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Abstract

In this thesis, we aim to track 3D human motions in image sequences captured from

multiple cameras. The target motion is not limited to specific kinds of human motions,

such as walking or jogging, that is, there is no restrictions imposed on possible human

motions. Because self-occlusion and depth ambiguity occur easily when using only one

single camera, we obtain multiple videos captured with multiple cameras from different

viewpoints to reconstruct 3D shape volume of the target subject, which is an effective way

to integrate information from multiple views.

We propose a hierarchical human motion tracking method that can effectively capture

human articulated motions with high degrees of freedom (DOFs). At each time step, the

torso motion is estimated first and then the estimation of the limbs motions is carried

out individually. The particle filtering, which is a popular method for high dimensional

tracking, is adopted to track the torso motion because it can deal with the nonlinear and

multimodal posterior probability distributions.

One disadvantage of hierarchical human motion tracking is that torso tracking errors

may deteriorate limbs motion estimation. To reduce the interference from inaccurate

torso motions, we propose a soft-joint constrained ICP (Iterative Closest Point) method

to estimate limb motions. In contrast to hard joints, limbs with soft joints are allowed to

move freely in a small range of area, so it is still possible to track limb motions even with

inaccurate torso motions. However, the DOFs of each limb increase from 4 to 7 when

the soft-joint constraint is used. The proposed soft-joint constrained ICP can efficiently

ix



determines 6 DOFs such that only 1 DOF (elbow/knee) is left for the particle filtering.

Integrating the advantages of particle filtering and soft-joint constrained ICP at the same

time, our method can effectively track limb motions even when there is large motion in a

short period of time.

Moreover, we find that the torso motion is strongly related to the limbs motions. If the

states of the four limbs are known, it is usually possible to predict the torso state without

other information, especially when the limbs states are reliable. In order to improve torso

motion tracking, the limbs motions estimated at the previous time step can provide reliable

hypotheses of current torso state which is implemented as sampling particles from limbs

states for torso tracking. We have conducted experiments with multiple video sequences

of different motions, and the results show that our method is effective and reliable for 3D

human motion tracking.

Keywords: human motion tracking, particle filtering, pose estimation, ICP, multiview,

3D human model, volume reconstruction
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Chapter 1
Introduction

In this chapter, we define the problem and illustrate challenges of 3D human motion

tracking. Then the proposed hierarchical human motion tracking method is described

briefly and the overview of our method is shown. Finally, the organization of this thesis

is introduced.

1.1 Problem and Challenges

The purpose of human motion capture is using different kinds of sensors to estimate

the parameters that describe human posture, including the angles of connecting joints,

the orientations and positions of body parts. This is an interesting problem and can be

used for many applications. In medical science, it can be used for the aided analysis for

rehabilitation. In entertainment, human computer interaction and computer animation are

both common applications.

One common way for human motion capture is to develop a marker-based system. The

user must wear sensors on the articulations of the body, which can detect the acceleration

and the center of gravity about movements. In vision-based human motion capture with

markers, many reflective markers are pasted on the articulations, and then detected by

multiple infrared cameras. The 3D positions of markers are estimated by using triangula-

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Challenges for human motion capture because of shape variance, appearance
variance, pose variance and ambiguity with view dependence. This figure is extracted
from [57]

tion from multiple views, which may fail while the markers are not visible in two or more

cameras. Though marker-based methods can capture human motions effectively, expen-

sive and intrusive equipments render them inappropriate for many applications, such as

surveillance for home care or public security, interactive games, and video annotation in

multimedia. For these and other emerging home applications, the intrusive and expensive

equipments forbid the popularity of marker-based methods.

In recent years, vision-based marker-free human motion capture becomes a popular

research issue. This is an attractive but extremely challenging problem, shown in Fig-

ure 1.1, because of the following difficulties:

• Shape variance

2



1.2. PROPOSED METHOD

The shapes of different people vary with their skeleton and muscle variations. More-

over, the elasticity of the clothes may also change the observed human shapes.

Shape variance makes the observations different even with the same posture.

• Appearance variance

Besides human skin colors and textures, the wide variety of human clothing leads

to various kinds of appearance.

• Pose variance

There are high degrees of freedom (DOFs) in articulated human motions. The hu-

man body is made up of hundreds of skeletons and extendable muscles. Human

bodies can exhibit an enormous number of different postures, which makes human

motion tracking non-trivial.

• View dependence

The same posture exhibits different observations from different viewpoints while

different postures may result in similar observations at the same viewpoint because

of depth ambiguity.

The challenges of vision-based marker-less human motion tracking includes, but are not

limited to, the above items. In general, this is still an open problem in computer vision

and thus deserves further investigation.

1.2 Proposed Method

In this thesis, we aim to perform multiview model-based human motion tracking from

image sequences observed from different viewpoints. The advantage of using a 3D human

model is that reasonable kinematics constraints can be easily enforced and high level

application such as animation or action recognition can also be easily performed. When

only a single camera is used, self-occlusion and depth ambiguity will occur easily, so

3



CHAPTER 1. INTRODUCTION

we obtain multiple videos captured from multiple cameras to reconstruct voxel-based

3D human volume, which is an effective way to integrate the information from multiple

views.

We propose a hierarchical human motion tracking method with soft-joint constrained

ICP, which is effective for human motions that contain high DOFs. In order not to suffer

from the computational cost that increases exponentially, the hierarchical method is used

to decompose the search space. At each time step, the torso motion is estimated first and

then the estimation of limbs motions is carried out individually.

The torso motion is difficult to estimate because of body shape variances and silhou-

ette/voxel noises. We adopt particle filtering that is capable of modeling nonlinear and

multi-model posterior distributions and can maintain multiple hypotheses to track the ori-

entation and position of the torso.

One major disadvantage of hierarchical human motion tracking is that torso estimation

error may deteriorate limb motion estimation. To reduce the interference from torso mo-

tion errors, we propose a soft-joint constrained ICP to estimate limb motions. In contrast

to hard joints, limbs with soft joints are allowed to move freely in a small range area. The

soft-joint constraint also allows the rigid 3D human model to accommodate human body

flexibility. However, the DOFs of each limb increase to 7 when the soft-joint constraint is

used, instead of 4 for the hard-joint constraint. The proposed soft-joint constrained ICP

can efficiently determines 6 out of 7 DOFs such that only 1 DOF (elbow/knee) is left for

the particle filtering. Integrating the advantages of particle filtering and soft-joint con-

strained ICP at the same time, our method can effectively track limb motions even when

there is large motion in a short period of time.

Moreover, we find that the torso motion is strongly related to the limbs motions. If the

states of the four limbs are known, it is usually possible to predict the torso state without

other information, especially when the limbs states are reliable. In order to improve torso

motion tracking, the limbs motions estimated at the previous time step can provide reliable

4



1.3. OVERVIEW OF OUR METHOD

hypotheses of current torso state, which is implemented as sampling particles from limbs

states for torso tracking. We have conducted experiments with multiple video sequences

of different motions, and the results show that our method is effective and reliable for 3D

human motion tracking.

1.3 Overview of Our Method

We provide an overview of the proposed human motion tracking method in this section.

We assume that all cameras are calibrated, that is, the projection functions from a given

3D point to each image plane is known. We also assume that the target subject can be

segmented from the background with some background modeling method. The segmen-

tation results are not expected to be perfect since segmentation artifacts always exist in

real-world cases. The pose of the target subject at the first frame is assumed given, either

by manually alignment or by other automatic localization techniques for static images.

At each time step in the tracking process, our method perform hierarchical human

motion tracking with previous estimated posture. Each iteration contains the following

major steps:

1. capture images from multiple cameras at different viewpoints

2. obtain silhouette images using foreground detection based on some background

modeling method

3. reconstruct the 3D shape volume of the target subject from silhouette images

4. track torso motion using particle filtering with torso prediction.

5. label surface voxels to indicate which body part they belong to

6. track limbs motions using particle filtering with soft-joint constrained ICP

The flowchart of the proposed method is shown in Figure 1.2.

5



CHAPTER 1. INTRODUCTION

Figure 1.2: System flowchart of the proposed human motion tracking method.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 discusses related works about human mo-

tion capture. The details of our method are described in Chapter 3 and Chapter 4. Chap-

ter 3 includes the prerequisites, such as the human model design and 3D volume recon-

struction, and torso motion tracking with particle filtering. Chapter 4 describes limbs mo-

tion tracking with soft-joint constrained ICP and how to predict torso state using the soft

joint locations of four limbs. Experimental results and analysis are shown in Chapter 5,

where multiple videos with different kinds of motions are used to validate our method.

Finally, conclusions and future works are made in Chapter 6.

6



Chapter 2
Related Works

Research about human motion capture has been developed for more than 20 years. There

are a plethora of relevant literature [34][53][19][35][39]. This is a very fascinating yet

challenging problem. Some previous works attempt to perform human motion capture

under circumstances where there are fewer constraints and unlimited free human move-

ments are allowed [27][20][59]. These are the most difficult cases for which there is

still no satisfactory solution yet. Therefore, there are some works that enforce useful

constraints as needed, such as fixed background environments [9][54] or known clothes

colors [33][54] to regularize difficult problem. There are also some works that focus on

only some specific human movements, such as walking [5][45][46][58][6][55], jogging

[10][1], golf swing [52][51], skating [36], or ballet [18].

In this thesis, we aim to deal with general movements and propose a multiview model-

based method for human motion tracking. In this chapter, we will discuss successively

pros and cons of and related works about the following disciplines:

• Model-Free vs. Model-Based

• Single View vs. Multiple View

• Image-Based Localization vs. Video-Based Tracking

7



CHAPTER 2. RELATED WORKS

Figure 2.1: Model-Free vs. Model-Based. The left is extracted from [8] and the right is
extracted from [47].

2.1 Model-Free vs. Model-Based

The difference between Model-Free and Model-Based methods (shown in Figure 2.1),

as the names suggest, is that the latter uses an auxiliary human model with anatomic

structure. Model-Free methods usually estimate human motions with a bottom-up pro-

cess. They use part detection technologies for the head, torso, or limbs to detect and

measure the possible candidates of each part. Finally the best association is consolidated

[21][43]. However, it is not easy to construct a robust detector for each part. Hua et al.

[20] collect 2D shapes of the human motions as prior knowledge and propose a data-

driven belief propagation Monte Carlo algorithm to infer pose parameters from image

cues. Ramanan et al. [40] set up the appearance detector for every part of the personage

in the film automatically. Mori et al. [37] propose an effective segmentation method and

acquire appearance information of the parts to build an appearance model in advance.

Ren et al. [42] simply employ various pairwise configuration constraints for edges such

as parallelism, to form the best body configurations. The human motion recovery with

bottom-up estimation is flexible but relatively unstable too. In 3D cases, Cheung et al. [8]

, after reconstructing a 3D human volume, calculate principle axes of the volume and use

oval columns that can change sizes to fit the human volume and recover human postures.

8



2.2. SINGLE VIEW VS. MULTIPLE VIEW

There is a anatomic structure in a human body such that body parts are correlated

with each other. The advantage of using a 3D human model is that reasonable kinematics

constraints can be easily enforced and high level application such as animation or action

recognition can also be easily performed. Model-Based methods usually estimate human

motions with a top-down process. They estimate high-dimensional configurations of the

human postures by measuring similarities between predicted and actual observations. The

methods in [1][14][16] all employ a 2D model. The advantage lies in that it neglects the

depth of the view to simplify their problem, with the disadvantage of not being able to

estimate 3D information of human postures. On the other hand, the results of the hu-

man motion capture with a 3D model are very intuitive [10][12][48][25][6]. But the main

disadvantage of using a 3D model is that the 3D human model is not always available

since the body of everyone always differs. For this, Mündermann et al. [38] establish a

database of human figures, and Cheung et al. [9] build 3D human shape and appearance

models directly from multiple cameras in advance. They resolve the problem of available

3D human model usage. We will adopt a simple 3D human model combing the infor-

mation from multiple cameras to explore the model parameters optimizing measurement

functions.

2.2 Single View vs. Multiple View

In this section we will discuss the relevant research that use information of a single view

or multiple views as illustrated in Figure 2.2. Lee and Cohen [27] localize each body part

to estimate the human posture in a single still image. Sidenbladh et al. [45] and Smin-

chisescu and Triggs [47] recover 3D postures from a single monocular image sequence.

The difficulty of recovering postures from a single view is that self-occlusion and depth

ambiguity may occur easily. Agarwal and Triggs [2] use a mixture of regressors frame-

work to find multiple possible poses for monocular images. Like [5][12], a lot of methods

9



CHAPTER 2. RELATED WORKS

Figure 2.2: Single View vs. Multiple View. The left is extracted from [27] and the right
is extracted from [9].

are originally developed for the single view scenario but can be extended for multiple

views with a straightforward method. They usually sum up prediction errors calculated

from each view independently and find the posture with minimum total errors as their

estimation result. This is a simple but not necessary the most effective way to integrate

information from multiple views, because not every view contains the same discrimina-

tive cues for each human motion all the time. Delamarre and Faugeras [10] estimate

3D movement directions in each view from the differences of silhouettes in each view,

and then integrate movement vectors as the model motion. Kakadiaris and Metaxas [24]

utilize three orthogonal cameras and consider occluded regions and motion changes to

choose only cameras with significant changes for posture estimation, but the information

in the discarded views that is still potentially useful are not considered altogether.

There is also one popular and effective way to integrate the information from multiple

views, that is, constructing a 3D shape volume for the human body from multiple views.

Instead of considering 2D human silhouette from each view, the 3D shape volume is

a visual hull that is consistent with the silhouettes of multiple views at the same time.

Therefore, the reconstructed shape volume can be used when estimating human postures

for the multiview scenario [33][9][25][32].

10



2.3. IMAGE-BASED LOCALIZATION VS. VIDEO-BASED TRACKING

Figure 2.3: Image-Based Localization vs. Video-Based Tracking. The left is extracted
from [59] and the right is extracted from [1].

2.3 Image-Based Localization vs. Video-Based Tracking

We have already mentioned several previous works that localize the human posture (as

shown in Figure 2.3) with a single static image, like bottom-up human posture recovery

using part detectors. Lee and Cohen [27] perform 3D human motion capture from a single

image [59] assume that the human body is made up of several image cues, and then ex-

ploit Sequential Monte Carlo to estimate the position of each cues. Mori and Malik [36]

propose a example-based method, where some key poses of skiting regarded as exemplars

and the silhouettes of these poses are described by the Shape Context descriptor. Then the

most suitable posture exemplars are selected to interpolate the estimated human posture

for a given input image. Though there is amazing achievement in image-based localiza-

tion methods, they are often limited to trained human postures only and the accuracy is

not satisfactory.

Considering human motions as a continuous sequence of postures, the estimated result

at the previous time step is an important source of information that can be utilized. The

problem of human motion capture for continuous video sequences is regarded as video-

based human motion tracking. We will further discuss relevant research about human

motion tracking in the following subsections, including Kalman filtering, particle filtering,

11



CHAPTER 2. RELATED WORKS

advanced and hierarchical particle filtering..

2.3.1 Kalman Filtering vs. Particle Filtering

For 3D human motion tracking, One of the difficulties is the high dimensionality of the

configuration space. Yamamoto et al. [56] and Bregler and Malik [5] recover high-DOF

articulated human configurations by solving a linear estimation problem. Mikic̀ et al.

[33] propose a 3D voxel labeling method to label limbs and detect the positions of joints

between different body parts, and then use extended kalman filtering to estimate model

configurations. But the mapping from the parameter space to the feature space is non-

linear and multi-modal. Using linear estimation methods, like Kalman filtering, to solve

nonlinear problems is not feasible, not to mention that we cannot expect to find a perfect

measurement function between model parameters and real-world observations.

Particle filter [23] remedies this by maintaining multiple hypotheses of state estima-

tions. Deutscher et al. [11] and Sidenbladh et al. [45] use general particle filtering to

perform human motion tracking. Sidenbladh et al. [45] assume orthographic projection

and focus on walking motions only. The configurations of their 3D human model consist

of 25 DOFs. So, the particle filter must search in the parameter space with 25 dimensions,

where searching may be easily trapped in local maxima. In order to tracking accuracies,

exponentially increasing particles can be sampled at the cost of computational overhead.

2.3.2 Advanced Particle Filtering

Due to the inefficient scalability of particle filtering for high-DOF tracking, some ad-

vanced particle filtering techniques appear to sample particles and find global maximum

effectively. Deutscher et al. [12] propose the annealed particle filtering that incorporate

the concept of simulated annealing into particle filtering. With smoothed likelihood func-

tions and layered sampling, the annealed particle filtering conduct a coarse-to-fine search
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that can find the global maximum with fewer particles. Fontmarty et al. [15] propose a

modified annealed particle filtering that also considers the concept of importance sam-

pling from ICONDENSATION [22]. Some additional particles estimated by other meth-

ods such as parts detection are augmented, and may effectively improve the tracking re-

sults. Sminchisescu and Triggs [47] and Sminchisescu and Triggs [48] propose a method

called covariance scaled sampling, where particles are sampled at the scale of estimated

covariance.

There are also some other advanced particle filtering techniques that utilize gradient

descent search methods. Wang and Rehg [54] divide the steps of particle filtering into

multiple modules and analyze the influences of particle sampling with different gradient

descent search methods at different stages. In addition, there are also some advanced par-

ticle filtering techniques that are applied to articulated hand tracking in a high dimensional

state space, such as appearance-guided particle filtering [7] and smart particle filtering [4].

Some previous works combine learning methods of dimensionality reduction to re-

duce the exponential increase of the number of sampled particles for high-DOF tracking.

A influential dimensionality reduction method is Principal Component Analysis (PCA),

which is inadequate to handle the non-linear human motion configuration space. Manifold

learning algorithms, such as Locally Linear Embedding(LLE), Isomap, and Laplacian

Eigenmaps are also inadequate because the inverse mapping from the low dimensional

space to the original state space is not always available. But the inverse mapping is usu-

ally indispensable for measuring the likelihood function to reweight sampled particles.

Li et al. [28], Raskin et al. [41] and Hou et al. [18] use the Gaussian Process Model

with an inverse mapping that can reduce the dimensions to effectively improve the track-

ing accuracies and efficiently decrease computation time. One disadvantage of these

methods is that they are only valid for tracking trained human movements. Moreover,

Xu and Li [55] exploit symmetry among human postures while walking and find the mo-

tion correlation by learning with training images. Then, particle filtering is only required

13
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to estimate parameters of on one side, and other parameters are inferred by the learned

symmetry correlation. So the DOFs needed to be estimated are effectively reduced.

2.3.3 Hierarchical Particle Filtering

Despite numerous creative ideas to reduce the exponential computational cost for high-

DOF tracking, there is still no satisfactory solution that solve this problem. Therefore

researchers propose the concept of hierarchical method to decompose the search space.

MacCormick and Isard [29] propose the concept of hierarchical partitioned sampling for

2D hand shape tracking. The hand shape is modeled using B-spline composed of 28

measurement lines, in which the 8 measurement lines of the fist are determined first, then

other ones are determined with the removal of 8 DOFs. Deutscher et al. [13] think that the

parameters of the human postures should not be partitioned into multiple disjoined sets

subjectively by researchers. So they propose a method for automatic partitioning, which

determines the order and range of sampling in annealed particle filtering with covariance

matrix. The hierarchical particle filtering methods for human motion tracking often pre-

dict the state of torso first, then regards the four limbs as independent to decompose the

search space effectively and then reduces the computational cost. One major disadvantage

of hierarchical tracking methods is that inaccurate torso motion may sharply deteriorate

the quality of limbs motion tracking.

Mündermann et al. [38] use ICP (Iterative Closest Point) to estimate the state of each

body part after reconstructing a 3D human volume. For keeping torso and limbs stay-

ing connected, the idea of soft-joint is proposed. The error metric of ICP considers the

distances between joints of connected body parts, as well as the original corresponding

points.
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Chapter 3
Model-Based 3D Human Motion Tracking

In this chapter, we will introduce 3D human model, 3D human volume and particle filter-

ing that are several elements to facilitate Model-Based 3D human motion tracking. First,

we introduce the parameters and characteristics about 3D human model and design an

applicable 3D human model for our work. And then, reconstruct available 3D human vol-

ume from multiple cameras, that is the important measurement to estimate human posture

by matching with 3D human model. Finally, we introduce the advantages and limitations

of the particle filtering that is the method used for human motion tracking in our work.

For this, we will propose our improved method in Chapter 4.

3.1 3D Human Model

The shape of 3D human model consists of a group of figure parameters and the pose of

3D human model is described by the motion parameters for the articulates with degree of

freedom. When make use of 3D human model for human motion tracking, the human mo-

tion can be expressed from the parameters of 3D human model by mapping feature space

to parameter space. Two major advantages for this expression are that reasonable kine-

matics constraints can be easily enforced and high level applications of tracking results

such as animation or action analysis can also be easily performed.
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3.1.1 Figure Parameters

Such as the foregoing, the parameters that express the state of the 3D human model can

be divided into the figure parameters and the motion parameters for the articulates with

degree of freedom. The figure parameters are used to determinate the shape of the 3D

human model. In theory, if the shape of the 3D human model is more similar to the hu-

man body be tracked the motion, it is more favorable to the estimation of likelihood or

measurement function. Though the 3D human model is very close to the primitive human

body, in fact it is difficult to obtain perfect observation to estimate. Because the acquisi-

tion of observation must consider a lot of aspects, including the resolution of the captured

images, the method of foreground detection or the accuracy of 3D volume reconstruction.

It is not inevitable to simulate the overly subtle 3D human model. Kehl et al. [25] have

used a general and subtle 3D human model to go on 3D human motion tracking. They

even consider the situation of model surface blending when the articulates of the body are

spread or crooked. But everybody’s figure is always different. Instead, there are too many

figure parameters for the overly subtle human model, the availability of 3D human model

is reduced. Cheung et al. [9] set up a individually subtle 3D human model of the human

in the the environment with many cameras and auxiliary apparatus before human motion

tracking. Mündermann et al. [38] obtain 46 full bodies using laser scans and then build

a database with deformable models of human shapes learned by using principal compo-

nent analysis (PCA). If we want to find a group of figure parameters for the subtle 3D

human model, we must have complicated environment, apparatus and other prerequisites.

Otherwise, it is not easy to achieve.

Because of the reasons described above, a lot of researches adopt simple geometric

models to make up 3D human model, such as sphere, cylinder and cuboid. The figure

parameters are just the parameters that control the the physical dimensions of the geo-

metric models. 3D human model of this kind is very convenient to initialize the figure
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3.1. 3D HUMAN MODEL

Figure 3.1: 3D human model we design has 22 DOFs totally, 6 DOFs for torso, 4 DOFs
for each limb.

parameters manually and automatically to fit the human body. Mikic̀ et al. [33] mark and

divide the possible body parts using the result of the 3D human volume reconstruction.

During the process of tracking, the markers of the body parts are updated to estimate the

figure parameters using Bayesian networks via exaggerative motions like stepping over

the box and turning around or lifting the leg. It is a common method that is to make use of

particular motions to adjust figure parameters automatically. Other researches that mostly

use general figure parameters for 3D human model are absorbed in the main issue of hu-

man motion tracking. Or, they often choose to initialize the figure parameters manually.

Michoud et al. [32] suppose that human figure accords with certain proportion. So long

as the height of the human known can determine figure parameters to generate the 3D

human model. Our work is also to use a unsophisticated 3D human model and initialize

figure parameters manually. We divide 3D human model simply and easily into several

parts, including head, torso, upper arm, forearm, thigh and leg. Except head and torso,

other parts are symmetrical, so the human model is made up of ten parts. When the head

is represented by using the sphere, the torso is a cuboid with directionality. The limbs that

are represented by using the cylinder. The 3D human model is shown in Figure 3.1.
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3.1.2 Motion Parameters

After determining the shape of the 3D human model, the motion parameters are what we

will estimate for the human posture while tracking human motion. Later the parameter

space which we discuss is always consisting of this kind of parameter. In general human

motion tracking, we claim the DOFs that 3D human model needs refer to the number of

the motion parameters. 3D human model with higher DOFs can imitate out more human

motions. It will be also more difficult to estimate correct state of the human motion

tracking because of increasing DOFs. In addition to parameter space extending, the reason

the same as figure parameters for subtle 3D human model, is that observations obtained

usually are not perfect to measure the difference of slightly changed movements. It is the

trend of entire motion that we expect to estimate, not slight details of the motion. So we

reduce the complexity of human motion tracking by removing the unnecessary DOFs as

much as possible. According to 3D human model which we use, we consider 6 DOFs

for the torso motion, 3 for rotation and 3 for translation. Only consider the orientation

and position of torso, and has not subdivided the blending of shoulder and pelvis. Worth

mentioning, we have not designed the model of neck, so we do not consider the DOFs

of the neck. But we model the head, this is because the head which loses the degree

of freedom is consulted to estimate 6 DOFs for the torso. There are more details in the

method discussion about the human motion tracking.

Because 3D human model regards torso as root of the hierarchical structure, the results

of estimation between torso and limbs are not independent. Depend on the method of

estimating human postures, the joint constraint between torso and limbs set up will be

different. And the required DOFs will also be different for the limbs motions. As to

using our 3D human model at all, we will analyze the drequired DOFs for the limbs

motions according to the joint constraint between torso and limbs. And the corresponding

methods of estimation will be discussed further while we introduce the method of the
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human motion tracking later. We divide the the joint constraint between torso and limbs,

into hard-joint, free-joint and soft-joint constraint. We suppose that the joints between

upper limb and forelimb always have hard-joint constraint.

• Hard-Joint Constraint

There is a fixed joint that makes both sides link up together tightly between torso

and limbs. After determining orientation and position of torso, the position of the

fixed joints will be also determined. The limbs will regard the joint connected with

torso as the original point, have 3 DOFs for rotation. In addition, the angle of joint

contained between upper limb and forelimb has 1 DOF. Sometimes it is not easy to

determine the angle of rotation revolving on its own axis that is the one included in

the 3 DOFs for rotation. It can be changed to express with 2 DOFs that upper limb

and forelimb have individually in the polar coordinate system. So each limb holds

4 DOFs, 3+1 or 2+2, totally. The motion parameters of the human model altogether

22 DOFs made up of the ones of torso and limbs.

• Free-Joint Constraint

There is no connectivity between torso and limbs. Turn from hard-joint constraint

into free-joint constraint, we can deem that 4 original DOFs add the 3 DOFs for

translation. Or with 6 DOFs, 3 DOFs for rotation and 3 DOFs for translation, add

1 DOF that is the angle of joint contained between upper limb and forelimb. So

each limb holds 7 DOFs, 4+3 or 6+1, totally. The motion parameters of the human

model altogether 34 DOFs made up of the ones of torso and limbs.

• Soft-Joint Constraint

The hard-joint constraint makes human motion capture apt to cause wrong esti-

mating because of the difference of the shapes between 3D human model and true

human body. The free-joint constraint has seemed to lose the original idea of con-
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straining human posture using the 3D human model with the restriction of basic

human kinematics. In contrast to hard joints, limbs with soft joints are allowed

to move freely in a small range of area. The soft-joint constraint is made up of 7

DOFs like free-joint constraint. But the intensity of separation between the joint of

limb and the neighboring joint of torso is considered. It is expected that the two

joints are close to each other as much as possible, but allowed to separate. It means

we want to find a optimizing solution that can satisfy the error function about the

separation intensity and the similarity function about the observations at the same

time. Though the entire DOFs of the soft-joint constraint are higher than the ones

of hard-joint constraint. It will be even more efficient and effective in fact when

it combines hierarchical idea and ICP. We will further probe into the advantage of

soft-joint constraint ICP while discussing the method of human motion tracking.

3.2 3D Volume Reconstruction

We work to the human motion tracking using images captured from multiple cameras. The

observations that each camera gets have the dependence of property for each other. The

more effective way is to set up 3D volume for integrating the information from multiple

views. The volumetric information computed from multiple views to match generic 3D

human model can be regarded as the basic measurement of human motion estimation. The

3D human volume is usually reconstructed from silhouette images obtained by removing

the background information of the images captured from each view. It is similar to Shape-

From-Silhouette, also called Visual Hull construction that is a popular method of 3D

shape estimation from silhouette images. There are two ways to construct a visual hull

of the object, surface-based [30] and volume-based method. It is our aim to reconstruct

3D human volume, so the former is obviously not available. We will give a general

introduction on the study about volume-based visual hull, and implement a simple and

20



3.2. 3D VOLUME RECONSTRUCTION

fast method to solve this problem.

3.2.1 Introduction to Volume-Based Visual Hull Construction

The visual hull construction is also called Shape-From-Silhouette that we from this name

can more clearly understand it’s concept. For volume-based visual hull construction, the

visual hull is equivalent to the maximal volume consistent with silhouettes of the object.

Silhouette images of the object are usually binary images with 0 for background and 1

for the object itself. The silhouette of an object in an image produced from projecting the

object to one camera provides some information about the 3D shape of the object. We can

define the vision cone of the camera by back-projecting the silhouette using the camera

parameters, and we know that the 3D object lies inside the volume from the view area

of the silhouette. With silhouette images of the same object from multiple views, we can

intersect the generalized cones generated by the silhouettes of the object in each image, to

limit a maximal volume which is guaranteed to contain the object. The maximal volume

is known as the visual hull of the object. As to the human motion tracking, the object

has just been replaced by the human body. The maximal volume is now the 3D human

volume that we hope to set up. The more numbers of camera, more exquisite 3D human

volume created is close to the actual human body because of the limitation of the maximal

volume.

For the volume-based visual hull construction, in order to describe the object volume

in the space, the object space is split up into many 3D grids. As to that pixels are the

analytic units in a 2D image for the object, the grid in a 3D space for the object volume is

known as voxel. There are two main ways to determine voxels that the object occupies in

the space. One way, it shows that the voxel is part of object when this voxel projected on

each image with different view is in the silhouettes of all images. It can get the volume

of this object to finish all voxels in projection. Another way, it shows that the voxels
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Figure 3.2: Voxel-Based Visual Hull Construction

are part of object when the voxels are hit at the same time from all views by the image

rays that are generated by back-projecting form the pixels belonging to the silhouette of

the image using the camera parameters. The precision of the volume depends on the

numbers of voxel sampled, but it will be slower to reconstruct 3D volume with more

voxels relatively. Because the voxel is convex hull while being projected to the image,

the situation is prone to overlap with the silhouette partly. Cheung et al. [8] propose an

algorithm called Sparse Pixel Occupancy Test (SPOT), that controls the cost time and the

precision of reconstruction based on the number of silhouette images overlapping with

voxel and the number of pixels lying inside the voxel while overlapping. Hasenfratz

et al. [17] combine many PC and use hardware-accelerated method to speed up the visual

hull construction. They obtain a volumetric model of the moving actors and set up an

interesting system about human-computer interaction. Michoud et al. [31] consider the

situation that movable object can exceed the visual range in some cameras makes visual

hull of the object unable to present entirely because of the maximal volume consistent

with silhouettes of the object. They have proposed a method that can filter out the cameras

offering unreliable information. We will provide a simple and fast implementation of

available 3D human volume reconstruction.
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3.2.2 Implementation to Voxel-based Approach

About capturing silhouette images, it needs the foreground detection for the images to

mark the pixels in the image whether belonging to foreground or not. There are a lot

of relevant researches and methods about the foreground detection, such as Mixture of

Gaussians (MOG) [49], codebook [26] and Background Cut [50] etc.. This is another

important issue in computer vision, not absorbed here in our research. The multiple-video

data used here are from INRIA Rhône-Alpes (https://charibdis.inrialpes.

fr). They have offered silhouette images captured from five cameras.

The 3D volume reconstruction for human bodies is not like the general case for ob-

jects. The objects relative to human bodies are always small and relatively close from the

cameras. For this, the aim is to reconstruct realistic volume of the object, even with the

subtle descriptor of surface. For that the human motion tracking, it is not easy to produce

the exquisite volume because the visual range of the cameras becomes heavily wide to

cause the silhouettes to be coarse. In addition, the purpose that we reconstruct 3D human

volume is to generate available measurement to estimate the possible motion for the hu-

man motion tracking. So 3D human volume expected is only enough to distinguish out

the position of body parts. We propose a simple and fast implementation to reconstruct

3D human volume. Figure 3.2 illustrates the voxel-based 3D volume reconstruction and

an example of reconstructed voxels.

We capture the images with the human using n cameras, so we let the silhouette SEi

of the image Imgi projected from the camera Cami which has the projection matrix PMi.

Now we want to reconstuct the 3D human volume following steps below.

Step 1. We define a visual space S spilt into m voxels {Vj, j = 1, ..., m}. And the point

vj is the center of the voxel Vj . We regard the point vj as the position of the voxel

Vj int the space S.

Step 2. Let pij is the pixel that is the projection of the point vj projected on the image
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Imgi with the projection matrix PMi of the camera Cami.

pij = PMi · vj , where i = 1, ..., n, j = 1, ..., m (3.1)

Step 3. We check whether the voxel Vj is part of the human body.

for j = 1 to m do

Let i = 1

while pij ∈ SEi and i 5 n do

check next silhouette SEi+1 of the image Imgi+1

Let i = i + 1

end while

if pij ∈ SEi , for all i then

Label the voxel Vj to be part of the 3D volume

end if

end for

Step 4. the 3D volume V all is made of all labeled voxels.

The 3D volume reconstruction had finished. The implementation is very simple and

fast. When we have new images at next frame, we can reconstruct the volume only re-

peating the step 3 because step 2 is progressed at the first time with the known parameters

for the positions of voxels and the projection matrixs of the cameras. For the 3D human

volume V all, we use the method that check if the neighboring voxels of the labeled voxel

are not all to be labelled the same to determinate the voxels on the surface of the 3D

huamn volume. Finally, we will get the entire volume, V all, and the set of surface voxels,

V surface.
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3.3 Particle Filter Tracking

After designing the 3D human model and reconstructing the 3D human volume, we will

enter the part of algorithm about human motion tracking. Previously, we have referred

to the matter that the motion parameters are what we will estimate for the human posture

with 3D human model. The hard-joint constrainted 3D human model that is used for the

human motion tracking in most researches has highly 22 DOFs in our work. We choose

to use the well-known tracking method, particle filtering [23], to track human motions.

There are two main reasons. First reason, this problem is with the high dimensionality and

the mapping from the parameter space to the feature space is nonlinear and multi-modal.

The usage of linear estimation method to solve nonlinear problem, like Kalman filtering,

is obviously not available. Second reason, we cannot expect to get perfect observations,

so it is difficult to estimate the really optimal parameters. The particle filtering will main-

tain multiple hypotheses about the posterior of the states to remedy the tracking errors

possibly. Now we want to show how to track human motions using particle filter. And

then introduce the limitation and improvement about the particle filtering.

3.3.1 General Particle Filtering

For model-based 3D human tracking, we claim that the estimation for the motion param-

eters only using basic particle filter, known as the Condensation algorithm [23], is general

particle filtering. In contrast to the usage of the human model with free-joint constraint, it

has fewer DOFs with hard-joint constraint. The general particle filtering is usually used

to track the human motion making use of human model with hard-joint constraint. We

take our human model as an example to recommend how to operate this method.

When the connectivity between torso and limbs is hard-joint constraint for our model,

the degree of freedom at time t is di
t, where i = 1, 2, ..., 22. The state or the configuration

vector at time t is xt = {d1
t , d

2
t , ..., d

22
t } and the history of states at time t is represented
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by X t = {x1, x2, ..., xt}. The observation at time t is zt and the history of observa-

tions at time t is represented by Zt = {z1,z2, ..., zt}. After we define the parameters

about particle filtering, we want to figure out the posterior distribution for estimating the

possible solution. The dynamic Bayesian network structure used for the classical particle

filtering, where simply a first-order Markov chain is concerned. Thus, the states are only

influenced by previous time steps. In addition to some other conditional independencies

inherent in the Bayesian network, they are shown below:

(1) The state at time t, xt, is conditionally independent of the previous states X t−2, given

xt−1.

(2) The observation at time t, zt, is conditionally independent of Zt−1 and X t−1, given

the state xt.

(3) The state at time t, xt, is conditionally independent of Zt−1, given the previous states

X t−1.

From (1) to (3), we resolve the posterior density as

p(xt|Zt) =

∫

x1...xt−1

p(X t|Zt) =

∫

x1...xt−1

p(X t, Zt)

p(Zt)
(3.2a)

∝
∫

x1...xt−1

p(X t, Zt) (3.2b)

=

∫

x1...xt−1

p(zt|xt) · p(xt|X t−1,Zt−1) · p(X t−1,Zt−1) (3.2c)

=

∫

x1...xt−1

p(zt|xt) · p(xt|X t−1) · p(X t−1,Zt−1) (3.2d)

= p(zt|xt) ·
∫

xt−1

p(xt|xt−1) · p(xt−1, Zt−1) (3.2e)

When sample N particles, the posterior probability distribution p(xt|Zt) is repre-

sented by a set of weighted particles {(s1
t , π

1
t ), (s

2
t , π

2
t ), ..., (s

N
t , πN

t )} where the weights

πi
t satisfy that Σi=1π

i
t = 1, and πi

t ∝ πi
t−1 · p(zt|x = si

t). Then we can estimate the
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possible state xt of current human motion from the set of weighted particles and go on to

measure next motion with observation at next time step. The particle filtering framework

can then be divided into the following steps: sampling, weighting, and state estimating.

We want to construct a new set of weighted particles {(s1
t , π

1
t ), (s

2
t , π

2
t ), ..., (s

N
t , πN

t )}
at time t from the old set {(s1

t−1, π
1
t−1), (s

2
t−1, π

2
t−1), ..., (s

N
t−1, π

N
t−1)} at time t − 1 and

estimate the state xt with the observation zt.

Step 1. Particles Sampling

For equation (3.2e), the discrete time propagation of state density is derived from
∫
xt−1

p(xt|xt−1) · p(xt−1,Zt−1). The p(xt−1,Zt−1) is the recursive posterior dis-

tribution of previous time step. And the p(xt|xt−1) is stochastic dynamics. We set

about sampling new set of particles from these two density.

From {(s1
t−1, π

1
t−1), ..., (s

N
t−1, π

N
t−1)},

we first construct cumulative probability {ci, for i = 1, 2..., N},

c0 = 0,

ci = ci−1 + πi
t−1 for i = 1, 2..., N.

From p(xt−1, Zt−1), we select a sample s
′(i)
t as follows:

(1) select a uniform random number r ∈ [0, 1]

(2) find the smallest j which satisfies the condition cj ≥ r

(3) set s
′(i)
t = sj

t−1

Then from p(xt|xt−1 = s
′(i)
t ) to sample si

t that can be generated as

si
t = s

′(i)
t + B (3.4)

where B is a multi-variate gaussian random variable with variance P and mean 0.
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Now, we obtain new particles {si
t, for i = 1, 2..., N} at time t.

Step 2. Measurement and Particles Weighting

Because we have considered the previous weights for sampling new particles using

cumulative probability {ci, for i = 1, 2..., N}. So, the weights πi
t ∝ πi

t−1 ·p(zt|x =

si
t) can be represented as

πi
t = k · p(zt|x = si

t), (3.5)

where k is a normalization constant, let Σi=1π
i
t = 1.

The p(zt|x = si
t) is called the likelihood is measured by using 3D human vol-

ume and 3D human model given si
t in our work. The entire 3D human volume is

V all and the volume generated human model is M all. We define the likelihood by

calculating the number of voxels overlapped between V all and M all. The set of

overlapped voxels V overlap is represented as

V overlap = {Vj|vj ∈ M all, Vj ∈ V all , for j = 1...m} (3.6)

In Section 3.2.2, we define the central position vj of the voxel Vj . The measurement

of the likelihood is defined as

p(zt|x = si
t) ∝ exp(#(V overlap)/2δ

2), (3.7)

where the #(·) is presented as the number of the set, and the δ is a variance constant.

Now, we obtain new set of weighted particles {(si
t, π

i
t), for i = 1, 2..., N} at time

t. Finally, We want to estimate the optimal state for the human motion.

Step 3. State Estimating
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The state xt at each time step t can be estimated by

xt = Σi=1π
i
t · si

t (3.8)

or

xt = s
(∗)
t , when π

(∗)
t = max

i
(πi

t) (3.9)

We choose the later form because it is available for 3D human motion tracking with

high DOFs that makes particles be not enough to present the posterior density in

the vast configuration space.

3.3.2 Hierarchical Particle Filtering

In Chapter 2, we refer to the particle filter with high DOFs, the search is easily misdirected

by local maxima. In order to improve the correct rate, the needed particles cause com-

putational cost increasing exponentially. MacCormick and Isard [29] define the survival

diagnostic D and survival rate α that indicate whether tracking performance is reliable or

not to infer the number of particles required.

N ≥ Dmin

αd
, (3.10)

where Dmin is the minimum acceptable survival diagnostic for successful tracking. When

α ¿ 1, Dmin and α are constant. N is the number of particles needed to maintain the

tracking performance. It shows that N increases exponentially followed on d the number

of dimensions.

For this, some researches propose the concept of search space decomposition. Regard

particle filtering as hierarchical search space in opposition to global search space. The

hierarchical particle filtering is carried out and replaces the general particle filter. The hi-

erarchical particle filtering in human motion tracking is often prior to predict the position
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of torso in the posture. And then, the estimations of four limbs will be independent to de-

compose search space effectively. Thus the exponential cost is degraded to be linear. For

our work, the state xt can be divided into xi
t, where i = 1, 2..., 9 , respectively represents

the substate of each body part, torso, left upper arm, left forearm, right upper arm, right

forearm, left thigh, left leg, right thigh, and right leg. We can simply regard the human

motion tracking using hierarchical particle filtering as body parts tracking using several

general particle filtering.

It encounters the difficult problem the same as parts detection. For human motion

capture with a still image or single view, even like [5] and Deutscher et al. [12] with

multiview 2D images, it is easy to meet the situation that the body parts occlude other parts

in a single view. There are not strong measurements that can distinguish the body parts

for general case. But now we reconstruct 3D human volume that directly integrates the

information from multiple views, the depth problem is lightened and the measurement that

we use in equation (3.6) can distinguish the body parts conceivably without other special

features. We suppose to combine upper limb and forelimb into single limb, so that the

state xt consists of xtorso
t , xleftarm

t , xrightarm
t , xleftfoot

t and xrightfoot
t . The measurement

with 3D human volume will be more available for the usage of the hierarchical particle

filtering. We can find the advantage simply from the following proceedings using particle

filtering.

(1) use V all to estimate the state xtorso
t similar to equation (3.6)

V torso,head = {Vj|vj ∈ M torso or Mhead, Vj ∈ V all , for j = 1...m} (3.11)

(2) set V act = V all − V torso,head, remove the voxels considered as torso.

(3) use V act to estimate the state xleftarm
t

V leftarm = {Vj|vj ∈ M leftarm, Vj ∈ V act , for j = 1...m} (3.12)
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(4) set V act = V act − V leftarm, remove the voxels considered as left arm.

(5) use V act to estimate the remaining states using (3) and (4).

We can clearly perceive that the body parts are estimated hierarchically. The DOFs are

degraded linearly and the V act reduced gradually speeds up the computation of measure-

ment. And we use the head model without degree of freedom to support torso to determine

it’s orientation and position in (1).

When the human model has hard-joint constraint, one major disadvantage of hier-

archical tracking methods is that inaccurate torso states may sharply deteriorate limbs

motion estimation. Moreover, the torso motion is difficult to estimate because of body

shape variances and silhouette/voxel noises. To reduce the interference from torso motion

errors, we propose a soft-joint constrained ICP method for limb tracking. In contrast to

hard joints, limbs with soft joints are allowed to move freely in a small range of area, so

it is still possible to track limb motions even with inaccurate torso motions.

In order to improve torso motion tracking, we also propose a method that the limbs

states estimated at the previous time step are used to provide reliable hypotheses of current

torso state, since there is strong correlation between torso and limbs states. Our method

will be presented in Chapter 4.
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Chapter 4
Soft-Joint Constrained ICP and Torso

Prediction

Given the estimated torso state, the hierarchical tracking method enables estimating each

limb motion independently. The human model with soft-joint constraint may resolve

the problem in hierarchical motion tracking that the inaccurate torso states may sharply

deteriorate limbs motion estimation. However, the DOFs of each limb with the soft-joint

constraint increase from 4 to 7 (additional 3 DOFs for free translation in small area). We

will propose a method, soft-joint constrained ICP, can effectively determines 6 DOFs such

that only 1 DOF is left for particle filtering.

The soft-joint constrained ICP used for human motion tracking is also proposed in

[38]. Be different with their work, we employ the priorities of particle filtering that is

nonlinear and multi-model search can maintain multiple hypotheses. And we adopt a

voxel labeling method to improve soft-joint constrained ICP. Moreover, we find that the

torso motion is strongly related to the limbs motions. The reliable limbs states estimated

at the previous time step are used to sample the credible particles, like the concept of

importance sampling [22], to improve torso motion tracking.

In this chapter, we first introduce the original ICP method, present the proposed soft-
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joint constrained ICP, and then describe further improvement with voxel labeling. Finally,

the method is shown how the limbs states can be used for torso prediction.

4.1 Introduction to ICP

The ICP (Iterative Closest Point) algorithm [44] is one of the most popular methods for

geometric model alignment. When aligning two rigid objects with their corresponding

points, the aim is to find the transformation matrix(rotation and translation) such that the

corresponding points coincide when applied the transformation matrix. When two objects

are known about the initial relative poses, we guess an initial transformation matrix for

their relative transform. After we get a transformation matrix to obtain new pose of the

object, we calculate new pairs of corresponding points. Then, minimizing an error metric

from the corresponding pairs is to refine the transform matrix. Iteratively, find the pairs of

corresponding points and refine the transformation matrix will align the two rigid objects.

The iterative processes of ICP is illustrated in Figure 4.1(a) and divided into five stages in

the following:

1. Points Selection : select some points in one or both objects

The points selected in the object are expected to present the feature of object. The

usual methods are inclusive of the usage of all available points, a set of the available

points with uniform or random sampling. The random sampling often selects a

different set of points at each iteration. And the selected points usually focus on

those with special variants, such as high gradient intensity or color intensity. In

Figure 4.1(a), we sample points P from the source object and Q from the target

object.

2. Points Matching : find the corresponding points in the other object

The simple method is to fine the closest points, often using a k-d tree to accelerate
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the computation. The normal shooting method is to shoot a ray with the direction

based on surface normal of the source point to intersect the corresponding point on

the destination surface. The reverse calibration method is to choose the correspond-

ing point while the source point is projected onto it’s view range. The corresponding

points sometimes must conform to some similarities with the source point, such as

surface normal, gradient or color intensity. In Figure 4.1(a), the corresponding pairs

can be described as:

{(pi, qi)|pi ∈ P and qi ∈ Q} . (4.1)

3. Pairs Weighting : weight the corresponding pairs with different importance

For all pairs with same importance, they have constant weights. The weight of

each pair is usually based on the method of points matching. The weight may be

high for the pairs more close while finding the closest point as correspondence.

If the similarities with the source point, such as surface normal, gradient or color

intensity are used to find the corresponding points, the similarities always determine

the weights. Based on the structure of the known object, some points with noise

possibly are uncertain with low weight.

4. Pairs Rejecting : reject certain pairs with inaccuracy possibly

The outliers in corresponding pairs may make least-squares minimization inaccu-

rate. So, certain pairs with inaccuracy possibly are usually eliminated. Rejecting

certain corresponding pairs is similar with assigning weights based on the method

of points matching. The weights are zero for the rejected pairs. In addition to set

threshold, the trimmed method is usually used to cut the percentage of the worst

corresponding pairs.

5. Error Metric Minimization : design and minimize an error metric based on the

weighting pairs
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(a) (b)

Figure 4.1: Original ICP vs. Soft-joint constrained ICP

The error metric is made up of the weighting pairs. The purpose for ICP is to

estimate a transform matrix that minimizes the error metric to assure the more im-

portant points that are more close to the corresponding points. It is often regraded

as least-squares minimization to solve based on singular value decomposition. The

nonlinear method, such as the Levenberg-Marquardt method, also is used to solve

the least-squares problem. And the other methods are about stochastic search or

iterative estimation. In Figure 4.1(a), don’t care about pairs weighting and reject-

ing, so the optimal transformation matrix [R|T ] for minimizing the error metric is

typically the sum of squared distances between corresponding points:

[R?|T ?] = arg min
R,T

∑
i

‖(Rpi + T )− qi‖2. (4.2)

4.2 Soft-Joint Constrained ICP

The DOFs of each limb with the soft-joint constraint increase from 4 to 7 (additional 3

DOFs for free translation in small area). We show in this section how the soft-joint con-
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strained ICP can effectively determines 6 DOFs such that only 1 DOF is left for particle

filtering. The remaining 1 DOF is the elbow/knee angle, so each particle specifies one hy-

pothesis of the elbow/knee angle. Once the elbow/knee angle is specified, the entire limb

can be considered as a rigid object. The proposed soft-joint constrained ICP essentially

aligns sampled points from the limb model with reconstructed voxels, while taking the

soft-joint constraint into account at the same time.

We only need to show the algorithm for one limb tracking, since the same method is

applied to the four limbs successively and independently, which is benefited from the hi-

erarchical method. Now, we have the 3D human volume V all and surface voxels V surface

at current time step, in addition to 3D human model M t−1 from estimated posture at pre-

vious time step. Particle filtering is used to estimate the elbow/knee angle with soft-joint

constrained ICP.

At time t, the state xt has only one dimension now. When sampling N particles, the

set of weighted paricles are {(si
t, π

i
t) , for i=1...N}. The weight πi

t ∝ p(zt|x = si
t) that

is known as likelihood or measurement given the particle si
t. It means when the angle

is given from sampling particle, the measurement can be calculated by the estimation of

rigid limb using ICP. Refer to section 3.3.1, we briefly present the particle filtering how

to estimate the elbow/knee angle using measurement from soft-joint constrained ICP.

Step 1. Particles Sampling

At time t, we sample new set of particles {si
t, for i = 1, 2..., N} from {(si

t−1, π
i
t−1),

for i = 1, 2..., N}.

Step 2. Measurement and Particles Weighting

The weight assignment can be represented as

πi
t = k · p(zt|x = si

t), (4.3)

where k is a normalization constant, let Σi=1π
i
t = 1.
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The p(zt|x = si
t) called the likelihood is measured by using 3D human volume

and 3D limb model in our work. The entire 3D human volume is V all and the

volume generated by limb model is M limb. We define the likelihood by calculat-

ing the number of overlapped voxels between V all and M limb. The equations are

like equation (3.6) and equation (3.7) that M all replaces with M limb. The main

difference is

Originally, the motion of 3D human model is generated by given the

particle with 22 DOFs. Now, the motion of 3D limb model is estimated

using soft-joint constrained ICP by given the particle with 1 DOF for the

elbow/knee angle.

We obtain new set of weighted particles {(si
t, π

i
t), for i = 1, 2..., N} at time t.

Step 3. State Estimating

The state X t at each time step t can be estimated by

xt = s
(∗)
t , when π

(∗)
t = max

i
(πi

t) (4.4)

The state xt is the state of elbow/knee angle finally at time t. So, the result of limb tracking

is represented by the transformation matrix from soft-joint constrained ICP while the rigid

limb with the angle xt.

In the above process, the remaining thing needed to do is how to estimate transfor-

mation matrix for the rigid limb from soft-joint constrained ICP. The ICP is an iterative

process. We will follow the stages of the ICP algorithm above to present our work for

estimating the limb motion. The algorithm for one limb is illustrated in Figure 4.1(b) and

showed the following.

Stage 1. Point Selection

Each particle determines the elbow/knee angle of the rigid limb as the source object.
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The limb model is presented as M limb including upper limb and forelimb. In order

to accelerate computation, we select points uniformly sampled on the surface of the

limb. The set of source points is M surface
limb = {M i

limb , for i = 1, 2..., Nlimb} while

sampling Nlimb points. And the target object is the 3D human volume V all, but it’s

set of selected points is the surface voxels V surface.

Stage 2. Point Matching

Each source point M i
limb ∈ M surface

limb is required to find a corresponding point

V
c(i)
surface ∈ V surface. The corresponding point is the closest surface voxel to the

source point, so it must calculate the geometric distance from each point in V surface

to the point in M i
limb. The equations are showed as the following.

V
c(i)
surface ∈ V surface, (4.5)

so that

V
c(i)
surface = arg min

j
(dist(M i

limb, V
(j)
surface)), (4.6)

The set of corresponding pairs is presented as Pairbasic
limb = {(M i

limb, V
c(i)
surface)

, for i = 1...Nlimb} available to estimate limb motion using ICP if the human model

is free-joint constrained. We want to adopt the concept of soft-joint constraint. The

state of torso model had been given from particle filtering before limb tracking.

So, four soft joints located on shoulder and thigh were known. In Figure 4.1(b) the

pink cuboid is represented as estimated torso motion, the soft joint on torso model is

M joint
torso and the soft joint on limb model is M joint

limb . Then, we add the corresponding

pair Pairjoint = {(M joint
limb ,M joint

torso ) for each limb with soft-joint constraint.

Stage 3. Error Metric Minimization

Because the stages pairs Weighting and pairs Rejecting are related to design error

metric. We directly present the error metric including two stages. The purpose is to
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estimate the optimal transformation matrix [R|T ] for minimizing the error metric,

which is typically the sum of squared distances between corresponding points, like

equation (4.2):

Ebasic
limb =

Nlimb∑
i=1

‖(RM i
limb + T )− V

c[i]
surface‖2, (4.7a)

Ejoint = ‖(RM joint
limb + T )−M joint

torso‖2, (4.7b)

Etotal = Ebasic
limb + wjoint ·Nlimb ·Ejoint, (4.7c)

[R?|T ?] = arg min
R,T

Etotal, (4.7d)

where the Ebasic
limb represents the sum of squared distances between corresponding

points in Pairbasic
limb . The Ejoint represents the squared distance of soft joints be-

tween torso and limb. In order to balance two errors, Ejoint multiplies by the num-

ber of sampling points on limb. And wjoint is the weight assigned for the wtorso to

determine the movable range of limb motion. It is obvious that soft-joint constraint

tends to become hard-joint constraint while the wjoint is enhanced. If the wjoint is

set to zero, the human model will be free-joint constrained. To minimize the er-

ror metric Etotal, we adopt the method of Arun et al. [3] to solve the least-square

minimization in (equation (4.7d)) with singular value decomposition (SVD).

After iterative estimation using the stages above, the limb model can be given a new

position. It supports measurement for particle filtering to estimate the state of elbow/knee

angle in equation (4.4). And then with the elbow/knee angle (1 DOF) and optimal trans-

formation matrix [R?|T ?] (6 DOFs) together, the 7 DOFs of limbs with the soft-joint

constraint can be efficiently determined. When finding a corresponding point based on

closest surface voxel, it is very primitive. We use a voxel association method to improve

soft-joint constrained ICP.
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(a) (b) (c)

Figure 4.2: Voxel labeling and bidirectional points matching. (a) an example of labeled
surface voxels; (b) forward directional points matching, from model surface samples to
find the closest voxels labeled as this model; (c) backward directional points matching,
from the labeled voxels to find the closest samples on the surface of the related model
part.

4.3 Voxel Labeling

The computation overhead and alignment quality of ICP are determined mainly by the

point matching stage. One disadvantage of the above soft-joint constrained ICP is that

the tracking may drift easily when different body parts interfere with each other. That

is, when different body parts are close to each other, the corresponding pairs may be

erroneous. We show in this section how voxel labeling can be used for fast and reliable

point matching.

The idea of voxel labeling is to associate each surface voxel with its corresponding

body part. We use the estimated pose at the previous time step to label each surface

voxel to indicate which body part this voxel belongs to. The distance between each voxel

to each body part with previous pose is calculated and the nearest body part is chosen.

Figure 4.2(a) shows an example of labeled surface voxels.

So, surface voxels V surface at current time are divided into ten body parts using esti-

mated pose M t−1 at previous time step t − 1. Ten body parts consist of head, torso, and

four limbs, and each limb M limb is with upper limb Mupper and forelimb M fore. Be-

sides the basic closest corresponding points in Figure 4.1, we consider the two sampling
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directions in Figure 4.2(b) and Figure 4.2(c) at the same time, and describe entirely as the

following.

Stage 1. Point Selection

Now, the set of selected points consists of three kinds, M surface
limb , M surface

upper and

M surface
fore . The selected points are uniformly sampled on the surfaces of limb

M limb, upper limb Mupper and forelimb M fore. The sample number is individ-

ually represented as Nlimb, Nupper and Nfore. For the 3D human volume, the sets

of selected points are the surface voxels V surface, and the labeled voxels of upper

limb V upper and forelimb V fore.

Stage 2. Point Matching

In addition to Pairbasic
limb , the new corresponding pairs are generated by matching

labeled voxel from upper limb and forelimb. The corresponding points are just the

closest points to the source points. And the point matching is bidirectional. The

forward direction is from model surface samples to find the closest voxels labeled

as this model. The backward direction is from the labeled voxels to find the closest

samples on the surface of the related model part. The total corresponding pairs are

represented as following:

Pairbasic
limb = {(M i

limb, V
c(i)
surface) , for i = 1...Nlimb}, (4.8a)

Pairforward
upper = {(M i

upper, V
f(i)
upper) , for i = 1...Nupper}, (4.8b)

Pairforward
fore = {(M i

fore, V
f(i)
fore) , for i = 1...Nfore}, (4.8c)

Pairbackward
upper = {(V i

upper,M
b(i)
upper) , for i = 1...#(V upper)}, (4.8d)

Pairbackward
fore = {(V i

fore,M
b(i)
fore) , for i = 1...#(V fore)}, (4.8e)

Pairjoint = {(M joint
limb ,M joint

torso )}, (4.8f)

where f(i) and b(i) are represented as the corresponding points of the source point
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i with forward direction and backward direction. The illustrates are in Figure 4.2(b)

and Figure 4.2(c). We integrate the pairs of upper limb and forelimb with identical

direction. Thus,

Pairforward
label = Pairforward

upper

⋃
Pairforward

fore , (4.9a)

Pairbackward
label = Pairbackward

upper

⋃
Pairbackward

fore (4.9b)

The corresponding pairs are not only obtained by finding closest points from total

surface voxels, but also from labeled voxels forward and backward. The former is

helpful while the voxel labeling is unreliable and the latter is effective to estimate

the broadly changed motions.

Stage 3. Error Metric Minimization

There are Npairs corresponding pairs. As to equation (4.7c), the error metric is

determined by limb alignment Elimb and soft-joint constraint Ejoint controlled by

weight. For the limb alignment, three kinds of corresponding pairs determine the

matching modes from normalized weights, wbasic
limb , wforward

label , and wbackward
label . the total

error metric are defined as

Etotal = Elimb + wjoint ·Npairs ·Ejoint (4.10)

For the limb alignment, the error metric and related weights are

Elimb = wcube
limb ·Ecube

limb + wforward
label ·Eforward

label + wbackward
label ·Ebackward

label , (4.11a)

where wcube
limb + wforward

label + wbackward
label = 1 (4.11b)
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The optimal transformation matrix [R|T ] is

[R?|T ?] = arg min
R,T

Etotal (4.12)

The usage of the voxel labeling improves the soft-joint constrained ICP to estimate the

broadly changed motions effectively. Even The distance is very far from the limb to actual

volume, the voxels usually can be labeled as relative limb. So, the unlabeled method is

stable while the motion is smooth and simple. The voxel association method is useful

while the motion is overstated.

4.4 Torso Prediction with Soft Joint Locations

We find that the torso motion is strongly related to the limbs motions. If the states of

the four limbs are known, it is usually possible to predict the torso state without other

information. For instance, considering the known limbs states shown in Figure 4.3(a),

it is obvious that the torso state can be predicted from these limbs states without other

observation. The predicted result is shown in Figure 4.3(b). We utilize this kind of torso

prediction from limbs states to improve torso motion tracking as follows.

The limbs motions estimated at the previous time step are used to provide reliable

hypotheses of current torso state, which is implemented as sampling particles from limbs

states for torso tracking. Given known limbs states, the locations of the four limb joints

can be obtained. We have four pairs of soft joints between torso and four limbs, the set

of pairs is represented as Pairall
joint = {(M joint(i)

torso ,M
joint(i)
limb ), i = 1 . . . 4}. To estimate

transformation matrix [R|T ] for torso motion, we use the same technique as ICP by

minimizing the following error metric:

[R?|T ?] = arg min
R,T

4∑
i=1

∥∥∥(RM
joint(i)
torso + T )−M

joint(i)
limb

∥∥∥
2

, (4.13)
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(a) (b)

Figure 4.3: Torso prediction with limbs states. The limbs motions estimated at the previ-
ous time step are used to provide reliable hypotheses of current torso state.

and then, we must translate the transformation matrix into the motion parameters of torso

motion as xtorso
predicted with 6 DOFs. The optimal rotation/translation are then used as aug-

mented particles when tracking torso motion with particle filtering at next time step.

When particles sampling, augmented particles will be generated from equation (3.4)

saugmented
t = xtorso

predicted + B, (4.14)

where B is a multi-variate gaussian random variable with variance P and mean 0.

These augmented particles serve as reliable hypotheses for torso motion. They sig-

nificantly improve the quality of torso tracking, especially when the observations for the

torso likelihood function are very poor, such as when the subject wears loose clothing or

the segmented silhouettes contain remarkable artifacts.
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Chapter 5
Experiments

The videos used in our tracking experiments are downloaded from INRIA Rhône-Alpes

(https://charibdis.inrialpes.fr). This database contains multiple video se-

quences of different human motions, which are original captured for human action recog-

nition. Each motion is observed from 5 calibrated cameras, and silhouettes of the target

subject are segmented by a background modeling method. The following lists tracking

results of our method with some selected video sequences.

Pointing: The subject lifts his right hand and point at the front. The tracking result is

shown in Figure 5.1.

Checking watch: The subject lifts his left hand to checks his watch. The tracking

result is shown in Figure 5.2. Because of using the camera on top of head, we can recon-

struct the hand shape volume easily.

Scratching head: The subject lifts his right hand and scratch his head. The tracking

result is shown in Figure 5.3.

Waving: The subject lifts his right hand and waves. The tracking result is shown in

Figure 5.4.

Punching: The subject performs the punching action. The tracking result is shown in

Figure 5.5. It is finished in 2 seconds. And, right hand is interfered by left hand at frame
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23. Our method successfully track this fast and large motion.

Kicking: The target performs the kicking action. The tracking result is shown in

figure 5.6. It is still finished in 2 seconds. And, right hand and right foot are to move in

a crisscross manner at frame 25. Our method again successfully track this fast and large

motion even under poor observations. Note the segmentation artifacts of the right foot at

frame 19, 29, 30 and 31, shown in Figure 5.10. Although these poor observations result

in temporary drift, our method can recover tracking once these artifacts disappear.

Picking up and Throwing: The subject picks up a ball with his left hand, delivers to

his right hand, and finally throws the ball away. The tracking result is shown in figure 5.7.

Although the torso of the subject bends (which is not modeled by our rigid torso cuboid)

in this video, satisfactory tracking results can still be obtained.

Turning around: The subject turns around. The tracking result is shown in figure 5.8.

For the mixed volume of foots, the final estimated motion is shown that two feet cross each

other. The reason is that the voxel labeling method based on the previous pose is fast but

primitive.

Walking around: The subject walks around. The tracking result is shown in fig-

ure 5.9. The result is similar to track video of Turning around. Two feet interfere with

each other during the tracking process since the reconstructed voxels of them join together

from time to time. This can be resolved if more information other than the shape volume

is utilized.
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frame 01 frame 04 frame 05 frame 06

frame 08 frame 17 frame 53 frame 58

frame 61 frame 63 frame 64 frame 67

Figure 5.1: Tracking results of pointing
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frame 01 frame 09 frame 13 frame 15

frame 17 frame 25 frame 45 frame 49

frame 51 frame 53 frame 55 frame 58

Figure 5.2: Tracking results of checking watch
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frame 01 frame 04 frame 07 frame 09

frame 11 frame 15 frame 47 frame 49

frame 51 frame 54 frame 61 frame 67

Figure 5.3: Tracking results of scratching head
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frame 01 frame 12 frame 16 frame 18

frame 23 frame 26 frame 34 frame 39

frame 53 frame 55 frame 59 frame 63

Figure 5.4: Tracking results of waving
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frame 01 frame 07 frame 11 frame 17

frame 19 frame 21 frame 23 frame 26

frame 35 frame 41 frame 46 frame 49

Figure 5.5: Tracking results of punching
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frame 01 frame 07 frame 10 frame 13

frame 19 frame 21 frame 25 frame 29

frame 30 frame 31 frame 33 frame 45

Figure 5.6: Tracking results of kicking
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frame 01 frame 27 frame 31 frame 38

frame 42 frame 55 frame 62 frame 66

frame 75 frame 82 frame 88 frame 93

Figure 5.7: Tracking results of picking up and throwing
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frame 01 frame 13 frame 19 frame 22

frame 31 frame 34 frame 47 frame 54

frame 57 frame 62 frame 70 frame 84

Figure 5.8: Tracking results of turning around
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frame 01 frame 11 frame 21 frame 31

frame 39 frame 46 frame 55 frame 70

frame 83 frame 99 frame 107 frame 115

Figure 5.9: Tracking results of walking around
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frame 19

frame 25

frame 29

frame 30

frame 31

frame 45

Figure 5.10: Recovery from drift when tracking video of kicking under poor observations
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Chapter 6
Conclusions and Future Works

6.1 Conclusions

In this thesis, we propose a hierarchical human motion tracking method that adopts the

advantages of particle filtering and soft-joint constrained ICP at the same time. The torso

prediction, based on the states of four limbs, is augmented into the particle filtering frame-

work to improve torso motion tracking. For limbs motion tracking, the soft-joint con-

strained ICP reduces the influence of tracking inaccuracy of torso motion, and decreases

the original 7-DOF to 1-DOF particle filtering. The limbs motion tracking is still effective

even when there is large motions in a short period of time. Poor observations may some-

times result in drift, but our method can recover the tracking later, which is difficult for

most methods when tracking in such a high dimensional state space. The experimental

results with several video sequences demonstrate the effectiveness of our method.

6.2 Future Works

There are two main future directions for further improvements. The first one is how to

estimate the torso motion robustly, and the second one is how to prevent body parts from
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interfering with each other when evaluating their likelihood functions for possible states.

We show possible improvements in the following paragraphs for these two directions

individually.

For torso motion tracking, we have provided a torso prediction mechanism to increase

reliability. But the poor observations such as silhouette/voxel noises may still cause the

estimation to be unstable. We list below possible improvements for torso tracking:

• Build an online appearance model for a more reliable likelihood function that con-

siders not only shape information but also appearance information. This is espe-

cially useful when the target subject wears clothes with conspicuous features.

• Utilize the information of the head position and orientation. The face detection is

robust such that the face position and orientation can be used for torso prediction.

• Many advanced particle filtering algorithms (referred to in Section 2.3.2) can be

adopted for more effective and reliable tracking results.

For limbs motion tracking, we proposed a 1-DOF particle filtering with soft-joint

constrained ICP. The performance is mainly determined by the correspondence matching

stage of ICP. The following contains two possible improvements for limb tracking:

• The voxel labeling method based on the previous pose is fast but primitive. It is

possible to utilize appearance and motion information to improve voxel labeling

accuracies.

• In addition to the soft-joint constraint, we can also regularize ICP with other human

anthropometric constraints to avoid rare or impossible human poses.
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