣∣∣∣∂ξ

∂x

∣∣∣∣ (qT Axq)
∣∣
ξ=−1

]

=
1

2

[
nx

∣∣∣∣∂ξ

∂x

∣∣∣∣ (qT Axq)
∣∣
ξ=1

+ nx

∣∣∣∣∂ξ

∂x

∣∣∣∣ (qT Axq)
∣∣
ξ=−1

]

=
nx|ξ=1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

(qT S · ST AxS · ST q)
∣∣
ξ=1

+
nx|ξ=−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

(qT S · ST AxS · ST q)
∣∣
ξ=−1

=
nx|ξ=1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

(RT · Λ · R)
∣∣
ξ=1

+
nx|ξ=−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

(RT · Λ · R)
∣∣
ξ=−1

=
nx|ξ=1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

[−(RT
1 R1) − (RT

2 R2) + (RT
3 R3) + (RT

4 R4)
]∣∣

ξ=1

+
nx|ξ=−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

[−(RT
1 R1) − (RT

2 R2) + (RT
3 R3) + (RT

4 R4)
]∣∣

ξ=−1

where Aξ = Ax
∂ξ
∂x

and nx is the unit outward vector at boundary points. Note that

the eigenvalues corresponding to R5 and R6 are zeros, as seen in (2.15). Closely

looking at (2.18), since the left side is zero, for the equation to be meaningful, the

right side should be zero, or we need the conditions

RT
1 R1 + RT

2 R2 =RT
3 R3 + RT

4 R4 at ξ = 1 (2.19a)

RT
1 R1 + RT

2 R2 =RT
3 R3 + RT

4 R4 at ξ = −1. (2.19b)

We must follow (2.19) when designing the boundary conditions to make the equa-

tions be well-posed.

2.4 Characteristic Representations of Physical

Boundary Condtion

We now consider the representation of physical boundary conditions. Since for 1D

structures, we define y and z directions as tangential directions and the x direction
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as the normal direction, the characteristic variables can be represented in this way:

R1 =
1√
2
Re(�n · �H) − 1√

2
Re(�n × �H) (2.20a)

R2 =
1√
2
Im(�n · �H) − 1√

2
Im(�n × �H) (2.20b)

R3 =
1√
2
Re(�n · �H) +

1√
2
Re(�n × �H) (2.20c)

R4 =
1√
2
Im(�n · �H) +

1√
2
Im(�n × �H) (2.20d)

where �n denotes the unit normal vector in the x direction. Because the corresponding

eigenvalues of R5 and R6 are zeros, we just neglect them.

For the perfect electric conductor (PEC) boundary condition, there are two con-

ditons the fields should satisfy (considering isotropic non-magnetic media):

�n × �E =0 (2.21a)

�n · �H =0. (2.21b)

Closely looking at (2.20), we observe

R1 + R3 =
√

2Re(�n · �H) (2.22a)

R2 + R4 =
√

2Im(�n · �H). (2.22b)

Then the PEC boundary condition has a characteristic representation as⎛
⎜⎝ R1BC = −R3, R2BC = −R4

R3BC = −R1, R4BC = −R2

⎞
⎟⎠ . (2.23)

For the perfect magnetic conductor (PMC) boundary condition, there are also

two conditions needed to be satisfied:

�n · �E =0 (2.24a)

�n × �H =0. (2.24b)

Again, from (2.20), we have

R1 − R3 = −
√

2Re(�n × �H) (2.25a)

R2 − R4 = −
√

2Im(�n × �H) (2.25b)
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and the characteristic representation for the PMC boundary condition is⎛
⎜⎝ R1BC = R3, R2BC = R4

R3BC = R1, R4BC = R2

⎞
⎟⎠ . (2.26)

For source-free dielectric media, the physical boundary conditions are

�n × �EI =�n × �EII (2.27a)

�n · εI
�EI =�n · εII

�EII (2.27b)

�n × �HI =�n × �HII (2.27c)

�n · �HI =�n · �HII (2.27d)

with the superscripts I and II denoting different dielectric regions on the two sides

of the interface, respectively. From (2.20), we have

RI
1 =

1√
2
Re(�nI · �HI) − 1√

2
Re(�nI × �HI) (2.28a)

RII
1 =

1√
2
Re(�nII · �HII) − 1√

2
Re(�nII × �HII). (2.28b)

Because �nI and �nII are in opposite directions, let �nI = −�nII = �n and add (2.28a)

to (2.28b) to obtain

RI
1 + RII

1 =
1√
2
Re(�n · ( �HI − �HII)) − 1√

2
Re(�n × ( �HI − �HII)) (2.29)

which through (2.27) yields

RI
1 = −RII

1 . (2.30)

By doing the same procedure to R2, R3, and R4, we can get⎛
⎜⎝ R

I/II
1BC = −R

II/I
1 , R

I/II
2BC = −R

II/I
2

R
I/II
3BC = −R

II/I
3 , R

I/II
4BC = −R

II/I
4

⎞
⎟⎠ . (2.31)

2.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations for anal-

ysis. Starting from (2.10) with some boundary terms, we have at grid point i,
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i = 0, ..., N , within the representation domain M as shown in Fig. 2.2,

−iβ q|i = ik0Mq|i + Ax
∂q

∂x

∣∣∣∣
i

− δ0iτ
−SB−(R|x=a − RBC) (2.32)

− δNiτ
+SB+(R|x=b − RBC).

The symbols and variables in (2.32) are explained as follows. δij is the Kronecker

delta function defined as

δij =

⎧⎪⎨
⎪⎩

1, if i = j

0, if i �= j.
(2.33)

τ− and τ+ are constant numbers and their values will be delivered latter. S is the

matrix defined in (2.13). a and b are lower and upper limits plotted in Fig. 2.1. B−

and B+ are boundary inflow/outflow operators defined as

B− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−1 0 0 0 0 0

0 b−2 0 0 0 0

0 0 b−3 0 0 0

0 0 0 b−4 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b+
1 0 0 0 0 0

0 b+
2 0 0 0 0

0 0 b+
3 0 0 0

0 0 0 b+
4 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34)

R is the characteristic state vector defined in (2.16) and RBC is defined in the

previous section for every physical boundary condition.

Next, we write the energy rate equation (2.18) in the discrete form and add the

boundary terms

0 =
N∑

i=0

wi

[
qT
i Ax

∂q

∂x

∣∣∣∣
i

− δ0iτ
− (RT B−R)

∣∣
x=a

− δNiτ
+ (RT B+R)

∣∣
x=b

]
(2.35a)

=
N∑

i=0

wiq
T
i Ax

∂q

∂x

∣∣∣∣
i

− w0τ
− (RT B−R)

∣∣
x=a

− wNτ+ (RT B+R)
∣∣
x=b

where
∑

is the discrete form of integral, and wi is the weight of the discrete integral.

The value of wi will be delivered in Chapter 5. From (2.18), we can obtain
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0 =
nx|x=b

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

[−(RT
1 R1) − (RT

2 R2) + (RT
3 R3) + (RT

4 R4)
]∣∣

x=b
(2.36a)

+
nx|x=a

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

[−(RT
1 R1) − (RT

2 R2) + (RT
3 R3) + (RT

4 R4)
]∣∣

x=a

− w0τ
− (RT B−R)

∣∣
x=a

− wNτ+ (RT B+R)
∣∣
x=b

= (RT
1 R1)

∣∣
x=b

(
−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
1 ) + (RT

2 R2)
∣∣
x=1

(
−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
2 )

+ (RT
3 R3)

∣∣
x=b

(
1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
3 ) + (RT

4 R4)
∣∣
x=b

(
1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
4 )

− (RT
1 R1)

∣∣
x=a

(
−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−1 ) − (RT

2 R2)
∣∣
x=a

(
−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−2 )

− (RT
3 R3)

∣∣
x=a

(
1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−3 ) − (RT

4 R4)
∣∣
x=a

(
1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−4 ).

which means

−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
1 =0,

−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
2 = 0 (2.37a)

1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
3 =0,

1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

− wNτ+b+
4 = 0 (2.37b)

−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−1 =0,

−1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−2 = 0 (2.37c)

1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−3 =0,

1

2

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

+ w0τ
−b−4 = 0. (2.37d)

From (2.37), we define(
τ+ =

1

2wN

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=b

, τ− =
1

2w0

∣∣∣∣∂ξ

∂x

∣∣∣∣
x=a

)
(2.38)

and ⎛
⎜⎝ b+

1 = −1, b+
2 = −1, b+

3 = 1, b+
4 = 1

b−1 = 1, b−2 = 1, b−3 = −1, b−4 = −1

⎞
⎟⎠ . (2.39)

Substituting the values in (2.39) into (2.34), we thus determine matrices B− and

B+.

2.6 Final Form of the Formulation

There is only one step left: making the equations become a standard eigenvalue

problem. Here we just take the PEC boundary condition as an example. The other

two boundary types can be derived in the same manner.
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We start from (2.32). By substituting the matrices M , Ax, S, and B, and

replacing (R−RBC) with the condition (2.23), we can get the following six equations:

−iβ Hxr|i =ik0(εrr Eyr|i − εri Eyi|i) +
∂Hzr

∂x

∣∣∣∣
i

(2.40a)

−iβ Hxi|i =ik0(εrr Eyi|i + εri Eyr|i) +
∂Hzi

∂x

∣∣∣∣
i

(2.40b)

−iβ Hzr|i = − ∂Hxr

∂x

∣∣∣∣
i

− δi0τ
−
∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

[
2 Hxr|ξ=−1

]
(2.40c)

+ δiNτ+

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

[
2 Hxr|ξ=1

]

−iβ Hzi|i = − ∂Hxi

∂x

∣∣∣∣
i

− δi0τ
−
∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

[
2 Hxi|ξ=−1

]
(2.40d)

+ δiNτ+

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

[
2 Hxi|ξ=1

]

−iβ Eyr|i =ik0 Hxr|i (2.40e)

−iβ Eyi|i =ik0 Hxi|i . (2.40f)

Then multiplying (2.40b), (2.40d), and (2.40f) by i(≡ √−1) and adding them to

(2.40a), (2.40c), and (2.40e), respectively. We obtain

−iβ Hx|i =ik0εrEy +
∂Hz

∂x

∣∣∣∣
i

(2.41a)

−iβ Hz|i = − ∂Hx

∂x

∣∣∣∣
i

− δi0τ
−
∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=−1

[
2 Hx|ξ=−1

]
(2.41b)

+ δiNτ+

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξ=1

[
2 Hx|ξ=1

]

−iβ Ey|i =ik0 Hx|i (2.41c)

where Hx = Hxr +iHxi, and so on. Equation (2.41) represents a standard eigenvalue

problem.

For the case of the dielectric boundary condition, the eigenvalue formulation
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with the following equations can be derived:

−iβ HI
x

∣∣
i
=ik0εrE

I
y +

∂HI
z

∂x

∣∣∣∣
i

+ δi0τ
−
∣∣∣∣∂ξ

∂x

∣∣∣∣
ξI=−1

[
HI

z

∣∣
ξI=−1

− HII
z

∣∣
ξII=1

]
(2.42a)

− δiNτ+

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξI=1

[
HI

z

∣∣
ξI=1

− HII
z

∣∣
ξII=−1

]

−iβ HI
z

∣∣
i
= − ∂HI

x

∂x

∣∣∣∣
i

− δi0τ
−
∣∣∣∣∂ξ

∂x

∣∣∣∣
ξI=−1

[
HI

x

∣∣
ξI=−1

− HII
x

∣∣
ξII=1

]
(2.42b)

+ δiNτ+

∣∣∣∣∂ξ

∂x

∣∣∣∣
ξI=1

[
HI

x

∣∣
ξI=1

− HII
x

∣∣
ξII=−1

]

−iβ EI
y

∣∣
i
=ik0 HI

x

∣∣
i
. (2.42c)
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Figure 2.1: Transformation between global and local coordinates.

Figure 2.2: The grid points in domain M.
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Chapter 3

Mathematical Formulation for 2D
Waveguide Analysis

This chapter is devoted to, just like in the previous chapter, the process of derivation

of formulation for 2D waveguide problem.

3.1 Equations Used for 2D Waveguide Structure

From the Maxwell’s curl equations

ε
∂Ẽx

∂t
=

∂H̃z

∂y
− ∂H̃y

∂z
(3.1a)

ε
∂Ẽy

∂t
=

∂H̃x

∂z
− ∂H̃z

∂x
(3.1b)

ε
∂Ẽz

∂t
=

∂H̃y

∂x
− ∂H̃x

∂y
(3.1c)

μ0
∂H̃x

∂t
=

∂Ẽy

∂z
− ∂Ẽz

∂y
(3.1d)

μ0
∂H̃y

∂t
=

∂Ẽz

∂x
− ∂Ẽx

∂z
(3.1e)

μ0
∂H̃z

∂t
=

∂Ẽx

∂y
− ∂Ẽy

∂x
(3.1f)

where Ẽx , Ẽy, and Ẽz are the electric field components while H̃x, H̃y, and H̃z

represent the magnetic field components, μ0 is the peameability of non-magnetic

material, ε is the permittivity, and z is the propagation direction. And as in the 1D

formulation, we replace (3.1c) and (3.1f) with the other two divergence equations to

18



get the following equations, with the order of equations being rearranged:

∂Ẽx

∂z
= −μ0

∂H̃y

∂t
+

∂Ẽz

∂x
(3.2a)

∂Ẽy

∂z
= μ0

∂H̃x

∂t
+

∂Ẽz

∂y
(3.2b)

∂Ẽz

∂z
= −∂Ẽx

∂x
− ∂Ẽy

∂y
(3.2c)

∂H̃x

∂z
= ε

∂Ẽy

∂t
+

∂H̃z

∂x
(3.2d)

∂H̃y

∂z
= −ε

∂Ẽx

∂t
+

∂H̃z

∂y
(3.2e)

∂H̃z

∂z
= −∂H̃x

∂x
− ∂H̃y

∂y
. (3.2f)

Before proceeding to next section, we do the following transformation to make

the derivation easier

H̃x =
1√

μ0/ε0

Hx, H̃y =
1√

μ0/ε0

Hy, H̃z =
1√

μ0/ε0

Hz,

Ẽx = Ex, Ẽy = Ey, Ẽz = Ez.

This transformation makes (3.2) appear as

∂Ex

∂z
= −1

c

∂Hy

∂t
+

∂Ez

∂x
(3.4a)

∂Ey

∂z
=

1

c

∂Hx

∂t
+

∂Ez

∂y
(3.4b)

∂Ez

∂z
= −∂Ex

∂x
− ∂Ey

∂y
(3.4c)

∂Hx

∂z
=

εr

c

∂Ey

∂t
+

∂Hz

∂x
(3.4d)

∂Hy

∂z
= −εr

c

∂Ex

∂t
+

∂Hz

∂y
(3.4e)

∂Hz

∂z
= −∂Hx

∂x
− ∂Hy

∂y
(3.4f)

where εr is the relative permittivity defined as εr = ε/ε0 and c is the speed of light

in vaccum.
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3.2 Well-posedness Analysis

First, rewriting (3.4) in the following form on purpose:

1

εr

∂

∂z
(εrEx) = −1

c

∂

∂t
(Hy) +

∂

∂x
(Ez) (3.5a)

1

εr

∂

∂z
(εrEy) =

1

c

∂

∂t
(Hx) +

∂

∂y
(Ez) (3.5b)

−εr
∂

∂z
(Ez) =

∂

∂x
(εrEx) +

∂

∂y
(εrEy) (3.5c)

∂

∂z
(Hx) =

1

c

∂

∂t
(εrEy) +

∂

∂x
(Hz) (3.5d)

∂

∂z
(Hy) = −1

c

∂

∂t
(εrEx) +

∂

∂y
(Hz) (3.5e)

− ∂

∂z
(Hz) =

∂

∂x
(Hx) +

∂

∂y
(Hy). (3.5f)

Next, we write (3.5) in the matrix form:

M1
∂q̂

∂z
=

M2

c
· ∂q̂

∂t
+ Ax · ∂q̂

∂x
+ Ay · ∂q̂

∂y
(3.6)

where q̂ = [εrEx εrEy Ez Hx Hy Hz]
T and M1, M2, Ax, and Ay are defined as

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
εr

0 0 0 0 0

0 1
εr

0 0 0 0

0 0 −εr 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ay =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Let q̂(x, y, z, t) = q(x, y) · ei(ωt−βz), then (3.6) becomes

−iβM1 · q = ik0M2 · q + Ax · ∂q

∂x
+ Ay · ∂q

∂y
(3.7)

where k0 is the wavenumber in free space defined as k0 = ω/c.

If we use the same process as in the previous chapter to conduct the well-

posedness analysis, we must deal with a 12 × 12 matrix. Instead of dealing with

12 × 12 matrix, we take another way do the prove.

Since the low order term does not affect the wellposedness of the original problem

we thus neglect the term in the following analysis

0 = Ax · ∂q

∂x
+ Ay · ∂q

∂y
. (3.8)

We define a new matrix A(n), which will be used in the next section:

A(n) = nxAx + nyAy (3.9)

with �n = (nx, ny) representing a unit normal vector directed outward on the bound-

ary of a considered domain. Since A(n) = A(n)T , there exists a matrix S such that

ST · A(n) · S = Λ (3.10)

where ST is the transpose matrix of S. From linear algebra, we know that for

a symmetric matrix A(n), we can create such matrix S by arranging all of the

eigenvectors of A(n) as

S = [s1 s2 s3 s4 s5 s6] (3.11)

where {si|i = 1, ..., 6} are the eigenvectors of A(n). The matrix S is obtained as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2

nx√
2

ny 0 0 0

ny√
2

ny√
2

−nx 0 0 0

−1√
2

1√
2

0 0 0 0

0 0 0 ny
nx√

2
nx√

2

0 0 0 −nx
ny√

2

ny√
2

0 0 0 0 1√
2

−1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)
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and

ST S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2

ny√
2

−1√
2

0 0 0

nx√
2

ny√
2

1√
2

0 0 0

ny −nx 0 0 0 0

0 0 0 ny −nx 0

0 0 0 nx√
2

ny√
2

1√
2

0 0 0 nx√
2

ny√
2

−1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2

nx√
2

ny 0 0 0

ny√
2

ny√
2

−nx 0 0 0

−1√
2

1√
2

0 0 0 0

0 0 0 ny
nx√

2
nx√

2

0 0 0 −nx
ny√

2

ny√
2

0 0 0 0 1√
2

−1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I.

Notice that (n2
x + n2

y)
1/2 = 1 and

ST A(n)S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2

ny√
2

−1√
2

0 0 0

nx√
2

ny√
2

1√
2

0 0 0

ny −nx 0 0 0 0

0 0 0 ny −nx 0

0 0 0 nx√
2

ny√
2

1√
2

0 0 0 nx√
2

ny√
2

−1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 nx 0 0 0

0 0 ny 0 0 0

nx ny 0 0 0 0

0 0 0 0 0 nx

0 0 0 0 0 ny

0 0 0 nx ny 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

(3.13)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2

nx√
2

ny 0 0 0

ny√
2

ny√
2

−nx 0 0 0

−1√
2

1√
2

0 0 0 0

0 0 0 ny
nx√

2
nx√

2

0 0 0 −nx
ny√

2

ny√
2

0 0 0 0 1√
2

−1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Λ.

Before we proceed, we define a new vector R, the characteristic state vector, for
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latter use:

R = ST · q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx√
2
εrEx + ny√

2
εrEy − 1√

2
Ez

nx√
2
εrEx + ny√

2
εrEy + 1√

2
Ez

nyεrEx − nxεrEy

nyHx − nxHy

nx√
2
Hx + ny√

2
Hy + 1√

2
Hz

nx√
2
Hx + ny√

2
Hy − 1√

2
Hz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

R5

R6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

3.3 The Energy Method

Based on (3.8), we can create the following equations:

0 = Ax
∂q

∂x
+ Ay

∂q

∂y
(3.15a)

0 = q∗Ax
∂q

∂x
+ q∗Ay

∂q

∂y
(3.15b)

0 =
∂q∗

∂x
A∗

x +
∂q∗

∂y
A∗

y =
∂q∗

∂x
Ax +

∂q∗

∂y
Ay (3.15c)

0 =
∂q∗

∂x
Axq +

∂q∗

∂y
Ayq. (3.15d)

where q∗ is the Hermitian of q. Summing up (3.15b) and (3.15d) and using the local

coordinates (ξ, η) transformation plotted in Fig. 3.1, we have

0 = q∗Aξ
∂q

∂ξ
+ q∗Aη

∂q

∂η
+

∂q∗

∂ξ
Aξq +

∂q∗

∂η
Aηq (3.16)

=
∂

∂ξ
(q∗Aξq) +

∂

∂η
(q∗Aηq) (3.17)

where

Aξ = Ax
∂ξ

∂x
+ Ay

∂ξ

∂y
, Aη = Ax

∂η

∂x
+ Ay

∂η

∂y
.
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Integrating over Ω ∈ {−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1}, (4.16) becomes

0 =

∫
S=Ω

[
∂

∂ξ
(q∗Aξq) +

∂

∂η
(q∗Aηq)

]
· dS (3.18a)

=

∫
l=δΩ

q∗(nξAξ + nηAη)q · dl (3.18b)

=

⎧⎪⎪⎨
⎪⎪⎩

∫
l=δΩ

q∗
[
nη

(
∂η
∂x

, ∂η
∂y

)
· (Ax, Ay)

]
q · dl if nξ = 0

∫
l=δΩ

q∗
[
nξ

(
∂ξ
∂x

, ∂ξ
∂y

)
· (Ax, Ay)

]
q · dl if nη = 0

(3.18c)

=

⎧⎪⎪⎨
⎪⎪⎩

∫
l=δΩ

nη |∇η| q∗A(n)q · dl if nξ = 0

∫
l=δΩ

nξ |∇ξ| q∗A(n)q · dl if nη = 0
(3.18d)

=

⎧⎪⎪⎨
⎪⎪⎩

∫
l=δΩ

nη |∇η| (q∗S)Λ(S∗q) · dl if nξ = 0

∫
l=δΩ

nξ |∇ξ| (q∗S)Λ(S∗q) · dl if nη = 0
(3.18e)

=

∫ 1

−1

|∇η| [−R∗
1R1 + R∗

2R2 + R∗
5R5 − R∗

6R6]η=−1 · dξ (3.18f)

+

∫ 1

−1

|∇η| [−R∗
1R1 + R∗

2R2 + R∗
5R5 − R∗

6R6]η=1 · dξ

+

∫ 1

−1

|∇ξ| [−R∗
1R1 + R∗

2R2 + R∗
5R5 − R∗

6R6]ξ=−1 · dη

+

∫ 1

−1

|∇ξ| [−R∗
1R1 + R∗

2R2 + R∗
5R5 − R∗

6R6]ξ=1 · dη

where (nξ, nη) is a unit normal vetor directed outward at the boundary δΩ of Ω.

Note that the eigenvalues corresponding to R3 and R4 are zeros, as seen in (3.13).

Closely looking at (3.18), since the left side is zero, for the equation to be meaningful,

the right side should be zero, or we need the condition

R∗
1R1 + R∗

2R2 = R∗
3R3 + R∗

4R4 at the boundary. (3.19)

We must follow (3.19) when designing the boundary conditions to make the equa-

tions be well-posed.
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3.4 Characteristic Representations of Physical

Boundary Condtions

We now consider the representations of physical boundary conditions for 2D struc-

ture. Assume there is an interface seperating two domains. At this interface, we

define the unit vector �n = (nx, ny) pointing outward from the first domain to the

second domain. Then from (3.14), the R variables can be represented in this way

R1 =
1√
2
�n · (εr

�E‖) − 1√
2

�E⊥ (3.20a)

R2 =
1√
2
�n · (εr

�E‖) +
1√
2

�E⊥ (3.20b)

R5 =
1√
2
�n · �H‖ +

1√
2

�H⊥ (3.20c)

R6 =
1√
2
�n · �H‖ − 1√

2
�H⊥ (3.20d)

where the subscript of the �E‖ means the direction of the electric field is in the x-y

plane and the subscript of �E⊥ means the direction of the electric field is perpendicular

to the x-y plane. Because the corresponding eigenvalues of R3 and R4 are zeros,

they are ignored.

For the PEC boundary condition, we have (considering isotropic non-magnetic

media)

�n × �E‖ = 0, �E⊥ = 0 (3.21a)

�n · �H‖ =0. (3.21b)

From (3.20), we can obtain

R1 − R2 = −
√

2 �E⊥ (3.22a)

R5 + R6 =
√

2�n · �H‖. (3.22b)

Then with (3.21) the PEC boundary condition has a characteristic representation

as ⎛
⎜⎝ R1BC = R2, R2BC = R1

R5BC = −R6, R6BC = −R5

⎞
⎟⎠ . (3.23)
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For the PMC boundary condition, we have

�n · �E‖ =0 (3.24a)

�n × �H‖ = 0, �H⊥ = 0. (3.24b)

From (3.20), we have

R1 + R2 =
√

2�n · (εr
�E‖) (3.25a)

R5 − R6 =
√

2 �H⊥ (3.25b)

leading the characteristic representation for the PMC boundary condition as⎛
⎜⎝ R1BC = −R2, R2BC = −R1

R5BC = R6, R6BC = R5

⎞
⎟⎠ . (3.26)

For source-free dielectric media, the physical boundary conditions between two

domains are

�n × �EI
‖ =�n × �EII

‖ , �EI
⊥ = �EII

⊥ (3.27a)

�n · εI
�EI
‖ =�n · εII

�EII
‖ (3.27b)

�n × �HI
‖ =�n × �HII

‖ , �HI
⊥ = �HII

⊥ (3.27c)

�n · �HI
‖ =�n · �HII

‖ (3.27d)

where the superscripts I and II denoting different dielectric regions on the two sides

or two domains of the surface interface, repectively. From (3.20), we have

RI
1 =

1√
2
�nI · (εrI

�EI
‖) −

1√
2

�EI
⊥ (3.28a)

RII
2 =

1√
2
�nII · (εrII

�EII
‖ ) +

1√
2

�EII
⊥ . (3.28b)

Because �nI and �nII are in opposite directions, let �nI = −�nII = �n. Then, adding

(3.28a) to (3.28b), we obtain

RI
1 + RII

2 =
1√
2
�n · (εrI

�EI
‖ − εrII

�EII
‖ ) − 1√

2
( �EI

⊥ − �EII
⊥ ). (3.29)
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Using (3.27), (3.29) yields

RI
1 = −RII

2 . (3.30)

After doing the same procedure to R2, R5, and R6, we can get the characteristic

representation as ⎛
⎜⎝ R

I/II
1BC = −R

II/I
2 , R

I/II
2BC = −R

II/I
1

R
I/II
5BC = −R

II/I
6 , R

I/II
6BC = −R

II/I
5

⎞
⎟⎠ . (3.31)

3.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations. Consider

(3.7) with boundary terms for grid point (xi, yj)

−iβM1 · q|(xi,yj)
= ik0M2 · q|(xi,yj)

+ Ax
∂q

∂x

∣∣∣∣
(xi,yj)

+ Ay
∂q

∂y

∣∣∣∣
(xi,yj)

(3.32)

− δ(xi, yj)τSB(R − RBC)

where i, j ∈ {0, 1, ..., N} represents the numbering of grid points, δ(xi, yj) is defined

as

δ(xi, yj) =δ0i + δNi + δ0j + δNj.

τ is a real constant number with its values to be delivered latter, S is the matrix

defined in (3.12), B is the boundary inflow/outflow operator defined as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 0 0

0 b2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 b5 0

0 0 0 0 0 b6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)

where b1, b2, b5, and b6 are all real, R is the characteristic state vector defined in

(3.14), and RBC is defined in the previous section for every physical boundary con-

dition.
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Next, we ignore the low-order terms of (3.32). And like the low-order terms, the

inhomogeneous term RBC can be neglected. Using (3.15b) and (3.15d) to obtain

0 = q∗|(xi,yj)
Ax

∂q

∂x

∣∣∣∣
(xi,yj)

+ q∗|(xi,yj)
Ay

∂q

∂y

∣∣∣∣
(xi,yj)

− δ(xi, yj)τ(R∗BR) (3.34)

0 =
∂q

∂x

∣∣∣∣
(xi,yj)

Ax q∗|(xi,yj)
+

∂q

∂y

∣∣∣∣
(xi,yj)

Ay q∗|(xi,yj)
− δ(xi, yj)τ(R∗BR). (3.35)

Summing up (3.34) and (3.35), integrating the equation in the discrete form, and

basing on (3.18), we have

0 =
N∑

j=0

wηj

N∑
i=0

wξi

[
∂

∂x
(q∗Axq) +

∂

∂y
(q∗Ayq) − 2δ(xi, yj)τ(R∗BR)

]

=

⎛
⎜⎝ N∑

i=0
η=−1

+
N∑

i=0
η=1

⎞
⎟⎠wξi |∇ξ| [−R∗

1R1 + R∗
2R2 + R∗

5R5 − R∗
6R6]

+

⎛
⎜⎝ N∑

j=0
ξ=−1

+
N∑

j=0
ξ=1

⎞
⎟⎠wηj |∇η| [−R∗

1R1 + R∗
2R2 + R∗

5R5 − R∗
6R6]

−

⎛
⎜⎝wη0

N∑
i=0

η=−1

+wηN

N∑
i=0
η=1

⎞
⎟⎠wξi2τ(R∗BR)

−

⎛
⎜⎝wξ0

N∑
j=0

ξ=−1

+wξN

N∑
j=0
ξ=1

⎞
⎟⎠wηj2τ(R∗BR) (3.36)

where
∑

is the discrete form of integral and wxi and wyj are the weights of the

discrete integrals (which will be delivered in Chapter 5). The values of wxi and wyj
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depend on the numerical method employed. Write (3.36) as

0 =
N∑

i=0
η=−1

wξi [(− |∇ξ| − 2wη0τb1)R
∗
1R1 + (|∇ξ| − 2wη0τb2)R

∗
2R2

+ (|∇ξ| − 2wη0τb5)R
∗
5R5 + (− |∇ξ| − 2wη0τb6)R

∗
6R6]

+
N∑

i=0
η=1

wξi [(− |∇ξ| − 2wηNτb1)R
∗
1R1 + (|∇ξ| − 2wηNτb2)R

∗
2R2

+ (|∇ξ| − 2wηNτb5)R
∗
5R5 + (− |∇ξ| − 2wηNτb6)R

∗
6R6]

+
N∑

j=0
ξ=−1

wηj [(− |∇η| − 2wξ0τb1)R
∗
1R1 + (|∇η| − 2wξ0τb2)R

∗
2R2

+ (|∇η| − 2wξ0τb5)R
∗
5R5 + (− |∇η| − 2wξ0τb6)R

∗
6R6]

+
N∑

j=0
ξ=1

wηj [(− |∇η| − 2wξNτb1)R
∗
1R1 + (|∇η| − 2wξNτb2)R

∗
2R2

+ (|∇η| − 2wξNτb5)R
∗
5R5 + (− |∇η| − 2wξNτb6)R

∗
6R6] . (3.37)

In order to make the right side of (3.37) to be zero, we define

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2wη0

|∇ξ| , when η = −1

1
2wηN

|∇ξ| , when η = 1

1
2wξ0

|∇η| , when ξ = −1

1
2wξN

|∇η| , when ξ = 1

(3.38)

and (
b1 = −1, b2 = 1, b5 = 1, b6 = −1

)
. (3.39)

Substituting the values in (3.39) into (3.33), the matrix B is determined.

3.6 The Final Form of The Six-Equation

Version

The boundary conditions have been discussed in detail in previous sections. Now

we substitute all variables obtained to form a standard eigenvalue problem.
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We start with the case of the PEC boundary condition. First, substituting the

matrices M1, M2, Ax, Ay, S, and B into (3.32), and replacing (R−RBC) with (3.23),

we can obtain the following six equations:

−iβEx = −ik0Hy +
∂

∂x
Ez − δ(xi, yj)τ [2nxEz] (3.40a)

−iβEy = ik0Hx +
∂

∂y
Ez − δ(xi, yj)τ [2nyEz] (3.40b)

−iβEz = − ∂

∂x
Ex − ∂

∂y
Ey (3.40c)

−iβHx = ik0εrEy +
∂

∂x
Hz (3.40d)

−iβHy = −ik0εrEx +
∂

∂y
Hz (3.40e)

−iβHz = − ∂

∂x
Hx − ∂

∂y
Hy + δ(xi, yj)τ [2(nxHx + nyHy)] . (3.40f)

For the case of the PMC boundary condition, by replacing (R−RBC) with (3.26),

we can get the following equations:

−iβEx = −ik0Hy +
∂

∂x
Ez (3.41a)

−iβEy = ik0Hx +
∂

∂y
Ez (3.41b)

−iβEz = − ∂

∂x
Ex − ∂

∂y
Ey + δ(xi, yj)τ [2(nxEx + nyEy)] (3.41c)

−iβHx = ik0εrEy +
∂

∂x
Hz − δ(xi, yj)τ [2nxHz] (3.41d)

−iβHy = −ik0εrEx +
∂

∂y
Hz − δ(xi, yj)τ [2nyHz] (3.41e)

−iβHz = − ∂

∂x
Hx − ∂

∂y
Hy. (3.41f)

Finally, by replacing (R−RBC) with (3.31), we have the following equations for
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the dielectric boundary condition:

−iβEI
x = − ik0H

I
y +

∂

∂x
EI

z − δI(xi, yj)τ
I
[
nI

x(E
I
z − EII

z )
]

(3.42a)

−iβEI
y =ik0H

I
x +

∂

∂y
EI

z − δI(xi, yj)τ
I
[
nI

y(E
I
z − EII

z )
]

(3.42b)

−iβEI
z = − ∂

∂x
EI

x − ∂

∂y
EI

y

+ δI(xi, yj)τ
I

[
nI

x(E
I
x − εrII

εrI

EII
x ) + nI

y(E
I
y − εrII

εrI

EII
y )

]
(3.42c)

−iβHI
x =ik0εrIE

I
y +

∂

∂x
HI

z − δI(xi, yj)τ
I
[
nI

x(H
I
z − HII

z )
]

(3.42d)

−iβHI
y = − ik0εrIE

I
x +

∂

∂y
HI

z − δI(xi, yj)τ
I
[
nI

y(H
I
z − HII

z )
]

(3.42e)

−iβHI
z = − ∂

∂x
HI

x − ∂

∂y
HI

y

+ δI(xi, yj)τ
I
[
nI

x(H
I
x − HII

x ) + nI
y(H

I
y − HII

y )
]
. (3.42f)

3.7 The Final Form of Three-Equation Version

We have demostrated the formulations for 2D waveguide problems in the previous

section. In fact, we can decrease the number of equations from six to three. First,

we start from (3.40) by writing it in the continuous form:

−iβEx(x, y) = −ik0Hy(x, y) +
∂

∂x
Ez(x, y) − δ(x, y)τ [2nxEz] (3.43a)

−iβEy(x, y) = ik0Hx(x, y) +
∂

∂y
Ez(x, y) − δ(x, y)τ [2nyEz] (3.43b)

−iβEz(x, y) = − ∂

∂x
Ex(x, y) − ∂

∂y
Ey(x, y) (3.43c)

−iβHx(x, y) = ik0εrEy(x, y) +
∂

∂x
Hz(x, y) (3.43d)

−iβHy(x, y) = −ik0εrEx(x, y) +
∂

∂y
Hz(x, y) (3.43e)

−iβHz(x, y) = − ∂

∂x
Hx(x, y) − ∂

∂y
Hy(x, y) + δ(x, y)τ [2(nxHx + nyHy)] (3.43f)

where δ(x, y) is defined as

δ(x, y) = l0(x) + lN(x) + l0(y) + lN(y).

31



Here, the l function, for example, l0(x), is the basis function we use to interpolate

an unknown function. l0(x) will look like as shown in Fig. 3.2 which is equal to 1

at x = x0 and 0 at other grid points.

We multiply (3.43d), (3.43e), and (3.43c) with iβ and replace iβEx(x, y), iβEy(x, y),

and iβHz(x, y) with (3.43a), (3.43b), and (3.43f), respectively, to obtain

−β2Hx(x, y) = − k2
0εrHx(x, y) − ∂2

∂x2
Hx(x, y) − ∂2

∂x∂y
Hy(x, y) (3.44)

+ ik0εr
∂

∂y
Ez(x, y) +

∂

∂x
δ(x, y)τ [2(nxHx + nyHy)]

− ik0εrδ(x, y)τ [2nyEz]

−β2Hy(x, y) = − k2
0εrHy(x, y) − ∂2

∂x∂y
Hx(x, y) − ∂2

∂y2
Hy(x, y) (3.45)

− ik0εr
∂

∂x
Ez(x, y) +

∂

∂y
δ(x, y)τ [2(nxHx + nyHy)]

+ ik0εrδ(x, y)τ [2nxEz]

−β2Ez(x, y) = − ik0
∂

∂y
Hx(x, y) + ik0

∂

∂x
Hy(x, y) − ∂2

∂x2
Ez(x, y) (3.46)

− ∂2

∂y2
Ez(x, y) + τ

[
nx

∂

∂x
δ(x, y) + ny

∂

∂y
δ(x, y)

]
[2Ez].

Finally, we rewrite (3.44)–(3.44) in discrete form as

−β2Hx = − k2
0εrHx − ∂2

∂x2
Hx − ∂2

∂x∂y
Hy + ik0εr

∂

∂y
Ez (3.47)

+
∂

∂x
δ(xi, yj)τ [2(nxHx + nyHy)] − ik0εrδ(xi, yj)τ [2nyEz]

−β2Hy = − k2
0εrHy − ∂2

∂x∂y
Hx − ∂2

∂y2
Hy − ik0εr

∂

∂x
Ez (3.48)

+
∂

∂y
δ(xi, yj)τ [2(nxHx + nyHy)] + ik0εrδ(xi, yj)τ [2nxEz]

−β2Ez = − ik0
∂

∂y
Hx + ik0

∂

∂x
Hy − ∂2

∂x2
Ez − ∂2

∂y2
Ez (3.49)

+ τ

[
nx

∂

∂x
δ(xi, yj) + ny

∂

∂y
δ(xi, yj)

]
[2Ez].
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For the case of the PMC boundary condition, we can derive

−β2Hx = − k2
0εrHx − ∂2

∂x2
Hx − ∂2

∂x∂y
Hy + ik0εr

∂

∂y
Ez (3.50)

+ δ(xi, yj)τ

[
2nx(

∂

∂x
Hx +

∂

∂y
Hy)

]

−β2Hy = − k2
0εrHy − ∂2

∂x∂y
Hx − ∂2

∂y2
Hy − ik0εr

∂

∂x
Ez (3.51)

+ δ(xi, yj)τ

[
2ny(

∂

∂x
Hx +

∂

∂y
Hy)

]

−β2Ez = − ik0
∂

∂y
Hx + ik0

∂

∂x
Hy − ∂2

∂x2
Ez − ∂2

∂y2
Ez (3.52)

+ δ(xi, yj)τ

[
−i2k0(nxHy − nyHx) + 2(nx

∂

∂x
+ ny

∂

∂y
)Ez

]

and for the case of the dielectric boundary condition, we can derive

−β2HI
x = − k2

0εrIH
I
x − ∂2

∂x2
HI

x − ∂2

∂x∂y
HI

y + ik0εr
∂

∂y
EI

z (3.53)

+
∂

∂x
δI(xi, yj)τ

I
[
nI

x(H
I
x − HII

x ) + nI
y(H

I
y − HII

y )
]

+ δI(xi, yj)τ
I

[
nI

x

(
∂

∂x
(HI

x − HII
x ) +

∂

∂y
(HI

y − HII
y )

)
− ik0εrn

I
y(E

I
z − EII

z )

]

− δI(xi, yj)τ
I
[
nI

x

(
δI(xi, yj)τ

I − δII(xi, yj)τ
II
) (

nI
x(H

I
x − HII

x ) + nI
y(H

I
y − HII

y )
)]

−β2HI
y = − k2

0εrIH
I
y − ∂2

∂x∂y
HI

x − ∂2

∂y2
HI

y − ik0εr
∂

∂x
EI

z (3.54)

+
∂

∂y
δI(xi, yj)τ

I
[
nI

x(H
I
x − HII

x ) + nI
y(H

I
y − HII

y )
]

+ δI(xi, yj)τ
I

[
nI

y

(
∂

∂x
(HI

x − HII
x ) +

∂

∂y
(HI

y − HII
y )

)
+ ik0εrn

I
x(E

I
z − EII

z )

]

− δI(xi, yj)τ
I
[
nI

y

(
δI(xi, yj)τ

I − δII(xi, yj)τ
II
) (

nI
x(H

I
x − HII

x ) + nI
y(H

I
y − HII

y )
)]

−β2EI
z = − ik0

∂

∂y
HI

x + ik0
∂

∂x
HI

y − ∂2

∂x2
EI

z − ∂2

∂y2
EI

z (3.55)

+ τ I

[
nI

x

∂

∂x
δI(xi, yj) + nI

y

∂

∂y
δI(xi, yj)

] [
EI

z − EII
z

]
+ δI(xi, yj)

τ I

εrI

[−ik0

(
εrI(n

I
xH

I
y − nI

yH
I
x) − εrII(n

I
xH

II
y − nI

yH
II
x )

)
+

(
nI

x

∂

∂x
+ nI

y

∂

∂y

)
(εrIE

I
z − εrIIE

II
z )

− (
δI(xi, yj)τ

IεrI − δII(xi, yj)τ
IIεrII

)
(EI

z − EII
z )

]
.
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Figure 3.1: Transformation between global and local coordinates.

Figure 3.2: The characteristic of l0(x).
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Chapter 4

Mathematical Formulation for 2D
Photonic Crystal Analysis

This chapter is devoted to the process of derivation of the formulation for the 2D

photonic crystal (PC) problem. Since we have demostrated the whole process of

derivation in details in the last chapter, in this chapter we will only describe some

important parts of the whole derivation.

4.1 Equations Used for PC Structure

We start from the Maxwell’s curl equations for the TE mode:

ε
∂Ẽx

∂t
= −∂H̃y

∂z
(4.1a)

ε
∂Ẽz

∂t
=

∂H̃y

∂x
(4.1b)

μ0
∂H̃y

∂t
=

∂Ẽz

∂x
− ∂Ẽx

∂z
(4.1c)

with the following transformation:

H̃y =
1√

μ0/ε0

Hy, Ẽx = Ex, Ẽz = Ez (4.2)

(4.1) will appear as

εr

c

∂Ex

∂t
= −∂Hy

∂z
(4.3a)

εr

c

∂Ez

∂t
=

∂Hy

∂x
(4.3b)

1

c

∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
(4.3c)
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where εr is relative permittivity defined as εr = ε/ε0.

4.2 Well-posedness Analysis

We write (4.3) in matrix form:

M

c

∂q̂

∂t
= Ax · ∂q̂

∂x
+ Az · ∂q̂

∂z
(4.4)

where q̂ = [Ex Ez Hy]
T and M , Ax, and Az are defined as

M =

⎡
⎢⎢⎢⎢⎣

εr 0 0

0 εr 0

0 0 1

⎤
⎥⎥⎥⎥⎦ , Ax =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎥⎦ , Az =

⎡
⎢⎢⎢⎢⎣

0 0 −1

0 0 0

−1 0 0

⎤
⎥⎥⎥⎥⎦ . (4.5)

Let q̂(x, z, t) = q(x, z) · eiωt and (4.4) becomes

ik0Mq = Ax · ∂q

∂x
+ Az · ∂q

∂z
(4.6)

where k0 = ω/c.

Now we neglect the low-order terms which do not affect the well-posedness anal-

ysis. Then (4.6) becomes

0 = Ax · ∂q

∂x
+ Az · ∂q

∂z
. (4.7)

Define a new matrix A(n)

A(n) = nxAx + nzAz (4.8)

where (nx, nz) represents the unit normal vector directed outward on the boundary

of the considered domain. Since A(n) = A(n)T , there exists a matrix S such that

ST · A(n) · S = Λ. (4.9)

For a symmetric matrix A(n), we can define such matrix S as

S =

⎡
⎢⎢⎢⎢⎣

nz√
2

nz√
2

nx

− nx√
2

− nx√
2

nz

1√
2

− 1√
2

0

⎤
⎥⎥⎥⎥⎦ . (4.10)
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From (4.10), we have

ST S = I, ST A(n)S =

⎡
⎢⎢⎢⎢⎣

−1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎥⎥⎦

where
√

n2
x + n2

z = 1 has been used. We define a new vector R, the characteristic

state vector, for latter use

R = ST · q =

⎡
⎢⎢⎢⎢⎣

nz√
2
Ex − nx√

2
Ez + 1√

2
Hy

nz√
2
Ex − nx√

2
Ez − 1√

2
Hy

nxEx + nzEz

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

R1

R2

R3

⎤
⎥⎥⎥⎥⎦ . (4.11)

4.3 The Energy Method

Based on (4.7), we have the following equations:

0 = Ax
∂q

∂x
+ Az

∂q

∂z
(4.12)

0 = q∗Ax
∂q

∂x
+ q∗Az

∂q

∂z
(4.13)

0 =
∂q∗

∂x
A∗

x +
∂q∗

∂z
A∗

z =
∂q∗

∂x
Ax +

∂q∗

∂z
Az, (4.14)

0 =
∂q∗

∂x
Axq +

∂q∗

∂z
Azq. (4.15)

Summing up (4.13) and (4.15) and using the local coordinates (ξ, η) transformation

shown in Fig. 3.1, we have

0 =q∗Aξ
∂q

∂ξ
+ q∗Aη

∂q

∂η
+

∂q∗

∂ξ
Aξq +

∂q∗

∂η
Aηq (4.16)

=
∂

∂ξ
(q∗Aξq) +

∂

∂η
(q∗Aηq) (4.17)

where

Aξ = Ax
∂ξ

∂x
+ Az

∂ξ

∂z
, Aη = Ax

∂η

∂x
+ Az

∂η

∂z
.
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Integrating over Ω ∈ {−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1}, (4.17) becomes

0 =

∫
S=Ω

[
∂

∂ξ
(q∗Aξq) +

∂

∂η
(q∗Aηq)

]
· dS (4.18a)

=

∫
l=δΩ

q∗(nξAξ + nηAη)q · dl (4.18b)

=

∫ 1

−1

|∇η| [−R∗
1R1 + R∗

2R2]η=−1 · dξ +

∫ 1

−1

|∇η| [−R∗
1R1 + R∗

2R2]η=1 · dξ

+

∫ 1

−1

|∇ξ| [−R∗
1R1 + R∗

2R2]ξ=−1 · dη +

∫ 1

−1

|∇ξ| [−R∗
1R1 + R∗

2R2]ξ=1 · dη.

For the right side to be zero, we need the condition

R∗
1R1 = R∗

2R2 at boundary. (4.19)

And we must follow (4.19) when we design the boundary condition to make the

equations be well-posed.

4.4 Characteristic Representations of Physical

Boundary Condtions

We now consider the representations of physical boundary conditions for PC struc-

ture. Unlike the waveguide problem, there are only two types of boundary con-

ditions, the dielectric boundary condition and the periodic boundary condition,

involved in the PC structure. Consider an interface seperating two domains, and

define the unit vector �n = (nx, nz) pointing from the first domain to the second

domain. Then from (4.11), we can rewrite the R variables as

R1 =
1√
2
�n × �E‖ +

1√
2

�H⊥ (4.20a)

R2 =
1√
2
�n × �E‖ − 1√

2
�H⊥ (4.20b)

where the subscript of �E‖ means the direction of the electric field is in the x-z plane,

and the subscript of �H⊥ means the direction of magnetic field is perpendicular to

xz plane. We ignore R3 because its corresponding eigenvalue is zero.
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For the case of dielectric boundary condition, we have (considering isotropic

non-magnetic media)

�n × �EI
‖ =�n × �EII

‖ , �EI
⊥ = �EII

⊥ (4.21a)

�n · εI
�EI
‖ =�n · εII

�EII
‖ (4.21b)

�n × �HI
‖ =�n × �HII

‖ , �HI
⊥ = �HII

⊥ (4.21c)

�n · �HI
‖ =�n · �HII

‖ (4.21d)

where the superscripts I and II denote the varibales are defined in different regions.

From (4.20), we have

RI
1 =

1√
2
�nI × �EI

‖ +
1√
2

�HI
⊥ (4.22a)

RII
2 =

1√
2
�nII × �EII

‖ − 1√
2

�HII
⊥ . (4.22b)

Because �nI and �nII are in opposite directions, letting �n = �nI = −�nII and adding

(4.22a) to (4.22b), we obtain

RI
1 + RII

2 =
1√
2
�n × ( �EI

‖ − �EII
‖ ) +

1√
2
( �HI

⊥ − �HII
⊥ ).

By using (4.21a) and (4.21c), the above equation becomes

RI
1 = −RII

2 .

Consequently, we have the characteristic representation

(
R

I/II
1BC = −R

II/I
2 , R

I/II
2BC = −R

II/I
1

)
. (4.23)

Because of the periodic geometry character of the PC structure, the field distri-

bution should satisfy Bloch theorem

ψ(�r + �na) = e−j(	n·	k)aψ(�r) (4.24)

or

ψ(x + nxa, z + nza) = e−j(nxkx+nzkz)aψ(x, z) (4.25)
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where a is the lattice constant of the PC and �k is the wave vector in the x-z plane.

And (4.23) should be modified to be⎛
⎜⎝ R

I/II
1BC = −e−j(nxkx+nzkz)aR

II/I
2

R
I/II
2BC = −e−j(nxkx+nzkz)aR

II/I
1

⎞
⎟⎠ (4.26)

as the periodic boundary condition.

4.5 Design of the Scheme

In this section, we will add boundary condtions to the governing equations. Start

from (4.6) with boundary terms for a grid point (xi, zj)

ik0M q|(xi,zj)
= Ax

∂q

∂x

∣∣∣∣
(xi,zj)

+ Az
∂q

∂z

∣∣∣∣
(xi,zj)

− δ(xi, zj)τSB(R − RBC) (4.27)

where i, j ∈ {0, 1, ...N} represents the numbering of grid points, δ(xi, zj) is defined

as

δ(xi, zj) =δ0i + δNi + δ0j + δNj

τ is a real constant number with its values to be determined latter, S is a matrix

defined in (4.10), B is the boundary inflow/outflow operator defined as

B =

⎡
⎢⎢⎢⎢⎣

b1 0 0

0 b2 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (4.28)

where b1 and b2 are both real, R is the characteristic state vector defined in (4.11),

and RBC is defined in the previous section for every physical boundary condition.

Next, we ignore the low-order terms of (4.27), and use (4.13) and (4.15) to obtain

0 = q∗|(xi,yj)
Ax

∂q

∂x

∣∣∣∣
(xi,yj)

+ q∗|(xi,yj)
Ay

∂q

∂y

∣∣∣∣
(xi,yj)

− δ(xi, yj)τ(R∗BR) (4.29)

0 =
∂q

∂x

∣∣∣∣
(xi,yj)

Ax q∗|(xi,yj)
+

∂q

∂y

∣∣∣∣
(xi,yj)

Ay q∗|(xi,yj)
− δ(xi, yj)τ(R∗BR). (4.30)
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Summing up (4.29) and (4.30), integrating the equation in the discrete form, and

basing on (4.18), we have

0 =
N∑

j=0

wzj

N∑
i=0

wxi

[
∂

∂x
(q∗Axq) +

∂

∂z
(q∗Azq) − 2δ(xi, zj)τ(R∗BR)

]

=

⎛
⎜⎝ N∑

i=0
z=−1

+
N∑

i=0
z=1

⎞
⎟⎠wxi |∇η| [−R∗

1R1 + R∗
2R2] +

⎛
⎜⎝ N∑

j=0
x=−1

+
N∑

j=0
x=1

⎞
⎟⎠wzj |∇ξ| [−R∗

1R1 + R∗
2R2]

−

⎛
⎜⎝wz0

N∑
i=0

z=−1

+wzN

N∑
i=0
z=1

⎞
⎟⎠wxi2τ(R∗BR) −

⎛
⎜⎝wx0

N∑
j=0

x=−1

+wxN

N∑
j=0
x=1

⎞
⎟⎠wzj2τ(R∗BR)

(4.31)

where
∑

is the discrete form of integral and wxi and wzj are the weights of the

discrete integrals (which will be delivered in Chapter 5). The values of wxi and wzj

depend on the numerical method employed. Write (4.31) as

0 =
N∑

i=0
z=−1

wxi [(− |∇η| − 2wy0τb1)R
∗
1R1 + (|∇η| − 2wy0τb2)R

∗
2R2]

+
N∑

i=0
z=1

wxi [(− |∇η| − 2wyNτb1)R
∗
1R1 + (|∇η| − 2wyNτb2)R

∗
2R2]

+
N∑

j=0
x=−1

wyj [(− |∇ξ| − 2wx0τb1)R
∗
1R1 + (|∇ξ| − 2wx0τb2)R

∗
2R2]

+
N∑

j=0
x=1

wyj [(− |∇ξ| − 2wxNτb1)R
∗
1R1 + (|∇ξ| − 2wxNτb2)R

∗
2R2] . (4.32)

In order to make the right of (4.32) to be zero, we define

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2wz0

|∇η| , when z = −1

1
2wzN

|∇η| , when z = 1

1
2wx0

|∇ξ| , when x = −1

1
2wxN

|∇ξ| , when x = 1

(4.33)

and (
b1 = −1, b2 = 1

)
. (4.34)

Substituting the values in (4.34) into (4.28), the matrix B is determined.
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4.6 The Final Form of The Three-Equation

Version

Now we substitute all variables obtained to form a standard eigenvalue problem.

We start with the dielectric boundary condition. First, substituting the matrices

M , Ax, Az, S, and B into (4.27), and replacing (R−RBC) with (4.23), we can obtain

the following three equations

ik0E
I
x =

−1

εrI

∂HI
y

∂z
+ δI(xi, zj)

τ I

εrI

[
nz

(
HI

y − HII
y

)]
(4.35a)

ik0E
I
z =

1

εrI

∂HI
y

∂x
− δI(xi, zj)

τ I

εrI

[
nx

(
HI

y − HII
y

)]
(4.35b)

ik0H
I
y =

∂EI
z

∂x
− ∂EI

x

∂z
(4.35c)

+ δI(xi, zj)τ
I
[
nz

(
EI

x − EII
x

)− nx

(
EI

z − EII
z

)]
.

We can do the same procedure for the periodic boundary condition and obtain

ik0E
I
x =

−1

εrI

∂HI
y

∂z
+ δI(xi, zj)

τ I

εrI

[
nz

(
HI

y − e−j(nxkx+nzkz)aHII
y

)]
(4.36a)

ik0E
I
z =

1

εrI

∂HI
y

∂x
− δI(xi, zj)

τ I

εrI

[
nx

(
HI

y − e−j(nxkx+nzkz)aHII
y

)]
(4.36b)

ik0H
I
y =

∂EI
z

∂x
− ∂EI

x

∂z
(4.36c)

+ δI(xi, zj)τ
I
[(

nzE
I
x − nxE

I
z

)− e−j(nxkx+nzkz)a
(
nzE

II
x − nxE

II
z

)]
.

Similarly, for TM mode we can derive for the dielectric boundary condition:

ik0H
I
x = − ∂EI

y

∂z
+ δI(xi, zj)τ

I
[
nz

(
EI

y − EII
y

)]
ik0H

I
z =

∂EI
y

∂x
− δI(xi, zj)τ

I
[
nx

(
EI

y − EII
y

)]
ik0E

I
y =

1

εrI

∂HI
z

∂x
− 1

εrI

∂HI
x

∂z
+ δI(xi, zj)

τ I

εrI

[
nz

(
HI

x − HII
x

)− nx

(
HI

z − HII
z

)]
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and for the periodic boundary condition:

ik0H
I
x = − ∂EI

y

∂z
+ δI(xi, zj)τ

I
[
nz

(
EI

y − e−j(nxkx+nzkz)aEII
y

)]
ik0H

I
z =

∂EI
y

∂x
− δI(xi, zj)τ

I
[
nx

(
EI

y − e−j(nxkx+nzkz)aEII
y

)]
ik0E

I
y =

1

εrI

∂HI
z

∂x
− 1

εrI

∂HI
x

∂z

+ δI(xi, zj)
τ I

εrI

[(
nzH

I
x − nxH

I
z

)− e−j(nxkx+nzkz)a
(
nzH

II
x − nxH

II
z

)]
.

4.7 The Final Form of the One-Equation Version

We have demostrated the formulations for the PC problem in the previous section.

In fact, we can decrease the number of equations from three to one. First, we start

from (4.35) by writing it in the continuous form

ik0E
I
x(x, z) =

−1

εrI

∂

∂z
HI

y (x, z) + δI(x, z)
τ I

εrI

[
nz

(
HI

y − HII
y

)]
(4.39a)

ik0E
I
z (x, z) =

1

εrI

∂

∂x
HI

y (x, z) − δI(x, z)
τ I

εrI

[
nx

(
HI

y − HII
y

)]
(4.39b)

ik0H
I
y (x, z) =

∂

∂x
EI

z (x, z) − ∂

∂z
EI

x(x, z) (4.39c)

+ δI(x, z)τ I
[
nz

(
EI

x − EII
x

)− nx

(
EI

z − EII
z

)]
where δ(x, z) is defined as

δ(x, z) =l0(x) + lN(x) + l0(z) + lN(z).

We multiply (4.39c) with ik0 and replace ik0Ex(x, z) and ik0Ez(x, z) with (4.39a)

and (4.39b), respectively, to obtain

−k2
0H

I
y (x, z) =

1

εrI

∂2

∂x2
HI

y (x, z) +
1

εrI

∂2

∂z2
HI

y (x, z) (4.40)

−
(

nx
∂

∂x
+ nz

∂

∂z

)
δI(x, z)

τ I

εrI

[
HI

y − HII
y

]

− δI(x, z)τ I

[(
nx

∂

∂x
+ nz

∂

∂z

)(
HI

y

εrI

− HII
y

εrII

)

−
(

δI(x, y)τ I

εrI

− δII(x, y)τ II

εrII

)(
HI

y − HII
y

)]
.
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Finally, we rewrite (4.40) in simplified form

−k2
0H

I
y =

1

εrI

�2 HI
y − (

�n · �δI
) τ I

εrI

[
HI

y − HII
y

]
(4.41)

− δIτ I

[
�n · �

(
HI

y

εrI

− HII
y

εrII

)
−
(

δIτ I

εrI

− δIIτ II

εrII

)(
HI

y − HII
y

)]
.

For the periodic boundary condition, we can get

−k2
0H

I
y =

1

εrI

�2 HI
y − (

�n · �δI
) τ I

εrI

[
HI

y − AHII
y

]
(4.42)

− δIτ I

[
�n · �

(
HI

y

εrI

− A
HII

y

εrII

)
−
(

δIτ I

εrI

− δIIτ II

εrII

)(
HI

y − AHII
y

)]

where A = e−j(nxkx+nzkz)a.

The above is for TE mode. For the TM mode, we can derive

−k2
0E

I
y =

1

εrI

�2 EI
y − (

�n · �δI
) τ I

εrI

[
EI

y − EII
y

]
(4.43)

− δI τ I

εrI

[
�n · � (

EI
y − EII

y

) − (
δIτ I − δIIτ II

) (
EI

y − EII
y

)]

for the dielectric boundary condition and

−k2
0E

I
y =

1

εrI

�2 EI
y − (

�n · �δI
) τ I

εrI

[
EI

y − AEII
y

]
(4.44)

− δI τ I

εrI

[
�n · � (

EI
y − AEII

y

) − (
δIτ I − δIIτ II

) (
EI

y − AEII
y

)]

for the periodic boundary condition.
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Chapter 5

Pseudospectral Method and
Shifted Inverse Power Method

This chapter is devoted to the introduction to the numerical methods we use for

numerical analysis, including the pseudospectral method and the shifted inverse

power method (SIPM).

5.1 The Pseudospectral Method

The spectral method [Hendiksen et al., 2007] is known as high-efficiency and high-

accuracy method in numerical computation. The basic idea of the spectral method

is to use a set of interpolation polynomials to approximate a function of interest.

There are two types of spectral method: Galerkin methods and collocation methods

(which we call pseudospectral methods). We usually use pseudospectral methods

since it is simpler than the other.

For interpolation polynomials, there are mainly three kinds of polynomials used

in this method: Fourier, Legendre, and Chebyshev polynomials. The collocation

points are different in each polynomial method. We will only describe the Legendre

collocation method in detail since we only use this polynomial in our research.

5.1.1 Overview of the Pseudospectral Method

Assume we want to solve the equation:

Lu(x) = f(x) (5.1)
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where L is a differential operator, u(x) is the solution to the differential equation,

and f(x) is a known function. Since u(x) is an unknown function, one of possible

ways to solve it is to use a set of functions, called basis functions, to approximate

u(x). In other words, we can let

u(x) ≈ uN(x) =
N∑

k=0

ukφk(x). (5.2)

where φk(x)’s are the basis functions and uk’s are complex numbers. By substituting

(5.2) into (5.1), we can define a residual function as

RN(x) = LuN(x) − f(x). (5.3)

Now the question becomes: how to minimize the residual function.

For the pseudospectral method, we let the residual function to be zero at the

N + 1 collocation points xi, i = 0, 1, ..., N , so that

LuN(xi) = f(xi), i = 0, 1, ..., N. (5.4)

Therefore,
N∑

k=0

ukLφk(xi) = f(xi), i = 0, 1, ..., N (5.5)

which is an algebratic system with N + 1 coefficients, uk, k = 0, 1, ..., N , to be

determined. In other words, we transform the differential equation problem into an

algebratic equation problem. The collocation points and differential operators will

be delivered in the next subsection for Legendre funcitons.

5.1.2 The Pseudospectral Legendre Method

The Legendre polynomial of order N , PN(x), is defined as

PN(x) =
1

2NN !

dN(x2 − 1)N

dxN
, |x| � 1. (5.6)

We consider the collocation mehtod that is the same as described by Hesthaven and

Gottlieb, [1996] with the collocation points given as the Legendre-Gauss-Lobatto
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points, defined as the roots of the polynomial (1 − x2)P ′
N(x). There exists no ana-

lytical formula for these roots.

The choice of Gauss-Lobatto points is for the purpose of using the Gauss-Lobatto

quadrature formula which means that if f(x) is a polynomial of degree 2N −1, then

N∑
i=0

f(xi)wi =

∫ 1

−1

f(ξ)dξ (5.7)

where xi’s are the Legendre-Gauss-Lobatto collocation points, and the Gauss-Lobatto

weights, wi, are given as

wi = − 2

N + 1

1

PN(xi)P ′
N−1(xi)

, 1 � i � N − 1 (5.8a)

w0 = wN =
2

N(N + 1)
. (5.8b)

In the pseudospectral Legendre method or the Legendre collocation method, the

function f(x) is approximated by Legendre-Lagrange interpolating polynomials.

Thus, we can construct an Nth order global Legendre interpolant, LN , to obtain an

approximation to the function as

(LNf)(x) =
N∑

i=0

f(xi)gi(x) (5.9)

where the interpolationg Legendre-Lagrange polynomail gi(x) is given as

gi(x) = − (1 − x2)P ′
N(x)

N(N + 1)(x − xi)PN(xi)
(5.10)

Note that by this construction,

(LNf)(xi) = f(xi). (5.11)

The spatial derivatives of (LNf)(xi) can be achieved by a matrix operator, with the

matrix entries given as

Dij = g′
j(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−N(N+1)
4

, i = j = 0

PN (xi)
PN (xj)

1
xi−xj

, i �= j

N(N+1)
4

, i = j = N

0, i = j ∈ [1, N − 1]

(5.12)
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such that the derivative of f(x) at a collocation point, xi, is approximated as

df(xi)

dx
≈ d(LNf)(xi)

dx
=

N∑
j=0

Dijf(xj). (5.13)

We can use (5.13) for 1D waveguide problems, but for 2D waveuguide and PC

problems we must introduce transfinite elements.

5.1.3 Curvilinear Representation of The Pseudospectral Method

Consider a 2D setting and define the approximation to f(x, y) as

f(x, y) ≈
N∑

i=0

N∑
j=0

f(xi, yj)gi(x)gj(y) (5.14)

where the Legendre-Gauss-Lobatto grid yi has been introduced. The approach has

the benefit that the derivatives can be calculated through the 1D formula and thus

the differential formula at the 2D collocation points arranged in a rectangular domain

can be expressed as in the following matrix multiplication form

∂ ¯̄frect

∂x
= ¯̄D(N+1)×(N+1)

¯̄frect (5.15a)

∂ ¯̄frect

∂y
= ¯̄frect

¯̄DT
(N+1)×(N+1) (5.15b)

where

¯̄D(N+1)×(N+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D00 D01 · · · D0N

D10 D11 · · · D1N

...
... · · · ...

DN0 DN1 · · · DNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.16)

The entries of ¯̄D(N+1)×(N+1) have been defined in (5.12). ¯̄frect is an (N +1)× (N +1)

matrix with entries f(xi, yj), i = 0, 1, 2, ..., N , and j = 0, 1, 2, ..., N , corresponding to

collocation points in rectangular arrangement. However, the employment of matrix

products is still restricted by the nature of rectangular grids. And since we define

(5.6) in the range x ∈ [−1, 1], (5.15) can only be adopted in a unit square [−1, 1] ×
[−1, 1] area which restricts our computation. In order to surpass this restriction, we

must introduce the transfinite transformation.
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By applying the transfinite blending function presented by Doncker [2000], each

curvilinear quadrilateral in Cartesian (x, y) coordinates can be mapped into a unit

square area [−1, 1]×[−1, 1] in curvilinear (ξ, η) coordinates under the transformation

ξ = ξ(x, y), η = η(x, y). (5.17)

And we define four new matrices,

¯̄Mξx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ξ(x0, y0)/∂x ∂ξ(x0, y1)/∂x · · · ∂ξ(x0, yN)/∂x

∂ξ(x1, y0)/∂x ∂ξ(x1, y1)/∂x · · · ∂ξ(x1, yN)/∂x

...
... · · · ...

∂ξ(xN , y0)/∂x ∂ξ(xN , y1)/∂x · · · ∂ξ(xN , yN)/∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.18a)

¯̄Mηx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂η(x0, y0)/∂x ∂η(x0, y1)/∂x · · · ∂η(x0, yN)/∂x

∂η(x1, y0)/∂x ∂η(x1, y1)/∂x · · · ∂η(x1, yN)/∂x

...
... · · · ...

∂η(xN , y0)/∂x ∂η(xN , y1)/∂x · · · ∂η(xN , yN)/∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.18b)

¯̄Mξy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ξ(x0, y0)/∂y ∂ξ(x0, y1)/∂y · · · ∂ξ(x0, yN)/∂y

∂ξ(x1, y0)/∂y ∂ξ(x1, y1)/∂y · · · ∂ξ(x1, yN)/∂y

...
... · · · ...

∂ξ(xN , y0)/∂y ∂ξ(xN , y1)/∂y · · · ∂ξ(xN , yN)/∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.18c)

¯̄Mηy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂η(x0, y0)/∂y ∂η(x0, y1)/∂y · · · ∂η(x0, yN)/∂y

∂η(x1, y0)/∂y ∂η(x1, y1)/∂y · · · ∂η(x1, yN)/∂y

...
... · · · ...

∂η(xN , y0)/∂y ∂η(xN , y1)/∂y · · · ∂η(xN , yN)/∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.18d)

From the fundamental differential principle, the approximations for the derivatives

of f(x, y) in the (ξ, η) coordinates can be written as

∂ ¯̄fcur

∂x
= ¯̄Mξx • ( ¯̄D ¯̄fcur) + ( ¯̄fcur

¯̄DT ) • ¯̄Mηx (5.19a)

∂ ¯̄fcur

∂y
= ¯̄Mξy • ( ¯̄D ¯̄fcur) + ( ¯̄fcur

¯̄DT ) • ¯̄Mηy (5.19b)
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where ” • ” symbols Schur product defined as (A • B)ij = aijbij, and ¯̄D equals

¯̄D(N+1)×(N+1) defined in (5.16). Here the matrix ¯̄fcur is in general different from ¯̄frect

in (5.15) in that the latter has been defined on rectangular grids while the former is

on deformed locations of grids adapted to the shape of the sub-domain.

Since we want to form a standard eigenvalue problem, the unknown function

must be a vector. Unfortunately, ¯̄fcur is an (N + 1) × (N + 1) matrix, so we must

convert (5.19) into a resolvable form. First, we rearrange the (N + 1) × (N + 1)

matrix ¯̄fcur into the [(N + 1)(N + 1)] column vector f̃cur as below

¯̄fcur =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f00 f01 · · · f0N

f10 f11 · · · f1N

...
... · · · ...

fN0 fN1 · · · fNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

=⇒ f̃cur =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f00

f10

...

fN0

f01

...

fNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[(N+1)(N+1)]×1.

Then, we define M̃ξx, M̃ηx, M̃ξy, and M̃ηy as

M̃ξx =diag

(
∂ξ(x0, y0)

∂x
,
∂ξ(x1, y0)

∂x
, · · · ,

∂ξ(xN , y0)

∂x
,
∂ξ(x0, y1)

∂x
, · · · ,

∂ξ(xN , yN)

∂x

)

M̃ηx =diag

(
∂η(x0, y0)

∂x
,
∂η(x1, y0)

∂x
, · · · ,

∂η(xN , y0)

∂x
,
∂η(x0, y1)

∂x
, · · · ,

∂η(xN , yN)

∂x

)

M̃ξy =diag

(
∂ξ(x0, y0)

∂y
,
∂ξ(x1, y0)

∂y
, · · · ,

∂ξ(xN , y0)

∂y
,
∂ξ(x0, y1)

∂y
, · · · ,

∂ξ(xN , yN)

∂y

)

M̃ηy =diag

(
∂η(x0, y0)

∂y
,
∂η(x1, y0)

∂y
, · · · ,

∂η(xN , y0)

∂y
,
∂η(x0, y1)

∂y
, · · · ,

∂η(xN , yN)

∂y

)

where diag(a, b, ...) repersents a diagonal matrix which has a, b, ... as the diagonal

elements of the matrix and zero otherwise. Next, we rewrite (5.19) with slight

modification

∂f̃cur

∂x
=D̃xf̃cur (5.20a)

∂f̃cur

∂y
=D̃yf̃cur. (5.20b)
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In (5.20), the definitions of D̃x and D̃y are

D̃x =M̃ξx[I(N+1)×(N+1) ⊗ ¯̄D] + M̃ηx[
¯̄D ⊗ I(N+1)×(N+1)] (5.21a)

D̃y =M̃ξy[I(N+1)×(N+1) ⊗ ¯̄D] + M̃ηy[
¯̄D ⊗ I(N+1)×(N+1)] (5.21b)

where I(N+1)×(N+1) represents an identity matrix with dimension (N + 1)× (N + 1)

and ⊗ symbols Kronecker product defined as

¯̄A ⊗ ¯̄B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a00
¯̄B a01

¯̄B · · · a0N
¯̄B

a10
¯̄B a11

¯̄B · · · a1N
¯̄B

...
... · · · ...

aN0
¯̄B aN1

¯̄B · · · aNN
¯̄B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.22)

And we can use (5.20) to construct the matrix we need for 2D waveguide and PC

problems.

5.2 The Shifted Inverse Power Method

The shifted inverse power method (SIPM) is a numerical method to solve the eigen-

value problem. It is widely used because of its fast convergent property. We have

developed some techniques to improve its practicability.

5.2.1 The Algorithm of SIPM

Consider an eigenvalue problem:

Ax = μx (5.23)

where A is a known square matrix, x is an eigenvector, and μ is the corresponding

eigenvalue. We can use the SPIM to find x and μ. The algorithm of the SIPM is
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given below:

choose μ∗, x(0) (5.24)

for n = 1 to max it

(A − μ∗I)x(n+1) = x(n) (5.25)

μ(n) =
θ(x(n))

θ(x(n+1))
+ μ∗

x(n+1) =
x(n+1)

|x(n+1)|
where max it represents the maximam iteration time, I is an identity matrix whose

dimension is the same as A, and θ(x) is an arbitrary linear function which follows the

rule: θ(αx+βy) = αθ(x)+βθ(y). Please note that (5.25) is to solve a linear system.

Usually we use the LU decomposition method to solve this linear system. But since

the matrix A we deal with is always a sparse matrix, it is not so appropriate to

use LU decomposition because it will comsume enormous memory space. Instead of

using the LU method, we choose to use iterative methods to solve the linear system

with the benefit that they allow us to allocate only the entries which are nonzero.

5.2.2 The Iterative Method

The iterative method includes a wide range of techniques that use successive ap-

proximations to solve a linear system. They can be classifed as:

• Stationary iterative methods

– The Jacobi method

– The Gauss-Seidel method

– The symmetric successive overrelaxation method

• Nonstationary iterative methods

– Conjugate gradient method (CG)

– MINRES and SYMMLQ
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– CG on the normal equations, CGNE and CGNR

– Generalized minimal residual (GMRES)

– BiConjugate gradient (BiCG)

– Quasi-minimal residual (QMR)

– Conjugate gradient squared method (CGS)

– BiConjugate gradient stabilized (Bi-CGSTAB)

– Chebyshev iteration.

Stationary methods are older, simpler to understand and implement, but usually not

as effective. Nonstationary methods appeared from relatively recent development;

their analysis is usually harder to understand, but they can be highly effective. From

our test, stationary methods are not appropriate for our linear system because they

do not converge in every case. So we choose the BiCG method as our linear solver

algorithm.

Consider a linear system

Ax = b (5.26)
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where A is a known square matrix, x is an unknown vector, and μ is a known vector.

We can use the BiCG to find x. The algorithm of BiCG is as follows.

choose x(0)

r(0) = b − Ax(0), r̃(0) = r(0)

for n = 1 to max it

ρ
(n)
1 = r(n−1) · r̃(n−1)

if i = 1 then

p(1) = r(0), p̃(1) = r̃(0)

else

β(n) =
ρ

(n)
1

ρ
(n−1)
2

, p(n) = r(n−1) + βp(n−1), p̃(n) = r̃(n−1) + βp̃(n−1)

endif

q(n) = Ap(n), q̃(n) = AT p̃(n−1), α(n) =
ρ

(n)
1

p̃(n) · q(n)

x(n) = x(n−1) + α(n)p(n), r(n) = r(n−1) − α(n)q(n), r̃(n) = r̃(n−1) − α(n)q̃(n)

ρ
(n)
2 = ρ

(n)
1

end

By using the BiCG method, we do not need large memory space to do the calculation.

In fact, all analysis cases in this thesis can be run under a normal personal computer

with 4GB memory.

5.2.3 Guessing the Initial Eigenvector Using Former Data

This technique is to modify step (5.24). Step (5.24) requires us to guess the initial

eigenvector. For higher-degree of polynomials, the initial eigenvector can be obtained

from interpolating the eigenvector at lower degree.

For example, if we want to solve the 2D waveguide problem at the polynomial

degree of seven, we can solve the same problem at the polynomial degree of three
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first. Then we use the eigenvector computed at degree three to interpolate the initial

eigenvector for degree seven. The whole process is shown in Fig. 5.1. Using this

technique can speed up the SIPM algorithm since the initial eigenvector is quite

accurate.
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Figure 5.1: Using former data to interpolate initial eigenvector
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Chapter 6

Numerical Results For Waveguide
Problems

In this chapter, we will analyse several 1D and 2D waveguide structures including

slab waveguides, partially filled waveguides, circular waveguides, fiber waveguides,

channel waveguides, and rib waveguides using the formulations discussed in previous

chapters.

6.1 Symmetric Slab Waveguides

First, we examine the simple symmetric ”weakly” guiding slab waveguide. The

structure considered is the same as the one considered by Hadley [1998], as shown in

Fig. 6.1. We take the wavelength to be 1 μm and the waveguide width of waveguide

is W=2 μm. The refractive index for the core area is ncore =
√

11.088 and the

refractive index for the cladding area is nclad =
√

11.044. The PEC boundary

condition is put at the ±15 μm positions and the whole structure is divided into

five sub-domains. For this structure, the exact effective indices are neff,exact =

3.3270509487737 and 3.3270445145126 for the TE and TM modes, respectively. The

effective index is defined as

neff =
β

k0

(6.1)

where β is propagation constant and k0 is wavenumber in free space.

Because the field profiles of this symmetric structure for TE and TM modes are
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almost the same, we just show the field profile of TE mode in Fig. 6.2. Figure 6.3

shows the relative errors in the calculated effective index with respect to the degree

of polynomial in each of the five sub-domains. The relative error is defined as

R.E. =
neff − neff,exact

neff,exact

. (6.2)

Here neff,exact represents the calculated effective index. From Fig. 6.3 , we can

see that both convergence lines for TE and TM modes show spectral convergence

characteristics. They reach the orders of 10−14 and 10−13, respectively.

6.2 Asymmetric Slab Waveguides

The second case we examine is the asymmetric ”strongly” guiding slab waveguide.

We take the wavelength to be 1.55 μm and the waveguide width W = 0.75 μm. The

refractive index for the core area is ncore = 3.3704 and the refractive indices for the

cladding areas are nclad1 = 3.17 and nclad2 = 1.0. The PEC boundary condition is

put at the -5 μm and 2 μm positions and the whole structure is divided into five

sub-domains. The exact effective indices are neff,exact = 3.290296220624705 and

3.27555088010413 for the TE and TM modes, respectively [Hadley, 1998].

Figures 6.4 and 6.5 illustrate the field profiles for the TE and TM modes. Figure

6.6 shows the relative errors in the effective index for the two modes with respect

to the degree of polynomial. It can be seen that because there is an interface

with high contrast in the refractive index, we need higher degrees of polynomial

(degree =19 ∼ 23) to get the same precision as in the symmetric slab waveguide

case (10−13 ∼ 10−14).

6.3 Partially Filled Metallic Waveguides

From now on, we discuss 2D waveguide structures. We first consider a half-filled

metallic waveguide structure. Figure 6.7 shows the cross-section of this waveguide.

The cross-section is divided into two domains and the width of the waveguide is
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twice of the height. For this kind of waveguide, the modes can be classified into

longitudinal-section electric (LSE) and longitudinal-section magnetic modes (LSM).

The exact value of the effective index can be obtained by solving transcendental

equations [Collin, 1960]. Figure 6.8 shows the mesh division. The refractive indices

for the dielectric and air regions are n1 = 1.5 and n2 = 1.0, respectively. And we

have the PEC boundary condition at all four edges.

The exact value of the effective index is neff,exact = 1.27575556678727 when

the wavelength is chosen to be 2π μm. Figure 6.9 shows the relative errors of the

calculated effective index for the LSE10 mode obtained using the six-equation and

three-equation formulations, respectively. These two convergence lines are quite

close to each other in Fig. 6.9 and they are both on the order of 10−14 ∼ 10−15 with

the ninth degree polynomial in each domain.

6.4 Circular Metallic Waveguides

In order to check if the PEC boundary condition can work on curvilinear boundary,

we choose the circular metallic waveguide to do the test. Figure 6.10 shows a

quarter of the cross-section of this waveguide. Due to the geometrical sysmmetry,

we only need to consider a quarter of the waveguide cross-section. The radius of this

waveguide is R = 0.5 μm. Figure 6.11 shows the mesh division. The whole structure

is divided into three domains. Two of the three domains are transformed using the

curvilinear mapping to match the circular boundary. We put the PEC boundary

condition at the circular edge, and the PEC and PMC boundary conditions at the

other two edges, respectively.

The exact value of the effective index for the fundamental TE11 mode is neff,exact =

0.956102174410419337 at the wavelength of 0.2 μm. Figure 6.12 shows the relative

errors of the effective index for this fundamental mode with respect to the degree of

polynomial for both six-equation and three-equation formulations. It can been seen

that both formulations can achieve numerical accuracy on the order of 10−13 ∼ 10−14
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when we use polynomials of degree=11 ∼ 13 in each sub-domain. Notice that the

three-equation formulation does not converge when we adopt higher order degrees

of polynomial, and we can see this property in other cases. The distributions fo all

the sic field components for this mode are shown in Fig. 6.13.

6.5 Fiber Waveguides

The fiber waveguide is a circular dielectric waveguide which is know to be more

complicated than the circular metallic waveguide discussed in the previous subsec-

tion in the mode analysis. Figure 6.14 shows a quarter of the cross-section of the

fiber waveguide. Just as in the pervious case, we only need to consider a quarter

of the waveguide cross-section because of geometrical symmetry. The core radius

is R = 0.6 μm and the fiber is with high refractive-index difference, namely, the

refractive index of the core is ncore =
√

8 and that of the surrounding cladding is

nspace = 1. The mesh division for the Legendre method is shown in Fig. 6.15 where

five sub-domains are adopted. The radius of the computational window is taken

to be RBC = 2.5 μm. Note that we must put the boundary of the computational

window far enough to avoid significant perturbation of the circular PEC boundary

on the calculated mode fields.

The exact effective index for fundamental HE11 mode of the fiber waveguide is

neff,exact = 2.68401932160108 at the wavelength of 1.5 μm. Figure 6.16 shows the

relative error in the effective index with respect to the degree of polynomial for both

six-equation and three-equation formulations. It shows that both formulations can

achieve high accuracy with the relative error on the order of 10−10 when the degree

of 23 is used in each sub-domain. The accuarcy of the six-equation formulation

can be better than the other of 10−11 using the degree of 27. It is again observed

that when using higher degrees, the convergence of the three-equation formulation

shows some unstable property as in circular metallic waveguide case. Therefore, we

can say that the six-equation formulation has better convergent property than the
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three-equation one. Figure 6.17 shows distributions of all the six field components

for this mode, from which, we can see that the fields are well confined in the core

region with negligible field near the circular boundary, and the PEC boundary of

the computational window is appropriately located.

6.6 Channel Waveguides with Sharp Corners

The channel waveguides with sharp dielectric corners is a simple structure. Here we

consider a square channel waveguide. Figure 6.19 shows a quarter of its cross-section

as the computational domain with the considered boundary conditions. Again,

because of the geometrical symmetry, we only need to consider a quarter of the

whole structure. Although the geometry is simple, there exists no analytical exact

mode solutions and exact effective index values are not available. The width of corner

waveguide is assumed to be 1μm. The refractive index of the core is ncore = 1.5 and

that of the surrounding space is nspace = 1. We put PEC boundary conditions at

two edges of the computational domain and the PMC boundary conditions at the

other two, as shown in Fig. 6.18. Figure 6.19 shows the mesh division where four

domains are adopted.

Although the exact effective index is not available, Hadley [2002] has conducted

an elaborative numerical analysis by carefully treating the electric field singularity

behavior at the sharp corners and provided neff = 1.27627404± 10−8 for the funda-

mental mode at the wavelength of 1.5 μm. Using Hadley’s result as a reference, we

show in Fig. 6.20 the relative errors of our calculated effective index with respect

to the degree of polynomail for both six-equation and three-equation formulations.

It is seen that six-equation formulation converges, but the convergent rate of the

three-equation formulation appears to be quicker. One thing which is worth being

noticed is that we just need 4 × (7 + 1) × (7 + 1) = 256 grid points to reach the

10−8 accuracy using the six-equation formulation, compared to 150 × 150 = 22500

grid points used by Hadley [2002] for reaching the 10−7 accuracy. This is quite a
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significant advancement in numerical analysis of optical waveguides. We also use the

calculated effective index at degree of 45 (neff = 1.27627403774) as the reference

and show the corresponding results in Fig. 6.21. From this figure, it is seen that the

six-equation formulation can converge faster than the three-equation one at higher

degrees. Figures 6.22–6.27 show profiles along φ = 45◦ of all the six field compo-

nents. The figures reveal that even under very low degree of polynomial as degree

two, the field profiles have been quite close to those using high degree of polynomial.

Finally, we show the distributions of all the six field components in Fig. 6.28 for

this channel waveguide. The rapid-varying characteristics of the Ey field component

near the corner, due to the field singularity property, as seen in Figs. 6.23 and 6.28,

would make the calculated effective index hard to converge to high precision, and

we need to use higher degrees of polynomial to better approximate the field profiles.

6.7 Rib Waveguides

We have demostrated that the new formulations can deal with waveguides with a

single corner in the computational domain. We now consider rib waveguides that are

multi-corner structure. Figure 6.29 shows a half of the cross-section of the rib waveg-

uide with PECs as the boudnaries of the computational domain. This structure can

provide x-direction and y-direction confinement by using high refractive-difference

in both directions. The refractive indices of the cover, the guiding layer, and the

substrate are nc = 1, ng = 3.44, and ns = 3.4. Figure 6.30 shows the mesh division

where we divide whole structure into twelve sub-domains.

Again, there exists no exact effective index for the mode on this waveguide,

and we use Hadley’s calculation [Hadley, 2002] as the reference value, which for

fundamental mode is about neff = 3.413132 when the wavelength is 1.15 μm. Figure

6.31 shows the relative errors of the effective index with respect to the degree of

polynomial for six-equation and three-equation formulations. We can see that the

new formulations can easily provide calculated effective indices of accuracy on the
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order of 10−6 for the multi-corner rib waveguide. Figure 6.32 shows distributions of

all the six field components for the fundamental mode of the rib waveguide.
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Figure 6.1: Sketch of a slab waveguide.

Figure 6.2: Field profile for the TE mode of the symmetric waveguide.

64



Figure 6.3: Relative errors in the effective index for the TE and TM modes of
symmetric slab wavegudie with respect to the degree of polynomial in each domain.
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Figure 6.4: Field profile for TE mode of the asymmetric waveguide.

Figure 6.5: Field profile for TM mode of the asymmetric waveguide.
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Figure 6.6: Relative errors in the effective index for the TE and TM modes of
asymmetric slab wavegudie with respect to the degree of polynomial in each domain.
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Figure 6.7: Cross-section of a partially filled metallic waveguide.

Figure 6.8: Mesh division of the partially filled metallic waveguide of Fig. 6.6.

68



Figure 6.9: Relative error in the effective index for the fundamental LSE10 mode of
the partially filled metallic waveguide of Fig. 6.7.
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Figure 6.10: Sketch of a quarter of the cross-section of a circular metallic waveguide.
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Figure 6.11: Mesh division for the structure of Fig. 6.10.
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Figure 6.12: Relative errors in the effective index for the fundamental TE11 mode
of the circular metallic waveguide of Fig. 6.10.
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Figure 6.13: Distributions of the six field components of the fundamental (TE11)
mode of the circular metallic waveguide of Fig. 6.10.
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Figure 6.14: Sketch of a quarter of the cross-section of a circular fiber waveguide.
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Figure 6.15: Mesh division of for the structure of Fig. 6.14.
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Figure 6.16: Relative errors in the effective index for the fundamental (HE11) mode
of the circular fiber waveguide of Fig. 6.14.
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Figure 6.17: Distributions of the six field components of the fundamental (HE11)
mode of the circular fiber waveguide of Fig. 6.14.
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Figure 6.18: Sketch of a quarter of the cross-section of the channel waveguide.
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Figure 6.19: Mesh division for the structure of Fig. 6.18.
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Figure 6.20: Relative errors in the effective index for the fundamental mode of the
channel waveguide of Fig. 6.18, as compared to Hadley’s results [Hadley, 2002]
(neff = 1.27627404).
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Figure 6.21: Same as Fig. 6.20 but with the reference effective index value being
that calculated with degree-45 polynomals (neff = 1.27627403774).
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Figure 6.22: Field profiles of Ex along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.

Figure 6.23: Field profiles of Ey along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.
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Figure 6.24: Field profiles of Ez along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.

Figure 6.25: Field profiles of Hx along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.
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Figure 6.26: Field profiles of Hy along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.

Figure 6.27: Field profiles of Hz along φ = 45◦ for the channel waveguide of Fig.
6.18 calculated using various degrees of polynomial.
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Figure 6.28: Distributions of the six field components of the fundamental mode of
the channel waveguide of Fig. 6.18.
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Figure 6.29: Sketch of a half of the cross-section of the rib waveguide.
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Figure 6.30: Mesh division for the structure of Fig. 6.29.
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Figure 6.31: Relative error in the effective index for the fundamental mode of the
rib waveguide of Fig. 6.29, as compared to Hadley’s result [Hadley, 2002].
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Figure 6.32: Distributions of the six field components of the fundamental mode of
the rib waveguide of Fig. 6.29.
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Chapter 7

Numerical Results For Photonic
Crystal Problems

This chapter is devoted to the analysis of PC structures using the proposed new

formulations. We consider two cases, namely, the PC with square lattice and that

with triangular lattice.

7.1 Square-Lattice Photonic Crystals

First, We examine a PC with square lattice, with its cross-sections as shown in Fig.

7.1. The structure is formed by parallel alumina rods with refractive index n =
√

8.9

surrounded by air (n = 1.0). The radius of each rod is r = 0.4 μm = 0.2a, where a is

the lattice constant. Figure 7.2 shows the mesh division for the unit cell that is also

computational domain, which is divided into thirteen sub-domains. The periodic

boundary conditions are put at all four sides, as shown in Fig. 7.1.

The band diagrams for the TE and TM modes are shown in Figs. 7.3 and 7.4,

respectively. The results are obtained using the three-equation formulation with

degree 13 of polynomial in each sub-domain. The Brillouin zone is shown as the

inset in the figures. The normalized frequency is defined as

Normalized frequency =
ωa

2πc
. (7.1)

Using the degree-21 three equation formulation calculation results as the refer-

ence, we show in Fig. 7.5 relative errors in the calculated eigen grequency versus
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the degree of polynomial for both three-equation and one-equation formulations for

the first TE and TM modes at M point where kx = π/a and kz = π/a. The spectral

convergence behavior is seen for all four situations. Figure 7.6(a), (b), and (c) show

the field distributions at M point for the first TE mdoe and Fig. 7.6(d), (e), and (f)

shows those for the first TM mode.

7.2 Triangular-Lattice Photonic Crystals

Next, we analyze the PC with triangular lattice, with its cross-section as shown in

Fig. 7.7. The refractive index of each rod is n =
√

11.4, which is surrounded by air.

The radius of each rod is r = 0.4 μm = 0.2a, where a is lattice constant. Figure 7.8

shows the mesh division for the unit cell where fourteen sub-domains are adopted.

The periodic boundary conditions are employed at all six edges.

The band diagrams for TE and TM modes are shown in Figs. 7.9 and 7.10,

respectively. The results are obtained using the three-equation formulation with

degree 13 of polynomial in each sub-domain. We The Brillouin zone is shown at

the inset in the figures. Consider the first TE and TM modes at the K point

where kx = 2π/
√

3a at ky = 2π/3a. Using the degree-21 three-equation formula-

tion calculation result as the reference, we show in Fig. 7.11 relative errors in the

calculated eigen frequency versus teh degree of polynomial for both three-equation

and one-equation formulations for the first TE and TM modes. Again, the spectral

convergence behavior is observed for all four situations. Figure 7.12(a), (b), and

(c) illustrate the field distributions at the K point for the first TE mode and Fig.

7.12(d), (e), and (f) illustrate those for the first TM mode.
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Figure 7.1: Sketch of the cross-section of a PC with square lattice.

Figure 7.2: Mesh division of the unit cell in Fig. 7.1.
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Figure 7.3: Band diagram for TE modes of the square-lattice PC of Fig. 7.1.

Figure 7.4: Band diagram for TM modes of the square-lattice PC of Fig. 7.1.
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Figure 7.5: Relative errors in the calculated eigen frequency versus the degree of
polynomial for the first TE and TM modes of the square-lattice PC of Fig. 7.1 at
the M point using the degree-21 three-equation formulation result as reference.

90



 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

x (um)

y 
(u

m
)

Ex

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(a)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

x (um)

y 
(u

m
)

Ez

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

x (um)

y 
(u

m
)

Hy

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(c)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

x (um)

y 
(u

m
)

Ey

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(d)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

x (um)

y 
(u

m
)

Hx

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(e)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

x (um)

y 
(u

m
)

Hz

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

(f)

Figure 7.6: (a)(b)(c) Field distributions of the first TE mode at the M point for the
square-lattice PC of Fig. 7.1. (d)(e)(f) Field distributions of the first TM mode at
the M point for the same PC.
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Figure 7.7: Sketch of the cross-section of a PC with triangular lattice.

Figure 7.8: Mesh division of the unit cell in Fig. 7.7.
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Figure 7.9: Band diagram for TE modes of the triangle-lattice PC of Fig. 7.7.
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Figure 7.10: Band diagram for TM modes of the triangular-lattice PC of Fig. 7.7.
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Figure 7.11: Relative errors in the calculated eigen function versus the degree of
polynomial of the triangular-lattice PC of Fig. 7.7 at the K point using the degree-
21 three-equation formulation result as the reference.
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Figure 7.12: (a)(b)(c) Field distributions of the first TE mode at the K point for
the triangular-lattice PC of 7.7. (d)(e)(f) Field distributions of the first TM mode
of PC at the K point for the same PC.
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Chapter 8

Conclusion

New formulations for analyzing 1D and 2D waveguides have been presented in this

thesis. The boundary conditions are imposed by the penalty method in each of

the 1D, 2D-waveguide, and PC problems. In order to get high-accuracy results,

pseudospectral Legendre method is adopted for all three cases.

Since the frequency-domain problem is different from the time-domain prob-

lem, we have redrived the penalty-type boundary conditions in Chapters 2–4 for

the frequency-domain problems. The derived boundary conditions are very simple,

compared to the original ones used in time domain. Although the boundary condi-

tions are simple, they offer enough restrictions for governing equations to calculate

the modes. For 2D waveguides, we actually propose two sets of equations: the six-

equation form and the three-equation form, and we have proved that both of them

can be used to analyze 2D-waveguide problems in Chapter 6. Similarly, we propose

the three-equation form and one-equation form for the 2D-PC problem, both of

which are proved to be valid in numerical examples in Chapter 7.

In Chapter 5, we briefly describe the pseudospectral Legendre and SIPM numer-

ical methods. Since this thesis does not focus on the fundamental concept of the

pseudospectral method, readers can refer to [Boyd, 2000] for more information.

In Chapter 6, in order to examine the feasibility of new 1D and 2D waveguide

algorithms, we have analyzed some waveguide structures. For the 1D algorithm,

we examine both the symmetric and asymmetric slab waveguides. Compared to the
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exact solutions, we find the relative errors in the effective index are both on the order

of 10−14. For the 2D algorithm, we first investigate the partial filled waveguide. By

comparing with the exact effective index of the LSE01 mode, the relative error is

found to be on the order of 10−15 which is the maximum limit the double precision

unit in computer can handle. Next, in order to examine the circular PEC boundary

condition, a circular metallic waveguide is investigated. The relative error in the

effective index is also on the order of 10−15 comparing to the exact solution. The

well-known fiber waveguide is also investigated. From comparing with the exact

effective index, the numerical errors are found to be on the order of 10−11 and 10−10

for six-equation and three-equation forms, respectively. Then, we have examined the

structures with dielectric corners which have no analytical solutions, i.e., the channel

waveguide and the rib waveguide. For the channel waveguide, we found that even

using low degree of polynomial, the effective index is quite accurate. The obtained

field distributions also show good agreement with those obtained with high degree

of polynomial. For the rib waveguide, the error in the effective index can reach the

order of 10−6 which is the most accurate result we can find in the literature.

In Chapter 7, we examine two 2D-PC structures to check the validity of the

algorithm for PCs. We calculate the band diagrams of the square-lattice PC and the

triangular-lattice PC for both TE and TM modes. By comparing the band diagrams

with the calculations of other methods, the band diagrams are found to have good

argeement with the finite-difference frequency-domain (FDFD) analysis [Yu and

Chang, 2004] and the plane wave expansion (PWE) method analysis [Johnson and

Joannopoulos, 2001].

There is one important issue which we do not consider in this thesis: incorpora-

tion of perfectly matched layers (PMLs)[Berenger, 1994] around the computational

domain for treating leaky waveguide problems.

In summary, we have successfully implemented pseudospectral mode solvers for

1D waveguides, 2D waveguides, and 2D-PCs using penalty-type boundary condi-
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tions.
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