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Abstract

In this thesis, we aim to track 3D human motions in image sequences captured from
multiple cameras. The target motion is_not limited to specific kinds of human motions,
such as walking or jogging, thatis, there is no restrictions imposed on possible human
motions. Because self-occlusion andidepth ambiguity-occur easily when using only one
single camera, we obtain multiple videos captured with'multiple cameras from different
viewpoints to reconstruet 3D shape volumé.‘n;fr_ ‘_th;: target subject, which is an effective way
to integrate information from multiple :Vie\i.\/.q;. d |

We propose a hierarchical humanl nﬂmtion tracking method that can effectively capture
human articulated motions with high (iegrees of freédom (DOFs). At each time step, the
torso motion is estimated first and then the estimation of the limbs motions is carried
out individually. The particle filtering, which is a popular method for high dimensional

tracking, is adopted to track the torso motion because it can deal with the nonlinear and

multimodal posterior probability distributions.

One disadvantage of hierarchical human motion tracking is that torso tracking errors
may deteriorate limbs motion estimation. To reduce the interference from inaccurate
torso motions, we propose a soft-joint constrained ICP (Iterative Closest Point) method
to estimate limb motions. In contrast to hard joints, limbs with soft joints are allowed to
move freely in a small range of area, so it is still possible to track limb motions even with
inaccurate torso motions. However, the DOFs of each limb increase from 4 to 7 when

the soft-joint constraint is used. The proposed soft-joint constrained ICP can efficiently

1X



determines 6 DOFs such that only 1 DOF (elbow/knee) is left for the particle filtering.
Integrating the advantages of particle filtering and soft-joint constrained ICP at the same
time, our method can effectively track limb motions even when there is large motion in a
short period of time.

Moreover, we find that the torso motion is strongly related to the limbs motions. If the
states of the four limbs are known, it is usually possible to predict the torso state without
other information, especially when the limbs states are reliable. In order to improve torso
motion tracking, the limbs motions estimated at the previous time step can provide reliable
hypotheses of current torso state which is implemented as sampling particles from limbs
states for torso tracking. We haye conducted experiments with multiple video sequences
of different motions, and the results show that ourmethod is effective and reliable for 3D
human motion tracking.

= = |

Keywords: human motion tracking, particle filtéringy pose estimation, ICP, multiview,

[
3D human model, volume reconstruqtibn
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Chapter

Introduction

In this chapter, we define the problemr and illustrate. challenges of 3D human motion
tracking. Then the proposed hierarchical human metion tracking method is described
briefly and the overview of 6ur' method is\shown. Finally, the organization of this thesis

\
| —

is introduced. =

1.1 Problem and Challenges

The purpose of human motion captureyis.using different kinds of sensors to estimate
the parameters that describe human posture, including the angles of connecting joints,
the orientations and positions of body parts. This is an interesting problem and can be
used for many applications. In medical science, it can be used for the aided analysis for
rehabilitation. In entertainment, human computer interaction and computer animation are
both common applications.

One common way for human motion capture is to develop a marker-based system. The
user must wear sensors on the articulations of the body, which can detect the acceleration
and the center of gravity about movements. In vision-based human motion capture with
markers, many reflective markers are pasted on the articulations, and then detected by

multiple infrared cameras. The 3D positions of markers are estimated by using triangula-
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Figure 1.1: Challenges forhﬁrﬁa_m”fn tion g_%;ure ccause d%:éhépe variance, appearance
variance, pose variance and ?fﬁbig}l t{ with VieWh epehgie_ncq:. This figure is extracted
from [57] NS TR
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tion from multiple views, which may fail'while the markers are not visible in two or more
cameras. Though marker-based methods can capture human motions effectively, expen-
sive and intrusive equipments render them inappropriate for many applications, such as
surveillance for home care or public security, interactive games, and video annotation in
multimedia. For these and other emerging home applications, the intrusive and expensive
equipments forbid the popularity of marker-based methods.

In recent years, vision-based marker-free human motion capture becomes a popular
research issue. This is an attractive but extremely challenging problem, shown in Fig-

ure 1.1, because of the following difficulties:

e Shape variance



1.2. PROPOSED METHOD

The shapes of different people vary with their skeleton and muscle variations. More-
over, the elasticity of the clothes may also change the observed human shapes.

Shape variance makes the observations different even with the same posture.

e Appearance variance
Besides human skin colors and textures, the wide variety of human clothing leads

to various kinds of appearance.

e Pose variance
There are high degrees of freedom (DOFs) in articulated human motions. The hu-
man body is made up of hundreds, of skeletons and extendable muscles. Human
bodies can exhibit an.enormous number of ‘different postures, which makes human
motion tracking non-triyial:

1 F
| —

e View dependence -
P |

The same posture exhibits different servations from.different viewpoints while
i i, :
different postures may result in similar observations-at the same viewpoint because

of depth ambiguity.

The challenges of vision-based marker-less human motion tracking includes, but are not
limited to, the above items. In general, this is still an open problem in computer vision

and thus deserves further investigation.

1.2 Proposed Method

In this thesis, we aim to perform multiview model-based human motion tracking from
image sequences observed from different viewpoints. The advantage of using a 3D human
model is that reasonable kinematics constraints can be easily enforced and high level
application such as animation or action recognition can also be easily performed. When

only a single camera is used, self-occlusion and depth ambiguity will occur easily, so
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we obtain multiple videos captured from multiple cameras to reconstruct voxel-based
3D human volume, which is an effective way to integrate the information from multiple
views.

We propose a hierarchical human motion tracking method with soft-joint constrained
ICP, which is effective for human motions that contain high DOFs. In order not to suffer
from the computational cost that increases exponentially, the hierarchical method is used
to decompose the search space. At each time step, the torso motion is estimated first and
then the estimation of limbs motions is carried out individually.

The torso motion is difficult to estimate-because of body shape variances and silhou-
ette/voxel noises. We adopt patticle filtering that is capable of modeling nonlinear and
multi-model posterior distributions and can maintainanultiple hypotheses to track the ori-
entation and position of the‘torso.

One major disadvantage, of hierarchicéﬁr&i}}én motion tracking is that torso estimation
error may deteriorate limb.motion estiﬁnati.éflt ‘To reduce the-interference from torso mo-
tion errors, we propose a soft-joint cc:)nﬂstrain“ed ICP to estimate limb motions. In contrast
to hard joints, limbs with soft jeints arc;, allowed to, move freely in a small range area. The
soft-joint constraint also allows the rigid. 3D human model to accommodate human body
flexibility. However, the DOFs of each limb increase to 7 when the soft-joint constraint is
used, instead of 4 for the hard-joint constraint. The proposed soft-joint constrained ICP
can efficiently determines 6 out of 7 DOFs such that only 1 DOF (elbow/knee) is left for
the particle filtering. Integrating the advantages of particle filtering and soft-joint con-
strained ICP at the same time, our method can effectively track limb motions even when
there is large motion in a short period of time.

Moreover, we find that the torso motion is strongly related to the limbs motions. If the
states of the four limbs are known, it is usually possible to predict the torso state without
other information, especially when the limbs states are reliable. In order to improve torso

motion tracking, the limbs motions estimated at the previous time step can provide reliable

4



1.3. OVERVIEW OF OUR METHOD

hypotheses of current torso state, which is implemented as sampling particles from limbs
states for torso tracking. We have conducted experiments with multiple video sequences
of different motions, and the results show that our method is effective and reliable for 3D

human motion tracking.

1.3 Overview of Our Method

We provide an overview of the proposed human motion tracking method in this section.
We assume that all cameras are calibrated, that is, the projection functions from a given
3D point to each image plane is known.,. We also assume that the target subject can be
segmented from the background-Wwith seme back;ground modeling method. The segmen-
tation results are not expected to'be perfect since segmentation artifacts always exist in
real-world cases. The pose of the target subject at the first|frame is assumed given, either
by manually alignment or by other autpmatlg locahzatlon techniques for static images.
At each time step in the trackmfgy brocess, our method perform hierarchical human

motion tracking with previous estimated postuse.--Fach iteration contains the following

major steps:
1. capture images from multiple cameras at different viewpoints

2. obtain silhouette images using foreground detection based on some background

modeling method
3. reconstruct the 3D shape volume of the target subject from silhouette images
4. track torso motion using particle filtering with torso prediction.
5. label surface voxels to indicate which body part they belong to

6. track limbs motions using particle filtering with soft-joint constrained ICP

The flowchart of the proposed method is shown in Figure 1.2.

5
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This thesis is organized as | fQ'}"fé).;VS. sses 'i’éi'étéﬂ works about human mo-

tion capture. The details of ot ple_ffllod,are Qescafi;beé?ii;.'pﬂapter 3 and Chapter 4. Chap-
ter 3 includes the prerequisites, chh""a‘sft»he human Fﬁl(l)"del design and 3D volume recon-
struction, and torso motion tracking with particle filtering. Chapter 4 describes limbs mo-
tion tracking with soft-joint constrained ICP and how to predict torso state using the soft
joint locations of four limbs. Experimental results and analysis are shown in Chapter 5,

where multiple videos with different kinds of motions are used to validate our method.

Finally, conclusions and future works are made in Chapter 6.



Chapter 2

Related Works

Research about human motion capture has been developed for more than 20 years. There
are a plethora of relevant literature [34][53][19][35][39]. This is a very fascinating yet
challenging problem. Some brevious W(?I;lff attempt to perform human motion capture
under circumstances where"there are fewe':fénStraints and unlimited free human move-
ments are allowed [27][20]F59]. Tﬁe%e arg the f}lost difficult cases for which there is
still no satisfactory solution yet. Tflc‘refore, there are some works that enforce useful
constraints as needed, such as fixed background environments [9][54] or known clothes
colors [33][54] to regularize difficult problem. There are also some works that focus on
only some specific human movements, such as walking [5][45][46][58][6][55], jogging
[10][1], golf swing [52][51], skating [36], or ballet [18].

In this thesis, we aim to deal with general movements and propose a multiview model-

based method for human motion tracking. In this chapter, we will discuss successively

pros and cons of and related works about the following disciplines:
e Model-Free vs. Model-Based
e Single View vs. Multiple View

e Image-Based Localization vs. Video-Based Tracking
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Figure 2.1: Model-Free vs. Model-Based. The left is extracted from [8] and the right is
extracted from [47].

2.1 Model-Free vs: Model-Based

The difference between Model-Free andsModel-Based methods (shown in Figure 2.1),
as the names suggest, is that the latter urs_ar_an 'fluxiliary human model with anatomic
structure. Model-Free methods usua“llll?l estiil;mate human metions with a bottom-up pro-
cess. They use part detection technloiogies for tﬁq head;torso, or limbs to detect and
measure the possible candidates of eaéh part. Finally"fhe best association is consolidated
[21][43]. However, it is not easy to construct.a robust detector for each part. Hua et al.
[20] collect 2D shapes of the human motions as prior knowledge and propose a data-
driven belief propagation Monte Carlo algorithm to infer pose parameters from image
cues. Ramanan et al. [40] set up the appearance detector for every part of the personage
in the film automatically. Mori et al. [37] propose an effective segmentation method and
acquire appearance information of the parts to build an appearance model in advance.
Ren et al. [42] simply employ various pairwise configuration constraints for edges such
as parallelism, to form the best body configurations. The human motion recovery with
bottom-up estimation is flexible but relatively unstable too. In 3D cases, Cheung et al. [8]
, after reconstructing a 3D human volume, calculate principle axes of the volume and use

oval columns that can change sizes to fit the human volume and recover human postures.

8



2.2. SINGLE VIEW VS. MULTIPLE VIEW

There is a anatomic structure in a human body such that body parts are correlated
with each other. The advantage of using a 3D human model is that reasonable kinematics
constraints can be easily enforced and high level application such as animation or action
recognition can also be easily performed. Model-Based methods usually estimate human
motions with a top-down process. They estimate high-dimensional configurations of the
human postures by measuring similarities between predicted and actual observations. The
methods in [1][14][16] all employ a 2D model. The advantage lies in that it neglects the
depth of the view to simplify their problem, with the disadvantage of not being able to
estimate 3D information of human postures. On the other hand, the results of the hu-
man motion capture with a 3D model are very iqtuitive [10][12][48][25][6]. But the main
disadvantage of using a 3D model istthat the 3Dshuman model is not always available
since the body of everyone always differs. For.this, Miindermann et al. [38] establish a
database of human figures, and Cheung éﬁ%_ :[9] build 3D human shape and appearance
models directly from multiple cameras in a[&@/a;lce. They resolve the problem of available
3D human model usage. We will adJ‘pt a S:i-rflplébi 3D human model combing the infor-
mation from multiple cameras to‘expl(ﬂ)re the modelﬂ parameters optimizing measurement

functions.

2.2 Single View vs. Multiple View

In this section we will discuss the relevant research that use information of a single view
or multiple views as illustrated in Figure 2.2. Lee and Cohen [27] localize each body part
to estimate the human posture in a single still image. Sidenbladh et al. [45] and Smin-
chisescu and Triggs [47] recover 3D postures from a single monocular image sequence.
The difficulty of recovering postures from a single view is that self-occlusion and depth
ambiguity may occur easily. Agarwal and Triggs [2] use a mixture of regressors frame-

work to find multiple possible poses for monocular images. Like [5][12], a lot of methods

9
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Figure 2.2: Single View vs. Multiple View. The left is extracted from [27] and the right
is extracted from [9].

E iQ""]Sut;—can be extended for multiple
X ru'p pfedlctlon errors calculated

w1th mlnlmum total errors as their

Q;t effective way to integrate

o

co‘ntams the same discrimina-

sl
lamarre and Faugeras [10] estimate

3D movement directions in each View ‘from'the ﬁhffelqences of silhouettes in each view,
o y |

and then integrate movement Vectors as the model motion. Kakadiaris and Metaxas [24]

utilize three orthogonal cameras and consider occluded regions and motion changes to

choose only cameras with significant changes for posture estimation, but the information

in the discarded views that is still potentially useful are not considered altogether.

There is also one popular and effective way to integrate the information from multiple
views, that is, constructing a 3D shape volume for the human body from multiple views.
Instead of considering 2D human silhouette from each view, the 3D shape volume is
a visual hull that is consistent with the silhouettes of multiple views at the same time.
Therefore, the reconstructed shape volume can be used when estimating human postures

for the multiview scenario [33][9][25][32].

10



2.3. IMAGE-BASED LOCALIZATION VS. VIDEO-BASED TRACKING

Figure 2.3: Image-Based Localization vs. Video-Based Tracking. The left is extracted
from [59] and the right is extracted from [1].

Al s,
2.3 Image-Based Lucahzatlog&_*vs. 'V«ldeo Based Tracking

i
LT

.-'-

A LF B
ploit Sequential Monte Carfé to esgmwlﬁéf. e;.\dlli‘."cues Mori and Malik [36]
propose a example-based method whﬁre S(-i.me} key gos‘es of skiting regarded as exemplars
and the silhouettes of these poses are described by the Shape Context descriptor. Then the
most suitable posture exemplars are selected to interpolate the estimated human posture
for a given input image. Though there is amazing achievement in image-based localiza-

tion methods, they are often limited to trained human postures only and the accuracy is

not satisfactory.

Considering human motions as a continuous sequence of postures, the estimated result
at the previous time step is an important source of information that can be utilized. The
problem of human motion capture for continuous video sequences is regarded as video-
based human motion tracking. We will further discuss relevant research about human

motion tracking in the following subsections, including Kalman filtering, particle filtering,

11
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advanced and hierarchical particle filtering..

2.3.1 Kalman Filtering vs. Particle Filtering

For 3D human motion tracking, One of the difficulties is the high dimensionality of the
configuration space. Yamamoto et al. [56] and Bregler and Malik [5] recover high-DOF
articulated human configurations by solving a linear estimation problem. Mikic et al.
[33] propose a 3D voxel labeling method to label limbs and detect the positions of joints
between different body parts, and then use extended kalman filtering to estimate model
configurations. But the mapping from the parameter;space to the feature space is non-
linear and multi-modal. Using linear estimation methods, like Kalman filtering, to solve
nonlinear problems is not feasible;mot to mentionthatiwe cannot expect to find a perfect
measurement function between model parameters and real—wnorld observations.

Particle filter [23] remedies this by mé;lfz'{iﬁing multiple hypotheses of state estima-

Py
tions. Deutscher et al. [11] and Sideﬂﬂlbladh- et al.|[45] use*general particle filtering to

perform human motion trackiﬁg. Sidenbladh. et ai. ‘:[4}5] assume orthographic projection
and focus on walking motions only. The configurations of their 3D human model consist
of 25 DOFs. So, the particle filter must search in the parameter space with 25 dimensions,

where searching may be easily trapped in local maxima. In order to tracking accuracies,

exponentially increasing particles can be sampled at the cost of computational overhead.

2.3.2 Advanced Particle Filtering

Due to the inefficient scalability of particle filtering for high-DOF tracking, some ad-
vanced particle filtering techniques appear to sample particles and find global maximum
effectively. Deutscher et al. [12] propose the annealed particle filtering that incorporate
the concept of simulated annealing into particle filtering. With smoothed likelihood func-

tions and layered sampling, the annealed particle filtering conduct a coarse-to-fine search

12



2.3. IMAGE-BASED LOCALIZATION VS. VIDEO-BASED TRACKING

that can find the global maximum with fewer particles. Fontmarty et al. [15] propose a
modified annealed particle filtering that also considers the concept of importance sam-
pling from ICONDENSATION [22]. Some additional particles estimated by other meth-
ods such as parts detection are augmented, and may effectively improve the tracking re-
sults. Sminchisescu and Triggs [47] and Sminchisescu and Triggs [48] propose a method
called covariance scaled sampling, where particles are sampled at the scale of estimated

covariance.

There are also some other advanced particle filtering techniques that utilize gradient
descent search methods. Wang and Rehg [54] divide the steps of particle filtering into
multiple modules and analyze the influences of particle sampling with different gradient
descent search methods at different stages. In additien;there are also some advanced par-
ticle filtering techniques that.are appliedte articultated hand. tracking in a high dimensional
state space, such as appearance-guided parffsﬁg ﬁltering [7] and smart particle filtering [4].

Some previous works combine léirniﬂ.gt methods ‘of dimensionality reduction to re-
duce the exponential increase of.the p&mber “(-)f sall‘npled particles for high-DOF tracking.
A influential dimensionality reductionﬂ method 15 Pfir"icipal Component Analysis (PCA),
which is inadequate to handle the non-linear human motion configuration space. Manifold
learning algorithms, such as Locally Linear Embedding(LLE), Isomap, and Laplacian
Eigenmaps are also inadequate because the inverse mapping from the low dimensional
space to the original state space is not always available. But the inverse mapping is usu-
ally indispensable for measuring the likelihood function to reweight sampled particles.

Li et al. [28], Raskin et al. [41] and Hou et al. [18] use the Gaussian Process Model
with an inverse mapping that can reduce the dimensions to effectively improve the track-
ing accuracies and efficiently decrease computation time. One disadvantage of these
methods is that they are only valid for tracking trained human movements. Moreover,
Xu and Li [55] exploit symmetry among human postures while walking and find the mo-

tion correlation by learning with training images. Then, particle filtering is only required
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to estimate parameters of on one side, and other parameters are inferred by the learned

symmetry correlation. So the DOFs needed to be estimated are effectively reduced.

2.3.3 Hierarchical Particle Filtering

Despite numerous creative ideas to reduce the exponential computational cost for high-
DOF tracking, there is still no satisfactory solution that solve this problem. Therefore
researchers propose the concept of hierarchical method to decompose the search space.
MacCormick and Isard [29] propose the concept of hierarchical partitioned sampling for
2D hand shape tracking. The hand,shape is modeled using B-spline composed of 28
measurement lines, in which the 8 measurement: i‘ines of the fist are determined first, then
other ones are determined'with the sg@moval of 8 DOFs. Deutscher et al. [13] think that the
parameters of the human posfures should not be partitioned into multiple disjoined sets
subjectively by researcherss So they prop;(lqr_‘fs"‘;é,mqthod for automatic partitioning, which
determines the order and range of sampling"iil_‘l annealed particle filtering with covariance
matrix. The hierarchical particle ﬁltériﬂng method; for' human motion tracking often pre-
dict the state of torso first, then regards:the four limbé as independent to decompose the
search space effectively and then reduces'the computational cost. One major disadvantage
of hierarchical tracking methods is that inaccurate torso motion may sharply deteriorate
the quality of limbs motion tracking.

Miindermann et al. [38] use ICP (Iterative Closest Point) to estimate the state of each
body part after reconstructing a 3D human volume. For keeping torso and limbs stay-
ing connected, the idea of soft-joint is proposed. The error metric of ICP considers the
distances between joints of connected body parts, as well as the original corresponding

points.
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Chapter

Model-Based 3D Human Motion Tracking

In this chapter, we will introduce 3D human model, 3D human volume and particle filter-
ing that are several elements to facilitate Model-Based 3D human motion tracking. First,
we introduce the parameters ‘and characteristics. about 3D human model and design an
applicable 3D human model for.our work. Kﬂd then, reconstriict available 3D human vol-
ume from multiple cameras;thatis thé @mpdﬁft_hnt measurement to estimate human posture
by matching with 3D human model. Fi.nally, we introduce-the advantages and limitations

of the particle filtering that is the method used for human motion tracking in our work.

For this, we will propose our improved method in Chapter 4.

3.1 3D Human Model

The shape of 3D human model consists of a group of figure parameters and the pose of
3D human model is described by the motion parameters for the articulates with degree of
freedom. When make use of 3D human model for human motion tracking, the human mo-
tion can be expressed from the parameters of 3D human model by mapping feature space
to parameter space. Two major advantages for this expression are that reasonable kine-
matics constraints can be easily enforced and high level applications of tracking results

such as animation or action analysis can also be easily performed.
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3.1.1 Figure Parameters

Such as the foregoing, the parameters that express the state of the 3D human model can
be divided into the figure parameters and the motion parameters for the articulates with
degree of freedom. The figure parameters are used to determinate the shape of the 3D
human model. In theory, if the shape of the 3D human model is more similar to the hu-
man body be tracked the motion, it is more favorable to the estimation of likelihood or
measurement function. Though the 3D human model is very close to the primitive human
body, in fact it is difficult to obtain perfect observation to estimate. Because the acquisi-
tion of observation must consider a lot-of aspects; including the resolution of the captured
images, the method of foreground deteetion or the:accuracy of 3D volume reconstruction.
It is not inevitable to simulate the overly subtle.3D humdn model. Kehl et al. [25] have
used a general and subtle 3D human modﬂ_tf) ‘go on 3D human motion tracking. They
even consider the situation of model su;facgpléhding when the articulates of the body are
spread or crooked. But everybody’s ﬁgjllre 18 :e-liwa){s different; Instead, there are too many
figure parameters for the overlS/ subtlle human model, the availability of 3D human model
is reduced. Cheung et al. [9] set up a.individually subtle 3D human model of the human
in the the environment with many cameras and auxiliary apparatus before human motion
tracking. Miindermann et al. [38] obtain 46 full bodies using laser scans and then build
a database with deformable models of human shapes learned by using principal compo-
nent analysis (PCA). If we want to find a group of figure parameters for the subtle 3D
human model, we must have complicated environment, apparatus and other prerequisites.

Otherwise, it is not easy to achieve.

Because of the reasons described above, a lot of researches adopt simple geometric
models to make up 3D human model, such as sphere, cylinder and cuboid. The figure
parameters are just the parameters that control the the physical dimensions of the geo-

metric models. 3D human model of this kind is very convenient to initialize the figure

16



3.1. 3D HUMAN MODEL
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Figure 3.1: 3D human model we design has 22 DOFs totally, 6 DOFs for torso, 4 DOFs
for each limb.

parameters manually and auf;maticawmbﬁiﬁt tll}flﬁt?man body Mikic et al. [33] mark and
divide the possible body parts/using “‘t ?@;’i)ﬂl tbe 3D human volume reconstruction.
During the process of tracking, the kersri[éﬁ théi ody parts-are updated to estimate the
figure parameters using Baye_sgan n »tmrkg V‘ia e)% ‘ gera'tiVe motions like stepping over
the box and turning around or lifti"filg'c the leg. Tt1s a‘cdf‘:ﬁnmon method that is to make use of
particular motions to adjust figure paran.{eter; aut(;matically. Other researches that mostly
use general figure parameters for 3D human model are absorbed in the main issue of hu-
man motion tracking. Or, they often choose to initialize the figure parameters manually.
Michoud et al. [32] suppose that human figure accords with certain proportion. So long
as the height of the human known can determine figure parameters to generate the 3D
human model. Our work is also to use a unsophisticated 3D human model and initialize
figure parameters manually. We divide 3D human model simply and easily into several
parts, including head, torso, upper arm, forearm, thigh and leg. Except head and torso,
other parts are symmetrical, so the human model is made up of ten parts. When the head
is represented by using the sphere, the torso is a cuboid with directionality. The limbs that

are represented by using the cylinder. The 3D human model is shown in Figure 3.1.
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3.1.2 Motion Parameters

After determining the shape of the 3D human model, the motion parameters are what we
will estimate for the human posture while tracking human motion. Later the parameter
space which we discuss is always consisting of this kind of parameter. In general human
motion tracking, we claim the DOFs that 3D human model needs refer to the number of
the motion parameters. 3D human model with higher DOFs can imitate out more human
motions. It will be also more difficult to estimate correct state of the human motion
tracking because of increasing DOFs. In addition to parameter space extending, the reason
the same as figure parameters for subtle 3D hur_n;m model, is that observations obtained
usually are not perfect to measure thedifference of shightly changed movements. It is the
trend of entire motion that we/expect to.estimates-not slight details of the motion. So we
reduce the complexity of human motion tI:gE’l?ng by removing the unnecessary DOFs as
much as possible. According to 3Dﬂh;uma[|-ﬁ piodél which we use, we consider 6 DOFs
for the torso motion, 3 for rotation a%lnﬂd 3 for ‘tranﬂ‘slation. Only consider the orientation
and position of torso, and has ﬁot sull)divided the blénding of shoulder and pelvis. Worth
mentioning, we have not designed the model of neck, so we do not consider the DOFs
of the neck. But we model the head, this is because the head which loses the degree

of freedom is consulted to estimate 6 DOFs for the torso. There are more details in the

method discussion about the human motion tracking.

Because 3D human model regards torso as root of the hierarchical structure, the results
of estimation between torso and limbs are not independent. Depend on the method of
estimating human postures, the joint constraint between torso and limbs set up will be
different. And the required DOFs will also be different for the limbs motions. As to
using our 3D human model at all, we will analyze the drequired DOFs for the limbs
motions according to the joint constraint between torso and limbs. And the corresponding

methods of estimation will be discussed further while we introduce the method of the
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human motion tracking later. We divide the the joint constraint between torso and limbs,
into hard-joint, free-joint and soft-joint constraint. We suppose that the joints between

upper limb and forelimb always have hard-joint constraint.

e Hard-Joint Constraint

There is a fixed joint that makes both sides link up together tightly between torso
and limbs. After determining orientation and position of torso, the position of the
fixed joints will be also determined. The limbs will regard the joint connected with
torso as the original point, have 3 DOFs for rotation. In addition, the angle of joint
contained between upper limb and forelimb has 1. DOF. Sometimes it is not easy to
determine the angle of rotation revelving on its.own axis that is the one included in
the 3 DOFs for rotation;, It.€an be changed to express With 2 DOFs that upper limb
and forelimb have individually in ths_polar coordinate system. So each limb holds
4 DOFs, 3+1 or 242, totally. Tlt‘le‘; mé't_%;(;;"pafameters of the human model altogether

22 DOFs made up of the ones of torsshd Hbs)

i1

e Free-Joint Constraint

There is no connectivity between torso and limbs. Turn from hard-joint constraint
into free-joint constraint, we can deem that 4 original DOFs add the 3 DOFs for
translation. Or with 6 DOFs, 3 DOFs for rotation and 3 DOFs for translation, add
1 DOF that is the angle of joint contained between upper limb and forelimb. So
each limb holds 7 DOFs, 4+3 or 6+1, totally. The motion parameters of the human

model altogether 34 DOFs made up of the ones of torso and limbs.

e Soft-Joint Constraint

The hard-joint constraint makes human motion capture apt to cause wrong esti-
mating because of the difference of the shapes between 3D human model and true

human body. The free-joint constraint has seemed to lose the original idea of con-
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straining human posture using the 3D human model with the restriction of basic
human kinematics. In contrast to hard joints, limbs with soft joints are allowed
to move freely in a small range of area. The soft-joint constraint is made up of 7
DOFs like free-joint constraint. But the intensity of separation between the joint of
limb and the neighboring joint of torso is considered. It is expected that the two
joints are close to each other as much as possible, but allowed to separate. It means
we want to find a optimizing solution that can satisfy the error function about the
separation intensity and the similarity function about the observations at the same
time. Though the entire DOFs of the soft-joint constraint are higher than the ones
of hard-joint constraint. It will-be'even more effieient and effective in fact when
it combines hierarchical idea and ICP. We 'will further probe into the advantage of
soft-joint constraint ICP.while diseussing.the method of human motion tracking.

o

3.2 3D Volume Recons'trucg"-ion

|
.

We work to the human motion tracking”using 1mages céptured from multiple cameras. The
observations that each camera gets have:the dependence of property for each other. The
more effective way is to set up 3D volume for integrating the information from multiple
views. The volumetric information computed from multiple views to match generic 3D
human model can be regarded as the basic measurement of human motion estimation. The
3D human volume is usually reconstructed from silhouette images obtained by removing
the background information of the images captured from each view. It is similar to Shape-
From-Silhouette, also called Visual Hull construction that is a popular method of 3D
shape estimation from silhouette images. There are two ways to construct a visual hull
of the object, surface-based [30] and volume-based method. It is our aim to reconstruct
3D human volume, so the former is obviously not available. We will give a general

introduction on the study about volume-based visual hull, and implement a simple and
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fast method to solve this problem.

3.2.1 Introduction to Volume-Based Visual Hull Construction

The visual hull construction is also called Shape-From-Silhouette that we from this name
can more clearly understand it’s concept. For volume-based visual hull construction, the
visual hull is equivalent to the maximal volume consistent with silhouettes of the object.
Silhouette images of the object are usually binary images with O for background and 1
for the object itself. The silhouette of an objeet in an image produced from projecting the
object to one camera provides some information about the 3D shape of the object. We can
define the vision cone of the camera’by back-projéeting the silhouette using the camera
parameters, and we know that the 3D"0bject liés inside: the volume from the view area
of the silhouette. With silhouette images '(')‘:’_i-‘fﬁg:e‘:same object from multiple views, we can

intersect the generalized cones generétﬁt:d b.}.ﬂfthe silhougttes of.the object in each image, to
limit a maximal volume whichis gu@rgnteed -to cdntain the-object. The maximal volume
is known as the visual hull of.the Obj;f:Ct. As'to thé ‘human motion tracking, the object
has just been replaced by the human body. The.maximal volume is now the 3D human
volume that we hope to set up. The more numbers of camera, more exquisite 3D human

volume created is close to the actual human body because of the limitation of the maximal

volume.

For the volume-based visual hull construction, in order to describe the object volume
in the space, the object space is split up into many 3D grids. As to that pixels are the
analytic units in a 2D image for the object, the grid in a 3D space for the object volume is
known as voxel. There are two main ways to determine voxels that the object occupies in
the space. One way, it shows that the voxel is part of object when this voxel projected on
each image with different view is in the silhouettes of all images. It can get the volume

of this object to finish all voxels in projection. Another way, it shows that the voxels
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camera 3

e
camera 1 Ij camera z%

Figure 3.2: Voxel-Based Visual Hull Construction

are part of object when the voxels ate hit at the same time from all views by the image
rays that are generated by back-projecting form the pixels:belonging to the silhouette of
the image using the camera parameters: ,The precision of the volume depends on the
numbers of voxel sampled, but it will be élpwer to reconstruct 3D volume with more
voxels relatively. Because the voxel is convex hull while:being projected to the image,
the situation is prone to overlap with the silhouette partly.. Cheung et al. [8] propose an
algorithm called Sparse Pixel Occupaney Test (SPOT), that controls the cost time and the
precision of reconstruction based on the number of silhouette images overlapping with
voxel and the number of pixels lying inside the voxel while overlapping. Hasenfratz
et al. [17] combine many PC and use hardware-accelerated method to speed up the visual
hull construction. They obtain a volumetric model of the moving actors and set up an
interesting system about human-computer interaction. Michoud et al. [31] consider the
situation that movable object can exceed the visual range in some cameras makes visual
hull of the object unable to present entirely because of the maximal volume consistent
with silhouettes of the object. They have proposed a method that can filter out the cameras
offering unreliable information. We will provide a simple and fast implementation of

available 3D human volume reconstruction.
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3.2.2 Implementation to Voxel-based Approach

About capturing silhouette images, it needs the foreground detection for the images to
mark the pixels in the image whether belonging to foreground or not. There are a lot
of relevant researches and methods about the foreground detection, such as Mixture of
Gaussians (MOG) [49], codebook [26] and Background Cut [50] etc.. This is another
important issue in computer vision, not absorbed here in our research. The multiple-video
data used here are from INRIA Rhone-Alpes (https://charibdis.inrialpes.
fr). They have offered silhouette images captured from five cameras.

The 3D volume reconstruction for human bodies is not like the general case for ob-
jects. The objects relative to human bodies are a‘iways small and relatively close from the
cameras. For this, the aim is to reeonstruct realistic volume of the object, even with the
subtle descriptor of surface. For that the hqman motion tracking, it is not easy to produce
the exquisite volume because the visual rﬁg&:oﬁ the cameras becomes heavily wide to
cause the silhouettes to be coarse. In‘ﬂac%lditi(n)zl_“, thepurpose that we reconstruct 3D human
volume is to generate available measﬁu%ement to eétimate the possible motion for the hu-
man motion tracking. So 3D human volume expectéa 1s only enough to distinguish out
the position of body parts. We propose a simple and fast implementation to reconstruct
3D human volume. Figure 3.2 illustrates the voxel-based 3D volume reconstruction and
an example of reconstructed voxels.

We capture the images with the human using n cameras, so we let the silhouette SE;
of the image I'mg; projected from the camera C'am; which has the projection matrix PM,.

Now we want to reconstuct the 3D human volume following steps below.

Step 1. We define a visual space S spilt into m voxels {V},j = 1,...,m}. And the point
v; 1s the center of the voxel V;. We regard the point v; as the position of the voxel
Vj int the space S.

Step 2. Let p;; is the pixel that is the projection of the point v; projected on the image
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I'mg; with the projection matrix P M, of the camera Cam;.

pij = PM;-v; ,wherei=1,...n,7=1,...m

Step 3. We check whether the voxel V; is part of the human body.

for j = 1tomdo
Let: =1
while p;; € SE; and i < ndo
check next silhouette SE;. 1 of the image Img;q
Let: =7+1 |
end while

if p;; € SE; -, for all i then

4"..._‘“ |

Label the voxeél Vj to be partofthe 3D volume
| mh “
end if - I 1
end for ; 1

Step 4. the 3D volume V ; is made of all labeled voxels.

3.1

The 3D volume reconstruction had finished. The implementation is very simple and

fast. When we have new images at next frame, we can reconstruct the volume only re-

peating the step 3 because step 2 is progressed at the first time with the known parameters

for the positions of voxels and the projection matrixs of the cameras. For the 3D human

volume V ,;;, we use the method that check if the neighboring voxels of the labeled voxel

are not all to be labelled the same to determinate the voxels on the surface of the 3D

huamn volume. Finally, we will get the entire volume, V';;, and the set of surface voxels,

Vsurface .
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3.3 Particle Filter Tracking

After designing the 3D human model and reconstructing the 3D human volume, we will
enter the part of algorithm about human motion tracking. Previously, we have referred
to the matter that the motion parameters are what we will estimate for the human posture
with 3D human model. The hard-joint constrainted 3D human model that is used for the
human motion tracking in most researches has highly 22 DOFs in our work. We choose
to use the well-known tracking method, particle filtering [23], to track human motions.
There are two main reasons. First reason, this problem is with the high dimensionality and
the mapping from the parameter space to the feature space is nonlinear and multi-modal.
The usage of linear estimation method 'to.selve nonlinear problem, like Kalman filtering,
is obviously not available. Secondreason, we cannotiexpeet to get perfect observations,
so it is difficult to estimate the really optimal parameters. Thé particle filtering will main-
tain multiple hypotheses about the posteﬂ?glnrlb“f ‘the states to remedy the tracking errors
:1 i
possibly. Now we want to show how to traé:i( human motions using particle filter. And

then introduce the limitation and improvement about the particle filtering.

3.3.1 General Particle Filtering

For model-based 3D human tracking, we claim that the estimation for the motion param-
eters only using basic particle filter, known as the Condensation algorithm [23], is general
particle filtering. In contrast to the usage of the human model with free-joint constraint, it
has fewer DOFs with hard-joint constraint. The general particle filtering is usually used
to track the human motion making use of human model with hard-joint constraint. We
take our human model as an example to recommend how to operate this method.

When the connectivity between torso and limbs is hard-joint constraint for our model,
the degree of freedom at time ¢ is di, where i = 1,2, ..., 22. The state or the configuration

vector at time ¢ is @, = {d},d?, ...,d?*} and the history of states at time ¢ is represented
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by X; = {x,x,...,x;}. The observation at time ¢ is z; and the history of observa-
tions at time ¢ is represented by Z;, = {21, 29, ..., 2;}. After we define the parameters
about particle filtering, we want to figure out the posterior distribution for estimating the
possible solution. The dynamic Bayesian network structure used for the classical particle
filtering, where simply a first-order Markov chain is concerned. Thus, the states are only
influenced by previous time steps. In addition to some other conditional independencies

inherent in the Bayesian network, they are shown below:

(1) The state at time ¢, x;, is conditionally independent of the previous states X ; o, given

Li_1.

(2) The observation at time ¢, 23, 1S eonditionallysindependent of Z,_; and X,_;, given

the state x;.
(3) The state at time ¢, &;, 1S conditionéllj&ﬂﬁ'eﬁendent of Z,” 1, given the previous states
| f “
Il l
Xt—l‘ | H o T | 1

I L |
| |

From (1) to (3), we resolve the posteribr density as~

p(XtaZt)
Z,) = X\ Z,;) = _ 3.2

iz = | axdz) ! e (3.2)

0</ p( Xy, Zy) (3.2b)
L. L1

:/ p(zt|33t) 'P($t|Xt—1,Zt—1) 'p(Xt—I;Zt—l) (3.2¢)
L. Li_1

:/ p(zt|mt>'p(mt|Xt—1)'p(Xt—1azt—1) (3.2d)
L. L1

:P(Zt’wt) / p(wt‘mtfﬁ 'p(wtflaztfl) (3.2¢)

i1

When sample N particles, the posterior probability distribution p(x;|Z;) is repre-
sented by a set of weighted particles {(s}, 7}), (82, 72), ..., (8™, 7))} where the weights

m; satisfy that ¥;_q7; = 1, and 7}  7_, - p(z¢]x = s!). Then we can estimate the
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possible state x; of current human motion from the set of weighted particles and go on to
measure next motion with observation at next time step. The particle filtering framework

can then be divided into the following steps: sampling, weighting, and state estimating.

We want to construct a new set of weighted particles {(s}, 7}), (s2,72), ..., (s, 7N)}

at time ¢ from the old set {(s} |, 7 ), (82 ,, 7% ),..., (8™, 7Y )} at time ¢ — 1 and

estimate the state a; with the observation z;.

Step 1. Particles Sampling

For equation (3.2e), the discrete time prepagation.of state density is derived from

fwtil p(xi|xi_1) - p(@y 1 ,Zy 1) The plme,,-Z 1) is the recursive posterior dis-
tribution of previous time step. And the p(z;|T;% )<s stochastic dynamics. We set

about sampling new set of particles fiom these two density.
=0
e | |

From {(s;_y,m}_4). ..., (Sﬁl’wﬁl)};ﬁ d
| | |

we first construct cumulative pinabiIiiy {ci forll'= 1‘, 25, N},
: 1 |

Cg=— 0,

C=c¢ci_1+ 7r§_1 fori=1,2..., N.
From p(x;_1, Z;_1), we select a sample sg(i) as follows:
(1) select a uniform random number r € [0, 1]
(2) find the smallest j which satisfies the condition ¢; > r
3) set s, = s7_,
(i))

Then from p(x;|x;_; = s, ) to sample s¢ that can be generated as

si=s"+B (3.4)

where B is a multi-variate gaussian random variable with variance P and mean O.
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Now, we obtain new particles {s¢, fori = 1,2..., N} at time ¢.

Step 2. Measurement and Particles Weighting
Because we have considered the previous weights for sampling new particles using
cumulative probability {c;, fori = 1,2..., N}. So, the weights 7} oc 7}_;-p(z¢|x =
s!) can be represented as

)

=k -p(zix = si), (3.5)

where k is a normalization constant;let¥;= 7! = 1.

The p(z¢|x = s!) is called the 1ikelih0Qd is measured by using 3D human vol-
ume and 3D human model/given s! in our wWork: | The entire 3D human volume is
V . and the volume geherated human modél is M ;;.-“We define the likelihood by
calculating the number of voxels (;l\%:aépped between )V, and M ;. The set of
overlapped voxels Vg e iap 15 r_Eg“Treseﬂ';ted ad ‘?

. | 1 1
Tk i

V vertan= (Vv €MV, €WV for j = 1..m} (3.6)

In Section 3.2.2, we define the central position v; of the voxel V;. The measurement

of the likelihood is defined as

p(zt’w = 8115) X eXp(#(Voverlap)/252)a (37)

where the #(-) is presented as the number of the set, and the ¢ is a variance constant.
Now, we obtain new set of weighted particles {(s}, 7}), fori = 1,2..., N} at time

t. Finally, We want to estimate the optimal state for the human motion.

Step 3. State Estimating
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The state x; at each time step ¢ can be estimated by
xp = N7, - 8. (3.8)

or

@, = s\, when ") = max(r) (3.9)

We choose the later form because it is available for 3D human motion tracking with
high DOFs that makes particles be not enough to present the posterior density in

the vast configuration space.

3.3.2 Hierarchical Particle Filtering

In Chapter 2, we refer to the particle filter. W}Eh high DOFs, thé search is easily misdirected

by local maxima. In order to improve thé‘%(')'i'réct rate, the needed particles cause com-
[ |

putational cost increasing exponentiziley. MN:ieCormick andTsard [29] define the survival

diagnostic D and survival ratefer that:indicate whefhe( tracking performance is reliable or

not to infer the number of particlés required.

Dmin

N >

5 (3.10)

where D,,;, is the minimum acceptable survival diagnostic for successful tracking. When
a < 1, D,y and « are constant. N is the number of particles needed to maintain the
tracking performance. It shows that NV increases exponentially followed on d the number
of dimensions.

For this, some researches propose the concept of search space decomposition. Regard
particle filtering as hierarchical search space in opposition to global search space. The
hierarchical particle filtering is carried out and replaces the general particle filter. The hi-

erarchical particle filtering in human motion tracking is often prior to predict the position
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of torso in the posture. And then, the estimations of four limbs will be independent to de-
compose search space effectively. Thus the exponential cost is degraded to be linear. For
our work, the state x; can be divided into :ci, where ¢ = 1,2..., 9, respectively represents
the substate of each body part, torso, left upper arm, left forearm, right upper arm, right
forearm, left thigh, left leg, right thigh, and right leg. We can simply regard the human
motion tracking using hierarchical particle filtering as body parts tracking using several

general particle filtering.

It encounters the difficult problem the same as parts detection. For human motion
capture with a still image or single view, even,like [5] and Deutscher et al. [12] with
multiview 2D images, it is easy tosmeet thé situat.qi(l)n that'the body parts occlude other parts
in a single view. There are not strong measurements that can distinguish the body parts

for general case. But now we reconstruot,&D human volume that directly integrates the

p—

.'-'
information from multiple viewsythe depth ]i)roblefn is lightened and the measurement that
we use in equation (3.6) can dlstlngulsh the’ body parts concelvably without other special
|

features. We suppose to combme upper limb.and fo_rehmb into single limb, so that the

torso leftarm rightarm left foot

ht 4
, T, , T , Ty and x;"9"/

state x, consists of x; . The measurement
with 3D human volume will be more available for the usage of the hierarchical particle
filtering. We can find the advantage simply from the following proceedings using particle
filtering.

torso

(1) use V' to estimate the state x;°"*° similar to equation (3.6)

Vtorso,head = {‘/j”Uj € Mtorso or Mheada V} € Vall ’ fij = 1m} (311)

(2) set Voot = Vi — Vtorso head> remove the voxels considered as torso.

(3) use V. to estimate the state a:lef tarm

Vleftarm = {V}|Uj € Mleftarma V} € Vact ) fOI'j = lm} (312)
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3.3. PARTICLE FILTER TRACKING

4) set Voo = Vet — Vieptarm, remove the voxels considered as left arm.

(5) use V . to estimate the remaining states using (3) and (4).

We can clearly perceive that the body parts are estimated hierarchically. The DOFs are
degraded linearly and the V', reduced gradually speeds up the computation of measure-
ment. And we use the head model without degree of freedom to support torso to determine
it’s orientation and position in (1).

When the human model has hard-joint constraint, one major disadvantage of hier-
archical tracking methods is that inaccurate torso states may sharply deteriorate limbs
motion estimation. Moreover, the torso motion is difficult to estimate because of body
shape variances and silhouette/voxel noises. To gelduce the interference from torso motion
errors, we propose a soft-joint constrained ICP method for limb tracking. In contrast to
hard joints, limbs with soft joints are allewed to-move freely:in a small range of area, so

it is still possible to track limb motions evé'ﬁwlth inaccurate torse motions.

™= -

In order to improve torso motion trackifig, we also'propose a method that the limbs
states estimated at the previous.time step are used to provide reliable hypotheses of current
torso state, since there is strong cortelation between forso and limbs states. Our method

will be presented in Chapter 4.
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Chapter I

Soft-Joint Constrained ICP and Torso

Prediction

Given the estimated torso state, the hierar'cj::_lgﬁal tracking method enables estimating each
limb motion independently. The,human ";ﬁqﬁiel with soft-joint constraint may resolve
the problem in hierarchical motion t.raﬂcking:t-;hat the inaccufate torso states may sharply
deteriorate limbs motion estiﬁation. HHowever, the DOFs of each limb with the soft-joint
constraint increase from 4 to 7 (additional 3 DOFs for free translation in small area). We

will propose a method, soft-joint constrained ICP, can effectively determines 6 DOFs such

that only 1 DOF is left for particle filtering.

The soft-joint constrained ICP used for human motion tracking is also proposed in
[38]. Be different with their work, we employ the priorities of particle filtering that is
nonlinear and multi-model search can maintain multiple hypotheses. And we adopt a
voxel labeling method to improve soft-joint constrained ICP. Moreover, we find that the
torso motion is strongly related to the limbs motions. The reliable limbs states estimated
at the previous time step are used to sample the credible particles, like the concept of

importance sampling [22], to improve torso motion tracking.

In this chapter, we first introduce the original ICP method, present the proposed soft-
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CHAPTER 4. SOFT-JOINT CONSTRAINED ICP AND TORSO PREDICTION

joint constrained ICP, and then describe further improvement with voxel labeling. Finally,

the method is shown how the limbs states can be used for torso prediction.

4.1 Introduction to ICP

The ICP (Iterative Closest Point) algorithm [44] is one of the most popular methods for
geometric model alignment. When aligning two rigid objects with their corresponding
points, the aim is to find the transformation matrix(rotation and translation) such that the
corresponding points coincide when applied the transformation matrix. When two objects
are known about the initial relative poses, we guess an initial transformation matrix for
their relative transform. After we get a transformation.matrix to obtain new pose of the
object, we calculate new paitsrof correspending-points. Then, minimizing an error metric
from the corresponding pairs is to refing tﬁa%aﬁsform matrix. [teratively, find the pairs of
corresponding points and refine the tﬁal?sfou ation‘ matrix willalign the two rigid objects.

The iterative processes of ICP is illustrated in Figd;rc 4 1(a)-and divided into five stages in

the following:

1. Points Selection : select some points in one or both objects
The points selected in the object are expected to present the feature of object. The
usual methods are inclusive of the usage of all available points, a set of the available
points with uniform or random sampling. The random sampling often selects a
different set of points at each iteration. And the selected points usually focus on
those with special variants, such as high gradient intensity or color intensity. In
Figure 4.1(a), we sample points P from the source object and ) from the target

object.

2. Points Matching : find the corresponding points in the other object

The simple method is to fine the closest points, often using a k-d tree to accelerate

34



4.1. INTRODUCTION TO ICP

the computation. The normal shooting method is to shoot a ray with the direction
based on surface normal of the source point to intersect the corresponding point on
the destination surface. The reverse calibration method is to choose the correspond-
ing point while the source point is projected onto it’s view range. The corresponding
points sometimes must conform to some similarities with the source point, such as
surface normal, gradient or color intensity. In Figure 4.1(a), the corresponding pairs

can be described as:

{(pi,qi)\pi € P and q; € Q} “4.1)

. Pairs Weighting : weight the corresponding pairs.with different importance

For all pairs with same impertance, the}; ‘have censtant weights. The weight of
each pair is usually based on the method of poinitsharching. The weight may be
high for the pairs more close whilef:_ﬁnding the closest point as correspondence.
If the similarities with the souyce pcri_i;t-.ﬂsuch as.surface normal, gradient or color
intensity are used to find the corréw:spond"lng po1nts the similarities always determine

the weights. Based on the structure/ofithe known object, some points with noise

possibly are uncertain with low weight.

. Pairs Rejecting : reject certain pairs with inaccuracy possibly

The outliers in corresponding pairs may make least-squares minimization inaccu-
rate. So, certain pairs with inaccuracy possibly are usually eliminated. Rejecting
certain corresponding pairs is similar with assigning weights based on the method
of points matching. The weights are zero for the rejected pairs. In addition to set
threshold, the trimmed method is usually used to cut the percentage of the worst

corresponding pairs.

. Error Metric Minimization : design and minimize an error metric based on the

weighting pairs
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Figure 4.1: Or_-igi%lal IE€P vs. Seft-joint constrained ICP
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nonlinear method, s‘ﬁch‘i‘ét afﬁf*'}gé"thod, also is used to solve
the least-squares problékmd;- Pi'ndl;he o&hefaiileth dé"ére about stochastic search or
iterative estimation. In Figureﬁ.'l‘fa)‘,‘ don’t care about pairs weighting and reject-

ing, so the optimal transformation matrix [R|T'] for minimizing the error metric is

typically the sum of squared distances between corresponding points:

| k] . ‘ 2
[R*|T*] —argrg};lZII(RpﬂrT) all. (4.2)

4.2 Soft-Joint Constrained ICP

The DOFs of each limb with the soft-joint constraint increase from 4 to 7 (additional 3

DOFs for free translation in small area). We show in this section how the soft-joint con-
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4.2. SOFT-JOINT CONSTRAINED ICP

strained ICP can effectively determines 6 DOFs such that only 1 DOF is left for particle
filtering. The remaining 1 DOF is the elbow/knee angle, so each particle specifies one hy-
pothesis of the elbow/knee angle. Once the elbow/knee angle is specified, the entire limb
can be considered as a rigid object. The proposed soft-joint constrained ICP essentially
aligns sampled points from the limb model with reconstructed voxels, while taking the
soft-joint constraint into account at the same time.

We only need to show the algorithm for one limb tracking, since the same method is
applied to the four limbs successively and independently, which is benefited from the hi-
erarchical method. Now, we have the 3D human volume V' ;; and surface voxels V 5, fqce
at current time step, in additionto 3D human meodel M from estimated posture at pre-
vious time step. Particle filtering is uséd to estimate.the elbow/knee angle with soft-joint
constrained ICP.

At time ¢, the state &; has only one diﬁ:‘E’r_x;siQn now. When sampling NV particles, the
set of weighted paricles are {(s{yar) , for r1-=;31N} The weight 7! o< p(z:|x = s!) that

J = :
is known as likelihood or measurement given the particle.s;. It means when the angle

is given from sampling particle, the measurement Cén be calculated by the estimation of
rigid limb using ICP. Refer to section 3.3.1, we briefly present the particle filtering how

to estimate the elbow/knee angle using measurement from soft-joint constrained ICP.

Step 1. Particles Sampling
At time ¢, we sample new set of particles {s}, fori =1,2..., N} from {(s}_,,7}_,),

fori =1,2...,N}.

Step 2. Measurement and Particles Weighting

The weight assignment can be represented as
T =k p(zix = 8)), (4.3)

where k is a normalization constant, let Zizlﬂi =1.
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The p(z;|xz = si) called the likelihood is measured by using 3D human volume
and 3D limb model in our work. The entire 3D human volume is V ,; and the
volume generated by limb model is M ;,,,. We define the likelihood by calculat-
ing the number of overlapped voxels between V ,;; and M ;,,.,. The equations are
like equation (3.6) and equation (3.7) that M ,; replaces with M ;,,;,. The main

difference is

Originally, the motion of 3D human model is generated by given the
particle with 22 DOFs. Now, the motion of 3D limb model is estimated
using soft-joint constrained ICP by given the particle with 1 DOF for the

elbow/knee angle:

We obtain new set.of weighted particles {(st, 7). fori =1,2..., N} at time .

Step 3. State Estimating ‘ ”::_J

- il |

The state X, at each time step fan b‘b .estimated by

|
11

/s whenr™ = max(r!) (4.4)

The state x; is the state of elbow/knee angle finally at time ¢. So, the result of limb tracking
is represented by the transformation matrix from soft-joint constrained ICP while the rigid
limb with the angle x;.

In the above process, the remaining thing needed to do is how to estimate transfor-
mation matrix for the rigid limb from soft-joint constrained ICP. The ICP is an iterative
process. We will follow the stages of the ICP algorithm above to present our work for
estimating the limb motion. The algorithm for one limb is illustrated in Figure 4.1(b) and

showed the following.

Stage 1. Point Selection

Each particle determines the elbow/knee angle of the rigid limb as the source object.
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4.2. SOFT-JOINT CONSTRAINED ICP

The limb model is presented as M ;,,,;, including upper limb and forelimb. In order
to accelerate computation, we select points uniformly sampled on the surface of the

limb. The set of source points is M 5“7 7% — {Nfi . fori = 1,2..., Nyms} while

limb

sampling Ny, points. And the target object is the 3D human volume V ;, but it’s

set of selected points is the surface voxels V g, face-

Stage 2. Point Matching

Each source point M/, , € M:;“ 1% is required to find a corresponding point

stfi)face € Vsurface- The corresponding point is the closest surface voxel to the

source point, so it must calculate the geometric distance from each pointin V g, 4ce

The equationS are showed as the following.

to the point in M}, ,.

Vsczfr?fﬂce e Vsurface; - (45)
ﬂ:-"-"ﬂ,'
so that ‘!‘ | i
‘/Scu(:‘?fdyce :f a'rg Hbln(dZSﬁ<Ml’leb7 Vs(qzzface>)7 (46)
The set of corresponding pairs is-presented as Pair?fﬁbc = {(M},,, Sw)face)

, for i = 1...Ny;mp } available to estimate limb motion using ICP if the human model
is free-joint constrained. We want to adopt the concept of soft-joint constraint. The
state of torso model had been given from particle filtering before limb tracking.
So, four soft joints located on shoulder and thigh were known. In Figure 4.1(b) the
pink cuboid is represented as estimated torso motion, the soft joint on torso model is
M{2™" and the soft joint on limb model is M. Then, we add the corresponding

pair Pair o = {(M;, oint i Omt) for each limb with soft-joint constraint.

limb > torso

Stage 3. Error Metric Minimization
Because the stages pairs Weighting and pairs Rejecting are related to design error

metric. We directly present the error metric including two stages. The purpose is to
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estimate the optimal transformation matrix [R|T"] for minimizing the error metric,

which is typically the sum of squared distances between corresponding points, like

equation (4.2):
‘ Niimb ' .
E?Zaézbc = Z H (RMllimb + T) - ‘/:ecuz"faceH27 (473)
i=1
Ejoint = [(RM]g' +T) = Mz |1, (4.7b)
Etotal = E?;lyzzbc + Wijoint * Nlimb : Ejointa (470)
[R*|T"] = arg min Bora (4.7d)

where the E**% represents-the sum of squared.distances between corresponding

basic

points in Pairy;,, . The Hjsns represents the squared distance of soft joints be-

tween torso and limb. In order to b'fllia_lilce“two errors, E joint multiplies by the num-
ber of sampling points on limb, Andt'-'wjomt is the weight assigned for the Wy, to
determine the movableTange 0!f ]?imb .!I]hotior}. It 18 obvious that soft-joint constraint
tends to become hard-joint coﬁs_traint while \the W;gine i enhanced. If the w ;g 18
set to zero, the human model will:be free-joiﬁt constrained. To minimize the er-

ror metric F;,,;, we adopt the method of ‘Arun et al. [3] to solve the least-square

minimization in (equation (4.7d)) with singular value decomposition (SVD).

After iterative estimation using the stages above, the limb model can be given a new
position. It supports measurement for particle filtering to estimate the state of elbow/knee
angle in equation (4.4). And then with the elbow/knee angle (1 DOF) and optimal trans-
formation matrix [R*|T™”] (6 DOFs) together, the 7 DOFs of limbs with the soft-joint
constraint can be efficiently determined. When finding a corresponding point based on
closest surface voxel, it is very primitive. We use a voxel association method to improve

soft-joint constrained ICP.
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4.3. VOXEL LABELING

f(@) 2
Vupper 1) fb(z) 'VUPPCT‘
upper ,.J'."“/’

(©

Figure 4.2: Voxel labeling and bidirectional points matching. (a) an example of labeled
surface voxels; (b) forward directional points matching, from model surface samples to
find the closest voxels labeled as this model; (c) backward directional points matching,
from the labeled voxels to find the closest samples. on the surface of the related model
part. § ot

<l

4.3 Voxel Labeling ;

Ty,

q u"-“'\ 2‘.- mll‘."jw I
The computation overhead and alignment'qu ﬁtjilf of ICP ar¢ determined mainly by the

point matching stage. One disadvan't ge oﬂj{?e ab%yve soft-joint constrained ICP is that
the tracking may drift easil‘y‘"\;‘vhen :i fere;tﬁl-)od)ﬁ L:arts ‘i‘n‘ter‘fere with each other. That
is, when different body parts aré: close to-each ~.ché:f: ) thé corresponding pairs may be
erroneous. We show in this section hO\; VoXel lai)eling can be used for fast and reliable
point matching.

The idea of voxel labeling is to associate each surface voxel with its corresponding
body part. We use the estimated pose at the previous time step to label each surface
voxel to indicate which body part this voxel belongs to. The distance between each voxel
to each body part with previous pose is calculated and the nearest body part is chosen.
Figure 4.2(a) shows an example of labeled surface voxels.

So, surface voxels V g, fqce at current time are divided into ten body parts using esti-
mated pose M ,_; at previous time step ¢ — 1. Ten body parts consist of head, torso, and
four limbs, and each limb M, is with upper limb M .., and forelimb M ,,.. Be-

sides the basic closest corresponding points in Figure 4.1, we consider the two sampling
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directions in Figure 4.2(b) and Figure 4.2(c) at the same time, and describe entirely as the

following.

Stage 1. Point Selection

Now, the set of selected points consists of three kinds, M surface - ppsurface gpq

limb upper

M jf;:g“ce. The selected points are uniformly sampled on the surfaces of limb

M j;np, upper limb M ., and forelimb M ,,... The sample number is individ-
ually represented as Ny, Nypper and Ny For the 3D human volume, the sets
of selected points are the surface voxels V s, tqce, and the labeled voxels of upper

limb Ve, and forelimb V gspe.

Stage 2. Point Matching

basic

In addition to Pazr;; ¥,

the new. correspondingpairs are generated by matching

labeled voxel from upper limb and'f:gre}ir“nb The corresponding points are just the

- |

closest points to the source pqmts Atnd the ‘point matchmg is bidirectional. The

forward direction is from model surface sarhples to.find the closest voxels labeled
o L

as this model. The backward direction is from the.labeled voxels to find the closest

samples on the surface of the related model‘part. The total corresponding pairs are

represented as following:

Pairl = {(Mj, Visttace) - fori = 1. Ny}, (4.82)
Pair]oeer® = {(M] .., VI ) fori = 1...Nyper}, (4.8b)
Pairlyt ™ = {(Mj},,,, Vi\)) . fori = 1. Nyo.}, (4.8¢)
Pairit ™ = {(Vi e, MUS).,) s for i = 1 #(Vupper)}, (4.8d)
Pairlst ™ = {(Vipye, M) s fori = 1.4V fore)}, (4.8¢)
Pair;oim = {(Miny', Miyi)}, (4.80)

where f(i) and b(7) are represented as the corresponding points of the source point
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¢ with forward direction and backward direction. The illustrates are in Figure 4.2(b)
and Figure 4.2(c). We integrate the pairs of upper limb and forelimb with identical

direction. Thus,

. forward __ . forward . forward

Pairy,, " = Pair, ., Pairy,.. ", (4.9a)
. backward __ . backward . backward

Pair),., = Paar,,,, | | Pair Fore (4.9b)

The corresponding pairs are not only obtained by finding closest points from total
surface voxels, but also from labeled voxels forward and backward. The former is
helpful while the voxel labeling issunreliable and the latter is effective to estimate

the broadly changed motions:

Stage 3. Error Metric Minimizati(;n_ 1
There are Npqrs correspondi‘ng pairs. Asto éduation (4.7¢), the error metric is
determined by limb alignment El;mb and soft-joint constraint F ,;,; controlled by
weight. For the limb alignment, three kinds of corresponding pairs determine the

basic ,, forward

matching modes from normalized weights, w?i¢, w! 7" and wbeckwerd the total

error metric are defined as
Etotal = Elimb + Wijoint Npairs . Ejoint (410)
For the limb alignment, the error metric and related weights are

__ . ..cube cube forward forward backward backward
Eiimb = Wiy - By + Wigper - Eigper + Wiaper —  Elaper > (4112)

cube forward backward __
where Wiy, + Wigpe  + Wigper =1 (4.11b)
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The optimal transformation matrix [R|T] is

[R*|T*| = arg r}rzliqr} E,oia (4.12)

The usage of the voxel labeling improves the soft-joint constrained ICP to estimate the
broadly changed motions effectively. Even The distance is very far from the limb to actual
volume, the voxels usually can be labeled as relative limb. So, the unlabeled method is
stable while the motion is smooth and simple. The voxel association method is useful

while the motion is overstated.

4.4 Torso Prediction with Soft Joint Locations

We find that the torso motion is strongly.fflated to the limbs motions. If the states of
the four limbs are known, it i$ usuat‘ll}( p(-)"_sé'ir-l.)ﬂle ﬁo predict the torso state without other
information. For instance, Consideriné the iiriown Jlimbs states shown in Figure 4.3(a),
it is obvious that the torso stafé canl be predicted”ffgm these limbs states without other
observation. The predicted result is shown in Figure 4:3(b). We utilize this kind of torso
prediction from limbs states to improve torso motion tracking as follows.

The limbs motions estimated at the previous time step are used to provide reliable
hypotheses of current torso state, which is implemented as sampling particles from limbs
states for torso tracking. Given known limbs states, the locations of the four limb joints
can be obtained. We have four pairs of soft joints between torso and four limbs, the set
of pairs is represented as Pair(.,, = (Mm@ ppiemiC)y i — 1. 4}. To estimate

transformation matrix [RIT'] for torso motion, we use the same technique as ICP by

minimizing the following error metric:

2
: (4.13)

torso limb

4
[R*‘T*] = arg III%H’.{“I Z H RMjomt i) + T) MjOZ'nt()
) i—1
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(a) (b)

Figure 4.3: Torso prediction with ][ml,bs’ states. T‘-I'Ie,-']npbs motions estimated at the previ-
ous time step are used to provhldb rehable.’ﬁhypo_@éises of f:'urrent torso state.

f I_“‘,-.‘

: torso
motion as &% w1th'6 DOFs The

(4.14)

where B is a multi-variate gaussian random variable with variance P and mean 0.
These augmented particles serve as reliable hypotheses for torso motion. They sig-

nificantly improve the quality of torso tracking, especially when the observations for the

torso likelihood function are very poor, such as when the subject wears loose clothing or

the segmented silhouettes contain remarkable artifacts.
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Chapter

Experiments

The videos used in our tracking€xperiments afé downloaded from INRIA Rhone-Alpes
(https://charibdis. inrialpes. fr). This databasc; contains multiple video se-
quences of different human motions, whicb.are original captured for human action recog-
nition. Each motion is'observed.from 5 c-zi_lfb_r.ﬁted cameras, and silhouettes of the target

| ; "l | | :
subject are segmented by a‘background médeling method.” The following lists tracking

results of our method with sorhe seleeted video seélﬂcnces.

Pointing: The subject lifts his right*hand*and point at the front. The tracking result is
shown in Figure 5.1.

Checking watch: The subject lifts his left hand to checks his watch. The tracking
result is shown in Figure 5.2. Because of using the camera on top of head, we can recon-
struct the hand shape volume easily.

Scratching head: The subject lifts his right hand and scratch his head. The tracking
result is shown in Figure 5.3.

Waving: The subject lifts his right hand and waves. The tracking result is shown in
Figure 5.4.

Punching: The subject performs the punching action. The tracking result is shown in

Figure 5.5. It is finished in 2 seconds. And, right hand is interfered by left hand at frame
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23. Our method successfully track this fast and large motion.

Kicking: The target performs the kicking action. The tracking result is shown in
figure 5.6. It is still finished in 2 seconds. And, right hand and right foot are to move in
a crisscross manner at frame 25. Our method again successfully track this fast and large
motion even under poor observations. Note the segmentation artifacts of the right foot at
frame 19, 29, 30 and 31, shown in Figure 5.10. Although these poor observations result
in temporary drift, our method can recover tracking once these artifacts disappear.

Picking up and Throwing: The subject picks up a ball with his left hand, delivers to
his right hand, and finally throws the ball away. The tracking result is shown in figure 5.7.
Although the torso of the subject bends (which isnot modeled by our rigid torso cuboid)
in this video, satisfactory tracking results can still be obtained.

Turning around: The subject turns-atound. Fhe trackingresult is shown in figure 5.8.
For the mixed volume of foots, the finall eéﬁﬁygd motion 18 shown that two feet cross each
other. The reason is that the voxel labelingtrtlethod based on the previous pose is fast but

[
primitive. ”

|
.

Walking around: The subject walks around. “The tracking result is shown in fig-
ure 5.9. The result is similar to track video of Turning around. Two feet interfere with
each other during the tracking process since the reconstructed voxels of them join together
from time to time. This can be resolved if more information other than the shape volume

is utilized.
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Figure 5.1: Tracking results of pointing
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frame 01 frame 09 frame 13 frame 15

frame 17 franule‘25 % - frarhé 45 frame 49

frame 51 frame 53 frame 55 frame 58

Figure 5.2: Tracking results of checking watch
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frame 01 frame 04 frame 07 frame 09

frame 11 franule‘ 15257 - frarhé 47 frame 49

frame 51 frame 54 frame 61 frame 67

Figure 5.3: Tracking results of scratching head
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frame 01 frame 12 frame 16 frame 18

frame 23 frame 26 s “frame 34 frame 39

frame 53 frame 55 frame 59 frame 63

Figure 5.4: Tracking results of waving
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frame 01 frame 07 frame 11 frame 17

frame 19 franlle':21 "n-“frar‘nlll‘e 23 frame 26

frame 35 frame 41 frame 46 frame 49

Figure 5.5: Tracking results of punching
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frame 01 frame 07 frame 10 frame 13

frame 19 franlle':21 "n-“frar‘nlll‘e 25 frame 29

frame 30 frame 31 frame 33 frame 45

Figure 5.6: Tracking results of kicking
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frame 01 frame 27 frame 31 frame 38

frame 42 frame 55 s “frame 62 frame 66

frame 75 frame 82 frame 88 frame 93

Figure 5.7: Tracking results of picking up and throwing
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frame 01 frame 13 frame 19 frame 22

frame 31 fran“le‘34 % - frarhé 47 frame 54

frame 57 frame 62 frame 70 frame 84

Figure 5.8: Tracking results of turning around
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frame 01 frame 11 frame 21 frame 31

frame 39 frame 46 - “frame (55 7 frame 70

frame 83 frame 99 frame 107 frame 115

Figure 5.9: Tracking results of walking around
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frame 19

frame 25

frame 29

frame 30

frame 31

frame 45

Figure 5.10: Recovery from drift when tracking video of kicking under poor observations
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Chapter

Conclusions and Future Works

6.1 Conclusions

In this thesis, we propose a hierarchical hil_,l_man motion tracking method that adopts the
advantages of particle filtering and sqf;—joiﬁ?c.anstrained ICP at the same time. The torso
prediction, based on the states of fourL lﬁnbs, 1s augmented int6 the particle filtering frame-
work to improve torso motiori frackling. For limbs‘j motion tracking, the soft-joint con-
strained ICP reduces the influence of tracking inaccuracy of torso motion, and decreases
the original 7-DOF to 1-DOF particle filtering. The limbs motion tracking is still effective
even when there is large motions in a short period of time. Poor observations may some-
times result in drift, but our method can recover the tracking later, which is difficult for

most methods when tracking in such a high dimensional state space. The experimental

results with several video sequences demonstrate the effectiveness of our method.

6.2 Future Works

There are two main future directions for further improvements. The first one is how to

estimate the torso motion robustly, and the second one is how to prevent body parts from
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interfering with each other when evaluating their likelihood functions for possible states.
We show possible improvements in the following paragraphs for these two directions
individually.

For torso motion tracking, we have provided a torso prediction mechanism to increase
reliability. But the poor observations such as silhouette/voxel noises may still cause the

estimation to be unstable. We list below possible improvements for torso tracking:

e Build an online appearance model for a more reliable likelihood function that con-
siders not only shape information but also appearance information. This is espe-

cially useful when the target subject wears clothes with conspicuous features.

=

e Utilize the information of-the head position.and orientation. The face detection is

robust such that the face pesition.and orientation ¢an be used for torso prediction.

e Many advanced particle filtering al@-ﬁhms‘(referred to in Section 2.3.2) can be

adopted for more effective and!r?liabﬂl tracKing results:

1

b s | il . . . P
For limbs motion tracking, ‘we proposéd.a 1:DOF particle filtering with soft-joint
constrained ICP. The performanee is mainly determined by the correspondence matching

stage of ICP. The following contains two possible improvements for limb tracking:

e The voxel labeling method based on the previous pose is fast but primitive. It is
possible to utilize appearance and motion information to improve voxel labeling

accuracies.

e In addition to the soft-joint constraint, we can also regularize ICP with other human

anthropometric constraints to avoid rare or impossible human poses.
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