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摘要

這篇文章介紹 quasilocal mass 的相關研究, 主要是 Brown-York and Liu-Yau quasilocal

mass 的定義以及如何證明它們是非負的。 第一個重要發現是史宇光與譚聯輝證明了 time-symmetric

的情形, 接著劉秋菊與丘成桐給出一般情形下的證明, 最後我們討論王慕道與丘成桐最近提出的

quasilocal mass 的定義。

關鍵字: 正質量定理
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ABSTRACT. This note surveys the definition of quasilocal mass and its posi-

tivity. In particular, we focus on Brown-York and Liu-Yau quasilocal mass.

We first present Shi and Tam’s result on the positivity of quasilocal mass in

the Riemannian case and then Liu and Yau’s approach to the general case.

Finally, we mention a modification of Liu-Yau quasilocal mass by Wang and

Yau.

Key word: quasilocal mass, positive mass theorem, quasi-spherical, isomet-

ric embedding, Jang’s equation, static mean curvature
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1 Introduction

In this note, we survey the definition of quasilocal mass and its positivity.

We first review the history of the positive mass theorem. In Einstein’s theory of

general relativity, the spacetime is a 4-dimension Lorentzian manifold (N, g) satisfying

Einstein equation Rαβ − 1
2
Rgαβ = 8πG Tαβ , where G is Newtonian constant and Tαβ is

the (symmetric)energy-momentum tensor. Since general relativity can be viewed as an

extension of classical Newtonian mechanics, it is desirable to define the notion of mass,

energy, momentum, and angular momentum.

There are, however, several fundamental difficulties. First, the underlying manifold

is unknown. All physical obsevations up to now are only local measurements compared

with the scale of the universe and give no information about the topology of the universe.

Second, Einstein equation is a nonlinear hyperbolic system of 10 degrees of freedom.

The knowledge and techniques for such systems are limited. Third, there is no precise

definition on how to relate the distribution of matter to Tαβ. It seems impossible to

treat the general case directly.

A natural approach is to start from special cases. One case that has the longest

history and is most extensively studied is the isolated gravitating system. Its origin

could be traced back to Schwarzschild’s model of the gravitational field of a single

star in 1916. Mathematically, the isolated gravitating system is represented by an

asymptotically flat spacelike hypersurface in the spacetime.

Definition. A 3-dimensional manifold M ⊂ (N, g) is asymptotically flat if for some

compact set C,M\C = ∪p
i=1Mi such that eachMi is diffeomorphic to R

3\B0(Ri). Under

this diffeomorphism, the metric is required to be of the form

gij = δij + aij ,

where aij = O(r−1), ∂kaij = O(r−2), ∂k∂laij = O(r−3). Moreover, the second fundamen-

tal form pij of M decay as pij = O(r−2), ∂kpij = O(r−3). The triple (M, gij, pij) is called

an initial data set.

One usually requires that the energy-momentum tensor satisfies certain energy con-

ditions. We say that Tαβ satisfies the dominant energy condition if for any orthonormal

frame {eα|α=0, 1, 2, 3} at p ∈M, with e0 normal to M ,

T 2
00 ≥ (

3
∑

i=1

T 2
0i), (T1)

and

T00 ≥ |Tαβ|. (T2)
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If only (T1) holds, we say Tαβ satisfies the weak energy condition.

In 1962, Arnowitt, Deser, and Misner defined the total energy and total momentum

of an asymptotically flat manifold. They are defined on each asymptotically end Ml

El =
1

16πG
lim

R→∞

∫

SR

(gij,j − gjj,i)dΩ
i,

Plk =
1

16πG
lim

R→∞

∫

SR

2(pik − δikpjj)dΩ
i.

Remark.

1. El is called the ADM energy(mass) of that end. In mathematical literature, the

name mass is preferred. In physics, however, the meaning of the mass and the

energy are different. The mass is a frame-independent quantity while the energy

is the time component of a four vector. For the definitions in section 2, the Brown-

York one is a quasilocal energy and the Liu-Yau one is a quasilocal mass. For a

suitable expression of the Brown-York energy-momentum and further discussion,

see [M].

2. In 1986, Bartnik showed that the definition of ADM mass is actually independent

of the choice of coordinate system [B].

Although ADM mass is physically a natural candidate representing the mass of a

system, the positivity of this quantity is not clear. Many physists and mathematicians

proved its positivity under additional assumptions. Finally, this problem was settled

by R. Schoen and S.-T. Yau, using geometric analysis, and Witten, using spinors.

Theorem ([SY1, SY2]). Let (M, gij, pij) be an asymptotically flat 3-dimensional man-

ifold satisfying µ ≥ |J| in a spacetime N. Then El ≥ 0 on each end Ml. If El = 0

for some l then M has only one end and M can be isometrically embedded into four

dimensional Minkowski spacetime as a spacelike hypersurface so that pij is the second

fundamental form. In particular M is topologically R
3.

Theorem ([W], see also [PT]). Let (M, gij, pij) be an asymptotically flat 3-dimensional

manifold satisfying the dominant energy condition in a spacetime N. Then El ≥ |Pl| on

each end Ml. If El = 0 for some l then M has only one end and M is flat along N, i.e.

Rαβγδ|M = 0, where Rαβγδ is the curvature tensor of N

Remark. For the definition of µ and J, see section 4. The condition µ ≥ |J| is equivalent

to the weak energy condition(See Appendix.)
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It is worth some discussion on both approaches since they form the basis of the later

proofs of various positive mass theorems. Schoen and Yau first prove the Riemannian

case. That is, the mass of an asymptotically flat Riemannian three manifolds with

nonnegative scalar curvature is nonnegative and zero only if it is isometric to R
3 with

Euclidean metric. They reduce the general case to the Riemannian one by constructing

a scalar flat Riemannian three manifold. This manifold is obtained by solving the Jang’s

equation and tends to the original one at the infinity. Therefore, the mass of the two

manifolds are the same. Witten divides the proof into three steps. First, he derived a

Weitzenböck formula for the spinor
∫

M

|∇ψ|2 + 〈ψ,R.ψ〉 − |Dψ|2 =
1

2

∫

∂M

〈ψ, [ei, ej].∇jψ〉eiyµ (1)

The next and usually the hardest step is to prove the existence of asymptotically

constant harmonic spinors. Witten’s proof in this step is not rigorous. The full proof

is given in [PT, section5]. The final step is to apply the Weitzenböck formula to an

asymptotically constant spinor and identify the boundary integral with mADM|ψ0|2.
Remark. Spinor is the section of the spinor bundle over M. On the end Ml, the spinor

bundle is trivial. Picking one trivialization, the spinor can be viewed as a vector-valued

function, so we can define what a constant spinor is. Note that the notion of constant

spinor depends on coordinate.

In physics, it is also desirable to find suitable quasilocal notions of energy and mo-

mentum. We would like to define an energy-momentum tensor for a compact spacelike

two-surface in spacetime. The energy-momentum vector should only depend on the first

and second fundamental forms and the connection on normal bundle of the two-surface.

According to Christodoulou and S.-T. Yau [CY], Melissa Liu and S.-T. Yau [LY2], the

quasilocal mass should also satisfy the following properties.

(1) It should be zero for the flat spacetime.

(2) The quasilocal mass should be equivalent to the standard definition when evalu-

ated on the spheres if the spacetime is spherically symmetric. In particular, for

the centered spheres in the Schwarzschild spacetime, the quasilocal mass should

be equivalent to the standard mass.

(3) For an asymptotically flat slice, the quasilocal energy-momentum vector of the

coordinate sphere should asymptotic to the ADM energy-momentum vector.

(4) For an asymptotically null slice, the quasilocal energy-momentum vector of the

coordinate sphere should asymptotic to the Bondi energy-momentum vector.

(5) For an apparent horizon Σ, the quasilocal mass should be no less than a (universal)

constant multiple of the irreducible mass which is
√

Area(Σ)/16π.
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(6) The quasilocal energy-momentum vector should be non-spacelike and the quasilo-

cal mass should be nonnegative.

There have been many attempts to define quasilocal mass(most of them did not

give the associated momentum 3-vector). Unfortunately, none of these definition could

satisfy all required properties. In this note, we only discuss the Brown-York type

quasilocal mass. For other definitions, the readers may consult [Sz].

The rest of the note is organized as follows. In section 2, we recall the definition of

Brown-York and Liu-Yau quasilocal mass and the properties of the latter. In section

3, we describe Yu-Guang Shi and Luen-Fai Tam’s approach to proving the positivity of

quasilocal mass in Riemannian case. In section 4, we discuss how Liu and Yau solved

the general case. In section 5, we discuss Wang and Yau’s modification of Liu-Yau

quasilocal mass.

2 The definition of Brown-York and Liu-Yau quasilo-

cal mass

Let Ω be a compact spacelike hypersurface with boundary in a time-oriented spacetime

N with timelike future-directed unit normal v, and let Σ be a connected component of

∂Ω with outward normal u. We denote the second fundamental form of Ω in N and Σ

in Ω by pij and pab respectively, and K = trKij , k = trkab.

Ω

v

u

N

Σ = ∂Ω

Remark. In this note, we follow the usual convention. The Greek indices α, β, . . . =

0, 1, 2, 3; the Latin indices i, j, . . . = 1, 2, 3; and a, b, . . . = 1, 2.

We need the Weyl embedding theorem:

Theorem (Weyl embedding theorem [Ni, Po]). Let Σ be a closed surface with a Rie-

mannian metric of positive Gauss curvature, then there exists an isometric embedding

i : Σ →֒ R
3 that is unique up to Euclidean rigid motion. Furthermore, i(Σ) is convex.
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Suppose Σ has positive Gauss curvature. By Weyl embedding theorem, Σ can be

isometrically embedded into R
3 ⊂ R

3,1. The second fundamental form (k0)ab of the

embedded surface is positive definite and determined by the intrinsic curvature of Σ.

The Brown-York quasilocal mass is defined as

E(Σ,Ω) =
1

8πG

∫

Σ

k0 − k.

If in addition the mean curvature vector
−→
H of Σ ⊂ N is spacelike, the Liu-Yau

quasilocal mass is defined as

E(Σ) =
1

8πG

∫

Σ

k0 − |−→H|.

Remark. Brown and York proposed their definition in 1992 through the Hamilton-Jacobi

analysis and verified its properties except positivity. In 2002, Shi and Tam proved the

positivity of Brown-York mass in the time-symmetric case(see section 3). In 2003, based

on Yau’s work on blackholes, Liu and Yau proposed their definition out of the geometric

consideration.

Liu-Yau’s quasilocal mass is more intrinsic because it is independent of the three

manifold Σ encloses. It is also a good candidate in view of the requirements mentioned

in the introduction. For (1), see section 5. On the Schwarzchild spacetime, E(Sr) =

r(1−
√

1 − 2M
r

) for r > 2M. Note E(S2M) = 2M,E(S∞) = M, which is consistent with

(2). For (3) and (4), see [Epp]. E(Σ) satisfies (5) by Minkowski inequality for convex

surfaces. The positivity of E(Σ) is discussed in section 4.

3 The Riemannian Case

In this section, we describe Shi and Tam’s proof on the positivity of quasilocal mass

[ST] for the Riemannian case.

When Ω has zero second fundamental form(pij = 0), we say it is time-symmetric.

The weak energy condition µ ≥ |J| implies Ω has nonnegative scalar curvature. The

assumption that Σ has spacelike mean curvature vector implies Σ has positive mean

curvature in Ω. In this case the Brown-York and Liu-Yau quasilocal mass coincide, and

the positivity of quasilocal mass reduces to a problem of Riemannian geometry.

Theorem 1 ([ST, Theorem 4.2.]). Let (Ω3, g) be a Riemannian manifold of dimension

3 with compact closure with smooth boundary and with nonnegative scalar curvature.

Suppose ∂Ω has finitely many components Σi so that each component has positive Gauss
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curvature and positive mean curvature H with respect to the outward normal. Then for

each Σi,
∫

Σi

Hdσ ≤
∫

Σi

H
(i)
0 dσ.

where H
(i)
0 is the mean curvature of Σi with respect to the outward normal when it is

isometrically embedded into R
3. Moreover, if the equality holds for some Σi, then ∂Ω

has only one component and Ω is isometric to a domain in R
3.

Proof(sketch)

Step1 : The main idea is applying Bartnik’s quasi-spherical construction. Roughly

speaking, we turn Ω into a complete asymptotically flat manifold by gluing ends to

Ω and try to relate the quasilocal mass to the ADM mass of this new manifold. For

simplicity, we assume ∂Ω has only one component in the following. First we isometri-

cally embed Σ into R
3 as a strictly convex hypersurface Σ0. The position vector of the

exterior E of Σ0 is Y = X + rN, where X is the position vector of Σ0 and N is the

unit outward normal of Σ0. Let Σr be the convex hypersurface at distance r to Σ0. The

Euclidean space outside Σ0 can be represented by (Σ0 × [0,∞), dr2 + gr), where gr is

the induced metric on Σr. Next, we solve the prescribed scalar curvature equation
{

2H0
∂u
∂r

= 2u2△ru+ (u− u3)Rr on Σ0 × [0,∞)

u(x, 0) = u0(x)
(2)

where u0(x) is a positive smooth function on Σ0, and H0, R
r are the mean curvature

and scalar curvature of Σr.

Σ0

Σr

N

r

R
3

The purpose of the above construction is to deform the Euclidean metric radially to

get an asymptotically flat metric while keeping the scalar curvature equal to zero. The

asymptotic behavior of u also gives the ADM mass of the metric.

Theorem ([ST, Theorem 2.1.]). The initial value problem (2) has a unique solution u

on Σ0 × [0,∞) such that
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• u(z) = 1 + m0

ρn−2 + v, where m0 is a constant and v satisfies |v| = O(ρ1−n) and

|∇0v| = O(ρ−n);

• The metric ds2 = u2dr2 + gr is asymptotically flat with scalar curvature R ≡ 0

outside Σ0;

• The ADM mass mADM of ds2 is given by

c(n)mADM = (n− 1)ωn−1m0 = lim
r→∞

∫

Σr

H0(1 − u−1)dσr = lim
r→∞

∫

Σr

(H0 −H)dσr,

for some positive constant c(n), where H0 and H are the mean curvatures of Σr

with respect to the Euclidean metric and ds2 respectively.

Step2 : If we view H(x) as a function on Σ0, by the assumption of Theorem 1, H0(x)
H(x)

is positive on Σ0. We solve the prescribed scalar curvature equation with initial value

u(x, 0) = H0(x)
H(x)

, and let ds2 = u2dr2 + gr. Let (M, g′) be the Riemannian manifold

obtained by gluing (Ω, g) and (E, ds2) along Σ ≃ Σ0.

Note the following properties of g′ :

i) g′ is only Lipschitz near ∂Ω.

ii) The mean curvature at ∂Ω with respect to g′|N\Ω and g′|Ω coincide.

iii) g′ is asymptotically flat.

iv) The scalar curvature of N\∂Ω is nonnegative (zero on N\Ω).

Shi and Tam are able to prove a positive mass theorem for this type of metric.

The Weitzenböck formula remains the same by (ii)([ST, Lemma 3.2.]) The existence of

asymptotically constant harmonic spinor is more involved and is treated in [ST, pages

23-27]

Step3 : The last step is to prove the monotonicity of mass expression.

Lemma ([ST, Lemma 4.2.]).

m(r) =

∫

Σr

H0(1 − u−1)dσr is nonincreasing in r.

Since m(0) =
∫

Σ
H0 −H, m(∞) = mADM ≥ 0, this completes the proof of Theorem

1.
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4 The General Case

Recall (Ω, gij, pij) refers to a compact spacelike hypersurface with boundary in a time-

oriented four dimensional spacetime N, where gij and pij are the induced metric and

second fundamental form of Ω. The local mass density µ and local current density J i

of Ω are

µ =
1

2
(R−

∑

ij

pijgij + (
∑

i

pi
i)

2)

J i =
∑

j

Dj(p
ij + (

∑

k

pk
k)g

ij)

where R is the scalar curvature of gij.

Theorem 2 ([LY2, Theorem 1]). Suppose µ and J i satisfies the weak energy condition

µ ≥
√
J iJi and the boundary ∂Ω has finitely many connected components Σ1, . . . ,Σl,

each of which has positive Gaussian curvature and spacelike mean curvature vector in

N. Then E(Σα) ≥ 0 for α = 1, . . . , l. Moreover, if E(Σα) = 0 for some α, then N is

flat along Ω and ∂Ω is connected.

Proof(sketch)

Step1: (Construct a scalar flat three manifold)The main idea is to reduce this case

into the Riemannian one. Consider the Jang’s equation on Ω with Dirichlet boundary

condition:
{

∑3
i,j=1(g

ij − f ifj

1+|∇f |2
)(

fij

1+|∇|2
− pij) = 0

f |∂Ω ≡ 0

Yau showed there exists a solution to this boundary value problem when (Ω, gij, pij)

contains no apparent horizon [Y](with the main estimates in [SY2, setion 3]). When

(Ω, gij , pij) has apparent horizons, the solution would blow up around the apparent

horizons, but the graph of the solution in Ω × R can be compactified to get a smooth

manifold with a discontinuous metric [SY2, p.257].

Let ḡij = gij + fifj be a new metric that coincides with gij on ∂Ω. The scalar

curvature of ḡ satisfies

R̄ ≥ 2 |X|2 − 2 divX,

for some vector field X(For the explicit form of X, see [LY2, p.7]) This is enough for

the existence of a scalar flat metric.
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Σ

Proposition ([LY2, Proposition 5]). Suppose the scalar curvature R̄ satisfies R̄ ≥
c|X|2 − 2 divX, for some constant c > 1

2
and some smooth vector field X on Ω. Then

there is a unique metric ĝij on Ω such that

1. The metric ĝij is conformal to ḡij .

2. The scalar curvature of ĝij is zero.

3. The metric ĝij coincides with ḡij on ∂Ω.

4. Let H̄ and Ĥ denote the mean curvature with respect to the metric ḡ and ĝ re-

spectively, and let ν̄ denote the outward unit normal of ∂Ω in (Ω, ḡ). Then
∫

∂Ω

Ĥ ≥
∫

∂Ω

(H̄ − 〈X, ν̄〉),

where the equality holds if and only if R̄ = 0, X = 0, and ĝij = ḡij.

Step2:(Glue ends to Ω) We have the following computation:

Lemma ([LY2, Lemma 6.]).

H̄ − 〈X, ν̄〉 ≥ |−→H|

Because
−→
H is assumed to be spacelike, H̄ − 〈X, ν̄〉 is positive. Liu and Yau next

modified Shi and Tam’s approach by solving the prescribed scalar curvature equation (2)

with initial value h(x, 0) =
Hα

0

H̄−〈X,ν̄〉
on Eα ≃ Σα × [0,∞). Again mα(r) = 1

8πG

∫

Σα
r
(H0 −

H)dσr on (Eα, gα = h2dr2+gr) is nonincreasing in r. Together with the previous lemma,

mα(0) =
1

8πG

∫

Σ

(Hα
0 − (H̄ − 〈X, ν̄〉))dσ ≤ 1

8πG

∫

Σ

(Hα
0 − |−→H|)dσ = E(Σα) (3)

Let (M, g̃) be the three manifold obtained by gluing (Eα, gα) to (Ω, ĝ = u4ḡ). g̃ is a

continuous Riemannian metric that is
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1. smooth on M\Ω and Ω̄, and is Lipschitz near ∂Ω.

2. asymptotically flat on each end Eα.

3. scalar flat on M\∂Ω.

Step3: In view of (3), it suffices to prove a positive mass theorem for (M, g̃). However,

two difficulties arise because of the discontinuity of mean curvature along ∂Ω. First, a

new term appears in the Weitzenböck formula:

Lemma ([LY2, Lemma 11.]). Let U be an open set of M. For any spinor η ∈W 1,2
0 (U, S), ψ ∈

W 1,2
loc (U, S), we have

∫

U

〈Dψ,Dη〉 =

∫

U

〈∇ψ,∇η〉g̃ +

∫

∂Ω∩U

(2ν̄(u) +
1

2
〈X, n̄u〉)〈ψ, η〉,

where u is the conformal factor of ĝ = u4ḡ.

Liu and Yau overcome these difficulties by establishing the following inequality

Proposition ([LY2, Proposition 10], see also [WY, Theorem 5.1] for a simpler argu-

ment). For r > L and ψ ∈W 1,2
loc (M,S) ∩ C∞(M\ML, S), we have

2

∫

Mr

|Dψ|2 ≥ 1

10

∫

Mr

|∇ψ|2 +
1

16

∫

Ω

u−2|du|2|ψ|2 +
l

∑

α=1

∫

Sα
r

〈H
2
ψ − c(ν)D̆ψ, ψ〉

where D̆ is the Dirac operator on Sα
r .

Second, the zeroth term of the Dirac operator can be discontinuous along ∂Ω. Liu

and Yau modified the argument in [PT, section 5] under weaker regularity. Indeed, the

harmonic spinors lie in W 1,p(M) instead of C∞(M), but such regularity is sufficient to

prove the positive mass theorem here.

By a calculation similar to that in [PT, pages 231-232],

lim
r→∞

∫

Sα
r

〈H
2
ψ − c(ν)D̆ψ, ψ〉 = −mα

∞|ψ0|2

for a spinor asymptotic to a constant spinor ψ0, where mα
∞ = lim

r→∞
mα(r). This finishes

the proof of Theorem 2.
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5 A new quasilocal mass of Wang and Yau

In this fianl section, we present the recent work of Mu-Tao Wang and Yau on quasilocal

mass [WY].

The Liu-Yau quasilocal mass does not satisfy the required property (1) in the in-

troduction. In [MST], Murchadha, Szabados, and Tod construct some surfaces with

strictly positive Liu-Yau mass lying in the lightcone of R
3,1. In order to resolve this

inconsistency, Wang and Yau proposed to take the momentum information pij into ac-

count. They take the reference to be an isometric embedding into R
3,1 instead of R3.

The first task is to show the existence and uniqueness of such isometric embedding with

prescribed time function.

Theorem 3 ([WY, Theorem 3.1]). Let Σ be a two-surface diffeomorphic to S2 with

metric σ , τ be a function on Σ, and T0 be a fixed timelike vector in R
3,1. Suppose

K + (1 + |∇τ |2)−1det(∇2τ) > 0

where K is the Gauss curvature of Σ and det(∇2τ) is the determinant of the Hessian

of τ. Then there exists a unique spacelike embedding X : Σ →֒ R
3,1 with the induced

metric σ and 〈X, T0〉 = τ.

The new quasilocal mass is defined as the difference of the static mean curvature

between the two isometric embedding i : Σ →֒ N, and i0 : Σ →֒ R
3,1.

Definition.

1. [WY, Definition 2.1] Suppose i : Σ →֒ N is an embedded spacelike two-surface.

Given a smooth function τ on Σ and a spacelike normal e3, the static mean

curvature associated with these data is defined to be

h(Σ, i, τ, e3) = −
√

1 + |∇τ |2〈−→H, e3〉 + αe3
(∇τ)

where
−→
H is the mean curvature vector of Σ in N and αe3

(v) = 〈∇N
v e3, e4〉 is

the connection form of the normal bundle of Σ in N determined by e3 and the

future-directed timelike unit normal e4 orthogonal to e3.

2. [WY, Definition 2.2] Given an isometric embedding i : Σ →֒ N with spacelike

mean curvature vector
−→
H. Denote

H(Σ, i, τ) =

∫

Σ

h(Σ, i, τ, ē3)dvΣ,

where h(Σ, i, τ, ē3) = min
e3

{h(Σ, i, τ, e3)}.

11



3. [WY, Definition 5.2] Given a spacelike embedding i : Σ →֒ N. Suppose the set

of admissible functions is non-empty(See [WY, Definition 5.1]). The quasilocal

mass is defined to be the infimum of

H(Σ, i0, τ) − H(Σ, i, τ)

among all admissible τ , where i0 is the unique spacelike isometric embedding of

Σ into R
3,1 associated with τ given by Theorem 3.

For a two-surface Σ ⊂ R
3,1, i = i0. If the projection of Σ along some time direction

is a convex surface, then Σ has zero quasilocal mass. This case covers the examples of

Murchadha, Szabados, and Tod.

We briefly mention the idea of proving the positivity of this new quasilocal mass.

For an embedded two-surface Σ ⊂ R
3,1, we denote by Σ̂ its projection onto R

3. The

most important observation of Wang and Yau is to identify the two terms
∫

Σ
k0 and

∫

Σ
H − 〈X, ν〉 appearing in Liu and Yau’s proof to the integral of some static mean

curvature.

Theorem 4 ([WY, Proposition 3.1, 3.2]).
∫

Σ̂

k̂ =

∫

Σ

h(Σ, i0, τ, ĕ3)dvΣ.

where k̂ is the mean curvature of Σ̂ in R
3 with respect to the outward normal ν̂, and ĕ3

is obtained by parallel translating ν̂ along T0. Furthermore, when the mean curvature of

Σ in R
3,1 is spacelike,

∫

Σ̂
k̂dvΣ̂ = H(Σ, i0, τ).

Σ

Σ̂

T0
R

3

ν̂

ĕ3
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Theorem 5 ([WY, Theorem 4.1]). Let i : Σ →֒ N be a spacelike embedding. Given

any smooth function τ on Σ and any spacelike hypersurface Ω with ∂Ω = Σ. Suppose

the Dirichlet problem of the Jang’s equation over Ω subject to the boundary condition

that f = τ on Σ is solvable. Then there exists a spacelike unit normal e′3 along Σ in N

such that the expression k̃− 〈∇̃ẽ4
ẽ4, ẽ3〉+P (ẽ4, ẽ3)(this is the familiar term Ĥ − 〈X, ν〉

in Liu and Yau’s paper) at q̃ ∈ Σ̃ ⊂ Ω ×R is equal to

(1 + |∇τ |2)−1/2h(Σ, i, τ, e′3) at q ∈ Σ,

where q̃ = (q, τ(q)) ∈ Σ̃.

Combining these two theorems and the result of Liu and Yau,

H(Σ, i0, τ) =

∫

Σ̂

k̂

≥
∫

Σ̃

k̃ − 〈∇̃ẽ4
ẽ4, ẽ3〉 + P (ẽ4, ẽ3)

=

∫

Σ

h(Σ, i, τ, e′3)dvΣ

≥ H(Σ, i, τ)

Suppose the two-surface Σ bounds a spacelike hypersurface in N, and has posi-

tive Gauss curvature and spacelike mean curvature vector. Then the assumptions of

Theorem 3 and Theorem 5 are satisfied(For details, see [WY, Theorem 4.2].) We can

conclude that

Theorem ([WY, Corollary 5.3]). Under the assumption of Theorem 2, the new quasilo-

cal mass is nonnegative.

Appendix

It is a well-known fact that the weak energy condition is equivalent to µ ≥ |J|. We just

write it down in this appendix for completion.

We first fix the notation. LetN be a 4-manifold with a Lorentzian metric of signature

(−+++). For a point x ∈ N, and an orthonormal frame {eα | α = 0, . . . , 3} near x, we

denote the curvature tensor by

R(eα, eβ)eγ = ∇eα
∇eβ

eγ −∇eβ
∇eα

eγ −∇[eα,eβ ]eγ = R δ
αβγ eδ,

Rαβγδ = gσδR
σ

αβγ .
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Note Rαβγ0 = −R 0
αβγ . The Ricci curvature and scalar curvature are

Rαβ = R γ
γαβ = −R0αβ0 +R1αβ1 +R2αβ2 +R3αβ3,

R = gαβRαβ = −R00 + R11 +R22 +R33.

Suppose we have a spacelike hypersurface M ⊂ N with the induced metric. We

denote the connection and curvature of N and M by D̄, R̄αβγδ and D,Rijkl respectively.

Let e0 be the timelike unit normal of M. In the neighborhood of a fix point x ∈M, we

choose a normal frame {ei | i = 1, . . . , 3} at x diagonalizing the second fundamental

form, that is, for any i, j, Dei
ej(x) = 0, pij(x) = p(ei, ej) = kiδij.

We compute the Gauss and Codazzi equations for hypersurfaces:

〈R(X, Y )Z,W 〉 = 〈R̄(X, Y )Z,W 〉 − p(X,W )p(Y, Z) + p(X,Z)p(Y,W )

−〈R̄(X, Y )Z, e0〉 = DXp(Y, Z) −DY p(X,Z).

where X, Y, Z,W are tangent vectors of M.

Proof. For Gauss equation,

〈DXDY Z,W 〉 = 〈D̄XDY Z,W 〉
= 〈D̄X(D̄Y Z + 〈D̄YZ, e0〉e0),W 〉, since〈e0, e0〉 = −1

= 〈D̄XD̄Y Z,W 〉+ 〈D̄Y Z, e0〉〈D̄Xe0,W 〉
= 〈D̄XD̄Y Z,W 〉 − p(Y, Z)p(X,W )

The computation of 〈DXDY Z,W 〉, 〈D[X,Y ]Z,W 〉 is similar.

For Codazzi equation,

DXp(Y, Z) = Xp(Y, Z) − p(DXY, Z) − p(Y,DXZ)

= −X〈D̄Y Z, e0〉 − 〈D̄Ze0, DXY 〉 − 〈D̄Y e0, DXZ〉
= −〈D̄XD̄YZ, e0〉 − 〈D̄YZ, D̄Xe0〉 − 〈D̄Ze0, DXY 〉 − 〈D̄Y e0, DXZ〉

−DY p(X,Z) = 〈D̄Y D̄XZ, e0〉 + 〈D̄XZ, D̄Y e0〉 + 〈D̄Ze0, DYX〉 + 〈D̄Xe0, DY Z〉

Canceling the second and fourth terms and combining the third term,

〈D̄Ze0, DYX −DXY 〉 = −〈D̄Ze0, [X, Y ]〉 = 〈e0, D̄Z [X, Y ]〉 = 〈e0, D̄[X,Y ]Z〉,

we get the desired result.

To verify our claim, it is sufficient to show µ = T00, Ji = T0i, up to a constant. From
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Einstein equation Tαβ = Rαβ − 1
2
Rgαβ(We omit the constant 8πG),

T00 = R̄00 +
1

2
R̄

=
1

2
(R̄00 + R̄11 + R̄22 + R̄33)

=
1

2
(2R̄1221 + 2R̄1331 + 2R̄2332)

=
1

2
(2R1221 + 2p11p22 + 2R1331 + 2p11p33 + 2R2332 + 2p22p33)

by Gauss equation and pij = kiδij

=
1

2
(R− (p2

11 + p2
22 + p2

33) + (p11 + p22 + p33)
2)

Ji =
3

∑

j=1

Djpij − ei(
3

∑

k=1

pkk)

=

3
∑

j=1

Dipjj − R̄jij0 − ei(

3
∑

k=1

pkk) by Codazzi equation

= R̄i0
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