國立臺灣大學工學院土木工程學系

碩士論文

Department of Civil Engineering College of Engineering National Taiwan University Master Thesis

台灣中小學校舍結構耐震能力初步評估方法之探討

Preliminary Seismic Evaluation Method

Keng-Li Su

指導教授:黃世建 博士

Advisor: Shyh-Jiann Hwang

中華民國 97 年 7 月

July, 2008

國立臺灣大學碩士學位論文 口試委員會審定書

台灣中小學校舍結構耐震能力初步評估方法之探討 Preliminary Seismic Evaluation Method for Typical School Buildings in Taiwan

本論文係蘇耕立君(學號 R95521236)在國立臺灣大學土木工程 學系碩士班完成之碩士學位論文,於民國 97 年7月1日承下列考試委 員審查通過及口試及格,特此證明。

口試委員:

黄世建		A A	tt	Rent
(指導	教授)	Z	Ã	32
蔡益超		17	123	$\overline{\bigwedge}$
鍾立來		A	3	X

張國鎮

系主任、所長: 張國鎮

摘要

台灣位於歐亞大陸板塊與菲律賓海板塊交接處,所以大小地震 不斷,為了減小地震造成學校建築的破壞及學校師生的傷亡,並於 地震過後提供學校建築作為臨時避難場所,應儘速全面進行學校建 築耐震能力評估與必要的補強。但因為全國校舍數量龐大,全面進 行耐震能力評估,勢必不符合經濟效益。所以國家地震工程研究中 心提出一耐震能力初步評估方法,只需建築結構物基本幾何參數就 可估算出大概的耐震能力。本研究以100棟有實際柱細部資料的2 樓與3樓校舍模型作為原始研究模組,從原始模組中以統計的方法 建立一8棟的模組,再簡易的推估出8棟4樓與5樓的模組,將兩 模組共16棟組成新的研究模組,另外再加上不同牆體配置總共304 個研究校舍模組。並利用簡化之非線性靜力側推分析來評估,其原 理係將破壞樓層內垂直桿件之側力位移曲線進行疊加而計算出整 體結構之耐震能力。另外,結構對應之崩塌地表加速度則參考 ATC-40 所建議之容量震譜方法來估計。將同一模組以國家地震工 程研究中心的初步評估方法來分析,比較其結果,並對初步評估的 方法提出建議。另一部份,本研究也利用分析結果提供安全柱量的 建議值。

關鍵字: 校舍, 初步評估, 簡化非線性靜力側推分析, 垂直桿件, 安

全柱量

Abstract

The island of Taiwan is located on the Circum Pacific seismic zone and thus seismicity is extremely active in this country. In order to make sure that all of school buildings can survive during earthquake, then the seismic capacity of buildings must be assessed. There are more than 10,000 school buildings in Taiwan, if every school building go through detailed evaluation method, it's considered uneconomical. Because of that NCREE provides 3 steps to decide which school building needs to go through detailed evaluation, our research will focus on step two, preliminary seismic evaluation method. In this research three groups of model building based on true school building will be established, and then simplified pushover analysis will be used to find the seismic capacity. In addition to that, NCREE preliminary seismic evaluation method is used to analysis the same model building and comparison between preliminary seismic evaluation method and simplified pushover analysis will be made. After finding out the difference, some suggestion to preliminary seismic evaluation method can be given. This research also recommend a safe ratio of column area.

Keywords: school building, preliminary seismic evaluation method, simplified pushover analysis, vertical element, safe ratio of column area.

誌謝

研究是一條漫長又複雜的路,沒有人可以不需要陪伴或引導,唯有先跟隨前人的腳步,也才會有能力走向未知的旅途。

首先要感謝恩師 黃世建教授,每當我陷入困惑時給予一個思考的方 向,讓我慢慢的了解研究的方法及應有的態度,恩師的教誨我會牢記在 心。感謝蔡益超教授、鍾立來博士於論文口試期間給予寶貴的意見與指正 建議。感謝葉勇凱博士、簡文郁博士於論文研究期間的指導與啟發。感謝 陳遠亮老師,讓我對於讀書研究有了新的體認,沒有你當初的鼓勵就沒有 現在的我。感謝學長郭武威、李翼安、邱聰智、翁樸文、學姊 Cindra,於 學業上的指導與研究的經驗傳承。感謝同學益堂、嘉威、振平、建鴻、孟 慧、姿慧,謝謝你們的陪伴,讓我在研究所的日子裡不孤單。感謝學弟瑋 聰、Erwin、士涵、逸聰、宗國在研究期間給予的幫助。

我要特別感謝惠君,感謝妳一路的陪伴,感謝妳陪我一起成長,感謝妳豐富了我的人生,感謝妳陪我分享喜怒哀樂。

最後我要感謝我的家人,沒有你們的支持我不可能走到這,謝謝父母 對我無怨無悔的付出,謝謝你們的栽培,謝謝你們的相信。謝謝兄姐,你 們就像我的手電筒,幫我照亮前方的路。我愛你們。

在台大研究所的日子雖然只有短短的兩年,但卻過的非常充實,轉眼 間就要畢業了,內心五味雜成,回首看看來時路,我要再次感謝所有一路 上幫助我的人,你們在我心中絕對不只是一個擦肩而過的路人,我對你們 滿懷感恩,謝謝你們。

> 耕立 謹誌 2008年6月於台大

目錄

表索引	IV
圖索引	VII
第一章 緒論	1
1.1 研究動機與目的	1
1.2 研究內容與方法	2
第二章 文獻回顧	4
2.1 台灣校舍之震災損毀模式	4
2.2 剪力型房屋耐震能力簡易評估	6
2.2.1 校舍耐震能力合格之判定2.2.2 煎力刑 戻 层分析 模刑	6
2.3 垂直桿件之側力位移曲線	14
2.3.1 RC 柱桿件之側力位移曲線	15
2.3.2 RC 牆桿件之側力位移曲線	25
2.3.3 磚牆桿件之側力位移曲線	29
2.4 台灣校舍資料庫之研究	
2.5 國家地震工程研究中心之初步評估方法	34
2.5.1 基本假設	35
2.5.2 構材之極限剪力強度	

2.5.3 基本耐震性能計算	
2.5.4 耐震指標	
2.5.5 結論	40
2.6 安全柱量與安全壁量之研究	41
第三章 典型校舍模組之建立與分析驗證	44
3.1 校舍模組之構架	44
3.2 2 樓與 3 樓校舍模組	46
3.3 4 樓與 5 樓校舍模組	47
3.4 校舍耐震能力分析模型	49
3.5 2 樓與 3 樓校舍模組之分析驗證	49
第四章 典型校舍模組之耐震能力評估	51
4.1 純構架校舍模組	
4.1.1 純構架校舍模組之耐震能力評估	
4.1.2 純構架校舍之結構特性	54
4.2 構架含 RC 牆校舍模組	55
4.2.1 構架含 RC 牆校舍模組之耐震能力評估	
4.2.2 構架含 RC 牆校舍之結構特性	60
4.3 構架含磚牆校舍模組	62
4.3.1 構架含磚牆校舍模組之耐震能力評估	64

4.3.	2 構架含磚牆校舍之結構特性	66
第五章	校舍耐震能力初步評估之建議	68
5.1	校舍模組使用 NCREE 初評方法之比較	69
5.2	對 NCREE 初評方法之修正建議	75
5.3	校舍模組使用 NCREE 修正初評方法之比較	80
5.4	安全柱量與壁量之建議	84
第六章	結論與建議	89
6.1	結論	89
6.2	建議	92
參考文)		94
符號表	T A DA	97
附錄 A	柱侧力位移曲線計算例	A-1
附錄 B	RC 牆側力位移曲線計算例(柱兩側皆有牆)	B- 1
附錄 C	RC 牆側力位移曲線計算例 (柱右側有牆)	C-1
附錄 D	RC 牆側力位移曲線計算例 (柱左側有牆)	D-1
附錄 E	磚牆側力位移曲線計算例	E-1
附錄 F	模型校舍軸力分配表	F-1
附錄 G	桿件分析結果	G-1

III

表目錄

表 2.1	遲滯阻尼修正因數	100
表 3.1	校舍模組之編號	100
表 3.2	簡易調查統計 2~3 樓校舍柱面積	101
表 3.3	簡易調查統計 4~5 樓校舍柱面積(cm ²)	101
表 3.4	統計柱鋼筋比($ ho_g$)	102
表 3.5	C22 配筋圖	103
表 3.6	C23 配筋圖	103
表 3.7	C32 配筋圖	104
表 3.8	C33 配筋圖	105
表 3.9	U22 配筋圖	106
表 3.10	U23 配筋圖	107
表 3.11	U32 配筋圖	108
表 3.12	U33 配筋圖	109
表 3.13	C24 配筋圖	110
表 3.14	C25 配筋圖	111
表 3.15	C34 配筋圖	112
表 3.16	C35 配筋圖	113
表 3.17	U24 配筋圖	114
表 3.18	U25 配筋圖	115
表 3.19	U34 配筋圖	116
表 3.20	U35 配筋圖	117
表 3.21	校舍模組分析結果比較	118
表 3.22	評估比值	118
表 3.23	校舍模組分析結果比值比較	119
表 4.1	純構架分析結果	119
表 4.2	牆體型式與牆量	120
表 4.3	C22 構架含 RC 牆分析結果	120

表 4.4	C23 構架含 RC 牆分析結果	121
表 4.5	C24 構架含 RC 牆分析結果	121
表 4.6	C25 構架含 RC 牆分析結果	122
表 4.7	C32 構架含 RC 牆分析結果	122
表 4.8	C33 構架含 RC 牆分析結果	123
表 4.9	C34 構架含 RC 牆分析結果	123
表 4.10	C35 構架含 RC 牆分析結果	124
表 4.11	U22 構架含 RC 牆分析結果	124
表 4.12	U23 構架含 RC 牆分析結果	125
表 4.13	U24 構架含 RC 牆分析結果	125
表 4.14	U25 構架含 RC 牆分析結果	126
表 4.15	U32 構架含 RC 牆分析結果	126
表 4.16	U33 構架含 RC 牆分析結果	127
表 4.17	U34 構架含 RC 牆分析結果	127
表 4.18	U35 構架含 RC 牆分析結果	128
表 4.19	C22 構架含磚牆分析結果	128
表 4.20	C23 構架含磚牆分析結果	129
表 4.21	C24 構架含磚牆分析結果	129
表 4.22	C25 構架含磚牆分析結果	130
表 4.23	C32 構架含磚牆分析結果	130
表 4.24	C33 構架含磚牆分析結果	131
表 4.25	C34 構架含磚牆分析結果	131
表 4.26	C35 構架含磚牆分析結果	132
表 4.27	U22 構架含磚牆分析結果	132
表 4.28	U23 構架含磚牆分析結果	133
表 4.29	U24 構架含磚牆分析結果	133
表 4.30	U25 構架含磚牆分析結果	134
表 4.31	U32 構架含磚牆分析結果	134

表 4.32	U33 構架含磚牆分析結果	
表 4.33	U34 構架含磚牆分析結果	
表 4.34	U35 構架含磚牆分析結果	136
表 5.1	建議的安全柱量比	136
表 6.1	本研究之初步評估修正建議	

圖目錄

圖	2.1	典型台灣校舍建築(國立台中教育大學附設實驗國民小學)	138
圖	2.2	典型校舍之結構平面圖(單邊懸臂走廊式)	138
圖	2.3	學校建築沿長向柱發生剪力破壞	138
圖	2.4	學校建築沿長向之柱剪力破壞	139
圖	2.5	學校底層崩塌	.139
圖	2.6	懸臂走廊校舍損毀	140
圖	2.7	窗台柱破壞	140
圖	2.8	鄰近校舍擠壓造成損壞	141
圖	2.9	地震力豎向分配示意圖	141
圖	2.10	遲滯阻尼之面積計算	142
圖	2.11	雙線性遲滯迴圈之面積計算	142
圖	2.12	遲滯阻尼修正係數與遲滯阻尼比關係圖	142
圖	2.13	我國法規加速度震譜係數與基本振動週期關係圖	143
圖	2.14	鋼筋混凝土之區域劃分	143
圖	2.15	柱桿件之D、B區域劃分	143
圖	2.16	剪力與軸力作用之莫爾圓示意圖	144
圖	2.17	柱主筋滑移位移計算模型	144
圖	2.18	柱之剪力位移	145
圖	2.19	破壞模式的側力位移曲線	145
圖	2.20	RC 牆側向載重位移曲線	146
圖	2.21	軟化壓拉桿模型	146
圖	2.22	軟化壓拉桿剪力元素	147
圖	2.23	法國式砌法臨界破壞角	147
圖	2.24	磚牆側向載重位移曲線	147
圖	2.25	新城國中推垮分析曲線[29]	148
圖	2.26	口湖國小推垮分析曲線[30]	148
圖	2.27	瑞埔國小推垮分析曲線[31]	.149

圖	2.28	關廟國小推垮分析曲線[32]	149
圖	3.1	走廊沒有柱或走廊有柱	150
圖	3.2	教室為兩跨或三跨	150
圖	3.3	教室數目之統計	151
圖	3.4	柱軸力之分配圖	151
圖	3.5	桿件側力位移曲線疊加	152
圖	3.6	ATC-40 耐震性能點求法	152
圖	4.1	勃性定義	153
圖	4.2	基底剪力對屋頂層位移的曲線(C25)	153
圖	4.3	純構架模組最大基底剪力與強度降到 80%(性能點)時的基	底
	剪フ	力分布圖	154
圖	4.4	純構架模組最大基底剪力與強度降到 80%(性能點)時的 PG	ĴΑ
	分石	布圖	154
圖	4.5	純構架模組的韌性分布圖	155
圖	4.6	純構架模組的單位面積柱極限剪力分布圖	155
圖	4.7	純構架B的統計圖	156
圖	4.8	柱桿件之側力位移曲線	156
圖	4.9	3 跨單邊走廊有柱的標準校舍	157
圖	4.10	RC 牆體的配筋圖	157
圖	4.11	柱左側填入 RC 牆	157
圖	4.12	Wall case 1	158
圖	4.13	Wall case 2	158
圖	4.14	Wall case 3	158
啚	4.15	Wall case 4	158
啚	4.16	Wall case 5	159
圖	4.17	Wall case 6	159
圖	4.18	Wall case 7	159
圖	4.19	Wall case 8	159

圖 4.20	Wall case 9	160
圖 4.21	C22 wall case 1	160
圖 4.22	C22 wall case 2	161
圖 4.23	C22 wall case 3	161
圖 4.24	C22 wall case 4	162
圖 4.25	C22 wall case 5	162
圖 4.26	C22 wall case 6	163
圖 4.27	C22 wall case 7	163
圖 4.28	C22 wall case 8	164
圖 4.29	C22 wall case 9	164
圖 4.30	構架含RC 牆模組最大基底剪力與強度降到80%(性能	點)時
基底	剪力分布圖	165
圖 4.31	構架含 RC 牆模組	165
最大基底	铥剪力與強度降到 80%(性能點)時 PGA 分布圖	165
圖 4.32	構架含 RC 牆模組韌性分布圖	166
圖 4.33	構架含RC 牆模組單位面積柱極限剪力分布圖	166
圖 4.34	構架含 RC 牆模組單位面積 RC 牆極限剪力分布圖	167
圖 4.35	構架含 RC 牆 B 的統計圖	167
圖 4.36	構架含磚牆模組最大基底剪力與強度降到 80%(性能點)時基
底剪	力分布圖	168
圖 4.37	構架含磚牆模組最大基底剪力與強度降到 80%(性能點)時
PGA	A 分布圖	168
圖 4.38	構架含磚牆模組韌性分布圖	169
圖 4.39	構架含磚牆模組單位面積柱極限剪力分布圖	169
圖 4.40	構架含磚牆模組單位面積磚牆極限剪力分布圖	170
圖 4.41	構架含磚牆模組B的統計圖	170
圖 5.1 贫	純構架基底剪力比值圖	171
圖 5.2 >	構架含 RC 牆基底剪力比值圖	171

圖	5.3	構架含磚牆基底剪力比值圖	.172
圖	5.4	純構架模組 PGA1之比較	.172
圖	5.5	純構架模組 PGA2 之比較	.173
圖	5.6	純構架模組 PGA3 之比較	.173
圖	5.7	構架含 RC 牆模組 PGA1 之比較	.174
圖	5.8	構架含 RC 牆模組 PGA2 之比較	.174
圖	5.9	構架含 RC 牆模組 PGA3 之比較	.175
圖	5.10	構架含磚牆模組 PGA1 之比較	.175
圖	5.11	構架含磚牆模組 PGA2 之比較	.176
圖	5.12	構架含磚牆模組 PGA3 之比較	.176
圖	5.13	Cindrawaty[13] β 分析結果	.177
圖	5.14	Cindrawaty[13] 韌性容量分析結果	.177
圖	5.15	Cindrawaty[13] 柱單位面積剪力分析結果	.178
圖	5.16	教室柱單位面積剪力趨勢	.178
圖	5.17	走廊柱單位面積剪力趨勢	.179
圖	5.18	隔間牆內柱單位面積剪力趨勢	.179
圖	5.19	單位面積 RC 牆剪力與樓層之關係圖	.180
圖	5.20	純構架修正後基底剪力比值圖	.180
圖	5.21	構架含 RC 牆修正後基底剪力比值圖	.181
圖	5.22	構架含磚牆修正後基底剪力比值圖	.181
圖	5.23	純構架修正後 PGA 1	.182
圖	5.24	純構架修正後 PGA 2	.182
圖	5.25	純構架修正後 PGA 3	.183
圖	5.26	構架含 RC 牆模組修正後 PGA 1	.183
圖	5.27	構架含 RC 牆模組修正後 PGA2	.184
圖	5.28	構架含 RC 牆模組修正後 PGA 3	.184
圖	5.29	構架含磚牆模組修正後 PGA 1	.185
圖	5.30	構架含磚牆模組修正後 PGA 2	.185

圖 5.31	構架含磚牆模組修正後 PGA 3	186
圖 5.32	純構架校舍模組柱量比與 PGA 之關係圖	186
圖 5.33	2~3 樓純構架校舍模組柱量比與 PGA 之關係圖	187
圖 5.34	4~5 樓純構架校舍模組柱量比與 PGA 之關係圖	187
圖 5.35	安全柱量比研究之比較	188
圖 5.36	RC 牆單位牆量所能提供的 PGA 分布圖	188
圖 5.37	磚牆單位牆量所能提供的 PGA 分布圖	

第一章 緒論

1.1 研究動機與目的

台灣位於環太平洋地震帶上,屬於菲律賓海洋板塊和歐亞大陸板 塊碰撞帶,菲律賓海板塊以每年7到8公分的速度向西北移動,所以 台灣大小地震不斷,而地震會導致房屋倒塌、橋梁斷裂,更可怕的是 會造成人員的傷亡,要如何減小地震造成的傷害就是工程師的重要使 命。

台灣在民國八十八年九月二十一號凌晨發生了芮氏 7.3 的集集大 地震,對於台灣人民的生命財產及房屋建築物造成重大創傷。其中各 地區的中小學校舍建築損毀的情況相當嚴重。中小學校舍在平時為學 生上課聚集之地,其人口密度較一般建築物高,若在上課時間發生地 震,後果將不堪設想,如同四川大地震一樣,很多學生被壓在倒塌的 校舍下,傷亡學生人數無法估計,災後將面對的不只是生命財產的損 失,更可怕的是心靈上的創傷,這些結果都是難以承擔的。而且在台 灣遇重大災難時學校建築常當成該地區居民緊急避難場所,因此為了 使學校建物發揮其功能,避免傷亡,學校建築的耐震能力評估必須特 別重視。然而台灣地區公立中小學約三千餘所,校舍建築達一萬多 棟,若逐一檢討其耐震能力恐曠日費時。因此國家地震工程研究中心 發展的一套耐震能力的評估方法,主要分為三個程序,前兩個程序主 要是為了篩選出校舍耐震能力相對不足的學校校舍,最後再進行詳細 的耐震能力評估及補強。前兩步驟主要功能是快速篩選出耐震能力不

1

足的校舍,所以要力求簡便、快速,因為這樣的需求造成許多參數都 只能使用假設,但中間有一些假設似乎並沒有考量到現有校舍的情況。本次研究主要將針對步驟二初步評估法的一些參數及結果做討 論,並提出一些修改的建議。

1.2 研究內容與方法

本研究主要目的是想瞭解目前台灣既有校舍其耐震能力,並將其 耐震能力以最大地表加速度來表示。在本研究中將藉由國家地震工程 研究中心簡易調查所蒐集到的校舍資料庫[1],成功大學建築所蒐集 的台南市中小學校舍資料庫[2],以及雲林科技大學營建系蒐集的南 投縣中小學校舍資料庫[3],由於後面內個資料庫有校舍的實際藍圖 而且都是 2~3 樓的結構,所以希望由這後面內個資料庫之統計及結構 性質再配合地震中心的資料庫,來建立一8 楝的2 樓與 3 樓之校舍模 組,再簡易的推估出 8 楝 4 樓與 5 樓的模組,將兩模組共 16 楝組成 新的研究模組。接下來以簡化之非線性靜力側推分析來評估,其原理 係將毀損樓層內垂直桿件之側力位移曲線進行疊加而計算出校舍側 力位移曲線,根據耐震能力評估程序,以ATC-40 [4]方法來評估校舍 所能抵抗之最大地表加速度,對模組校舍的耐震能力做一個瞭解。最 後將同一個模組用國家地震工程研究中心的初步評估方法[5]分析, 比較兩者的結果,探討初步評估的優缺點並提出修正建議。

本研究步驟大致分為校舍模組之建立、鋼筋混凝土柱桿件側力位 移曲線之評估方法建立、鋼筋混凝土牆桿件側力位移曲線之評估方法 建立、磚牆桿件側力位移曲線之評估方法建立、最大地表加速度之計

2

算等階段。本研究在第二章中將介紹台灣校舍的主要震損模式、剪力 型房屋耐震評估、垂直桿件之側力位移曲線分析、校舍資料庫之研 究、國家地震工程研究中心之初步評估方法、安全柱量及壁量之研 究。第三章主要是介紹校舍模組建立與分析驗證。在第四章中將討論 鋼筋混凝土柱、鋼筋混凝土牆、磚牆桿件的分析結果,與桿件配置之 影響評估。在第五章中會比較初步評估與簡化之非線性靜力側推分析 的結果,並提出建議,其中還會討論安全柱量及安全壁量的概念。最 後在第六章中做一回顧與後續研究之建議。

第二章 文獻回顧

本研究主要在建構一程序簡單,可用手算即可完成的側力位移曲線,並且利用分析結果去討論國家地震工程研究中心的初步評估方法,以及安全柱量和安全壁量的概念。因此,在文獻回顧內收集了台 灣校舍的震災損毀模式、國內外的垂直桿件的簡易計算模型文獻、台 灣校舍資料庫、國家地震工程研究中心初步評估的文獻、安全柱量及 安全壁量的文獻。

2.1 台灣校舍之震災損毀模式

九二一地震中,低矮型校舍的損害情況嚴重。根據教育部資料統 計顯示,全國中小學校舍損壞者共有656所,其中43所國中小學校 舍全毀,若將損毀的國立高中、高職、大專院校以及私立學校合併計 算,全國受損學校總數高達786所。根據羅俊雄、許茂雄[6]所著之 集集地震初步勘災報告,可歸納出中小學校舍之震害行為。由於校舍 建築機能相同,規模及結構系統也都類似(圖2.1),因此在不同地區 的校舍間受損部位以及震害型態多有類似,本文將其一一點出來研 討。

(1)校舍沿走廊方向(長向)為結構弱向

典型校舍結構平面如圖 2.2 所示,在學校建築垂直走廊方向(短向),教室與教室中間有磚牆作為分隔,因為牆壁面完整,所以其行為由含磚牆構架主控;在長向(沿走廊方向)之牆壁,因為考量到教室 內的通道、採光及通風等需求,因此往往有許多開口,其牆壁面積數

4

量較少,其行為由鋼筋混凝土構架主控,因構架之耐震能力較弱,導 致柱子易沿長向發生撓曲破壞或剪力破壞等震害。由圖 2.3 及圖 2.4 中可知校舍長向之破壞集中在柱桿件,而不在梁桿件上。亦即,校舍 長向為強梁弱柱之行為,而非耐震設計概念中的強柱弱梁,所以地震 來臨時,柱較易先產生破壞,且統計資料顯示校舍柱常為矩形柱,代 表校舍柱並未在長向安置強軸以抵抗較大的地震力。故校舍一受到地 震力作用,就易沿長向發生破壞。

(2)崩塌或嚴重損壞集中於校舍底層

由於校舍建築物存在著強梁弱柱的行為。柱的勁度與強度都不及 梁桿件,因此形成軟弱桿件,此可導致一剪力型房屋的變形與破壞。 剪力型房屋主要是用垂直桿件來抵抗地震力。校舍建築沿長向主要是 鋼筋混凝土構架,所以主要就是由柱來承擔地震力,而一樓的柱桿件 不只承受較大的垂直重力,也承受較大的水平力,導致損壞多會集中 在一樓柱桿件上。換句話說,大部分破壞集中於校舍底層(圖 2.5)。 (3)懸臂走廊之校舍較易損壞

學校建築物採用懸臂走廊主要能使空間感覺較為寬敞,同時使教 室與運動場或中庭間的阻隔減少。但因為是懸臂走廊,所以少了一整 排的走廊柱,使得其他柱的軸力增加,亦導致可以有效抵抗水平地震 力之構件減少,且就整體結構物而言,靜不定度也大大減少。因此, 校舍採用懸臂走廊者會比採用走廊有柱的校舍在地震力作用下更危 險(圖 2.6)。 (4)窗台柱之損壞比較嚴重

建築物中緊鄰在窗台旁的柱在受地震作用下,柱下端的部份會受 到磚牆的束制,形成短柱效應,造成柱的剪力破壞,進而影響整體結 構物的耐震能力。研究顯示受窗台束制的柱剪力會比一般柱高出 0.33 倍,也因此窗台柱較易發生柱剪斷之損害(圖 2.7)。

(5)鄰近校舍產生擠壓碰撞

一般國民中小學校校園皆缺乏整體性的規劃,有時可能因為經費 問題或是學區人口增加,造成教室的不足。因此,學校在未經審慎規 劃下就任意興建新的校舍,而且會將新建的校舍與原有的舊校舍做連 接,提升校舍間的可及性。但地震作用下,校舍個別的變形量或是位 移方向並非一致,這樣一來校舍間就會產生擠壓或碰撞的現象,輕者 導致部分結構破壞(圖 2.8),嚴重者可能會造成結構的倒塌。

2.2 剪力型房屋耐震能力簡易評估

2.2.1 校舍耐震能力合格之判定

校舍建築物耐震能力判定,最中重要的概念如下所示:

$$a_{performance} \ge Ia_{design}$$
 (2.1)

式中的 a performance 代表的是結構物所能抵抗的地表加速度; a design 則 為設計規範中所規定的最基本要能抵抗的加速度,而 I 是用途係數, 一般來說結構物越重要 I 值會設定的越大, 簡單的說就是為的要保障 此結構物在遇到地震時不會倒塌。 Ia design 表示當考慮了用途係數後, 規範要求結構物所要能抵抗的地表加速度。例如醫院用途係數為 1.5, 若 a_{design}取 0.33g 的話,則規範規定此醫院至少要能抵抗 0.495 的 地表加速度。式(2.1)就是表示,結構分析出來結構物所能抵抗的地表 加速度大於規範規定值時,結構物是安全的,這就是校舍耐震能力合 格之判定方法。

結構物的 a performance 的求法有很多,本研究採用一簡易推垮分析, 去求得,下面的章節將序述如何計算。

2.2.2 剪力型房屋分析模型

一般 RC 建築常見到強梁弱柱的現象, 樓版的束制讓梁成為一剛 體,所有的變形和剪力都由垂直桿件承受。這就是典型的剪力型房 屋。本研究的分析採用這個假設加上簡化推垮分析, 最後求得結構物 的地表加速度, 下面依照步驟介紹分析的方法。

(1)計算推垮曲線

計算各樓層內的所有垂直構件之性能曲線後,可依變形一致原則 疊加側力,即可得到該樓層的側力-變位曲線。接下來需將各樓層的 側力-變位曲線組合為基底剪力-屋頂位移曲線,其必須先瞭解各樓層 在某個基底剪力下分配到的樓層側力(地震力豎向分配型態),以找 出對應之變位,最後累加為屋頂位移。詳細計算方式如下:

(1.1)地震力豎向分配型態

承受地震力作用時,建築結構物可視為質量集中於樓版處的多自 由度系統,如圖 2 所示,此時分配於各層樓板之側力 Fi 會與此多自 由度系統之剛度與振動模態有關,對於一般的中低層 RC 結構,我國 耐震設計規範[7]建議地震力之豎向分配可假設為和每層樓板重量W_i 與高度h_i乘積成正比,如下所示:

$$F_i = Q_B \cdot \frac{W_i h_i}{\sum\limits_{i=1}^{n} W_i h_i}$$
(2.2)

其中Q_B為基底剪力。此時個別樓層之層剪力Q_i即為該層以上所 有樓板分配側力之和,如下所示:

$$Q_{i} = \sum_{j=i}^{n} = Q_{B} \cdot \frac{\sum_{j=i}^{n} W_{j} h_{j}}{\sum_{i=1}^{n} W_{i} h_{i}}$$
(2.3)

當已知個別樓層之極限層剪力時,可先由式(2.3)反推每層極限層剪力所對應之基底剪力,取其中最小者為整體結構之極限基底剪力Q_{Bu},該最小基底剪力之對應樓層即為最先達到破壞的控制樓層。 (1.2)累計屋頂位移

對已知某個基底剪力,可由式(2.3)計算各層層剪力Q_i,並由 各樓層之層剪力-層間變位關係曲線找出Q_i所對應之各樓層層間變 位。其基本假設為梁及樓板可視為剛體,側向轉動量極小而可忽略不 計,亦即剪力型房屋變形模式,因此可直接將各樓層之層間變位累加 得屋頂位移,如下所示:

$$\Delta_{RF} = \sum_{i=1}^{n} \Delta_i \tag{2.4}$$

如上所述,從0到Q_{Bu}的每一點基底剪力,都可計算出對應的屋頂位 移即得推垮曲線。

(2) 換算最大地表加速度

求得推垮曲線後,若依照 ATC-40 [4]之流程,應該要轉換成S_A-S_D 格式的能力震譜,再與需求震譜疊代求其交點,而此交點為性能點。 由杜怡萱、涂耀賢[8]所建議之簡化推垮分析採取了逆向思考,不是 由已知需求震譜求取單一性能點,而是由能力震譜反推對應的需求震 譜最大地表加速度。

式(2.5)所示為利用震譜,從地表加速度S_{A0}求取結構反應加速 度S_A的關係式,其中C為正規化加速度震譜係數,C_D為震譜折減係 數,反映當阻尼比增大時,結構反應會有所減小的現象。

 $S_A = C \cdot C_D \cdot S_{A0} \tag{2.5}$

將上式反過來,就成了可由結構震譜加速度 S_A 反推地表加速度 S_{A0} 的 關係式: $S_{A0} = \frac{S_A}{G_{11}G_{22}}$ (2.6)

正規化加速度震譜係數 C 會與震譜型態及結構振動週期有關, 震譜 折減係數 C_D則與阻尼比有關, 底下將詳細介紹如何將推垮曲線轉換 為能力震譜,以及振動週期、阻尼比、正規化加速度震譜係數與震譜 折減係數的計算方法。

(2.1)能力震譜

能力震譜係將原本為多自由度結構之能力曲線由基底剪力-屋頂

位移格式,轉換為等效單自由度震譜加速度S_A-震譜位移S_D格式 (Acceleration - Displacement Response Spectrum format, ADRS),在 ATC-40 [4]之能力震譜法中,可便於在同一組座標軸上與需求震譜

(Demand Spectrum)進行疊合以求取結構之位移反應點。

等效單自由度震譜加速度S_A與基底剪力Q_B之轉換關係如下所示:

$$S_A = \frac{Q_B}{\alpha W} \tag{2.7}$$

其中W為建築物總重量, α 為模態質量係數 (Modal Mass

Coefficient),可由下式求出:

(2.8)

其中m_i為第i層樓板集中質量, ¢為第一模態時第i層樓板處之振幅。 等效單自由度震譜位移S_D與屋頂位移之轉換關係則如下所示:

$$S_D = \frac{\Delta_{RF}}{PF \cdot \phi_{RF}} \tag{2.9}$$

其中PF為模態參與因數 (Modal Participation Factor),可下式求得; ϕ_{RF} 為第一模態時屋頂樓板處之振幅。

$$PF = \frac{\sum_{i=1}^{n} m_i \phi_i}{\sum_{i=1}^{n} m_i {\phi_i}^2}$$
(2.10)

(2.2)有效週期與等效阻尼比

A.有效週期:

求得震譜加速度與震譜位移後,即可由下式之關係計算各點之有 效週期T_e:

$$T_e = 2\pi \sqrt{\frac{S_D}{S_A \cdot g}} \tag{2.11}$$

B.等效阻尼比: 當地震力增大,構件開始破壞,結構行為進入非線性範圍時,結 構之阻尼比會逐漸放大,Newmark [9]建議一般RC結構物在使用載 重下之阻尼比約為3%至5%,達到降伏時則約為7%至10%。由於非 線性階段與彈性階段的阻尼比差異主要來自遲滯迴圈之耗能能力增 加,ATC-40 [4]認為可將結構物之阻尼比視為由黏滯阻尼(Viscous Damping) 與遲滯阻尼(Hysteretic Damping) 兩部分組成。其中黏滯 阻尼為結構材料本身所固有,而遲滯阻尼則與結構遲滯迴圈包圍的面 積有關。RC 結構之黏滯阻尼比一般取5%,再加上遲滯阻尼比,則 則結構之等效阻尼比ζ_{eq}可以如下所示:。

$$\zeta_{ee} = 5\% + \zeta_0 \tag{2.12}$$

其中 ζ₀ 即為遲滯阻尼比,根據 Chopra [10]可依下式計算:

$$\zeta_0 = \frac{1}{4\pi} \frac{E_D}{E_{S0}}$$
(2.13)

其中E_D為結構受一週次反覆載重所消耗的能量,亦即遲滯迴圈一圈 所包圍的面積; E_{S0}為該週次之最大應變能。根據 ATC-40 [4],其計 算方式如圖 2.10 所示,若此時結構反應到達(d_{pi}, a_{pi})處,則

$$E_D = \frac{a_{pi}d_{pi}}{2}$$
(2.14)

計算遲滯迴圈面積 E_D時,則可將能力震譜模擬為雙線性,降伏前斜率取曲線之初始斜率k_{initial},如圖 2.11 所示,依能量相等原則令雙線段 包圍區域 OBCD 面積等於原曲線包圍區域 OCD 面積時可找出降伏點 (d_y, a_y),此時遲滯迴圈面積 E_D為相當於平行四邊形 OBCE 面積之 4 倍,如下所示:

 $E_{D} = 4(a_{y}d_{pi} - d_{y}a_{pi})$ (2.15)

陳奕信[11]則提出不需先求取降伏點之計算法:令原曲線與S_D軸包圍 區域 OCD 面積為A₀,與S_A軸包圍區域 OAC 面積則為A₁,由於 OBCD 面積相等於 OCD 面積,則A₁同時也會等於 OACB 面積,又由於 OBCE 及 OACD 之對邊各自平行,ODCE 部分與 OACB 全等,此時平行四 邊形 OBCE 面積為 OBCD 面積扣除 ODCE 部分,則E_D可改以下式表 示:

$$E_D = 4(A_0 - A_1) = 4[A_0 - (a_{pi}d_{pi} - A_0)] = 8A_0 - 4a_{pi}d_{pi} \qquad (2.16)$$

另外,由於遲滯阻尼比與遲滯迴圈面積及耗能力有密切相關,而遲滯 迴圈之耗能力會依構件材料品質及破壞模式而異,因此ATC-40建議 在計算遲滯阻尼時可加乘一修正因數,如下所示:

$$\zeta_{\rm eq} = 5\% + \kappa \zeta_0 \tag{2.17}$$

ATC-40 [4]並將結構分為三種等級: Type A、Type B 及 Type C,分別 代表遲滯迴圈耗能力優良、普通與差的情況。並給定不同之 修正因 數,如表 2.1 與圖 2.12 所示。

有時由於曲線形狀的關係,計算出的等效阻尼比可能會有不升反 降的情形,但因為構件破壞是不可逆的行為,當這種情況發生時,應 令等效阻尼比只可持平,不可下降。

(2.3)正規化加速度震譜係數與震譜折減係數

正規化加速度震譜意指將輸入PGA大小正規化為1g時,系統之 最大反應加速度與基本振動週期的關係,正規化加速度震譜係數C 即代表此時系統最大反應加速度與輸入PGA1g的比值。在舊版建築 物耐震設計規範中,規定了在四種不同地盤條件下,基本振動週期與 正規化加速度震譜係數之關係圖,如圖2.13所示。

然而在 2005 年 7 月開始施行的新版建築物耐震設計規範中,卻 取消了 C 這個係數的規定,取而代之的是工址設計水平譜加速度係 數 S_{AD},相當於舊版規範中的 Z 與 C 的乘積。由於舊規範的 Z 與新規 範的係數有著 Z=0.4 S_{DS} 的關係,當使用規範建議震譜為需求震譜時,可先依建築物所在地區找出 S_{AD}與基本振動週期的關係曲線後,再依照下式換算成 C 與基本振動週期的關係曲線:

$$C = \frac{S_{AD}}{0.4 \cdot S_{DS}} \tag{2.18}$$

通常加速度震譜係在阻尼比為 5%之情況下求得,當阻尼比大於 5%時,震譜反應值需加以折減,本文採用 Kawashima [12]之建議公 式如下:

A. 極短週期 (T≤0.03 秒): C_D=1

B. 短、中、長週期(第一類及第二類地盤時T>0.15秒,第三類地盤及台北盆地時T>0.2秒):

+1+0.

 $C_D = \overline{40\xi_{eq}}$

(2.19)

C. 較短週期(第一類及第二類地盤時 0.03 秒< T \leq 0.15 秒,第三類地 盤及台北盆地時 0.03 秒< T \leq 0.2 秒):以上述兩者線性內插。最後可 由式(2.6)求得每個震譜加速度 S_A 所對應之最大地表加速度 S_{A0} 。

2.3 垂直桿件之側力位移曲線

本研究採用剪力型房屋的分析方法,其是利用垂直桿件去抵抗剪 力,一般來說主要的垂直桿件就是柱與牆,在本研究中把牆分為 RC
牆或是磚牆這兩種。在剪力型房屋的分析方法中若要求得建築物之基 底剪力與屋頂位移,則需要疊加各各桿件的側力位移曲線,因此桿件 的側力位移曲線在本研究中佔有舉足輕重的地位,接下來將一一介紹 本研究所採用的桿件側力位移曲線模型。

2.3.1 RC 柱桿件之侧力位移曲線

柱之側力位移曲線與其破壞模式有關,若要求得柱之側力位移曲 線則必須先判斷其破壞模式,在本研究中採用 Cindrawaty [13]建議的 破壞模式分類。利用彎矩強度與剪力強度之間的比值,可將柱破壞模 式分為剪力破壞、撓剪破壞、撓剪破壞(轉換段)以及撓曲破壞。接下 來就先介紹各階段的計算方式,最後再依照破壞模式一一介紹其側力 位移曲線。

柱之降伏剪力是將降伏時的彎矩除上柱頂或柱底到反曲點的距 離,在本研究中柱因為受到樓板的束制,變形設定為雙曲率,反曲點 會在柱中心,而降伏剪力可表示為下:

$$V_{y} = \frac{2M_{y}}{H_{x}} \tag{2.20}$$

柱的極限強度,因為有相當多的機制參與,所已需要先判定是由 哪種機制主控。由 Saint-Venant 原理中,顯示構件在承受軸力與撓曲 作用時,其應力的分佈會高度集中於作用力附近。當應力集中之行為 在離開作用力一個構件深度外的區域後,其將呈現一均勻分佈之現 象。因此藉由此原理,考慮應力分佈情形後,可將構件區分成兩個區 域。將一構件區分成 B 區域(B-region)及 D 區域(D-region),其中 D 區 域的定義為距離力量不連續點或斷面幾何形狀不連續面一個構件深 度 h 或有效深度 d 的範圍內,而 B 區域的定義則為 D 區域以外的構 件範圍(圖 2.14)。

壓拉桿模式模擬整個柱桿件的傳力行為如圖 2.15 所示,其力量 先由撓曲受壓區之結點出發,同時經由數個混凝土壓桿向外傳遞,其 各壓桿的終點為各水平箍筋,而壓桿傳遞的力量則藉由水平箍筋來改 變方向,轉向後的力量會在拉桿另一側結點處,藉由另一壓桿再向外 傳遞。

柱桿件最重要的破壞模式分撓曲破壞、剪力破壞,當其中一種破 壞發生後,會使該柱桿件強度中止發展,而其極限強度到達時究竟由 那種破壞產生,需經過詳細評估比較而得,故強度與位移較不易同時 估算,因此本研究建議先由破壞模式求得極限強度,再由極限強度求 得其相對應之位移。

(1) 撓曲強度 V_m

首先,柱斷面之彎矩強度由 BIAX 程式[14]求得。在同一種柱斷面中,因考量承受之軸力不同,因此在計算上,需先找出各個對應之

16

軸力,分別計算出相對應之彎矩強度M_{mn}。計算出個別之彎矩強度M_{mn}後,再依據長短柱之特性,找出彎矩強度M_{mn}除以柱反曲點高度,可 得到所對應之剪力強度V_{mn},其中假設反曲點為柱高之一半的位置, 其計算式如下。

$$V_{mn} = \frac{2M_{mn}}{H_n} \tag{2.21}$$

(2)剪力強度*V*_s

剪力強度的計算主要是比較 D 區域與 B 區域個別的強度,兩者 取小值,換句話說,剪力強度只發展到 D 區域或 B 區域其一發生破 壞的時候。表示如下:

 $= \min(V_{pq})$

(2.22)

ACI規範[15]中,剪力標稱強度主要由混凝土與剪力鋼筋所提供 的剪力所得。其假設 B 區域之初始開裂角為45°,且不考慮柱受到軸 力之影響。但由許多勘災經驗顯示,柱發生破壞所造成之斜裂縫與水 平之夾角 不一定為45°,大約介於45°~65°之間。因此,本研究中 對此部分有一些修正。B 區域主要為一個應力均勻分佈之區域,在此 可藉由莫爾圓理論,考慮同時受到剪力與軸力之影響後,即可得到如 圖 2.16 之關係。其推導概述如下:

$$\sqrt{\left(\frac{\sigma}{2}\right)^2 + \left(\nu\right)^2} - \frac{\sigma}{2} = f_r \qquad (2.23)$$

$$f_r = v \cdot \frac{1}{\sqrt{1 + (\sigma/f_r)}} \tag{2.24}$$

$$v = f_r \cdot \sqrt{1 + \sigma/f_r} \tag{2.25}$$

$$\tan \theta = \frac{\sigma/2}{f_r \cdot \sqrt{1 + \sigma/f_r}}$$
(2.26)

$$\theta = \tan^{-1} \left(\frac{\sigma}{2f_r \cdot \sqrt{1 + \sigma/f_r}} \right)$$
 (2.27)

(2.28)

其中, σ為軸應力 (kgf/cm²), v為軸應力 (kgf/cm²), f, 為扭矩所 造成之應力 (kgf/cm²), θ為因軸力作用下額外增加之角度, β為柱 發生破壞所造成之斜裂縫與水平之夾角。因此, B區域之初始開裂角 則不再固定為45°, 其角度將會隨著軸力的不同而改變, 也較符合實 際之破壞行為。接下來分別計算剪力筋與混凝土提供的強度:

$$V_s = A_v f_y \frac{d}{s} \cdot \tan \beta$$
 (2.29)

$$V_{c} = 0.53 \left(1 + \frac{N_{u}}{140A_{g}} \right) \sqrt{f_{c}'} bd$$
 (2.30)

$$V_{BT} = V_s + V_C \tag{2.31}$$

D 區域的破壞利用 Hwang and Lee [16]發展的軟化壓拉桿簡算法估計

其強度,過程中須計算許多參數,但本研究主要不是桿件行為,所以 不加以贅述,如需詳細的計算過程請看附錄A。D區域有斜拉破壞與 混凝土擠碎破壞,其區分的方式是看箍筋是否足夠,其可利用下式作 為判斷:

$$\theta = \tan^{-1} \left(\frac{L_d}{j_d} \right) \qquad 26.5^\circ \le \theta \le 63.5^\circ \qquad (2.32)$$

得之剪力強度後,可與撓曲強度做比較,如下式:

$$V_u = \min(\mathbf{V}_{\mathrm{mn}}, \mathbf{V}_{\mathrm{s}}) \tag{2.35}$$

柱桿件位移主要有降伏位移與強度點位移。兩者皆可分為撓曲位移、 剪力位移及主筋滑動位移考慮之:

$$\Delta = \delta_{f} + \delta_{slip} + \delta_{s} \tag{2.36}$$

撓曲變形的部分可以分為彈性變形或是塑性變形。在計算降伏點 時,因為尚未進入塑性階段,考慮彈性變形即可。極限點時因為有進 入塑性變形,所以計算時彈性變形與塑性變形皆要考慮。

$$\delta_{f,elastic} = \frac{V \cdot H_n^3}{12 \cdot E_c \cdot I_{eff}}$$
(2.37)

上式中V在求降伏點時是用 V_y ,在求極限點時是用 V_u ; $E_c = 15000\sqrt{f'_c}$; I_{eff} 降服點時是等於 0.7 I_g , I_{eff} 極限點時是等於 0.35 I_g 。

$$\delta_{f,plastic} = 2 \cdot (\phi_u - \phi_y) \cdot \ell_p \cdot \left(\frac{H_n}{2} - \frac{\ell_p}{2}\right)$$
(2.38)

上式中 ϕ_u 是極限點時曲率, ϕ_p 降服點時曲率; ℓ_p 為塑鉸長度。

柱桿件受力後,在梁與柱之界面會形成開裂。此開裂會伴隨隨側 向力增加而愈大,導致柱中心軸傾斜,進而影響柱之位移(圖2.17), 此時位移是由於開裂處之柱主筋滑動所致。因此 Elwood and Moehle [17]認為在位移計算中,除撓曲位移及剪力位移外,尚有柱主筋滑動 所產生的位移。柱主筋滑動計算最早由 Otani and Sozen [18]提出,其 假設柱主筋受力後,在基礎或梁內混凝土與鋼筋之握裹應力為均勻分 佈,故鋼筋之應力由梁柱界面處之最大應力均勻減小到0,如圖2.17d 下端三角形分佈,因此影響長度為

$$\ell_{slip} = \frac{A_b f_s}{u d_b \pi} = \frac{d_b f_s}{4u}$$
(2.39)

其中 l_{slip} 為柱主筋之握裹影響長度; u 為混凝土之握裹應力。

因為在握裹長度內鋼筋應力由 f_s均勻減小到 0,故應變也應具有 相同的三角形分佈情形,如圖 2.17e 下端三角形分佈。開裂處柱主筋 之伸長量為:

$$\delta_{b,slip} = \frac{\varepsilon_s \ell_{slip}}{2} = \frac{\varepsilon_s d_b f_s}{8u}$$
(2.40)

由鋼筋滑動所產生的轉角為:

$$\theta_{slip} = \frac{\varepsilon_s d_b f_s}{8u(d-c)} = \frac{d_b f_s \phi}{8u}$$
(2.41)

其中c=混凝土壓力區深度。

因此由鋼筋滑動所產生的側向位移:

$$\delta_{slip} = \theta_{slip} H_n = \frac{d_b f_s \phi}{8u} H_n \tag{2.42}$$

其中 Ø= 撓曲斷面分析之曲率。

上述公式推導僅適用於鋼筋應力小於f,時,也就是在降伏點之前。若鋼筋應力大於f,時,則可由 Sezen [19]建議之模式求得,其計 算模式較上述介紹多了一個鋼筋降伏後的握裹區域,如圖 2.17 d 及 圖 2.17 e 之三角形上端部分,計算公式如下

$$\delta_{slip} = \frac{d_b f_s \phi}{8u} H_n + \frac{(\varepsilon_s + \varepsilon_y)(f_s - f_y)d_b}{8u'(d - c)} H_n \qquad (2.43)$$

假設鋼筋應力 f_s 處於降伏平台上,則 Sezen [19]建議:可假設降 伏平台具有 $0.01E_s$ 斜率的應變硬化,故 f_s 可由斷面分析之 ε_s 求得。式 (2.43)中包含二個區域的混凝土握裹應力 $u \otimes u = 3.18\sqrt{f'_c}$; u' = 0.5u。

柱桿件於開裂前材料可視為均質體,因此剪力位移可採用材料力 學公式計算之。如下所示:

$$\delta_s = \frac{V_{cr}H_n}{GA} \tag{2.44}$$

其中,G為混凝土剪力彈性模數(kgf/cm²)。

關於剪力變形的部分,考慮柱桿件在降伏時已呈現多處開裂,此 時材料力學公式已不適用於剪力位移的計算。本研究採用軟化壓拉桿 模式評估。柱受力後依照應力分佈情形分為 D、B 區域,二種區域之 剪應變因應力分佈不同而不同。D、B 區域之長度與剪應變示意圖如 圖 2.18,分別求得 D、B 區域之剪應變後,乘以個別的高度再相加, 則可獲得柱桿件之剪力位移,其計算式如下:

$$\delta_{\mathsf{S}} = 2\gamma_{\mathsf{D}} \cdot \ell_{\mathsf{D}} + \gamma_{\mathsf{B}} \cdot \ell_{\mathsf{B}} \tag{2.45}$$

其中 ℓ_D 為 D 區域的高度; ℓ_B 為 B 區域的高度

分別求出柱構件之撓曲位移、剪力位移與主筋滑動位移後,將三 者相加即為柱桿件之位移。

計算完桂桿件其不同狀態點之強度與位移後,接下來為判斷其破 壞模式,可能的破壞模式有四種,包含撓曲破壞(圖2.19a)、剪力破 壞(圖2.19b)、撓剪破壞(圖2.19c)以及撓剪破壞(轉換段)(圖 2.19d)。桂桿件極限點強度計算中,包含有撓曲破壞所對應之剪力 V_{mn} 、B區域拉桿降伏 V_{BT} 、D區域混凝土擠碎 V_{DC} 以及D區域斜拉破 壞 V_{DT} 等,任何一種破壞發生後,都會終止桂桿件強度發展。

首先,判斷剪力強度V。由何種破壞控制,如下所示:

$$V_s = \min[V_{\rm B}, V_D] \tag{2.46}$$

決定出剪力強度V_s後,再與撓曲強度所對應之剪力比較,也就是V_{mn}/V_s 的值,若其值大於1則為剪力破壞,介於1~0.8 為撓剪破壞,介於

22

0.8~0.6 為撓剪破壞(轉換段),小於 0.6 則定義為撓曲破壞。下面分別 對不同破壞模式的側力位移曲線作介紹。

(1) 撓曲破壞

柱為撓曲破壞時,側力位移曲線上的第一個點為降伏點(圖 2.19a),降伏點為第一支柱主筋降伏的時候,其強度可用式(2.20)求 得,而位移則可用式(2.36)。第二點為強度點,在撓曲破壞時其強度 為V_{mn}式(2.21),位移可用式(2.36)。

在強度達到V_{mn}後就不會再上升了,但位移會持續加大,直到柱 失去軸向承載力。本研究參考 Berry and Eberhard [20]所提出的一個計 算柱主筋挫屈位移的公式:

$$\frac{\Delta_{bb}}{H_n}(\%) = 3.25 \left(1 + k_{e,bb} \cdot \rho_{eff} \cdot \frac{d_b}{D} \right) \cdot \left(1 - \frac{N_u}{A_g \cdot f'_c} \right) \cdot \left(1 + \frac{H_n}{10 \cdot D} \right)$$
(2.47)

此公式的推導主要是依據塑鉸分析、彎矩曲率分析和預測圍東混 凝土的影響。其中 $k_{e,bb}$ 在四邊形柱的時候可用 40,但若箍筋間距與主 筋直徑的比值 (s/d_b) 超過6時,則取0; $\rho_{eff} = \rho_s f_{ys}/f'_c$ 。

柱主筋挫屈位移在這假設為極限的位移, $\Delta_{bb} = \Delta_u$ 。當位移超過 挫曲位移點後,強度就會開始下降,本研究假設當柱位移到2倍挫屈 位移時,其強度降為零,定義柱倒塌,因此 $\Delta_c = 2\Delta_{bb}$ 。

(2) 撓剪破壞

撓剪破壞時(圖 2.19c),由撓曲強度主控,所以在降伏點以及強度點的計算方式完全跟撓曲破壞時相同。進入第三點時強度還是^Vmm,

但位移的部份本研究參考美國 Elwood and Moehle [21,22],箍筋量較 小的雙曲率柱於承受軸力 P 與側力 V 的作用下,側向位移 Δ 到達 $\Delta_{,y}$ 時,柱桿件主筋發生降伏;當側向位移 Δ 到達 $\Delta_{,s}$ 時,柱桿件端部塑鉸 區會產生明顯的剪力斜裂縫,稱之為撓剪破壞(Flexure-shear failure),定義此 $\Delta_{,s}$ 為剪力破壞點[21],過了剪力破壞點之後側力強度 會下降;當側向位移 Δ 到達 Δ_{a} 時,側力強度趨近於零,柱桿件喪失垂 直承載之能力,以致於發生軸力破壞(Axial failure),定義此 Δ_{a} 為軸 力破壞點[22]。

剪力破壞時的變位角(Drift ratio)可由下式計算得到[21],

$$\frac{\Delta_s}{H_n} = \frac{3}{100} + 4\rho'' - \frac{1}{40} \cdot \frac{\nu}{\sqrt{f_c'}} - \frac{1}{40} \cdot \frac{N_u}{A_g \cdot f_c'} \ge \frac{1}{100}$$
(2.48)

式中 H_n 為柱桿件長度(cm); ρ "為箍筋體積比; v = V/bd為剪應力; b 為柱寬(cm); d 為柱斷面的有效深度(cm); f_c 為混凝土標稱強度; $A_g = bh$ 為柱斷面積。

軸力破壞時的變位角可由下式計算得到[22],

$$\frac{\Delta_a}{H_n} = \frac{4}{100} \cdot \frac{1 + (\tan \theta)^2}{\tan \theta + N_u} \left(\frac{s}{A_{st} \cdot f_{yt} \cdot d_c \cdot \tan \theta} \right)$$
(2.49)

式中 s 為箍筋間距; A_{st} 為剪力箍筋面積; f_{yt} 為箍筋降伏強度; d_{c} 為 柱核心混凝土的深度,由箍筋中心至中心計算之; θ 為剪力裂縫與水 平的夾角,一般可訂為 65° ,但不可超過 $tan^{-1}(L/h)$ 。 (3)撓剪破壞(轉換段) 此破壞模式一樣是由撓曲強度主控,前2點的計算方式跟撓剪破 壞時完全一樣(圖2.19d),到了第3或第4點的強度跟撓剪破壞時也 是一樣,但位移的部份則用撓剪破壞與撓曲破壞去內插,計算方式如 下:

$$\Delta_{u} = \Delta_{s} + \frac{(0.8 - V_{mn} / V_{s})}{(0.8 - 0.6)} \cdot (\Delta_{bb} - \Delta_{s})$$
(2.50)

$$\Delta_{c} = \Delta_{a} + \frac{(0.8 - V_{mn} / V_{s})}{(0.8 - 0.6)} \cdot (2 \cdot \Delta_{bb} - \Delta_{a})$$
(2.51)

 Δ_s 可從式(2.48)求得; Δ_{bb} 可從式(2.47)求得; Δ_a 可從式(2.49)求得。 (4)剪力破壞

剪力破壞時桂會脆性破壞,在側力位移曲線中也要表現出這一特 色,因此剪力破壞曲線中沒有像撓剪破壞或撓曲破壞的平台段(圖 2.19b)。剪力破壞曲線中由3點組成,第一點是降伏點,計強度與位 移的計算完全是與其它破壞模式一樣,第二點是剪力破壞點,因為是 剪力主控,可由式(2.46) 求得強度,位移則由下式:

$$\Delta_s = \delta_{f,elastic} + \delta_{slip} + \delta_s \tag{2.52}$$

第三點為倒塌點,強度降為零,位移則假設 $\Delta_u = \Delta_a$,由式(2.49)求得。

2.3.2 RC 牆桿件之側力位移曲線

本研究 RC 牆桿件之側力位移曲線主要是參考 Ika Bali 所提出的 RC 牆側向載重位移曲線預測[23]。在校舍建築中樓版束制能力強, 造成桿件多為雙曲率的變形,因此本研究只應用雙曲率牆的預測力位 移曲線這部份。Ika 提出的雙曲率 RC 牆力位移曲線主要分為開裂點、 極限強度點、殘餘強度點這三個點(圖 2.20)。下面將依序介紹各點的 計算方式。(下面的計算公式只適用於公制單位)

開裂點強度的部份是參考 ACI 2005 規範的公式[24],由下面兩式取小值:

$$V_{cr} = \frac{\sqrt{f_c^2 t_w d}}{4} + \frac{Nd}{4\ell_w}$$
(2.53)

$$V_{cr} = \left[\frac{\sqrt{f_c'}}{2} + \frac{\ell_w \left(\sqrt{f_c'} + 2N/\ell_w t_w\right)}{M/V - \ell_w/2}\right] \frac{t_w d}{10}$$
(2.54)

 $H(M/V - \ell_w/2) < 0$ 則不考慮式(2.54)。開裂點位移的部分主要是由剪

力變形、撓曲變形和滑移變形三者疊加而得:

$$\delta_{cr} = \delta_{s,cr} + \delta_{f,cr} + \delta_{slip,cr}$$
(2.55)
剪力變形:
 $\delta_{s,cr} = \frac{2(1+\upsilon)}{E_c} \frac{1.2}{\ell_w t_w} V_{cr} H_n$
(2.56)

v為混凝土的 Poisson's ratio(本研究採用 0.17), E_c 是混凝土的彈性係 數(4700 $\sqrt{f'_c}$ in MPa)。

撓曲變形:

$$\delta_{f,cr} = \frac{V_{cr}H_n^2(2H_{n,b} - H_{n,t})}{(6E_cI_e)}$$
(2.57)

 $H_{n,b}$ $H_{n,t}$ 分別為反曲點到牆頂跟牆底的距離,因為是雙曲率變形,假 設反曲點在牆中心,所以 $H_{n,b}$ $H_{n,t}$ 會相同; $I_e = 0.70I_g$ [24]。

滑移變形是考慮在彈性階段的部份,也就是還在 $f_s \leq f_y$ 和 $\varepsilon_s \leq \varepsilon_y$ 的階段:

$$\delta_{slip,cr} = \frac{(V_{cr} / V_{y})d_{b}f_{y}^{2}}{[8uE_{s}(d_{o} - a_{w})]}H_{n}$$
(2.58)

 d_o 是最外的受壓纖維到最外受拉鋼筋中心的距離; d_b 是最外的受拉鋼筋的直徑; f_s 是最外的受拉鋼筋的應力;u是平均的握裹應力,採用 $u = \sqrt{f'_c}$ (MPa)由 Sezen [19]。 極限點強度的部份是比較撓曲與剪力個別的強度,取兩者的小值: $V_u = \min(V_f, V_s)$ (2.59)

撓曲強度:

$$V_f = \frac{M_t + M_b}{H_n} \tag{2.60}$$

M, M, 分別為牆頂跟牆底的彎矩。

剪力強度是由軟化壓拉桿(SST)簡算法 Hwang and Lee [16]去計算(圖 2.21):

$$V_s = (K_h + K_v - 1)\zeta f'_c A_{str} \cos\theta \qquad (2.61)$$

 A_{str} 是壓桿面積; ξ 是軟化係數 $\xi = 3.35/\sqrt{f'_c} \le 0.52$ Hwang and Lee [16]; θ 是對角壓桿與水平軸夾角:

$$\theta = \tan^{-1}(\ell_v / \ell_h) \tag{2.62}$$

 ℓ_{v} 因為本研究是雙曲率牆,因此 ℓ_{v} 就是牆的淨高 H_{n} (圖 2.22);

$$\ell_h = \ell_w - 2 \times \frac{a_w}{3} \tag{2.63}$$

式中 a_w 是當彎矩達到降伏的時候,最大受壓纖維到中性軸的距離。 A_{str} 壓桿面積因為本研究分有邊界構材或沒有邊界構材。在有邊界構材的 狀況下為了要表現出邊界構材的影響,所以比沒有邊界構材的狀況多 加了 a_b 這項: 沒有邊界構材 $A_{str} = a_w \times t_w$ (2.64) 有邊界構材 $A_{str} = t_w \times \sqrt{a_w^2 + a_b^2}$ (2.65)

極限點的位移也是由剪力變形、撓曲變形和滑移變形疊加而得。

剪力變形:

$$\delta_{s} = \gamma_{vh} \cdot H_{n} \tag{2.66}$$

撓曲變形在本階段有可能進入非彈性,所以撓曲變形就由彈性變形與 塑變形所組成:

$$\delta_f = \delta_{f,elastic} + \delta_{f,plastic} \tag{2.67}$$

$$\delta_{f,elastic} = \frac{V_u H_n^2 (2H_{n,b} - H_{n,t})}{(6E_c I_e)}$$
(2.68)

式中 $I_e = 0.35I_g$ ACI 318-05 [24]。

$$\delta_{f,plastic} = \left[(\phi_u - \phi_y) \ell_p (H_{n,b} - \frac{\ell_p}{2}) \right] + \left[(\phi_u - \phi_y) \ell_p (H_{n,t} - \frac{\ell_p}{2}) \right]$$
(2.69)

式中的塑性塑鉸長度 $\ell_p = \ell_w/2$ Moehle [25]。

滑移變形在非線性階段 $(f_{s} > f_{y} = \varepsilon_{y} < \varepsilon_{s} \leq 10\varepsilon_{y})$: $\delta_{slip} = \theta_{slip,t}H_{n,t} + \theta_{slip,b}H_{n,b} \qquad (2.70)$ $\theta_{slip} = \frac{d_{b}f_{y}^{2}}{[8uE_{s}(d_{o} - a_{w})]^{+}} \frac{(\varepsilon_{s} + \varepsilon_{y})(f_{s} - f_{y})d_{b}}{[8u'(d_{o} - c)]} \qquad (2.71)$

式中u'是在 $f_s > f_y$ 時的平均握裹應力, $u' = 1/2\sqrt{f'_c}$ Lehman and Moelhle [26]; $f_s = f_y + 0.01E_s(\varepsilon_s - \varepsilon_y)$ Sezen [19]。

殘餘強度點這裡是參考 ATC-40 [4]的建議,殘餘強度為 0.4V_u,而變 形的部份則設定為 0.02 的牆體高度,因為本研究的牆體高度皆為 300cm,所以本研究的殘餘強度點位移皆為 6cm。附錄 B~附錄 D 為 本研究所採用的三種不同牆體形式的計算例。

2.3.3 磚牆桿件之側力位移曲線

本研究磚牆的側力位移曲線是參考陳奕信所提出的模型[11](亦 被磚構造規範[27]所採用),這裡會採用這個曲線主要是因為國家地震 中心也是採用同樣的模型去分析含磚牆結構,加上此側力位移曲線也 有與相當多的試驗結果做比較,預測曲線也能抓到試驗結果的走向。

磚牆是由磚塊堆疊而成的,因此會有不同的推疊方式,而這些堆 疊方式會對磚牆的強度造成不同的影響,所以在計算前一定要先知道 一些基本的磚牆特性。磚牆一般來說有分為先砌與後砌,最大的不同 點就在是構架完成前砌的還是完成後砌的,這也會影響到磚牆有沒有 承受軸力,一般來說後砌式的磚牆佔多數,因此本研究採用後砌式磚 牆。再來磚牆的砌法有很多不同的方法,本研究參考規範所建議的英 國式與法國式砌法,經計算後發現法國式砌法所能抵抗的單位面積剪 力較小,因此為保守起見假設本研究中的磚牆皆是採用法國式砌法 (圖 2.23),其臨界破裂角計算方式如下:

$$\tan \theta = \frac{2(h+g_h)}{w+\ell+2g_v} \tag{2.72}$$

三面圍束之台度磚牆水平剪力強度計算如下:

$$H_2 = 0.5 \times W_b \times \tan \theta \le H_b \tag{2.73}$$

式中W,是磚牆寬;H,是磚牆高。

$$\tau_f = 0.0258 (f_{mc})^{0.885} \tag{2.74}$$

式中fmc是砂浆塊抗壓強度=12.25 MPa。

 $\alpha = 0.45 \tag{2.75}$

α為強度修正係數,建議是取 0.45。

$$f_{mbt} = 0.232 (f_{mc})^{0.338} \tag{2.76}$$

將(2.73)~(2.76)帶入下式

$$V_n = T_b \times \left(W_b \times 0.7 \times \tau_f + H_2 \times \alpha \times f_{mbt} \right)$$
(2.77)

位移的部份計算方式如下:

式中fbc是紅磚單軸抗壓強度=14.71 MPa。

$$E_{n} = 227\eta_{2}\eta_{1}f_{p}' \tag{2.81}$$

$$u_{n} = \left[\left(\frac{5}{4} + \frac{3}{2}v \right) \frac{W_{b}}{H_{b}} + \left(2 + \frac{7}{4}v \right) \frac{H_{b}}{W_{b}} + \left(2 + \frac{3}{2}v \right) \frac{H_{b}^{3}}{W_{b}^{3}} \right] \frac{V_{n}}{E_{n}T_{b}} \quad (2.82)$$

磚牆的側力位移曲線主要在到達極限點前,是由三次多項式的形式模擬加載歷程,而這加載歷程必須經過原點、50%極限載重點、極限載

重點,並另使極限點之斜率為零。若是三面圍束之台度磚牆之加載歷 程曲線如下:

$$\frac{P}{P_u} = 3\left(\frac{\Delta}{\Delta_u}\right) - 3\left(\frac{\Delta}{\Delta_u}\right)^2 + \left(\frac{\Delta}{\Delta_u}\right)^3$$
(2.83)

台度磚牆之殘餘強度可利用下式計算:

$$V_r = 0.7 \times \tau_f \times T_h \times W_h \le 0.6V_n \tag{2.84}$$

ton

根據觀察,磚牆約在兩倍水平極限位移時,磚牆強度衰減至殘餘強度。磚牆的極限位移,在參考試驗結果後設定在牆高的2%為限制。 磚牆的側力位移曲線如圖2.24所示,附錄E為磚牆的計算例。

2.4 台灣校舍資料庫之研究

在921 地震發生後,有許多校舍受損,凸顯了校舍建築耐震能力 的不足,國家地震工程研究中心發展了一套耐震能力評估的方法,其 第一步是簡易調查[1],簡易調查的特色就是不需要工程人員去現場 量測所須的資料,它使用一簡化的表格,只須要照表填寫即可,因此 即使非土木工程專業出身的國中小學老師亦能填寫,完成表格後再利 用網路上傳至地震中心資料庫,最後由地震中心統一評估校舍建築耐 震能力。此一方法不須人員至現場採集資料,所以成效相當不錯,目 前回收的資料達全體校舍的97.7%,這些回收的資料都成為了研究中 非常重要的資料庫來源。簡易調查資料庫因為是由非土木工程專業人 士填寫的,難免會有一些缺失,加上資料中沒有柱配筋等較細部的資料,所以仍須一些有詳細建築藍圖的資料做為參考。簡易調查資料庫 雖然沒有細部資料,但它還是有提供一些非常有用的資料,像結構特 性、柱尺寸、校舍尺寸等,這些資料數目較多因而在統計上較有效。

大部分的校舍建築因為年代久遠,導致要找到當時的設計藍圖困 難度大增,但仍有一些資料庫中有當時的設計圖。其一是由許茂雄等 收集的台南國民中小學及幼稚園校舍資料[2],其中就包含有詳細柱 配筋圖。另一是由陳錫慶等人所收集的南投縣校舍資料庫[3],這個 資料庫中一樣保有原始的校舍建築藍圖。從這兩個資料庫中可以發現 早期柱的配筋多屬非韌性配筋。

對於資料庫的相關研究,本研究主要參考了兩個研究。其一是陳 雅婷對簡易調查資料庫中的資料做的研究[30],其研究的方法是先利 用資料庫中所展現出來的結構特性及統計出來的校舍尺寸去建立一 標準校舍模型,再提出資料庫中柱的尺寸,依照經驗去配置鋼筋,再 將柱擺入標準校舍中分析。其研究統計了相當多的校舍尺寸與柱尺 寸,這些統計資料都成為本研究中建立校舍模組重要的參考。

另一為 Cindrawaty 對於台南校舍資料庫與南投校舍資料庫所做 的研究[13]。其研究主要是利用這兩個有實際校舍藍圖的資料庫,但 資料庫中有些資料不齊全,有些校舍只有一層樓,剔除這些校舍後會 有 100 楝校舍符合,將這 100 校舍中的實際柱尺寸及配筋放入標準校 舍模型中計算,這裡不用真實校舍建築去計算是因為數量太多,學校 間的差異會照成計算上相當大的工作量,標準校舍是經由統計出來的

33

結果,具有一定的代表性,所以採用標準校舍去分析。Cindrawaty的研究中校舍全為2~3 樓建築,因此其研究有100棟2~3 樓校舍之分析結果。之後本研究將建立一2~3 樓之校舍模組,為了要使本校舍模組 能代表台灣校舍之特性,會將 Cindrawaty 的分析結果與本研究校舍 模組分析結果做比較,期望能越接近越好。

2.5 國家地震工程研究中心之初步評估方法

為了減小地震造成學校建築的破壞,以減低學校師生的傷亡,並 於地震過後初期提供學校建築作為臨時避難場所,應盡速全面進行學 校建築耐震能力補強。然而學校建築數量龐大,若全面進行耐震能力 評估,勢必不符合經濟效益。基於經費編列及盡快進行耐震能力評估 補強工作之考量,應建立一初步評估方法,以做初步篩選優先進行詳 細耐震能力評估與補強的校舍建築。雖然目前已有許多初步耐震能力 的評估方法,但在應用上有其困難的地方,例如計算複雜、不符合台 灣的國情,或需要有土木相關經驗豐富者。因此國家地震工程研究中 心就提出一初步耐震力評估方法,其中只需之簡單的結構物基本資料 便可計算出其耐震評分。

評估方法主要是參考日本建築防災協會出版之《既有鋼筋混凝土 造建築物之耐震診斷基準》[31]及綜合蔡益超教授提出之「鋼筋混凝 土建築物耐震能力評估法」[32]中之相關耐震能力影響參數,並考慮 國內實際校舍之建築情況,以校舍受到設計地震力時是否倒塌為基 準,以方便初步勘查為原則,力求適用性及使用性。國內校舍目前主 有典型和非典型兩類,典型校舍為國民中小學普通教室之校舍建築, 而非典型則是針對活動中心、體育館、禮堂、高中校舍及大學校舍。本研究主要是針對典型的中小學校舍探討。

校舍耐震能力之初步評估主要計算結構底層各別抗橫力構材之 強度,分別為RC柱、RC 牆及磚牆三種,將勘查所得之構材截面積, 乘以單位面積極限剪力強度,得到各個構材之剪力強度後,將其加總 則可得樓層之強度。再配合韌性容量之假設及現行規範之地震力計算 方式,可推得整體結構底層之耐震能力並給予耐震評分,即為其「基 本耐震性能」之評分,接著針對結構物的特性及現況給予「整體結構 調整因子」,但本研究並沒有考慮結構物的現況,所以這裡將不討論 「整體結構調整因子」這個部分。將「基本耐震性能」與「整體結構 調整因子」相乘,則可得建物之「耐震指標」分數,依此分數判斷其 耐震能力是否有疑慮。下面將針對初步評估法的細節一一做探討及說 明。

2.5.1 基本假設

典型校舍的破壞模式,主要為假設校舍破壞在底層,且因垂直走 廊方向有許多隔間牆,耐震能力增加,所以破壞主要沿走廊方向。再 來因為窗台及樓板的關係造成梁構材之實際強度及勁度較原設計時 增加許多,固假設破壞皆在柱構材上。根據台灣現有校舍調查結果加 上簡化起見,假設二樓以上至屋頂層之單位面積載重為900 kg/m², 混凝土抗壓強度為 160 kgf/cm²,鋼筋之抗拉降伏強度為 2800 kgf/cm²。

2.5.2 構材之極限剪力強度

a.磚牆

磚牆極限剪力強度計算,根據蔡益超教授引用許茂雄教授所作一 系列磚牆之研究結果[33],即:

$$V_{b} = \frac{t_{b}}{150H_{b}} (40W_{be}^{2} + 40H_{b}^{2} + 40\sqrt{W_{be}^{2} + 14H_{b}^{2}W_{be}^{2} + H_{b}^{4}})F_{bt}\alpha_{bu} \qquad (2.85)$$

其中t_b為磚牆之厚度;H_b為磚牆之高度;W_b為磚牆之寬度;W_{be}為磚 牆之有效寬度,F_i為磚牆劈裂牆度,設為18.5 kgf/cm²,α_{bu}為磚牆極 限強度之修正係數,修正係數分為四面圍束與三面圍束,但因為本研 究發現,實際校舍建築因為通風、採光與出入方便等考量,現有校舍 沿走廊方向的牆多為翼牆,不會有完整一個垮度的大尺寸牆出現,所 以本研究只參考三面圍束的強度修正係數。

三面圍東
$$\alpha_{bu} = 0.1108 \frac{W_{be}}{H_b}$$
 (2.86)

將式(2.85)重新整理可得下式。

$$\tau_{BW} = \frac{V_b}{W_b t_b} = \frac{4\left(W_{be}^2 + H_b^2 + \sqrt{W_{be}^4 + 14H_b^2 W_{be}^2 + H_b^4}\right)}{15W_b H_b} F_{bt} \alpha_{bu} \qquad (2.87)$$

初步評估法中假設三面圍束之磚翼牆,寬度介於 20~180cm 之間,高 度介於 260~280cm 之間,將這些參數帶入式 (2.87) 中計算,可得三 面圍束磚牆之單位面積極限剪力強度 τ_{BW3} 為 1.5 kgf/cm²,其權數訂為 0.5。 b.RC 柱

對於RC柱之剪力強度,配合規範及以台灣一般老舊校舍支柱尺 寸與圍束箍筋的情況來估計其剪力強度。假設柱深度及寬度分別為 30cm與40cm,且箍筋間距為25cm,如此可得柱之極限剪力強度^Tc約 為15 kgf/cm²,權數訂為5.0。但這裡計算出來的強度是設定在剪力 破壞上,實際柱並非只有一種破壞模式,而且剪力破壞所計算出來的 強度也會較其它破壞模式的大,因此這裡的單位面積極限剪力強度似 乎有不合理的地方,本研究將會在後面的章節對此做討論與建議。

c.RC 牆

對於非剪力牆之鋼筋混凝土牆之強度,收集了葉永信[34]、廖文 義[35]、邱聰智[36]等人的含鋼筋混凝土牆構架試驗結果,經統計迴 歸分析後,加上保守起見,設定 RC 牆之單位面積極限剪力強度 r_{RCW} 約為 24 kgf/cm²,權數訂為 8.0。雖然這裡的資料來源為實際試驗的 結果,但是因為這幾次試驗裡面,試體的尺寸是一完整的牆,牆上沒 有任何的開孔,並非校舍中的翼牆形式,如此一來便會有明顯的高估 現有校舍 RC 牆的單位面積強度的問題,進而影響到最後得到的結 果,本研究在後面將一併提出討論。

2.5.3 基本耐震性能計算

主要根據耐震設計規範之地震力計算公式:

$$V = \frac{ZIC}{1.4\alpha_v F_u} W \tag{2.88}$$

其中 V 為地震最小設計水平總橫力; Z 為震區水平加速度係數; I 為 用途係數; C 為工址正規化水平加速度反應譜係數; W 為校舍之總 重; α, 為起始降伏地震力放大倍數; F_u 為結構系統地震力折減係數。 此公式中的 1.4α, V 可利用單位面積剪力強度去代換:

$$1.4\alpha_{y}V \cong \tau_{BW4}A_{BW4} + \tau_{BW3}A_{BW3} + \tau_{C}A_{C} + \tau_{RCW}A_{RCW}$$
(2.89)

上式中的 $A_{BW4}; A_{BW3}; A_C; A_{RCW}$ 皆為各種構件在一樓之總斷面積。 將式(2.88)整理,配合強度的概念,也就是校舍提供的強度一定要超 過校舍耐震的需求,因此校舍若具有足夠之耐震能力需要满足下式: $\frac{(1.4\alpha, V)F_a}{ZICW} \ge 1.0$ (2.90)

一般來說,各構件之剛性皆不同,所以構件極限強度並不會在同一個時間達到,所以針對式(2.90)中計算的底層剪力強度必須適度加以修正,於此參考了日本耐震診斷基準法之規定將其強度乘以一折減係數β,β取為0.8,因此式(2.90)可改寫為:

$$\frac{\beta(1.4\alpha_y V)F_u}{ZICW} \ge 1.0 \tag{2.91}$$

假設結構物韌性容量為R_a =1.2,且假設校舍建築皆為短周期之建築物,則一耐震設計規範中結構系統地震力折減係數為:

$$F_u = \sqrt{2R_a - 1} = 1.183 \tag{2.92}$$

這裡的韌性容量取得相當的保守,實際上在現地試驗[37,38,39,40]中

顯示的韌性容量都比 1.2 大上許多(圖 2.25~圖 2.26),圖中性能點時的 韌性最低也有 3.7(圖中側力位移曲線已做過反覆載重修正),這裡的 韌性容量定義在第四章有詳細介紹,所以本研究也會去討論韌性容量 的問題。

在台灣中小學校舍大多數皆為低矮型建築,所以C值就是取 2.5。將式(2.89)及上述參數值代入式(2.91),則可依用途係數I值取 1.0或1.25而得下式:

$$\frac{(0.5A_{BW3} + 5A_{C} + 8A_{RCW})}{10ZA_{f}} \ge 80 \quad (I=1.0)$$
(2.93)

$$\frac{(0.5A_{BW3} + 5A_{C} + 8A_{RCW})}{10ZA_{f}} \ge 100 \quad (I=1.25)$$
(2.94)

分別代表在不同之耐震需求之標準值,式中A,是二樓以上樓地板總 面積,Z則為現行耐震規範之震區係數。若定義一參數E來代表校舍 基本耐震能力:

E =

$$\frac{0.5A_{BW3} + 5A_{C} + 8A_{RCW})}{10ZA_{f}}$$
(2.95)

2.5.4 耐震指標

得知校舍基本耐震能力後還必須要考量到實際校舍建築的現況,並利用這些現況來修正其耐震性能,主要有6個調查項目,將其條列如下:

- (1) 平面的及立面的對稱性
- (2) 軟弱層顯著性

- (3) 裂縫鏽滲水等程度
- (4) 變形程度
- (5) 平面耐震性
- (6) 短柱嚴重性

上述6項調查因子不是本研究主要研究目標,所以不再加以個別贅述 其內容。藉由調查因子可瞭解建築物的現況,因此,將基本耐震性能 與調整因子相乘積,則可得一耐震指標I_s:

 $I_s = EQ \tag{2.96}$

式中的Q即為調查因子。此評估方法主要目的是篩選出在設計地震 力作用下可能倒塌之校舍,故應忽略用途係數的效應,也就是以耐震 指標 80 分作為耐震能力堪慮之評估標準。簡單來說,若校舍之耐震 指標分數低於 80 分的話,表示其確有耐震疑慮,若有一規模達到 475 年回歸期之地震發生時,校舍將有可能嚴重損壞或倒塌。藉由耐震指 標的計算就可大略估出此校舍之耐震能力,也可以此作為一需不需要 進一步詳細評估或補強的參考。

2.5.5 結論

初步評估法其簡單來說就是要比較結構物所能提供的強度與所 需的強度,若提供的比需求大則結構物為安全。初評方法的概念可以 分解下列的式子:

$$V_{\text{supply}} = \beta(\tau_{BW4}A_{BW4} + \tau_{BW3}A_{BW3} + \tau_C A_C + \tau_{RCW}A_{RCW})$$
(2.97)

$$V_{demand} = \frac{ZICW}{F_u} \tag{2.98}$$

將上述二式帶入下式:

$$\frac{V_{\text{supply}}}{V_{demand}} \ge 1.0 \tag{2.99}$$

若結構物能符合上式的話,則為安全,因為結構物所能提供的強度大於安全所需的強度。

國家地震工程研究中心所提出的初步評估方法主要是為了快速 的評估耐震能力,其中只需去量測一些構件的斷面積,以及樓地板面 積等等的結構參數,將這些參數帶入公式就可得知其結構耐震指標。 但其中的有些設定似乎並沒有參考到現有典型台灣校舍的實際情 況,像構材單位面積極限剪力就是其中一個很大的問題所在,還有像 *β及R_a*也都取的相當的保守,在後面的章節會參考實際校舍現有的狀 況去重新評估初步評估法中的設定,最後加以討論並對國家地震工程 研究中心的初步評估法提出一建議。

2.6 安全柱量與安全壁量之研究

校舍建築多為剪力型房屋, 垂直桿件所能提供的強度變成為校舍 結構物安全不安全重要的判斷依據之一, 一般來說垂直桿件的量會跟 結構物的安全性成一正比關係, 因此就有研究者提出安全柱量與安全 壁量的概念。本研究中計算大量校舍模組, 分析結果也可提出一安全 柱量與壁量的建議值,而安全與不安全的準則由規範的規定來定義。 最後將分析出來的安全壁量與柱量與現有研究所提出的值作一比較。

根據學校震害之調查,為了確保臺灣強震區內校舍之安全,因此 張嘉祥與呂國維[41]建議柱之單位載重在14kgf/cm²以下,也就是若每 平方公尺柱承受小於14×10⁴kgf 之載重則校舍為安全。接下來使用黃 世建等[42]所建議校舍教室單元之一般樓層平均單位面積載重為 900kgf/m²,以及屋頂平均單位面積載重為750kgf/m²,將建議柱之單 位載重建議值轉換成柱量比之建議值,下面為轉換的過程: 柱量比之定義:

 $\frac{校 舍總載重}{-樓柱總面積} \le 14 \frac{kgf}{cm^2}$ (2.101)

根據黃世建等[42]建議,試計算一棟三層樓之校舍 三層樓總載重 = $(2 \times 900 + 1 \times 750) \times$ 單層樓地板面積 = $(2550) \times$ 單層樓地板面積 $\frac{2550 \times$ 單層樓地板面積 -樓柱總面積 $\leq 14 \times 10^4 \frac{kgf}{m^2}$ (2.102) $\frac{-$ 樓柱總面積}{單層樓地板面積} $\geq \frac{2550}{14 \times 10^4} = 1.82\%$ (2.103)

建議柱量比 =
$$\frac{-樓 桂總面積}{總樓地板面積} \ge \frac{1}{3} \times 1.82\% = 0.61\%$$
 (2.104)

由上面的計算例可得知一安全之柱量比,這一安全柱量比可供工 程師判定校舍安全與否之方式。大部分校舍建築多為純構架,因此只 需安全柱量即可。但校舍中若有牆的話,只用安全柱量去判定似乎也 太過於保守,所以應該要加上安全壁量一起探討。本研究將在分析完 校舍模組後對安全柱量與安全壁量做一建議。

第三章 典型校舍模組之建立與分析驗證

若要探討國家地震工程中心的初步評估法,勢必要有一校舍群 組,將校舍群組使用初評方法去評估其耐震能力,再將其結果與本研 究所使用的剪力型房屋耐震能力簡易評估比較。由此可知校舍群組在 本研究中佔有影響分析結果的重要地位,若希望能貼近台灣校舍建築 的實際情況,最好是能使用實際校舍建築去做分析,可是校舍建築的 資料取得不易,加上校舍建築間雖然有相似的地方,但也並非完全相 同,若要一一個別去分析所耗費的時間會相當不合經濟效益,所以為 了大量計算,本研究擬建立一能代表實際台灣校舍的典型校舍模組。

3.1 校舍模組之構架

921 集集大地震發生後,台灣中小學校舍建築破壞的現象相當嚴 重,許多研究者因此針對校舍建築做了大量的研究與調查,從這些研 究的資料庫中可以發現台灣校舍建築有一些特性,但是因為台灣校舍 建築的年代都相當久遠,要得到實際校舍的設計圖是非常困難的,再 者台灣校舍建築中,沿走廊方向的牆是不易見到的,但本研究有探討 牆的部份,所以必須要建立一個校舍模組,再利用這個模組去加入牆 體,探討加入牆體後的變化。

in the

若要能讓校舍模組表現出台灣校舍建築的基本性質,就要利用台

灣校舍建築特性去組成變化的參數。在資料庫中可以發現台灣校舍建 築有兩大特性,第一個是走廊有柱或走廊沒有柱(圖 3.1),第二是教 室為兩跨或三跨(圖 3.2)。將這兩大特性去變化,就可以得到四種不 同的校舍模型。資料庫統計[30]顯示台灣校舍主要以四間教室組成一 層校舍是最常見的(圖 3.3),所以本研究也採用這項特性。

台灣中小學校舍的樓層數主要是要看學校所在的位置,一般來說 比較郊區的校舍多為 1~3 樓為主,而在市區的校舍,因為人口密度較 高,加上地價較貴,所以樓層數有可能介在 4~5 樓。本研究目標是研 究所有的中小學校舍,所以納入了郊區與市區的校舍樓層特性。

四種校舍模型加上四種不同的樓層數就可以得到總數16的校舍 模組(表 3.1),其中的符號的第一個字母如果是C代表是懸壁走廊, 若是U代表單邊走廊有柱,數字的部分第一個代表是2跨還是3跨, 第二個代表樓層的數目。本研究主要就是以這16個校舍作為最基本 的研究校舍模組,下面的章節將會就這校舍模組細部如何配置做詳細 的說明。

校舍模組內還有一重點,就是軸力的部份,本研究採用的是依照 面積去平均分給不同的柱,如圖 3.4 所示,舉例來說,柱 C1-4 所受 的軸力為 N1 面積乘上單位面積的載重。樓板重一般樓層平均單位面 積載重為900 kgf/m²,屋頂平均單位面積載重為 750 kgf/m²。附錄 F 為 本研究所設定的各柱所承受之軸力。

3.2 2 樓與 3 樓校舍模組

若要分析一棟結構物的時候,需要很多結構物的資料,像校舍的 尺寸、教室的尺寸、結構物的重量、柱的配筋與尺寸,但本研究是採 用一模型校舍所以每棟校舍不同的點只就在於垂直桿件,也就是柱的 部分,其中有柱面積、柱主筋配置、繫筋箍筋的配置,但如何去選擇 這些值的量,使本研究的模組能代表台灣的校舍就需要參考其他人的 研究。

在第一章時有介紹校舍資料庫的研究,其中有兩位研究者做的很 多的統計與分析,這兩研究皆有將框依照擺放位置分為三類,第一類 C1 柱是在教室內的柱,第二類 C2 為走廊上的柱(若是懸臂走廊的話 就沒有此柱),第三類 C3 是在教室隔間牆內的柱,為了方便討論也採 用此分類。在陳雅婷[30]的研究中,其中統計大約 1 萬棟校舍的柱面 積(表 3.2 與表 3.3),這些柱面積是由簡易調查來的,有其精確性而且 調查中也有包含 4~5 樓的校舍,但在其研究中所提供的鋼筋量則非實 際的鋼筋量,因為簡易調查是由學校老師填表完成的,所以裡面並沒 有真實的配筋狀況,在其研究中所用之鋼筋量為假設的。在 Cindrawaty [13]的研究中,其資料庫是由台南[2]及南投[3]校舍資料庫 所組成的,這兩資料庫是有真實校舍的建築藍圖的,也就是在其中有 真實的柱配筋,但其缺點是校舍數量沒有陳雅婷[30]的多,在其資料 庫內也缺乏 4~5 樓的校舍。因此本研究結合兩者的優點,也就是陳雅 婷在柱面積的統計以及 Cindrawaty 在柱配筋的部分。

接下來說明是如何利用兩者的研究去建立 2~3 樓的校舍模組。在 前面提到校舍的幾種分類,先將 Cindrawaty 研究的 100 楝校舍依照 校舍種類去分類,再依照其柱的種類去細分,分類完後統計這些柱的 平均鋼筋比(表 3.4),其為柱主筋面積除上柱全斷面積。求得其平均 值後再代入陳雅婷所統計出來的柱面積,接下來依照統計的結果合理 的去配筋,至於箍筋與繫筋的部份,因為採用非韌性配筋,所以不配 繫筋,箍筋間距 25cm。依照上述的原則就可以完成校舍柱的配筋, 配完筋(表 3.5~表 3.12)後將柱放入模型校舍即完成典型校舍模型的建 立。

建立完 2~3 樓典型校舍模組後還要跟 Cindrawaty 的研究結果做 一比較,這主要是為能證明本研究中的校舍模型是可以代表實際校舍 的行為,因為 Cindrawaty 的研究中柱完全是從實際校舍中所提出的, 換句話說,若本研究的結果可以很接近 Cindrawaty 的研究,那麼本 研究就可以很接近實際校舍。此證明將於本章的最後一節介紹。

3.3 4 樓與5 樓校舍模組

建立4樓與5樓校舍模組主要還是依照前節的原則,但在柱配筋

上有些變化,原先配筋的部份是參考 Cindrawaty 的研究,可是其中 並沒有 4~5 樓的柱配筋,但從統計 2~3 樓模組的鋼筋量中可以發現每 升高一層鋼筋量增加大約 0.1%,所以本研究就採用此一統計值去配 置 4~5 樓的鋼筋量。另一部分參考台北市民權國小的一棟 4 樓建築及 台北市西門國小的一棟 5 樓建築,這兩棟內的柱皆有配置雙向繫筋, 且箍筋間距接小於 20cm。

本研究 4~5 校舍模組柱的設定就是先採納陳雅婷在柱面積的統 計(表 3.3),接下來將原先以配置好的 3 樓校舍模組柱鋼筋量往上抬 升到 4~5 樓,再以升高一層鋼筋量增加 0.1%的原則去設計 1~2 樓的 配筋,最後配置雙向繫筋,箍筋間距 20cm。舉例來說若要設計一 C34 的 C1 柱,第一步就是先去查表 3.3 對應的柱面積,第二步是將 C33 的 1~3 樓 C1 柱鋼筋量提出來,把此 1~3 樓的鋼筋量放置於 C34 的 2~4 樓,接下來將 2 樓 C1 鋼筋量加上 0.1%後配置於 1 樓,最後將所 有的柱都配置雙向繫筋,箍筋間距 20cm,這樣就完成了。

完成柱的配筋後(表 3.13~表 3.20),一樣將柱放入模型校舍中後 即完成 4~5 樓典型校舍模型的設計。目前分析真實 4~5 樓校舍的資料 很少,所以也很難去做比較,但基本上只要 2~3 樓的模組是很接近真 實校舍的行為,相信在 4~5 樓的部份也不會差距太遠。

48

3.4 校舍耐震能力分析模型

當校舍模組建立完成後,接下來就是要分析其耐震能力,本研究 主要是採用剪力型房屋簡易推垮分析,其主要的步驟為:

1.計算垂直桿件的側力位移曲線。

2.將一樓垂直桿件側力位移曲線依照同步位移的概念疊加,如圖 3.5。
 3.疊加完即可求得極限基底剪力,將側力依照圖 2.9 所示分配到各樓層,求各樓層位移。

4.將基底剪力與頂層位移畫圖。5.將基底剪力與頂層位移關係轉到容量譜。6.利用 ATC-40 容量譜法求出 PGA 圖 3.6。

3.5 2 樓與 3 樓校舍模組之分析驗證

為能證明本研究中的校舍模型是可以代表實際校舍的行為,必須 要比較 Cindrawaty [13]的研究與 2~3 樓典型校舍模組的分析結果,若 要知道這兩分析結果所展現的行是否相近,可以從幾個點來看,第一 最大基底剪力與其對應的位移及 PGA,第二就是性能點(最大基底剪 力下降到 80%時)的強度與其對應的位移及 PGA,假設這幾點皆能很 接近的話,其整體的表現應該不會差太多。

首先將 Cindrawaty [13]的研究結果依照不同的結構特性分類,再 一一提出上述的資料作平均,將其結果與校舍模組分析結果做比較, 如表 3.21 所示,其中每一種校舍種類都有兩行資料,第一行是 Cindrawaty 的分析結果的平均值,第二行為校舍模組的分析結果,在 C23 的部分因為其在 Cindrawaty 的分析中只有一棟校舍是此類型 的,而且其中的柱有配置雙向繫筋,可是校舍模組中設定是不配置繫 筋的,所以其值差異很大。若以一比值的概念去比較:

$$ratio = {Cindrawaty分析結果平均值 \over 校舍模組分析結果}$$
 (3.1)

若比值介於 0.9~1.1 的話是最好、0.8~0.9 或 1.1~1.2 是好、0.7~0.8 或 1.2~1.3 是可接受、小於 0.7 或大於 1.3 則是不可接受的(表 3.22)。 表 3.23 為化為比值後的結果,其中除了 C23 外,大部分的值都落在 良好的範圍內,這也代表本研究所建立的 2~3 樓校舍模組是很接近實 際校舍的行為,也就是可以代表實際校舍。另外在表 3.23 中 Displ80 這項多數模型校舍的比值也都偏高,這是因為在原始的校舍資料庫中 有部分校舍的桂也有配置繫筋,導致其結構物位移能力相對較好,但 其最後的比值大部分還都落在可接受的範圍內。

50
第四章 典型校舍模組之耐震能力評估

第三章中建立了一2~5 樓共16 楝的純構架校舍模組,接下來將 純構架模組分析後探討其所展現的特性。在本研究中還需要討論含牆 的建築物,所以尚需建立含牆構架的模組。一般台灣校舍中很難見到 沿走廊方向的牆,這主要是考慮到採光、通風、出入方便等功能。大 部分出現在校舍的牆都是垂直走廊方向的隔間牆,就算校舍沿走廊方 向中有牆桿件,牆的尺寸也不大,頂多是像翼牆的型式,唯有這種小 片的牆才不會去妨礙到教室採光、通風、出入方便等功能。

本研究之典型校舍模組中含有三大類模組,分別為純構架、構架 含 RC 牆、構架含磚牆。這三大類所組成的校舍模組將成為本研究所 設定的分析群組,分析完典型校舍模組後即可討論常見純構架建築所 有的結構特性,以及加入牆後所帶來的影響,這些都會在本章節中討 論到。

本研究所探討的結構特性中, 韌性是一個很重要的項目, 但要判 斷整體結構的韌性時不像判斷桿件韌性時簡單, 所以必須要先定義結 構在何時降伏以及結構物的性能點(圖 4.1)。本研究的性能點是設定 在過了最大基底剪力後強度降到 80%時的點。降伏點的部分, 則是延 長原點與 75%強度(達到最大基底剪力前)的連線, 此延長線與最大基 底剪力畫水平線的交點稱為降伏點, 設定此點為韌性為1的點。將結 構物的性能點除上降伏點後即可求得結構物的韌性。接下來所有的模 組都將使用這一方法去求結構韌性。

4.1 純構架校舍模組

純構架校舍模組是只有柱的校舍所組成的,其代表了大部分台灣 的校舍型式,因為有這一個特點所以在第三章時特別介紹本研究如何 建立純構架的校舍模組,經過3.5節比較後可顯示本研究所使用的校 舍模組能代表大多數台灣校舍的結構行為,接下來將其完整的16棟 純構架模形分析結果做介紹。

純構架的分析流程主要跟第三章再建立校會模組的時候一樣。 1.先將柱桿件斷面放入標準校舍中,放入之後柱桿件就會承受軸力。 2.利用第二章的桿件側力位移曲線去計算各個柱桿件的側力位移曲 線。

3. 將各柱桿件側力位移曲線按照同步位移的方式作疊加。

4.疊加完桿件後即可求得結構物的基底剪力對屋頂層位移的曲線(圖4.2)。

5.用第二章剪力型房屋耐震能力簡易評估的方法去求 PGA。

4.1.1 純構架校舍模組之耐震能力評估

16 楝校舍模組分析結果表列於表 4.1。表中有列出最大基底剪力

52

和強度降到 80%(性能點)時的位移、最大基底剪力與強度降到 80%(性 能點)時的強度值、最大基底剪力與強度降到 80%(性能點)時的 PGA 和 PGA 的極限值、強度降到 80%(性能點)時的韌性。表中的基底剪 力與 PGA 分別代表的是此結構物分析出來所能承受的最大值。其中 可以發現同一類的結構隨樓高的增加其基底剪力也有增加的現象,其 原因主要是隨樓高增加其一樓柱所承受的軸力也越大,而且本研究中 柱的斷面也有隨樓高增加,基於這些理由,柱所能提供的強度也越 大,所以才會有因為樓高增加基底剪力也增加的現象。

在 PGA 的部份也可以發現有類似的現象,高樓層的 PGA 比低樓 層高,PGA 的計算主要是跟結構的容量譜曲線有關,若容量譜曲線 所能包含的面積越大則 PGA 也越太,也代表此結構物能承受越大的 地表加速度。容量譜曲線是由基底剪力及屋頂層位移的曲線去轉換 的,高樓層的基底剪力比低樓層的高,加上本研究 4~5 樓模組中的柱 有參考一些實際校舍建築的柱配筋,這些校舍柱配筋中都有加入雙向 的繫筋及較密的箍筋,因此在本研究 4~5 樓模組中的柱皆加入雙向的 繫筋及較密的箍筋,這樣一來柱的變形能力也增加了,由上面這些原 因造成 PGA 在高樓層的部分會有比低樓層大的現象。或許使用這樣 的配筋後會導致與 2~3 樓結果有些不連續的地方,但真實 4、5 樓校 在韌性的部份會因為桂桿件的破壞模式而影響其結果,像如果桂 桿件多趨向剪力破壞的話,其疊加後的曲線就會像圖 4.2,這張圖是 C25 校舍的基底剪力對屋頂層位移的曲線,這裡的曲線會比較陡,過 了最大基底剪力後下降速度很快,導致其性能點很快就到達,因此韌 性也會較小。一般來說柱的計算中軸力的增加會導致破壞模式趨向剪 力破壞,而高樓層建築柱所受的軸力都較大,桂容易呈現剪力破壞, 導致其韌性降低。但本研究中在 4~5 樓校舍柱有雙向繫筋及較密的箍 筋,這樣的配筋會使柱的破壞模式往撓曲破壞移動,也就造成4樓校 舍比3樓校舍韌性好的結果。

4.1.2 純構架校舍之結構特性

若以整體純構架校会模組的角度來看,圖4.3 是最大基底剪力與 強度降到80%(性能點)時的基底剪力分布圖,其平均值分別為639 tf 與512 tf。圖4.4 是最大基底剪力與強度降到80%(性能點)時的PGA 分布圖,其平均值分別為0.36 與0.37,。圖4.5 是純構架模組的韌性 分布圖,其平均值為2.31。圖4.6 是純構架模組的單位面積柱極限剪 力分布圖,這裡統計的柱是純構架模組內所有在一樓的柱,單位面積 剪力只考慮計算一樓柱是因為在初步評估法中的單位面積剪力也是 只考慮一樓,之後在比較時才有相同的依據,還有就是剪力型房屋是 分析出來的柱極限剪力除上柱的面積,即可求得柱單位面積極限剪 力,純構架分析出來的單位面積極限剪力平均為 8.62 kgf/cm²。圖 4.7 是β的統計圖,β的計算方式是依照原先初步評估法中的說明:

$$\beta = \frac{V_{base, \max(structure)}}{\sum V_{c, \max(1stFloor)}}$$
(4.1)

上式中分子的部份是結構物最大基底剪力,分母是所有一樓柱分 析出來的極限強度相加,其意義就是因為柱之極限強度不一定會在同 一時間發生(圖 4.8),初步評估中計算基底剪力的方式是疊加所有的 柱極限剪力,疊加完後再乘上折滅係數,為希望利用這一折滅係數合 理的推估基底剪力。純構架中,為平均值為 0.99,其值幾乎等於一的原 因是模組中柱的破壞模式多為撓曲或撓剪破壞(由附錄 G 中V_{mn}/V_s 的 比值可發現),因此其側力位移曲線中在極限強度發生時是一平台 段,所以在疊加時很容易會在平台段疊加,造成基底剪力幾乎就等於 極限強度的疊加。

一般校舍建築多為純構架模式,因此純構架模組分析結果是具有 相當大的代表性,接下來的章節會依序在純構架中加入 RC 牆跟磚 牆,這兩個模組的分析結果勢必會跟純構架模組有所差異,但也一定 會有相似的地方,本研究會將在下面的章節一一作討論。

4.2 構架含 RC 牆校舍模組

本研究構架含 RC 牆模組主要是用純構架標準校舍去加入 RC 牆,簡單的說就是柱的配筋與尺寸完全合純構架模組一樣,只是在特 定位置上加上 RC 牆,但在一般校舍建築中不常見到牆體,因此牆體 的尺寸大小及擺放的位置都需要去討論。標準校舍是由4間教室所組 成,考量到採光、通風、出入方便等功能,最有可能擺放牆體的位置 就在標準校舍教室中門的位置,用牆去取代原始的門,再將新的門放 置在牆的旁邊。舉例來說,如圖 4.9 是一3 跨單邊走廊有柱的標準校 舍,其中門的位置就在 C1-3 與 C1-2 這兩種柱子的旁邊,所以這兩種 柱旁皆可以放置牆體,為了對稱所以另一邊的 C1-7、C1-5 與 C1-6 也 都去放置牆體。標準校舍一間教室是10m,以3跨的標準校舍來說1 跨大該3公尺左右,再扣掉2公尺的窗台,門寬大概就是1公尺,因 此本研究就設定牆體為寬1公尺, 牆體厚考量到一般梁的尺寸以及與 磚牆比較的原則,所以將牆厚度設為24cm,牆高則和樓高相同設為 3m。圖 4.10 為牆體的配筋圖(此為牆體的部份配筋, RC 牆分析時要 與旁邊的柱一起合併分析,所以這個配筋圖仍需加上旁邊的柱才能去 分析),其配筋主要是參考一些翼牆的配筋,規範中規定 RC 牆之鋼 筋量不得低於 0.25%, 本研究 RC 牆之鋼筋量大約是 0.5%。

第二章 RC 牆的側力位移曲線的計算並非以單獨牆體去計算,若 牆體旁邊有柱的時候,柱和牆要一起去分析,也就是視為一體,主要 是因為若牆旁邊有柱的時候, 柱對牆體的位移及強度都會造成相當程 度的影響, Ika [23]也有提到這一點。當牆體與柱視為一體時其所承 受的軸力是共同分擔, 也就是要將其一起放入斷面分析中分析。另一 重點是當分析完後求得牆的側力位移曲線是有包含柱的貢獻, 因為柱 跟牆體是視為一體去分析的, 所以此側力位移曲線其實是柱與牆相加 後的結果, 舉例來說, 若有一牆體如圖 4.11 所示, 其分析完後求得 的側力位移就是這一整體(柱加牆)的側力位移曲線。最後桿件側力位 移曲線疊加時要注意不要再加一次柱的側力位移曲線, 因為若納入疊 加的話會有重複加到同一支柱的問題。

本研究為了要探討 RC 牆量不同所造成的影響,設定了三種不同 牆,如表 4.2 所示。利用這三種牆體以對稱為原則去變化出不同的總 牆量,圖 4.12~圖 4.13 總牆量為 2,圖 4.14~圖 4.16 總牆量為 4,圖 4.17~圖 4.19 總牆量為 6,圖 4.20 總牆量為 8。以上四種不同的總牆 量有 9 種不同的牆配置,本研究將圖 4.12~圖 4.20 這個牆體配置的順 序設定為 wall case 1~9,這些牆體的配置是每層皆配置一樣,從一樓 到最高樓層皆有配置,因此 16 個純構架模型配上 9 個不同的 RC 牆 配置可以配出共 144 個模型,這 144 個模型稱為構架含 RC 牆模組。

構架含 RC 牆模型其分析方法與純構架模型類似,主要在桿件疊 加側力位移曲線的時候要注意,不要重複加到同一柱桿件,其餘的部 分一樣使用剪力型房屋簡易推垮分析,推出基底剪力對屋頂層位移的曲線後,再用 ATC-40 求出 PGA。

4.2.1 構架含 RC 牆校舍模組之耐震能力評估

144 楝校舍模組分析結果依照其構架特性分別表列於表 4.3~表 4.18。表中有列出最大基底剪力和強度降到 80%(性能點)時的位移、 最大基底剪力與強度降到 80%(性能點)時的強度值、最大基底剪力 與強度降到 80%(性能點)時的 PGA 和 PGA 的極限值、強度降到 80%(性能點)時的韌性。表中的基底剪力與 PGA 分別代表的是此結構 物分析出來所能承受的最大值。其中可以發現除同一類的結構隨樓高 的增加其基底剪力也有增加的現象外,還有同一結構物,其基底剪力 隨總牆量的增加而增加,例如 C22 這類結構物,當總牆量由2增加 到 8 時,其基底剪力從 482ff 增加到 1015tf,增加了 110%。若與純構 架時比較只要增加到總牆量 2 就可以提升 50%的基底剪力,可見在結 構物中加入 RC 牆可增加相當大的側力抵抗能力。

在 PGA 的部份也可以發現有類似的現象,除了在純構架模型中 發現的高樓層 PGA 比低樓層高之外,加入 RC 牆後結構物的 PGA 也 呈倍數成長,這主要跟基底剪力大幅增加有很重要的關係,因為基底 剪力增加結構物容量譜曲線所圍的面積也大幅增加,隨容量譜曲線增 加 PGA 也跟著增加。以 C22 這類建築為例,圖 4.21~圖 4.29 為此類

結構不同總牆量時的側推曲線,圖的順序是依照 wall case 1~9 去排 的。從圖中可以發現隨牆量的增加,基底剪力也在增加,因此曲線所 圍得面積也越大, PGA 也越大。另一方面由圖中可以發現在位移的 部份會隨總牆量的增加而漸小,這主要是因為在本研究中選定的 RC 牆計算模型對位移有一限制,就是牆體的位移不得超過0.02 倍的牆 高,由於本研究的牆體高度都設定在3公尺,位移限制都是6公分, 在疊加側推曲線時又是用位移同步的概念,所以再側推曲線到達6公 分時就會有一段很陡的下降段,而隨著參與結構的牆體越多此一現象 也越明顯。同樣的現象也可以從表 4.3~表 4.18 中發現,在同一種構 架結構物性能點的位移也會隨 wall case 1~9 而下降。若與純構架時的 PGA 值做比較的話,可以發現其 PGA 增加的量是非常可觀的,如果 以 C22(表 4.3)為例,其在純構架時 PGA(V80%)值大約在 0.32, 但只要 加入總牆量為2的牆量,其PGA(Vsorg)就可提升至0.40,增加了大約 25%, 若只看含牆構架的話, 當總牆量由2增加到8時, 其 PGA(V_{sow}) 從 0.40 增加到 0.84, 也就是說增加了 110%, 可見牆體的貢獻有多大。

在韌性的部份仍會因為柱桿件的破壞模式影響其結果,但在加入 RC 牆後,整體結構物的勁度被 RC 牆所帶動而增加很多,勁度抬高 後位移能力也就降低很多,加上牆的位移的限制,這些因素都造成結 構物韌性下降。跟純構架比較時都可發現其韌性差異非常的大,舉例 來說,純構架時C32這類構架的韌性是3.67,但是只要在構架中加 入總牆量為2的牆時韌性就掉至2.62,可見加入牆後構架的韌性以及 位移能力都降低很多,但勁度增加也並非一定不好,因為這也代表結 構物抵抗剪力的能力增加了。

整體來說,雖然加入 RC 牆體後韌性變差,但其抵抗側力的能力 卻呈倍數的變強,PGA 也是增大很多,由此可知牆體的確是能有效 增加結構物的安全性,就算加入的數量不多或牆體不完整,也能比純 構架的安全性要好。這也說明了為何校舍中沿走廊方向稱為弱向,而 且破壞也都多是沿走廊方向,就是因為沿走廊方向大多沒有牆體,反 之垂直走廊方向大多有許多隔間牆,這些牆體都為校舍強向提供了的 很多的強度。

4.2.2 構架含 RC 牆校舍之結構特性

若以整體構架含 RC 牆校舍模組的角度來看,圖 4.30 是最大基底 剪力與強度降到 80%(性能點)時的基底剪力分布圖,其平均值分別為 1002 tf 與 802 tf。圖 4.31 是最大基底剪力與強度降到 80%(性能點)時 的 PGA 分布圖,其平均值分別為 0.53 與 0.50。圖 4.32 是構架含 RC 牆模組的韌性分布圖,其平均值為 2.12。圖 4.33 是構架含 RC 牆模組 的單位面積柱極限剪力分布圖,這裡統計的柱是構架含 RC 牆模組內 所有在一樓的柱,分析出來單位面積柱極限剪力平均 8.58 kgf/cm²,

這裡的單位面積柱極限剪力會比純構架時小,主要是因為在 RC 牆計 算的時候,牆體旁的柱也要納入一起分析,所以無法將牆體旁柱的單 位面積剪力單獨求出,剛好這部份的柱原先都是屬於強度較高的一 群,扣除這部份的柱後整體平均值就跟著降低,但因為構架含 RC 牆 分析出來的單位面積柱極限剪力只是用來參考比較,所以不需要太精 確,只要能表現出應有的概念即可。圖 4.34 是構架含 RC 牆模組的單 位面積 RC 牆極限剪力分布圖, RC 牆在計算時是牆跟柱一起計算, 若要求單位面積RC牆極限剪力則必須要分隔出柱與牆頁個別貢獻的 強度,本研究先將 RC 牆加柱整體分析出來的強度減掉純構架中同一 跟柱所分析出來的強度,其差值再除上 RC 牆的斷面積, RC 牆的面 積不包括柱的部分,舉例來說,若有一RC 牆在 C1-2 的柱旁,其整 體牆加柱分析出來的強度為10,而同一根 C1-2 的柱在純構架的時候 分析出來的強度為2,因此將10減掉2,再除以RC牆的面積。此一 方式的概念就是去計算柱加了牆後所能額外提供的強度。這樣分析出 來單位面積 RC 牆極限剪力平均 18.72 kgf/cm²。從圖中會發現明顯的 兩個分布,其原因是設計牆體時有分為A、B、C三種牆體,加上本 研究的側推方向為由右到左,一般來說當牆體在柱的左邊時 RC 牆的 強度會比較高,當然若牆在柱的兩側時也是一樣,因此會在分布圖上 看出一不平均的分配, 附錄 B~D 中有這三類牆體的計算例, 其中就

可以發現側推方向還有柱在牆左邊或右都會對曲線有影響。圖 4.35 是β的統計圖,β的計算方式因為加入了 RC 牆所以有些改變:

$$\beta = \frac{V_{base, \max(structure)}}{\sum V_{c, \max(1stFloor)} + \sum V_{\text{RCW}, \max(1stFloor)}}$$
(4.2)

上式中分子的部份是結構物最大基底剪力,分母是所有一樓柱與 RC 牆分析出來的極限強度相加,這裡的 RC 牆極限強度指的是柱與 柱旁 RC 牆整體的強度,所以在柱極限強度那邊就要注意不要重複疊 加。

構架含 RC 牆校舍模組中 β 平均值為 0.93。加入 RC 牆後其 β 值 比純構架時下降了許多,原因是 RC 牆計算出來多屬於剪力破壞(由 附錄 G 中 V_{mn}/V_s 的比值可發現),加上牆體的勁度比柱高出很多,所 以極限強度都沒有辦法在最高點疊加,以致 β 的下降。

4.3 構架含磚牆校舍模組

本研究構架含磚牆模組主要是用純構架標準校舍去加入磚牆,其 概念與構架含 RC 牆時是一樣的。磚牆的尺寸經過一系列跟 RC 牆一 樣的考量後設定為牆高 3m,牆寬 100cm,牆厚 24cm 剛好是 1B 磚牆 的尺寸。台灣一般磚牆都是在構架完成後再推砌而成的,因此本研究 採用後砌式磚牆,也就是磚牆不承受軸力。再來磚牆的砌法有很多不 同的方法,本研究參考規範所建議的英國式與法國式砌法,經計算後 發現法國式砌法所能抵抗的單位面積剪力較小,因此為保守起見假設本研究中的磚牆皆是採用法國式砌法。

後砌式的磚牆不受軸力,因此在計算時完全跟柱不相干,也就是 不必像 RC 牆一樣,其可以單獨計算側力位移曲線,唯一跟柱有相關 的地方就是在圍束的部份,本研究的磚牆設定為三面圍束去分析。求 得磚牆側力位移曲線後,就可與柱的部分作疊加,這裡也不需要去考 慮會不會重複加到柱,因為簡單來說,構架含磚牆模組側推曲線就是 純構架側推曲線加上磚牆側力位移曲線即可求得。

本研究為了要探討磚牆量不同所造成的影響,跟RC 牆時一樣, 設定了三種不同牆,如表 4.2 所示。利用這三種牆體以對稱為原則去 變化出不同的總牆量,圖 4.12~圖 4.13 總牆量為 2,圖 4.14~圖 4.16 總牆量為 4,圖 4.17~圖 4.19 總牆量為 6、圖 4.20 總牆量為 8。以上 四種不同的總牆量有 9 種不同的牆配置,本研究將圖 4.12~圖 4.20 這 個牆體配置的順序設定為 wall case 1~9,因此 16 個純構架模型配上 9 個不同的磚牆配置可以配出共 144 個模型,這 144 個模型稱為構架含 磚牆模組。

構架含磚牆模型其分析方法與純構架模型類似,因為柱與磚牆完 全獨立計算側力位移曲線,所以只要全部桿件作疊加即可求得結構的 側推曲線,再用 ATC-40 求出 PGA。

63

4.3.1 構架含磚牆校舍模組之耐震能力評估

144 楝校舍模組分析結果依照其構架特性分別表列於表 4.19~表 4.34。表中有列出最大基底剪力和強度降到 80%(性能點)時的位移、 最大基底剪力與強度降到 80%(性能點) 時的強度值、最大基底剪力 與強度降到 80%(性能點)時的 PGA 和 PGA 的極限值、強度降到 80%(性能點)時的韌性。表中的基底剪力與PGA 分別代表的是此結構 物分析出來所能承受的最大值。其中可以發現除同一類的結構隨樓高 的增加其基底剪力也有增加的現象外,還有同一結構物,其基底剪力 隨總牆量的增加而增加,例如 C22 這類結構物,當總牆量由2增加 到8時,其基底剪力從327tf增加到386tf,增加了大約20%,若與純 構架時比較加入總牆量2可以提升5%的基底剪力,可見在結構物中 加入磚牆可增加側力抵抗能力,但其表現仍與構架含 RC 牆差異甚 大。另一現象就是相同總牆量時,其分析結果完全一樣,這是因為磚 牆側力位移曲線計算是完全獨立的,只須計算牆體本身,不像 RC 牆 要將旁邊的柱納入計算,所以不管放在柱左邊還是柱右邊,其結果完 全一樣,再來就是因為本研究採用的是台度磚牆,不承受軸力,所以 不管磚牆的位置在哪,只要牆的數量一致其分析結果就會完全相同。

在 PGA 的部份除了發現高樓層 PGA 比低樓層高之外,加入磚牆後結構物的 PGA 也有成長,這與含 RC 牆時相同,都是跟基底剪力

增加有關係。值得一提的是磚牆計算模型中也有對位移的一個限制, 就是牆體的位移不得超過0.02倍的牆高,由於本研究的牆體高度都 設定在3公尺,位移限制都是6公分,在疊加側推曲線時又是用位移 同步的概念,所以再側推曲線到達6公分時就會有一段很陡的下降 段,而隨著參與結構的牆體越多此一現象也越明顯,從附錄 E 中可以 發現因為其位移最大設定為 0.02 倍牆高,所以在達到時就假設牆體 完全損壞,直接到落至零的位置。此一現象也完全與構架含 RC 牆模 組看到的一樣。若與純構架時的 PGA 值做比較的話,可以發現其 PGA 增加的量並沒有很大,如果以C22為例,其在純構架時PGA(V80%) 值大約在 0.32, 當加入總牆量為 2 的牆量, 其 PGA(V_{sne})就只提升 0.01,大約就是增加3%,若只看含牆構架的話,當總牆量由2增加 到8時,其PGA(V80%)增加了0.02,差不多增加6%。由此可見磚牆 的貢獻非常的有限,尤其是本研究設定的磚牆又比較小,屬於翼牆的 形式,所以分析出來的結果才會都遠遠的差構架含RC 牆模組一大截。

在韌性的部份仍會因為柱桿件的破壞模式影響其結果,但在加入 磚牆後,整體結構物的勁度被磚牆所帶動而增加很多,勁度抬高後位 移能力也就降低很多,加上磚牆的位移的限制,這些因素都造成結構 物韌性下降,這樣的現象與構架含 RC 牆模組幾乎一樣,但下降幅度 沒有構架含 RC 牆模組的大。跟純構架比較時都可發現其韌性的差 異,舉例來說,純構架時C32這類構架的韌性是3.67,加入總牆量為2的磚牆時韌性掉至3.55,可見加入牆後構架的韌性以及位移能力都會衰減。

整體來說,雖然加入磚牆體後韌性變差,但其抵抗側力的能力增 加,PGA 也是增加,由此可知磚牆也是能增加結構物的安全性。綜 合來說構架含磚牆模組因為多了牆體,所以比純構架表現好,但若是 與構架含 RC 牆模組比的話就差很多了。不過若以規範中的 PGA 規 定 0.33 去看的話,大部分只有加磚牆,不論總牆量,大部分都是安 全的,但也只限於本研究中的構架含磚牆模組,實際的校舍所需的牆 量還是需要細部的去分析後求得。

4.3.2 構架含磚牆校合之結構特性

若以整體構架含磚牆校舍模組的角度來看,圖 4.36 是最大基底 剪力與強度降到 80%(性能點)時的基底剪力分布圖,其平均值分別為 681tf與 545tf。圖 4.37 是最大基底剪力與強度降到 80%(性能點)時的 PGA 分布圖,其平均值分別為 0.36 與 0.37,。圖 4.38 是構架含磚牆 模組的韌性分布圖,其平均值為 2.23。圖 4.39 是構架含磚牆模組的 單位面積柱極限剪力分布圖,這裡統計的柱是構架含磚牆模組內所有 在一樓的柱,分析出來單位面積柱極限剪力平均 8.61 kgf/cm²。圖 4.40 是構架含磚牆模組的單位面積磚牆極限剪力分布圖,其完全分佈在同 一個值上,其原因是所有的磚牆尺寸一樣,所以在計算磚牆側力位移 時結果也會完全一樣,另一方面磚牆也不會因為在柱左邊或右邊而影 響其極限強度。在計算單位面積磚牆極限剪力時也不用像求單位面積 RC 牆極限剪力時去剪掉柱的部份,因為分析時就已經是分開計算的 了。分析出來單位面積磚牆極限剪力平均 2.08 kgf/cm²。圖 4.41 是β 的統計圖,β的計算方式因為加入了磚牆所以有些改變:

$$\beta = \frac{V_{base, \max(structure)}}{\sum V_{c, \max(1stFloor)} + \sum V_{BW3, \max(1stFloor)}}$$
(4.3)

上式中分子的部份是結構物最大基底剪力,分母是所有一樓柱與 磚牆分析出來的極限強度相加。構架含磚牆校舍模組中β平均值為 0.99。加入磚牆後其β值沒有比純構架時下降,原因是磚牆計算出來 的側力位移曲線完全相同,所有磚牆都會在極限強度點疊加,以致主 控β的因素又回到柱桿件上,所以其展現出來的結果才會與純構架時 相似,圖4.41 中會發現在最後一段的地方β值比起前面小很多,此 段是 U35 構架加上9個牆配置的區域,回歸純構架時去看 U35 構架, 可以發現其柱的破壞模式較趨向剪力破壞,所以才會導致在其不能在 極限強度疊加。

67

第五章 校舍耐震能力初步評估之建議

本章節主要會探討 NCREE 所提出的校舍耐震能力初評方法。在 第二章介紹初評方法時就有提到一些初評的問題,其大部分是在計算 桿件強度時的假設,例如初評在計算主桿件之極限剪力強度時設定柱 為剪力破壞,柱的破壞模式絕不是能用一個剪力破壞去涵蓋,其還能 細分出多個其他的破壞模式,這對柱的側力位移曲線非常重要,因為 柱的側力位移曲線是要看其破壞模式後去再去計算求得。RC 牆的部 份,其採用一沒有開孔的 RC 牆試驗結果,真實校舍建築出現這種牆 的機會較小,因此初評方法會遇份高估真實校舍 RC 牆的極限剪力。 在整體結構的部份,初評建議的 / 每 R, 也都取的過分保守,其中某些 程度可能是相當於乘上一安全係數,就算是這樣也有欠考量。

本章前半段會先用尚未修正初評方法去評估校舍模組,比較其結 果與用剪力型房屋簡易推垮分析的差異,發現差異點後再試圖以推垮 分析的結果為準則,去想辦法修正初評方法,最後再用以修正的評方 法去評估校舍模組,與剪力型房屋簡易推垮分析結果再比較一次,檢 驗其修正後是否有達到本研究的比較基準。

本章後半段是安全的柱量與壁量比。安全的柱量比是一可以快速 判斷結構物安全與否的方式,雖然其精準度不如詳細評估,但其在方 便性佔有很大的優勢,加上其主要是用來供給工程師做參考用,所以 還是有其重要性。在分析完純構架、構架含 RC 牆、構架含磚牆這三 類校舍模組後,本研究有總數 304 棟的校舍,而且在構架含 RC 牆、 構架含磚牆這部份,牆量都有變化,所以也能計算出一安全的柱量與 牆量比,再將這安全的柱量與牆量比與文獻中提供的作一比較。

5.1 校舍模組使用 NCREE 初評方法之比較

本章節會先將三個校舍模組用現有的初評方法評估一次,主要就 是計算結構物的 PGA 與基底剪力。原始評估法裡並沒有計算 PGA 與 基底剪力,但其實只要將初評所使用的公式調動一下,就可以求得 PGA 與基底剪力,推導如下: 原始公式 $\frac{\beta(1.4\alpha,V)F_u}{Z(CW)} \ge 1.0$ (5.1)

$$1.4\alpha_{y}V \cong \tau_{BW4}A_{BW4} + \tau_{BW3}A_{BW3} + \tau_{C}A_{C} + \tau_{RCW}A_{RCW}$$
(5.2)

但因為實際校舍中缺乏四面圍束的磚牆,所以將上式改寫成:

$$1.4\alpha_{y}V \cong \tau_{BW3}A_{BW3} + \tau_{C}A_{C} + \tau_{RCW}A_{RCW}$$
(5.3)

上式是所有一樓垂直桿件的極限值疊加,其實這就是基底剪力,但基 於極限強度不會同時發生,底層剪力強度必須適度加以修正,於此參 考了日本耐震診斷基準法之規定將其強度乘以一折減係數β,所以初 評中的基底剪力計算方式如下:

Base Shear =
$$\beta(1.4\alpha_v V) \cong \beta(\tau_{BW3}A_{BW3} + \tau_C A_C + \tau_{RCW}A_{RCW})$$
 (5.4)

上式其實就是結構物所能提供的強度。將上式代回式(5.1):

$$\frac{\beta(\tau_{BW3}A_{BW3} + \tau_C A_C + \tau_{RCW}A_{RCW})F_u}{ZICW} \ge 1.0$$
(5.5)

重新整理上式即可得:

$$PGA = ZI = \frac{\beta(\tau_{BW3}A_{BW3} + \tau_{C}A_{C} + \tau_{RCW}A_{RCW})\sqrt{2R_{a} - 1}}{CW}$$
(5.6)

上式就是初評中的 PGA 計算方式。

校舍模組中桿件的尺寸帶入(5.4)與(5.6)中即可以的到初評求出 的校舍模組 PGA 與基底剪力,最後比較初評結果與第四章分析的結 果。本研究將比較分為兩大部份,並用比值的概念去展現其差異:

第一部分 基底剪力

比較兩方法求出的基底剪力差異

$$Ratio_{BS} = rac{初評的基底剪力}{簡易推垮的基底剪力}$$
 (5.7)

圖 5.1~圖 5.3 分別為純構架、構架含 RC 牆、構架含磚牆的基底 剪力比值圖。其 X 軸的部份是依照下面幾個條件由左到右排序:

1.懸臂走廊校舍~走廊有柱校舍

2.教室為2跨~教室為3跨

3.樓高為2層~樓高為5層

4. 牆體配置 wall case 1~ wall case 9

以構架含 RC 牆為例,X 軸的最左邊的校舍為懸臂走廊 2 跨 2 層 wall case 1 的校舍模型,而最右邊則是走廊有柱 3 跨 5 層 wall case 9 的校 舍模型。Y 軸的部份則是基底剪力的比值。由圖 5.1~圖 5.3 中可以發

現初評方法的基底剪力都比推垮分析出來的要高。圖中有一很明顯的 趨勢,就是高樓層的初評基底剪力較接近推垮分析的結果,還有就是 懸臂走廊初評的基底剪力較接近推垮分析的結果。主要會有這樣的結 果是因為初評中桿件的極限強度是定值,但實際上桿件的強度有一部 分是跟軸力的大小有關,也就是與樓層數有關,初評中的柱單位面積 極限剪力是用剪力破壞去計算的,所以其值會比其他破壞模式的高, 剛好在樓層數多時一樓柱所承受的軸力增加,因此分析出來的強度會 比較接近原先初評的設定,同樣的原因也可以解釋為何懸臂走廊初評 的基底剪力較接近推垮分析,在懸臂走廊時,垂直的柱數量比走廊有 柱的校舍較少,平均所需要承受的軸力較大,所以剛好會與初評原先 的設定較接近。可見將桿件的單位面積極限剪力設為一定值是不合理 的,其造成在低樓層時會有高估的現象

第二部分 PGA (最大地表加速度)

PGA 的比值圖將分為三張:

1.
$$Ratio_{PGA1} = \frac{初評的PGA}{側推曲線的PGA}$$
 (5.8)

上式中的PGA皆是用初評的公式(5.6)去求得的,差異是在分子 是用初評中的建議值代入式(5.6)去計算,而分母的部分採用的是用分 析出來的側推曲線抓出最大基底剪力與韌性值後配合分析時校舍模 型的重量(單位面積重量一般樓層為900kgf/m²,屋頂層750kgf/m²)代 入公式(5.6)求得的,這裡的側推曲線要先轉成 EPP(elastic perfectly plastic)的形式,再去找需要的值,因為規範是採用 EPP 模型。若以 純構架 C22 為例,將其中的桿件面積與結構參數配合初評的建議值 代入式(5.6)中可求得 PGA 為 0.28,分母的部分則是從表 4.1 中找出 C22 的最大基底剪力與韌性容量,再配合結構參數一樣代入式(5.6), 可求得 PGA 為 0.36,將值代入式(5.8)可得 Ratio_{PGA1} = 0.78。初評與 ATC-40 的 PGA 求法本身就有一定的差異存在,若是直接將兩個結果 拿來比較,或許就會將 PGA 求法的差異與參數間的差異全混在一 起,反而不知道真正的差異點在哪,所以這一比值是希望排除 PGA 求法不同所造成的差異,單純去了解用初評建議值與用側推曲線所求 出的 PGA 差異。

上式中分子的部分跟式(5.8)中側推曲線的 PGA 是一樣的,而分 母則是簡易推垮分析後用 ATC-40 去求得的,也就是第四章裡面的分 析結果。若以純構架 C22 為例,分子的部分就是 0.36,分母的話一 樣從表 4.1 中找出簡易推垮分析的結果 0.32,將值代入式(5.9)可得 *Ratio*_{PGA2} = 1.12。此一比值同樣是為了避免將全部的差異混在一起,上 一個比值中已經討論過參數間的差異了,所以這一個比值就來比較用 不同的 PGA 求法造成的差異,也就是 ATC-40 和初評公式之間的差 異。

3.
$$Ratio_{PGA3} = \frac{$$
初評的PGA (5.10)
簡易推垮(ATC-40)的PGA

上式中分子是用初評的建議值代入初評的公式(5.6)去求得的 PGA,分母則是簡易推垮分析後用 ATC-40 去求得的 PGA。若以純構 架 C22 為例,分子的部分就是 0.28,分母的部分就是 0.32,將值代 入式(5.10)可得 Ratio_{PGA3} = 0.87。此一比值是為了要比較初評與簡易推 垮這兩方法整體的差異點,此一比較可以說是最重要的,因為前兩個 比值主要都是著眼在單一差異,只能協助了解差異的影響,而這一比 值則是整體的差異,也就是本研究最後比較的依據。

將PGA 比值圖分為三張主要是為了清楚的了解這兩方法的真正 差異點。圖 5.4~圖 5.6 是純構架模組依照上面所述去求得的三張圖, 圖 5.7~圖 5.9 是構架含 RC 牆模組依照上面所述去求得的三張圖,圖 5.10~圖 5.12 是構架含磚牆模組依照上面所述去求得的三張圖。所有 比值圖 X 軸的排序方法都是跟前面基底剪力比值圖的完全一樣。

圖 5.4、圖 5.7、圖 5.10 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第一張比值圖,可以發現每一張的平均值皆小於 1, *Ratio*_{PGA1}這個比值中採用同樣的 PGA 求法,所以差異一定就在參數的 部分,加上前面在比較基底剪力時比值的平均是有超過 1 的,也就是 說問題一定是在初評的韌性容量建議值太保守了,簡單來說,原先若 是基底剪力較大,應該 PGA 值也會較大,但是初評的韌性容量值只 有取 1.2,比側推曲線的韌性容量平均值小了快 2 倍,導致最後的 PGA 比側推曲線所求出來的小。若與現地試驗(圖 2.25~圖 2.28)的韌性容 量去比較也可以發現初評的建議值真的非常保守。

圖 5.5、圖 5.8、圖 5.11 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第二張比值圖,也就是同樣採用側推曲線,但是使用不 同的 PGA 求法,從這張圖就可以發現初評的 PGA 求法與 ATC-40 還 是有很大的差異存在,有這樣的結果其實也是可以預期的,因為初評 方法所採用的是規範公式,其為求簡便採用 EPP 模型去求 PGA,還 有為了通用性將一些參數都直接給定,但 ATC-40 的求法卻是用反應 譜分析去求 PGA,加上 ATC-40 都只對單一結構物分析,不需要通用 性,所以參數可以依照實際結構物的狀況而定。由上面種種因素來 看,這兩法在本質上就有很大的差異性存在,所以比值圖會有這樣的 結果是可以理解的。

圖 5.6、圖 5.9、圖 5.12 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第三張比值圖,從這裡可以看出原始初評方法與本研究 所使用的簡易推垮分析整體的差異,圖中也是可以發現跟在比較基底 剪力時一樣的結果,就是高低樓層其會有高低估的問題,還有走廊有 無柱也會造成高低估的問題,其原因就是原先初評方法的桿件單位面 積剪力都是給一定值,但實際上在分析時可以發現軸力會對桿件的強 度有很大的影響。舉例來說,在純構架分析中對軸力相關的因素就是 單一樓層柱的數目,柱的數量越多單一根柱所承受的軸力就越小,另 一就是結構物的樓層數,樓層數越高載重就越重,柱所需要承受的軸 力就越高。

5.2 對 NCREE 初評方法之修正建議

由前一節的比較後可以發現有很多需要修改的地方,但因為初評 方法有簡單快速的原則,所以本文建議的修正也希望能表現出此一特 色,接下來依序提出建議的修正點:

修正 A.

原先初評中二樓以上至屋頂層之單位面積載重為900kgf/m²,本 研究建議將其修正一般樓層平均單位面積載重為900kgf/m²,以及屋 頂平均單位面積載重為750kgf/m²,經過這樣的修正後可以比較準確 的去評估結構物的總重。

修正 B.

原先初評折減極限強度所用的β=0.8,其來源是由日本耐震診斷 基準法之規定,但經過304棟校舍模型的分析後,本研究發現其值取 的太保守了,本研究中純構架的β平均值為0.99(圖4.7),構架含RC 牆的β平均值為0.93(圖4.35),構架含磚牆的β平均值為0.99(圖 4.41)。Cindrawaty[13]100 楝純構架分析結果其β平均值為0.99(圖
5.13),這結果與本研究純構架的部份是一樣的,可見初評中的β值取
的是非常保守,加上一般校舍多為純構架,所以本研究建議將β值提
升,考量到構架含 RC 牆的β平均值0.93 是模組中最小的,為求保守
以及方便記憶起見所以本文建議β取0.9。

修正 C.

原先初評設定韌性 $R_a = 1.2$ 。本研究純構架的 R_a 平均值為 2.31(圖 4.5),構架含 RC 牆的 R_a 平均值為 2.12(圖 4.32),構架含磚牆的 R_a 平 均值為 2.23(圖 4.38),四個現地試驗的 R_a 也都大於 1.2,加上 Cindrawaty[13]100 棟純構架分析結果 R_a 平均也有 3.4(圖 5.14)。考慮 到實際中純構架的校舍較多,所以本研究不希望對此類校舍過於低 估,所以本文建議 $R_a = 2.2$ 。

修正 D.

原先初評的柱單位面積極限剪力為 15 kgf/cm²,若是與純構架柱 分析的平均值 8.62 kgf/cm² 比較,很明顯的初評原先的建議值比較 大,這就是因為原先初評將柱的破壞模式設定在剪力破壞,但實際上 並非全部的柱都一定會是剪力破壞,從 Cindrawaty [13]100 楝純構架 柱分析中也可以發現只有一少部份的柱會是剪力破壞,而且其平均值 也只有 6.6 kgf/cm² (圖 5.15),不到初評假設的一半,值得注意的是 Cindrawaty 分析的校舍全為 2~3 樓的校舍, 而本研究校舍模組中 2~3 樓的校舍柱其平均單位面積剪力為 7.07 kgf/cm², Cindrawaty 分析平 均值會比本研究的小,主要是因為本研究的柱斷面積是採用陳雅婷 [30]的建議,所以柱面積比 Cindrawaty 分析的柱面積大,抵抗剪力強 度因此提升,最後才會造成單位面積極限剪力強度平均值較大的結 果。但前一節中發現其若設定為一定值的話會有對特定建築高低估的 問題,深入討論後發現是跟柱承受的軸力有關,所以本文將柱分為三 類,教室柱、走廊柱與隔間牆內柱,會將柱分為這三類除了軸力的因 素外,還有就是因為再建立純構架校舍模組時柱就是分為這三類。柱 分為三類後,再與軸力相關的樓層數作細分,所以依照不同樓層數不 同柱類都各別給予其一建議值,但若這樣去細分柱的單位面積剪力太 過複雜也不容易記憶,所以本研究要建立一簡易的公式,只需將結構 物的樓層數代入公式就可大略的估算出柱的單位面積極限剪力,為了 要找出這樣的關係本研究將純構架模組裡的教室柱、走廊柱與隔間牆 內柱單位面積剪力與樓層數的關係畫成圖 5.16、圖 5.17 與圖 5.18, 將關係回歸可得公式,圖 5.15 中可以發現回歸公式有明顯的按照樓 層數在變化,但是其在同一樓層數中的差異性也是很大,最主要的原 因是這張圖是教室柱的部份,教室柱中一部份的柱是在窗檯旁,屬於 短柱,另一部分的長柱又因為位置不同而承受不同的軸力,所以造成 教室柱的破壞模式分佈較廣,最後才會使強度的差異甚大,但因為回 歸公式主要還是在平均值的範圍內,所以尚可接受。同樣將圖 5.17 提出來看就可以發現因為走廊柱全為長柱,加上軸力變化較小,所以 同樓層數間的破壞模式都很接近,強度的差異就沒有像前面那麼大 了。至於圖 5.18 其單位面積強度似乎就沒有按照樓層數變化,因為 這部份是隔間牆內柱,原先分析時並沒有在隔間牆內柱上加軸力(假 設軸力平均分散隔間牆上),所以其不會因為樓層數而變化加載的軸 力,也因為不承受軸力造成其極限強度較小,整體上趨近一定值。

為求方便將上面所回歸出來的公式稍微化簡,可以發現走廊柱單 位面積剪力公式大約是教室柱單位面積剪力公式的 0.6 倍,所以本研 究將三類柱的單位面積極限剪力強度建議計算公式列於下面:

$$\tau_{c(\chi_{\Xi t})} = 1.8 \times \text{ ems} + 4$$
(5.11)

$$\tau_{c(\pm \mu k)} = 0.6 \times \tau_{c(\lambda k k)} \tag{5.12}$$

$$\tau_{c(\text{Rlihn} h \alpha t)} = 2.6 \tag{5.13}$$

上式的單位皆為 kgf/cm² (公式僅適用於 2~5 樓的校舍建築)。式(5.13) 為隔間牆內柱的單位面積極限剪力強度,因為在前面的分析趨近一定 值所以本研究就直接取 2.6 kgf/cm² 作為最後的建議值。

修正 E.

原先初評的 RC 牆單位面積極限剪力為 24 kgf/cm²。本研究構架

含 RC 牆模組中總共有 928 個 RC 牆, 全為翼牆的型式, 單位面積剪 力平均值為 18.72 kgf/cm² (圖 4.34), 但因為分析 RC 牆時軸力也會影 響其強度,所以將 RC 牆的單位面積極限剪力強度與樓層數繪製成關 係圖(圖 5.19), 由圖中可以發現其強度的確跟樓層數是正相關, 但其 幅度並沒有很大,所以本研究就設定單位面積剪力強度為一定值。另 外,牆體形式不同也會對強度有很大的影響,在第四章時就有討論 過,尤其本研究的側推力只有一個方向,實際上地震發生時絕對不會 只有單一方向的側力,因此若是將本研究側推方向轉換為由左向右推 的話,牆體形式 B 與 C 的破壞模式就會完全顛倒。舉例來說,原先 是由右向左推時, 牆體形式 B 因為柱的位置在壓力側, 導致只剩牆 體的主筋去抵抗拉力,所以撓曲破壞會主控,反之,若是由左向右推, 牆體形式 B 的柱位置就會在拉力側, 而柱的主筋較多, 可以抵抗較 大的拉力,所以剪力破壞就會相對較早發生。由此可知若是直接採用 整體的平均值作建議就是未考量到側推方向這點,加上一般來說,若 是剪力破壞主控的強度值都會較撓曲主控的高,本研究中的牆體形式 A 與 C 分析出來後多為剪力破壞主控,因此剪力破壞的牆體數量會較 多,導致平均值提高。

基於考量到側推方向改變後的變化與撓曲主控強度會較小這兩點,本研究建議 RC 牆單位面積極限剪力強度應採用牆體形式 B 的分

79

析結果(圖 5.19 中圓點的部份),其平均值為 12.9 kgf/cm²,為求方便 記憶起見將平均值保守的取整數 12 kgf/cm² 做為建議值。此值只有原 先初評建議值的一半,但因為這裡的 RC 牆設定為翼牆的形式,加上 一般校舍中比較常見這類的牆體,所以整體上來說是合理的。

修正 F.

原先初評的三面圍東磚牆單位面積極限剪力為 1.5 kgf/cm²。由於 本研究設定磚牆為法國式砌法三面圍東的台度磚牆,加上牆體只有一 種尺寸,所以分析出來的單位面積極限剪力只有一個,其值為 2.08 kgf/cm²(圖 4.40)。因為本研究所採用的磚牆分析模型已被規範所採 用,加上規範中有建議磚牆砌法使用法國式砌法,所以建議將原先的 初評建議值改為本研究的分析結果 2.08 kgf/cm²,為求方便記憶取整 數 2 kgf/cm²。

5.3 校舍模組使用 NCREE 修正初評方法之比較

前節中本研究對初評方法內較不完善的地方一一做了修正的建 議,但究竟在修正後初評方法改善了多少就是本節的重點所在。首先 將初評方法依照建議修正 A~F 去修正,再使用修正完成的初評方法 重新去評估三個校舍模組,最後比較修正過後初評方法與簡易推垮分 析的結果。這裡一樣將比較分為基底剪力與 PGA,並用比值的概念 去展現其差異,其概念與 5.1 節時完全相同,只是將原本初評的部份 改為修正後的初評。會將這裡比較的項目定為跟前面的一樣就是希望 與修正前的比值做比較。接下來圖 5.20~圖 5.31 為三類校舍模組的比 值比較圖,圖中所有的空心圓點都是代表修正前,實心圓黑點都是代 表修正過後:

第一部分 基底剪力

$$Ratio_{BS} = \frac{\& E \ arrive{BS}}{\ \widehat{n} \ B} \frac{\& E \ arrive{BS}}{B}$$
(5.14)

修正過後可以發現三種校舍模組的平均值皆小於1(圖 5.20~圖 5.22),相較於原先修正前的平均值小很多,這是因為原先初評所建議 的桿件單位面積極限剪力較大,代入桿件斷面積後疊加所得的基底剪 力自然就會放大,但是經過前面的探討後可以發現原先初評建議值太 過高估,因此在分析完304 楝校会模型後,本研究對於桿件的單位面 積極限剪力重新作了建議,而這些建議值大部分都小於原先初評的建 議值,所以採用修正過後初評方法計算出來的基底剪力才會變小,導 致比值平均小於1,不過這也代表了修正過後的初評方法會偏保守, 但畢竟初評方法只能概略的評估耐震能力,所以偏保守是比較安全 的。另一點是原先初評對特定校舍會有高低估的現象,從圖 5.20~圖 5.22 中空心圓的部份就可發現,其變異很大,而且有很明顯的高低估 現象,經過修正後此現象已大幅改善,圖中黑圓點的部份其變異就有 明顯的較小,原先明顯的高低估也都被修正了,這也可由圖中的變異

81

係數去得知,原先未修正時變異係數都超過0.15,修正後初評變異係 數都降到0.1以下,這就代表修正後初評方法在基底剪力的部份已改 善了對特定校舍高低估的缺點。

第二部分 PGA (最大地表加速度)

1.
$$Ratio_{PGAI} = \frac{修正初評的PGA}{侧推曲線的PGA}$$
 (5.15)

3.
$$Ratio_{PGA3} = \frac{$$
修正初評的 $PGA}{$ 簡易推垮 $(ATC - 40)$ 的 $PGA}$ (5.17)

將PGA 比值圖分為三張圖,圖中所有的空心圓點都是代表修正 前,實心圓黑點都是代表修正過後,比較修正前後的差異。圖 5.23~ 圖 5.25 是純構架模組依照上面所述去求得的三張圖。圖 5.26~圖 5.28 是構架含 RC 牆模組依照上面所述去求得的三張圖。圖 5.29~圖 5.31 是構架含磚牆模組依照上面所述去求得的三張圖。

圖 5.23、圖 5.26、圖 5.29 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第一張比值圖,可以發現每一張的平均值還是小於 1, 而且與尚未修改時差不多。原因是這一張比值圖中 PGA 都是用初評 公式求出來的,分母的部分是直接從側推曲線中找最大基底剪力與 R_a 值,配合校舍模型重代入公式求 PGA,所以修正前後不會有差異, 但分子的部分因為是採用修正建議值,所以會有差異,雖然本研究建 議將 R_a與 B 增加,但另一方面在桿件的單位面積的部分卻是比原先初 評的建議值小,一消一漲剛好抵銷,所以在才會造成差異好像不大的 現象。

圖 5.24、圖 5.27、圖 5.30 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第二張比值圖,修正前後對這張圖並沒有任何影響,因 為這部分原先就沒有採用初評的建議值,主要是為的比較不同的 PGA 求法其差異,所以修正後 PGA 求法不同造成的差異還是存在,其實 也就是耐震規範與 ATC-40 的在求 PGA 差異一直存在。

圖 5.25、圖 5.28、圖 5.31 這三張圖分別為純構架、構架含 RC 牆、 構架含磚牆的第三張比值圖,從這裡可以看出原始初評方法與本研究 所使用的簡易推垮分析的差異,從圖中可以發現原先初評對不同校舍 間會有高低估的現象,經過修正後此現象已大幅改善,可由各別圖中 的變異係數去得知,原先未修正時變異係數都超過 0.15,修正後初評 變異係數都降到 0.11 以下。另外為了不高低估特定一類校舍模組, 所以也要去檢查了三類校舍在此的平均值,若其值都很接近的話,代 表就算將不同類型校舍放在一起分析也不會有對特定類型校舍高低 估的現象,從三張圖中就可以發現,三類模組修正後的平均值雖然沒 有非常接近,但也都在合理範圍內,所以代表修正後有達到本研究不 高低估特定模組的目標。另外為了保守起見,本研究也希望能讓分析 出來的點盡量小於1,這一部分雖然還是沒有完全達到標準,但已經

83

很接近了。

從上面兩大部分的比較過後可以發現修正後的結果好像與尚未 修正時的差不多,但實際上在改善初評高低估的這點可以說是相當成 功,也就修正過後的初評方法在整體邏輯上有很好的改善。

5.4 安全柱量與壁量之建議

本研究在分析了總數 304 楝的模型校舍後,可以深入研究求得一 統計的安全柱壁量比,但本研究採用的是模型校舍,並無任何災損資 料,根本無法去評斷實際之安全或不安全,因此如何判定校舍之破壞 與否則是一重點。本研究參考規範中的乙與1值,Z為規範中的震區 係數,但本研究並沒有設定校舍值置,所以無法得知此值,但一般都 是使用 0.33。I 值的部分建築物之用途係數,其實就是一重要係數, 若建築物越重要此係數也越大,一般來說有 1、1.25、1.5 三種等級。 本研究設定若結構物分析出來的 PGA 值小於規範的 ZI 時則結構物為 不安全的,也就是說 Z=0.33 時依照用途係數可以分為三種等級,一 是當為 ZI=0.33 時,二是當為 ZI=0.0.4125 時,三是當為 ZI=0.495 時。

柱量比的定義如下:

$$柱量比 = \frac{-樓柱總面積}{總樓地板面積}$$
(5.18)

將結構物的資料代入即可求出一柱量比,求出後再將柱量比與結構物

的 PGA 畫圖,圖 5.32 是利用純構架校舍模組所畫出的,圖中可以發 現其中的點並沒有很一致趨勢,這主要是因為本研究中的純構架模組 在 2~3 樓模組中的柱是沒有配置繫筋還有箍筋間距是採用 25cm,但 在 4~5 樓模組的柱卻是有配置雙向繫筋還有箍筋間距是採用 20cm。 若將這兩模組分開討論的話,圖 5.33 為 2~3 樓模組,圖 5.34 為 4~5 樓模組,可以很明顯發現若有箍筋間距小與有配置繫筋皆可以很明顯 對耐震能力的提升有幫助。圖中的公式是一趨勢線的公式,將公式中 的 x 代入柱量比即可以求出一對應的 y,也就是 PGA,將公式做一簡 化:

本研究將規範中的 ZI 取代這 PGA,反算回去即可求的對應於規範 ZI 的安全柱量比,將本研建議的安全柱量比放置於表 5.1。若將本研究 所分析的結果與第二章所提到的安全柱量比研究比較(圖 5.35),圖中 點為本研究 2~5 樓的校舍模組所分析出來的柱量比,實線為本研究建 議 0.33 時的安全柱量比其中分為兩段就是因為配筋的不同,虛線為 用張嘉祥與呂國維建議的算出的安全柱量比,可以發現在兩研究中建 議值皆大於 0.5%,除 4~5 樓校舍模組因為柱配筋的關係與其他不同 所以不納入考慮。另一點是可以發現本研究的 2~3 樓校舍模組有符合 安全柱量比的似乎不多,這也代表實際校舍可能也會有此問題,因為 本研究的 2~3 樓校舍模型是從實際校舍的統計值來的。

牆量的部分有 RC 牆與磚牆, 牆量比的定義為:

因為結構物不可能單獨只有牆,牆量一定要和柱量一起考量,所以本 研究將牆量轉換為等值的柱量,接下來一步步介紹轉換的過程,首先 將構架含牆模組的 PGA 減掉純構架的時的 PGA,例如有一 C22 wall case 1 的校舍,它就要先減掉純構架時 C22 的 PGA,這樣一來多餘的 PGA 應該就是由牆所提供的,再將這多出來的 PGA 除上牆量,這樣 一來就可以算出單位牆量所能提供的 PGA,取平均值後跟前面安全柱 量的公式做比較,最後將牆量按照比例轉換為柱量。

圖 5.36 為 RC 牆單位牆量所能提供的 PGA 分布圖,圖 5.37 為磚 牆單位牆量所能提供的 PGA 分布圖,從這兩張圖中會發現有等於零 甚至小於零的部分,換句話說加入牆後,PGA 沒有增加,有些反而 減小,這不符合一般的想法,但是這其實是因為牆體的側力位移曲線 模型的選定問題,因為本研究的側力位移曲線會有一垂直下降段,導 致其韌性下降太快,造成牆量達到一定程度時此現象就會發生,但這 是因為目前分析桿件側力位移曲線所造成的結果,而且因有負值所以 其平均值會較保守,基於這樣本研究仍然採用此分析結果。

86
因為本研究的RC 牆屬 翼牆型式其平均單位牆量所能提供的PGA 值大概是 89 左右,若與原先安全柱量的公式比較,可以發現在柱量 比前的係數大約都只有 89 的一半,換句話說等值柱量大約就是兩倍 RC 翼牆量,其公式如下:

RC翼牆等值柱量比=2×RC翼牆量比 (5.22) 若用單位面積剪力強度的角度去看也可以找到差不多的關係,原先分 析出來的平均柱單位面積剪力是 8.62 kgf/cm²,而 RC 翼牆的平均單 位面積剪力是 18.72 kgf/cm²,差不多也是 2 倍左右,這是因為強度也 是影響 PGA 大小的因素之一,所以才會有這一層關係。

在磚牆的部分其平均單位牆量所能提供的PGA 值大概是 3.35 左 右,若與原先安全柱量的公式比較,可以發現在柱量比前的係數大約 是 3.35 的 10 倍,換句話說等值柱量大約就是 0.1 倍磚牆量,其公式 如下:

磚牆等值柱量比=0.1×磚牆量比 (5.23)

但這裡若用單位面積剪力強度的角度去看就找不到關聯,原先分析出 來的平均柱單位面積剪力是 8.62 kgf/cm²,而磚牆的平均單位面積剪 力是 2 kgf/cm²,差不多是 0.23 倍左右,這可能也是因為桿件側力位 移曲線分析的關係,但還是要以整體結構行為為準,所以本研究還是 採用等值柱量的公式。

總結當結構物中含有柱、RC 牆或磚牆時,先將牆量比利用式 5.22

與式 5.23 轉換為等值的柱量,再統一用安全柱量的公式去評估:

柱內未配置穿插繫筋

PGA = 34×[柱量比 + 2×RC 翼牆等值柱量比 + 0.1×磚牆等值柱量比] + 0.16 (5.24)

柱內有配置穿插繫筋

PGA = 40×[柱量比 + 2×RC 翼牆等值柱量比 + 0.1×磚牆等值柱量比] + 0.22 (5.25)

經過將牆量換為柱量後,不管是哪種類型的模組校舍都可以很單純的 採用上式去評估,最後將 PGA 與規範的 ZI 做比較,即可反推安全柱 量比,因為已將牆量轉換為柱量所以安全柱量比(整體包括等值柱量)

第六章 結論與建議

6.1 結論

本研究目標為修改現有 NCREE 初步評估方法,所以第一步就是 要詳細了解 NCREE 初評中不盡完善的地方,因為要修正初評方法所 以利用簡易推垮分析方法去比較,這裡不使用套裝軟體分析主要是因 為本研究分析的數量龐大,若使用套裝軟體的話時間會拉長,而且簡 易推垮分析的準確性也不差。在比較時必須使用同一組校舍,利用初 步評估與簡易推垮兩個方法分別去分析,但為了簡便起見本研究從校 舍資料庫中找出台灣中小學校舍的規律性,再利用規律性去建立模型 校舍,也就是校舍的結構尺寸完全一樣,只有內部的柱尺寸與配筋會 有不同,另一部分是本研究有討論到校舍有配置牆體的部份,所以也 需要在模型校舍內加入不同數量的牆體去分析。利用初步評估與簡易 推垮分析完模型校舍後做一比較,比較完後對初步評估法做修正之建 議。下面將以條列式的方式說明結論:

 原先初評的柱單位面積極限剪力為 15 kgf/cm²,而且將柱的破壞模 式設定在剪力破壞,但實際上並非全部的柱都一定會是剪力破 壞,加上柱單位面積強度與其承受的軸力有關,也就是說柱的單 位面積剪力不應該只是一定值,而且也要考慮其他破壞模式。所

89

以本研究建議柱的單位面積剪力應該要減小,並且依照結構物樓 層數來變化其值,本研究為求精準所以再將柱的單位面積剪力細 分到三類,教室柱、走廊柱與隔間牆內柱,會細分為這三類主要 也是軸力的因素。經過這樣的修正後分析結果就不再會對不同樓 層數以及不同類型校舍有高低估的問題。

- 2. 原先初評的 RC 牆單位面積極限剪力為 24 kgf/cm²,其值主要是參考 RC 剪力牆的實驗結果,但實際校舍中考量到通風、採光、出入方便性,沿走廊方向不易出現這類型的牆,主要可能還是以翼牆的型式為主,經過本研究分析含 RC 牆校舍模組(裡面的牆體全為翼牆型式)後,其單位面積剪力平均值為 18.72 kgf/cm² (圖 4.34), 其中軸力造成的影響不大,為求簡便將其的影響忽略,並且保守的只考慮撓曲破壞的部分,最後建議 RC 翼牆單位面積極限剪力為 12 kgf/cm²。
- 3. 原先初評的三面圍東磚牆單位面積極限剪力為 1.5 kgf/cm²。在磚 牆的部分未考慮四面圍東其理由與 RC 牆時相同,本研究參考了磚 牆規範所採用的分析模型,加上規範中有建議磚牆砌法使用法國 式砌法,所以建議將原先的初評建議值改為本研究的分析結果
 2.08 kgf/cm²,為求方便記憶取整數 2 kgf/cm²。
- 4. 原先初評折減極限強度所用的β=0.8,其來源是由日本耐震診斷基

準法之規定,但經過 304 棟校舍模型的分析後,本研究發現其值 取的太保守了,本研究中純構架的β平均值為 0.99(圖 4.7),構架 含 RC 牆的β平均值為 0.93(圖 4.35),構架含磚牆的β平均值為 0.99(圖 4.41)。為何β值會高出 0.8,主要就是因為本研究桿件分 析結果多為撓剪破壞,所以側力位移曲線中有一平台段,極限強 度都會在這疊加,因此不需要折減太多的強度,所以本研究建議 將β值提升,考量到構架含 RC 牆的β平均值 0.93 是模組中最小 的,為求保守以及方便記憶起見所以本文建議β取 0.9。

- 5. 原先初評設定韌性R_a = 1.2。本研究純構架的R_a平均值為2.31(圖 4.5),構架含RC 牆的R_a平均值為2.12(圖4.32),構架含磚牆的R_a平 均值為2.23(圖4.38),會有這樣的結果主要也是因為桿件分析結果 多為撓剪破壞,所以韌性較佳。若與四個校舍現地試驗的R_a比較 也會發現大於1.2 很多。考慮到實際中純構架的校舍較多,所以本 研究不希望對此類校舍過於低估,所以本文建議R_a = 2.2。
- 6. 原先初評中二樓以上至屋頂層之單位面積載重為900kgf/m²,但因為一般來說屋頂層的重量會較小一點,所以本研究建議將其修正 一般樓層平均單位面積載重為900kgf/m²,以及屋頂平均單位面積 載重為750kgf/m²,經過這樣的修正後可以比較準確的去評估結構 物的總重。

經過本研究的修正後(表 6.1),雖然最後的結果差異不大,但在其 中細部的地方卻是有很大的改善,像原先初評方法會對特定形式的校 舍高估或低估,經過修正後這樣的問題已經沒有了,可見修正初評後 其準確性更佳。

另一方面,本研究也利用分析結果提供了一安全柱壁量的比,其 分析方法就是先將柱量比對應的結構物 PGA 畫圖,找出其關係,再 以類似的方法去找牆量比的部份,最後將牆量比轉換為等值的柱量 比,結合後與規範要求做比較,反推回去即可求得安全柱量比(包括 等值柱量的部份)。在分析磚牆的部分因為側力位移曲線模型的關係 會造成一些結果不合理,但在還可接受的範圍內。柱量與壁量是非常 容易取得的結構物資料,若能以此作為判定結構安全性的依據一定是 很方便的,但是缺乏完整實際的震損資料,所以目前只能依據規範中 的規定去判定。

6.2 建議

- 為了避免悲劇再發生,應盡速完成全國校舍建築的耐震能力評估,將能力不足的校舍做補強。
- 初步評估法雖然經過了修正,但其修正的部份只限於基本耐震性能,另一部份,調整因子則尚未討論,在調整因子內有許多項目, 其對於結構的影響到底大或是小都沒有經過研究所得,這樣一來

有可能會降低或高估結構物的耐震性能,所以應該對此作一研 究,才能使初評方法更加合理。

 本研究在判定結構破壞與否的依據是來自於規範,但是若能有完 整實際的震損資料,就可以根據實際的狀況去判定結構的破壞程 度,進而使本研究的結果更具公信力。

參考文獻

- [1] 鍾立來、簡文郁、葉勇凱、黃世建、余健維、張撼軍、陳永蒼、王翊光、 周德光、許丁友、邱建國、邱聰智,「國民中小學典型校舍耐震能力之簡易 調查」,國家地震工程研究中心報告,NCREE-05-007,台北,2005年6月。
- [2] 許茂雄、張嘉祥、姚昭智、劉玉文,「台南市國民中小學及幼稚園學校建築 結構安全評估報告」,成功大學建築系,1993年9月。
- [3] 陳錫慶、李宏仁、杜怡萱、賴國龍,「以南投縣集集地震震損校舍資料驗核 既有耐震能力初步評估法之研究」,中華民國第八屆結構工程研討會論文摘 要集,南投,2006年。
- [4] ATC, "Seismic Evaluation and Retrofit of Concrete Buildings," ATC-40 Report, Applied Technology Council, Redwood City, California, SSC 96-01, Nov., 1996.
- [5] 許丁友、鍾立來、廖文義、邱建國、簡文郁、周德光,「國民中小學典型校 舍耐震能力初步評估法」,國家地震工程研究中心報告,NCREE-03-049, 台北,2003年12月。
- [6] 羅俊雄、許茂雄,「1999年9月21日台灣中部集集地震初步勘災報告(二)」, 國家地震工程研究中心研究報告,NCREE-99-031,台北,1999年11月。
- [7] 內政部營建署編輯委員會,「建築物耐震設計規範及解說」, 營建雜誌社, 台北, 2005。
- [8] 杜怡萱、涂耀賢,「耐震詳評之簡化推垮分析法」,國家地震工程研究中心研究報告,NCREE-05-018,台北,2005年10月。
- [9] Newmark, N. M., Hall, W. J., "Earthquake Spectra and Design," Engineering Monographs on Earthquake Criteria, Structure Design, and String Motion Records, EERI,1982.
- [10] Chopra, A. K., "Dynamics of Structure-theory and Application to Earthquake Engineering," Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1995.
- [11] 陳奕信,「含磚牆 RC 建築結構之耐震診斷」,博士論文,國立成功大學建築 研究所,台南,2003。
- [12] Kwashinma, K. and Aizawa, K., "Modification of Earthquake Response Spectra with Respect to Damping Ratio," Proceedings of third U.S. National Conference on Earthquake Engineering, south Carolina, pp.1107-1116, 1986.
- [13] Cindrawaty, L.,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,台 灣科技大學營建工程系,2007。
- [14] Wallace, J. W., "BIAX : Revision 1 A Compyter Program for the Analysis of Reforced Concrete and Reinforced Masonry Section," Report No. CU/CEE-92/4, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, February 1992.

- [15] ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02)," American Concrete Institute, Farmington Hills, 443 pp., 2002
- [16] Hwang, S. J., and Lee, H. J., "Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model," *Journal of Structural Engineering*, ASCE, Vol. 128, No. 12, December, pp. 1519-1526, 2002.
- [17] Elwood, K., and Moehle, J., "Shake Table Tests on the Axial Load Failure of Reinforced Concrete Columns," Proceedings, fib symposium, Concrete Structures in Seismic Regions, Athens. 2003.
- [18] Otani S., and Sozen M. A., Behavior of Multistory Reinforced Concrete Frames during Earthquakes. Structural Research Series No. 392, University of Illinois Urbana. 551 pages. 1972.
- [19] Sezen, H., "Seismic Response and Modeling of Reinforced Concrete Building Columns," Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley. 2002.
- [20] Berry, M., and Eberhard, M., "Practical Performance Model for Bar Buckling," *Journal of Structural Engineering*, ASCE, Vol.131, No.7, pp.1060-1070, 2005.
- [21] Elwood, K. J., and Moehle, J. P. "Drift Capacity of Reinforced Concrete Column with Light Transverse Reinforcement," Earthquake Spectra, Vol. 21, No. 1, pp. 71-89, 2005.
- [22] Elwood, K. J., and Moehle, J. P. "Axial Capacity Model for Shear-Damaged Columns," ACI Structural Journal, Vol.102, No. 4, pp. 578-587, 2005.
- [23] Ika Bali,「低矮型 RC 剪力牆側向載重位移曲線預測之研究與應用」,博士論 文,台灣科技大學營建工程系,2007。
- [24] American Concrete Institute (ACI), "Building code requirements for structural concrete," ACI 318-05, Farmington Hills, Mich, 2005.
- [25] Moehle, J. P. ,"Displacement-based design of RC structures subjected to earthquakes," Earthquake Spectra, 8(3), 403-428, 1992.
- [26] Lehman, D. E., and Moehle, J. P., "Seismic performance of well-confined concrete bridge columns," PEER-1998/01, Pacific Earthquake Engineering Research Center, Univ. of California, Berkeley, 2000.
- [27] 內政部營建署編輯委員,「建築物磚構造及施工規範」,營建雜誌社,台北, 2007。
- [28] 高健章、陳清泉、蔡益超,「磚牆加強之鋼筋混凝土構架耐震能力試驗研究 (二)」,行政院國家科學委員會,防災科技研究報告 74-31 號,台北,1985 年。
- [29] 黃國彰,「有邊界柱梁之磚牆耐震試驗與等值牆版分析」,國立成功大學建築研究所碩士論文,許茂雄教授指導,台南,1997年。

- [30] 陳雅婷,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,台灣科 技大學營建工程系,2006。
- [31] 日本建築防災協會,「既存鋼筋混凝土造建築物之耐震診斷基準」,日本建築防災協會,東京,1999。
- [32] 蔡益超,「鋼筋混凝土建築物耐震能力評估及推廣」,內政部建築研究所, 台北,1999。
- [33] 蔡益超、黃炯憲、曾一平、陳威成,「學要建築結構詳細耐震評估方法」,『中 小學校舍耐震評估與補強』,國家地震工程研究中心,台北,2000年9月。
- [34] 葉永信,「鋼筋混凝土牆之碳纖 FRP 耐震補強研究」,國立台灣科技大學營 建工程系,碩士論文,台北,2001年7月。
- [35] 廖文義、葉永信,「含非結構牆兩層樓構架之耐震試驗」,國家地震工程研究中心研究期中報告,台北,2003年9月。
- [36] 邱聰智,「碳纖 FRP 在鋼筋混凝土牆之耐震補強研究」,國立台灣科技大學 營建工程系,碩士論文,台北,2002年6月。
- [37] 江文卿、邱聰智、蕭輔沛、杜怡萱、簡文郁、葉勇凱、鍾立來、黃世建,「花 蓮縣新城國中校舍現地實驗一靜態單向側推」,國家地震工程研究中心研究 報告,NCREE-08-008,台北,2008年3月。
- [38] 江文卿,「既有校舍結構耐震能力之現地實驗研究」,博士論文,台灣科技 大學營建工程系,2008。
- [39] 翁元滔、林克強、黃世建、邱聰智,「桃園縣瑞埔國小校舍耐震性能現地試驗-標準構架試體擬動態與反覆側推試驗」,國家地震工程研究中心研究報告,NCREE-08-004,台北,2008年2月。
- [40] 邱耀正、黄世建、蔡克銓,「校舍耐震補強現地試驗成果研討會論文集」, 國家地震工程研究中心研究報告,NCREE-08-001,台北,2008年1月。
- [41] 張嘉祥、呂國維,「學校建築震害與柱單位載重及壁量比與耐震指標關係探討」,中華民國第五屆結構工程研討會論文集(二),台灣南投,民國 89 年 8 月,第1059-1067頁。
- [42] 黃世建、陳正平、王森源、陳正誠、蕭興臺,「學校建築常見之結構損害現 象歸類補強計畫建議」,內政部建築研究所,1996年6月。

符號表

Ι	:用途係數
F_i	:各層樓板之側力
$Q_{\scriptscriptstyle B}$:基底剪力
W_i	:每層樓板重量
h_i	:每層高度
Q_i	:各別樓層之層剪力
$\Delta_{\scriptscriptstyle RF}$:屋頂位移
Δ_i	:各別樓層之位移
S_A	:結構震譜加速度
S_{A0}	:地表加速度
$S_{\rm d}$:震譜位移
С	:正規化加速度震譜係數
C_D	:震譜折減係數
α	:模態質量係數
W	:建築物總重量
m_i	:第 i 層樓板集中質量
ϕ_i	:第一模態時第 i 層樓板處之振幅
PF	:模態參與因數
$\phi_{\scriptscriptstyle RF}$:第一模態時屋頂樓板處之振幅
T_e	:有效週期
ξ_{eq}	:等效阻尼比
ξ_0	:遲滯阻尼比
E_D	:遲滯迴圈一圈所包圍的面積
E_{S0}	:該週次之最大應變能
k_{initial}	:降伏前斜率取曲線之初始斜率
К	:計算遲滯阻尼時可加乘之一修正因數
A_0	:原曲線與 S_{D} 軸包圍區域 OCD 面積
A_1	:與S _A 軸包圍區域OAC 面積
Ζ	:震區水平加速度係數
M_y	:降伏彎矩
V_y	:降伏剪力
H_n	:柱高
M_{mn}	:彎矩強度
V _{mn}	:撓曲強度
V_{S}	:剪力強度
σ	:軸應力

f_r	:扭矩所造成之應力
θ	:因軸力作用下額外增加之角度
β	:柱發生破壞所造成之斜裂縫與水平之夾角
$\phi_{\!_{u}}$:極限點時曲率
ϕ_{y}	:降服點時曲率
l_p	:塑鉸長度
l _{slip}	:柱主筋之握裹影響長度
и	:混凝土之握裹應力
С	:混凝土壓力區深度
ϕ	:撓曲斷面分析之曲率
G	:混凝土剪力彈性模數
l_D	:D 區域的高度
l_B	:B 區域的高度
Δ_{bb}	:柱主筋挫屈位移
Р	:軸力
V	:側力
Δ_s	:剪力破壞點之位移
Δ_a	:軸力破壞點之位移
ho''	:箍筋體積比
b	:柱寬
d	:柱斷面的有效深度
f_c'	:混凝土標稱強度
A_g	:為柱斷面積
S	:箍筋間距
f_{yt}	:箍筋降伏強度
A_{st}	:剪力箍筋面積
d_c	:柱核心混凝土的深度
θ	:剪力裂縫與水平的夾角
ν	:混凝土的 Poisson's ratio
E _c	:混凝土的彈性係數
$H_{n,t}$:反曲點到牆頂的距離
$H_{n,b}$:反曲點到牆底的距離
$d_{_o}$:最外的受壓纖維到最外受拉鋼筋中心的距離
d_{b}	:最外的受拉鋼筋的直徑
f_{s}	:最外的受拉鋼筋的應力
и	:平均的握裹應力 $u = \sqrt{f'_c}$ (MPa)
V_{f}	:撓曲強度
M_{t}	:牆頂的彎矩

M_{b}	:牆底的彎矩
A_{str}	:壓桿面積
ξ	:軟化係數 $\xi = 3.35 / \sqrt{f'_c} \le 0.52$
u'	:在 $f_s > f_y$ 時的平均握裹應力
W_{b}	:磚牆寬
H_b	:磚牆高
α	:強度修正係數
f_{mc}	:砂漿塊抗壓強度
f_{bc}	:紅磚單軸抗壓強度
V_r	:台度磚牆之殘餘強度
V_{b}	:磚牆極限剪力強度計算
t _b	:磚牆之厚度
W_{be}	:磚牆之有效寬度
F_{bt}	:磚牆劈裂強度
$\alpha_{_{bu}}$:磚牆極限強度之修正係數
V	:地震最小設計水平總橫力
W	:校舍之總重
α_{y}	:起始降伏地震力放大倍數
F_{u}	:結構系統地震力折減係數
A_{BW3}	:三面圍束牆桿件在一樓之總斷面積
A_{BW4}	:四面圍束牆桿件在一樓之總斷面積
A_{C}	:柱桿件在一樓之總斷面積
A_{RCW}	:RC 牆在一樓之總斷面積
β	:強度折減係數
R_a	:結構物韌性容量
A_f	:二樓以上樓地板總面積
Ζ	:現行耐震規範之震區係數
Ε	:代表校舍基本耐震能力之參數
I_{S}	:耐震指標
Q	:調查因子

表 2.1 遅滞阻尼修正因數

結構特性	遲滯阻尼 <i>ξ</i> ₀ (%)				
Type A	$\xi_0 \le 16.25$	$16.25 < \xi_0 \le 45$	$\xi_0 > 45$		
	$\kappa = 1.0$	$\kappa = 1.13 - 0.8\xi_0/100$	$\kappa = 0.77$		
Туре В	$\xi_0 \leq 25$	$25 < \xi_0 \le 45$	$\xi_0 > 45$		
	$\kappa = 1.0$	$\kappa = 0.845 - 0.7\xi_0/100$	$\kappa = 0.53$		
Type C	$\kappa = 0.33$				

\backslash	Cantilever Corridor Building		Unilateral Corridor Building	
Span	2 span	3 span	2 span	3 span
2 F	C22	C32	U22	U32
3 F	C23	C33	U23	U33
4 F	C24	C34	U24	U34
5 F	C25	C35	U25	U35

樓層數	2			3		
校舍 種類	C1	C2	C3	C1	C2	C3
C2_	1848		720	1936		720
C3_	1680		720	1936		720
U2_	1848	1764	720	2208	2112	720
U3_	1764	1680	720	2116	2024	720

表 3.2 簡易調查統計 2~3 樓校舍柱面積

unit: cm^2

表 3.3 簡易調查統計 4~5 樓校舍柱面積(cm²)

樓層數		4	報	NU POLI	5	
校舍 種類	C1	C2	C3	C1	C2	C3
C2_	2400		720	2916		720
C3_	2400		720	2916		720
U2_	2600	2496	720	3136	3132	720
U3_	2500	2400	720	3024	2912	720

校舍形式(數量)	樓層	C1 教室柱	C2 走廊柱	C3 隔間柱
C22(6)	1	0.0226		0.0202
C22(0)	2	0.0203		0.0182
	1	0.0232		0.0182
C23(1)	2	0.0232		0.0182
	3	0.0232		0.0182
C(2)(59)	1	0.0214		0.0184
C32(58)	2	0.0191		0.0164
	1	0.0260		0.0202
C33(6)	2	0.0226		0.0190
	3	0.0207		0.0184
	IX	0.0181	0.0189	0.0182
022(7)	2	0.0171	0.0182	0.0182
A	14t	0.0150	0.0164	0.0148
U23(7)	2	0.0139	0.0140	0.0152
	3	0.0152	0.0157	0.0148
L122(7)	71	0.0208	0.0173	0.0170
032(7)	23	0.0190	0.0171	0.0167
	A C	0.0208	0.0183	0.0160
U33(6)	2	0.01847	0.0175	0.0163
	3	0.0169	0.0173	0.0163

表 3.4 統計柱鋼筋比 (ρ_g)

註: $\rho_g = A_{st} / A_g$

表 3.5 C22 配筋圖

C22	C1	С3
1F		24cm 40cm
Vertical reinf.	○ 8-D22 ● 2-D19 ⊗2-D16	O 2-D22 ●4-D16
Transverse reinf.	D10 @ 25cm	D10 @ 25cm
2F		24cm
Vertical reinf.	O 4-D22 ● 6-D19	• 6-D19
Transverse reinf.	D10 @ 25cm	D10 @ 25cm
	€ 3.6 C23 配筋目	
C23	CI	C3
1F,2F,3F		HOCH HOCH
Vertical reinf.	○ 8-D22 ● 2-D19 ⊗ 2-D16	● 6-D19
Transverse reinf	D10 @ 25cm	D10@25cm

表 3.7 C32 配筋圖

C33	C1	C3	
1F			
Vertical reinf.	O 6-D22 ●6-D19	● 2-D19 ⊗ 4-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	
2F			
Vertical reinf.	○ 6-D22 ●2-D19 ⊠ 4-D16	● 2-D19 ⊗ 4-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	
3F		24cm SC SC SC SC SC SC SC SC SC SC	
Vertical reinf.	O 4-D22 ●4-D19 ⊠ 4-D16	● 2-D19 🛛 4-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	

表 3.8 C33 配筋圖

U22	C1	C2	С3		
1F	40cm		40cm		
Vertical reinf.	O4-D22 ●6-D19	●8-D19 🕸 4-D16	• 6-D19		
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm		
2F	40cm				
Vertical reinf.	O 4-D22 ●4-D19 ⊗2-D16	●6-D19 Ø6-D 16	• 6-D19		
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm		
2010101010101					

表 3.9 U22 配筋圖

U23	C1	C2	C3
1F	45cm	45cm	24cm W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S S S S S S S S S S S S S
Vertical reinf.	●12-D19	O 4-D22 ● 6-D19	⊠8-D16
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm
2F	45cm	45cm	und the second
Vertical reinf.	●8-D19 ⊗4-D16	O4-D22 ●4-D19	⊠8-D16
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm
3 F	45cm	45cm	24cm tion
Vertical reinf.	● 8-D19 🛛 4-D16	• 8-D19	🗙 8-D16
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm

表 3.10 U23 配筋圖

表 3.11 U32 配筋圖

U32	C1	C2	С3			
1F			24cm ₩ 0 ₩ ₩ ₩ ₩ ₩			
Vertical reinf.	O 2-D22 ●8-D19	●4-D19 8-D16	● 4-D19 🕸 2-D16			
Transverse reinf.	D10 @ 15~25cm	D10 @ 25cm	D10 @ 25cm			
2F	SCC SCC SCC SCC SCC SCC SCC SCC SCC SCC		24cm ∎ 0 0 0 0 0 0 0 0 0 0 0 0 0			
Vertical reinf.	○6-D 22 ● 2-D19	●2-D19	● 4-D19 🕸 2-D16			
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm			

表 3.12 U33 配筋圖

U33	C1	C2	C3	
1F				
Vertical reinf.	O 6-D22 ●4-D19 ⊗2-D16	O4-D22 Ø6-D16	● 4-D19 2-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm	
2 F		42cm	24cm toothe toothe too	
Vertical reinf.	O4-D22 ●6-D19	● 8-D19	● 4-D19 🛛 2-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm	
3 F	40cm 42cm			
Vertical reinf.	O 2-D22 ● 8-D19	● 4-D19 🛇 6-D16	● 4-D19 ⊗2-D16	
Transverse reinf.	D10 @ 25cm	D10 @ 25cm	D10 @ 25cm	

C24	C1	С3
1F		40cm
Vertical reinf.	⊕10-D25 O6-D22	● 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
2F		24cm molton
Vertical reinf.		•6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
3F		HODE AND
Vertical reinf.	⊕ 4-D25⊖8-D22	6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
4 F	50cm 50cm 0 0 0 0 0 0 0 0 0 0 0 0 0	24cm WD07
Vertical reinf.	⊕ 4-D25 O 8-D22	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm

表 3.14 C25 配筋圖

C25	C1	С3
1F	55cm 55cm 9 9 9 9 9 9 9 9 9 9 9 9 9	
Vertical reinf.	⊕10-D25●6-D19	● 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
2F		
Vertical reinf.	⊕8-D25●8-D19	•6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
3F	55cm ₩3 55 0 0 0 0 0 0 0 0 0 0 0 0 0	HOOP POINT
Vertical reinf.	⊕10-D25O2-D22	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
4F		
Vertical reinf.	\bigoplus 10-D25O2-D22	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
5F	55cm	
Vertical reinf.	⊕ 10-D25O 2-D22	● 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm

表 3.15 C34 配筋圖

C34	C1	С3
1F		24cm ₩JSE
Vertical reinf.	⊕ 8-D25O 2-D22 ⊗ 6-D16	● 4-D19 🛛 2-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
2F	50cm	24cm E S C
Vertical reinf.	●8-D25●6-D19	• 4-D19 🛛 2-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
3F	50cm 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24cm WDgg
Vertical reinf.	⊕ 8-D25 ● 4-D19	• 4-D19 🛛 2-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
4F		24cm EUSE
Vertical reinf.	⊕ 4-D22 ● 10-D19	● 4-D19 2-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm

表 3.16 C35 配筋圖

C35	C1	C3
1F	55cm 55cm 9 9 9 9 9 9 9 9 9 9 9 9 9	
Vertical reinf.	⊕12-D25●4-D19 ⊗2-D16	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
2F	55cm	End the second s
Vertical reinf.	\bigoplus 12-D25 \boxtimes 6-D16	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
3F -		ESC E
Vertical reinf.	●12-D25	6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
4F	55cm	End the second s
Vertical reinf.	●10-D25●4-D19	● 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm
5F	55cm 55cm 0	
Vertical reinf.	O12-D22 ● 2-D19	• 6-D19
Transverse reinf.	D10 @ 20cm	D10 @ 20cm

表 3.17 U24 配筋圖

U24	C1	C2	С3	
1F	50cm		424cm	
Vertical reinf.	• 14-D19	O8-D22 ⊠6-D16	⊠ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
2F	50cm	20cm 20cm 20cm 20cm	24cm w S S T S S S S S S S S S S S S S S S S	
Vertical reinf.	●12-D19⊗4-D16	O6-D22 ⊗8-D16	⊠ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
3 F	50cm	50cm		
Vertical reinf.	• 12-D19	12-D19	⊗ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
4F	50cm 20cm	50cm WOOG	24cm tilt the second	
Vertical reinf.	• 12-D19	• 10-D19	⊠ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	

表 3.18 U25 配筋圖

U25	C1	C2	С3
1F	E S S S S S S S S S S S S S	55cm 55cm 0 0 0 0 0 0 0 0 0 0 0 0 0	24cm U S S S S S S S S S S S S S
Vertical reinf.	O 14-D22	O10-D22 ●6-D16	⊠ 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
2F	55cm 55cm 50000 000000	55cm 55cm 50000 0000	24cm W S T S T S S S S S S S S S S S S S
Vertical reinf.	O10-D22 ● 4-D19	O14-D22	⊗8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
3 F	55cm	55cm	24cm 42cm 42cm 42cm 8 8 8 8 8 8 8 8 8 8 8 8 8
Vertical reinf.	O12-D22	O10-D22 •4-D19	⊠ 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
4F 55cm		55cm	424cm 42cm
Vertical reinf.	O 8-D22 ●4-D19	O 8-D22 ●4-D19	₿8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
5F	5F		U24cm Euspering Buster
Vertical reinf.	• 12-D19	• 12-D19	🗙 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm

表 3.19 U34 配筋圖

U34	C1	C2	С3
1F			
Vertical reinf.	●10-D25O2-D22	O 10-D22●2-D19	⊠ 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
2F			
Vertical reinf.	⊕ 6-D25O6-D22	O 8-D22 ● 4-D19	⊠ 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
3F Socm		50cm	24cm mini a sector se
Vertical reinf.	O 12-D22	O 6-D22 ● 6-D 19	⊠ 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm
4 F			
Vertical reinf.	O 8-D22 ● 4-D19	O6-D22 ●4-D19	🛛 8-D16
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm

表 3.20 U35 配筋圖

U35	C1	C2	С3	
1F	55cm 55cm 9 9 9 9 9 9 9 9 9 9 9 9 9	55cm 52cm 22cm 0 0 0 0 0 0 0 0 0 0 0 0 0		
Vertical reinf.	⊕10-D25O6-D22	⊕4-D25 O10-D22	🛛 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
2F			24cm model and a second seco	
Vertical reinf.	⊕10-D25 O4-D22 ⊗2-D16		⊠ _{8-D16}	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
3 F	55cm	55cm		
Vertical reinf.	⊕10-D25○2-D19 ⊗4-D16	O10-D22 ● 4-D 19	⊠ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
4 F		55cm 222cm		
Vertical reinf.	⊕ 8-D25⊗4-D16	O8-D22 ● 6-D19	🛛 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	
5F	5F 55cm			
Vertical reinf.	O10-D22 ● 4-D19	O6-D22 ●8-D19	⊗ 8-D16	
Transverse reinf.	D10 @ 20cm	D10 @ 20cm	D10 @ 20cm	

	V max (tf)	PGA max	Displ. Max (cm)	V 80 (tf)	PGA 80	Displ. 80 (cm)
C^{22}	282#	0.308 #	6.31#	225 #	0.333#	8.39#
C22	311	0.305	5.70	249	0.320	6.70
C23	395 [#]	0.343 #	7.59 #	316#	0.359#	10.10#
C23	337	0.254	6.00	270	0.254	6.30
C32	262#	0.370#	7.53 #	210#	0.383#	11.11 #
C32	303	0.358	6.50	242	0.378	9.10
C33	413 #	0.333 #	7.84 #	331 #	0.328#	8.67#
000	416	0.299	6.90	333	0.295	7.10
1122	347 #	0.365 #	5.98 *	278 #	0.388#	8.71 #
022	359	0.339 🔨	5.90	287	0.367	7.50
1123	447#	0.310#	6.71#	358 [#]	0.311 #	7.24#
020	484	0.336	7.10	387	0.337	7.60
U32	356#	0.413 #	6.98*	285 #	0.441 #	10.88 #
	442	0.416	6.20	353	0.424	8.00
1133	448 #	0.317#	7.20*	358 #	0.312#	7.41 #
055	558	0.350	6.80	446	0.364	7.70
		Contraction of the	多。學	Ho. SISI		

表 3.21 校舍模組分析結果比較

註:有[#]號代表為 Cindrawaty 的分析結果 沒有[#]號代表為本研究分析結果

表 3.22 評估比值

0~0.7	0.7~0.8	0.8~0.9	0.9~1.1	1.1~1.2	1.2~1.3	1.3~∞
bad	Acceptable	Good	Best	Good	Acceptable	bad

	V max	PGA max	Displ. Max	V 80	PGA 80	Displ. 80
C22	0.91	1.01	1.11	0.90	1.04	1.25
C23	1.17	1.35	1.27	1.17	1.41	1.60
C32	0.86	1.03	1.16	0.87	1.01	1.22
C33	0.99	1.11	1.14	0.99	1.11	1.22
U22	0.97	1.08	1.01	0.97	1.06	1.16
U23	0.92	0.92	0.95	0.92	0.92	0.95
U32	0.81	0.99	1.13	0.81	1.04	1.36
U33	0.80	0.91	1.06	0.80	0.86	0.96

表 3.23 校舍模組分析結果比值比較

註: 陰影部份的數值在 0.9~1.1 間,也就是 Best 的部份。

表 4.1 純構架分析結果

Model	Displace	ment (cm)	Base Sh	ear (tf)			ductility	
Building	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
C22	5.74	6.66	311.14	248.91	0.30	0.32	0.35	2.40
C23	5.98	6.31	337.12	269.69	0.25	0.25	0.27	2.01
C24	7.35	8.43	590.08	472.06	0.32	0.33	0.33	2.05
C25	7.99	8.59	740.20	592.16	0.32	0.33	0.33	1.80
C32	6.51	9.05	302.73	242.18	0.36	0.38	0.38	3.67
C33	6.90	7.10	416.14	332.91	0.30	0.30	0.30	1.82
C34	7.09	9.00	847.93	678.34	0.39	0.42	0.42	2.25
C35	9.15	9.25	1024.68	819.74	0.42	0.41	0.42	2.02
U22	5.93	7.45	359.25	287.40	0.34	0.37	0.46	2.78
U23	7.14	7.63	484.15	387.32	0.34	0.34	0.42	2.16
U24	8.53	9.81	629.32	503.46	0.38	0.38	0.41	2.53
U25	9.50	9.74	909.17	727.34	0.40	0.39	0.43	1.97
U32	6.18	8.05	441.66	353.33	0.42	0.42	0.48	2.84
U33	6.75	7.73	557.98	446.38	0.35	0.36	0.41	2.17
U34	7.72	9.79	1022.97	818.37	0.49	0.48	0.49	2.49
U35	5.37	8.83	1256.25	1005.00	0.41	0.44	0.46	1.97

表 4.2 牆體型式與牆量

	А	В	С
牆體型式			
牆量	1	1/2	1/2

表 4.3 C22 構架含 RC 牆分析結果

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	3.06	5.71	482.23	385.78	0.41	0.40	0.44	2.44
	2	3.64	6.09	427.98	342.38	0.38	0.37	0.40	2.46
	3	3.01	4.91	680.65	544.52	0.60	0.56	0.61	2.18
	4	3.47	5.77	551.15	440.92	0.50	0.46	0.52	2.65
C22	5	3.03	5.49	618.22	494.57	0.54	0.51	0.56	2.39
	6	2.98	4.46	879.07	703.25	0.78	0.73	0.79	2.04
	7	3.00	5.33	747.38	597.91	0.67	0.62	0.68	2.52
	8	3.00	4.85	816.63	653.31	0.72	0.68	0.73	2.19
	9	2.97	4.46	1015.05	812.04	0.90	0.84	0.91	2.06

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	3.91	5.71	526.85	421.48	0.31	0.31	0.32	2.04
	2	4.14	6.07	474.22	379.38	0.28	0.30	0.31	1.99
	3	3.85	5.33	728.42	582.74	0.44	0.41	0.44	1.97
	4	4.07	5.84	625.38	500.30	0.37	0.35	0.39	1.95
C23	5	3.93	5.62	674.10	539.28	0.40	0.38	0.41	1.97
	6	3.80	4.99	929.99	743.99	0.57	0.52	0.57	1.84
	7	3.96	5.54	826.04	660.83	0.50	0.46	0.50	1.90
	8	3.87	5.36	875.67	700.54	0.53	0.49	0.53	1.90
	9	3.84	5.10	1077.24	861.79	0.65	0.60	0.65	1.81

表 4.4 C23 構架含 RC 牆分析結果

表 4.5 C24 構架含 RC 牆分析結果

H

ã)

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.69	7.15	752.05	601.64	0.34	0.36	0.36	2.10
	2	5.87	7.26	697.91	558.33	0.33	0.35	0.35	2.21
	3	4.05	6.28	951.55	761.24	0.42	0.40	0.43	1.96
	4	5.42	6.62	817.05	653.64	0.40	0.36	0.40	2.33
C24	5	4.17	6.55	875.25	700.20	0.40	0.37	0.41	2.21
	6	4.02	5.65	1157.11	925.69	0.52	0.49	0.53	1.82
	7	3.75	6.17	1000.09	800.07	0.46	0.43	0.48	2.32
	8	3.83	6.04	1078.44	862.75	0.49	0.46	0.50	2.10
	9	3.84	5.55	1284.00	1027.20	0.59	0.55	0.59	1.98

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.39	7.52	897.30	717.84	0.32	0.35	0.35	1.87
	2	7.29	7.64	845.09	676.07	0.34	0.34	0.35	1.94
	3	4.75	6.75	1092.78	874.23	0.39	0.37	0.40	1.81
	4	6.13	7.05	962.27	769.82	0.37	0.36	0.37	2.04
C25	5	4.83	7.03	1015.79	812.63	0.37	0.37	0.38	1.99
	6	4.68	6.20	1299.24	1039.39	0.47	0.44	0.48	1.75
	7	4.53	6.60	1134.52	907.61	0.42	0.39	0.44	2.10
	8	4.49	6.47	1216.12	972.90	0.44	0.42	0.45	1.94
	9	4.47	6.03	1422.58	1138.07	0.53	0.49	0.53	1.88

表 4.6 C25 構架含 RC 牆分析結果

長4.7 C32 構架含 RC 牆分析結果

관

:0

đ

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	3.31	6.10	477.88	382.30	0.42	0.40	0.43	2.62
	2	3.58	6.57	420.55	336.44	0.37	0.38	0.39	2.74
	3	3.28	5.04	667.08	533.67	0.59	0.55	0.60	2.17
	4	3.51	6.18	545.95	436.76	0.49	0.46	0.50	2.60
C32	5	3.29	5.78	606.15	484.92	0.53	0.50	0.55	2.46
	6	3.26	4.65	856.28	685.03	0.76	0.71	0.77	2.01
	7	3.29	5.53	734.51	587.61	0.65	0.61	0.66	2.35
	8	3.27	5.00	795.36	636.28	0.71	0.66	0.71	2.13
	9	3.25	4.66	984.56	787.64	0.88	0.81	0.88	2.00
Mo Buile	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
-------------	--------------------	--------------	---------------------	---------------	------------	---------------------	---------------------	------	---------------------
Frame	ne Wall Case at		at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.13	6.43	580.84	464.68	0.33	0.35	0.35	1.97
	2	4.85	6.81	517.27	413.81	0.31	0.34	0.34	2.17
	3	3.86	5.91	778.83	623.06	0.45	0.43	0.47	1.95
	4	4.68	6.56	627.22	501.78	0.39	0.37	0.40	2.46
C33	5	3.83	6.27	695.56	556.45	0.41	0.39	0.43	2.25
	6	3.79	5.32	977.11	781.69	0.58	0.54	0.58	1.80
	7	3.74	6.11	813.53	650.83	0.49	0.46	0.51	2.43
	8	3.76	5.82	893.84	715.07	0.53	0.50	0.54	2.14
	9	3.71	5.34	1092.12	873.70	0.66	0.61	0.66	1.96

表 4.8 C33 構架含 RC 牆分析結果

長4.9 C34 構架含 RC 牆分析結果

관

đ

Mo Build	del ling	Displa (c	cement m)	Base S	Shear)	110 14	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.00	7.71	1007.48	805.98	0.45	0.43	0.47	2.16
	2	6.28	7.72	955.47	764.38	0.45	0.42	0.46	2.21
	3	4.68	7.08	1188.21	950.57	0.54	0.50	0.54	2.12
	4	4.68	7.28	1063.40	850.72	0.48	0.45	0.51	2.32
C34	5	4.69	7.24	1126.52	901.22	0.51	0.48	0.53	2.25
	6	4.19	6.38	1380.42	1104.33	0.61	0.58	0.63	1.97
	7	4.46	6.78	1240.71	992.57	0.57	0.53	0.59	2.27
	8	4.45	6.70	1308.30	1046.64	0.60	0.56	0.61	2.17
	9	4.05	6.18	1503.71	1202.97	0.68	0.64	0.70	2.04

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear E)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.85	8.20	1177.64	942.11	0.42	0.42	0.44	2.00
	2	7.33	8.21	1125.74	900.59	0.43	0.41	0.44	2.02
	3	5.43	7.63	1358.95	1087.16	0.49	0.46	0.50	1.96
	4	7.06	7.72	1230.61	984.49	0.48	0.42	0.48	2.09
C35	5	5.58	7.73	1293.66	1034.93	0.47	0.44	0.49	2.04
	6	5.22	7.06	1547.16	1237.73	0.57	0.53	0.57	1.89
	7	5.31	7.28	1404.30	1123.44	0.52	0.48	0.53	2.08
	8	5.26	7.23	1477.35	1181.88	0.55	0.51	0.55	2.00
	9	4.88	6.81	1669.69	1335.75	0.61	0.57	0.62	1.94

表 4.10 C35 構架含 RC 牆分析結果

表 4.11 U22 構架含 RC 牆分析結果

Э

到

Mo Buile	del ling	Displa (c	cement m)	Base S	Shear	10 10	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	3.16	6.16	522.99	418.40	0.45	0.44	0.48	2.62
	2	3.90	6.52	468.20	374.56	0.42	0.40	0.45	2.64
	3	3.13	5.21	718.17	574.54	0.63	0.59	0.64	2.26
	4	3.65	6.19	594.56	475.65	0.54	0.50	0.56	2.59
U22	5	3.16	5.93	656.34	525.07	0.57	0.55	0.59	2.52
	6	3.10	4.69	913.35	730.68	0.81	0.75	0.82	2.06
	7	3.14	5.66	789.53	631.62	0.69	0.66	0.71	2.42
	8	3.13	5.13	851.52	681.21	0.75	0.71	0.76	2.22
	9	3.10	4.68	1046.70	837.36	0.93	0.86	0.94	2.06

Mo Buile	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.20	6.69	647.57	518.06	0.38	0.38	0.40	2.23
	2	5.95	6.98	593.68	474.94	0.37	0.37	0.38	2.19
	3	3.95	5.97	847.81	678.25	0.50	0.47	0.51	2.09
	4	4.34	6.60	725.85	580.68	0.43	0.41	0.46	2.16
U23	5	4.01	6.38	785.40	628.32	0.46	0.44	0.48	2.16
	6	3.89	5.35	1048.88	839.10	0.63	0.58	0.63	1.89
	7	3.97	6.15	923.61	738.89	0.55	0.52	0.56	2.11
	8	3.94	5.90	986.47	789.17	0.59	0.55	0.60	2.04
	9	3.87	5.36	1187.53	950.02	0.71	0.66	0.72	1.86

表 4.12 U23 構架含 RC 牆分析結果

表 4.13 U24 構架含 RC 牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (tf	bhear)	Islet	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.81	7.60	788.14	630.51	0.35	0.38	0.39	2.28
	2	7.09	7.79	746.08	596.86	0.36	0.37	0.38	2.15
	3	4.60	6.76	991.41	793.13	0.45	0.42	0.45	2.06
	4	6.15	7.34	872.77	698.22	0.42	0.39	0.42	2.10
U24	5	4.68	7.15	930.42	744.34	0.42	0.40	0.43	2.12
	6	4.57	6.02	1195.82	956.66	0.55	0.50	0.55	1.86
	7	4.65	6.71	1072.56	858.05	0.48	0.46	0.50	1.98
	8	4.62	6.45	1134.73	907.78	0.52	0.48	0.52	1.93
	9	4.60	6.03	1339.14	1071.31	0.61	0.56	0.61	1.83

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max} at V _{80%} peak		at V _{80%}	
	1	5.85	8.25	1039.96	831.97	0.37	0.40	0.41	1.98
	2	8.09	8.48	1012.59	810.07	0.39	0.40	0.40	1.92
	3	5.32	7.57	1229.79	983.84	0.45	0.42	0.45	1.93
	4	7.13	7.79	1118.82	895.06	0.43	0.40	0.43	1.97
U25	5	5.45	7.80	1158.67	926.93	0.42	0.41	0.44	1.99
	6	5.01	6.92	1432.84	1146.27	0.52	0.49	0.53	1.83
	7	5.24	7.30	1274.27	1019.42	0.47	0.44	0.49	2.03
	8	4.98	7.23	1351.52	1081.22	0.49	0.46	0.50	1.94
	9	4.94	6.75	1557.71	1246.16	0.57	0.53	0.58	1.87

表 4.14 U25 構架含 RC 牆分析結果

表 4.15 U32 構架含 RC 牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (tf	bhear)	Islet	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	3.81	6.64	592.92	474.34	0.53	0.49	0.54	2.67
	2	3.90	6.71	544.55	435.64	0.48	0.45	0.52	2.59
	3	3.19	5.70	782.11	625.69	0.68	0.65	0.70	2.35
	4	3.82	6.40	663.10	530.48	0.60	0.55	0.62	2.57
U32	5	3.20	6.21	719.87	575.90	0.62	0.60	0.66	2.54
	6	3.16	5.06	973.11	778.49	0.85	0.80	0.87	2.13
	7	3.19	5.91	846.83	677.46	0.74	0.71	0.77	2.46
	8	3.17	5.56	910.87	728.69	0.79	0.76	0.82	2.32
	9	3.15	5.01	1101.86	881.49	0.97	0.91	0.98	2.13

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	V_{max} at $V_{80\%}$ Max 80% at V_{max} at $V_{80\%}$ peak		at V _{80%}				
	1	4.35	6.95	713.72	570.97	0.42	0.40	0.44	2.24
	2	6.04	7.14	664.64	531.71	0.42	0.39	0.42	2.20
	3	3.83	6.33	902.78	722.23	0.52	0.50	0.54	2.15
	4	4.37	6.76	789.77	631.81	0.47	0.44	0.50	2.17
U33	5	4.27	6.60	842.71	674.17	0.50	0.47	0.52	2.19
	6	3.79	5.70	1099.63	879.70	0.65	0.61	0.66	1.99
	7	3.84	6.34	974.70	779.76	0.57	0.55	0.60	2.16
	8	3.81	6.14	1037.96	830.37	0.61	0.58	0.63	2.11
	9	3.78	5.64	1234.80	987.84	0.73	0.69	0.74	1.95

表 4.16 U33 構架含 RC 牆分析結果

表 4.17 U34 構架含 RC 牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (tf	bhear)	Islet	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.80	7.85	1144.20	915.36	0.50	0.49	0.54	2.27
	2	6.62	7.74	1111.92	889.53	0.53	0.47	0.53	2.24
	3	4.61	7.48	1321.19	1056.95	0.59	0.56	0.61	2.29
	4	6.25	7.45	1209.69	967.75	0.59	0.52	0.59	2.42
U34	5	4.57	7.46	1259.45	1007.56	0.57	0.54	0.60	2.37
	6	4.07	6.92	1509.53	1207.62	0.66	0.64	0.69	2.17
	7	4.40	7.13	1369.39	1095.51	0.63	0.59	0.66	2.45
	8	4.40	7.10	1437.47	1149.98	0.66	0.61	0.67	2.34
	9	3.94	6.57	1631.63	1305.31	0.73	0.70	0.75	2.19

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear E)		PGA		Ductility
Frame	Wall Case	$\begin{array}{c c} all \\ ase \\ \hline \end{array} at V_{max} \\ at V_{80\%} \\ \hline \end{array} \\ \begin{array}{c} at V_{80\%} \\ 7.57 \\ \hline \end{array}$		Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.24	7.57	1450.85	1160.68	0.49	0.48	0.51	1.78
	2	5.13	7.88	1370.89	1096.71	0.46	0.46	0.50	1.89
	3	5.13	6.88	1649.97	1319.98	0.57	0.55	0.58	1.67
	4	4.80	7.48	1477.40	1181.92	0.51	0.50	0.54	1.91
U35	5	5.02	7.25	1565.80	1252.64	0.54	0.53	0.56	1.81
	6	5.06	6.45	1849.26	1479.41	0.65	0.61	0.65	1.61
	7	4.82	7.06	1672.34	1337.87	0.59	0.57	0.61	1.86
	8	4.99	6.80	1764.53	1411.62	0.62	0.59	0.63	1.74
	9	4.94	6.38	1963.83	1571.06	0.70	0.66	0.70	1.67

表 4.18 U35 構架含 RC 牆分析結果

表 4.19 C22 構架含磚牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (ti	Shear ()	Islet	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.37	6.59	327.56	262.05	0.30	0.33	0.35	2.42
	2	5.37	6.59	327.56	262.05	0.30	0.33	0.35	2.42
	3	4.74	6.50	346.93	277.55	0.31	0.33	0.35	2.40
	4	4.74	6.50	346.93	277.55	0.31	0.33	0.35	2.40
C22	5	4.74	6.50	346.93	277.55	0.31	0.33	0.35	2.40
	6	4.73	6.42	366.94	293.55	0.33	0.34	0.36	2.38
	7	4.73	6.42	366.94	293.55	0.33	0.34	0.36	2.38
	8	4.73	6.42	366.94	293.55	0.33	0.34	0.36	2.38
	9	4.73	6.35	386.95	309.56	0.35	0.35	0.36	2.35

Mo Build	del ding	Displa (c	cement cm)	Base S (tf	Shear E)		PGA		Ductility
Frame	Wall Case	$\frac{l}{e} \text{ at } V_{\text{max}} \text{ at } V_{80\%}$		Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.46	6.29	355.59	284.47	0.24	0.26	0.27	2.01
	2	5.46	6.29	355.59	284.47	0.24	0.26	0.27	2.01
	3	5.39	6.27	375.59	300.47	0.25	0.27	0.27	1.99
	4	5.39	6.27	375.59	300.47	0.25	0.27	0.27	1.99
C23	5	5.39	6.27	375.59	300.47	0.25	0.27	0.27	1.99
	6	5.39	6.25	395.60	316.48	0.26	0.27	0.28	1.98
	7	5.39	6.25	395.60	316.48	0.26	0.27	0.28	1.98
	8	5.39	6.25	395.60	316.48	0.26	0.27	0.28	1.98
	9	5.39	6.24	415.61	332.49	0.26	0.28	0.28	1.97

表 4.20 C23 構架含磚牆分析結果

表 4.21 C24 構架含磚牆分析結果

ŝ

Mo Buile	del ding	Displa (c	cement m)	Base S (ti	Shear ()	lellet.	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	6.75	8.24	608.17	486.53	0.30	0.33	0.33	2.01
	2	6.75	8.24	608.17	486.53	0.30	0.33	0.33	2.01
	3	6.52	8.04	628.02	502.42	0.30	0.33	0.34	1.96
	4	6.52	8.04	628.02	502.42	0.30	0.33	0.34	1.96
C24	5	6.52	8.04	628.02	502.42	0.30	0.33	0.34	1.96
	6	6.52	8.00	648.03	518.43	0.30	0.34	0.34	1.95
	7	6.52	8.00	648.03	518.43	0.30	0.34	0.34	1.95
	8	6.52	8.00	648.03	518.43	0.30	0.34	0.34	1.95
	9	6.52	7.97	668.04	534.43	0.31	0.34	0.34	1.94

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V_{max} at $V_{80\%}$		Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	7.67	8.53	758.64	606.91	0.32	0.33	0.33	1.79
	2	7.67	8.53	758.64	606.91	0.32	0.33	0.33	1.79
	3	7.50	8.47	778.35	622.68	0.31	0.34	0.34	1.78
	4	7.50	8.47	778.35	622.68	0.31	0.34	0.34	1.78
C25	5	7.50	8.47	778.35	622.68	0.31	0.34	0.34	1.78
	6	7.49	8.41	798.36	638.69	0.32	0.34	0.34	1.77
	7	7.49	8.41	798.36	638.69	0.32	0.34	0.34	1.77
	8	7.49	8.41	798.36	638.69	0.32	0.34	0.34	1.77
	9	7.49	8.36	818.37	654.70	0.32	0.34	0.34	1.75

表 4.22 C25 構架含磚牆分析結果

表 4.23 C32 構架含磚牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (th	Shear ()	le le le le	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	4.66	8.69	320.26	256.21	0.29	0.38	0.38	3.55
	2	4.66	8.69	320.26	256.21	0.29	0.38	0.38	3.55
	3	4.65	8.27	340.27	272.22	0.31	0.38	0.38	3.36
	4	4.65	8.27	340.27	272.22	0.31	0.38	0.38	3.36
C32	5	4.65	8.27	340.27	272.22	0.31	0.38	0.38	3.36
	6	4.65	7.80	360.28	288.23	0.33	0.38	0.38	3.16
	7	4.65	7.80	360.28	288.23	0.33	0.38	0.38	3.16
	8	4.65	7.80	360.28	288.23	0.33	0.38	0.38	3.16
	9	4.65	6.72	380.29	304.24	0.35	0.36	0.39	2.72

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.88	7.06	432.63	346.11	0.27	0.30	0.31	1.84
	2	5.88	7.06	432.63	346.11	0.27	0.30	0.31	1.84
	3	5.86	7.01	452.64	362.11	0.28	0.31	0.31	1.84
	4	5.86	7.01	452.64	362.11	0.28	0.31	0.31	1.84
C33	5	5.86	7.01	452.64	362.11	0.28	0.31	0.31	1.84
	6	5.84	6.97	472.65	378.12	0.28	0.31	0.32	1.84
	7	5.84	6.97	472.65	378.12	0.28	0.31	0.32	1.84
	8	5.84	6.97	472.65	378.12	0.28	0.31	0.32	1.84
	9	5.82	6.93	492.66	394.13	0.29	0.32	0.32	1.83

表 4.24 C33 構架含磚牆分析結果

表 4.25 C34 構架含磚牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (tf	bhear)	Tellen	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	6.81	8.86	866.82	693.46	0.40	0.42	0.42	2.21
	2	6.81	8.86	866.82	693.46	0.40	0.42	0.42	2.21
	3	6.79	8.71	886.56	709.25	0.41	0.42	0.42	2.17
	4	6.79	8.71	886.56	709.25	0.41	0.42	0.42	2.17
C34	5	6.79	8.71	886.56	709.25	0.41	0.42	0.42	2.17
	6	6.73	8.56	906.50	725.20	0.41	0.42	0.43	2.14
	7	6.73	8.56	906.50	725.20	0.41	0.42	0.43	2.14
	8	6.73	8.56	906.50	725.20	0.41	0.42	0.43	2.14
	9	6.72	8.42	926.51	741.21	0.42	0.42	0.43	2.10

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	8.09	9.15	1043.18	834.54	0.39	0.41	0.42	2.00
	2	8.09	9.15	1043.18	834.54	0.39	0.41	0.42	2.00
	3	7.94	9.04	1062.91	850.33	0.39	0.41	0.43	1.97
	4	7.94	9.04	1062.91	850.33	0.39	0.41	0.43	1.97
C35	5	7.94	9.04	1062.91	850.33	0.39	0.41	0.43	1.97
	6	7.93	8.93	1082.92	866.33	0.40	0.41	0.43	1.95
	7	7.93	8.93	1082.92	866.33	0.40	0.41	0.43	1.95
	8	7.93	8.93	1082.92	866.33	0.40	0.41	0.43	1.95
	9	7.91	8.81	1102.93	882.34	0.41	0.41	0.43	1.92

表 4.26 C35 構架含磚牆分析結果

表 4.27 U22 構架含磚牆分析結果

Ś

Mo Build	del ling	Displa (c	cement m)	Base S (ti	Shear ()	Tellen	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.51	7.19	374.76	299.81	0.35	0.37	0.46	2.73
	2	5.51	7.19	374.76	299.81	0.35	0.37	0.46	2.73
	3	4.71	6.91	391.69	313.36	0.35	0.37	0.46	2.65
	4	4.71	6.91	391.69	313.36	0.35	0.37	0.46	2.65
U22	5	4.71	6.91	391.69	313.36	0.35	0.37	0.46	2.65
	6	4.71	6.75	411.70	329.36	0.37	0.37	0.46	2.59
	7	4.71	6.75	411.70	329.36	0.37	0.37	0.46	2.59
	8	4.71	6.75	411.70	329.36	0.37	0.37	0.46	2.59
	9	4.71	6.71	431.71	345.37	0.39	0.38	0.46	2.58

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	Wall at V _{max} at 1 6.88		Max	80%	at V _{max} at V _{80%} peak		at V _{80%}	
	1	6.88	7.48	499.13	399.30	0.33	0.34	0.42	2.15
	2	6.88	7.48	499.13	399.30	0.33	0.34	0.42	2.15
	3	6.11	7.42	516.49	413.19	0.32	0.34	0.42	2.16
	4	6.11	7.42	516.49	413.19	0.32	0.34	0.42	2.16
U23	5	6.11	7.42	516.49	413.19	0.32	0.34	0.42	2.16
	6	5.84	7.39	535.85	428.68	0.32	0.35	0.42	2.15
	7	5.84	7.39	535.85	428.68	0.32	0.35	0.42	2.15
	8	5.84	7.39	535.85	428.68	0.32	0.35	0.42	2.15
	9	5.82	7.33	555.86	444.69	0.34	0.35	0.42	2.13

表 4.28 U23 構架含磚牆分析結果

表 4.29 U24 構架含磚牆分析結果

Mo Build	del ling	Displa (c	cement m)	Base S (ti	Shear ()	Iston .	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	7.60	9.58	646.55	517.24	0.34	0.38	0.41	2.48
	2	7.60	9.58	646.55	517.24	0.34	0.38	0.41	2.48
	3	7.52	9.34	664.34	531.47	0.34	0.38	0.41	2.42
	4	7.52	9.34	664.34	531.47	0.34	0.38	0.41	2.42
U24	5	7.52	9.34	664.34	531.47	0.34	0.38	0.41	2.42
	6	7.04	9.09	683.88	547.10	0.33	0.38	0.41	2.36
	7	7.04	9.09	683.88	547.10	0.33	0.38	0.41	2.36
	8	7.04	9.09	683.88	547.10	0.33	0.38	0.41	2.36
	9	7.01	8.82	703.89	563.11	0.34	0.38	0.41	2.28

Mo Build	del ding	Displa (c	cement m)	Base S (tf	Shear)		PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	8.88	9.58	926.22	740.98	0.38	0.39	0.43	1.95
	2	8.88	9.58	926.22	740.98	0.38	0.39	0.43	1.95
	3	8.78	9.42	944.10	755.28	0.39	0.39	0.43	1.92
	4	8.78	9.42	944.10	755.28	0.39	0.39	0.43	1.92
U25	5	8.78	9.42	944.10	755.28	0.39	0.39	0.43	1.92
	6	8.69	9.26	961.99	769.59	0.39	0.39	0.43	1.89
	7	8.69	9.26	961.99	769.59	0.39	0.39	0.43	1.89
	8	8.69	9.26	961.99	769.59	0.39	0.39	0.43	1.89
	9	8.24	9.10	981.62	785.29	0.38	0.39	0.43	1.86

表 4.30 U25 構架含磚牆分析結果

表 4.31 U32 構架含磚牆分析結果

ŝ

Mo Build	del ling	Displa (c	cement m)	Base S (ti	Shear ()	Tellen	PGA		Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.66	7.81	457.08	365.66	0.42	0.42	0.48	2.80
	2	5.66	7.81	457.08	365.66	0.42	0.42	0.48	2.80
	3	4.81	7.56	473.08	378.46	0.42	0.42	0.48	2.75
	4	4.81	7.56	473.08	378.46	0.42	0.42	0.48	2.75
U32	5	4.81	7.56	473.08	378.46	0.42	0.42	0.48	2.75
	6	4.80	7.26	493.09	394.47	0.44	0.42	0.48	2.65
	7	4.80	7.26	493.09	394.47	0.44	0.42	0.48	2.65
	8	4.80	7.26	493.09	394.47	0.44	0.42	0.48	2.65
	9	4.79	6.96	513.10	410.48	0.46	0.42	0.48	2.55

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	6.36	7.59	576.18	460.95	0.35	0.37	0.41	2.15
	2	6.36	7.59	576.18	460.95	0.35	0.37	0.41	2.15
	3	6.23	7.45	592.50	474.00	0.36	0.37	0.41	2.13
	4	6.23	7.45	592.50	474.00	0.36	0.37	0.41	2.13
U33	5	6.23	7.45	592.50	474.00	0.36	0.37	0.41	2.13
	6	5.58	7.40	610.38	488.30	0.36	0.37	0.41	2.13
	7	5.58	7.40	610.38	488.30	0.36	0.37	0.41	2.13
	8	5.58	7.40	610.38	488.30	0.36	0.37	0.41	2.13
	9	5.58	7.38	630.39	504.31	0.37	0.38	0.41	2.12

表 4.32 U33 構架含磚牆分析結果

表 4.33 U34 構架含磚牆分析結果

ŝ

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	7.01	9.64	1031.11	824.89	0.48	0.48	0.49	2.48
	2	7.01	9.64	1031.11	824.89	0.48	0.48	0.49	2.48
	3	6.99	9.49	1047.96	838.37	0.49	0.48	0.50	2.44
	4	6.99	9.49	1047.96	838.37	0.49	0.48	0.50	2.44
U34	5	6.99	9.49	1047.96	838.37	0.49	0.48	0.50	2.44
	6	6.92	9.35	1064.88	851.91	0.49	0.48	0.51	2.41
	7	6.92	9.35	1064.88	851.91	0.49	0.48	0.51	2.41
	8	6.92	9.35	1064.88	851.91	0.49	0.48	0.51	2.41
	9	6.58	9.19	1083.01	866.41	0.50	0.48	0.51	2.37

Model Building		Displacement (cm)		Base Shear (tf)		PGA			Ductility
Frame	Wall Case	at V _{max}	at V _{80%}	Max	80%	at V _{max}	at V _{80%}	peak	at V _{80%}
	1	5.39	8.65	1272.02	1017.61	0.41	0.44	0.46	1.94
	2	5.39	8.65	1272.02	1017.61	0.41	0.44	0.46	1.94
	3	5.36	8.53	1288.72	1030.98	0.42	0.44	0.46	1.91
	4	5.36	8.53	1288.72	1030.98	0.42	0.44	0.46	1.91
U35	5	5.36	8.53	1288.72	1030.98	0.42	0.44	0.46	1.91
	6	5.34	8.49	1305.43	1044.34	0.42	0.44	0.47	1.91
	7	5.34	8.49	1305.43	1044.34	0.42	0.44	0.47	1.91
	8	5.34	8.49	1305.43	1044.34	0.42	0.44	0.47	1.91
	9	5.32	8.46	1322.13	1057.70	0.43	0.44	0.48	1.91

表 4.34 U35 構架含磚牆分析結果

	柱未配置繫筋	柱配置繫筋
	間距 25cm	間距 20cm
ZI=0.33	0.5%	0.27%
ZI=0.4125	0.74%	0.48%
ZI=0.495	0.98%	0.68%

項目	原始初評	修改初評
單位面積載重	二樓以上 至屋頂層 900 <i>kgf</i> /m ²	一般樓層 900 kgf/m ² 屋頂 750 kgf/m ²
β	0.8	0.9
韌性 Ra	1.2	2.2
柱單位面積剪力	15 kgf/cm ²	$ au_{c(\substack{ abla \le t \)}} = 1.8 \times 樓 層 數 + 4 $ $ au_{c(\substack{ abla = t \)}} = 0.6 \times \tau_{c(\substack{ abla \le t \)}} $ $ au_{c(\substack{ abla = t \)}} = 2.6 $
RC 牆單位面積剪力	24 kgf/cm ²	12 kgf/cm ²
三面圍東 磚牆單位面積剪力	1.5 kgf/cm ²	2 kgf/cm ²

表 6.1 本研究之初步評估修正建議

圖 2.1 典型台灣校舍建築(國立台中教育大學附設實驗國民小學)

圖 2.3 學校建築沿長向柱發生剪力破壞

圖 2.4 學校建築沿長向之柱剪力破壞

圖 2.5 學校底層崩塌

圖 2.6 懸臂走廊校舍損毀

圖 2.7 窗台柱破壞

圖 2.9 地震力豎向分配示意圖

圖 2.12 遲滯阻尼修正係數與遲滯阻尼比關係圖

圖 2.13 我國法規加速度震譜係數與基本振動週期關係圖

圖 2.15 柱桿件之 D、B 區域劃分

圖 2.16 剪力與軸力作用之莫爾圓示意圖

圖 2.17 柱主筋滑移位移計算模型

(a) Strut-and-tie modeling for cracked wall (b) Shear deflection of wall

圖 2.21

軟化壓拉桿模型

圖 2.24 磚牆側向載重位移曲線

圖 2.28 關廟國小推垮分析曲線[32]

圖 3.2 教室為兩跨或三跨

圖 3.4 柱軸力之分配圖

圖 3.6 ATC-40 耐震性能點求法

圖 4.2 基底剪力對屋頂層位移的曲線(C25)

圖 4.4 純構架模組 最大基底剪力與強度降到 80%(性能點)時的 PGA 分布圖

圖 4.6 純構架模組的單位面積柱極限剪力分布圖

displacement

圖 4.8 柱桿件之側力位移曲線

圖 4.11 柱左側填入 RC 牆

圖 4.12 Wall case 1

圖 4.15 Wall case 4

圖 4.16 Wall case 5

圖 4.19 Wall case 8

圖 4.20 Wall case 9

圖 4.21 C22 wall case 1

圖 4.23 C22 wall case 3

圖 4.25 C22 wall case 5

圖 4.27 C22 wall case 7

圖 4.29 C22 wall case 9

圖 4.31 構架含 RC 牆模組 最大基底剪力與強度降到 80%(性能點)時 PGA 分布圖

圖 4.33 構架含 RC 牆模組單位面積柱極限剪力分布圖

圖 4.35 構架含 RC 牆 β 的統計圖

圖 4.36 構架含磚牆模組 最大基底剪力與強度降到 80%(性能點)時基底剪力分布圖

圖 4.37 構架含磚牆模組 最大基底剪力與強度降到 80%(性能點)時 PGA 分布圖

圖 4.39 構架含磚牆模組單位面積柱極限剪力分布圖

圖 4.41 構架含磚牆模組β的統計圖

圖 5.2 構架含 RC 牆基底剪力比值圖

圖 5.4 純構架模組 PGA 1 之比較

圖 5.8 構架含 RC 牆模組 PGA 2 之比較

圖 5.10 構架含磚牆模組 PGA 1 之比較

圖 5.12 構架含磚牆模組 PGA 3 之比較

圖 5.14 Cindrawaty[13] 韌性容量分析結果

圖 5.16 教室柱單位面積剪力趨勢

圖 5.18 隔間牆內柱單位面積剪力趨勢

- X: A 類牆體(柱左右兩邊皆有牆) —線為 A 類牆體單位面積剪力強度平均值
- ○: B 類牆體(牆體在柱右邊) …線為 B 類牆體單位面積剪力強度平均值
- △: C 類牆體(牆體在柱左邊) ——線為 C 類牆體單位面積剪力強度平均值

圖 5.20 純構架修正後基底剪力比值圖

圖 5.22 構架含磚牆修正後基底剪力比值圖

圖 5.26 構架含 RC 牆模組修正後 PGA 1

圖 5.28 構架含 RC 牆模組修正後 PGA 3

圖 5.30 構架含磚牆模組修正後 PGA 2

圖 5.32 純構架校舍模組柱量比與 PGA 之關係圖

圖 5.34 4~5 樓純構架校舍模組柱量比與 PGA 之關係圖

圖 5.36 RC 牆單位牆量所能提供的 PGA 分布圖

附錄A 柱桿件之側力位移曲線計算例

RC 柱桿件之側力位移曲線計算例

Calculation Example of Column NCREE Lab Test Hsin Tsheng Junior High School

- 5. concrete cover = 4 cm
- 6. d = h concrete cover transvere reinf. diameter (longitudinal reinf. diamater /2) = 36 - 4 - (0.6) - (1.9/2) = 30.45 cm
- 7. D region : kd = cy = 11.77 cm $(\text{ from BIAX: c at } \epsilon_{s} = \epsilon_{y})$

8.
$$jd = d - \frac{kd}{3} = 30.45 - \frac{11.77}{3} = 26.53$$
 cm

Strength Calculation:

1. Yield Strength (V_v)

```
M_y = 1785822.43 kg - cm (from BIAX)
```

$$V_y = \frac{M_y}{H_n/2} = \frac{1785822.43}{330/2} = 10823$$
 kgf

2. Ultimate Strength (V_{mn}) M_{mn} = 2018000 kg - cm (from BIAX)

$$V_{mn} = \frac{M_{mn}}{H_n/2} = \frac{2018000}{330/2} = 12230 \text{ kgf}$$

3. Shear Strength ($V_s = min[V_{BT}, V_D]$) Nu = 35240 kgf

1.
$$V_{BT}$$

 $V_{BT} = V_c + V_s$
• V_c
 $V_c = 0.53 \left(1 + \frac{N_u}{140 \cdot A_g} \right) \cdot \sqrt{f_c'} \cdot b \cdot d$
 $V_c = 0.53 \left(1 + \frac{35240}{140 \cdot (36 \cdot 36)} \right) \cdot \sqrt{317.92} \cdot 36 \cdot 30.45 = 12371 \text{ kgf}$
• V_s
 $\sigma = \frac{N_u}{A} = \frac{35240}{(36 \cdot 36)} = 27.191 \text{ kgf/cm}^2$
 $f_t = 1.06\sqrt{f_c'} = 1.06\sqrt{317.92} = 18.900 \text{ kgf/cm}^2$
 $\theta = \tan^{-1} \left(\frac{\sigma}{2f_t \cdot \sqrt{1 + \frac{\sigma}{f_t}}} \right) = 24.732^\circ ; \alpha = 45^\circ - \frac{\theta}{2} = 32.634^\circ$
 $\beta = 90^\circ - \alpha = 57.366^\circ$
 $V_s = \frac{A_v \cdot f_y}{s} \cdot \text{jd} \cdot \tan \beta = \frac{(2 \cdot 0.283) \cdot 6700}{20} \cdot 26.54 \cdot \tan(57.366) = 7858 \text{ kgf}$
 $V_{BT} = V_c + V_s = 12371 + 9008 = 21379 \text{ kgf}$

2. V_D

$$\begin{split} \varsigma &= \frac{10.7}{\sqrt{f'_c}} = \frac{10.7}{\sqrt{175}} = 0.60 \text{ , use } \varsigma = 0.52 \\ \gamma_h &= \frac{2\tan\theta - 1}{3} = 0.728 \text{ , } 0 \le \gamma_h \le 1.0 \text{ , } \gamma_h = 0.728 \\ \gamma_v &= \frac{2\cot\theta - 1}{3} = 0.085 \text{ , } 0 \le \gamma_v \le 1.0 \text{ , } \gamma_v = 0.085 \\ \overline{K_h} &= \frac{1}{1 - 0.2(\gamma_h + \gamma_h^2)} = \frac{1}{1 - 0.2(0.728 + (0.728)^2)} = 1.337 \end{split}$$

$$\begin{split} \overline{K_{v}} &= \frac{1}{1 - 0.2(\gamma_{v} + \gamma_{v}^{2})} = \frac{1}{1 - 0.2(0.085 + (0.085)^{2})} = 1.019 \\ A_{str} &= kd \times b = 11.77 \times 36 = 312.50 \, cm^{2} \\ \overline{F_{h}} &= \gamma_{h} \cdot \overline{K_{h}} \cdot \varsigma \cdot f'_{c} \cdot A_{str} \cdot \cos \theta = 0.728 \times 1.337 \times 0.52 \times 175 \times 312.5 \times \cos 57.88^{\circ} = 36268 \, kgf \\ \overline{F_{v}} &= \gamma_{v} \cdot \overline{K_{v}} \cdot \varsigma \cdot f'_{c} \cdot A_{str} \cdot \sin \theta = 0.085 \times 1.019 \times 0.52 \times 175 \times 312.5 \times \sin 57.88^{\circ} = 51509 \, kgf \\ A_{th} &= n_{D} \times A_{b} \times \left(50\% \times \frac{1}{2} + 100\% \times \frac{1}{2} \right) = 2.11 \times 0.56 \times \left(50\% \times \frac{1}{2} + 100\% \times \frac{1}{2} \right) = 0.90 \, cm^{2} \\ A_{tv} &= A_{b} \times 100\% = (2 \times (0.5 \times 2 + 1 \times 1) \times 2.835) \times 100\% = 11.34 \, cm^{2} \\ F_{yh} &= A_{th} \cdot f_{yh} = 0.90 \times 6700 = 6003 \, kgf \\ F_{yv} &= A_{tv} \cdot f_{yv} = 11.34 \times 5191 = 58867 \, kgf \\ K_{h} &= 1 + \left(\overline{K_{h}} - 1\right) \cdot \frac{F_{yh}}{F_{h}} = 1 + (1.337 - 1) \cdot \frac{6003}{36268} = 1.06 \times K_{h} \rightarrow K_{h} = 1.06 \\ K_{v} &= 1 + \left(\overline{K_{v}} - 1\right) \cdot \frac{F_{yv} + 0.75 N_{u}}{F_{v}} = 1 + (1.019 - 1) \cdot \frac{58867 + 0.75(35240)}{51509} = 1.03 \times \overline{K_{v}} \\ \rightarrow K_{v} = 1.02 \\ V_{DC} &= (K_{h} + K_{v} - 1) \cdot \varsigma \cdot f_{c}' \cdot A_{str} \cdot \cos \theta \\ &= (1.06 + 1.02 - 1) \times 0.52 \times 175 \times 312.5 \times \cos 57.88^{\circ} = 40022 \, \, kgf \\ V_{D} &= V_{DC} = 40022 \, kgf \\ V_{S} &= \min \left[V_{BT_{v}} V_{D} \right] = \min \left[21379,40022 \right] = 21379 \, kgf \end{split}$$

4. Strength of Member (V) and Check Failure $V = \min[V_{mn}, V_s] = \min[12230, 21379] = 12230 \text{ kgf}$ $\frac{V_{mn}}{V_s} < 0.6 \Rightarrow \frac{12230}{21379} = 0.572 < 0.6 \Rightarrow \text{Flexural Failure}$
Deformation Calculation:

1. Strength Displacement (Δ_m)

$$1. \Delta_{m} = \Delta_{f} + \Delta_{slip} + \Delta_{u,s}$$
(1) $\Delta_{f} = \Delta_{f,elastic} + \Delta_{f,plastic}$

$$\Delta_{f,elastic} = \frac{V_{u} \cdot H_{n}^{3}}{12 \cdot (15000\sqrt{317.92}) \cdot 0.35 \cdot (\frac{1}{12} \cdot 36 \cdot 36^{3})} = 2.795 \text{ cm}$$

$$\Delta_{f,plastic} = 2(\phi_{u} - \phi_{y}) \cdot \ell_{p} \cdot \left(\frac{H_{n}}{2} - \frac{\ell_{p}}{2}\right)$$

$$\phi_{u} = \frac{\epsilon_{c}}{c_{u}} = \frac{0.003}{9.947} = 0.000302$$

$$\phi_{y} = \frac{\epsilon_{y}}{d - c_{y}} = \frac{0.00208}{30.45 - 12.407} = 0.000115$$

$$\ell_{p} = \frac{h}{2} = \frac{36}{2} = 18 \text{ cm}$$

$$\Delta_{f,plastic} = 2(0.000302 - 0.000115) \cdot 18 \cdot \left(\frac{330}{2} - \frac{18}{2}\right) = 1.047 \text{ cm}$$

$$\Delta_{f} = \Delta_{f,elastic} + \Delta_{f,plastic} = 2.795 + 1.047 = 3.842 \text{ cm}$$

(2) $\Delta_{\rm slip}$

$$\begin{split} \Delta_{\text{slip},y} &= \frac{d_b \cdot f_s \cdot \phi_y}{8u} \cdot H_n = \frac{1.9 \cdot 5191 \cdot 0.000115}{8 \cdot \left(3.18 \sqrt{317.92}\right)} \cdot 330 = 0.826 \text{ cm} \\ \Delta_{\text{slip},u} &= \left(\frac{d_b \cdot f_s \cdot \phi_y}{8u} + \frac{(\epsilon_s - \epsilon_y) \cdot (f_s - f_y) \cdot d_b}{8u'(d_o - c)}\right) \cdot H_n \\ &= \left(\frac{1.9 \cdot 5191 \cdot 0.000115}{8(3.18 \sqrt{317.92})} + \frac{(0.0060 - 0.0025) \cdot (5261 - 5191) \cdot 1.9}{8(0.5 \cdot 3.18 \sqrt{317.92})(30.45 - 10.16)}\right) \cdot 330 = 1.06 \text{ cm} \end{split}$$

 $(3) \Delta_{u.s}$ $\Delta_{\rm u.s} = 2\Delta_{\rm u.sd} + \Delta_{\rm u,sb}$ Δ_{u.sd} Number of transverse reinf.= n = 3.2Length of D region: Ld = 42.25 cm ; n_D = 2.11 $L_{d(\theta=57.88^{\circ})} = 42.25 \text{ cm}$; $\gamma_{h} = 0.728$; $\gamma_{v} = 0.085$ $\mathsf{R}_{\mathsf{h}} = \frac{\gamma_{\mathsf{h}} (1 - \gamma_{\mathsf{v}})}{1 - \gamma_{\mathsf{h}} \gamma_{\mathsf{v}}} = 0.711$ $\mathsf{R}_{\mathsf{v}} = \frac{\gamma_{\mathsf{v}} (1 - \gamma_{\mathsf{h}})}{1 - \gamma_{\mathsf{v}} \gamma} = 0.025$ $F_{h} = R_{h} \cdot V_{\mu} = 8531 \text{ kgf}$ $F_v = R_v \cdot V_u \cdot \tan \theta = 471.70 \text{ kgf}$ $\epsilon_{h} = \frac{F_{h}}{A_{th}E_{s}} = \frac{8531}{0.9 \cdot 2040000} = =0.0047$ $\epsilon_v = \frac{F_v - 0.75N_u}{A_{tv}E_s} = \frac{471.70 - 0.75(35240)}{11.34 \cdot 2040000} \approx 0; \text{ therefore use } \epsilon_v = 0$ $\varepsilon_0 = \max \left[0.002 + 0.001 \cdot \frac{f_c' - 20}{80}, 0.002 \right] = 0.002$ $-\epsilon_d = \varsigma \cdot \epsilon_0 = 0.52 \times 0.002 = -0.001$; $\epsilon_r = \epsilon_h + \epsilon_v - \epsilon_d = 0.006$ $\gamma_{vh} = 2(\epsilon_r - \epsilon_d) \cdot \sin \theta \cdot \cos \theta = 0.006$ $\Delta_{u,sd} = \gamma_{vh} \cdot \ell_d = 0.006 \times 42.25 = 0.26 \text{ cm}$ • $\Delta_{u,sb}$ $\theta = 57.366^{\circ}$ $\gamma_{h} = \frac{2 \tan \theta - 1}{3} = \frac{2 \tan (57.366) - 1}{3} = 0.708 \ , \ 0 \le \gamma_{h} \le 1.0 \ , \ \gamma_{h} = 0.708$ $\gamma_{v} = \frac{2\cot\theta - 1}{3} = \frac{2\cot(57.366) - 1}{3} = 0.094 \ , \ 0 \le \gamma_{v} \le 1.0 \ , \ \gamma_{v} = 0.094$

$$R_{h} = \frac{\gamma_{h}(1 - \gamma_{v})}{1 - \gamma_{h}\gamma_{v}} = 0.0035 \quad ; \qquad R_{v} = \frac{\gamma_{v}(1 - \gamma_{h})}{1 - \gamma_{h}\gamma_{v}} = -0.0011 \approx 0$$

$$F_{h} = R_{h} \cdot V_{u} = 8248 \quad \text{kgf} \quad ; \qquad F_{v} = R_{v} \cdot V_{u} \cdot \tan\theta = 549 \,\text{kgf}$$

$$\varepsilon_{h} = \frac{F_{h}}{A_{th}E_{s}} = 0.0016 \; ; \quad \varepsilon_{v} = \frac{F_{v} - 0.75N_{u}}{A_{tv}E_{s}} = 0$$

$$\varepsilon_{0} = \max \left[0.002 + 0.001 \cdot \frac{f_{c}' - 20}{80}, 0.002 \right] = 0.002$$

$$\begin{aligned} &-\epsilon_{d} = \varsigma \cdot \epsilon_{0} = 0.52 \times 0.002 = 0.0011 \; ; \; \epsilon_{r} = \epsilon_{h} + \epsilon_{v} - \epsilon_{d} = 0.0046 \\ &\gamma_{vh} = 2(\epsilon_{r} - \epsilon_{d}) \cdot \sin \theta \cdot \cos \theta = 0.0052 \\ &\ell_{b} = H_{n} - 2 \; \ell_{d} = 330 - 2 \; (42.25) = 245.50 \; \text{cm} \\ &\Delta_{u,sb} = \gamma_{vh} \cdot \ell_{b} = 0.0052 \times 245.50 = 1.27 \; \text{cm} \\ &\Delta_{u,s} = 2\Delta_{u,sd} + \Delta_{u,sb} = 2 \times (0.26) + 1.27 = 1.79 \; \text{cm} \end{aligned}$$

$$\Delta_{\rm m} = \Delta_{\rm f} + \Delta_{\rm slip} + \Delta_{\rm u.s.} = 3.842 + 1.06 + 1.79 = 6.69 \, \rm cm$$

- 2. Yield Deformation (Δ_v)
 - (1) $\Delta_{f} = \Delta_{flexure}$ $\Delta_{flexure} = \frac{V_{y} \cdot H_{n}^{3}}{12 \cdot E_{c} \cdot 0.7 \cdot I_{g}} = 1.191 \text{ cm}$ (2) Δ_{slip} $\Delta_{slip,y} = \frac{d_{b} \cdot f_{s} \cdot \phi_{s}}{8u} \cdot H_{n} = 0.826 \text{ cm}$ (3) $\Delta_{y,s}$ $\Delta_{y,s} = 2\Delta_{y,sd} + \Delta_{y,sb}$ • $\Delta_{y,sd}$

$$\Delta_{y,sd} = (\Delta_{u,sd} - \Delta_{cr}) \frac{\left(V_y - V_{cr}\right)}{\left(V_u - V_{cr}\right)} + \Delta_{cr}$$

$$f_r = 2\sqrt{f'_c} = 2\sqrt{317.92} = 35.661 \text{ kgf} / \text{cm}^2$$

$$M_{cr} = \frac{f_r \cdot I_g}{h/2} = 277297 \text{ kg} - \text{cm} ; V_{cr} = \frac{M_{cr}}{Hn/2} = 1681 \text{ kgf}$$

$$\Delta_{f} = \frac{V_{cr}H_{n}^{3}}{12E_{c}I_{g}} = 0.134 \text{ cm} ; \Delta_{s} = \frac{V_{cr}H}{GA} = 0.004 \text{ cm}$$

 $\Delta_{\rm cr} = \Delta_{\rm f} + \Delta_{\rm s} = 0.138~{\rm cm}$

$$\Delta_{y,sd} = \frac{\Delta_{u,sd} - \Delta_{cr}}{V_u - V_{cr}} (V_y - V_{cr}) + \Delta_{cr} = 0.221$$

• $\Delta_{y,sb}$

$$\Delta_{y,sb} = \frac{\Delta_{u,sb} - \Delta_{cr}}{V_u - V_{cr}} (V_y - V_{cr}) + \Delta_{cr} = 0.806$$

$$\Delta_{\rm y,s} = 2\Delta_{\rm y,sd} + \Delta_{\rm y,sb}$$
 = 1.247 cm

$$\Delta_{\rm y} = \Delta_{\rm f} + \Delta_{\rm slip} + \Delta_{\rm y,s} \ \, \text{= 1.191 +0.826 +1.247 = 3.264 cm}$$

3. Bar Buckling Deformation (Δ_{bb})

$$\frac{\Delta_{bb}}{H_{n}}(\%) = 3.25 \left(1 + k_{e,bb} \cdot \rho_{eff} \cdot \frac{d_{b}}{D} \right) \cdot \left(1 - \frac{N_{u}}{A_{g} \cdot f'_{c}} \right) \cdot \left(1 + \frac{H_{n}}{10 \cdot D} \right)$$

$$= 3.25 \left(1 + 0 \right) \cdot \left(1 - \frac{35240}{1296 \cdot 3179.2} \right) \cdot \left(1 + \frac{330}{10 \cdot 36} \right) = 18.79 \text{ cm}$$

$$V$$
Collapse Deformation (Δ_{c})
$$\Delta_{c} = 2 \cdot \Delta_{bb} = 2 (18.79) = 37.596 \text{ cm}$$

$$V$$

0 ^L AyAm

If the column is under flexural shear failure:

5. Shear Failure Deformation (Δ_s)

4.

$$\frac{\Delta_s}{H_n} = \frac{3}{100} + 4\rho'' - \frac{1}{40} \cdot \frac{\nu}{\sqrt{f'_c}} - \frac{1}{40} \cdot \frac{N_u}{A_g \cdot f'_c} \ge \frac{1}{100}$$

$$\rho'' = \frac{A_{st}}{b \cdot s} = \frac{(2 \cdot 0.283)}{36 \cdot 20} = 0.00078$$

$$v = \frac{V_{test}}{b \cdot d} = \frac{12230}{36 \cdot 30.45} = 11.157 \text{ kgf} / \text{cm}^2 = 11.157 \times 0.09807 = 1.094 \text{ N/mm}^2 (\text{MPa})$$

$$\frac{\Delta_s}{330} = \frac{3}{100} + 4(0.00078) - \frac{1}{40} \cdot \frac{1.094}{\sqrt{3179.2 \times 0.09807}} - \frac{1}{40} \cdot \frac{35240}{(36 \cdot 36) \cdot 3179.2}$$

$$= 0.03 + 0.003 - 0.0156 - 0.0021 = 0.018 \ge 0.01^{\circ} \text{ ok}$$

$$\Delta_s = 8.614 \text{ cm}$$

靈

•

 $\Delta_{\rm bb}$

 $\Delta_{\mathbf{C}}$

6. Axial Deformation (Δ_a)

附錄 B RC 牆側力位移曲線計算例(柱兩側皆有牆)

RC 牆桿件側力位移曲線(柱兩側皆有牆)

 $V_{cr} = \min.(702.417,632.13) = 632.13 \, kN$

Cracking deflection

- Shear deflection:

$$\delta_{s,cr} = \frac{2(1+\nu)}{E_c} \frac{1.2}{\ell_w t_w} V_{cr} H_n$$

= $\frac{2(1+0.17)}{19466.1} \frac{1.2}{2550 \times 240} \times 632.13 \times 10^3 \times 3000 = 0.447 \, mm$

- Flexural deflection:

$$H_{n,t} = 0.5 \times 3000 = 1500 \text{ mm}$$

$$H_{n,b} = 3000 - 1500 = 1500 \text{ mm}$$

$$\delta_{f,cr} = V_{cr} H_n^2 (2H_{n,b} - H_{n,t}) / (6E_c I_e)$$

$$= 632.13 \times 10^3 \times 3000^2 \times (2 \times 1500 - 1500) / [6 \times 19466.1 \times (0.7 \times 3.36 \times 10^{11})]$$

$$= 0.31 \text{ mm}$$
- Slip deflection:

Nominal yielding flexural strength(M_p) of wall at base equals to1947669 *kN-mm* according to sectional analysis(from Biax).

$$V_y = 1947669/1500 = 1298.44 \, kN$$

 $u = \sqrt{f_c'} = \sqrt{17.17} = 4.14$

 d_0 the distance from extreme compression fiber to center of

outmost of tension steel bar

 $d_0 = 2550 - 40 - 15.9 - \frac{15.9}{2} = 2486.15mm$

 a_w distance from extreme compression fiber to neutral axis when

the flexural moment reach the yielding moment (from Biax).

$$\delta_{slip,cr} = (V_{cr} / V_y) d_b f_y^2 / [8uE_s (d_o - a_w)] H_n$$
$$= \frac{(632.13/1298.44) \times 15.9 \times 274.68^2}{8 \times \sqrt{17.17} \times 200124 \times (2486.15 - 996.47)} \times 3000 = 0.177 \, mm$$

- Total deflection:

 $\delta_{cr} = \delta_{s.cr} + \delta_{f,cr} + \delta_{slip,cr} = 0.447 + 0.31 + 0.177 = 0.934 \, mm$

Ultimate point

Ultimate strength

- Flexural strength:

Nominal flexural strength of wall at base equals to 3114675 kN-mm according to sectional analysis (from Biax).

$$V_f = 3114675/1500 = 2076.45 \, kN$$

- Shear strength:
 - Properties of softened strut-and-tie model:

$$a_{w} = 996.47 \, mm \quad \text{from sectional analysis}$$

$$\ell_{h} = \ell_{w} - 2 \times \frac{a_{w}}{3} = 2550 - 2 \times (996.47/3) = 1885.69 \, mm$$

$$\theta = \tan^{-1}(\ell_{v}/\ell_{h}) = \tan^{-1}(3000/1885.69) = 57.84^{\circ}$$

$$A_{str} = a_{w} \times t_{w} = 996.47 \times 240 = 239152.8 \, mm^{2}$$

$$A_{tv} = 2 \times (0.5 \times 2 \times 2 \times 198.6) + 2 \times (2 \times 3 \times 198.6) + (4 \times 506.7 + 4 \times 387.1))$$

$$= 6752.8 \, mm^{2}$$

$$A_{th} = 2 \times (0.75 \times 15 \times 198.6) = 4468.5 \, mm^{2}$$

$$F_{yv} = 6752.8 \times 274.68/1000 = 1854.85 \, kN$$

$$F_{yh} = 4468.5 \times 274.68/1000 = 1227.41 \, kN$$

$$\zeta = 3.35/\sqrt{f_{c}'} = 3.35/\sqrt{17.17} \le 0.52 \text{ ; take} \quad \zeta = 0.52.$$

Test.

Or

- Force distribution:

$$\gamma_{h} = (2 \tan \theta - 1)/3 = (2 \tan 57.84^{\circ} - 1)/3; 0 \le \gamma_{h} \le 1; \text{ take } \gamma_{h} = 0.72$$

$$\gamma_{v} = (2 \cot \theta - 1)/3 = (2 \cot 57.84^{\circ} - 1)/3; 0 \le \gamma_{v} \le 1; \text{ take } \gamma_{v} = 0.08$$

- Balanced amounts of tie forces:

$$\overline{K}_{h} = 1/[1 - 0.2(\gamma_{h} + \gamma_{h}^{2})] = 1/[1 - 0.2(0.72 + 0.72^{2})] = 1.329$$
$$\overline{K}_{v} = 1/[1 - 0.2(\gamma_{v} + \gamma_{v}^{2})] = 1/[1 - 0.2(0.08 + 0.08^{2})] = 1.017$$

$$\overline{F}_{h} = \gamma_{h} \overline{K}_{h} \zeta f_{c}' A_{str} \cos \theta$$

= 0.72 × 1.329 × 0.52 × 17.17 × 239152.8 × cos 57.84°/1000 = 1087.5kN
$$\overline{F}_{v} = \gamma_{v} \overline{K}_{v} \zeta f_{c}' A_{str} \sin \theta$$

= 0.08 × 1.017 × 0.52 × 17.17 × 239152.8 × sin57.84°/1000 = 147.06kN

- Tie index:

$$K_{h} = 1 + (\overline{K}_{h} - 1)F_{yh} / \overline{F}_{h} = 1 + (1.329 - 1) \times 1227.41/1087.5 \le \overline{K}_{h}$$

take $K_{h} = 1.329$
 $K_{v} = 1 + (\overline{K}_{v} - 1)F_{yv} / \overline{F}_{v} = 1 + (1.017 - 1) \times 1854.85/147.06 \le \overline{K}_{v}$
take $K_{v} = 1.017$
- Result:
 $V_{s} = (K_{h} + K_{v} - 1)\zeta f_{c}^{*} A_{sv} \cos \theta$
 $= (1.329 + 1.017 - 1) \times 0.52 \times 17.17 \times 239152.8 \times \cos 57.84^{\circ} / 1000 = 1529.8 kN$
- Ultimate strength
 $V_{u} = \min.(2076.45, 1529.8) = 1529.8 kN$
Ultimate deflection
- Shear deflection:

- Shear deflection:

$$\begin{split} R_{h} &= \gamma_{h} (1 - \gamma_{v}) / (1 - \gamma_{h} \gamma_{v}) = 0.72 \times (1 - 0.08) / (1 - 0.72 \times 0.08) = 0.702 \\ R_{v} &= \gamma_{v} (1 - \gamma_{h}) / (1 - \gamma_{h} \gamma_{v}) = 0.08 \times (1 - 0.72) / (1 - 0.72 \times 0.08) = 0.024 \\ F_{h} &= R_{h} V_{u} = 0.702 \times 1529.8 = 1073.9 \, kN \\ F_{v} &= R_{v} V_{u} \tan \theta = 0.024 \times 1529.8 \times \tan 57.84^{\circ} = 58.39 \, kN \\ \varepsilon_{h} &= F_{h} / (A_{th} E_{s}) = 1073.9 \times 10^{3} / (4468.5 \times 200124) = 0.0012 \leq \varepsilon_{y} \\ \varepsilon_{v} &= F_{v} / (A_{tv} E_{s}) = 58.39 / (6752.8 \times 200124) = 4.3 \times 10^{-8} \leq \varepsilon_{y} \\ \varepsilon_{0} &= \max \left[0.002 + 0.001(f_{c} - 20) / 80, 0.002 \right] = 0.002 \\ -\varepsilon_{d} &= \zeta \varepsilon_{0} = 0.52 \times 0.002 = 0.00104 \\ \varepsilon_{r} &= \varepsilon_{h} + \varepsilon_{v} - \varepsilon_{d} = 0.0012 + 4.3 \times 10^{-8} + 0.00104 = 0.00224 \end{split}$$

 $\gamma_{vh} = 2(\varepsilon_r - \varepsilon_d)\sin\theta\cos\theta$

 $= 2(0.00224 + 0.00104) \sin 57.84^{\circ} \cos 57.84^{\circ} = 0.00295$

 $\delta_s = \gamma_{vh} \cdot H_n = 0.00295 \times 3000 = 8.868 \, mm$

- Flexural deflection:

$$\begin{split} \delta_{f,elastic} &= V_u H_n^2 (2H_{n,b} - H_{n,t}) / (6E_c I_e) \\ &= 1529.8 \times 10^3 \times 3000^2 (2 \times 1500 - 1500) / [6 \times 19466.1 \times (0.35 \times 3.36 \times 10^{11})] \\ &= 1.503 \, mm \end{split}$$

 $M_{b} = 1529.8 \times 1500 = 2294700 \, kN$ -mm when V_{u} occurs

 $M_b > M_y$ Steel bar at the wall base is yield.

 $M_t = 1529.8 \times 1500 = 2294700 \, kN$ -mm

 $M_t > M_y$ Steel bar at the top of wall is yield.

 ϕ_u, ϕ_y from section analysis(Biax)

$$\begin{split} \delta_{f,plastic} &= \left[(\phi_u - \phi_y) \ell_p (H_{n,b} - \ell_p / 2) \right] + \left[(\phi_u - \phi_y) \ell_p (H_{n,t} - \ell_p / 2) \right] \\ &= \left[(3.89 \times 10^{-6} - 8.831 \times 10^{-7}) \times (2550 / 2) \times (1500 - (2550 / 2) / 2) \right] \\ &+ \left[(3.89 \times 10^{-6} - 8.831 \times 10^{-7}) \times (2550 / 2) \times (1500 - (2550 / 2) / 2) \right] \\ &= 6.61 \, mm \end{split}$$

$$\delta_{f} = \delta_{f,elastic} + \delta_{f,plastic} = 1.503 + 6.61 = 8.113 mm$$

 ε_s from section analysis(Biax) the strain of steel bar when it reach ultimate strength.

 $f_s = f_y + 0.01E_s(\varepsilon_s - \varepsilon_y) = 274.68 + 0.01 \times 200124(0.0069 - 0.0014) = 285.68 MPa$

c= the distance from extreme compression fiber to neutral axis (Biax)

$$\begin{aligned} \theta_{slip,b} &= d_b f_y^2 / [8uE_s (d_o - a_w)] + (\varepsilon_s + \varepsilon_y)(f_s - f_y) d_b / [8u'(d_o - c)] \\ &= 15.9 \times 274.68^2 / (8 \times \sqrt{17.17} \times 200124 \times [(2486.15) - 996.47]) \\ &+ (0.0069 - 0.0014) \times (285.68 - 274.68) \times 15.9 / [8 \times (0.5 \times \sqrt{17.17}) \times (2486.15 - 813)] \\ &= 0.000156 \end{aligned}$$

$$\theta_{slip,t} = d_b f_y^2 / [8uE_s(d_o - a_w)] + (\varepsilon_s + \varepsilon_y)(f_s - f_y)d_b / [8u(d_o - c)]$$

⁻ Slip deflection:

= 0.000156

$$\delta_{slip} = \theta_{slip,t} H_{n,t} + \theta_{slip,b} H_{n,b} = 0.000156 \times 1500 + 0.000156 \times 1500 = 0.468 mm$$

- Total deflection:

$$\delta_u = \delta_s + \delta_f + \delta_{slip} = 8.868 + 8.113 + 0.468 = 17.449 \, mm$$

Post strength point

 $V_{ps} = 0.4V_u = 0.4 \times 1529.8 = 611.92 \ kN$

 $\delta_{ps} = 0.02 \times H_n = 0.02 \times 3000 = 60 \, mm$

附錄 C RC 牆側力位移曲線計算例 (柱右側有牆)

RC 牆桿件側力位移曲線(柱右側有牆)

 $V_{cr} = \min.(503.5,256.4) = 256.4 \, kN$

Cracking deflection

- Shear deflection:

$$\delta_{s,cr} = \frac{2(1+\upsilon)}{E_c} \frac{1.2}{\ell_w t_w} V_{cr} H_n$$

= $\frac{2(1+0.17)}{19466.1} \frac{1.2}{1550 \times 240} \times 256.4 \times 10^3 \times 3000 = 0.298 \, mm$

- Flexural deflection:

$$H_{n,t} = 0.5 \times 3000 = 1500 \, mm$$

$$H_{n,b} = 3000 - 1500 = 1500 \, mm$$

$$\delta_{f,cr} = V_{cr} H_n^2 (2H_{n,b} - H_{n,t}) / (6E_c I_e)$$

$$= 256.4 \times 10^3 \times 3000^2 \times (2 \times 1500 - 1500) / \{6 \times 19466.1 \times [0.7 \times (7.25 \times 10^{10})]\}$$

$$= 0.584 \, mm$$
- Slip deflection:

Nominal yielding flexural strength (M_{p}) of wall at base equals to 968290 kN-mm according to sectional analysis (from Biax).

$$V_y = 968290/1500 = 645.52 \ kN$$

 $u = \sqrt{f_c'} = \sqrt{17.17} = 4.14$

 d_0 the distance from extreme compression fiber to center of

outmost of tension steel bar

 $d_0 = 1550 - 40 - 15.9 - \frac{15.9}{2} = 1486.15mm$

 a_w distance from extreme compression fiber to neutral axis when

the flexural moment reach the yielding moment (from Biax).

$$\delta_{slip,cr} = (V_{cr} / V_y) d_b f_y^2 / [8uE_s (d_o - a_w)] H_n$$
$$= \frac{(256.4 / 645.52) \times 15.9 \times 274.68^2}{8 \times \sqrt{17.17} \times 200124 \times (1486.15 - 462.86)} \times 3000 = 0.21 \, mm$$

- Total deflection:

 $\delta_{cr} = \delta_{s.cr} + \delta_{f.cr} + \delta_{slip.cr} = 0.298 + 0.584 + 0.21 = 1.092 \, mm$

Ultimate point

Ultimate strength

- Flexural strength:

Nominal flexural strength of wall at base equals to 1432260 *kN-mm* according to sectional analysis (from Biax).

 $V_f = 1432260/1500 = 954.84 \, kN$

- Shear strength:

- Properties of softened strut-and-tie model:

 $a_w = 462.86 \, mm$ from sectional analysis $\ell_h = \ell_w - 2 \times \frac{a_w}{3} = 1550 - 2 \times (462.86/3) = 1241.4mm$ This one has to consider the boundary element $a_{b} = \frac{1}{2} \frac{h_{b}}{H_{x} t_{w}} (7b_{b}h_{b} + \ell_{u}t_{w})$ $=\frac{1}{2}\frac{550}{3000\times240}(7\times550\times550+1000\times240)$ $=900mm \leq \frac{H_n}{2}$ $\theta = \tan^{-1}(\frac{H_n - a_b/3}{\ell}) = \tan^{-1}(\frac{3000 - 900/3}{1241.4}) = 65.3^{\circ}$ $A_{str} = t_w \times \sqrt{a_w^2 + a_b^2} = 240 \times \sqrt{462.86^2 + 900^2} = 242891.3 \, mm^2$ $A_{tv} = (0.5 \times 2 \times 198.6) + (2 \times 4 \times 198.6 + 2 \times 506.7) + (0.5 \times 2 \times 506.7 + 0.5 \times 4 \times 387.1)$ $= 4081.7 mm^2$ $A_{th} = 2 \times (0.75 \times 15 \times 198.6) = 4468.5 \, mm^2$ $F_{yy} = 4081.7 \times 274.68 / 1000 = 1121.16 \, kN$ $F_{vh} = 4468.5 \times 274.68 / 1000 = 1227.41 \, kN$ $\zeta = 3.35 / \sqrt{f_c'} = 3.35 / \sqrt{17.17} \le 0.52$; take $\zeta = 0.52$.

- Force distribution:

$$\gamma_h = (2 \tan \theta - 1)/3 = (2 \tan 65.3^\circ - 1)/3; 0 \le \gamma_h \le 1; \text{ take } \gamma_h = 1$$

 $\gamma_v = (2 \cot \theta - 1)/3 = (2 \cot 65.3^\circ - 1)/3; 0 \le \gamma_v \le 1; \text{ take } \gamma_v = 0$

- Balanced amounts of tie forces:

$$\begin{split} \overline{K}_{h} &= 1/[1 - 0.2(\gamma_{h} + \gamma_{h}^{2})] = 1/[1 - 0.2(1 + 1^{2})] = 1.667 \\ \overline{K}_{v} &= 1/[1 - 0.2(\gamma_{v} + \gamma_{v}^{2})] = 1/[1 - 0.2(0 + 0^{2})] = 1 \\ \overline{F}_{h} &= \gamma_{h}\overline{K}_{h}\zeta f_{c}' A_{str} \cos \theta \\ &= 1 \times 1.667 \times 0.52 \times 17.17 \times 242891.3 \times \cos 65.3^{\circ}/1000 = 1510.63kN \\ \overline{F}_{v} &= \gamma_{v}\overline{K}_{v}\zeta f_{c}' A_{str} \sin \theta \\ &= 0 \times 1 \times 0.52 \times 17.17 \times 242891.3 \times \sin 65.3^{\circ}/1000 = 0kN \\ \text{- Tie index:} \\ K_{h} &= 1 + (\overline{K}_{h} - 1)F_{vh}/\overline{F}_{h} = 1 + (1.667 - 1) \times 1227.4/1510.63 \le \overline{K}_{h} \\ \text{take } K_{h} &= 1.54 \\ K_{v} &= 1 + (\overline{K}_{v} - 1)F_{yv}/\overline{F}_{v} = 1 + (1 - 1) \times 1121.16/0 \le \overline{K}_{v} \\ \text{take } K_{v} &= 1 \\ \text{- Result:} \\ V_{s} &= (K_{h} + K_{v} - 1)\zeta f_{c}' A_{str} \cos \theta \\ &= (1.54 + 1 - 1) \times 0.52 \times 17.17 \times 242891.3 \times \cos 65.3^{\circ}/1000 = 1395.5 kN \end{split}$$

- Ultimate strength

 $V_u = \min.(954.84, 1395.5) = 954.84 \ kN$

Ultimate deflection

- Shear deflection:

$$R_{h} = \gamma_{h}(1 - \gamma_{v})/(1 - \gamma_{h}\gamma_{v}) = 1 \times (1 - 0)/(1 - 1 \times 0) = 1$$
$$R_{v} = \gamma_{v}(1 - \gamma_{h})/(1 - \gamma_{h}\gamma_{v}) = 0 \times (1 - 1)/(1 - 1 \times 0) = 0$$
$$F_{h} = R_{h}V_{u} = 1 \times 954.84 = 954.84 \, kN$$

$$\begin{split} F_{v} &= R_{v}V_{v} \tan \theta = 0 \times 954.84 \times \tan 65.3^{\circ} = 0kN \\ \varepsilon_{h} &= F_{h} / (A_{ch}E_{s}) = 954.84 \times 10^{3} / (4468.5 \times 200124) = 0.00106 \leq \varepsilon_{y} \\ \varepsilon_{v} &= F_{v} / (A_{ch}E_{s}) = 0 / (4081.7 \times 200124) = 0 \leq \varepsilon_{y} \\ \varepsilon_{0} &= \max \left[0.002 \pm 0.001(f_{v}^{-}-20)/80, 0.002 \right] = 0.002 \\ -\varepsilon_{d} &= \zeta \varepsilon_{0} = 0.52 \times 0.002 = 0.00104 \\ \varepsilon_{r} &= \varepsilon_{h} + \varepsilon_{v} - \varepsilon_{d} = 0.00106 \pm 0 \pm 0.00104 = 0.0021 \\ \gamma_{vh} &= 2(\varepsilon_{r} - \varepsilon_{d}) \sin \theta \cos \theta \\ &= 2(0.0021 \pm 0.00104) \sin 65.3^{\circ} \cos 65.3^{\circ} = 0.00238 \\ \delta_{x} &= \gamma_{vh} \cdot H_{n} = 0.00238 \times 3000 = 7.15 \, mm \\ - \text{ Flexural deflection:} \\ \delta_{f, shortic} &= V_{u}H_{n}^{2}(2H_{n,v} - H_{n,v}) / (6E_{c}I_{c}) \\ &= 954.84 \times 10^{5} \times 3000^{2} (2 \times 1500 - 1500) / [6 \times 19466.1 \times (0.35 \times 7.25 \times 10^{10})] \\ &= 4.34 \, mm \\ M_{b} &= 954.84 \times 1500 = 1432260 \, kN - mm \text{ when } V_{u} \text{ occurs} \\ M_{b} &> M_{y} \text{ Steel bar at the wall base is yield.} \\ M_{r} &= 954.84 \times 1500 = 1432260 \, kN - mm \\ M_{r} &> M_{y} \text{ Steel bar at the top of wall is yield.} \\ \delta_{f, plastic} &= [(\phi_{u} - \phi_{y})\ell_{p}(H_{n,b} - \ell_{p}/2)] + [(\phi_{u} - \phi_{y})\ell_{p}(H_{n,z} - \ell_{p}/2)] \\ &= [(1.267 \times 10^{5} - 1.260 \times 10^{-6}) \times (1550/2) \times (1500 - (1550/2)/2)] \\ &+ [(1.267 \times 10^{5} - 1.260 \times 10^{-6}) \times (1550/2) \times (1500 - (1550/2)/2)] \\ &= 19.67 \, mm \end{aligned}$$

$$\delta_f = \delta_{f,elastic} + \delta_{f,plastic} = 4.34 + 19.67 = 24.01 mm$$

- Slip deflection:

 ε_s from section analysis(Biax) the strain of steel bar when it reach ultimate strength.

$$f_s = f_y + 0.01E_s(\varepsilon_s - \varepsilon_y) = 274.68 + 0.01 \times 200124(0.0167 - 0.0014) = 305.3 MPa$$

c= the distance from extreme compression fiber to neutral axis (Biax)

$$\begin{aligned} \theta_{slip,b} &= d_b f_y^2 / [8uE_s(d_o - a_w)] + (\varepsilon_s + \varepsilon_y)(f_s - f_y)d_b / [8u'(d_o - c)] \\ &= 15.9 \times 274.68^2 / (8 \times \sqrt{17.17} \times 200124 \times [1486.15 - 462.86]) \\ &+ (0.0167 - 0.0014) \times (305.3 - 274.68) \times 15.9 / [8 \times (0.5 \times \sqrt{17.17}) \times (1486.15 - 346.6)] \\ &= 0.000571 \end{aligned}$$

$$\theta_{slip,t} = d_b f_y^2 / [8uE_s(d_o - a_w)] + (\varepsilon_s + \varepsilon_y)(f_s - f_y)d_b / [8u(d_o - c)]$$

$$= 25.4 \times 274.68^{2} / (8 \times \sqrt{17.17} \times 200124 \times [1486.15 - 462.86]) + (0.0167 - 0.0014) \times (305.3 - 274.68) \times 25.4 / [8 \times (0.5 \times \sqrt{17.17}) \times (1486.15 - 346.6)] = 0.000912$$

$$\delta_{slip} = \theta_{slip,t} H_{n,t} + \theta_{slip,b} H_{n,b} = 0.000571 \times 1500 + 0.000912 \times 1500 = 2.22mm$$

- Total deflection: $\delta_u = \delta_s + \delta_f + \delta_{slip} = 7.15 + 24.01 + 2.22 = 33.38 \text{ mm}$ Post strength point $V_{ps} = 0.4V_u = 0.4 \times 954.84 = 381.936 \text{ kN}$ $\delta_{ps} = 0.02 \times H_n = 0.02 \times 3000 = 60 \text{ mm}$

附錄 D RC 牆側力位移曲線計算例(柱左側有牆)

RC 牆桿件側力位移曲線(柱左側有牆)

 $V_{cr} = \min.(503.5,256.4) = 256.4 \, kN$

Cracking deflection

- Shear deflection:

$$\delta_{s,cr} = \frac{2(1+\upsilon)}{E_c} \frac{1.2}{\ell_w t_w} V_{cr} H_n$$

= $\frac{2(1+0.17)}{19466.1} \frac{1.2}{1550 \times 240} \times 256.4 \times 10^3 \times 3000 = 0.298 \, mm$

- Flexural deflection:

$$H_{n,t} = 0.5 \times 3000 = 1500 \, mm$$

$$H_{n,b} = 3000 - 1500 = 1500 \, mm$$

$$\delta_{f,cr} = V_{cr} H_n^2 (2H_{n,b} - H_{n,t}) / (6E_c I_e)$$

$$= 256.4 \times 10^3 \times 3000^2 \times (2 \times 1500 - 1500) / [6 \times 19466.1 \times (0.7 \times 7.25 \times 10^{10})]$$

$$= 0.58 \, mm$$
- Slip deflection:

Nominal yielding flexural strength (M_p) of wall at base equals to 1490100 *kN-mm* according to sectional analysis(from Biax).

$$V_y = 1490100/1500 = 993.4 \, kN$$

$$u = \sqrt{f_c'} = \sqrt{17.17} = 4.14$$

 d_0 the distance from extreme compression fiber to center of

outmost of tension steel bar

$$d_0 = 1550 - 40 - 9.53 - \frac{25.4}{2} = 1487.8mm$$

 a_w distance from extreme compression fiber to neutral axis when

the flexural moment reach the yielding moment (from Biax).

$$\delta_{slip,cr} = (V_{cr} / V_y) d_b f_y^2 / [8uE_s(d_o - a_w)] H_n$$
$$= \frac{(256.4/993.4) \times 25.4 \times 274.68^2}{8 \times \sqrt{17.17} \times 200124 \times (1487.8 - 757.49)} \times 3000 = 0.306 \, mm$$

- Total deflection:

 $\delta_{cr} = \delta_{s.cr} + \delta_{f,cr} + \delta_{slip,cr} = 0.298 + 0.58 + 0.306 = 1.184 \, mm$

Ultimate point

Ultimate strength

- Flexural strength:

Nominal flexural strength of wall at base equals to 1857033 kN-mm according to sectional analysis (from Biax).

 $V_f = 1857033 / 1500 = 1238 \, kN$

- Shear strength:
 - Properties of softened strut-and-tie model:

$$\begin{aligned} a_w &= 757.49 \, mm \quad \text{from sectional analysis} \\ \ell_h &= \ell_w - 2 \times \frac{d_w}{3} = 1550 - 2 \times (757.49/3) = 1045 \, mm \\ \theta &= \tan^{-1}(\ell_w/\ell_h) = \tan^{-1}(3000/1045) = 70.8^{\circ} \\ A_{str} &= a_w \times t_w = 757.49 \times 240 = 181797.6 \, mm^2 \\ A_{tv} &= (0.5 \times 2 \times 198.6) + (2 \times 4 \times 198.6 + 2 \times 506.7) + (0.5 \times 2 \times 506.7 + 0.5 \times 4 \times 387.1) \\ &= 4081.7 \, mm^2 \\ A_{th} &= 2 \times (0.75 \times 15 \times 198.6) = 4468.5 \, mm^2 \\ F_{yv} &= 4081.7 \times 274.68/1000 = 1121.16 \, kN \\ F_{yh} &= 4468.5 \times 274.68/1000 = 1227.41 \, kN \\ \zeta &= 3.35/\sqrt{f_c'} = 3.35/\sqrt{17.17} \le 0.52 \ ; \ \text{take} \quad \zeta = 0.52. \end{aligned}$$

LONG

100

- Force distribution:

 $\gamma_h = (2 \tan \theta - 1) / 3 = (2 \tan 70.8^\circ - 1) / 3; 0 \le \gamma_h \le 1; \text{ take } \gamma_h = 1$

$$\gamma_{v} = (2 \cot \theta - 1)/3 = (2 \cot 70.8^{\circ} - 1)/3; 0 \le \gamma_{v} \le 1; \text{ take } \gamma_{v} = 0$$

- Balanced amounts of tie forces:

$$\overline{K}_h = 1/[1 - 0.2(\gamma_h + \gamma_h^2)] = 1/[1 - 0.2(1 + 1^2)] = 1.667$$

$$\begin{split} \overline{K}_{v} &= 1/[1 - 0.2(\gamma_{v} + \gamma_{v}^{2})] = 1/[1 - 0.2(0 + 0^{2})] = 1\\ \overline{F}_{h} &= \gamma_{h} \overline{K}_{h} \zeta f_{c}' A_{str} \cos \theta \\ &= 1 \times 1.667 \times 0.52 \times 17.17 \times 181797.6 \times \cos 70.8^{\circ} / 1000 = 889.85 kN\\ \overline{F}_{v} &= \gamma_{v} \overline{K}_{v} \zeta f_{c}' A_{str} \sin \theta \\ &= 0 \times 1 \times 0.52 \times 17.17 \times 181797.6 \times \sin 70.8^{\circ} / 1000 = 0 kN \end{split}$$

- Tie index:

$$K_{h} = 1 + (\overline{K}_{h} - 1)F_{yh} / \overline{F}_{h} = 1 + (1.667 - 1) \times 1227.41/889.85 \le \overline{K}_{h}$$

take $K_{h} = 1.667$
 $K_{v} = 1 + (\overline{K}_{v} - 1)F_{yv} / \overline{F}_{v} = 1 + (1 - 1) \times 1121.16 / 0 \le \overline{K}_{v}$
take $K_{v} = 1$
- Result:
 $V_{s} = (K_{h} + K_{v} - 1)\zeta f_{s}^{2}A_{M} \cos \theta$
 $= (1.667 + 1 - 1) \times 0.52 \times 17.17 \times 181797.6 \times \cos 70.8^{\circ} / 1000 = 889.8 kN$
- Ultimate strength
 $V_{\mu} = \min.(1238, 889.8) = 889.8 kN$
Ultimate deflection:
 $R_{h} = \gamma_{h}(1 - \gamma_{v}) / (1 - \gamma_{h}\gamma_{v}) = 1 \times (1 - 0) / (1 - 1 \times 0) = 1$
 $R_{v} = \gamma_{v}(1 - \gamma_{h}) / (1 - \gamma_{h}\gamma_{v}) = 0 \times (1 - 1) / (1 - 1 \times 0) = 0$
 $F_{h} = R_{h}V_{\mu} = 01 \times 889.8 = 889.8 kN$
 $F_{v} = R_{v}V_{u} \tan \theta = 0 \times 889.8 \times \tan 70.8^{\circ} = 0 kN$
 $\varepsilon_{h} = F_{h} / (A_{h}E_{v}) = 889.8 \times 10^{3} / (4468.5 \times 200124) = 0.00099 \le \varepsilon_{y}$
 $\varepsilon_{v} = F_{v} / (A_{h}E_{v}) = 0 / (4081.7 \times 200124) = 0 \le \varepsilon_{y}$
 $\varepsilon_{0} = \max [0.002 + 0.001(f_{v}^{-} - 20)/80, 0.002] = 0.002$
 $-\varepsilon_{d} = \zeta \varepsilon_{0} = 0.52 \times 0.002 = 0.00104$
 $\varepsilon_{r} = \varepsilon_{h} + \varepsilon_{v} - \varepsilon_{d} = 0.00099 + 0 + 0.00104 = 0.00203$

 $\gamma_{vh} = 2(\varepsilon_r - \varepsilon_d)\sin\theta\cos\theta$

$$= 2(0.00203 + 0.00104) \sin 70.8^{\circ} \cos 70.3^{\circ} = 0.0019$$

 $\delta_s = \gamma_{vh} \cdot H_n = 0.0019 \times 3000 = 5.72 \, mm$

- Flexural deflection:

$$\begin{split} \delta_{f,elastic} &= V_u H_n^2 (2H_{n,b} - H_{n,t}) / (6E_c I_e) \\ &= 889.8 \times 10^3 \times 3000^2 (2 \times 1500 - 1500) / [6 \times 19466.1 \times (0.35 \times 7.25 \times 10^{10})] \\ &= 4.053 \, mm \end{split}$$

 $M_{b} = 889.8 \times 1500 = 1334700 \, kN \cdot mm$ when V_{u} occurs

 $M_b < M_y$ Steel bar at the wall base is not yield.

 $M_t = 889.8 \times 1500 = 1334700 \, kN$ -mm

 $M_t < M_y$ Steel bar at the top of wall is not yield.

$$\delta_f = \delta_{f,elastic} + \delta_{f,plastic} = 4.053 + 0 = 4.053mm$$

- Slip deflection:

$$\theta_{slip,b} = d_b f_y^2 / [8uE_s(d_o - a_w)]$$

= 25.4 × 274.68² /(8 × √17.17 × 200124 × [1487.8 - 757.49])
= 0.000395

 $\theta_{slip,t} = d_b f_y^2 / [8uE_s(d_o - a_w)]$

 $= 15.9 \times 274.68^{2} / (8 \times \sqrt{17.17} \times 200124 \times [1487.8 - 757.49])$ = 0.000247

 $\delta_{\textit{slip}} = \theta_{\textit{slip},t} H_{n,t} + \theta_{\textit{slip},b} H_{n,b} = 0.000247 \times 1500 + 0.000395 \times 1500 = 0.963 mm$

- Total deflection:

 $\delta_u = \delta_s + \delta_f + \delta_{slip} = 5.72 + 4.053 + 0.963 = 10.736 \, mm$

Post strength point

 $V_{ps} = 0.4V_u = 0.4 \times 889.8 = 355.92 \, kN$

$$\delta_{ps} = 0.02 \times H_n = 0.02 \times 3000 = 60 \, mm$$

附錄 E 磚牆側力位移曲線計算例

磚牆桿件側力位移曲線

使用法國式砌法	1B 三面圍束 磚牆不承擔垂直載重
磚牆高 300 cm	磚塊尺寸 24,12,5 cm
寬 100 cm	f _{mc} 砂漿塊抗壓強度=12.25(MPa)
厚 24 cm	f _{bc} 紅磚單軸抗壓強度=14.71(MPa)

強度

$$\tan \theta = \frac{2(h+g_h)}{w+\ell+2g_v} = \frac{2(50+10)}{120+240+2\times10} = 0.315 \qquad (法國式动法)$$
$$H_2 = 0.5 \times W_b \times \tan \theta = 0.5 \times 1000 \times 0.315 = 157.5(mm) \le H_b = 3000(mm)$$
$$\tau_f = 0.0258(f_{mc})^{0.885} = 0.0258 \times 12.25^{0.885} = 0.237(MPa)$$
$$\alpha = 0.45$$
$$f_{mbt} = 0.232(f_{mc})^{0.338} = 0.232 \times 12.25^{0.338} = 0.541(MPa)$$
$$V_n = T_b \times (W_b \times 0.7 \times \tau_f + H_2 \times \alpha \times f_{mbt})$$
$$= 240 \times (1000 \times 0.7 \times 0.237 + 157.5 \times 0.45 \times 0.541) = 49018.4(N)$$

位 移

$$0.5 \le \left(\frac{H_b}{W_b}\right) \le 2.0 \qquad \left(\frac{3000}{1000}\right) = 3 \ge 2 \qquad \text{for ill} \left(\frac{H_b}{W_b}\right) = 2$$

$$\eta_1 = 1.67 - 0.64 \left(\frac{H_b}{W_b}\right) = 1.67 - 0.64 \times 2 = 0.39$$

$$\eta_2 = 0.367$$
 三面圍束
 $f'_p = 0.27 f^{0.7}_{bc} f^{0.3}_{mc} = 0.27 \times 14.71^{0.7} \times 12.25^{0.3} = 3.76$

$$\mathbf{E}_n = 227\eta_2\eta_1 f'_p = 227 \times 0.367 \times 0.39 \times 3.76 = 122.16$$

$$u_{n} = \left[\left(\frac{5}{4} + \frac{3}{2}\nu\right) \frac{W_{b}}{H_{b}} + \left(2 + \frac{7}{4}\nu\right) \frac{H_{b}}{W_{b}} + \left(2 + \frac{3}{2}\nu\right) \frac{H_{b}^{3}}{W_{b}^{3}} \right] \frac{V_{n}}{E_{n}T_{b}}$$

$$= \left[\left(\frac{5}{4} + \frac{3}{2} \times 0.15 \right) \times 0.5 + \left(2 + \frac{7}{4} \times 0.15 \right) \times 2 + \left(2 + \frac{3}{2} \times 0.15 \right) \times 2^3 \right] \frac{49018.4}{122.16 \times 240}$$

= 38.56(mm)

 $V_r = 0.7\tau_f \times T_b \times W_b \le 0.6V_n$

 $0.7\tau_f \times T_b \times W_b = 0.237 \times 240 \times 1000 = 56880 \ge 0.6V_n$

 $\therefore V_r = 0.6V_n = 29411$

磚牆的側力位移曲線主要在到達極限點前,下式三次多項式的形式模擬加載歷程,而這加載歷程必須經過原點、50%極限載重點、極限載重點,並另使極限點 之斜率為零。

	Avial							App	lied Axi	ial Load	l (kgf)					
Building	Axia	Column							2 Colu	mn Spa	n					
Туре	Code	Туре	2 FL B	uilding	3 F	L Build	ing		4 FL Bı	uilding			5 FL	Buildin	ıg	
	Coue		1FL	RF	1FL	2FL	RF	1F	2F	3F	RF	1F	2F	3F	4F	RF
	N1	C1-1	53213	24188	82238	53213	24188	111263	82238	53213	24188	140288	111263	82238	53213	24188
g g	N2	C1-2	37744	17156	58331	37744	17156	78919	58331	37744	17156	99507	78919	58331	37744	17156
ldin	N3	C1-3	18872	8578	29166	18872	8578	39460	29166	18872	8578	49754	39460	29166	18872	8578
r Co Bui	N4	C1-4	30938	14063	47813	30938	14063	64688	47813	30938	14063	81563	64688	47813	30938	14063
evel ool	N5	C1-5	15469	7031	23906	15469	7031	32344	23906	15469	7031	40782	32344	23906	15469	7031
Sch	N6	C1-6	7734	3516	11953	7734	3516	16171	11953	7734	3516	20389	16171	11953	7734	3516
Ca	N7	C1-7	7734	3516	11953	7734	3516	16171	11953	7734	3516	20389	16171	11953	7734	3516
	N10	C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	N1	C1-1	42075	19125	65025	42075	19125	87 97 5	65025	42075	19125	110925	87975	65025	42075	19125
	N2	C1-2	26606	12094	41119	26606	12094	55631	41119	26606	12094	70143	55631	41119	26606	12094
or lor	N3	C1-3	13303	6047	20559	13303	6047	27815	20559	13303	6047	35071	27815	20559	13303	6047
rrid ding	N4	C1-4	30938	14063	47813	30938	14063	64688	47813	30938	14063	81563	64688	47813	30938	14063
l Co Buil	N5	C1-5	15469	7031	23906	15469	7031	32344	23906	15469	7031	40782	32344	23906	15469	7031
eral ool 1	N6	C1-6	7734	3516	11953	7734	3516	16171	11953	7734	3516	20389	16171	11953	7734	3516
nilat Scho	N7	C1-7	7734	3516	11953	7734	3516	16171	11953	7734	3516	20389	16171	11953	7734	3516
D 1	N8	C2-1	11138	5063	17213	11138	5063	23288	17213	11138	5063	29363	23288	17213	11138	5063
	N9	C2-2	5569	2531	8606	5569	2531	11644	8606	5569	2531	14682	11644	8606	5569	2531
	N10	C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Arrial							Appl	ied Axia	al Load	(kgf)						
Building	Axial	Column							3 Colun	nn Span							
Туре	Code	Туре	2 FL B	uilding	3 F	L Build	ing		4 FL B	uilding		5 FL Building					
	Coue		1FL	RF	1FL	2FL	RF	1F	2F	3F	RF	1F	2F	3F	4F	RF	
	N1	C1-1	35475	16125	54825	35475	16125	74175	54825	35475	16125	93525	74175	54825	35475	16125	
glor	N2	C1-2	25163	11438	38888	25163	11438	52613	38888	25163	11438	66338	52613	38888	25163	11438	
ding	N3	C1-3	12581	5719	19444	12581	5719	26306	19444	12581	5719	33168	26306	19444	12581	5719	
: Co Buil	N4	C1-4	20625	9375	31875	20625	9375	43125	31875	20625	9375	54375	43125	31875	20625	9375	
evei Dol 1	N5	C1-5	10313	4688	15938	10313	4688	21563	15938	10313	4688	27188	21563	15938	10313	4688	
Sche	N6	C1-6	5156	2344	7949	5156	2344	10761	7949	5156	2344	13573	10761	7949	5156	2344	
Ca	N7	C1-7	5156	2344	7949	5 156	2344	10761	7949	5156	2344	13573	10761	7949	5156	2344	
	N10	C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	N1	C1-1	28050	12750	43350	28050	12750	586 50	43350	28050	12750	73950	58650	43350	28050	12750	
	N2	C1-2	17738	8063	27413	17738	8063	37088	27413	17738	8063	46763	37088	27413	17738	8063	
or lor	N3	C1-3	8869	4031	13706	8869	4031	18544	13706	8869	4031	23382	18544	13706	8869	4031	
rrid ding	N4	C1-4	20625	9375	31875	20625	9375	43125	31875	20625	9375	54375	43125	31875	20625	9375	
l Co Buil	N5	C1-5	10313	4688	15938	10313	4688	21563	15938	10313	4688	27188	21563	15938	10313	4688	
eral ool 1	N6	C1-6	5156	2344	7969	5156	2344	10781	7969	5156	2344	13593	10781	7969	5156	2344	
nilat Scho	N7	C1-7	5156	2344	7969	5156	2344	10781	7969	5156	2344	13593	10781	7969	5156	2344	
n n	N8	C2-1	7425	3375	11475	7425	3375	15525	11475	7425	3375	19575	15525	11475	7425	3375	
	N9	C2-2	3713	1688	5738	3713	1688	7763	5738	3713	1688	9788	7763	5738	3713	1688	
	N10	C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

附錄G桿件分析結果

桿件分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
C22	1	53.213	210	1800	25	17.49	20.29	20.91	20.29	1.46	2.73	4.83	6.58	0.97
C22	1	37.744	300	1800	25	11.01	13.38	19.52	13.38	2.09	4.48	12.21	23.99	0.69
C22	1	18.872	300	1800	25	9.53	12.05	17.66	12.05	1.89	4.54	13.08	27.54	0.68
C22	1	30.938	210	1800	25	15.07	18.53	18.87	18.53	1.32	2.83	5.34	9.31	0.98
C22	1	15.469	210	1800	25	13.48	16.79	17.28	16.79	1.23	2.92	6.00	21.93	0.97
C22	1	7.734	210	1800	25	12.46	15.86	16.41	15.86	1.16	2.95	6.07	21.93	0.97
C22	1	7.734	300	1800	25	8.72	11.10	16.41	11.10	1.76	4.57	13.80	32.54	0.68
C22	1	0	300	960	25	2.61	2.88	7.55	2.88	2.27	5.04	21.94	43.88	0.38
C22	2	24.188	210	1800	25	13.62	17.20	18.21	17.20	1.24	2.84	5.56	10.64	0.94
C22	2	17.156	300	1800	25	9.13	11.45	17.48	11.45	1.84	4.49	14.14	29.34	0.66
C22	2	8.578	300	1800	25	8.40	10.73	16.51	10.73	1.73	4.51	14.75	31.32	0.65
C22	2	14.063	210	1800	25	12.49	15.98	17.14	15.98	1.18	2.90	5.83	13.57	0.93
C22	2	7.031	210	1800	25	11.94	15.13	16.33	15.13	1.14	2.93	6.13	21.93	0.93
C22	2	3.516	210	1800	25	11.34	14.64	15.90	14.64	1.11	2.99	6.17	21.93	0.92
C22	2	3.516	300	1800	25	7.94	10.25	15.90	10.25	1.65	4.57	15.20	33.21	0.64
C22	2	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35

G1. C22 校舍柱分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
C23	1	82.238	210	2025	25	21.61	23.86	25.89	23.86	1.42	2.33	4.45	5.34	0.92
C23	1	58.331	300	2025	25	13.23	15.11	23.88	15.11	1.97	3.94	12.71	24.94	0.63
C23	1	29.166	300	2025	25	10.70	12.48	21.13	12.48	1.72	4.36	14.91	29.83	0.59
C23	1	47.813	210	2025	25	17.56	20.37	22.93	20.37	1.25	2.63	5.21	7.82	0.89
C23	1	23.906	210	2025	25	14.89	17.07	20.58	17.07	1.16	2.93	6.15	21.93	0.83
C23	1	11.953	210	2025	25	12.88	15.24	19.28	15.24	1.06	3.16	6.45	21.81	0.79
C23	1	11.953	300	2025	25	9.02	10.67	19.28	10.67	1.53	4.71	15.70	31.40	0.55
C23	1	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35
C23	2	53.213	210	2025	25	20.69	23.19	23.36	23.19	1.37	2.52	4.93	7.29	0.99
C23	2	37.744	300	2025	25	13.04	14.97	21.92	14.97	1.94	4.24	12.04	24.07	0.68
C23	2	18.872	300	2025	25	11.38	13.13	19.99	13.13	1.77	4.50	13.55	28.29	0.66
C23	2	30.938	210	2025	25	17.66	20.50	21.26	20.50	1.24	2.77	5.45	10.12	0.96
C23	2	15.469	210	2025	25	16.02	18.28	19.61	18.28	1.19	2.98	6.07	21.93	0.93
C23	2	7.734	210	2025	25	14.82	17.09	18.72	17.09	1.13	3.13	6.15	21.93	0.91
C23	2	7.734	300	2025	25	10.37	11.96	18.72	11.96	1.65	4.72	14.61	31.70	0.64
C23	2	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35
C23	3	24.188	210	2025	25	16.92	19.52	20.56	19.52	1.22	2.87	5.62	11.46	0.95
C23	3	17.156	300	2025	25	11.36	12.96	19.80	12.96	1.77	4.52	13.70	28.67	0.65
C23	3	8.578	300	2025	25	10.53	12.05	18.82	12.05	1.67	4.70	14.51	30.62	0.64
C23	3	14.063	210	2025	25	15.40	18.07	19.46	18.07	1.15	2.99	5.88	14.33	0.93
C23	3	7.031	210	2025	25	14.63	16.97	18.64	16.97	1.12	3.14	6.16	21.93	0.91
C23	3	3.516	210	2025	25	14.02	16.43	18.20	16.43	1.10	3.21	6.20	21.93	0.90
C23	3	3.516	300	2025	25	9.82	11.50	18.20	11.50	1.58	4.82	15.01	32.04	0.63
C23	3	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35

G2. C23 校舍柱分析结果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/ Vs
C24	1	111.263	210	2500	20	36.11	40.15	43.84	40.15	1.40	2.35	4.66	7.86	0.92
C24	1	78.919	300	2500	20	22.50	26.11	40.45	26.11	1.93	3.86	11.90	23.83	0.65
C24	1	39.46	300	2500	20	18.88	23.36	34.99	23.36	1.71	4.08	12.62	26.49	0.67
C24	1	64.688	210	2500	20	30.36	35.91	38.59	35.91	1.26	2.53	5.46	10.75	0.93
C24	1	32.344	210	2500	20	25.60	32.36	33.89	32.36	1.12	2.75	6.44	21.93	0.95
C24	1	16.171	210	2500	20	23.49	29.75	31.15	29.75	1.05	2.86	6.59	21.93	0.96
C24	1	16.171	300	2500	20	16.45	20.83	31.15	20.83	1.55	4.37	13.35	30.49	0.67
C24	1	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C24	2	82.238	210	2500	20	32.71	37.60	40.87	37.60	1.32	2.45	5.16	9.44	0.92
C24	2	58.331	300	2500	20	20.53	24.71	37.73	24.71	1.81	3.95	12.34	25.15	0.66
C24	2	29.166	300	2500	20	17.79	22.32	33.36	22.32	1.64	4.26	12.89	27.54	0.67
C24	2	47.813	210	2500	20	27.80	34.24	36.24	34.24	1.18	2.61	5.76	12.40	0.94
C24	2	23.906	210	2500	20	24.40	31.04	32.51	31.04	1.08	2.80	6.51	21.93	0.95
C24	2	11.953	210	2500	20	22.95	29.05	30.37	29.05	1.03	2.89	6.63	21.93	0.96
C24	2	11.953	300	2500	20	16.07	20.33	30.37	20.33	1.52	4.41	13.44	30.69	0.67
C24	2	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C24	3	53.213	210	2500	20	28.70	34.78	37.02	34.78	1.21	2.58	5.66	11.82	0.94
C24	3	37.744	300	2500	20	18.59	23.22	34.73	23.22	1.69	4.09	12.64	26.64	0.67
C24	3	18.872	300	2500	20	16.57	21.18	31.64	21.18	1.55	4.31	13.19	28.72	0.67
C24	3	30.938	210	2500	20	25.50	32.16	33.66	32.16	1.11	2.76	6.08	14.65	0.96
C24	3	15.469	210	2500	20	23.46	29.64	31.02	29.64	1.05	2.87	6.59	21.93	0.96
C24	3	7.734	210	2500	20	22.05	28.32	29.57	28.32	1.00	2.92	6.67	21.93	0.96
C24	3	7.734	300	2500	20	15.43	19.83	29.57	19.83	1.47	4.45	13.53	30.89	0.67
C24	3	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C24	4	24.188	210	2500	20	24.45	31.10	32.56	31.10	1.08	2.80	6.22	15.79	0.96
C24	4	17.156	300	2500	20	16.48	20.99	31.33	20.99	1.55	4.32	13.23	28.92	0.67
C24	4	8.578	300	2500	20	15.53	19.92	29.74	19.92	1.48	4.45	13.49	30.02	0.67
C24	4	14.063	210	2500	20	23.42	29.40	30.76	29.40	1.05	2.88	6.44	17.89	0.96
C24	4	7.031	210	2500	20	21.94	28.21	29.43	28.21	1.00	2.93	6.68	21.93	0.96
C24	4	3.516	210	2500	20	21.47	27.62	28.73	27.62	0.98	2.96	6.71	21.93	0.96
C24	4	3.516	300	2500	20	15.03	19.33	28.73	19.33	1.45	4.50	13.57	31.09	0.67
C24	4	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26

G3. C24 校舍柱分析結果

G4. C25 校舍柱分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/ Vs
C25	1	140.288	210	3025	20	46.64	51.34	51.36	51.34	1.35	2.23	4.33	7.29	1.00
C25	1	99.507	300	3025	20	28.80	33.43	47.72	33.43	1.86	3.68	10.37	20.72	0.70
C25	1	49.754	300	3025	20	23.34	28.84	41.29	28.84	1.60	4.02	11.48	24.72	0.70
C25	1	81.563	210	3025	20	38.24	45.53	45.54	45.53	1.19	2.43	5.18	10.11	1.00
C25	1	40.782	210	3025	20	32.67	39.94	39.95	39.94	1.10	2.69	6.25	21.93	1.00
C25	1	20.389	210	3025	20	28.69	36.47	36.74	36.47	1.00	2.86	6.41	21.93	0.99
C25	1	20.389	300	3025	20	20.08	25.53	36.74	25.53	1.44	4.31	12.30	30.09	0.69
C25	1	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C25	2	111.263	210	3025	20	42.65	48.94	49.11	48.94	1.27	2.31	4.73	8.45	1.00
C25	2	78.919	300	3025	20	26.58	31.66	45.20	31.66	1.76	3.78	10.81	22.20	0.70
C25	2	39.46	300	3025	20	22.59	27.83	39.76	27.83	1.57	4.10	11.67	25.69	0.70
C25	2	64.688	210	3025	20	35.67	43.29	43.35	43.29	1.15	2.53	5.45	11.38	1.00
C25	2	32.344	210	3025	20	30.55	38.66	38.68	38.66	1.04	2.79	6.31	21.93	1.00
C25	2	16.171	210	3025	20	27.95	35.70	36.02	35.70	0.98	2.89	6.44	21.93	0.99
C25	2	16.171	300	3025	20	19.57	24.99	36.02	24.99	1.41	4.34	12.40	30.21	0.69
C25	2	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C25	3	82.238	210	3025	20	36.83	43.86	45.65	43.86	1.18	2.40	5.25	10.07	0.96
C25	3	58.331	300	3025	20	23.39	28.75	42.51	28.75	1.61	3.83	11.79	24.59	0.68
C25	3	29.166	300	3025	20	20.27	25.37	38.19	25.37	1.46	4.25	12.76	27.40	0.66
C25	3	47.813	210	3025	20	31.71	39.51	41.03	39.51	1.08	2.62	5.79	13.01	0.96
C25	3	23.906	210	3025	20	27.69	35.29	37.36	35.29	0.98	2.85	6.46	21.93	0.94
C25	3	11.953	210	3025	20	26.32	32.92	35.28	32.92	0.95	2.99	6.57	21.93	0.93
C25	3	11.953	300	3025	20	18.43	23.05	35.28	23.05	1.36	4.48	13.48	29.95	0.65
C25	3	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C25	4	53.213	210	3025	20	32.38	40.34	41.79	40.34	1.09	2.57	5.70	12.44	0.97
C25	4	37.744	300	3025	20	21.04	26.47	39.53	26.47	1.50	4.18	12.43	26.52	0.67
C25	4	18.872	300	3025	20	18.77	23.98	36.52	23.98	1.38	4.39	13.20	28.48	0.66
C25	4	30.938	210	3025	20	29.06	36.57	38.48	36.57	1.02	2.81	6.10	15.19	0.95
C25	4	15.469	210	3025	20	26.50	33.62	35.92	33.62	0.96	2.96	6.54	21.93	0.94
C25	4	7.734	210	3025	20	25.20	32.10	34.52	32.10	0.92	3.03	6.61	21.93	0.93
C25	4	7.734	300	3025	20	17.64	22.47	34.52	22.47	1.32	4.53	13.63	30.11	0.65
C25	4	0	300	960	20	2.33	2.64	10.20	2.64	2.09	4.86	21.94	43.88	0.26
C25	5	24.188	210	3025	20	27.77	35.32	37.40	35.32	0.99	2.85	6.22	16.29	0.94
C25	5	17.156	300	3025	20	18.65	23.75	36.22	23.75	1.37	4.41	13.26	28.66	0.66
C25	5	8.578	300	3025	20	17.79	22.59	34.67	22.59	1.33	4.52	13.58	29.54	0.65
C25	5	14.063	210	3025	20	26.38	33.33	35.67	33.33	0.95	2.97	6.41	18.25	0.93
C25	5	7.031	210	3025	20	25.02	31.98	34.39	31.98	0.92	3.04	6.62	21.93	0.93
C25	5	3.516	210	3025	20	24.14	31.30	33.73	31.30	0.89	3.07	6.65	21.93	0.93
C25	5	3.516	300	3025	20	16.89	21.91	33.73	21.91	1.28	4.59	13.76	30.28	0.65

C25	5	0	300	960	20	2.33	2	2.64	10.20	2.64	2.09	4.86	21.94	4 43.	88 0.2
					G	5. C	232	校舍柱	分析約	吉果					
Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²) (cn	1) (1	/y tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
C32	1	35.475	210	1575	5 25	5 11	.08	13.15	17.57	13.15	1.35	2.77	6.57	10.96	0.75
C32	1	25.163	300	1575	5 25	7.	.05	8.60	16.56	8.60	1.92	4.39	16.45	32.91	0.52
C32	1	12.581	300	1575	5 25	6.	17	7.69	15.21	7.69	1.75	4.47	17.28	34.56	0.51
C32	1	20.625	210	1575	5 25	9.	61	11.84	16.09	11.84	1.22	2.82	7.29	14.01	0.74
C32	1	10.313	210	1575	5 25	8.	59	10.73	14.95	10.73	1.13	2.89	8.11	21.56	0.72
C32	1	5.156	210	1575	5 25	8.	16	10.17	14.32	10.17	1.09	2.92	8.39	21.71	0.71
C32	1	5.156	300	1575	5 25	5.	71	7.12	14.32	7.12	1.65	4.51	17.77	35.54	0.50
C32	1	0	300	960	25	2.	16	2.43	7.81	2.43	2.05	4.83	21.94	43.88	0.31
C32	2	16.125	210	1575	5 25	9.	26	11.40	15.61	11.40	1.19	2.83	7.54	15.25	0.73
C32	2	11.438	300	1575	5 25	6.	08	7.60	15.08	7.60	1.73	4.48	17.36	34.71	0.50
C32	2	5.719	300	1575	5 25	5.	78	7.17	14.39	7.17	1.66	4.51	17.73	35.46	0.50
C32	2	9.375	210	1575	5 25	8.	53	10.63	14.83	10.63	1.13	2.90	8.06	17.64	0.72
C32	2	4.688	210	1575	5 25	8.	08	10.12	14.26	10.12	1.08	2.92	8.41	21.72	0.71
C32	2	2.344	210	1575	5 25	17.	74	9.87	13.96	9.87	1.04	2.93	8.53	21.80	0.71
C32	2	2.344	300	1575	5 25	5.	42	6.91	13.96	6.91	1.59	4.52	17.95	35.91	0.49
C32	2	0	300	960	25	2.	16	2.43	7.81	2.43	2.05	4.83	21.94	43.88	0.31

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
C33	1	54.825	210	1750	25	16.50	18.64	19.93	18.64	1.67	3.04	4.81	6.08	0.94
C33	1	38.888	300	1750	25	10.47	11.99	18.57	11.99	2.42	4.94	14.14	27.82	0.65
C33	1	19.444	300	1750	25	9.17	10.64	16.72	10.64	2.21	4.92	15.49	31.42	0.64
C33	1	31.875	210	1750	25	14.30	16.43	17.93	16.43	1.52	3.09	5.40	8.72	0.92
C33	1	15.938	210	1750	25	12.71	14.78	16.36	14.78	1.41	3.14	6.08	21.93	0.90
C33	1	7.949	210	1750	25	12.10	13.92	15.49	13.92	1.36	3.17	6.16	21.93	0.90
C33	1	7.949	300	1750	25	8.47	9.75	15.49	9.75	2.07	4.96	16.41	34.69	0.63
C33	1	0	300	840	25	1.94	2.16	7.25	2.16	1.96	4.73	21.94	43.88	0.30
C33	2	35.475	210	1750	25	13.11	15.19	18.28	15.19	1.46	2.98	5.44	8.16	0.83
C33	2	25.163	300	1750	25	8.44	9.93	17.31	9.93	2.11	4.73	16.62	33.24	0.57
C33	2	12.581	300	1750	25	7.68	8.97	16.03	8.97	1.97	4.79	17.36	34.73	0.56
C33	2	20.625	210	1750	25	11.66	13.73	16.87	13.73	1.36	3.02	5.82	11.07	0.81
C33	2	10.313	210	1750	25	10.57	12.57	15.78	12.57	1.28	3.10	6.35	21.92	0.80
C33	2	5.156	210	1750	- 25	10.19	12.01	15.19	12.01	1.24	3.12	6.53	21.91	0.79
C33	2	5.156	300	1750	25	7.13	8.41	15.19	8.41	1.86	4.80	17.80	35.60	0.55
C33	2	0	300	840	25	1.94	2.16	7.25	2.16	1.96	4.73	21.94	43.88	0.30
C33	3	16.125	210	1750	25	11.18	13.20	16.41	13.20	1.33	3.08	5.94	12.41	0.80
C33	3	11.438	300	1750	25	7.52	8.88	15.90	8.88	1.94	4.80	17.43	34.86	0.56
C33	3	5.719	300	1750	25	7.14	8.45	15.26	8.45	1.86	4.81	17.77	35.54	0.55
C33	3	9.375	210	1750	25	10.45	12.48	15.68	12.48	1.27	3.11	6.21	15.30	0.80
C33	3	4.688	210	1750	25	10.18	11.96	15.13	11.96	1.24	3.12	6.54	21.91	0.79
C33	3	2.344	210	1750	25	9.88	11.71	14.85	11.71	1.21	3.13	6.60	21.92	0.79
C33	3	2.344	300	1750	25	6.92	8.20	14.85	8.20	1.82	4.81	17.97	35.94	0.55
C33	3	0	300	840	25	1.94	2.16	7.25	2.16	1.96	4.73	21.94	43.88	0.30

G6. C33 校舍柱分析結果
G7. C34 校舍柱分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
C34	1	74.175	210	2500	20	31.05	37.53	39.83	37.53	1.26	2.43	5.26	10.00	0.94
C34	1	52.613	300	2500	20	20.06	24.72	36.88	24.72	1.78	3.91	12.17	25.15	0.67
C34	1	26.306	300	2500	20	17.47	22.61	32.86	22.61	1.61	4.05	12.49	27.45	0.69
C34	1	43.125	210	2500	20	27.06	34.25	35.52	34.25	1.16	2.56	5.82	12.95	0.96
C34	1	21.563	210	2500	20	24.58	31.71	32.04	31.71	1.08	2.67	6.48	21.93	0.99
C34	1	10.761	210	2500	20	22.94	30.36	30.11	30.11	1.02	1.73	1.73	21.93	1.01
C34	1	10.761	300	2500	20	16.06	21.25	30.11	21.25	1.51	4.17	12.51	30.91	0.71
C34	1	0	300	840	20	2.09	2.35	9.56	2.35	2.11	4.87	21.94	43.88	0.25
C34	2	54.825	210	2500	20	28.03	33.52	37.23	33.52	1.20	2.55	5.72	11.66	0.90
C34	2	38.888	300	2500	20	17.82	22.15	34.92	22.15	1.65	4.04	13.43	27.48	0.63
C34	2	19.444	300	2500	20	15.82	20.32	31.76	20.32	1.52	4.19	13.93	29.14	0.64
C34	2	31.875	210	2500	20	24.45	30.76	33.83	30.76	1.09	2.70	6.15	14.50	0.91
C34	2	15.938	210	2500	20	22.42	28.54	31.12	28.54	1.02	2.75	6.66	21.93	0.92
C34	2	7.949	210	2500	20	20.88	27.17	29.63	27.17	0.97	2.83	6.73	21.93	0.92
C34	2	7.949	300	2500	20	14.62	19.02	29.63	19.02	1.43	4.32	14.26	30.78	0.64
C34	2	0	300	840	20	2.09	2.35	9.56	2.35	2.11	4.87	21.94	43.88	0.25
C34	3	35.475	210	2500	20	23.82	29. 10	34.44	29.10	1.09	2.74	6.20	13.97	0.85
C34	3	25.163	300	2500	20	15.47	19.15	32.80	19.15	1.51	4.32	14.70	29.41	0.58
C34	3	12.581	300	2500	20	14.09	17.67	30.58	17.67	1.42	4.46	15.15	30.30	0.58
C34	3	20.625	210	2500	20	21.86	26.60	32.01	26.60	1.02	2.88	6.52	16.47	0.83
C34	3	10.313	210	2500	20	19.96	24.87	30.15	24.87	0.96	2.95	6.87	21.93	0.82
C34	3	5.156	210	2500	20	19.09	24.00	29.15	24.00	0.92	2.99	6.92	21.93	0.82
C34	3	5.156	300	2500	20	13.36	16.80	29.15	16.80	1.36	4.53	15.42	30.83	0.58
C34	3	0	300	840	20	2.09	2.35	9.56	2.35	2.11	4.87	21.94	43.88	0.25
C34	4	16.125	210	2500	20	22.42	28.57	31.16	28.57	1.02	2.75	6.46	17.42	0.92
C34	4	11.438	300	2500	20	15.02	19.43	30.30	19.43	1.46	4.28	14.15	29.95	0.64
C34	4	5.719	300	2500	20	14.40	18.76	29.19	18.76	1.41	4.34	14.30	30.56	0.64
C34	4	9.375	210	2500	20	21.08	27.41	29.91	27.41	0.98	2.82	6.61	19.06	0.92
C34	4	4.688	210	2500	20	20.50	26.61	28.98	26.61	0.96	2.86	6.77	21.93	0.92
C34	4	2.344	210	2500	20	20.40	26.22	28.49	26.22	0.96	2.88	6.79	21.93	0.92
C34	4	2.344	300	2500	20	14.28	18.35	28.49	18.35	1.41	4.39	14.37	31.10	0.64
C34	4	0	300	840	20	2.09	2.35	9.56	2.35	2.11	4.87	21.94	43.88	0.25

S Vv Vs Model axial Hn Vmn Vu deltau deltas deltaa Ag deltav floor Vmn/Vs building load(tf) (tŤ) (tf) (tf) (tf) (cm)(cm²) (cm)(cm)(cm)(cm)(cm)93.525 210 20 45.90 C35 1 3025 38.61 45.90 47.00 1.20 2.32 5.04 9.37 0.98 C35 1 66.338 300 3025 20 24.25 30.03 3.74 30.03 43.55 1.65 11.32 23.55 0.69 26.70 C35 300 20 26.70 38.79 1.47 3.99 1 33.168 3025 20.69 12.09 26.58 0.69 C35 1 54.375 210 3025 20 32.79 41.26 41.93 41.26 1.09 2.49 5.65 12.33 0.98 C35 1 27.188 210 3025 20 28.79 37.22 37.84 37.22 1.002.716.37 21.93 0.98 C35 1 13.573 210 3025 20 26.43 34.96 35.55 34.96 0.94 2.78 6.48 21.93 0.98 C35 13.573 300 20 18.50 24.47 1.35 4.17 12.59 30.23 1 3025 35.55 24.47 0.69 C35 0 2.31 2.56 9.53 2.56 2.22 4.98 1 300 840 20 21.94 43.88 0.27 C35 2 74.175 210 3025 20 34.73 41.35 44.63 41.35 1.15 2.46 5.45 10.63 0.93 C35 2 52.613 300 3025 20 21.78 26.73 41.74 26.73 1.54 3.95 12.72 26.04 0.64 C35 2 26.306 300 3025 20 18.84 37.78 23.67 1.40 4.21 13.71 28.24 23.67 0.63 C35 2 43.125 210 3025 20 29.89 36.70 40.36 36.70 1.05 2.725.97 13.55 0.91 C35 2 21.563 210 3025 20 26.06 32.96 37.00 32.96 0.95 2.86 6.57 21.93 0.89 2 30.91 0.91 C35 10.761 210 3025 20 24.53 35.10 30.91 2.96 6.67 21.93 0.88 C35 2 10.761 300 3025 20 17.17 21.64 35.10 21.64 1.31 4.43 14.38 29.67 0.62 2 2.22 C35 0 300 840 20 2.31 9.53 2.56 4.98 21.94 43.88 0.27 2.56 C35 3 30.53 12.28 54.825 210 3025 20 36.91 42.08 36.91 1.07 2.63 5.84 0.88 C35 3025 23.93 1.44 3 38.888 300 20 19.55 23.93 39.77 27.89 4.18 13.92 0.60 17.57 C35 3 19.444 300 3025 20 21.31 36.67 21.31 1.35 4.48 14.51 29.03 0.58 C35 3025 26.97 32.83 38.70 0.99 15.05 3 31.875 210 20 32.83 2.87 6.26 0.85 29.76 24.49 0.93 C35 3 15.938 20 36.06 29.76 21.93 210 3025 3.03 6.72 0.83 C35 3025 22.69 28.22 0.87 3 7.949 210 20 34.64 28.22 3.10 6.79 21.93 0.8120 15.89 34.64 29.68 C35 3 7.949 300 3025 19.75 19.75 1.25 4.63 14.84 0.57 C35 3 0 300 20 2.31 9.53 2.56 2.22 4.98 21.94 43.88 0.27 840 2.56 20 C35 4 35.475 210 3025 28.17 35.96 39.21 35.96 1.00 2.706.08 14.54 0.92 C35 4 25.163 300 3025 20 18.56 23.89 37.58 23.89 1.38 4.16 13.54 28.19 0.64 C35 4 12.581 300 3025 20 17.46 22.19 35.42 22.19 1.32 4.34 14.08 29.27 0.63 C35 4 20.625 210 3025 20 25.75 33.31 36.83 33.31 0.94 2.80 6.35 16.93 0.90 C35 4 10.313 210 3025 20 24.31 31.27 35.01 31.27 0.90 2.92 21.93 0.89 6.65 C35 4 5.156 210 3025 20 23.09 30.29 34.06 30.29 0.87 2.98 21.93 0.89 6.69 C35 4 5.156 300 3025 20 16.16 21.20 34.06 21.20 1.25 4.45 14.39 30.01 0.62 C35 4 0 300 840 20 2.31 2.56 9.53 2.56 2.22 4.98 21.94 43.88 0.27 C35 5 16.125 210 3025 20 25.86 33.06 36.17 33.06 0.92 2.85 6.41 17.81 0.91 5 20 C35 11.438 300 3025 17.64 22.52 35.33 22.52 1.29 4.34 13.85 29.31 0.64 5 20 C35 5.719 300 3025 16.59 21.73 34.28 21.73 1.23 4.41 14.09 29.82 0.63 5 C35 210 20 31.74 0.88 2.91 0.91 9.375 3025 24.67 31.74 34.95 6.54 19.33 C35 5 210 3025 20 4.688 23.58 30.86 34.08 30.86 0.85 2.96 6.67 21.93 0.91 5 20 210 2.99 C35 2.344 3025 23.35 30.41 33.62 30.41 0.85 21.93 0.90 6.69 C35 5 2.344 300 3025 20 21.29 21.29 1.23 4.47 14.20 30.22 16.35 33.62 0.63 5 2.31 9.53 2.56 2.22 C35 0 300 840 20 2.56 4.98 21.94 43.88 0.27

G8. C35 校舍柱分析结果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U22	1	42.075	210	1800	25	15.88	18.63	19.95	18.63	1.38	2.87	5.15	7.71	0.93
U22	1	26.606	300	1800	25	9.91	11.69	18.48	11.69	1.96	4.64	14.53	29.59	0.63
U22	1	13.303	300	1800	25	8.80	10.48	17.08	10.48	1.80	4.76	15.85	32.17	0.61
U22	1	30.938	210	1800	25	14.64	17.22	18.90	17.22	1.32	2.96	5.45	9.31	0.91
U22	1	15.469	210	1800	25	12.81	15.26	17.32	15.26	1.22	3.08	6.12	21.93	0.88
U22	1	7.734	210	1800	25	12.08	14.24	16.43	14.24	1.18	3.15	6.21	21.93	0.87
U22	1	7.734	300	1800	25	8.46	9.97	16.43	9.97	1.75	4.80	16.40	33.22	0.61
U22	1	11.138	310	1600	25	6.99	8.63	15.82	8.63	1.69	4.63	17.17	34.34	0.55
U22	1	5.569	310	1600	25	6.41	8.14	15.12	8.14	1.58	4.70	17.53	35.05	0.54
U22	1	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35
U22	2	19.125	210	1800	25	13.19	15.11	17.72	15.11	1.26	3.10	5.82	11.93	0.85
U22	2	12.094	300	1800	25	8.69	9.93	16.95	9.93	1.80	4.82	16.41	32.81	0.59
U22	2	6.047	300	1800	25	7.98	9.38	16.25	9.38	1.68	4.86	16.73	33.47	0.58
U22	2	14.063	210	1800	25	-12.51	14.45	17.17	14.45	1.22	3.15	5.96	13.57	0.84
U22	2	7.031	210	1800	25	11.66	13.52	16.36	13.52	1.17	3.20	6.26	21.93	0.83
U22	2	3.516	210	1800	25	11.28	13.07	15.93	13.07	1.14	3.22	6.30	21.93	0.82
U22	2	3.516	300	1800	25	7.89	9.15	15.93	9.15	1.67	4.87	16.87	33.74	0.57
U22	2	5.063	310	1600	25	6.38	8.08	15.05	8.08	1.58	4.70	17.56	35.12	0.54
U22	2	2.531	310	1600	- 25	6.30	7.86	14.71	7.86	1.56	4.73	17.72	35.44	0.53
U22	2	0	300	960	25	2.33	2.64	7.57	2.64	2.14	4.94	21.94	43.88	0.35
				She was		要因	970101		Totols	1				

G9. U22 校舍柱分析結果

G10. U23 校舍柱分析结果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U23	1	65.025	210	2250	25	21.25	24.81	26.58	24.81	1.26	2.48	4.91	6.78	0.93
U23	1	41.119	300	2250	25	12.69	15.77	24.37	15.77	1.71	4.10	13.18	26.88	0.65
U23	1	20.559	300	2250	25	10.91	13.75	22.25	13.75	1.54	4.32	14.84	30.21	0.62
U23	1	47.813	210	2250	25	18.84	23.24	25.02	23.24	1.16	2.58	5.24	8.30	0.93
U23	1	23.906	210	2250	25	15.86	20.11	22.61	20.11	1.05	2.80	6.08	21.93	0.89
U23	1	11.953	210	2250	25	14.28	18.39	21.27	18.39	0.99	2.91	6.18	21.93	0.86
U23	1	11.953	300	2250	25	12.59	16.14	21.13	16.14	1.70	4.53	10.24	31.36	0.76
U23	1	17.213	310	2025	25	10.54	12.36	20.54	12.36	1.74	4.81	16.13	32.27	0.60
U23	1	8.606	310	2025	25	9.59	11.43	19.48	11.43	1.62	4.98	16.60	33.20	0.59
U23	1	0	300	1080	25	2.24	2.59	8.54	2.59	1.88	4.70	21.94	43.88	0.30
U23	2	42.075	210	2250	25	16.30	19.82	24.50	19.82	1.10	2.65	5.53	8.97	0.81
U23	2	26.606	300	2250	25	10.07	12.27	22.94	12.27	1.49	4.26	15.15	30.30	0.53
U23	2	13.303	300	2250	25	8.58	10.83	21.48	10.83	1.33	4.53	15.70	31.40	0.50
U23	2	30.938	210	2250	25	14.78	18.16	23.39	18.16	1.04	2.80	6.19	11.55	0.78
U23	2	15.469	210	2250	25	13.02	15.80	21.72	15.80	0.97	3.01	7.53	20.95	0.73
U23	2	7.734	210	2250	25	11.68	14.60	20.82	14.60	0.90	3.11	8.10	20.79	0.70
U23	2	7.734	300	2250	25	8.18	10.22	20.82	10.22	1.29	4.62	15.93	31.86	0.49
U23	2	11.138	310	2025	25	8.44	10.01	19.83	10.01	1.52	4.86	16.48	32.96	0.50
U23	2	5.569	310	2025	25	7.65	9.42	1 9 .14	9.42	1.41	4.96	16.75	33.50	0.49
U23	2	0	300	1080	25	2.24	2.59	8.54	2.59	1.88	4.70	21.94	43.88	0.30
U23	3	19.125	210	2250	25	14.64	17.99	22.03	17.99	1.06	2.97	5.95	13.24	0.82
U23	3	12.094	300	2250	25	9.80	11.80	21.22	11.80	1.49	4.64	15.75	31.50	0.56
U23	3	6.047	300	2250	25	8.93	11.15	20.51	11.15	1.39	4.73	16.00	32.00	0.54
U23	3	14.063	210	2250	25	14.07	17.16	21.45	17.16	1.04	3.08	6.07	14.79	0.80
U23	3	7.031	210	2250	25	12.86	16.08	20.62	16.08	0.97	3.17	6.69	21.70	0.78
U23	3	3.516	210	2250	25	12.60	15.53	20.18	15.53	0.96	3.21	6.90	21.61	0.77
U23	3	3.516	300	2250	25	8.82	10.87	20.18	10.87	1.38	4.77	16.10	32.21	0.54
U23	3	5.063	310	2025	25	6.51	8.21	19.18	8.21	1.25	4.88	16.77	33.54	0.43
U23	3	2.531	310	2025	25	6.23	7.94	18.83	7.94	1.21	4.93	16.89	33.79	0.42
U23	3	0	300	1080	25	2.24	2.59	8.54	2.59	1.88	4.70	21.94	43.88	0.30

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U24	1	87.975	210	2500	20	28.09	32.90	41.96	32.90	1.15	2.20	5.56	9.60	0.78
U24	1	55.631	300	2500	20	16.61	20.62	37.72	20.62	1.50	3.59	13.62	27.23	0.55
U24	1	27.815	300	2500	20	13.91	18.23	33.52	18.23	1.33	3.83	14.61	29.22	0.54
U24	1	64.688	210	2500	20	25.06	30.52	38.96	30.52	1.07	2.29	5.98	11.23	0.78
U24	1	32.344	210	2500	20	20.44	26.62	34.25	26.62	0.92	2.48	7.03	21.48	0.78
U24	1	16.171	210	2500	20	18.19	24.37	31.50	24.37	0.84	2.59	7.22	21.50	0.77
U24	1	16.171	300	2500	20	15.86	21.13	31.27	21.13	1.46	4.06	13.17	30.53	0.68
U24	1	23.288	310	2500	20	12.48	15.75	32.68	15.75	1.38	4.29	15.45	30.91	0.48
U24	1	11.644	310	2500	20	11.21	14.43	30.62	14.43	1.29	4.45	15.89	31.77	0.47
U24	1	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U24	2	65.025	210	2500	20	22.57	27.16	39.09	27.16	1.01	2.27	7.17	13.76	0.69
U24	2	41.119	300	2500	20	13.71	16.89	35.68	16.89	1.34	3.73	14.13	28.27	0.47
U24	2	20.559	300	2500	20	11.44	14.61	32.38	14.61	1.20	4.04	14.87	29.73	0.45
U24	2	47.813	210	2500	20	20.24	25.00	36.68	25.00	0.94	2.40	7.68	15.28	0.68
U24	2	23.906	210	2500	20	16.60	21.43	32.97	21.43	0.81	2.62	8.64	19.23	0.65
U24	2	11.953	210	2500	20	14.79	19.36	30.85	19.36	0.75	2.79	9.12	19.28	0.63
U24	2	11.953	300	2500	20	10.35	13.55	30.85	13.55	1.13	4.23	15.17	30.35	0.44
U24	2	17.213	310	2500	20	11.92	15.06	31.62	15.06	1.34	4.37	15.68	31.36	0.48
U24	2	8.606	310	2500	20	10.90	14.05	30.03	14.05	1.26	4.56	16.00	32.00	0.47
U24	2	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U24	3	42.075	210	2500	20	20.90	25.96	35.80	25.96	0.95	2.48	7.23	14.74	0.73
U24	3	26.606	300	2500	20	12.99	16.41	33.37	16.41	1.29	4.04	14.65	29.30	0.49
U24	3	13.303	300	2500	20	11.41	14.84	31.06	14.84	1.19	4.21	15.13	30.25	0.48
U24	3	30.938	210	2500	20	19.19	24.16	34.09	24.16	0.89	2.61	7.67	16.18	0.71
U24	3	15.469	210	2500	20	17.17	21.57	31.42	21.57	0.83	2.76	8.36	20.10	0.69
U24	3	7.734	210	2500	20	15.55	20.16	29.99	20.16	0.77	2.89	8.66	20.08	0.67
U24	3	7.734	300	2500	20	10.89	14.11	29.99	14.11	1.15	4.39	15.32	30.65	0.47
U24	3	11.138	310	2500	20	10.80	14.08	30.64	14.08	1.22	4.48	15.91	31.81	0.46
U24	3	5.569	310	2500	20	10.44	13.40	29.55	13.40	1.20	4.62	16.11	32.23	0.45
U24	3	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U24	4	19.125	210	2500	20	17.35	22.18	32.10	22.18	0.83	2.72	8.14	17.73	0.69
U24	4	12.094	300	2500	20	11.27	14.67	30.83	14.67	1.18	4.29	15.17	30.34	0.48
U24	4	6.047	300	2500	20	10.81	13.91	29.65	13.91	1.15	4.43	15.38	30.77	0.47
U24	4	14.063	210	2500	20	16.44	21.32	31.20	21.32	0.80	2.77	8.35	18.40	0.68
U24	4	7.031	210	2500	20	15.51	20.04	29.85	20.04	0.77	2.90	8.68	20.09	0.67
U24	4	3.516	210	2500	20	15.16	19.41	29.13	19.41	0.76	2.97	8.81	20.12	0.67
U24	4	3.516	300	2500	20	10.61	13.59	29.13	13.59	1.14	4.49	15.47	30.95	0.47
U24	4	5.063	310	2500	20	8.42	11.37	29.53	11.37	1.07	4.62	16.13	32.27	0.39
U24	4	2.531	310	2500	20	8.10	11.07	29.02	11.07	1.05	4.70	16.23	32.45	0.38
U24	4	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23

G11. U24 校舍柱分析結果

G12. U25 校舍柱分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U25	1	110.925	210	3025	20	40.11	46.96	49.25	46.96	1.20	2.21	4.83	8.47	0.95
U25	1	70.143	300	3025	20	24.09	29.83	44.22	29.83	1.60	3.61	11.62	24.62	0.67
U25	1	35.071	300	3025	20	20.34	26.55	39.23	26.55	1.42	3.84	12.36	27.28	0.68
U25	1	81.563	210	3025	20	35.91	43.99	45.70	43.99	1.12	2.31	5.26	10.11	0.96
U25	1	40.782	210	3025	20	30.21	38.71	40.10	38.71	1.01	2.51	6.31	21.93	0.97
U25	1	20.389	210	3025	20	26.64	35.90	36.87	35.90	0.92	2.63	6.44	21.93	0.97
U25	1	20.389	300	3025	20	18.39	24.79	36.88	24.79	1.31	3.96	12.85	29.82	0.67
U25	1	29.363	310	3025	20	19.20	24.10	38.36	24.10	1.46	4.27	14.17	28.77	0.63
U25	1	14.682	310	3025	20	17.48	22.21	35.91	22.21	1.36	4.46	14.84	30.27	0.62
U25	1	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U25	2	87.975	210	3025	20	33.87	40.56	46.55	40.56	1.11	2.28	5.35	9.70	0.87
U25	2	55.631	300	3025	20	20.28	25.37	42.34	25.37	1.44	3.69	13.48	26.97	0.60
U25	2	27.815	300	3025	20	17.17	22.43	38.19	22.43	1.28	4.00	14.28	28.55	0.59
U25	2	64.688	210	3025	20	30.85	37.52	43.55	37.52	1.05	2.38	5.72	11.38	0.86
U25	2	32.344	210	3025	20	25.40	32.86	38.91	32.86	0.91	2.63	6.58	21.93	0.84
U25	2	16.171	210	3025	20	22.93	29.83	36.23	29.83	0.85	2.79	6.72	21.93	0.82
U25	2	16.171	300	3025	20	15.92	20.77	36.24	20.77	1.22	4.17	14.61	29.22	0.57
U25	2	23.288	310	3025	20	18.43	24.58	37.36	24.58	1.40	4.10	13.57	28.42	0.66
U25	2	11.644	310	3025	20	17.35	23.35	35.33	23.35	1.34	4.22	13.82	29.88	0.66
U25	2	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U25	3	65.025	210	3025	20	32.18	39.31	43.58	39.31	1.07	2.40	5.64	11.35	0.90
U25	3	41.119	300	3025	20	19.72	25.09	40.22	25.09	1.40	3.96	13.40	27.48	0.62
U25	3	20.559	300	3025	20	17.43	22.42	36.97	22.42	1.29	4.25	14.34	28.93	0.61
U25	3	47.813	210	3025	20	29.70	36.95	41.20	36.95	1.02	2.53	5.92	13.01	0.90
U25	3	23.906	210	3025	20	25.23	32.69	37.54	32.69	0.90	2.80	6.59	21.93	0.87
U25	3	11.953	210	3025	20	23.45	30.36	35.46	30.36	0.86	2.92	6.70	21.93	0.86
U25	3	11.953	300	3025	20	16.41	21.25	35.46	21.25	1.23	4.38	14.73	29.46	0.60
U25	3	17.213	310	3025	20	15.72	20.35	36.41	20.35	1.28	4.33	15.24	30.48	0.56
U25	3	8.606	310	3025	20	14.47	19.22	34.88	19.22	1.21	4.47	15.50	31.00	0.55
U25	3	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U25	4	42.075	210	3025	20	25.60	31.71	40.44	31.71	0.94	2.68	6.41	13.97	0.78
U25	4	26.606	300	3025	20	16.15	20.13	38.06	20.13	1.25	4.28	14.31	28.62	0.53
U25	4	13.303	300	3025	20	14.46	18.33	35.80	18.33	1.16	4.47	14.69	29.38	0.51
U25	4	30.938	210	3025	20	23.55	29.59	38.76	29.59	0.88	2.81	6.87	15.66	0.76
U25	4	15.469	210	3025	20	20.89	26.60	36.19	26.60	0.81	2.97	7.61	20.75	0.74
U25	4	7.734	210	3025	20	19.83	25.01	34.79	25.01	0.78	3.12	7.90	20.57	0.72
U25	4	7.734	300	3025	20	13.88	17.51	34.79	17.51	1.13	4.67	14.85	29.70	0.50
U25	4	11.138	310	3025	20	13.92	17.41	35.42	17.41	1.21	4.76	15.42	30.84	0.49
U25	4	5.569	310	3025	20	13.04	16.65	34.39	16.65	1.15	4.91	15.59	31.18	0.48

U25	4	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23
U25	5	19.125	210	3025	20	19.50	25.11	36.99	25.11	0.75	2.87	8.17	17.80	0.68
U25	5	12.094	300	3025	20	12.95	16.58	35.76	16.58	1.06	4.52	14.72	29.45	0.46
U25	5	6.047	300	3025	20	11.96	15.80	34.66	15.80	1.01	4.68	14.90	29.79	0.46
U25	5	14.063	210	3025	20	19.05	24.08	36.11	24.08	0.74	2.98	8.40	18.32	0.67
U25	5	7.031	210	3025	20	17.21	22.71	34.85	22.71	0.68	3.11	8.72	19.47	0.65
U25	5	3.516	210	3025	20	16.83	22.24	34.16	22.24	0.68	3.17	8.78	19.55	0.65
U25	5	3.516	300	3025	20	11.78	15.57	34.16	15.57	1.00	4.74	14.97	29.94	0.46
U25	5	5.063	310	3025	20	11.50	15.21	34.46	15.21	1.04	4.88	15.60	31.21	0.44
U25	5	2.531	310	3025	20	11.34	14.96	33.96	14.96	1.04	4.96	15.68	31.36	0.44
U25	5	0	300	1080	20	2.21	2.56	10.99	2.56	1.83	4.65	21.94	43.88	0.23

G13. U32 校舍柱分析结果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U32	1	28.05	210	1575	25	12.34	14.81	16.81	14.81	1.40	2.96	5.53	9.40	0.88
U32	1	17.738	300	1575	25	7.99	9.65	15.74	9.65	2.05	4.73	16.42	33.16	0.61
U32	1	8.869	300	1575	25	7.43	8.99	14.73	8.99	1.94	4.76	17.11	34.62	0.61
U32	1	20.625	210	1575	25	11.68	14.08	16.05	14.08	1.36	2.98	5.74	11.07	0.88
U32	1	10.313	210	1575	25	10.65	13.05	14.90	13.05	1.27	3.00	6.23	21.93	0.88
U32	1	5.156	210	1575	25	10.06	12.44	14.28	12.44	1.22	3.04	6.29	21.93	0.87
U32	1	5.156	300	1575	25	7.05	8.7 1	14.28	8.71	1.86	4.76	17.36	35.33	0.61
U32	1	7.425	310	1575	25	5.72	7.06	14.60	7.06	1.76	4.69	18.49	36.97	0.48
U32	1	3.713	310	1575	25	5.39	6.79	14.13	6.79	1.69	4.71	18.74	37.49	0.48
U32	1	0	300	960	25	2.16	2.43	7.81	2.43	2.05	4.83	21.94	43.88	0.31
U32	2	12.75	210	1575	25	8.96	10.82	15.14	10.82	1.22	3.00	8.00	16.73	0.71
U32	2	8.063	300	1575	25	5.98	7.23	14.59	7.23	1.78	4.66	17.58	35.15	0.50
U32	2	4.031	300	1575	25	5.66	6.92	14.10	6.92	1.71	4.67	17.84	35.68	0.49
U32	2	9.375	210	1575	25	8.61	10.47	14.75	10.47	1.18	3.02	8.22	17.85	0.71
U32	2	4.688	210	1575	25	8.20	9.96	14.18	9.96	1.14	3.03	8.57	21.71	0.70
U32	2	2.344	210	1575	25	7.81	9.70	13.88	9.70	1.10	3.04	8.71	21.79	0.70
U32	2	2.344	300	1575	25	5.47	6.79	13.88	6.79	1.66	4.67	17.95	35.91	0.49
U32	2	3.375	310	1575	25	5.12	6.34	14.19	6.34	1.58	4.68	18.77	37.53	0.45
U32	2	1.688	310	1575	25	4.97	6.22	13.97	6.22	1.55	4.69	18.88	37.76	0.45
U32	2	0	300	960	25	2.16	2.43	7.81	2.43	2.05	4.83	21.94	43.88	0.31

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U33	1	43.35	210	1800	25	15.67	18.82	20.05	18.82	1.37	2.74	5.11	7.56	0.94
U33	1	27.413	300	1800	25	9.81	12.24	18.53	12.24	1.94	4.41	13.54	28.04	0.66
U33	1	13.706	300	1800	25	8.63	11.09	17.10	11.09	1.77	4.50	14.56	30.79	0.65
U33	1	31.875	210	1800	25	14.45	17.89	18.97	17.89	1.30	2.79	5.38	9.15	0.94
U33	1	15.938	210	1800	25	12.69	16.11	17.35	16.11	1.19	2.89	6.05	21.93	0.93
U33	1	7.969	210	1800	25	11.91	15.14	16.44	15.14	1.14	2.93	6.13	21.93	0.92
U33	1	7.969	300	1800	25	8.34	10.60	16.44	10.60	1.72	4.51	14.99	32.83	0.64
U33	1	11.475	310	1680	25	7.40	9.26	16.66	9.26	1.66	4.61	16.83	33.66	0.56
U33	1	5.738	310	1680	25	6.93	8.68	15.93	8.68	1.58	4.75	17.17	34.34	0.54
U33	1	0	300	960	25	2.17	2.43	7.58	2.43	2.06	4.85	21.94	43.88	0.32
U33	2	28.05	210	1800	25	14.65	17.03	18.60	17.03	1.33	2.98	5.51	9.84	0.92
U33	2	17.738	300	1800	25	9.38	11.01	17.55	11.01	1.89	4.74	15.15	31.04	0.63
U33	2	8.869	300	1800	25	8.74	10.19	16.55	10.19	1.79	4.81	16.02	32.69	0.62
U33	2	20.625	210	1800	25	13.66	16.12	17.86	16.12	1.27	3.02	5.71	11.52	0.90
U33	2	10.313	210	1800	25	12.53	14.75	16.72	14.75	1.21	3.14	6.16	21.93	0.88
U33	2	5.156	210	1800	25	11.79	14.07	16.12	14.07	1.16	3.18	6.22	21.93	0.87
U33	2	5.156	300	1800	25	8.25	9.85	16.12	9.85	1.71	4.83	16.38	33.44	0.61
U33	2	7.425	310	1680	25	6.12	7.79	16.25	7.79	1.43	4.58	17.07	34.14	0.48
U33	2	3.713	310	1680	25	5.67	7.44	15.77	7.44	1.36	4.65	17.29	34.58	0.47
U33	2	0	300	960	25	2 .17	2.43	7.58	2.43	2.06	4.85	21.94	43.88	0.32
U33	3	12.75	210	1800	25	12.89	15.89	17.08	15.89	1.17	3.02	5.87	14.07	0.93
U33	3	8.063	300	1800	25	8.84	10.69	16.53	10.69	1.73	4.71	14.88	31.85	0.65
U33	3	4.031	300	1800	25	8.36	10.32	16.04	10.32	1.66	4.74	15.21	32.71	0.64
U33	3	9.375	210	1800	25	12.67	15.45	16.69	15.45	1.16	3.05	5.96	15.54	0.93
U33	3	4.688	210	1800	25	12.04	14.83	16.12	14.83	1.12	3.09	6.16	21.93	0.92
U33	3	2.344	210	1800	25	11.63	14.52	15.84	14.52	1.09	3.11	6.19	21.93	0.92
U33	3	2.344	300	1800	25	8.14	10.17	15.84	10.17	1.62	4.75	15.34	33.34	0.64
U33	3	3.375	310	1680	25	5.65	7.41	15.72	7.41	1.35	4.65	17.31	34.62	0.47
U33	3	1.688	310	1680	25	5.57	7.24	15.48	7.24	1.34	4.68	17.41	34.82	0.47
U33	3	0	300	960	25	2.17	2.43	7.58	2.43	2.06	4.85	21.94	43.88	0.32

G14. U33 校舍柱分析结果

S Model axial Hn Vy Vmn Vs Vu deltav deltau deltas deltaa Ag floor Vmn/Vs building load(tf) (tť) (tf) (tf) (**cm**) (cm) (**cm**) (cm)(cm²)(cm)(**tf**) (**cm**) **U34** 1 58.65 210 2500 20 29.34 35.33 37.77 35.33 1.23 2.55 5.57 11.29 0.94 **U34** 37.088 300 18.50 4.10 12.70 1 2500 20 23.16 34.63 23.16 1.68 27.36 0.67 U34 1 18.544 300 2500 20 16.55 21.14 31.58 21.14 1.55 4.32 13.22 29.18 0.67 **U34** 43.125 210 2500 20 27.37 33.74 35.55 33.74 1.17 2.63 5.84 12.95 0.95 1 **U34** 1 21.563 210 2500 20 24.01 30.69 32.10 30.69 1.07 2.81 6.54 21.93 0.96 **U34** 1 10.781 210 2500 20 22.66 28.84 30.16 28.84 1.02 2.9021.93 6.64 0.96 **U34** 1 10.781 300 2500 20 15.86 20.19 30.16 20.19 1.50 4.43 13.47 30.74 0.67 15.74 **U34** 1 15.525 310 2500 20 12.58 15.92 31.29 15.92 1.37 4.48 31.48 0.51 14.99 **U34** 1 7.763 310 2500 20 11.68 14.99 29.83 1.31 4.63 16.03 32.06 0.50 **U34** 1 0 300 960 20 2.23 2.49 10.32 2.49 1.94 4.72 21.94 43.88 0.24 35.58 U34 2 43.35 210 2500 20 27.39 33.77 12.92 0.95 33.77 1.17 2.63 5.84 **U34** 2 27.413 300 2500 20 17.75 22.13 33.07 22.13 1.64 4.27 12.97 28.28 0.67 **U34** 30.70 1.54 2 13.706 300 2500 20 16.39 20.53 20.53 4.40 13.38 29.69 0.67 32.30 25.56 32.30 U34 2 31.875 2500 20 1.11 2.75 14.50 210 33.81 6.06 0.96 **U34** 2 15.938 210 2500 20 23.48 29.70 31.11 29.70 1.05 6.59 21.93 0.95 2.86U34 2 7.969 210 2500 20 22.09 28.36 29.62 28.36 1.00 2.92 21.93 6.67 0.96 **U34** 2 7.969 300 2500 20 15.46 19.85 29.62 19.85 1.48 4.45 13.52 30.88 0.67 U34 2 11.475 310 2500 20 12.46 15.45 30.52 15.45 1.37 4.52 15.89 31.79 0.51 **U34** 2 5.738 310 2500 20 11.47 14.75 29.44 14.75 1.29 4.68 32.21 0.50 16.11 20 2.23 2.49 10.32 U34 2 960 2.49 1.94 4.72 0 300 21.94 43.88 0.24 33.37 **U34** 3 28.05 210 2500 20 22.85 29.49 29.491.012.686.27 15.11 0.88 U34 3 17.738 300 2500 20 15.25 19.44 31.60 19.44 1.44 4.21 14.60 29.79 0.62 **U34** 3 8.869 300 2500 20 14.07 18.39 29.96 18.39 1.36 4.31 14.94 30.50 0.61 22.01 **U34** 3 20.625 210 2500 20 28.32 32.11 28.32 0.98 2.71 6.43 16.47 0.88 **U34** 3 10.313 210 2500 20 20.22 26.51 30.24 26.51 0.92 2.82 6.78 21.93 0.88 **U34** 3 5.156 210 2500 20 19.93 25.65 29.21 25.65 0.91 2.866.83 21.93 0.88 20 **U34** 3 5.156 300 2500 13.95 17.95 29.21 17.95 1.35 4.35 15.05 30.87 0.61 **U34** 3 7.425 310 20 2500 11.64 14.95 29.77 14.95 1.30 4.64 16.04 32.09 0.50 **U34** 3 3.713 310 2500 20 11.33 14.50 29.03 14.50 1.29 4.73 16.18 32.37 0.50 3 0 20 2.25 1.95 **U34** 300 960 2.52 10.31 2.52 4.73 21.9443.88 0.24 4 20 **U34** 12.75 210 2500 18.44 23.02 30.77 23.02 0.89 2.85 7.49 18.36 0.75 **U34** 4 300 2500 20 12.11 15.52 15.52 1.26 4.45 15.31 0.52 8.063 29.89 30.62 U34 4 4.031 300 20 11.73 15.02 29.09 15.02 1.23 4.53 15.46 30.91 2500 0.52 **U34** 4 9.375 210 2500 20 17.52 22.45 30.15 22.45 0.85 2.88 7.61 19.03 0.74 U34 20 29.23 4 4.688 210 16.82 21.58 21.58 0.83 2.98 7.84 21.08 0.74 2500 210 **U34** 4 2.344 2500 20 16.63 21.16 28.74 21.16 0.83 3.03 7.89 21.09 0.74 **U34** 4 2.344 300 2500 20 11.64 14.81 28.74 14.81 1.24 4.58 15.52 31.03 0.52 **U34** 4 310 2500 20 9.58 12.50 29.02 12.50 1.18 4.72 3.375 16.20 32.39 0.43

G15. U34 校舍柱分析結果

U34	4	1.688	310	2500	20	9.32	12.31	28.67	12.31	1.17	4.77	16.26	32.52	0.43
U34	4	0	300	960	20	2.25	2.52	10.31	2.52	1.95	4.73	21.94	43.88	0.24
					G16.	U35	校舍柱	分析約	吉果					
Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	S (cm)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)	Vmn/Vs
U35	1	73.95	210	3025	20	41.25	49.94	44.50	44.50	1.28	1.75	1.75	10.65	1.12
U35	1	46.763	300	3025	20	26.09	32.51	40.76	32.51	1.71	4.06	9.20	24.50	0.80
U35	1	23.382	300	3025	20	23.38	30.25	37.14	30.25	1.57	4.22	9.43	27.48	0.81
U35	1	54.375	210	3025	20	38.45	47.43	41.84	41.84	1.24	1.72	1.72	12.33	1.13
U35	1	27.188	210	3025	20	34.28	43.74	37.75	37.75	1.16	1.66	1.66	21.93	1.16
U35	1	13.593	210	3025	20	32.18	41.73	35.45	35.45	1.11	1.63	1.63	21.93	1.18
U35	1	13.593	300	3025	20	22.53	29.21	35.45	29.21	1.52	4.34	9.64	31.33	0.82
U35	1	19.575	310	3025	20	19.45	25.75	36.58	25.75	1.48	4.28	12.44	27.71	0.70
U35	1	9.788	310	3025	20	18.42	24.62	34.85	24.62	1.41	4.36	12.62	29.58	0.71
U35	1	0	300	960	20	2.23	2.49	10.32	2.49	1.94	4.72	21.94	43.88	0.24
U35	2	58.65	210	3025	20	32.76	41.66	42.67	41.66	1.08	2.63	5.59	11.92	0.98
U35	2	37.088	300	3025	20	20.77	27.10	39.52	27.10	1.47	4.20	12.10	27.00	0.69
U35	2	18.544	300	3025	20	18.75	24.71	36.51	24.71	1.37	4.32	12.73	28.74	0.68
U35	2	43.125	210	3025	20	30.16	39.57	40.45	39.57	1.02	2.73	5.84	13.55	0.98
U35	2	21.563	210	3025	20	26.93	35.85	37.04	35.85	0.95	2.86	6.44	21.93	0.97
U35	2	10.781	210	3025	20	24.75	33.70	35.16	33.70	0.89	2.96	6.54	21.93	0.96
U35	2	10.781	300	3025	20	17.33	23.59	35.16	23.59	1.29	4.44	13.08	30.16	0.67
U35	2	15.525	310	3025	20	17.73	24.02	35.90	24.02	1.40	4.25	13.49	29.17	0.67
U35	2	7.763	310	3025	20	17.26	23.05	34.48	23.05	1.37	4.31	13.72	30.39	0.67
U35	2	0	300	960	20	2.23	2.49	10.32	2.49	1.94	4.72	21.94	43.88	0.24
U35	3	43.35	210	3025	20	29.84	36.01	40.34	36.01	1.06	2.59	6.00	13.53	0.89
U35	3	27.413	300	3025	20	19.17	23.33	37.89	23.33	1.43	4.13	13.94	28.44	0.62
U35	3	13.706	300	3025	20	17.49	21.51	35.60	21.51	1.34	4.36	14.58	29.35	0.60
U35	3	31.875	210	3025	20	27.66	34.15	38.62	34.15	1.00	2.72	6.20	15.05	0.88
U35	3	15.938	210	3025	20	25.16	31.15	36.00	31.15	0.94	2.89	6.65	21.93	0.87
U35	3	7.969	210	3025	20	23.91	29.63	34.56	29.63	0.90	2.98	6.73	21.93	0.86
U35	3	7.969	300	3025	20	16.73	20.74	34.56	20.74	1.29	4.45	14.84	29.68	0.60
U35	3	11.475	310	3025	20	14.70	19.59	35.41	19.59	1.22	4.42	15.41	30.82	0.55
U35	3	5.738	310	3025	20	14.33	18.85	34.35	18.85	1.20	4.51	15.58	31.17	0.55
U35	3	0	300	960	20	2.23	2.49	10.32	2.49	1.94	4.72	21.94	43.88	0.24
U35	4	28.05	210	3025	20	23.22	27.73	38.19	27.73	0.91	2.99	7.42	16.46	0.73
U35	4	17.738	300	3025	20	14.77	17.97	36.49	17.97	1.23	4.71	14.56	29.13	0.49
U35	4	8.869	300	3025	20	13.87	16.77	34.91	16.77	1.18	4.93	14.82	29.63	0.48
U35	4	20.625	210	3025	20	21.93	26.30	36.96	26.30	0.88	3.07	7.73	17.46	0.71
U35	4	10.313	210	3025	20	20.26	24.18	35.17	24.18	0.83	3.28	8.25	20.00	0.69
U35	4	5.156	210	3025	20	18.68	23.46	34.24	23.46	0.78	3.36	8.35	20.06	0.69
U35	4	5.156	300	3025	20	13.07	16.42	34.24	16.42	1.13	5.01	14.92	29.84	0.48

U35	4	7.425	310	3025	20	14.40	19.06	34.65	19.06	1.20	4.48	15.53	31.07	0.55
U35	4	3.713	310	3025	20	14.13	18.59	33.95	18.59	1.20	4.55	15.64	31.29	0.55
U35	4	0	300	960	20	2.25	2.52	10.31	2.52	1.95	4.73	21.94	43.88	0.24
U35	5	12.75	210	3025	20	21.89	29.16	35.65	29.16	0.82	2.83	6.62	18.54	0.82
U35	5	8.063	300	3025	20	14.92	19.79	34.77	19.79	1.16	4.30	14.84	29.68	0.57
U35	5	4.031	300	3025	20	14.67	19.25	34.01	19.25	1.16	4.37	14.95	29.91	0.57
U35	5	9.375	210	3025	20	21.45	28.51	35.02	28.51	0.81	2.86	6.69	19.33	0.81
U35	5	4.688	210	3025	20	21.11	27.61	34.14	27.61	0.80	2.92	6.82	21.93	0.81
U35	5	2.344	210	3025	20	20.50	27.15	33.69	27.15	0.79	2.95	6.84	21.93	0.81
U35	5	2.344	300	3025	20	14.35	19.01	33.69	19.01	1.14	4.41	15.00	30.00	0.56
U35	5	3.375	310	3025	20	12.73	16.35	33.96	16.35	1.14	4.98	15.65	31.31	0.48
U35	5	1.688	310	3025	20	12.43	16.18	33.64	16.18	1.13	5.02	15.70	31.41	0.48
U35	5	0	300	960	20	2.25	2.52	10.31	2.52	1.95	4.73	21.94	43.88	0.24

G17. C22 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C22	1	37.744	300	6600	43.73	136.60	117.81	117.81	0.07	2.18	6	6
C22	1	15.469	300	6600	38.98	125.47	109.75	109.75	0.07	2.30	6	6
C22	2	17.156	300	6600	39.34	123.73	109.85	109.85	0.07	2.34	6	6
C22	2	7.031	300	6600	37.18	118.47	104.67	104.67	0.07	2.39	6	6
C22	1	37.744	300	4200	16.26	46.89	73.83	46.89	0.10	4.24	6	6
C22	1	15.469	300	4200	14.09	39.74	71.49	39.74	0.10	4.86	6	6
C22	2	17.156	300	4200	14.26	39.89	71.71	39.89	0.10	4.82	6	6
C22	2	7.031	300	4200	13.27	36.57	70.53	36.57	0.10	5.10	6	6
C22	1	18.872	300	4200	14.43	40.84	71.83	40.84	0.10	4.77	6	6
C22	1	7.734	300	4200	13.34	37.25	70.60	37.25	0.10	5.07	6	6
C22	2	8.578	300	4200	13.42	37.10	70.76	37.10	0.10	5.06	6	6
C22	2	3.516	300	4200	12.93	35.57	70.10	35.57	0.09	5.31	6	6
C22	1	37.744	300	4200	16.26	88.27	69.40	69.40	0.09	1.18	6	6
C22	1	15.469	300	4200	14.09	83.00	66.07	66.07	0.08	2.16	6	6
C22	2	17.156	300	4200	14.26	80.73	65.74	65.74	0.08	2.18	6	6
C22	2	7.031	300	4200	13.27	78.13	63.97	63.97	0.08	2.27	6	6
C22	1	18.872	300	4200	14.43	83.87	66.69	66.69	0.08	2.13	6	6
C22	1	7.734	300	4200	13.34	81.07	64.73	64.73	0.08	2.23	6	6
C22	2	8.578	300	4200	13.42	78.53	64.32	64.32	0.08	2.26	6	6
C22	2	3.516	300	4200	12.93	77.20	63.42	63.42	0.08	2.31	6	6

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C23	1	58.331	300	6825	50.24	137.80	124.62	124.62	0.08	2.25	6	6
C23	1	23.906	300	6825	42.64	119.07	112.50	112.50	0.07	2.52	6	6
C23	2	37.744	300	6825	45.69	126.87	118.68	118.68	0.07	2.41	6	6
C23	2	15.469	300	6825	40.77	114.13	107.53	107.53	0.07	2.57	6	6
C23	3	17.156	300	6825	41.15	115.13	108.97	108.97	0.07	2.56	6	6
C23	3	7.031	300	6825	38.91	109.13	103.09	103.09	0.07	2.67	6	6
C23	1	58.331	300	4425	19.32	56.04	87.09	56.04	0.11	3.48	6	6
C23	1	23.906	300	4425	15.81	44.75	85.39	44.75	0.10	4.34	6	6
C23	2	37.744	300	4425	17.22	49.19	86.11	49.19	0.10	3.85	6	6
C23	2	15.469	300	4425	14.95	42.10	84.94	42.10	0.09	4.60	6	6
C23	3	17.156	300	4425	15.12	42.63	85.02	42.63	0.09	4.55	6	6
C23	3	7.031	300	4425	14.09	39.57	84.52	39.57	0.09	5.03	6	6
C23	1	29.166	300	4425	16.35	46.45	85.64	46.45	0.10	4.12	6	6
C23	1	11.953	300	4425	14.59	40.95	84.75	40.95	0.09	4.71	6	6
C23	2	18.872	300	4425	15.30	4 3 .19	85.14	43.19	0.09	4.50	6	6
C23	2	7.734	300	4425	14.16	39.78	84.55	39.78	0.09	5.00	6	6
C23	3	8.578	300	4425	14.25	40.03	84.57	40.03	0.09	4.96	6	6
C23	3	3.516	300	4425	13.73	38.39	84.25	38.39	0.09	5.18	6	6
C23	1	58.331	300	4425	19.32	80.87	73.40	73.40	0.10	2.09	6	6
C23	1	23.906	300	4425	15.81	71.73	67.50	67.50	0.08	2.39	6	6
C23	2	37.744	300	4425	17.22	75.53	70.00	70.00	0.09	2.26	6	6
C23	2	15.469	300	4425	14.95	69.33	65.52	65.52	0.08	2.49	6	6
C23	3	17.156	300	4425	15.12	69.80	65.79	65.79	0.08	2.47	6	6
C23	3	7.031	300	4425	14.09	66.61	63.70	63.70	0.08	2.63	6	6
C23	1	29.166	300	4425	16.35	73.20	68.52	68.52	0.09	2.34	6	6
C23	1	11.953	300	4425	14.59	68.20	64.95	64.95	0.08	2.55	6	6
C23	2	18.872	300	4425	15.30	70.27	66.31	66.31	0.08	2.45	6	6
C23	2	7.734	300	4425	14.16	66.80	63.87	63.87	0.08	2.62	6	6
C23	3	8.578	300	4425	14.25	67.13	64.06	64.06	0.08	2.59	6	6
C23	3	3.516	300	4425	13.73	65.51	62.64	62.64	0.07	2.68	6	6

G18. C23 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C24	1	78.919	300	7300	57.14	182.47	136.96	136.96	0.09	1.83	6	6
C24	1	32.344	300	7300	46.49	162.00	124.48	124.48	0.07	2.03	6	6
C24	2	58.331	300	7300	52.43	173.93	131.80	131.80	0.08	1.91	6	6
C24	2	23.906	300	7300	44.56	158.00	122.00	122.00	0.07	2.06	6	6
C24	3	37.744	300	7300	47.73	164.60	126.67	126.67	0.07	1.99	6	6
C24	3	15.469	300	7300	42.63	153.80	119.17	119.17	0.07	2.10	6	6
C24	4	17.156	300	7300	43.02	154.67	120.05	120.05	0.07	2.09	6	6
C24	4	7.031	300	7300	40.71	149.60	115.45	115.45	0.06	2.12	6	6
C24	1	78.919	300	4900	22.61	73.67	103.01	73.67	0.11	3.69	6	6
C24	1	32.344	300	4900	17.64	57.25	102.12	57.25	0.09	4.49	6	6
C24	2	58.331	300	4900	20.41	66.35	102.63	66.35	0.10	3.98	6	6
C24	2	23.906	300	4900	16.74	54.32	101.97	54.32	0.09	4.65	6	6
C24	3	37.744	300	4900	18.22	59.03	102.22	59.03	0.09	4.34	6	6
C24	3	15.469	300	4900	15.84	51.43	101.80	51.43	0.09	4.87	6	6
C24	4	17.156	300	4900	16.02	51.91	101.83	51.91	0.09	4.77	6	6
C24	4	7.031	300	4900	14.94	48.45	101.67	48.45	0.08	5.08	6	6
C24	1	39.46	300	4900	18.40	59.61	102.24	59.61	0.09	4.31	6	6
C24	1	16.171	300	4900	15.92	51.59	101.81	51.59	0.09	4.79	6	6
C24	2	29.166	300	4900	17.30	56.15	102.05	56.15	0.09	4.55	6	6
C24	2	11.953	300	4900	15.47	50.19	101.74	50.19	0.08	4.96	6	6
C24	3	18.872	300	4900	16.20	52.51	101.89	52.51	0.09	4.74	6	6
C24	3	7.734	300	4900	15.02	48.69	101.70	48.69	0.08	5.06	6	6
C24	4	8.578	300	4900	15.11	49.02	101.71	49.02	0.08	5.04	6	6
C24	4	3.516	300	4900	14.57	47.25	101.62	47.25	0.08	5.15	6	6
C24	1	78.919	300	4900	22.61	122.20	83.30	83.30	0.10	1.16	6	6
C24	1	32.344	300	4900	17.64	114.73	80.31	80.31	0.08	1.16	6	6
C24	2	58.331	300	4900	20.41	119.33	82.07	82.07	0.09	1.16	6	6
C24	2	23.906	300	4900	16.74	113.00	79.38	79.38	0.08	1.16	6	6
C24	3	37.744	300	4900	18.22	115.80	80.64	80.64	0.08	1.16	6	6
C24	3	15.469	300	4900	15.84	111.27	78.26	78.26	0.07	1.15	6	6
C24	4	17.156	300	4900	16.02	111.60	78.61	78.61	0.07	1.16	6	6
C24	4	7.031	300	4900	14.94	109.33	76.90	76.90	0.07	1.14	6	6
C24	1	39.46	300	4900	18.40	116.07	80.75	80.75	0.08	1.16	6	6
C24	1	16.171	300	4900	15.92	111.40	78.35	78.35	0.07	1.15	6	6
C24	2	29.166	300	4900	17.30	114.07	79.98	79.98	0.08	1.16	6	6
C24	2	11.953	300	4900	15.47	110.47	77.69	77.69	0.07	1.15	6	6

G19. C24 校舍 RC 牆分析結果

C24	3	18.872	300	4900	16.20	111.93	78.78	78.78	0.07	1.16	6	6
C24	3	7.734	300	4900	15.02	109.60	77.00	77.00	0.07	1.15	6	6
C24	4	8.578	300	4900	15.11	109.73	77.10	77.10	0.07	1.15	6	6
C24	4	3.516	300	4900	14.57	108.53	76.42	76.42	0.07	1.14	6	6

G20. C25 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C25	1	99.507	300	7825	64.44	197.00	144.93	144.93	0.09	1.77	6	6
C25	1	40.782	300	7825	50.55	174.73	130.81	130.81	0.07	1.95	6	6
C25	2	78.919	300	7825	59.57	190.20	140.43	140.43	0.09	1.82	6	6
C25	2	32.344	300	7825	48.56	170.60	128.83	128.83	0.07	1.99	6	6
C25	3	58.331	300	7825	54.70	178.33	135.46	135.46	0.08	1.92	6	6
C25	3	23.906	300	7825	46.56	162.00	125.00	125.00	0.07	2.07	6	6
C25	4	37.744	300	7825	49.84	168.67	129.57	129.57	0.07	2.01	6	6
C25	4	15.469	300	7825	44.57	157.53	121.33	121.33	0.07	2.10	6	6
C25	5	17.156	300	7825	44.97	158.40	121.96	121.96	0.07	2.09	6	6
C25	5	7.031	300	7825	42.57	153.13	117.31	117.31	0.06	2.12	6	6
C25	1	99.507	300	5425	26.13	88.47	124.29	88.47	0.11	3.67	6	6
C25	1	40.782	300	5425	19.59	67.00	124.40	67.00	0.09	4.52	6	6
C25	2	78.919	300	5425	23.84	81.00	124.29	81.00	0.10	3.91	6	6
C25	2	32.344	300	5425	18.65	63.99	124.45	63.99	0.08	4.76	6	6
C25	3	58.331	300	5425	21.54	72.20	124.32	72.20	0.09	4.24	6	6
C25	3	23.906	300	5425	17.71	59.71	124.50	59.71	0.08	4.86	6	6
C25	4	37.744	300	5425	19.25	64.71	124.42	64.71	0.09	4.61	6	6
C25	4	15.469	300	5425	16.77	56.53	124.60	56.53	0.08	5.01	6	6
C25	5	17.156	300	5425	16.95	57.20	124.58	57.20	0.08	4.98	6	6
C25	5	7.031	300	5425	15.82	53.84	124.61	53.84	0.08	5.40	6	6
C25	1	49.754	300	5425	20.59	70.27	124.35	70.27	0.09	4.37	6	6
C25	1	20.389	300	5425	17.31	59.54	124.55	59.54	0.08	5.00	6	6
C25	2	39.46	300	5425	19.44	66.60	124.40	66.60	0.09	4.60	6	6
C25	2	16.171	300	5425	16.84	58.15	124.58	58.15	0.08	5.19	6	6
C25	3	29.166	300	5425	18.29	61.63	124.46	61.63	0.08	4.77	6	6
C25	3	11.953	300	5425	16.37	55.49	124.62	55.49	0.08	5.22	6	6
C25	4	18.872	300	5425	17.14	57.85	124.57	57.85	0.08	4.95	6	6
C25	4	7.734	300	5425	15.90	54.03	124.61	54.03	0.08	5.38	6	6
C25	5	8.578	300	5425	16.00	54.35	124.61	54.35	0.08	5.34	6	6
C25	5	3.516	300	5425	15.43	52.59	124.60	52.59	0.08	5.52	6	6
C25	1	99.507	300	5425	26.13	132.87	87.59	87.59	0.10	1.12	6	6
C25	1	40.782	300	5425	19.59	124.40	83.92	83.92	0.08	1.12	6	6
C25	2	78.919	300	5425	23.84	130.33	86.42	86.42	0.09	1.12	6	6
C25	2	32.344	300	5425	18.65	122.73	83.27	83.27	0.07	1.12	6	6
C25	3	58.331	300	5425	21.54	122.73	84.67	84.67	0.09	1.12	6	6
C25	3	23.906	300	5425	17.71	115.73	82.04	82.04	0.07	1.12	6	6

C25	4	37.744	300	5425	19.25	118.73	83.12	83.12	0.08	1.12	6	6
C25	4	15.469	300	5425	16.77	113.80	81.15	81.15	0.07	1.12	6	6
C25	5	17.156	300	5425	16.95	114.20	81.29	81.29	0.07	1.12	6	6
C25	5	7.031	300	5425	15.82	111.87	80.36	80.36	0.06	1.12	6	6
C25	1	49.754	300	5425	20.59	126.07	84.56	84.56	0.08	1.12	6	6
C25	1	20.389	300	5425	17.31	120.27	82.26	82.26	0.07	1.12	6	6
C25	2	39.46	300	5425	19.44	124.20	83.84	83.84	0.08	1.12	6	6
C25	2	16.171	300	5425	16.84	119.33	82.00	82.00	0.07	1.12	6	6
C25	3	29.166	300	5425	18.29	116.93	82.38	82.38	0.07	1.12	6	6
C25	3	11.953	300	5425	16.37	113.00	80.81	80.81	0.07	1.12	6	6
C25	4	18.872	300	5425	17.14	114.60	81.48	81.48	0.07	1.12	6	6
C25	4	7.734	300	5425	15.90	112.07	80.42	80.42	0.06	1.12	6	6
C25	5	8.578	300	5425	16.00	112.20	80.48	80.48	0.06	1.12	6	6
C25	5	3.516	300	5425	15.43	110.93	80.02	80.02	0.06	1.12	6	6

				1000	1-0			- 100 C				
Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C32	1	25.163	300	6375	39.25	113.87	108.34	108.34	0.07	2.45	6	6
C32	1	10.313	300	6375	36.19	105.67	100.96	100.96	0.07	2.58	6	6
C32	2	11.438	300	6375	36.42	106.40	101.41	101.41	0.07	2.54	6	6
C32	2	4.688	300	6375	35.03	102.47	97.69	97.69	0.07	2.63	6	6
C32	1	25.163	300	3975	14.17	38.42	59.46	38.42	0.10	4.77	6	6
C32	1	10.313	300	3975	12.79	33.95	57.11	33.95	0.10	5.38	6	6
C32	2	11.438	300	3975	12.89	34.27	57.35	34.27	0.10	5.33	6	6
C32	2	4.688	300	3975	12.27	32.18	56.33	32.18	0.10	5.61	6	6
C32	1	12.581	300	3975	13.00	34.64	57.55	34.64	0.10	5.28	6	6
C32	1	5.156	300	3975	12.31	32.33	56.38	32.33	0.10	5.59	6	6
C32	2	5.719	300	3975	12.36	32.52	56.44	32.52	0.10	5.57	6	6
C32	2	2.344	300	3975	12.05	31.40	55.97	31.40	0.10	5.68	6	6
C32	1	25.163	300	3975	14.17	68.60	60.69	60.69	0.09	2.26	6	6
C32	1	10.313	300	3975	12.79	64.81	58.09	58.09	0.08	2.43	6	6
C32	2	11.438	300	3975	12.89	65.12	58.29	58.29	0.08	2.41	6	6
C32	2	4.688	300	3975	12.27	63.28	57.00	57.00	0.08	2.49	6	6
C32	1	12.581	300	3975	13.00	65.47	58.48	58.48	0.09	2.39	6	6
C32	1	5.156	300	3975	12.31	63.40	57.06	57.06	0.08	2.49	6	6
C32	2	5.719	300	3975	12.36	63.56	57.16	57.16	0.08	2.48	6	6
C32	2	2.344	300	3975	12.05	62.55	56.46	56.46	0.08	2.54	6	6

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
C33	1	38.888	300	6550	42.08	136.20	116.00	116.00	0.07	2.13	6	6
C33	1	15.938	300	6550	37.35	125.07	108.30	108.30	0.07	2.27	6	6
C33	2	25.163	300	6550	39.25	122.33	110.86	110.86	0.07	2.31	6	6
C33	2	10.313	300	6550	36.19	114.60	103.68	103.68	0.07	2.42	6	6
C33	3	11.438	300	6550	36.42	115.33	104.36	104.36	0.07	2.39	6	6
C33	3	4.688	300	6550	35.03	111.53	100.76	100.76	0.06	2.46	6	6
C33	1	38.888	300	4150	15.44	45.97	63.23	45.97	0.11	4.73	6	6
C33	1	15.938	300	4150	13.31	39.01	60.70	39.01	0.10	5.51	6	6
C33	2	25.163	300	4150	14.17	40.59	61.91	40.59	0.10	5.07	6	6
C33	2	10.313	300	4150	12.79	36.05	60.05	36.05	0.10	5.73	6	6
C33	3	11.438	300	4150	12.89	36.42	60.26	36.42	0.10	5.69	6	6
C33	3	4.688	300	4150	12.27	34.15	59.49	34.15	0.10	5.91	6	6
C33	1	19.444	300	4150	13.64	39.87	61.08	39.87	0.10	5.20	6	6
C33	1	7.949	300	4150	12.57	36.31	59.78	36.31	0.10	5.78	6	6
C33	2	12.581	300	4150	13.00	36.79	60.38	36.79	0.10	5.65	6	6
C33	2	5.156	300	4150	12.31	34.32	59.53	34.32	0.10	5.89	6	6
C33	3	5.719	300	4150	12.36	34.53	59.63	34.53	0.10	5.87	6	6
C33	3	2.344	300	4150	12.05	33.39	59.10	33.39	0.10	5.98	6	6
C33	1	38.888	300	4150	15.44	88.93	66.25	66.25	0.09	1.16	6	6
C33	1	15.938	300	4150	13.31	84.13	63.33	63.33	0.08	1.14	6	6
C33	2	25.163	300	4150	14.17	77.87	62.79	62.79	0.09	2.10	6	6
C33	2	10.313	300	4150	12.79	74.33	60.50	60.50	0.08	2.23	6	6
C33	3	11.438	300	4150	12.89	74.60	60.68	60.68	0.08	2.22	6	6
C33	3	4.688	300	4150	12.27	73.00	59.61	59.61	0.08	2.28	6	6
C33	1	19.444	300	4150	13.64	84.93	63.92	63.92	0.08	1.14	6	6
C33	1	7.949	300	4150	12.57	82.27	62.24	62.24	0.08	1.13	6	6
C33	2	12.581	300	4150	13.00	74.93	60.94	60.94	0.08	2.20	6	6
C33	2	5.156	300	4150	12.31	73.07	59.66	59.66	0.08	2.27	6	6
C33	3	5.719	300	4150	12.36	73.20	59.73	59.73	0.08	2.27	6	6
C33	3	2.344	300	4150	12.05	72.33	59.32	59.32	0.07	2.31	6	6

G22. C33 校舍 RC 牆分析結果

Model	floor	axial	Hn (cm)	Ag	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay	deltau (cm)	deltas	deltaa
C34	1	52.613	300	7300	51.12	176.60	131.35	131 35	0.08	1.89	6	(cm)
C34	1	21.563	300	7300	44.03	162.47	122.18	122.18	0.07	2.02	6	6
C34	2	38.888	300	7300	47.99	162.00	126.06	126.06	0.07	2.02	6	6
C34	2	15.938	300	7300	42.74	150.87	118.27	118.27	0.07	2.12	6	6
C34	3	25.163	300	7300	44.85	147.20	120.58	120.58	0.07	2.18	6	6
C34	3	10.313	300	7300	41.46	139.27	113.63	113.63	0.07	2.25	6	6
C34	4	11.438	300	7300	41.71	148.33	116.39	116.39	0.07	2.15	6	6
C34	4	4.688	300	7300	40.17	144.93	112.86	112.86	0.06	2.17	6	6
C34	1	52.613	300	4900	19.80	64.20	102.50	64.20	0.10	3.91	6	6
C34	1	21.563	300	4900	16.49	53.32	101.93	53.32	0.09	4.43	6	6
C34	2	38.888	300	4900	18.34	58.57	102.24	58.57	0.09	4.27	6	6
C34	2	15.938	300	4900	15.89	50.68	101.81	50.68	0.09	4.90	6	6
C34	3	25.163	300	4900	16.88	53.25	102.02	53.25	0.09	4.89	6	6
C34	3	10.313	300	4900	15.29	48.06	101.73	48.06	0.08	5.28	6	6
C34	4	11.438	300	4900	15.41	49.17	101.74	49.17	0.08	5.02	6	6
C34	4	4.688	300	4900	14.69	46.75	101.65	46.75	0.08	5.22	6	6
C34	1	26.306	300	4900	17.00	54.89	102.01	54.89	0.09	4.28	6	6
C34	1	10.761	300	4900	15.34	49.53	101.72	49.53	0.08	4.65	6	6
C34	2	19.444	300	4900	16.27	51.87	101.90	51.87	0.09	4.74	6	6
C34	2	7.949	300	4900	15.04	47.87	101.70	47.87	0.08	5.13	6	6
C34	3	12.581	300	4900	15.53	48.81	101.78	48.81	0.08	5.23	6	6
C34	3	5.156	300	4900	14.74	46.51	101.65	46.51	0.08	5.58	6	6
C34	4	5.719	300	4900	14.80	47.11	101.66	47.11	0.08	5.19	6	6
C34	4	2.344	300	4900	14.44	45.93	101.61	45.93	0.08	5.28	6	6
C34	1	52.613	300	4900	19.80	124.13	82.23	82.23	0.09	1.16	6	6
C34	1	21.563	300	4900	16.49	118.80	80.07	80.07	0.07	1.16	6	6
C34	2	38.888	300	4900	18.34	112.53	80.44	80.44	0.08	1.16	6	6
C34	2	15.938	300	4900	15.89	107.73	77.55	77.55	0.07	1.15	6	6
C34	3	25.163	300	4900	16.88	100.87	77.02	77.02	0.08	2.00	6	6
C34	3	10.313	300	4900	15.29	97.00	74.57	74.57	0.07	2.10	6	6
C34	4	11.438	300	4900	15.41	106.73	76.84	76.84	0.07	1.14	6	6
C34	4	4.688	300	4900	14.69	105.07	75.85	75.85	0.07	1.14	6	6
C34	1	26.306	300	4900	17.00	119.73	80.50	80.50	0.08	1.16	6	6
C34	1	10.761	300	4900	15.34	116.67	78.88	78.88	0.07	1.16	6	6
C34	2	19.444	300	4900	16.27	108.47	78.12	78.12	0.07	1.15	6	6
C34	2	7.949	300	4900	15.04	105.93	76.27	76.27	0.07	1.14	6	6
C34	3	12.581	300	4900	15.53	97.60	75.07	75.07	0.07	2.09	6	6
C34	3	5.156	300	4900	14.74	95.60	73.60	73.60	0.07	2.15	6	6
C34	4	5.719	300	4900	14.80	105.33	76.00	76.00	0.07	1.14	6	6
C34	4	2.344	300	4900	14.44	104.47	75.55	75.55	0.07	1.14	6	6

G23. C34 校舍 RC 牆分析結果

Model	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas	deltaa
C35	1	66.338	300	7825	56.60	186.53	138.04	138.04	0.08	1.85	6	6
C35	1	27.188	300	7825	47.34	168.80	126.50	126.50	0.07	2.00	6	6
C35	2	52.613	300	7825	53.35	171.53	133.56	133.56	0.08	1.98	6	6
C35	2	21.563	300	7825	46.01	156.20	122.86	122.86	0.07	2.12	6	6
C35	3	38.888	300	7825	50.11	159.27	128.64	128.64	0.07	2.10	6	6
C35	3	15.938	300	7825	44.68	147.13	118.84	118.84	0.07	2.20	6	6
C35	4	25.163	300	7825	46.86	159.27	124.12	124.12	0.07	2.09	6	6
C35	4	10.313	300	7825	43.35	151.33	117.87	117.87	0.07	2.15	6	6
C35	5	11.438	300	7825	43.61	153.53	118.91	118.91	0.07	2.13	6	6
C35	5	4.688	300	7825	42.02	149.73	115.62	115.62	0.06	2.16	6	6
C35	1	66.338	300	5425	22.44	75.33	124.31	75.33	0.09	3.99	6	6
C35	1	27.188	300	5425	18.07	61.01	124.49	61.01	0.08	4.59	6	6
C35	2	52.613	300	5425	20.91	69.27	124.33	69.27	0.09	4.38	6	6
C35	2	21.563	300	5425	17.44	58.11	124.53	58.11	0.08	5.19	6	6
C35	3	38.888	300	5425	19.38	63.68	124.40	63.68	0.09	4.88	6	6
C35	3	15.938	300	5425	16.82	55.54	124.58	55.54	0.08	5.58	6	6
C35	4	25.163	300	5425	17.85	59.13	124.49	59.13	0.08	4.90	6	6
C35	4	10.313	300	5425	16.19	53.81	124.61	53.81	0.08	5.34	6	6
C35	5	11.438	300	5425	16.32	54.67	124.62	54.67	0.08	5.27	6	6
C35	5	4.688	300	5425	15.56	52.23	124.60	52.23	0.08	5.44	6	6
C35	1	33.168	300	5425	18.74	63.07	124.44	63.07	0.08	4.44	6	6
C35	1	13.573	300	5425	16.55	55.98	124.62	55.98	0.08	4.89	6	6
C35	2	26.306	300	5425	17.97	59.70	124.49	59.70	0.08	4.98	6	6
C35	2	10.761	300	5425	16.24	54.21	124.62	54.21	0.08	5.51	6	6
C35	3	19.444	300	5425	17.21	56.80	124.55	56.80	0.08	5.48	6	6
C35	3	7.949	300	5425	15.93	52.81	124.61	52.81	0.08	5.95	6	6
C35	4	12.581	300	5425	16.44	54.67	124.63	54.67	0.08	5.28	6	6
C35	4	5.156	300	5425	15.62	51.97	124.61	51.97	0.08	5.48	6	6
C35	5	5.719	300	5425	15.68	52.57	124.61	52.57	0.08	5.42	6	6
C35	5	2.344	300	5425	15.30	51.39	124.60	51.39	0.08	5.50	6	6
C35	1	66.338	300	5425	22.44	129.20	85.73	85.73	0.09	1.12	6	6
C35	1	27.188	300	5425	18.07	122.40	82.89	82.89	0.07	1.12	6	6
C35	2	52.613	300	5425	20.91	117.07	83.83	83.83	0.08	1.12	6	6
C35	2	21.563	300	5425	17.44	110.20	81.05	81.05	0.07	1.12	6	6
C35	3	38.888	300	5425	19.38	107.93	82.05	82.05	0.08	1.12	6	6
C35	3	15.938	300	5425	16.82	102.27	79.63	79.63	0.07	2.06	6	6
C35	4	25.163	300	5425	17.85	112.40	81.62	81.62	0.07	1.12	6	6
C35	4	10.313	300	5425	16.19	108.87	80.24	80.24	0.06	1.12	6	6
C35	5	11.438	300	5425	16.32	110.73	80.49	80.49	0.06	1.11	6	6

G24. C35 校舍 RC 牆分析結果

C35	5	4.688	300	5425	15.56	109.07	79.82	79.82	0.06	1.11	6	6
C35	1	33.168	300	5425	18.74	123.67	83.43	83.43	0.07	1.12	6	6
C35	1	13.573	300	5425	16.55	119.47	81.73	81.73	0.07	1.12	6	6
C35	2	26.306	300	5425	17.97	111.33	81.55	81.55	0.07	1.12	6	6
C35	2	10.761	300	5425	16.24	107.60	80.09	80.09	0.06	1.12	6	6
C35	3	19.444	300	5425	17.21	103.33	80.12	80.12	0.07	2.02	6	6
C35	3	7.949	300	5425	15.93	100.07	78.06	78.06	0.06	2.12	6	6
C35	4	12.581	300	5425	16.44	109.40	80.42	80.42	0.07	1.12	6	6
C35	4	5.156	300	5425	15.62	107.53	79.43	79.43	0.06	1.12	6	6
C35	5	5.719	300	5425	15.68	109.27	79.94	79.94	0.06	1.11	6	6
C35	5	2.344	300	5425	15.30	108.33	79.29	79.29	0.06	1.11	6	6

G25. U22 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U22	1	26.606	300	6600	41.36	124.87	112.87	112.87	0.07	2.34	6	6
U22	1	15.469	300	6600	38.98	119.00	107.94	107.94	0.07	2.40	6	6
U22	2	12.094	300	6600	38.26	114.27	105.14	105.14	0.07	2.48	6	6
U22	2	7.031	300	6600	37.18	111.47	102.25	102.25	0.07	2.51	6	6
U22	1	26.606	300	4200	15.18	43.41	72.80	43.41	0.10	4.69	6	6
U22	1	15.469	300	4200	14.09	39.95	71.55	39.95	0.10	5.09	6	6
U22	2	12.094	300	4200	13.76	39.27	71.15	39.27	0.10	5.69	6	6
U22	2	7.031	300	4200	13.27	37.59	70.60	37.59	0.10	5.89	6	6
U22	1	13.303	300	4200	13.88	39.41	71.30	39.41	0.10	5.33	6	6
U22	1	7.734	300	4200	13.34	37.80	70.64	37.80	0.10	5.64	6	6
U22	2	6.047	300	4200	13.18	37.23	70.51	37.23	0.10	5.93	6	6
U22	2	3.516	300	4200	12.93	36.41	70.13	36.41	0.09	6.01	6	6
U22	1	26.606	300	4200	15.18	78.73	66.44	66.44	0.09	2.17	6	6
U22	1	15.469	300	4200	14.09	75.93	64.39	64.39	0.08	2.26	6	6
U22	2	12.094	300	4200	13.76	72.20	63.09	63.09	0.08	2.34	6	6
U22	2	7.031	300	4200	13.27	70.80	62.01	62.01	0.08	2.40	6	6
U22	1	13.303	300	4200	13.88	75.33	63.96	63.96	0.08	2.29	6	6
U22	1	7.734	300	4200	13.34	73.87	63.03	63.03	0.08	2.34	6	6
U22	2	6.047	300	4200	13.18	70.53	61.73	61.73	0.08	2.41	6	6
U22	2	3.516	300	4200	12.93	69.87	61.22	61.22	0.08	2.43	6	6

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U23	1	41.119	300	7050	46.44	138.80	120.59	120.59	0.08	2.21	6	6
U23	1	23.906	300	7050	42.64	129.87	114.86	114.86	0.07	2.31	6	6
U23	2	26.606	300	7050	43.23	120.27	113.13	113.13	0.07	2.46	6	6
U23	2	15.469	300	7050	40.77	113.87	107.17	107.17	0.07	2.54	6	6
U23	3	12.094	300	7050	40.03	118.00	107.12	107.12	0.07	2.47	6	6
U23	3	7.031	300	7050	38.91	115.13	105.02	105.02	0.07	2.51	6	6
U23	1	41.119	300	4650	17.57	52.12	89.63	52.12	0.10	4.40	6	6
U23	1	23.906	300	4650	15.81	46.41	89.01	46.41	0.09	4.85	6	6
U23	2	26.606	300	4650	16.09	46.17	89.17	46.17	0.09	5.02	6	6
U23	2	15.469	300	4650	14.95	42.39	88.75	42.39	0.09	5.34	6	6
U23	3	12.094	300	4650	14.61	42.55	88.63	42.55	0.09	5.61	6	6
U23	3	7.031	300	4650	14.09	40.90	88.39	40.90	0.09	5.88	6	6
U23	1	20.559	300	4650	15.47	45.30	88.89	45.30	0.09	4.94	6	6
U23	1	11.953	300	4650	14.59	44.64	88.53	44.64	0.09	4.96	6	6
U23	2	13.303	300	4650	14.73	41.86	88.67	41.86	0.09	5.52	6	6
U23	2	7.734	300	4650	14.16	40.14	88.41	40.14	0.09	5.79	6	6
U23	3	6.047	300	4650	13.99	40.59	88.31	40.59	0.09	5.92	6	6
U23	3	3.516	300	4650	13.73	39.71	88.26	39.71	0.09	6.01	6	6
U23	1	41.119	300	4650	17.57	87.93	72.90	72.90	0.09	2.00	6	6
U23	1	23.906	300	4650	1 5.81	83.60	70.11	70.11	0.08	2.13	6	6
U23	2	26.606	300	4650	16.09	72.33	67.81	67.81	0.08	2.30	6	6
U23	2	15.469	300	4650	14.95	69.20	65.40	65.40	0.08	2.41	6	6
U23	3	12.094	300	4650	14.61	74.73	66.44	66.44	0.08	2.34	6	6
U23	3	7.031	300	4650	14.09	73.27	65.37	65.37	0.07	2.40	6	6
U23	1	20.559	300	4650	15.47	82.73	69.52	69.52	0.08	2.16	6	6
U23	1	11.953	300	4650	14.59	80.40	68.03	68.03	0.07	2.24	6	6
U23	2	13.303	300	4650	14.73	68.60	65.05	65.05	0.08	2.43	6	6
U23	2	7.734	300	4650	14.16	66.87	63.69	63.69	0.07	2.51	6	6
U23	3	6.047	300	4650	13.99	73.00	65.21	65.21	0.07	2.41	6	6
U23	3	3.516	300	4650	13.73	72.27	64.82	64.82	0.07	2.43	6	6

G26. U23 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U24	1	55.631	300	7300	51.81	158.27	128.62	128.62	0.08	2.05	6	6
U24	1	32.344	300	7300	46.49	146.40	121.95	121.95	0.07	2.19	6	6
U24	2	41.119	300	7300	48.50	138.07	122.89	122.89	0.08	2.30	6	6
U24	2	23.906	300	7300	44.56	128.53	115.47	115.47	0.07	2.40	6	6
U24	3	26.606	300	7300	45.18	134.87	117.91	117.91	0.07	2.32	6	6
U24	3	15.469	300	7300	42.63	128.53	112.35	112.35	0.07	2.39	6	6
U24	4	12.094	300	7300	41.86	126.67	110.76	110.76	0.07	2.41	6	6
U24	4	7.031	300	7300	40.71	123.53	107.88	107.88	0.07	2.46	6	6
U24	1	55.631	300	4900	20.13	61.71	102.64	61.71	0.10	3.95	6	6
U24	1	32.344	300	4900	17.64	53.55	102.14	53.55	0.09	4.39	6	6
U24	2	41.119	300	4900	18.58	54.96	102.39	54.96	0.09	4.43	6	6
U24	2	23.906	300	4900	16.74	49.03	102.03	49.03	0.09	4.93	6	6
U24	3	26.606	300	4900	17.03	50.87	102.05	50.87	0.09	4.76	6	6
U24	3	15.469	300	4900	15.84	46.95	101.82	46.95	0.09	5.05	6	6
U24	4	12.094	300	4900	15.48	45.80	101.78	45.80	0.09	5.14	6	6
U24	4	7.031	300	4900	14.94	44.09	101.70	44.09	0.08	5.27	6	6
U24	1	27.815	300	4900	17.16	51.96	102.06	51.96	0.09	4.49	6	6
U24	1	16.171	300	4900	15.92	50.90	101.81	50.90	0.09	4.52	6	6
U24	2	20.559	300	4900	16.38	47.83	101.96	47.83	0.09	5.03	6	6
U24	2	11.953	300	4900	15.47	44.88	101.79	44.88	0.09	5.27	6	6
U24	3	13.303	300	4900	15.61	46.22	101.80	46.22	0.09	5.11	6	6
U24	3	7.734	300	4900	15.02	44.28	101.71	44.28	0.08	5.25	6	6
U24	4	6.047	300	4900	14.84	43.91	101.67	43.91	0.08	5.43	6	6
U24	4	3.516	300	4900	14.57	43.15	101.64	43.15	0.08	5.56	6	6
U24	1	55.631	300	4900	20.13	102.73	80.28	80.28	0.09	1.86	6	6
U24	1	32.344	300	4900	17.64	97.67	77.14	77.14	0.08	1.99	6	6
U24	2	41.119	300	4900	18.58	85.33	75.65	75.65	0.09	2.11	6	6
U24	2	23.906	300	4900	16.74	80.47	72.38	72.38	0.08	2.26	6	6
U24	3	26.606	300	4900	17.03	86.53	74.19	74.19	0.08	2.15	6	6
U24	3	15.469	300	4900	15.84	83.33	72.06	72.06	0.07	2.26	6	6
U24	4	12.094	300	4900	15.48	82.33	71.18	71.18	0.07	2.29	6	6
U24	4	7.031	300	4900	14.94	80.87	70.31	70.31	0.07	2.34	6	6
U24	1	27.815	300	4900	17.16	96.47	76.56	76.56	0.08	2.03	6	6
U24	1	16.171	300	4900	15.92	93.40	74.49	74.49	0.07	2.11	6	6
U24	2	20.559	300	4900	16.38	79.53	71.77	71.77	0.08	2.29	6	6
U24	2	11.953	300	4900	15.47	76.93	69.79	69.79	0.07	2.37	6	6
U24	3	13.303	300	4900	15.61	82.73	71.64	71.64	0.07	2.28	6	6
U24	3	7.734	300	4900	15.02	81.07	70.42	70.42	0.07	2.33	6	6
U24	4	6.047	300	4900	14.84	80.60	69.91	69.91	0.07	2.35	6	6
U24	4	3.516	300	4900	14.57	79.87	69.49	69.49	0.07	2.37	6	6

G27. U24 校舍 RC 牆分析結果

Model	floor	axial	Hn (cm)	Ag	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (ff)	deltay	deltau (cm)	deltas	deltaa
U25	1	70.143	300	7825	57.50	186.93	138.49	138.49	0.08	1.85	(cm) 6	(cm) 6
U25	1	40.782	300	7825	50.55	173.93	130.76	130.76	0.07	1.96	6	6
U25	2	55.631	300	7825	54.07	167.80	133.61	133.61	0.08	2.01	6	6
U25	2	32.344	300	7825	48.56	156.07	125.72	125.72	0.07	2.13	6	6
U25	3	41.119	300	7825	50.63	163.73	129.59	129.59	0.07	2.06	6	6
U25	3	23.906	300	7825	46.56	154.93	123.14	123.14	0.07	2.13	6	6
U25	4	26.606	300	7825	47.20	144.27	122.18	122.18	0.07	2.25	6	6
U25	4	15.469	300	7825	44.57	138.07	116.00	116.00	0.07	2.31	6	6
U25	5	12.094	300	7825	43.77	129.60	112.73	112.73	0.07	2.42	6	6
U25	5	7.031	300	7825	42.57	126.47	110.24	110.24	0.07	2.46	6	6
U25	1	70.143	300	5425	22.86	76.20	124.30	76.20	0.10	3.85	6	6
U25	1	40.782	300	5425	19.59	65.37	124.40	65.37	0.09	4.27	6	6
U25	2	55.631	300	5425	21.24	68.40	124.32	68.40	0.09	4.22	6	6
U25	2	32.344	300	5425	18.65	60.02	124.43	60.02	0.08	4.71	6	6
U25	3	41.119	300	5425	19.62	64.07	124.39	64.07	0.09	4.46	6	6
U25	3	23.906	300	5425	17.71	57.96	124.50	57.96	0.08	4.81	6	6
U25	4	26.606	300	5425	18.01	57.11	124.47	57.11	0.08	5.07	6	6
U25	4	15.469	300	5425	16.77	53.21	124.58	53.21	0.08	5.48	6	6
U25	5	12.094	300	5425	16.39	50.52	124.62	50.52	0.08	5.53	6	6
U25	5	7.031	300	5425	15.82	49.01	124.61	49.01	0.08	5.91	6	6
U25	1	35.071	300	5425	18.95	63.28	124.43	63.28	0.08	4.36	6	6
U25	1	20.389	300	5425	17.31	57.65	124.55	57.65	0.08	4.69	6	6
U25	2	27.815	300	5425	18.14	58.31	124.47	58.31	0.08	4.80	6	6
U25	2	16.171	300	5425	16.84	54.09	124.58	54.09	0.08	5.13	6	6
U25	3	20.559	300	5425	17.33	56.67	124.55	56.67	0.08	4.87	6	6
U25	3	11.953	300	5425	16.37	53.75	124.62	53.75	0.08	5.17	6	6
U25	4	13.303	300	5425	16.52	52.45	124.62	52.45	0.08	5.55	6	6
U25	4	7.734	300	5425	15.90	50.74	124.61	50.74	0.08	5.94	6	6
U25	5	6.047	300	5425	15.72	48.65	124.61	48.65	0.08	5.96	6	6
U25	5	3.516	300	5425	15.43	47.77	124.60	47.77	0.08	6.09	6	6
U25	1	70.143	300	5425	22.86	128.53	85.85	85.85	0.09	1.11	6	6
U25	1	40.782	300	5425	19.59	123.73	83.89	83.89	0.08	1.11	6	6
U25	2	55.631	300	5425	21.24	111.67	83.43	83.43	0.08	1.11	6	6
U25	2	32.344	300	5425	18.65	106.47	81.38	81.38	0.07	1.93	6	6
U25	3	41.119	300	5425	19.62	112.07	82.60	82.60	0.08	1.11	6	6
U25	3	23.906	300	5425	17.71	108.20	80.98	80.98	0.07	1.11	6	6
U25	4	26.606	300	5425	18.01	95.53	79.31	79.31	0.07	2.09	6	6
U25	4	15.469	300	5425	16.77	92.33	77.43	77.43	0.07	2.18	6	6
U25	5	12.094	300	5425	16.39	84.20	74.74	74.74	0.07	2.30	6	6
U25	5	7.031	300	5425	15.82	82.53	73.66	73.66	0.07	2.36	6	6

G28. U25 校舍 RC 牆分析結果

U25	1	35.071	300	5425	18.95	122.60	83.42	83.42	0.07	1.11	6	6
U25	1	20.389	300	5425	17.31	119.53	82.22	82.22	0.07	1.11	6	6
U25	2	27.815	300	5425	18.14	105.47	80.92	80.92	0.07	1.96	6	6
U25	2	16.171	300	5425	16.84	102.47	79.70	79.70	0.07	2.05	6	6
U25	3	20.559	300	5425	17.33	107.40	80.73	80.73	0.07	1.96	6	6
U25	3	11.953	300	5425	16.37	105.20	79.83	79.83	0.07	2.03	6	6
U25	4	13.303	300	5425	16.52	91.73	76.84	76.84	0.07	2.19	6	6
U25	4	7.734	300	5425	15.90	90.07	75.51	75.51	0.06	2.24	6	6
U25	5	6.047	300	5425	15.72	82.27	73.49	73.49	0.06	2.37	6	6
U25	5	3.516	300	5425	15.43	81.47	72.67	72.67	0.06	2.39	6	6

G29. U32 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U32	1	17.738	300	6375	37.72	120.87	107.82	107.82	0.07	2.34	6	6
U32	1	10.313	300	6375	36.19	117.00	104.18	104.18	0.07	2.37	6	6
U32	2	8.063	300	6375	35.73	103.87	99.84	99.84	0.07	2.61	6	6
U32	2	4.688	300	6375	35.03	101.93	97.53	97.53	0.07	2.63	6	6
U32	1	17.738	300	3975	13.48	37.35	58.10	37.35	0.10	4.83	6	6
U32	1	10.313	300	3975	12.79	35.02	56.95	35.02	0.10	5.00	6	6
U32	2	8.063	300	3975	12.58	33.42	56.86	33.42	0.10	5.54	6	6
U32	2	4.688	300	3975	12.27	32.29	56.34	32.29	0.10	5.67	6	6
U32	1	8.869	300	3975	12.65	34.53	56.76	34.53	0.10	5.03	6	6
U32	1	5.156	300	3975	12.31	33.59	56.26	33.59	0.10	5.28	6	6
U32	2	4.031	300	3975	12.20	32.09	56.27	32.09	0.10	5.70	6	6
U32	2	2.344	300	3975	12.05	31.58	55.97	31.58	0.10	5.76	6	6
U32	1	17.738	300	3975	13.48	78.67	62.37	62.37	0.09	2.14	6	6
U32	1	10.313	300	3975	12.79	76.93	61.17	61.17	0.08	2.20	6	6
U32	2	8.063	300	3975	12.58	63.57	57.37	57.37	0.08	2.48	6	6
U32	2	4.688	300	3975	12.27	62.59	56.84	56.84	0.08	2.54	6	6
U32	1	8.869	300	3975	12.65	76.60	60.95	60.95	0.08	2.21	6	6
U32	1	5.156	300	3975	12.31	75.67	60.31	60.31	0.08	2.26	6	6
U32	2	4.031	300	3975	12.20	62.40	56.74	56.74	0.08	2.55	6	6
U32	2	2.344	300	3975	12.05	61.91	56.31	56.31	0.08	2.57	6	6

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U33	1	27.413	300	6600	41.53	129.07	114.51	114.51	0.07	2.28	6	6
U33	1	15.938	300	6600	39.08	123.20	108.92	108.92	0.07	2.35	6	6
U33	2	17.738	300	6600	39.47	120.87	108.92	108.92	0.07	2.38	6	6
U33	2	10.313	300	6600	37.88	116.73	105.20	105.20	0.07	2.44	6	6
U33	3	8.063	300	6600	37.40	118.73	104.99	104.99	0.07	2.39	6	6
U33	3	4.688	300	6600	36.68	116.73	102.89	102.89	0.06	2.43	6	6
U33	1	27.413	300	4200	15.26	43.06	72.81	43.06	0.10	4.47	6	6
U33	1	15.938	300	4200	14.14	39.48	71.55	39.48	0.10	4.86	6	6
U33	2	17.738	300	4200	14.31	40.76	71.80	40.76	0.10	5.00	6	6
U33	2	10.313	300	4200	13.59	38.63	70.96	38.63	0.10	5.50	6	6
U33	3	8.063	300	4200	13.37	37.83	70.64	37.83	0.10	5.22	6	6
U33	3	4.688	300	4200	13.04	36.85	70.19	36.85	0.09	5.41	6	6
U33	1	13.706	300	4200	13.92	38.80	71.29	38.80	0.10	4.92	6	6
U33	1	7.969	300	4200	13.36	36.89	70.63	36.89	0.10	5.08	6	6
U33	2	8.869	300	4200	13.45	38.21	70.80	38.21	0.10	5.58	6	6
U33	2	5.156	300	4200	13.09	37.10	70.42	37.10	0.09	5.75	6	6
U33	3	4.031	300	4200	12.98	36.63	70.13	36.63	0.09	5.45	6	6
U33	3	2.344	300	4200	12.82	36.15	70.01	36.15	0.09	5.54	6	6
U33	1	27.413	300	4200	15.26	83.20	67.30	67.30	0.09	2.10	6	6
U33	1	15.938	300	4200	14.14	80.40	65.56	65.56	0.08	2.19	6	6
U33	2	17.738	300	4200	14.31	77.27	64.87	64.87	0.08	2.23	6	6
U33	2	10.313	300	4200	13.59	75.33	63.71	63.71	0.08	2.30	6	6
U33	3	8.063	300	4200	13.37	78.13	64.15	64.15	0.08	2.25	6	6
U33	3	4.688	300	4200	13.04	77.20	63.58	63.58	0.08	2.29	6	6
U33	1	13.706	300	4200	13.92	79.80	65.15	65.15	0.08	2.22	6	6
U33	1	7.969	300	4200	13.36	78.40	64.23	64.23	0.08	2.26	6	6
U33	2	8.869	300	4200	13.45	74.93	63.48	63.48	0.08	2.32	6	6
U33	2	5.156	300	4200	13.09	74.00	62.54	62.54	0.08	2.35	6	6
U33	3	4.031	300	4200	12.98	77.07	63.43	63.43	0.08	2.30	6	6
U33	3	2.344	300	4200	12.82	76.60	63.09	63.09	0.07	2.31	6	6

G30. U33 校舍 RC 牆分析結果

Model	floor	axial	Hn (cm)	Ag	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay	deltau (cm)	deltas	deltaa
U34	1	37.088	300	7300	47.58	163.40	125.94	125.94	0.07	2.01	(c m)	(cm)
U34	1	21.563	300	7300	44.03	156.13	121.30	121.30	0.07	2.07	6	6
U34	2	27.413	300	7300	45.36	158.80	123.22	123.22	0.07	2.05	6	6
U34	2	15.938	300	7300	42.74	153.20	119.18	119.18	0.07	2.10	6	6
U34	3	17.738	300	7300	43.15	146.80	117.96	117.96	0.07	2.17	6	6
U34	3	10.313	300	7300	41.46	143.00	114.49	114.49	0.07	2.20	6	6
U34	4	8.063	300	7300	40.94	130.27	110.37	110.37	0.07	2.36	6	6
U34	4	4.688	300	7300	40.17	128.40	108.29	108.29	0.06	2.37	6	6
U34	1	37.088	300	4900	18.15	58.60	102.17	58.60	0.09	4.34	6	6
U34	1	21.563	300	4900	16.49	53.29	101.94	53.29	0.09	4.69	6	6
U34	2	27.413	300	4900	17.12	55.35	102.09	55.35	0.09	4.58	6	6
U34	2	15.938	300	4900	15.89	51.27	101.81	51.27	0.09	4.79	6	6
U34	3	17.738	300	4900	16.08	50.40	101.87	50.40	0.09	4.72	6	6
U34	3	10.313	300	4900	15.29	47.91	101.73	47.91	0.08	4.96	6	6
U34	4	8.063	300	4900	15.05	45.66	101.71	45.66	0.08	5.29	6	6
U34	4	4.688	300	4900	14.69	44.71	101.65	44.71	0.08	5.55	6	6
U34	1	18.544	300	4900	16.17	52.19	101.87	52.19	0.09	4.74	6	6
U34	1	10.781	300	4900	15.34	49.59	101.73	49.59	0.08	4.98	6	6
U34	2	13.706	300	4900	15.65	50.61	101.79	50.61	0.08	4.90	6	6
U34	2	7.969	300	4900	15.04	48.60	101.70	48.60	0.08	5.04	6	6
U34	3	8.869	300	4900	15.14	47.35	101.71	47.35	0.08	5.00	6	6
U34	3	5.156	300	4900	14.74	46.08	101.65	46.08	0.08	5.08	6	6
U34	4	4.031	300	4900	14.62	44.54	101.65	44.54	0.08	5.58	6	6
U34	4	2.344	300	4900	14.44	44.01	101.61	44.01	0.08	5.67	6	6
U34	1	37.088	300	4900	18.15	114.67	80.53	80.53	0.08	1.16	6	6
U34	1	21.563	300	4900	16.49	111.53	78.92	78.92	0.07	1.16	6	6
U34	2	27.413	300	4900	17.12	112.73	79.64	79.64	0.08	1.16	6	6
U34	2	15.938	300	4900	15.89	110.33	78.11	78.11	0.07	1.15	6	6
U34	3	17.738	300	4900	16.08	103.00	76.73	76.73	0.07	1.14	6	6
U34	3	10.313	300	4900	15.29	101.07	75.67	75.67	0.07	1.13	6	6
U34	4	8.063	300	4900	15.05	87.73	72.19	72.19	0.07	2.23	6	6
U34	4	4.688	300	4900	14.69	86.73	71.49	71.49	0.07	2.27	6	6
U34	1	18.544	300	4900	16.17	110.93	78.61	78.61	0.07	1.15	6	6
U34	1	10.781	300	4900	15.34	109.27	77.33	77.33	0.07	1.15	6	6
U34	2	13.706	300	4900	15.65	109.87	77.76	77.76	0.07	1.15	6	6
U34	2	7.969	300	4900	15.04	108.60	76.85	76.85	0.07	1.14	6	6
U34	3	8.869	300	4900	15.14	100.73	75.39	75.39	0.07	1.13	6	6
U34	3	5.156	300	4900	14.74	99.67	74.61	74.61	0.07	2.08	6	6
U34	4	4.031	300	4900	14.62	86.53	71.20	71.20	0.07	2.27	6	6
U34	4	2.344	300	4900	14.44	86.07	70.88	70.88	0.07	2.29	6	6

G31. U34 校舍 RC 牆分析結果

Model building	floor	axial load(tf)	Hn (cm)	Ag (cm ²)	Vy (tf)	Vmn (tf)	Vs (tf)	Vu (tf)	deltay (cm)	deltau (cm)	deltas (cm)	deltaa (cm)
U35	1	46.763	300	7825	51.97	190.07	134.48	134.48	0.08	1.83	6	6
U35	1	27.188	300	7825	47.34	183.20	129.57	129.57	0.07	1.88	6	6
U35	2	37.088	300	7825	49.68	181.73	130.93	130.93	0.07	1.89	6	6
U35	2	21.563	300	7825	46.01	174.60	126.27	126.27	0.07	1.95	6	6
U35	3	27.413	300	7825	47.39	152.20	123.51	123.51	0.07	2.18	6	6
U35	3	15.938	300	7825	44.68	145.93	118.71	118.71	0.07	2.23	6	6
U35	4	17.738	300	7825	45.10	134.73	116.01	116.01	0.07	2.36	6	6
U35	4	10.313	300	7825	43.35	130.40	112.36	112.36	0.07	2.40	6	6
U35	5	8.063	300	7825	42.82	142.33	115.01	115.01	0.07	2.25	6	6
U35	5	4.688	300	7825	42.02	140.47	113.02	113.02	0.06	2.26	6	6
U35	1	46.763	300	5425	20.25	72.07	124.37	72.07	0.09	4.22	6	6
U35	1	27.188	300	5425	18.07	64.90	124.49	64.90	0.08	4.58	6	6
U35	2	37.088	300	5425	19.17	67.07	124.43	67.07	0.08	4.61	6	6
U35	2	21.563	300	5425	17.44	61.33	124.55	61.33	0.08	4.91	6	6
U35	3	27.413	300	5425	18.10	58.95	124.45	58.95	0.08	4.81	6	6
U35	3	15.938	300	5425	16.82	54.88	124.57	54.88	0.08	5.18	6	6
U35	4	17.738	300	5425	17.02	54.25	124.57	54.25	0.08	6.02	6	6
U35	4	10.313	300	5425	16.19	51.47	124.62	51.47	0.08	6.31	6	6
U35	5	8.063	300	5425	15.94	51.14	124.61	51.14	0.08	5.35	6	6
U35	5	4.688	300	5425	15.56	49.89	124.60	49.89	0.08	5.43	6	6
U35	1	23.382	300	5425	17.65	63.51	124.53	63.51	0.08	4.66	6	6
U35	1	13.593	300	5425	16.56	59.91	124.62	59 .91	0.08	4.85	6	6
U35	2	18.544	300	5425	17.11	60.22	124.58	60.22	0.08	4.97	6	6
U35	2	10.781	300	5425	16.24	57.45	124.61	57.45	0.08	5.22	6	6
U35	3	13.706	300	5425	16.57	54.07	124.60	54.07	0.08	5.25	6	6
U35	3	7.969	300	5425	15.93	52.08	124.61	52.08	0.08	5.41	6	6
U35	4	8.869	300	5425	16.03	50.94	124.61	50.94	0.08	6.36	6	6
U35	4	5.156	300	5425	15.62	49.49	124.61	49.49	0.08	6.49	6	6
U35	5	4.031	300	5425	15.49	49.65	124.60	49.65	0.08	5.45	6	6
U35	5	2.344	300	5425	15.30	49.04	124.61	49.04	0.08	5.49	6	6
U35	1	46.763	300	5425	20.25	141.00	85.86	85.86	0.08	1.12	6	6
U35	1	27.188	300	5425	18.07	138.20	84.60	84.60	0.07	1.12	6	6
U35	2	37.088	300	5425	19.17	133.47	84.60	84.60	0.08	1.12	6	6
U35	2	21.563	300	5425	17.44	130.93	83.52	83.52	0.07	1.12	6	6
U35	3	27.413	300	5425	18.10	103.87	80.77	80.77	0.07	2.00	6	6
U35	3	15.938	300	5425	16.82	100.67	79.30	79.30	0.07	2.10	6	6
U35	4	17.738	300	5425	17.02	87.87	76.48	76.48	0.07	2.24	6	6
U35	4	10.313	300	5425	16.19	85.67	74.83	74.83	0.07	2.31	6	6
U35	5	8.063	300	5425	15.94	99.67	78.04	78.04	0.06	2.11	6	6

G32. U35 校舍 RC 牆分析結果

U35	5	4.688	300	5425	15.56	98.73	77.56	77.56	0.06	2.14	6	6
U35	1	23.382	300	5425	17.65	137.60	84.32	84.32	0.07	1.12	6	6
U35	1	13.593	300	5425	16.56	136.00	83.64	83.64	0.06	1.12	6	6
U35	2	18.544	300	5425	17.11	130.33	83.27	83.27	0.07	1.12	6	6
U35	2	10.781	300	5425	16.24	128.80	82.57	82.57	0.06	1.12	6	6
U35	3	13.706	300	5425	16.57	100.07	78.95	78.95	0.07	2.11	6	6
U35	3	7.969	300	5425	15.93	98.47	77.89	77.89	0.06	2.16	6	6
U35	4	8.869	300	5425	16.03	85.27	74.51	74.51	0.07	2.32	6	6
U35	4	5.156	300	5425	15.62	84.00	73.72	73.72	0.06	2.37	6	6
U35	5	4.031	300	5425	15.49	98.53	77.48	77.48	0.06	2.15	6	6
U35	5	2.344	300	5425	15.30	98.00	76.99	76.99	0.06	2.16	6	6

簡歷

姓名: 蘇耕立 (Su, Keng-Li)

性别:男

生日: 1984.9.16

出生地: 台灣 台中市

學歷

		· · · · · · · · · · · · · · · · · · ·
1999-2002	高中	國立台中第二高級中學
2002-2006	學士	中原大學土木工程系
2006-2008	碩士	國立台灣大學土木工程研究所結構組