R4 %<5 ?ﬁ.?f’%?‘;‘%gﬁllﬂ’{ gh
L
Department of Information Management
College of Management
National Taiwan University

Master Thesis

MOSP £ Web Service & 7 if |47 iF :
MOSP # Web Service
Interoperation BetweensMOSP.and Web Service:

MOSP Calling Web Service

L
Chia-Chen, Kuo

o R WL
Advisor: Yuh-Jzer, Joung, Ph.D.

PERAR 97T & T

July, 2008

THESIS ABSTRACT

GRADUATE INSTITUE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Chia-Chen, Kuo Month/Year: July, 2008
Advisor: Yuh-Jzer, Joung

Interoperation between MOSP and Web Service:
MOSP Calling Web Service

Nowadays, companies are moving their main operations to web for better
automation, efficient business processes and global visibility. We need an integrated,
robust solution for leveraging the existing applications, rapidly adapt to the unique
needs and continually evolve as reguirementSiehange over time. Web Service, with
loosely coupled and dynamically bound, components, is the present evolution of this
new category of services. [=

Although Web Service is'very popufér and in general use, which solves many
problems, there are still some insufficiency. For example, it is a stateless service
system, which does not record the state'of each client using it and can only provide
services with simpler interaction.

A brand-new solution, MeshObject Service Protocol (MOSP) provides another
choice now. MOSP uses the concept of object-oriented, which enables users to obtain
an object instance of the service provided by a peer by binding to its MOSP URL.
MOSP can provide stateful services with such way. Besides, MOSP contains the
concept of inheritance as well, which enables MOSP services to be reused more freely
and easily, and therefore reduces the cost and time to develop applications.

In thisthesis, we proposed a gateway system which enables MOSP clients to call
Web Service in order to promote MOSP and to make Web Service still available in
MOSP environment.

Keywords: Web Service, MOSP, MeshObject Service Protocol, Gateway, WSDL,
SOAP.

Contents

Chapter 1 INtrOUCLION c...ccovieiiiieiiee et ee bbb e e e e s eesarbaeeeeeeeeseans 1
1.1 BACKEIOUND ..ottt e e e e e e e e e e e aanes 1

1.2 MOTIVALION .cceeieeeeeee e e e e e e 10
1.2.1 CAllENEES cevvveeeeeiee et e e e e e eanes 11

1.3 RESEAICh GO@l....ueiiiiiiiiiie e 14
Chapter 2 Related WOrKK........oooiiiiieiec ettt r e e 15
2.1 WED SEIVICE ittt e s s s 15
2.1.1 Extensible Markup Language (XML)cccoovvveeereeiiiiciinreeeeeceeiennnns 16

2.1.2 Simple Object Access Protocol (SOAP)......ccccvveeeeeeeeieiiiireeeeeeeeennn 17

2.1.3 Web Services Description Language (WSDL)coovevvvrvveenreeenn. 19

2.1.4 UDDI (Universal Description, Discovery and Integration)............ 20

2.2 Mesh Object Service Protocol (MOSP)........eevvieviiiiiiieeeeeeeeeeicireeeeeeeeeeans 21
2.2.1 MOSP Service ArchiteCtUreccuvevvveeriieiieeiee e 21

2.2.2 MOSP Object Model......... o i 22

2.2.3 MOSP Interface Definitioh'Language (MIDL) wevveeeeeieiinreeeeeeeeeene 23

2.2.4 IMOSP IMIBSSAEES o ieeatba e e eatriaaseeeeeeanneeeeeeeeeeeesssnnneeaeaesnenns 24

2.3 Interoperation between CORQA_én.d WEb SEIVICe .ooonvvereereererreeeeereeann. 27
2.3.1 Common Object Requ“:a’s‘t"Broker Architecture (CORBA).............. 27

2.3.2 Gateway Systems.betv;/‘?een Web Service and CORBA.................. 30

2.4 Brief Summary ..ol kb, A 36
Chapter 3 System Design ... 38
3.1 SYSTEM OVEIVIEW ... e et e e e e eeeaaaaas 38
3.1.1 Concept Of MOSP SEIVICEccoovivviieeeiee e 38

3.1.2 Design of Generic Gateway Service SystemM........cceevvvvvereeeennennns 39

3.1.3 Design Of GAateWay SEIVICEuuvveiieiiiiieiirereee e eectrreee e e eeeeaanns 41

Chapter 4 System Implementationcccceevvvieieeeee e 44
4.1 MOSP Server, Service and CHENT..........uuveeeeeeieiieiiiieeeeeeeeeeeee e 44

4.2 Gateway FaCtory SEIVICE .uuuii it e e 46

4.3 Gateway Service: ONDESC()..uueuiiiiiiiirieeieee et e e earaeeees 48

4.4 Gateway Service: ONCall() cvveeeeeeiieiiiieeeee e 57

4.5 Performance TESTuiiiiiiirie e s 60
Chapter 5 CONCIUSION ...ciiiiiiiiitireeec ettt et e e e e s bbb eeeeeeeesesanbreseeeeessenanes 63
5.1 (6eT a1 i g1 < 1V} [o P TP P PP 63

5.2 FUBUIE WOTK .ottt 65
5.2.1 IMProve liMitationSccoiiciiiieeeeeee e e 65

5.2.2 Interoperability between MOSP and Web Servicecccouuee. 65

Bibliography

List Of Figures

Figure 1-1: A Sample of MOSP ENVIronMeNnt..........cccceevveiereeieneeieseeseeeeseeee e 4
Figure 1-2: MOSP Shopping Cart Service - Object Instance Creation..................... 4
Figure 1-3: Web Service Shopping Cart SENVICE........ccccveeeveeciereeeeese e 5
Figure 1-4: Web Service Shopping Cart Service - Instance Creation and Deletion..5
Figure 1-5: MOSP Shopping Cart Service - Inheritance........cccovevevveieneecieeceeneene, 6
Figure 1-6: Web Service Shopping Cart Service - Inheritance does not work here..6
Figure 1-7: MOSP Shopping Cart Service - Polymorphism..........ccccceevvveverieecieneenne 7
Figure 1-8: Web Service Shopping Cart Service - Polymorphism does not work

BT ..ttt bbb eas 7
Figure 1-9: Web Service Shopping Cart Service —try another way to Override.......... 8
Figure 1-10: MOSP Shopping Cart Service — Dynamic Binding..........cccccccevvevennenne. 8
Figure 1-11: Web Service Shopping Cart Service — Dynamic Bindingc......... 9
Figure 1-12: XML SchemaData TYPeS [30]ccovevereerieeiereeieseesieeieseesaeeeesseennens 11
Figure 2-1: Web Service Frameworki[30] ..ot cvoviiieiccceccece 15
Figure 2-2: Web Service Processing MOdel...........ocoiiieeieenecesece e 16
Figure 2-3: A sample of an XML dOCUMENt.....coihi. oociiieneereeieeeeseee e 16
Figure 2-4: SOAPArchitecture1.. .. 18
Figure 2-5: The sender transfers SOAP n?:e'&age ... 18
Figure 2-6: The SOAP Message Which CHENt $endS i ovvvvvveeeeeeeeeeeeeeeeeeeeesses 19
Figure 2-7: The SOAP Message Which Server FespONSES............cevueviniiniiciiniinenne. 19
Figure 2-8: WSDL document ATCHhITECIUINE.... Hiv v vt eee et 20
Figure 2-9: MOSP Service ArChiteCtUre. . e 21
Figure 2-10: The exchange of MOSP request/response messages of service

descriptions or service cals between MOSP client and MOSP service............. 22
Figure 2-11: A SAMPIE MIDL ..c..ooiieiecieeceeeee ettt 23
Figure 2-12: MOSP mMessage frameworKccceceveereeieneeeceese e 24
Figure 2-13: MOSP client request fOr MIDLcccoovevieiereeeceee e 25
Figure 2-14: MOSP service response of the MIDL requestcccoceeveeiereeieseennene 25
Figure 2-15: MOSP client request message for an operation callc.cccecvveueeee. 26
Figure 2-16: MOSP service response message of the operation callc.c......... 26
Figure 2-17: Components in the CORBA 2.x Reference Moddl [2]cccevcvevuenene 28
Figure 2-18: Generic SOAP/HTTPto [IOP Bridge Diagram [20]c.ccccevevveviennnne 30
Figure 2-19: Static Dedicated SOAP/HTTPto SCOAP/ORB Bridge Diagram [20].31
Figure 2-20: SOAP-CORBA Interoperability Interaction Model [20].........ccevuenee. 31
Figure 2-21: XORBA ArchiteCture [23]c.cccveieeierierieeeeseeie st 33
Figure 2-22: IDL Fragment of a XORBA Message Example[13]ccccocvevverieennne 33

Figure 2-23: A Sample SOAP REQUESE [13]vvevvieierieieeeecteeieeeesie et see e 34

Figure 2-24: CORBA/SOAP Integration Model [7]ccceevveeeereeiesieeeieseee e 35
Figure 3-1: HOW a MOSP SErViCE WOIKS.......cccoiievieviesieeieceee e 38
Figure 3-2: Generic Gateway ServiCe SYStEIMcccccveveeiereeseeeeseeie e sre e e 39
Figure 3-3: Generic Gateway Service System (when createGateway () iscalled)..39
Figure 3-4: Gateway Service Work MOodelcooevvevieierieeceesece e 41
FIQUrE 4-1: MOSP SEIVENc.eiceieieeeeceeteeteste et te et te e ae e e s teesaesaaeaesneens 44
FIQUrE 4-2: MOSP SEIVICEecueeiieeectieie et ete s ee e ee e te et e e te e sseesenneens 45
FIgUre 4-3: MOSP CHENL......c.oocieiieeseeeetee ettt aesneens 45
Figure 4-4: MIDL document of Gateway FaCtory ServiCe..........ccvvvevvereeciesvesennenens 46
Figure 4-5: A sample of WSDL dOCUMENTccccerieiieiereeieeeeie e 53
Figure 4-6: The description part of aWSDL document...........c.cccvevveeeeveecieneesienenns 54
Figure 4-7: An MIDL document transformed from WSDL document....................... 55
Figure 4-8: A sample SOAP reqUESt MESSAGEccerverreeriereerieeeeseeeeseesaeeeesseesens 57
Figure 4-9: A sample SOAP reSpONSE MESSA0E........ecverveevereerieeeesieesseseesseessesseessens 58
Figure 4-10: The sample Time Period of Generic Gateway Service System............. 60

Figure 4-11: The Relationship between WSDL Size and Time Spent in Each Step ..61
Figure 4-12: The Time spent when'MOSP cI ient ealls Web Service operation (Step 3)

... 61
Figure 4-13: Time spent of different Web Serw ce operatl (o] g o= | IS 63
Figure 5-1: Inheritance to No- 0 =010 470 R e SO 66

List Of Tables

Table 1-1: Comparison between Web Service, JAVA and MOSPccccceevvvevieennnne 10
Table 1-2: Java Types marshal to MOSP Data Types and unmarshal to Java Types....12
Table 2-1: Comparison between Web Service and CORBA [10]cccoecvevvevierveniennnnns 29
Table 2-2: Comparison between WSDL and IDL [13] ...cccecveeevieeieriereeieseeie e 29
Table 2-3: Comparison between XML Schema and CORBA Object Model [13]........ 29
Table 4-1: The algorithm of createGateway ()ccccvverieriereerieeiereesiesee e eee e 47
Table 4-2: The WSDL input/output message type to MOSPtype.........cccocvevevveriennnnne 50
Table 4-3: The type transformation algorithm............cceoveeiieiecceeceee e, 51
Table 4-4: Mappings between XML and MOSP datatypes—1cccevveveerverieeeennens 55
Table 4-5: Mappings between XML and MOSP datatypes— 2cceceveeveevveniennnns 56
Table 4-6: Mappings between XML and Javadatatype — L.......ccccceveecveneecieneesiennnns 58
Table 4-7: Mappings between XML and Javadatatype — 2.........cccevveeeveeceeseesiennnens 59

“ AT

vi

Chapter 1 Introduction

1.1 Background

With the intensively progressing of technology, Internet has helped forward the
development of al kinds of services. However, the traditional independent single
service can no longer fulfill the increasing growth of user needs. Imagine that we have
got a long vacation and plan to go traveling abroad. Before departing, we may need
some services like traveling information query, flight tickets and hotel room booking,
and weather forecast, etc. To get these services, we will usually surf on the websites
of the airline companies and hotels. Thus we may need an integrated digital assistant
to help us arrange the schedule, and all we have to do isjust confirm and pay the bill.
So, how does information technol ogy:solve thiskind of problem?

At the time when networks are more and'more universal, the above demands will
obviously increase. However;: the data are dispersed in different websites at
everywhere in the world. To accommod:_a'_j;e this tendency and to solve this kind of
problems, Web Service [29] hasrbeen '-bdrn atvthis_era when Internet rose and
developed and when XML [26] was mature.

Web Service is a software system, which pfovi des a systemized and extensible
framework with network communication protocol and an open standard of data
format. As the component providing services, Web Service can be used to build
distributed systems. Moreover, open standards make Web Service more interoperable,
which also gives the systems, which are on different platforms and developed with
different language, the ability to integrate and thus solves the problems distributed
systems may face when integrating.

Furthermore, in many circumstances, we can easily observe the benefits Web
Service brings. First of al, Web Service can communicate across the firewall. Now
suppose that we need to provide an application service, whereas there are thousands
of uses spread around the world. There are usually firewalls and proxy servers
between clients and servers. Besides, application service providers generally are not
willing to release the programs to each one of the great amount of users. Eventually,
we can only choose to use browser and ASP to reveal the programs to client, which
only result in arise in difficulty of system development and maintenance. Under such
condition, we can use Web Service to easily simplify this problem. We can build a

1

SOAP [27] client with Microsoft SOAP Toolkit [15] or .NET [14] and connect it with
the application. In this way, we can not only shorten the development terms and
reduce the complexity of codes but also increase the maintainability of the
application.

Secondly, Web Service can be used to integrate different applications. One of the
challenges which application developers often face is that they usually need to
integrate all kinds of applications developed with different languages and
implemented on different platforms, which generally takes a large amount of cost.
With Web Service, we can use a standardized method to reveal the operations and data
of applications for other application to use. Assume that there is an order program
responsible for the registration of new orders from clients and another program used
to manage the shipping of merchandise. Whenever a new order comes out, the
order-registration program has to notify the order-administration program to deliver
the cargoes. If these two programs come from different software manufacturers,
traditional application mergence way must take lots of cost. But now with Web
Service, we can ssimply reveal some operations of erder-administration program like
“addorder ()" for order-registration program to.deliver cargoes.

In addition, Web Service al'so improves the reuse of software. In the past, the
reuse of software was limitedto programfféodes but/not the data. It's because that we
can readily publish the source code but hard to do the'same thi ng on data, unless they
are static and rarely change. In-contrast, Web Service alows the reuse of codes and
the data behind them. With Web Service, weno longer need to purchase, install and
make use of software components in applications. All we have to do is merely invoke
the remote Web Service.

For instance, if we want to confirm the address that user inputs in our own
applications, we can directly pass this address to relative Web Service to confirm it by
looking up the street, city, country and zip code, etc. Web Service provider can charge
for this service according to the using time and frequency. It is not practical to achieve
this with traditional way, since users consequently have to download and install the
database, which do not provide real-time data, containing all of the above address
information.

Another case of software reuse is just like the example we give at the beginning
of this chapter. Nowadays, there are many application suppliers who provide services
such as traveling information query and ticket reservation. Once they expose those
functions through Web Service, programmers can easily integrate all of which in a
traveling website to provide a united and friendly interface to customers.

Hence, by integrating each kind of Web Service that we need, we can quickly
solve problems which originally seem to be difficult to handle. Moreover, Web
Service has depicted a new blueprint to the future of the software world, which
enables the application to share its API to other applications through the window of
Internet.

Nevertheless, even if Web Service is so convenient, it still has some bottlenecks.
First of all, Web Service is a “static’ and “stateless’ service. It means that Web
Service is more likely to provide static service, such as the search service Amazon
Web Service [1] provides, the key-word-search service Google provides, or the
stock-price-enquiry service E* TRADE provides, which only enable users to extract
the information but not to use dynamical service, such as editing or saving files,
which interacts with users. This is because that Web Service does not have the
concept of object instance. It is just like a Java class with many static methods. To
provide dynamical service, Web Service has to record the state of each user, which
can be achieved by adding a unique user.id parameter on all methods. However, it
requires the administration of user id:controlled by users themselves, which is not
suitable for public service. Thereforeyit we want:to provide a stateful service, Web
Service is no longer capable:We need, a new proetocol to record user states more
conveniently and to support dynamiCal}g_eryice, which is so-caled MOSP (Mesh
Object Service Protocol.) r' Y

MOSP is a new networkiservice protocol for distributed services. Its main
character is that it is developed.in object-eriented way with Java [25] language.
Similar to Web Service, it alows different services to exchange messages through
XML -based document in distributed environment and simple services to integrate into
a complex value-added service. The difference between them is that MOSP has the
object-oriented concept, and each object instance represents an encapsulation of a
state, the object instance each user holds will directly record the user state. The
garbage collection of Java will delete the object instance no longer referenced, so we
do not have to administer objects. Moreover, MOSP also uses the concept of
inheritance, which together with object-oriented increase the convenience of
devel opment.

While using a MOSP service, the MOSP user will login from an integrated port
user interface. Because of the transparency MOSP Service provides, the user will not
notice the differences between the local and the remote side. One single service that a
user uses might be integrated from a variety of remote services. Figure 1-1 is an
example of MOSP environment presenting a file-saving service, which in fact is
integrated from file service and storage service.

3

Local Computer

File service Storage service

Figure 1-1: A Sample of MOSP Environment

We have mentioned the superiority of MOSP, and the contrast between MOSP
and Web Serviceislisted below.

Take a book store and a shopping-cart service for example. Firstly, Figure 1-2 to
Figure 1-4 show the differences between M OSP and:Web Service in instance creation.
We use Java pseudo code to preﬁéht it The | eftiside of the figure is the shopping-cart
service, which contains Product” and-Cart¢lass.. The Cart class provides lots of
operations for the user, the Book Sto:g__inc in right side of the figure, to get
information of Cart through operation calls. |Figure 1-2 shows that in the MOSP
environment, user can create a Cart (I)E)j ect instance, add different products into Cart,
and get information of Cart thrbugh calling different operations of Cart. Cart object
can thus record the shopping state of each User.

Shopping Cart Inc. Book Store Inc.

cart. jar| i
package com.cart; import com.cart.Cart;

import com.cart.Product;

class Product {
String getWame () {.}; Cart cart = new Cart();
int getPrice() {..}:
} cart.add {new Product('"abe”, 500})) ;
cart.add (new Product("def”, 360));
olass Cart {
private List prods; int total = cart.getTotal():;

void add {(Product p) {..}
Product[] list() {..}
int getTotal() {
foreach (prod in prods) {
total += prod.getPrice();
}
return total;

}

Figure 1-2: MOSP Shopping Cart Service - Object Instance Creation

However, Figure 1-3 shows that in the Web Service environment, we can not
create an object instance. Consequently, different users will hold the same shopping
cart while they use this service. In order to solve this and let different users manage
their own shopping cart, we can use the way shown in Figure 1-4. The server provides
a parameter id to present different instances and operations newcart() and
deleteCart () tO create and delete id. Users can get a unique id and return it after
usage from the code like this. int id = cart.newCart () and cart.deleteCart (id).
This kind of method requires users to create and delete the instance themselves and
thus does not apply to public service. Obviously, we can figure out that MOSPis more
suitable for dealing with dynamical and stateful service, enables users not only to use
the static search service but also to handle different objects in the service.

Shopping Cart Inc. Book Store Inec.
WebService http://cart.com/Cart { WSD : package com.store;
ComplexType Product { class Caxrt {.};
String name; class Product {..};

int price;
}

import com.store.Cart;

void add {(Product p); import com.store.Product;
Product[] list();
int getTotal(); 5 Cart cart =
} . | Cart.bind ("http: //cart.com/Cart™) ;
-—
.~,-_-E. cart.add (new Product ("abc", 500));
F cart.add {(new Product ("dec", 360));

int total = cart.getTotall();

Figure 1-3: Web Service Shopping Cart Service

Shopping Cart Inc. Book Store Inec.

WebService http://cart.com/Cart {

ComplexType Product {
String name;
int price;

}

import com.store.Cart;

int newCart () import com.store.Product;
wvoid deleteCart {(int id) ;
void add{int id, Product p); Cart cart =
Product[] list (int id); Cart.bind ("http://cart.com/Cart") ;
int getTotal (int id) ;
} int id = cart.newCart();

cart.add{id, new Product ("abc™, 500}));
cart.add (id, new Product("dec™, 360));

int total = cart.getTotal(id) ;
cart.deleteCart (id) ;

Figure 1-4: Web Service Shopping Cart Service - Instance Creation and Deletion

Secondly, Figure 1-5 and Figure 1-6 shows their difference in inheritance aspect.
Figure 1-5 shows that in MOSP environment, we can create a class Book which
inherits from Product, and adds an operation get1sBN() let users look up the ISBN

of the book. So users can directly cast Product to Book to get its ISBN.

Shopping Cart Ine.

cart.jar ‘
rackage com,cart; _‘

class Product {
String getWName () {..}:
int getPrice() {..};

}

class Cart {
private List prods;

void add(Product p) {..}
Product[] list ()} {..}
int getTotal () {
foreach (prod in prods) {
total += prod.getPrice();
}
return tetal;

Boolk Store Inc.

package com.store;
import com.cart.Produckt;

aglass Book eaxtends Product {
string gebISBN({) {..}

}

import com.cart. Cart:;
import com.sktore.*x;

Cart cart = new Cart();

cart.add {new Book ("abco'", 500, "xzxx"));
cart . add {new Book ("def", 360, "wvyy")):

Product[] prods = cart.list{);
foreach (prod in prods) {

((Book)prod) .getISBN(); // OK

Figure 1-5: MOSP Shapping Cart Service = Inheritance
However, we can not use iryherit_anceﬁnder Web. Service environment. As Figure
1-6 shows, even if users copy. the content~of “Product to Book and add a new
parameter sBN in Book, users can not cast Product to Book and get its ISBN.

Book Store Inc.

""" I
WebService http://cart.com/Cart { WSDL E:::i:>

ComplexType Product {
String nams;
int price; }

Shopping Cart Inc.

class Cart {..};
class Product {.};

class Book extends Product {
String ISBN;

}
import com.store.*;
int newCart();
woid add{int id, Product p):
Product[] list{int id):
int getTotal{int id) ;
} int id = cart.newCart();
cart.add {id, new Book({"abc", 500, "xxx"));
cart.add (id, new Book("dec", 360, "yyw")):

Cart cart =
Cart.bind ("http://cart.com/Cart™) ;

Product[] prods = cart.list (id) ;
foreach (prod in prods) {

{ {Book)pzxod)} .ISBN; // ERROR
}

Figure 1-6: Web Service Shopping Cart Service - Inheritance does not work here

Thirdly, Figure 1-7 to Figure 1-9 shows their difference in polymorphism aspect.
In MOSP environment, as Figure 1-7 shows, if users want to use dynamic price for
each book: make a discount of 30% while the book is stocked for more than two years,
they can use the polymorphism concept to override getprice () to achievethis.

Shopping Cart Ine. Book Store Inc.

cart. jar

package com.cart; package com.store;

import com.cart.Product;
class Product {

String getName () {.}; class Book extends Product {
int getPrice () {.}; Book (.., String stockDate) {.}
} int getPrice() {
if (stockDate < two_years_ ago)
class Cart { return price * 0.7;
private List preods; else
return price;
void add (Product p) {..} }
Product[] list({) {.} }
int getTotal() {
foreach (prod in prods) { Cart cart = new Cart();
total 4= prod.getPrice();
} cart.add (new Book("abe", 500, "2007/1/3"));
return total; cart.add (new Bock {"def", 360, "2004/12/1"));
}
} int total = cart.getTotal();

Figure 1-7: MOSP Shopping Cart-Service:~ Polymorphism

Ci
i &
_—"

However, in Web Service environrﬁén-t, showing.in Figure 1-8, users can not
override the price argument, since thp'lack of inheritance. Thus Web Service can not
get such information of the new price aswell:

Shopping Cart Inc. Book Store Inc.

WebService http://ocart.com/Cart { “TSD‘E | E package com.store;

ComplexType Product { class Cart {..};

String name; class Product {
int price; String name;
} int price; // ?

bi
int newCart();

void add(int id, Product p);
Product[] list (int id);

int getTotal (int id);

Figure 1-8: Web Service Shopping Cart Service - Polymorphism does not work here

Another possible way to solve this problem, shown in Figure 1-9, is turning
Book class into a new Web Service using getPrice() tO represent dynamic price.
Unfortunately, Web Service can not be passed as an argument to another Web Service;
otherwise we have to build specific Web Services for al users. Hence this solution is

also not capable.

Shopping Cart Inc.

WebService http://cart.com/Cart {

ComplexType Product {
String nams;
int price;

}

int newCart();

wvoid add(int id, Product p);
Product[] list(int id);

int getTeotal (int id);

Book Store Inc.

WebService http://book. com/Book {

string getName () ;
int getPrice();

} |

Figure 1-9: Web Service Shopping 'Céﬁ;__s_;érvice — try another way to Override

i

Lastly, Figure 1-10 and Figure 1-11 shows the situation of dynamic binding in

MOSP and Web Service envi ronment.

Shopping Cart Inc.

cart. jar i
package com.cart;

interface Product {
String getName () {.}:
int getPrice() {..}:

}

abstract class Cart {
private List prods;

void add (Product p) {.}
Product[] list({) {.}
int getTotal() {

foreach (prod in prods) {

total += prod.getPrice();

}

return total*getDiscountRate() ;
}
abstract float getDiscountRate();

Book Store Inc.

package com.store;
import com.cart.Cart;

alass BookCart extends Cart {
BookCart {int customerId) {..}

float getDiscountRate() {
if (customerId is fregquent buyer)
return 0.9;
else
return 1;
}
BockCart cart = new BookCart(123) ;

cart.add (new Book {"abc", 500));
cart.add (new Book {"def", 360));

int total = cart.getTotall() ;

Figure 1-10: MOSP Shopping Cart Service — Dynamic Binding

Figure 1-10 shows how to enable users to make different discount for different
clients. Because MOSP inheritance includes not only interface inheritance but also
implementation inheritance, users can inherit the implementation details of parent
class. To achieve this, al we have to do is just add an abstract operation
getDiscountRate () fOr usersto implement, and users can easily adjust discount for
each client on their demand.

However, if we want to achieve such dynamic binding requirement in Web
Service environment, shown in Figure 1-11, we have to build a new Web Service for
every single user to maintain getbDiscountRate(), Which is obviously very

unpractical.
Shopping Cart Inc. Book Store Inc.
WebService http://cart.com/Cart { WebService http://book.com/BookCart {
ComplexType Product { // extends http://ecart.com/Cart ?
String name;
int price; float getDiscountRate () ;
} H

int newCart();

void add(int id, Product p);
Product[] list (int id):;

int getTeotal{int id);

float getDiscountRate(); // call out?

T M

Figure 1-11: Web Service Shopping Cart Service — Dynamic Binding

In conclusion, we list the comparison between Web Service, Java and MOSP in
Table 1-1. We can see that MOSP receives the advantages of Web Service and Java.
Web Service is a more independent service than MOSP. Each Web Serviceisasingle
individual, which does not depend on other servicee MOSP services are more
dependant, they may inherit from and reference to each others.

Web Services Java MOSP
Encapsulation Y Y Y
Polymorphism Y Y
Interface Inheritance Y Y
Implementation Inheritance Y Y
Function Overloading Y Y Y
Firewall Friendly Y _ Y
Instance Creation :tﬂ Y Y
Instance Lifetime Ay .| Garbage Y

Collection

Table 1-1: Comparison betweerm Web Service, JAVA and MOSP

1.2 Motivation

From the above section, we can see that MOSP is much more powerful and with
more capability than Web Service. For the environment that server and client side
have more interaction, MOSP fits better than Web Service. Even though MOSP
seems to be better than Web Service, it isnot yet that popular as Web Service.

We have known that Web Service is the most general SOA technology at present,
and MOSP is relatively fresher and less-known technology. To promote MOSP,
attract new users and make the old Web Service still available in new MOSP
environment, we need to provide a gateway system to enable MOSP clients to call
Web Services.

On developing this gateway system, we may face some challenges shown as
follows:

10

1.2.1 Challenges

1.2.1.1 Different Data Types

Since the documents Web Service delivers are XML based, the data types we use
also need to be accepted by XML Schema. We list XML Schema data types in Figure
1-12.

language D
Name NCNarre IDREF ——— [IDREFS
Y ENTITY =——— ENTITIES

NMTOKEN ~=—— NMTOKENS

- bug int shorl byte
insteger

nonNegativelnteger

Figure 1-12: XML Schema Data Types [30]

XML Schema separates all data types into primitive types and complex types.
Primitive types are the subtypes of anySimpleType listed in Figure 1-12, and
complex types are composed from multiple primitive types and complex types.

MOSP separates all data into three main data types. mt:/ref, mt:/val and
mt: /void. The characters behind slash represent subtype of the characters before it. If
receivers can recognize the subtype, they can absolutely further understand the data
type. For example, mt:/val/num represents numeric data, and mt:/val/num/int
shows that int is one of the numeric data types. When receiver can not recognize
mt:/val/num/int, they cantakeit aSmt:/val/num Or mt:/val datatype.

11

Java

= mosp

= Java

// Special type

Array

#11

(urt of base type)

Array

(use primitive base type when possible)

org.mosp.OutArg

OutArg.getType ()

(to corresponding java type)

(null value) mt:/void (null value)
// Reference type
org.mosp.Instance mt:/ref/mosp/interface|org.mosp.Instance
org.mosp.Creator mt:/ref/mosp/creater |org.mosp.Creator
org.mosp.Typedef mt:/ref/mosp/typedef |org.mosp.Typedef
org.mosp.MeshObject |mt:/ref/mosp org.mosp.MeshObject
java.net.URL mt:/ref/url java.net .URL
java.net.URI mt:/ref java.net .URI
// Value type
(string literal)

mt:/val/str java.lang.String
java.lang.String
boolean .

mt : /val/bool Boolean
java.lang.Boolean - A
int | xﬁ: fli:

mt:/val/num/int | e = int
java.lang.Integer _i ¥ |

- I, {

double ’ 1 [] ¢

mt:/val/ndm/dohble dphble
java.lang.Double Py i
float

mt:/val/num/float float
java.lang.Float
long

mt : /val/num/long long
java.lang.Long
short

mt:/val/num/short short
java.lang.Short
byte

mt:/val/num/byte byte
java.lang.Byte
java.lang.Number mt : /val/num (subclass of number based on data)
char

mt:/val/char char
java.lang.Character
org.mosp.Struct mt:/val/struct org.mosp. InStruct
org.mosp.MidlDoc mt:/val/xml/midl org.mosp.MidlDoc
org.w3c.dom.Document|mt:/val/xml org.w3c.dom.Document
bytel] mt:/val byte[]

Table 1-2: Java Types marshal to MOSP Data Types and unmarshal to Java Types

12

MOSP is developed from Java language, thus its data types are marshaled from
Java datatypes. Table 1-2 lists the Java data types marshaling to MOSP data types and
unmarshaling back to Java data types. The left columns lists Java types, the middle
columns show the MOSP data types marshaled respectively from the Java data types
in left columns, and the right columns represent the Java data types unmarshaled from
MOSP data types. We can see that some Java types like java.lang.Integer Will be
lost during the marshaling and unmarshaling process. The detailed MOSP data types
can be referred to in Section 2.2.2.

Compare MOSP data types with XML data types, we will discover that some
XML data types, such as dateTime, time, date and so on do not exist in MOSP.
Therefore we need to define a transformation rule. Besides, themt : /val/struct and
array types (#11) in MOSP represent the structure (composition of multiple structures
and primitive types) and array (composition of one single type such as structure or
primitive type), which can be transformed into XML complex types and array type
respectively since they have similar ideas.

1.2.1.2 Parameter Passing (Marshalling)

While implementing the gateway G\?hit:h enables MOSP clients to call Web
Service, we need to marshal one'data typé-to another:in order to describe the idea of
data types in different environment or todransfer data through networks. This may
cause some challenges, like how to transform -one data type into another to deliver,
and then transform it back into the original data type or near-original data type (the
data type which performs just as the original one does).

1.2.1.3 Protocol Binding

The protocol bindings that Web Service uses are open. The binding protocol in
most common use is SOAP binding. While facing different protocol binding of Web
Service, not only the action it performs but also the user requirements may change
from it. For example, if Web Service is transferred via e-mail (using MIME binding),
the delay time may be longer, thus we have to adjust the timeout of the MOSP service.
How the MOSP service should perform each different action of Web Service while
Web Service uses different bindings is also one of the challenges.

13

1.3 Research Goal

> Solve Problems

Because of the difference between MOSP and Web Service, some problems and
difficulties or even limitations may be brought about. We want to solve these kinds of
problems.

» Transparency

We want to reach transparency between MOSP and Web Service message
passing, which means that users will not be aware of the transformation.

> Efficiency

We do not want to lose efficiency while passing message between MOSP and
Web Service.

> Extensibility

—
- N

We hope to provide a perfect and Engtehsible system design to ease the future
extension, such as interoperability between MQOSP.and RMI [22] or MOSP and
CORBA [4]. -

14

Chapter 2 Related Work

2.1 Web Service

Web Service is composed of a series of standards and developing standards,
which is establish and assigned to advance inter-platform language to language
communication by World Wide Web Consortium (W3C [30].) Its definition to Web
Serviceisasfollows, “A Web service is a software system identified by a URI, whose
public interfaces and bindings are defined and described using XML. Its definition
can be discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XML based messages
conveyed by internet protocols.” More specifically, W3C has aready formulate a
model (Web Service Description Language, also known as WSDL [28]) and a
procedure calling protocol (SOAPRP[27}:API) asformal standards of Web Service.

Web Service Framework .is shown in Figure 2-1, including XML [26], SOAPR,
WSDL and UDDI [17], and each'will| be introduced | ater. As the figure shows, SOAP,
WSDL and UDDL are al described thrt-);l'.'lgh XML. The processing model of Web
Service is as follows: Firstly, we'need to transform data into XML -based type. Then
we use WSDL to describe the: contents, of | service and make the receiver side
understand the information of “this service from which. Lastly, we use SOAP to
transfer operation requests and responses. Also, we can use UDDL to search for or
register a service.

BUWDYDOS ‘(LLA “TAIX :So180[0utda], 9sky
BUWAYDS ‘(LLA “TAIX :So180[0Ulda], 9sed]

Figure 2-1: Web Service Framework [30]

15

We can describe the Web Service Processing Model more specifically. As Figure
2-2 shows, Web Service Provider will describe its service with WSDL, and register to
UDDI of Service Broker. UDDI isjust like an index catalog, which Service Requester
can inquire about the service it needs, and get aWSDL file to know the information of
the Web Service which describes. When the Service Requester find the service it
needs, it can directly communicate with Service Provider and use the services via
SOAP messages passing.

]
S—

Service
Broker

Service E- 'i Service
Requester R Provider

Figure 2-2: WebService'Processing M odel

Web Service is based on Web ope@;,':gahdard, and the essentials of which are
HTTP and XML. However, more standé;_ds arerneeded to build a complete Web
Service. We introduce XML ‘and these important standards based on XML as follows,

2.1.1 Extensible Markup Language (XML)

XML isaseries of principles which allows its users to define tags and simplifies
data access, processing, exchange and transforming. In a word, XML is a kind of
language whose document format can be defined freely. XML itself is so-called
hyper-language. Figure 2-3 is a ssimple example of an XML-format document
representing a quiz.

<?xml version="1.0" encoding="UTF-8" ?>
<quiz>
<question>
Who was the first president of the 7.5.A.7?
</question>
<answer>
George Washington
<fanswer>
<!--Note: We need to add more questions
later. -->
</quiz>

Figure 2-3: A sample of an XML document

16

XML can cross different platforms, networks and languages. Before its showing
up, every remote procedure call of message passing have to be accomplished through
the communication protocol and APl which are supported by both sides. XML
provides better elasticity, whose open standards allow different systems to exchange
data and communicate with each others. The applications build in different platforms
and languages can interoperate by using XML. Web Service can combine services
from XML interoperability and extensibility to provide more complex value-added
services.

2.1.2 Simple Object Access Protocol (SOAP)

SOAPR, asimplied by its name, is a simple communication protocol which allows
users to access objects in networks. SOAP use XML format together with other
Internet protocols, like HTTR, SMTP and TCR, to transfer messages. SOAP messages
of Web Service are usualy transferred by HTTP so that SOAP messages can cross
firewalls and support SSL. :

SOAP is alightweight data transfer protocols, Its.way of passing data which can
cross different platforms greatly simplifies ‘information exchange in distributed
environment. As long as both'sides wppgff' SOAP, they can talk to each others. Thus
SOAP becomes a great tool of Web Servi celo crossthe platforms and languages.

SOAP message is transferred in Request/Response way which we familiar to. It
also defines an XML framework to call_an operation and pass the arguments of the
operation. In the meantime, SOAP defines an XML framework to respond the return
value or exceptions. However, SOAP does not define how do the sender and receiver
send and receive messages, but let the devel opers to decide how to deal with it. SOAP
does not define how the operation be implemented. In a word, SOAP leaves the
implementation details to the devel opers.

Figure 2-4 is the architecture of SOAP Message. SOAP Envelope is a standard
XML document, dividing into Header and Body. Header is used to define the SOAP
contents, data types and codes; Body is used to transfer the contents of client side
request or server side response, and SOAP Fault in Body is used to transfer the error
messages. SOAP Message in fact is the document which packs the requests of senders
and the responses of the receivers in XML format, and enables both sides to
communicate with each others.

17

SOAP Message

HTTP Header

SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body
Message body

SOAP Fault

Figure 2-4: SOAP Architecture

Take an example in Figure 2151cté*60£€|4be,pow SOAP message works. Client
wants to call addTwoNums () «irf";_e,rv'l throtigh Jnternet. Client firstly composes a
SOAP Message and sendsitﬂ.giij;tﬂp J

'}‘-

|
[

i
| dlanleminatet 1y

addOnelNum()
addTwolNums()
addThreeNums()

Ime rlrsiSCap-”
e
| sacdTwafoms:

<Tirsthumasrs 2 5ot maerr
Scavdtiume & </Secondimbery

1
+/add Twahamzz

1
1
S

1
S Enveaper

Clicnt e Scrver

Figure 2-5: The sender transfers SOAP message

The message content which Client side sends is shown in Figure 2-6. The first
line of it shows that the version of this XML document. The second line is the SOAP
Envelope tag. The content “xmlns:soapr=.." in this tag defines the prefix and
namespace URL of SOAP. The third line is the tag of SOAP Body.

Between SOAP Envelope tag, there are tags with operation names
(<addTwoNu.ms>) and arguments (<FirstNu.mber> and <SecondNu.mber>.) The
contents between argument tags (the 2 between <FirstNumber> and </FirstNumber>)
in the argument values transferred to the operation. When Server receives this SOAP

18

message, it will cal the operation with the arguments shown in this message (call
operation addTwoNums (2, 6).) Then Server will produce a SOAP message to return
the execution result to Client, as Figure 2-7 shows. The message contains the name of
response and the return values.

1 <?xml version=“1.0" ?>

2 <SOAP:Envelope xmlns:SOAP=“urn:schemas-xmlsoap-org:soap.v1l”>

3 <SOAP:Body>

4 <addTwoNums >

5 <FirstNumber> 2 </FirstNumbers>

6 <SecondNumbers> 6 </SecondNumbers>
7 </addTwoNums >

o]

</SOAP:Body>

9 </SOAP:Envelope>

Figure 2-6: The SOAP Message which Client sends

<?xml version="1.0" ?>
<SOAP:Envelope xmlns:SOAP:“urn:échemas-xmlsoap—org:soap.v1”>
<SOAP :Body>
<addTwoNumsResponse> —
<Value> 8 </Values> T“
</addTwoNumsResponse >

</SOAP :Body>

</SOAP:Envelope>

Figure 2-7: The SOAP Message which Server responses

One of the advantages of SOAP is its simplicity. Users can easily enjoy the
convenience it brings even if he/she does not have professional knowledge. SOAP
also helps accomplishment of distributed system, which enables developers use
software services others provide more easily.

2.1.3 Web Services Description Language (WSDL)

WSDL is dso an XML format document, which is mainly used to describe the
details of Web Service. It enables Web Service program a standard way to describe
what abilities it has and how the clients use Web Service. The content it describes
includes the Web Services and the operations the service provider provides, and how
the service requests communicate with these Web Service operations, including
transmission protocol, data types and arguments.

19

Figure 2-8 shows the standard architecture of WSDL document, which is
developed by IBM and Microsoft.

Service

Service Implementation Definition

Service Interface Definition

en nclud&e two parts: Service
Interface Definition and ¢ _D%‘inition. Service Interface

Srg/pes is used to describe
K Egs of type systems. M essage

defines the arguments and typ nputianaoutput messages. PortType defines the

and data format of each PortType. Servi ce ImpI ementation Definition describes the
name of the service, the company which provides the service and the location of the
service. Port represents an endpoint for users to communicate with the service, which
will assign its binding and location. Service is the collection of al endpoints, whichis
the collection of all Web Services provided as well.

2.1.4 UDDI (Universal Description, Discovery and Integration)

UDDI [16] is a developing registration center and catalog standard. It is
proposed as one of the core standards of Web Service at first. It is designed to provide
SOAP message inquiry service and the access of WSDL, to let users get the
information like service binding and data formats to interact with services in the
catalog.

20

UDDI is aso based on XML. It can not only let service providers register to it
and announce the Web Services it provides, but also let service requesters get the Web
Service they need with the search service it provides.

UDDI registration includes three components. White page is the basic
information of the enterprises, such as addresses, contact information; yellow page is
the standard classification of enterprises, green page is the technical information
about the services enterprises provide.

2.2 Mesh Object Service Protocol (MOSP)

2.2.1 MOSP Service Architecture

Descriptions
Mosp Interface Definition Language (MIDL)

Communication
MOSP Extensions

Rcliability, Corrclation, Transactions, ...

Figure 2-9: MOSP Service Architecture

MOSP, like HTTPR, is the network application layer protocol responsible for
transferring data on the networks. Figure 2-9 describes MOSP Service architecture.
We can clearly observe the difference and similarity between MOSP and Web Service
from thisfigure. First of all, MOSP service does not contain component like UDDI. In
MOSP service, with the URL of a service, users can directly access the service and
request for its MOSP Interface Definition Language (MIDL). MIDL, a little bit like
but simpler than WSDL, is used to describe MOSP service. MIDL contains the
operations and arguments which the MOSP service provides. Without SOAP
Messages and HT TP Messages, MOSP service uses MOSP Messages to transfer data,
such as the request/response messages of requesting for MIDL documents or
operation calls, through networks.

21

Figure 2-10 shows the scenario that MOSP client and MOSP service exchange
MOSP messages. Note that MOSP (DESC) represents the request for MIDL, and the
response of it is a MOSP message containing MIDL; MOSP (CALL) represents the
request for an operation call, and the response is a MOSP message containing the
execution result of the operation call.

MOSP
(DESC)
MOSP MOSP
client Service
MOSP
(CALL)

Figure 2-10: The exchange of MOSP request/response messages of service
descriptions or service calls between MOSP client and MOSP service

2.2.2 MOSP Object Model

We list the main data types of M O$E_i_h middle columns of Table 1-2. MOSP
separates its data types to value type (mﬁ-f; _/.val) and reference type (mt:/ref). The
slash sign in each data types represents the inhefitance rel ationship. That is to say, the
string behind the slash sign repréee_nts the derived-type of the string before it. If the
receivers can understand the meaning of the derived-type, they can thus get what this
data type represents more clearly; otherwise, they can just deal with it as the base type.
For example, mt: /val/num/int/temp represents an integer temperature data type. If
the receivers can not recognize this data type, they can just see it as an integer type
(mt:/val/num/int) Or even anumeric type (mt:/val/num.)

In MOSP environment, we name the nodes “Peer.” Every peer will be referred to
by itslocation, noted asa MOSP URL, such aSmosp: //£foo.com/. The MOSP service
object of a peer, named “Mesh-Object,” is referred to by the MOSP URL of the peer
and the path to it, such as mosp://foo.com/bar. Since MOSP is object-oriented,
every mesh-object in MOSP environment is seen as a specific data type, represented
by its MOSP URL. That isto say, mosp://foo.com/bar iS a data type which can be
accessed by any peer in MOSP. We class such data type as reference type. For
example, if the argument datatype is assigned asmt: /re£, We can put any data as an
argument whose type belongs to reference type.

22

Moreover, MOSP contains the idea of inheritance. MOSP mesh-objects can not
only access but also inherit from each others. This means that the mesh-object
mosp://foo.com/bar May inherit from mosp://zoo.com/abe, Which inherit from
mosp://koo.com/xyz,andSO(Hl

Table 1-2 also shows the data type marshaling and unmarshling process between
MOSP data types and Java data types. We can discover that there exists some
information loss situation. So in order to enable MOSP client to call Web Service, we
need to define a marshaller to deal with the marshaling and unmarshaling among
MOSP, Java and Web Service data types. Note that Web Service data types do not
contain the concept of scoping like MOSP. Besides, there are some other differences
among these three types, which may cause some limitations.

2.2.3 MOSP Interface Definition Language (MIDL)

Figure 1-1 shows a simple example of MIDL document. We can easily discover
that MIDL architecture is much ssimpler and easier. to read than WSDL, since it only
contains operation and argument information, and.combines operation and arguments
together. Thefirst lineisthemia1 tag) which 'répreﬁents thet itisan MIDL file. The op
tag in the second line represents the operétﬁ'(bns provided by this MOSP service; name
represents the operation name; and typeiérepresents the return type. The third line
represents the input argument oftthis‘operation: Note'that # 1 represents MOSP array
type, and st represents MOSP struct type, which can be referred to by a # sign and its
name, such as #power shown in the fourth line. While implementing a MOSP service
in Java, we only have to add a emid1 label before a class to announce it as a MOSP
service and a eop label before each operation open to MOSP clients.

1 <midl role="instance" xmlns="mt:/val/xml/midl">

2 <op name=“calculate” type=“mt:/val/int”>

3 <arg type="mt:/val/int#[]” name=“intArray”>

4 <arg type=“#fpower” name=“powerOfNumbers” >

5 </op>

6 <st name=‘“power” >

7 <arg type=“mt:/val/int#[]” name=“powerArray”>
8 <arg type="“mt:/val/bool” name=“usePower”>

9 </st>

10 </midls>

Figure 2-11: A sample MIDL

23

2.2.4 MOSP Messages

We have described the exchange of MOSP messages between MOSP client and
service in Figure 2-10. Web service uses HTTP message to pack SOAP message and
transfer on networks, while MOSP considers that way too complicated and bothering,
which makes messages become heavy and cause time-waste while unpacking them.
Hence MOSP merges HTTP message and SOAP message into a single message,
which is so-called MOSP message. MOSP message passes data in plaintext form.

(MOSP Message Type Description)

(MOSP Message Header)

‘n

(Length of the following data) ‘n
(Data) ‘'n
0'n

i\

a1
Figure 2-12° MOSP message framework

—

Figure 2-12 shows the MOSP meésage framework. The first line in MOSP
message is the description of this _mes%\ge; suchlas operation call or response message.
Later part of MOSP message is the message header, which is optional, used to reveal
some information such as operation.name. The'rest of the message is the data to
transfer. The data content is described by a combination of a number representing the
length of the data and then the data itself. Such combination may show up over and
over in this part of MOSP message. o represents the end of this message, since o
means that the length of the following data is O. Information in this message is
separated with aline feed.

Figure 2-13 and Figure 2-14 shows the request and response MOSP message
while MOSP client requests for MIDL respectively. The first line in Figure 2-13
shows the MOSP version this message uses is mosp 0.8, and pDEsc represents the
request for the description of the service, MIDL. This message does not contain other
information, thus o is used to represent the end of this message.

MOSP service uses an operation onbesc () With arguments InMsg and OutM sg
to receive the MOSP description request message. Once the service receives MOSP
description request message, it will be received as an InM sg object. Then service can
pack the response message containing MIDL file as an OutM sg object to transfer.

24

Figure 2-14 is the response of the above request message from MOSP service.
200 is the standard response code (a similar idea with HTTP), and each number
represents different meaning. ok is the meaning of the response code 200, which
means that the receiver successfully resolves the receipt message and returns the
correct result, which is the content of MIDL (in plaintext form) here. Other response
codes such as 403 Forbidden, 404 Not Found, and SO on, can be referred to in the
RespCode classin MOSP source code.

MOSP/0.8 DESC/

0

Figure 2-13: MOSP client request for MIDL

MOSP/0.8 200 OK

102
<mmdl=
</midl>
0

Figure 2-14: MOSR service respanise of the MIDL reguest

Figure 2-15 and Figure 2-16 shows the request and response MOSP messages
while MOSP client requests for an operation call respectively. In Figure 2-15, caLn
represents the request for an operation call to MOSP service, and /path/service
represents the location of the service in server peer. The message header op: funl
represents the operation which is called, and the input arguments are shown in the
later message content. 3 represents the length of the value of the argument,
type=mt:/val/num/int represents the data type of the argument, and 123 represents
the value of the argument.

MOSP service uses an operation oncall () with arguments InMsg and OutM sg
to receive the MOSP operation call message. Once the service receives MOSP call
message, it will be received as an InMsg object from which receiver can get Arg
objects, which represent arguments, to get the data content. After the execution of the
operation, service can pack the response message as an OutM sg object to transfer.

25

Figure 2-16 is the response of the above request message from MOSP service.
200 ok Mmeans that the receiver successfully resolves the receipt message, calls the
operation and returns the correct result. 18 represents the length of return value, and
mosp://foo.com/xyz represents the data type of return value: mosp: //bar.com/abe.
From this message, we can also discover that object mosp://bar.com/abe inherits
frommosp://£o0.com/xyz. It isthe concept of the inheritance on networksin MOSP.

MOSP/0.8 CALL /path/service
Op:funl

3; type=mt:/val/num/int
123
0

Figure 2-15: MOSP client request message for an operation call

MOSP/0.8 200 OK

18; type=mosp://foo.com/xyz
mosp://bar.com/abc
0

Figure 2-16: MOSP service response message of the operation call

26

2.3 Interoperation between CORBA and

Web Service

The Common Object Request Broker Architecture (CORBA) is a standard
defined by the Object Management Group (OMG [21]) that enables software
components written in multiple computer languages and running on multiple
computers to work together. CORBA, a little bit similar to MOSP, aso has the
concept of object-oriented and inheritance. We can use the integration experience of
CORBA and Web Service as consultation.

2.3.1 Common Object Request Broker Architecture (CORBA)

CORBA was built by OMG in- 1992, which is an open standard used on
distributed objects. CORBA ‘enables clientsite cal operations of remote objects,
regardless of the language binding and-ecations of the objects.

Interaction between CORBA clientféhd server is regulated by Object Request
Brokers (ORBs) on both sides. CORBA"client jand:'server communicate through
Internet Inter-ORB Protocol (I1OP) or! General! Inter-ORB Protocol (GIOP). CORBA
objects can be on client side or server side without affecting the execution and use of
it. The operations provided by CORBA objects are defined by Interface Definition
Language (IDL). The operations defined on the interface will accept input arguments
and get return values or exceptions.

The language CORBA supports includes C, C++, Java, Ada95 and COBOL, and
some scripting languages like Perl, Python and JavaScript. Besides, CORBA is
independent of operating systems, which can work on many platforms, such as Win32,
UNIX and real-time embedded system. The communication protocols CORBA usesin
ORB communication includes TCF/IP, IPX/SPX, ATM and so on.

Figure 2-17 shows the main components of CORBA reference model. These
components provide portability, interoperability and transparency for CORBA.

27

op(args)

. Object
llent Implementation
IDL
skeleton
ORE ‘ i
IDL stubs Interface Objecl Adapler
Object Request Broker

Figure 2-17: Components in the CORBA 2.x Reference Model [2]

CORBA application life cycleis asfollows:

1. Definethe provided serviceinterfacein IDL.

2. Compilethe IDL and create client stub and server skeletons.

3. Execute the service and connect’it to skeletons with Object Adapter in
Figure 2-17.

4. Publish this serviceiwith Naming-Servieé or Trading Service.

-
ot

The execution process of CORBA cl |ent is asfollows:

1. Connect to the serviegwith Naming| Service and get object reference.

2. Create client stubs With_ IDIE=compilerto call the operations of the object
reference. Besides, client can also look up the operations the service
provides in Interface Repository (IR), and dynamically generate request
with Dynamic Invocation Interface (DII).

3. Deal with the responses or exceptions the server transferred.

28

Table 2-1 lists a comparison between Web Service and CORBA, from which we
can see that even though these two systems use different technology, the idea and the
architecture are similar. Table 2-2 lists the comparison of WSDL and IDL, and the
transformation between them can be designed based on this table. Table 2-3 lists the
comparison between XML schema and CORBA object model, we can refer to it as the
comparison between XML schema and MOSP object model.

Iltem Web Services CORBA
Protocol SOAP, HTTP, XML, Schema IIOP, GIOP
Location
. URLs IORs, URLs
Identifiers
Interface Spec. WSDL IDL
Naming, UDDI Naming Service, Interface
Directory Repository, Trader Service
i d = o
Table 2-1: Comparisori*_‘b%gveén W@p_ﬁgrvnce and CORBA [10]
3 i o .-. I:':_.\ e
WSDL IDL

No mappings to programming _ _
Mappings to many programming languages

languages
Describes mapping to Mapping to transport layer defined by CORBA
transport layer specification
XML Schema “object model” Object model for programming languages
for XML documents defined by CORBA specification
Draft OMG standard, many implementations

Table 2-2: Comparison between WSDL and IDL [13]

XML Schema CORBA Object Model

Deriving by extension,)) _ _
) Multiple interface inheritance
equivalence classes

Defines elements and Defines objects, operations and operation
attributes of instances parameters of instances
No stable validators yet Many IDL compiler implementations

Table 2-3: Comparison between XML Schema and CORBA Object Model [13]

29

2.3.2 Gateway Systems between Web Service and CORBA

Since Web Service and CORBA have similar architecture, directly use Web
Service to replace CORBA is not practical. We can just build the interoperability
between Web Service and CORBA service by implementing the gateway service,
which can transform SOAP and CORBA [IOP messages automatically. Present
SOAP-CORBA gateway includes SCOAP [20], XORBA [23] and soap2corba bridge
[24]. The actions gateway performs here are accepting SOAP requests, transferring it
to CORBA server and transferring the return result to SOAP response.

SCOAP combines SOAP with CORBA by mapping CORBA IDL with Web
Service SOAPR, and its architectures are shown in Figure 2-18 and Figure 2-19,
Generic SOAP/HTTP to IIOP Bridge and Static Dedicated SOAP/HTTP to IIOP
Bridge respectively. The former translates SCOAP message into 110P and transfer it
to 11OP domain, as Figure 2-18 shows, and. this kind of translation needs to use IR or
IDL to generate the mapping, and SCOAP types mapping to IDL types can be referred
to in [20], which can be returned only whenultOP message body is accessible in
SCOAP body. The later regulates the.access to ‘arbitrary CORBA/SOAP servers,
which can only bridge operations of specific interfaces.

SOAPDOMAIN I10P DOMAIN
Generic .
Bridge { CORBA Servers
client
Firewall SOAP
Server

Figure 2-18: Generic SOAP/HTTPto IIOP Bridge Diagram [20]

30

SOAPDOMAIN Sttie/Dedicated” yyop DOMAIN

Bridges
A
B
client
c ™
Firewall SOAP CORBA Servers
Server)

Figure 2-19: Static Dedicated SOAP/HTTPto SCOAP/ORB Bridge Diagram [20]

The above scenario shows . how” SOAP client interact with CORBA server
through bridge. However, this interaction worksonly when SOAP and CORBA types

are compatible. (For instance, there will \be/some problems when object reference is
concerned.) —

SOAP Client e SOAE SOAP Server
SOAP Reference Domain SOAP SOAP
CORBA Reference Domain
CQRBA SOAP SCOAP SOAP CORBA
Client Server
OOP/CDR

Figure 2-20: SOAP-CORBA Interoperability Interaction Model [20]
Figure 2-20 shows the interaction model between SOAP, SCOAP, CORBA
clients and servers. SIM represents SOAP-IDL mapping, which plays the role to

trandate SOAP encoded arguments and messages to the format which system can

31

interpret. Arrows represents the interaction between entities, and the annotations on
arrows shows the encoding technology used during interaction. We can see from this
model that we can package CORBA with SOAP, which means Web Service. Thus
CORBA can be transferred in Internet by tunneling with SOAP messages. Besides,
SOAP and CORBA and communicate through IDL-SOAP mapping. We can design
the mapping between MOSP and Web Service by referring to this model.

We show a simple IDL-SOAP mapping below. CORBA IDL type “boolean” iS
similar to SOAPtype “soaP:boolean”, SO We can transfer it asfollows:

boolean

v

<simpleType
name="“boolean”

base=“"SOAP:boolean” >

</simpleType>

We can transfer IDL strugt type asfollows:

strud%_VectQi {
long .%;éord;
long j%pord;
,.loné length;

short diregtion;

}i

v

<complexType name="“Vector”>

<sequence>
<element name=“xcoord” type=“SCOAP:long” />
<element name=“ycoord” type=“SCOAP:long” />
<element name=“length” type=“SCOAP:long” />
<element name=“direction” type=“SCOAP:short” />

</sequence>

</complexType>

We can see that data types of CORBA and MOSP are similar. The above
mapping way may be feasible in MOSP-Web Service gateway.

32

IDL Client

Input T SOAD b
IDL
Capilar Web Service Adapter ST .
XORBA XOREBA Engine CORBA Object
Service Description
XML el BermrEn Naming Scrvice

Figure 2-21: XORBA Architecture [23]

XORBA, aso known as XML-CORBA Link, is developed by Rogue Wave
Software, shown in Figure 2-21. XORBA"is a Generic SOAP to CORBA Bridge,
using SOAP Envelope to transfer.in network; which can translate SOAP request to
I1OP request and translate 11 OPR.response to SOAPRresponse. CORBA interface will be
tranglated to the sub-elements Interface iN-SOAP message header, as the interface
shown in Figure 2-22 and the SOAP m%s%ﬁe-header InFigure 2-23.

In XORBA, CORBA object reference can e represented as string format or URI
in Naming Service, which solves‘the predicament that SCOAP can not use object
reference. In MOSP, object reference. is represented by its MOSP URL. However,
MOSP contains the concept of implementation inheritance, while CORBA only
supports interface inheritance. The situation in MOSP is not as simple asin CORBA.

modiils PatientCare |
anum RetarnValue [OK, Fai_ed };

interface PatientRecordManager |
ReturnValue newPatient(in string fname, in string lname) ;
}
1

Figure 2-22: IDL Fragment of a XORBA Message Example [13]

33

<3C0AP:Envelope xmlns:S02AP="urn:schemzs-xmlsoap-org:scap.v1'>
<SOAP:Header>
<Interface S0AP:mustUnderstand="1">
PatientCare.PatientRecordManager
</Interface>
</S5CAP:Header >
<SOAP:Body>
<newPatient>
<[nezmer Thonas </ [hame>
<lneme> Jefferson </lnamc>
</newPatient>
</S0OAF:Body>
</ S0AD:Envelops>

Figure 2-23: A Sample SOAP Request [13]

However, [7] proposed a more complete integration model referring to OMG
standards. It adds a SOAP-CORBA gateway based on CORBA servant, completes the
OMG standards and solves the performance bottleneck and single point of failure
problems other gateways can not solve.

Firstly, two specifications [19] [18] of ©OMG about the interoperation between
CORBA and WSDL/SOAP defines how |DL"and-WSDL/SOAP maps to each other.
However, these standards omitted the-suppert of '\CORBA client to SOAP service,
which can not satisfy the requirement ov@-;!r_-;all_. [6] considered the single way situation
from CORBA client to Web Service, and laceomplish the static transformation
between WSDL and IDL according to OMG specifications. However, the gateway it
proposed can only be arranged ‘at relative”ORB server side, which will cause
performance bottleneck and single point of failure' problem at ORB server side.

The Proxy service proposed in [9] supports CORBA client to call CORBA
service through Internet. However, there is only one proxy service responsible for the
trandation between SOAP and CORBA, which thus becomes the performance
bottleneck of the entire system, and causes the single point of failure problem.

[7] proposed an overal solution, an Integration Model, which can solve the
above prablems, shown in Figure 2-24. This model provides two types of gateways:
the CORBA-SOAP gateway is responsible for packing CORBA service into standard
Web Service form; the SOAP-CORBA gateway is the part not concerned in OMG
specification, which enables pure CORBA client access Web Service without any
modifications. The mapping in this figure is responsible for trandating IDL and
WSDL documents, assigning the result to the relative repository in each domain, and
saving a copy with relationships and attachments, such as the relationship between
CORBA Interoperable Object Reference and Web Service Endpoint, in the original
message repository, since IDL and WSDL focuses on different points.

34

CORBA-SOAP gateway is like a standard CORBA service object servant in
CORBA domain, every trandation and method of calling service is packaged in
implementation. CORBA clients and servers do not have to change. This kind of
design not only solves the problems of performance bottleneck and single point of
failure but also balances the loading of the entire system.

The process of service call in SOAP-CORBA gateway can be described by a
simple example. Firstly maps WSDL to IDL. Then saves the IDL document and the
attachments to CORBA Interface Pool, and saves information related to
implementation, such as Endpoint, to CORAB Implementation Pool. CORBA
developer can implement the service depends on this IDL document, and register
service object implementation information in CORBA Naming/Trading Service.
CORBA clients can statically request with DIl through the client stub compiled from
IDL document. For CORBA client, this process is not much different from calling
other CORBA service objects.

]

_ mapping UDDI
Interface Naming/ -
Pool Trading =
Service
Implementation CORBA-
Pcol CORBA SCAP
Service
gateway
SOAP-
CORBA e
ervice
gateway

CORBA Domain' SOAP Domain

Figure 2-24: CORBA/SOAP Integration Model [7]

35

2.4 Brief Summary

Based on the earlier studies, we can make a brief summary. Firstly, Web Service
provides a systemized and extensible architecture through the open standards of
network communication protocols and data formats. Its main purpose is to simplify
the integration of applications from different platforms in distributed systems. Web
service is composed of three main components. SOAP, WSDL and UDDL, which all
use XML format based on its open standard.

SOAP plays a role as the request message that Web Service client used to call
Web Service and the response message the server returns to client. That is to say,
SOAP is the message about service operation call and response. SOAP can easily fit
the user needs for its convenient and simple architecture. WSDL is the document
enabling Web Service applications describe itself with a standardize way, including
the operations, protocol bindings, arguments and data types. UDDI is like a catal og of
Web Services to which Web Sexrvice providers-can register and publish its Web
Services, and on which service srequesters ‘can. search for services, get WSDL
documents they need, and invoke the sexvices aswell,

e
ot

A brand new protocol, MOSPwas béfh for the needs which Web Service can not
satisfy. A great difference 'of. MOSP from Web Service is the concept of
object-oriented, inheritance and the dependence relationship between MOSP services.
MOSP is stateful, it can record user states with object instances, thus can provide
more complex and interactive services to users. It is hardly possible to transfer Web
Service, which isindependent, to MOSP service, which is interdependent.

CORBA is similar to MOSP since they both have the concept of object-oriented
and inheritance. Note that CORBA inheritance is limited to interface inheritance,
while MOSP enables implementation inheritance. We discussed some studies of the
gateway between Web Service and CORBA.

SCOAP contains two models of publishing CORBA/SOAP service at server side:
Generic SOAP/HTTP to IIOP Bridge and Static Dedicated SOAP/HTTP to IIOP
Bridge. The former translates SCOAP message to IIOP and transfers it to 110P
domain, while the later regulates the access to arbitrary CORBA/SOAP server
focusing on operations of specific interfaces. We can use the IDL-SOAP mapping in
SCOAP as areference for the data type mapping between MOSP and Web Service.

36

XORBA, XML-CORBA Link, is a Generic SOAP to CORBA Bridge, which
uses SOAP Envelop to transfer in networks, transates SOAP request to 110P request,
and vice versa. The information of CORBA interface will be attached in SOAP
message header, and CORBA object reference can be represented as string format or
URI in the Naming Service, which solves the predicament that SCOAP can not use
object reference.

Lastly, we mentioned a CORBA/SOAP Integration Model which combines
OMG official specification and old gateway systems. It completes the OMG standards,
which supports CORBA client calling SOAP service, and solves the performance
bottleneck and single point of failure problems of old gateway systems. This system
provides bidirectional gateway system, one is the CORBA-SOAP gateway which fits
OMG specification, and the other is the SOAP-CORBA gateway. The concept of this
system model and the benefit of load balancing can be a great prototype to build the
gateway system between MOSP and Web Service.

37

Chapter 3 System Design

3.1 System Overview

3.1.1 Concept of MOSP Service

mosp: / /140.112.107.72: 0000

MOSP Server Peer

mosp: //140.112 107.72: 9000/ ProxyFactory

MOSP
ServiceRoot mosp: //140.112.107.72:9000/ GatewayService
—_\ MOSP
“Service

mosp: //140.112.107.72: 9ouo; OtherService

Figure 3-1: Haw a MOSP Service works

To introduce the architecture of our'gateway system which enables MOSP clients
to call Web Service, we need to start with the architecture of MOSP service. In MOSP
environment, every nodeis called a Peer. Each peer may be aMOSP client or server.

As Figure 3-1 shows, the peer in thisfigure plays the role as a MOSP server, and
each MOSP server contains a ServiceRoot, which contains many MOSP Service
objects. Each MOSP Service object refers to one specific path to the MOSP server.
ServiceRoot represents the entrance point of each server, like the root of a service tree.
When the clients request for services, they will enter the tree from ServiceRoot and
search for the services they need.

When a MOSP server peer starts, and opens a port (say, port:9000), the peer will
be located to its specific MOSP URL (alink starts with mosp: //, just asHTTP URL).
MOSP clients can get a MeshObject representing a MOSP server by binding to the
peer through its MOSP URL, and use the provided services through this MeshObject.
If MOSP server peers want to provide some services, they can just add the service
objects and the paths of the service objects to their ServiceRoot.

38

When MOSP clients want to use the services that MOSP servers provide, they
can get a MeshODbject object instance of each service from its MOSP URL (the MOSP
URL of its server plusits path), and perform the actions directly to the object instance.
For example, get the MIDL document of a MOSP service by getmidl () operation of
the object instance, or call the MOSP service by ca11 () operation.

3.1.2 Design of Generic Gateway Service System

mosp: //140.112.107.72: 9000

MOSP Server Peer

mosp:/ /140 112 107.72:goo0/ ProxyFactory

MOSP -
ServiceRoot

Figure 3-2: Generic Gétevvay Service System

mosp: //140.112. 107.72:9000

MOSP Server Peer

mosp://140.112.107.72: 0000 /GatewayFactory

MOSP S SRS S)
ServiceRoot /(N L il WebServce Ui, [
' GatewayFactoryService
GatewayService | mosp: //140.112.107.72: 9000,/ WebService URL
(A new proxy for
Web Service)

Figure 3-3: Generic Gateway Service System (when createGateway () iscalled)

39

The design goal of our gateway system is to enable MOSP clients to call Web
Service, and make old Web Service till available in new MOSP environment without
re-developing it. Based on this requirement, the gateway system needs to achieve the
ability to dynamically transform WSDL documents of different Web Services into
MIDL documents describing MOSP service; on the other hand, the system needs to
achieve the ability to compose SOAP messages and transform which into and from
MOSP messages as well. According to these requirements, we design this Generic
Gateway Service System as Figure 3-2 and Figure 3-3 show.

The capability of the Generic Gateway Service System isto dynamically create a
relative MOSP Service for MOSP client to call according to the Web Service WSDL
URL. The relative MOSP Service provides the same operations as the Web Service.
That is to say, the way of doing thisisjust like decorating a Web Service to a MOSP
Service.

The MOSP peer in Figure 3-2 is the Generic Gateway Service System. The
service root of the peer initially contains'a MOSPR service, which is named Gateway
Factory Service. It provides an operation-exeateGateway (), Which firstly generates
a specific Gateway Ser vice objectaccording to'the input argument (a WSDL URL in
string format), and then settles a unigue)\path to this object and add it to the service
root. After the execution, thére.is anotﬁér-MOSP Service, which is the dedicated
Gateway Service for the specific Web SerVEce, available for clients.

To create the unigue path of each Gateway Service generated from different Web
Service, the system hashes the WSDL _URL .to a string and uses it as the path.
However, the hash values still may be the same, so the system saves those values for
later comparison. Once a new path is generated, the system compares it to the old
paths. If the path name already exists, the system repeatedly appends some string to it
until the name becomes unique.

In fact, WSDL documents in different locations may refer to the same Web
Service, because Web Service are not differentiated from its WSDL URL but from its
{target namespace, portType name} combination in WSDL document. Therefore,
whenever the operation createGateway () IS called, firstly the system needs to check
if the relative Web Service which the input WSDL describes aready exists in the
system. If so, the system has to update the Gateway of this Web Service. To achieve
this, Gateway Factory searches for the information of target namespace and portType
name in the WSDL, and savesit in atable. If the target namespace and portType name
combination already appears in the table, it will update the Gateway by this new
WSDL document, and returns the Gateway object, with the original path, to the client.

40

Hence, MOSP client can operate this Gateway object as an ordinary MOSP
service object: to get the MIDL document of this service, or to call the operations it
provides. Here, the MIDL and operations Gateway provides are respectively
transferred from WSDL document and operations of the relative Web Service.

3.1.3 Design of Gateway Service

MIDL WSDL

- T

Gateway
Service

MOSP SOAP

MOSP Web Service

MOSPDomain | WebService Domain

Figure 3-4; Gateway Service Work Model

Figure 3-4 is the work model of: GatéNay Service. Each MOSP service contains
two parts: the description part, represented by the operation onpesc (), and the
implementation part, represented. by the operation oncai1(). MOSP service uses
onDesc () and oncall() to process the receipt and response of MOSP DESC
message and MOSP CAL L message respectively. By setting these two operations, we
can set the MIDL document defining the operations provided and set the actions to
perform and the return messages on each client operation call of the service.

IN onbesc (), Gateway Service reads in a WSDL document and transfers it to
MIDL file. We have described the architecture of WSDL and MIDL in Figure 2-8 and
Figure 2-11 respectively, from which we can know that MIDL only describes the
operation names, input arguments (including argument names and types) and return
types. We can get this information from Service Interface Definition part of a WSDL
document, which are Types, M essage and PortType, with aWSDL parser.

Firstly, we can get operation names and input/output messages from PortType.
Then we can get message types from Message. Lastly, we can get the definition of all
types in the schema section of Types.

41

However, most types used in WSDL are the data types defined in XML schema.
Therefore, we define some transformation rule to build mappings between WSDL
data types and MOSP data types. Thus, we can transform a WSDL document into an
MIDL document.

In oncall (), Gateway service firstly gets the operation name the client calls
from the received MOSP CALL message header, and determines whether if this
operation is provided by the Web Service. We can get the binding protocol Web
Service uses from Service, Port and Binding of the WSDL. As we have mentioned,
Web Service standards are open, and the binding in most common use is SOAP
binding. Gateway service supports SOAP binding. While facing Web Service using
other bindings, such as MIME binding, the Gateway service may not be available to it,
since Web Service using MIME binding is transferred via e-mail and is asynchronous.
Asynchronous services require the timeout mechanism of each service object access,
which we do not define in our system.

We can get the binding protocel used by Web Service from the Binding part of
WSDL. If SOAP binding is used, Gateway-service will get the input arguments from
the received MOSP message. Thedusers will tnputs the arguments according to the
MOSP type defined in MIDL in Java dafa_typeé, and those types will be marshaled to
MOSP message to transfer. MQOSP ma%?ge will represent the argument type and
value in plaintext, such asmt: /val/num and 123.

Later, after receiving MOSP input“message, Gateway service will decompose
those arguments according to the argument structure in MIDL, and package it in the
argument structure in WSDL in a SOAP request message to transfer to Web Service.
Since SOAP message does not include the information of argument data types,
marshaling is not used in this step. Besides, SOAP message also transfer argument
value in plaintext, thus marshaling is not used here.

When Web Service gets the SOAP request message, it will return a SOAP
response message, which may contain SOAP Fault while there are exceptions.
Gateway will transfer SOAP fault to sting and return it to MOSP clients. In the
common situation when the SOAP message is accepted successfully and the execution
works correctly, Web Service will return the execution result packaging in SOAP
response message, which will have the same structure as the return argument in
WSDL. Therefore, Gateway will decompose the SOAP response message according
to the structure shown in WSDL, marshal the argument values to Java type, and then
marshal it to MOSP type to package it as MOSP return message for MOSP clients.

42

When MOSP message is returned to the client, it will be marshaled to MOSP
data type object represented in Java binding format. Thus, clients can decompose the
return object according to the argument structurein MIDL.

We can see that marshaling is used many times during transformation process.
We can define a Marshaller responsible for doing this. Firstly, as Table 1-2 shows,
Marshaller is responsible for mapping MOSP types and Java types. Then, we need the
mapping among XML types, Java types and MOSP types. With those mappings, we
can transform the Web Service data types into MOSP types represented as Java types
by the Marshaler. Moreover, since MOSP messages and SOAP messages both
represent argument values in plaintext, the Marshller needs to have the ability to
transform Java objects into string, and vice versa. Since Marshaller has defined the
mapping rule between Java types and MOSP types, once getting the Java objects, we
can directly transform them to MOSP data types with the Marshaller.

43

Chapter 4 System Implementation

The proposed system is developed with Java JDK 1.6, Java EE SDK [11],
WSDL4J [31], Castor [3] and JDOM [12]. The Web Service server is build with Sun
official application server GlassFish V2 [8].

4.1 MOSP Server, Service and Client

In MOSP environment, we named the remote objects accessed through MOSP
URL MeshObject. MeshObject is separated into three kinds, which are Creator
(similar to Java class), Instance (similar to Java object instance) and Typedef (similar
to Java interface) and represented by three subclasses of MeshObject: Creator,
Instance and Typedef. We can use MeshObject.bind() with MOSP URL as the input
argument to bind to a MOSP object and get the object instance, the object of one of
these subclasses, as Figure 4-3 shows:

We have introduced MOSP server.and client work model in Section 3.1.1. Later,
we describe it by the sketch codes of Mé:_SP- server; MOSP service and MOSP client
in Figure 4-1, Figure 4-2 and Figure 4-3 respectively. ©

In Figure 4-1, we firstly create a“service root object and a service object, and
then set the service to the service reot by assigning a path to it. Therefore, we can
generate a MOSP peer which contains the service root object we created. After
generating the peer, we can use start() and openListener (“:9000~”) t0 enable
other peers connect to it through its MOSP URL and port (the port is 9000 here). Also,
MOSP clients can bind to the remote object instance of the service this server
provides by the MOSP URL of the server plus the path to the service, as Figure 4-3
shows. Finally, we can use shutdown () to close the MOSP server peer.

FooServiceRoot root = new FooServiceRoot) ;
FooService service = new FooService ()
roct.setService (“/Service”, service);
Peer server = new Peeri{rcot);
try {

server.start () ;

server.openlListener (Y:90007) ;
} finally ¢

peer.shutdown ()

}

Figure 4-1: MOSP Server

44

FooService extends MetaService |

doverride

public void onDesc (InMsg req, COutMsg resp) |
String midl = “...";
CutArg arg = new CutArgi():
arg.setType (MOSPTYPE.MIDL) ;
arg.setData (midl.getBytes ())
resp.appendArg (arg) ;
resp.setlCode (RespCode . OF) ;
resp.setDescription (RespCode. 0K INFO) ;

1

@override

public void onCall (InMsg req, OutMsg resp) |
String operationName = red.getHeader (MOSP. HEADER NAME) ;
/* do something ... */
Object result = ...; /4 execution result
OuUtArg arg = new OutArg(;);
arg.setType (/% set arg type from result*/);
arg.setData(/* set arg type from result*/);
resp.appendArg {arg) ;
resp.setCode (RespCode. OF) ;
resp.setDescription (RespCode. 0K INFO) ;

Figure4-2:'M OSP Service

a4

Pezr <lient — new Peer ()
try {
c_ient.start();
Creator creator = Creator.bind (Mmosp://140.112.107.72:9000/8exrvice”);
M-cdlDoc midl = creator.getlMidl {1,
Ohject re-urnRezult = creator.call (Moperationl?”, “argl”, “arg2#);
} f£finally {
peer,shutdcwn {) ;

}

Figure 4-3: MOSP Client

Figure 4-2 shows how onbesc () and oncall (), which we have mentioned in
Section 2.2.4 and 3.1.3, work in Java code. These two methods both have the
arguments InMsg and OutMsg. InMsg represents MOSP messages received from
MOSP clients, and OutM sg represents M OSP messages response to MOSP clients.

onDesc () IS triggered by MOSP clients calling getmidl () method, which we
mentioned in Section 3.1.1, as Figure 4-3 shows. The actions it performs is
marshaling the MIDL content in string format to OutArg (the arguments in MOSP
message: OutArg for OutMsg, and InArg for InMsg), setting the standard response
code we mentioned in Section 2.2.4, and appending them to the return MOSP
message OutM sg.

45

onCall () is triggered by MOSP clients calling ca11 () method, which we also
mentioned in Section 3.1.1, with operation name and input arguments as input
parameters as Figure 4-3 shows. The actions it performs is decomposing the request
MOSP message InMsg to get the operation name and input arguments which MOSP
client requests, executing the requested operation with the input arguments, getting
the execution result and marshaling it to OutArg, setting the standard response code
and appending OutArg and the response code to OutM sg.

Now, we can see how the Generic Gateway Service System was built.

4.2 Gateway Factory Service

We first introduce the Gateway Factory service, which we mentioned in Figure
3-3. Gateway Factory service provides an operation createGateway (), Which is
responsible to create a Gateway Service and assign it to the service root of Gateway
Factory server. Thus there is no need to enable each-client to get an object instance of
Gateway Factory service.]

Figure 4-4 shows the MIDL document| of Gateway Factory Service. midi
role="creator” representsthatithis servféé tsa Creator object (smilar to Java Class).
Then we use static="1~ {0 Set the operétion to static, thus clients can directly call
the static operations without creating an object instance first.

From this MIDL document, we can see the this service provide an operation
createGateway () Which gets a string of WSDL URL as the input and returns a
MOSP Instance (similar to Java object instance). Each MOSP Instance represents a
Gateway service instance transformed from Web Service. Since Web Service does not
record user states, we directly transform it into MOSP Instance but not Creator, thus
users can not create different object instances from the Gateway service they get,
which achieves the statel ess characteristic of Web Service.

<midl reole="creator" xulns="mt:/val/xml/midl" >
<op name="createGateway" type="mt:/ref/mosp/instance™ static="1" >
<arg type="mt:/val/str" nane="wsdlURL"™ />
</op>
</midl=>

Figure 4-4: MIDL document of Gateway Factory Service

46

Now we introduce createGateway () more specificaly. In Section 3.1.2, we
have introduced that it reads a WSDL document from the input WSDL URL, creates a
Gateway service relative to the Web Service referred to by the WSDL, adds it to the
service root of the Gateway Factory server, and returnsit to clients.

As Figure 3-3 shows, we can set the Gateway service object to the Gateway
Factory service root with a path to it. The Gateway service is created with the WSDL
URL as input parameter. The path to each service needs to be unigue, so we hash the
WSDL URL into a string to achieve this. Since hash value may overlap, we save the
paths into a path list, and check if the path already exists in the list whenever
generating it. If so, we simply append a character to it until it becomes unique.
However, Web Services do not differentiate from its WSDL URL but from the target
namespace and portType name attributes in the WSDL document, since different
WSDL URLs may reference to the same Web Service. Thus we will put the mapping
of Web Service name (the target namespace plus portType name) and the path to its
Gateway into a Web Service list. Whenever get a new WSDL URL, we check if the
Web Service referred to by this WSDL dready:-exists in the Web Service list. If so, we
update the Gateway service in serviee root With-the new WSDL URL. At last, we
return the Gateway object. Welist'the algorithm of ereatecateway () in Table 4-1.

—

Get input MOSP message INMsSg reg;= =
String WSDL URL = req.getArg(0)
GatewayService gateway = new GatewaySekrvice (WSDL URL) ;

Get target namespace and portType namé-from the WSDL in WSDL URL;

Object key = to key(target namespace + portType name) ;
if (WebService Map.contains (key))
String path to service = WebService Map.get (key)
serviceRoot.setService (path to service, gateway) ;
}
else
String path to service = WSDL URL.hash() ;
while (path List.contains(path to service))
path to service += “1”;
path List.add(path to service) ;
WebService Map.put (key, path to service);
serviceRoot.setService (path to service, gateway) ;

}

return path to service; // use path to represent MOSP Instance object

Table 4-1: The algorithm of createGateway ()

47

4.3 Gateway Service: onDesc()

The Gateway Service ombesc() is responsible for transforming the MIDL
document from WSDL document, and returning it to MOSP clients. We choose to
create the MIDL document in Gateway Service constructor, with aWSDL URL string
as the input argument. It is because the MIDL document is generated from WSDL
URL. If the constructor contains the WSDL URL string as input argument, we can set
up the MIDL document for later use once creating the Gateway Service.

To parse a WSDL document, we build a Java class which imports WSDL 4J,
JDOM and Castor project. First of al, with WSDL4J, we can use the method
readWsDL (String WSDL_URL) from class javax.wsdl.xm|.WSDL Reader to read a
WSDL document and parse it to a javax.wsdl.Definition object. It is named
“Definition” because a WSDL document is XML based, which ordinarily with a root
element named “definition”, as the.sample WSDL document shown in Figure 4-5.
The definition element has child.elements,-with the same architecture as shown in
Figure 2-8, which are types, message, portTypexbinding and service as Figure 4-5
shows. With the Definition object, we.can eésily get those child elements as Java
objects by method call. =

As we mentioned in Section 8.1.3, to transform. WSDL into MIDL, we need to
focus on the Service Interface Definiti on part; the types and message and portType
elements shown in Figure 4-5. Figure 4-6 shows these three parts we abstracted from
the WSDL document in Figure 4-5. First we can get the operations provided from
portType, and each operation contains an input and an output message, each of which
relates to one of the message elements by its name. Each message contains a message
part, which relates to an “element” element in the child element schema of types by
element name. Each element relates its type to a complexType by the complexType
name. Furthermore, each complexType contains one or more elements, and each of
which contains a type relating to another complexType or a defined type, such as
XML string type shown in the first complexType in Figure 4-6 (xs: string represents
the string type in namespace xs, which is the XML schema defined in the definition
element of this WSDL document). Note that the name of each xml element
differentiates from its local name and namespace, for instance, tns represents the
namespace of the WSDL document itself, such that tns:getcountry refers to the
complexType getcountry defined by this WSDL document. All these elements will
be parsed to Java objects, which can be abstracted from the Definition object.

48

With the above steps, we can read the WSDL document in Figure 4-6 as follows.
The portType element says that there is one service named getCountryService,
which provides an operation named getcCountry, With input message getcCountry
and output message getCountryResponse. The input message getCountry relates to
the complexType getcountry, Which contains an XML string array named city
(maxoccurs represents the max occurrence times of this element, unbounded means
the occurrence time is unbounded. We can see the elements whose maxoccus is more
than 1 or unbounded as an array); the output message getCountryResponse relatesto
complexType getCountryResponse, Which contains the complexType country.
country contains an XML string named name and another XML string named
president. |t means that the operation getcountry input parameter is the string
city, and the return type is a complexType with two string parameters. We can
transform WSDL into MIDL as shown in Figure 4-7.

As we can see in this MIDL document, it provides a more intuitive way of
describing a service. To transform WSDL .into MIDL document, we first transform
each portType into a MIDL document;:and then transform each operation in portType
into the operation in the MIDL ‘document. Then:we set the return type and input
arguments of each operation fromthe W-SDL input/ettput message and types.

In WSDL Types element, there are?:s'b'me redundant complexType in a WSDL
document, and we can triny it with the algorithm' shown in Table 4-2 when
transforming WSDL Types into MOSP types.

49

// On WSDL input message:
Get input message element in msg elem;
MOSPType[]l] 1iIn mosp types;
if (in msg elem.getType () .isComplexType ()) {
element [] elems = in msg elem.getType () .getSubElements() ;
if (no elem in elems is ComplexType) {
int 1 = 0;
for each (elem in elems) { // expends in msg elem
in mosp types[i] = to mosp type(elem);

++1;

}

else {

in mosp types[0] = to mosp type(in msg elem) ;

// On WSDL output messagé:

Get output message element! type*ayt msg elem,
./—\'-rlil'

. if-.-"'"|

if (out msg elem.getType () 1sb mggexTﬂpe

MOSPType out mosp type; .

element [] elems = out msg %qem getEXpe getSubElements();
if (elems.size()==1 AND: nelems[o]_1sComp1exType()) {

out mosp type = to_mosp_type%elem); // expends out_msg elem

}

else

out _mosp type = to mosp type(out msg elem) ;

Table 4-2: The WSDL input/output message type to MOSP type

50

MOSPType to mosp type(element element)
MOSPType mospType;
mospType.name = element.name;
// XML primitive data types to MOSP primitive data types
if (element.getType().isPrimitiveType())
mospType = to mosp prim type(element.getType()) ;
// The transformation rule is listed in Table 4-4 and Table 4-5
}
// XML complexTypes to MOSP struct types
else if (element.getType () .isComplexType ()) {
mospType = createMOSPStruct (element.getTypel());
}
// XML array types to MOSP array types
if (element.maxOccurs > 1 OR element.maxOccurs.isUnbounded()) {
mospType.toArrayType(); // append #[] sign to the end
} ! i) ﬁ:&f

return mospType; _ B o

MOSPStruct MOSP st;

// MOSPStruct extends MO.

MOSP st.type = complexTypé name,)'r

element [] elems = complexType.getSubElements();
for each (elem in elems)
if (elem.getType() .isPrimitiveType())

MOSPPrim arg;
arg.name = elem.name;
arg.type = to mosp prim type(elem.getType()) ;
MOSP st.argList.add(arg) ;
}
else if (elem.isComplexType())
MOSP_st.name = elem.name;
MOSP_st.argList.add (createMOSPStruct (elem.getType())) ;

}

return MOSP st;

Table 4-3: The type transformation algorithm

51

We have described the meaning of each element in MIDL in Section 2.2.3. Some
data type transformation rules needs to be made during the transformation. First is the
transformation between XML primitive data types and MOSP primitive data types.
Then is the transformation between XML array types and MOSP array types. Last is
the transformation between XML complexTypes and MOSP struct types. We list the
type transformation algorithm in Table 4-3.

We define an Operationinfo class to record each operation name, and its return
type and input arguments while parsing the Definition object of WSDL. The input
arguments and return typeis alist with MOSPArg object or M OSPStruct object. We
define MOSPArg and MOSPStruct classes to record the argument types, which are
primitive type and struct type respectively. MOSPSruct may contain one or more
MOSPArg or MOSPSruct objects, just as complexType which may contain one or
more primitive type arguments or complexType arguments. This transformation is
listed in the second part of Table 4-3.

To get the operation information we mentioned above, as we know, we need to
get the portType information first. With Definition.. getPortTypes (), we can get the
PortType objects; with PortType.getoperations () ,We can get Operation objects.
With Operation object, we can/finally. get the information such as operation name
and input/output message. =

To transform input/output message into arguments, we need to parse M essage
and Types object, from Defihitiqn.getnessages() and Definition.getTypes ()
respectively. Types object only contains a DOM object of the schema element, thus
we use JDOM to transform this DOM object into JDOM object, and then use Castor
project to transform JDOM object into Schema object, which contains objects such
as Element and ComplexType. With Schema object, we can thus get argument
information from method calls. With the information we need, we can transform
WSDL datatypesinto MIDL data types with the algorithm shown in Table 4-3.

Now, we can finally transform WSDL document into MIDL document. However,
there exist some limitations. For example, element May contain some attributes such
aSminOccurs (minOccurs represents the minimum occurrence time of this element)
Or nillable (nillable IS aboolean value, representing if this element can be set to
null), which we can not transform into MIDL since MIDL does not contain these
properties.

After generating the MIDL document, Gateway service will directly marshal it to
MOSP response message transferred to MOSP clients.

52

<definitions xmlns= “http://schemas.xmlsoap.org/wsdl/”
xmlns:xs= “http://www.w3.org/2001/XMLSchema”
xmlns:tns= “http://service/” targetNamespace="“http://service/”>
<types>

<schema>

</schema>
</types>
<message name="“..">

<part name=‘“parameters” element="“.."/>
</message>

(<portType name=‘getCountry” >

<operation name="“..">
<input message="“.."/>
<output message="“.."/>
</operation>
\\ </portType> {*;:
[<binding name:“m"g£¥EF

. L]
<operation name=".."

<soap:operation, o
<input> Ti:gﬁ -
v,

<soap:body use=;1
</input>
<output>
<soap:body use="“.."/>
</output>
</operation>
</binding>

(<service name=‘getCountryService” >

<port name="“.." binding="“..">
<soap:address location=“.."/>
</port>
\ .
</services>
</definitions>

Figure 4-5: A sample of WSDL document

53

<types>
<schemas>
<element name=“getCountry” type="“tns:getCountry”/>
<element name="getCountryResponse” type="tns:getCountryResponse” />
<complexType name=“getCountry” >
<sequence>
<element name=‘“city” type=“xs:string” minOccurs=“0”"
maxOccurs="“unbounded” />
</sequence>
</complexType>
<complexType name=“getCountryResponse” >
<sequence>
<element name=“return” type=‘“tns:country” minOccurs=“0"/>
</sequence>
</complexType>
<complexType namei“qounffy">r

<sequence> -
i <

<element name="name” type="xs:string” minOccurs="0"/>
—— iy
. | i 2 .
<element name:“preﬁ deﬁE7'¢Ype=“xs:str1ng" minOccurs="0"/>

</sequences ; l k= > ﬂt
</complexType> | lk;
</schemas> A
</types>
<message name=“getCountry” >
<part name=‘“parameters” element=“tns:getCountry”/>
</message>
<message name=“getCountryResponse” >
<part name=‘“parameters” element="“tns:getCountryResponse”/>
</message>
<portType name=“getCountryService”>
<operation name=‘“getCountry” >
<input message=“tns:getCountry”/>
<output message=“tns:getCountryResponse’ />
</operation>

</portType>

Figure 4-6: The description part of a WSDL document

54

<midl role=‘“instance” xmlns="“mt:/val/xml/midl”>

<op name=“getCountry” type=“#country”>

<arg type="mt:/val/str#[]” name=“city”/>

</op>

<st name=“country” >

<arg type="“mt:/val/str” name=“name”/>

<arg type="“mt:/val/str” name=“president”/>

</st>

</midl>

Figure 4-7: An MIDL document transformed from WSDL document

XML Data Type

MOSP Data Type

anySimpleType

mt:/val

duration mt:/val/str/itime/duration
dateTime mt:/val/str/itime/dateTime
time mt:/val/stritime/hours

date mt:/val/str/ftime/date
gYearMonth mt:/val/str/time/gYea[Moqth\
gYear mt:/val/str/time/gYeé-er'_-:‘;_'_-:.I \
gMonthDay mt:/vallstr/timelg Mphﬁﬁéy '
gDay mt:/vallstr/time/g D};\y g
gMonth mt:/val/str/tihe/gM'onth
String mt:/val/str :

normalizedString

mt:/val/str/normalizedString

token mt:/val/str/normalizedString/token

language mt:/val/str/normalizedString/token/language

Name mt:/val/str/normalizedString/token/Name

NCName mt:/val/str/normalizedString/token/Name/NCName

ID mt:/val/str/normalizedString/token/Name/NCName/ID

IDREF mt:/val/str/normalizedString/token/Name/NCName/IDREF

IDREFS mt:/val/str/normalizedString/token/Name/NCName/IDREF/IDREFS
ENTITY mt:/val/str/normalizedString/token/Name/NCName/ENTITY
ENTITIES mt:/val/str/normalizedString/token/Name/NCName/ENTITY/ENTITIES
boolean mt:/val/bool

base64Binary mt:/val

baseBinary mt:/val

Table 4-4: Mappings between XML and MOSP data types— 1

55

XML MOSP
float mt:/val/num/float
decimal mt:/val/num
integer mt:/val/num/int

nonPositivelnteger

mt:/val/num/int/nonPositivelnteger

negativelnteger

mt:/val/num/int/nonPositivelnteger/negativelnteger

long mt:/val/num/long
int mt:/val/num/int
short mt:/val/num/short
byte mt:/val/num/byte

nonNegativelnteger

mt:/val/num/int/nonNegativelnteger

unsignedLong

mt:/val/num/long/unsignedLong

unsignedint

mt:/val/num/int/nonNegativelnteger/unsignedint

unsignedShort

mt:/val/num/short/unsignedShort

unsignedByte

mt:/val/num/byte/unsignedByte

positivelnteger

mt:/val/num/int/nonNegativelnteger/positivelnteger

double mt:/val/num/double
anyURI mt:/ref \
Qname mt:/val/str/Qname [..‘.'-E
NOTATION mt:/vallst/NOTATION f,

Table 4-5: Mappings _betvyéen XML landMOSP data types—2

When deciding the mappings between XML and MOSP data types, we face a
dilemma of getting more precise types or clarifying the inheritance relationship
between types. For instance, Xml unsignedLong type is actually derived from
unsignedInteger and contains value space from 0 to 18,446,744,073,709,551,615,
while 10ng value spaceis - 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
If we let unsignedLong inherits from 1ong in MOSP data type hierarchy, its value
space will limit from O to 9223372036854775807, which is half of the original value
space. After consideration, we think the value space is already sufficient for users.
Clearer inheritance relationship is more important for MOSP users.

56

4.4 Gateway Service: onCall()

The Gateway Service oncall () is responsible for creating the SOAP request
message from MOSP CALL message, passing it to Web Service, getting the SOAP
response message from Web Service and then transforming it into MOSP CALL
response message for clients.

From MOSP CALL message, we can get the name and the input argument value
of the Web Service operation which is called. With the same structure as the structure
of arguments in WSDL and the input argument value, we can generate a SOAP
request message. Figure 4-8 shows a sample SOAP request message of the Web
Service which the WSDL document in Figure 4-6 describes. The SOAP Envelope
wrapped up SOAP Header and SOAP Body. SOAP Body will contain a child element
whose name is the same as the operation name. Then this element will contain child
elements, which are also the input arguments ofthe operation. Each of those elements
contains text content (such as the text Taipei in-SOAP message), which represents
the argument value of each argument. The element name is the same as the element
name of each primitive or complexType type. Figure 4-9 shows a sample SOAP
response message of the same Web Servfi':e Itiis similar to SOAP request message,
while name of the child element of its SOAP Bodyis the operation name plus the
string “ Response”. Note that weronly: have to repeat the element in SOAP message to
represent an array type. Since SOAP message use text to represent the argument value,
the original argument types will be transformed into String type.

<?xml version="1.0" encoding="UTF-8""%>
<S:Envelope xmlng:S="http://schemas.xmlzcap.org/socap/envelope/ ">
<S:Header/>
<S:Body>
<ngZ:getCountry xmlns:ng2="http://gervice/ ">
<city> Taipei </city>
<city>» New York </city>
<city> Teokyo </city>
</neZ2:getCountry>
</8:iBody>
</5:Envelope>

Figure 4-8: A sample SOAP request message

57

<?xml version="1.0" encoding="UTF-8"7>
<3:Envelope ®mlns:S="http://schemas.xmlsoap.org/scap/envelope/ ">
<8:Header/ >
<S:Body>
<nsZigetCountryResponse Rmlns:ins2="http://service/">
<nsZ:return>
<name> USA </name>
<prezident> George W. Bush </ /president>
</ns2:return>
</nsZ:getlountryResponse>
</5:Body>
</S:Envelope>

Figure 4-9: A sample SOAP response message

The MOSP CALL request message is marshaled to InM sg class in Java. We can
use INMsg.getargs () to get the arguments InArg in MOSP message. InArg may be
Struct (InStruct object), Array (InArg[] object) or String type, depending on the
original role each argument plays in MIDL. SOAP request messages are composed
from the content parsed from InAr g.

After that, we use the WSDL URL and the SOAP request message as the input
parameter to call a Web Service'using-SAAJ(SOAPwith Attachments API for Java),
and then get a SOAP response message. 'LErom the SOAP response message, we can
use the same principle, which we used to deal withilnArg and SOAP request message,
to decompose the SOAP response mes&age and marshal the argument values to
OutArg. Then set OutArg to OutMsg toreturn to.clients.

However, the argument data types are no'longer String types when we marshal it
to OutArg. We have to transform those arguments into the original data types defined
in WSDL document from String. This transformation rule is listed in Table 4-6 and
Table 4-7.

XML Data Type Java Data Type
anySimpleType java.lang.Object.
duration javax.xml.datatype.Duration
dateTime java.util.Calendar
time java.util.Calendar
date java.util.Calendar
gYearMonth javax.xml.datatype.XMLGregorianCalendar
gYear javax.xml.datatype.XMLGregorianCalendar
gMonthDay javax.xml.datatype.XMLGregorianCalendar

Table 4-6: Mappings between XML and Java datatype—1

58

XML Data Type

Java Data Type

gDay javax.xml.datatype.XMLGregorianCalendar
gMonth javax.xml.datatype.XMLGregorianCalendar
String java.lang.String

normalizedString

java.lang.String

token java.lang.String

language java.lang.String

Name java.lang.String

NCName java.lang.String

ID java.lang.String

IDREF java.lang.String

IDREFS java.util.List

ENTITY java.lang.String

ENTITIES java.util.List

boolean boolean

base64Binary byte[]

baseBinary byte[]

float float O
decimal java.lang.Number “;_,.;_:‘ \I- i
integer java.lang.lnteger_!'l m o\l

nonPositivelnteger

java.lang.ln'geger;l -I 19

negativelnteger

java.lang.Integer

long long
int int
short short
byte byte

nonNegativelnteger

java.lang.Integer

unsignedLong

long

unsignedint java.lang.Integer
unsignedShort short
unsignedByte byte

positivelnteger

java.lang.Integer

double double

anyURI java.net.URI

Qname javax.xml.namespace.QName
NOTATION java.lang.String

Table 4-7: Mappings between XML and Java data type — 2

59

4.5 Performance Test

The operation steps of Generic Gateway Service System are as follows:

Step 1. Gateway Factory: MOSP client binds to the MOSP URL of Gateway
Factory, and gets a MeshObject instance, through which the client can

invoke the operations provided by Gateway Factory Service.

Step 2. Gateway: MOSP client invokes createGateway (), the operation
provided by Gateway Factory Service, which reads in a WSDL URL
text-string as the input argument and receives a Gateway Service, the

object instance of the MOSP service transformed from Web Service.

Step 3. Gateway calls Web Service: MOSP client invokes the operations
provided by Gateway service (the same operations as the ones provided
by relative Web Service).. Gateway trandates the requests to Web

Service and trandl ates the response from Web Service to MOSP client.

3 7578
2.5

£.274

2 /
Accumulated 15

Time (s) '
1 0.84/

0.5
—
0

Initial Gateway Gateway
Factory

Transformation Steps

.

Gateway calls
WS

N

J

Figure 4-10: The sample Time Period of Generic Gateway Service System

Figure 4-10 shows the time period of each steps we mentioned above. However,
when a MOSP client uses the system, the generation of Gateway Factory (Step 1) will
only be executed once, and the execution time of Step 1 for different MOSP clients is
amost the same; the generation of Gateway (Step 2) will be executed once for a
specific Web Service. The time spent for generating Gateway is increased by
complexity of the relative Web Service, which we represent with whose WSDL
document size. The relationship between the generation time of Gateway and WSDL
document size is shown in Figure 4-11 in which we also show the Gateway Factory

generation time and the WSDL document download time.

60

However, the time spent when the Gateway invokes Web Service (Step 3) is
much less than which in Step 1 and Step 2. Therefore, the time spent when a MOSP
client calls the operations of the same Web Service for several times will be similar to
the time spent when the MOSP client only calls the operation for one time. Figure
4-12 shows the time spent when a Gateway calls the same operation of its relative
Web Service for 100 times. Obviously, we can observe that the time spent of each
operation call is amost the same from this figure. Also, we can see that the total time
spent for calling an operation once is similar to which for calling an operation for
many times. Thus the performance of the system will be relatively better when clients
use it for more times.

4 ™
2.3 -

y e
/

1.9 >

1.7

1.5

Time (sec.)

1.3

1.1

0.9

0.7 | | |
1800 6800 11800 16800

WSDL Document Size (byte)

—— GatewayFactory WSDLDownload —e—Gateway
. /
Figure 4-11: The Relationship between WSDL Size and Time Spent in Each Step

4 ™\

o
=~

o
[N

Time (sec)

0] 20 40 60 80 100

Operation call
. S

Figure 4-12: The Time spent when MOSP client calls Web Service operation (Step 3)

61

Figure 4-13 shows the difference between the time spent when a Gateway calls
different operations (with different input argument types or return types) of the same
Web Service. We separate the time into two parts: one is the time for the Gateway to
call the Web Service with a generated SOAP request message and get a SOAP
response message; the other is the time for the Gateway to transform the SOAP
request message from MOSP input message and transform the SOAP response
message into MOSP output message. We can observe that the transformation time is
very close to the SOAP message passing time. Also, the transformations between the
operations whose have input argument types and return types are primitive. Moreover,
the SOAP message passing time and transformation time for array type is more than
primitive type. The operation with more input arguments also needs more
transformation time. Some types which are not MOSP original types, such as datetime,
may need more transformation time. The transformation time of MOSP struct type
(transformed from XML complexType) is similar to the transformation time of
primitive data type. Clearly, we can also see in thisfigure that the transformation time
is very small (about 0.02 seconds). It shows that. the performance of the Gateway is
great. Py o~ e ¥

/ ¢ shad - g \
bool op(bool)

int op(int)
int[] op(int(])
int op(str{])
long op(long)
float op(float)
str op(str)

str op(int)

Operation

str op(str, str)

URI op(str)
Qname op(str, str)
datetime op()

struct op()

struct op(int, double, str, int)

0] 0.01 0.02 0.03 0.04 0.05

Time (sec.)

SOAP EMOSP to SOAP + SOAP to MOSP

62

Figure 4-13: Time spent of different Web Service operation call

Chapter 5 Conclusion

5.1 Contribution

The growth of Internet technologies has unleashed a way of innovations that
change the way people communicate and collaborate. Most people can barely imagine
life without networks. The rapid rise of Internet has ushered in a new era. Nowadays,
companies are moving their main operations to web for better automation, efficient
business processes and global visibility. We need an integrated, robust solution for
leveraging the existing applications, rapidly adapt to the unique needs and continually
evolve as requirements change over. time.

The current trend of such solutien’is moving-away. from tightly coupled systems
towards systems with loosely coupled;-dynamically.bound components. Web Service
is the present evolution of this new category:of services. It is an interface describing a
collection of operations which ‘are netV\i@rk-acc ble through standardized XML
messaging. Web Service technology provides |a/language-neutral, platform-neutral
programming model accelerati ng application‘integration above the networks.

Although Web Service is very popular and in general use, which solves many
problems, there are till some insufficiency. For example, it is a stateless service
system, which does not record the state of each client using it and can only provide
services with simpler interaction with clients, such as key word search.

A brand-new solution, M eshObject Service Protocol (MOSP) provides another
choice now. First of all, in MOSP world, each node (also known as peer) and each
service it provides in the networks can be identified by a unigue MOSP URL, which
means we replace the origina Hypertext Transfer Protocol (HTTP) with MOSP.
Moreover, MOSP uses the concept of object-oriented, which enables users to obtain
an object instance of the service provided by a peer by binding to its MOSP URL.
MOSP can provide stateful services with such way. Besides, MOSP contains the
concept of inheritance as well, which enables MOSP services to be reused more freely
and easily, and therefore reduces the cost and time to develop applications.

Although MOSP brings so many benefits, Web Service is still the most popular

63

service system in general use. To promote MOSP service, we need to make the old
services, which Web Service provides, still available in MOSP environment. This way
can lower the entrance barrier to newcomer. Obviousdly, it isimpractical to rebuild and
develop new MOSP services which provide the same service as Web Service does. It
is much better to enable MOSP clients to call Web Services. For this purpose, we
proposed a Generic Gateway Service System which directly transforms Web
Services into MOSP services. With the gateway system we proposed, entrance barrier
to MOSP can be reduced, and new users are more willing to join the MOSP
environment. Furthermore, they can enjoy the profits and convenience MOSP brings
and also utilize the old Web Services they need.

The Gateway system we proposed fulfills our requirements by providing a
MOSP server (the gateway), which is responsible for transforming a Web Service into
arelative MOSP service on reading in a WSDL URL text-string which MOSP clients
input, and then managing the interactions between MOSP clients and that relative
MOSP service.

This gateway system provides two-main functions. one is the function for
description, to transform Web Service Description L anguage (WSDL) documents
into MOSP Interface Definition Languag‘__e__(MIDL); the ather is the function for call,
to transform Simple Object Atcess Protoﬁf)l- (SOAP) messages into and from MOSP
messages. WSDL and MIDL are'usedto describe Web' Services and MOSP services,
respectively. SOAP messages and MOSP messages (MOSP CALL message) are used
to transfer the request and response between 'services and clients. We can clearly see
that the main procedure in each function‘is the transformation, and since Web Service
and MOSP use different data type scheme and object model, the transformation
between data types and the marshaling of arguments are needed.

We have made some translation rules, which define the mappings between XML
and MOSP data types in gateway function for description, since most Web Services
use XML scheme data types. Also, the trandation rules define the mappings among
Java data types, XML data types and MOSP data types, in order to handle the
marshaling between arguments in gateway function for call.

Also, we provide a way to abstract WSDL information and construct SOAP
messages, which helps other service systems such as RMI or CORBA implement their
gateway for calling Web Service.

However, there exist some limitations in the gateway system we proposed. First
of all, the Generic Gateway Service System provides only one MOSP server
responsible for handling the request for Web Services, which may cause performance

64

bottleneck and single point of failure problems when MOSP users and the demands
for invoking Web Service increase.

Secondly, the gateway system we proposed only works when the Web Service
uses SOAP binding. However, since aimost all Web Services support SOAP binding,
the gateway system is avallable in most cases. Thirdly, the XML data type
information, such as the value spaces or the original relationship between data types,
may be lost during transformations. Also, this gateway system does not support Web
Service using data type schemes other than XML scheme, unless the formers are
based on the later. Last is the loss of WSDL information, such as the minoccurs or
nillable atributes of argument elements, which contain ideas that MOSP does not
have.

5.2 Future Work

In the following, we highlight several issues.and concepts that could be studied
further. :

5.2.1 Improve limitations-

e

In this research, we proposed a gate\;}ay systemwhich enables MOSP clients to
call Web Service. However, there exist some limitations which we have mentioned
above. We hope to solve those by providing a more complete and full-scale gateway
system which support other protocol bindings such as MIME binding and other data
types. Also, we hope this gateway system can provide a better transformation rule
which can reduce the information loss during transformations or marshaling
procedures. Furthermore, we need a better design of gateway system which can solve
the possible performance bottleneck and single point of failure problem of the
gateway system we proposed.

5.2.2 Interoperability between MOSP and Web Service

To provide a more comprehensive gateway system and to achieve the
interoperability between Web Service and MOSP service, we need to enable Web
Service clients to call MOSP services. However, it needs lot of works since MOSP
servicesis interdependent while Web Service is distributed and independent.

We discuss the challenges we may face when implementing the complete

65

interoperability between MOSP and Web Service as follows.

5.2.2.1 0O (stateful) to Non-00 (stateless)

The most different part between MOSP and Web Service is that the former
contains the concept of object-oriented and is stateful while the later does not. MOSP
use different object instances held by different usersto record their state. For example,
MOSP server can easily differentiate the states of its client A and client B, such as the
name of client A, whereas Web Service can not do thissinceit is stateless.

Transforming a Web Service into aMOSP Service is more feasible. However, the
transformation from a MOSP Service to a Web Service is much more complex and
more likely to be impossible to accomplish, since MOSP Services are interdependent
while Web Services are distributed and independent. One simple feasible solution isto
create a unique parameter for each user to distinguish them, and add it as an argument
into all operations to record the states of eachruser in Web Service. Another more
intuitive way isto directly build each MOSP.0bject instance into an independent Web
Service. However, al these solutions do not solve the problem caused from trying to
transform MOSP Service with the inheritanee and, dependency characteristics into
Web Service which do not contain them. ”" :

5.2.2.2 Inheritance to Non.-.In_}.leritance :

foo'{

class foo { .
10); O
} J
class bar extends foo { bafr 5)
£20) o, f205 . 3(foot)
: S— T T M3(bar b)?P
barb = new bar(); loo'bar’y
_ f10);
b.fl(), f20'
b.f2(); y ’
inheritance No inheritance

Figure 5-1: Inheritance to No-Inheritance

66

One of the differences between MOSP and Web Service is the concept of
inheritance. To transform the system with inheritance to a system with no inheritance
is also a difficult problem. Take Figure 5-1 for example, there is a class foo and a
class bar inheriting from foo. Then we can get that bar will include all operationsin
foo, and bar is seen as foo class from the concept of polymorphism. To convey such
idea with no inheritance way, we may need to create foo’ and bar’ which represent
foo and bar (not include the operations inherited from foo) respectively, and foo’ bar’
which contains all operations in foo’ and bar’ classes. Thus foo’bar’ may be able to
express bar inheriting from foo which contains both operations of foo and bar.
However, things are not so easy. Since we can not see foo'bar’ as a foo class, which
also means that we lose the characteristic of polymorphism, we can not use foo' bar’
as afoo input parameter while doing operation calls. Consequently, the transformation
of the concept of inheritance is also a huge challenge.

. '-'“5 IE"

67

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]

[9]

Bibliography

Amazon.com. Amazon Web Services
http://www.amazon.com/gp/browse.html Z7node=3435361.

Aniruddha Gokhale, Bharat Kumar and Arnaud Sahuguet. Reinventing the
Wheel? CORBA vs. Web Services.
http://www.2002.0rg/CDROM /alternate/395.

Castor. Open Source Data Binding Framework for Java.
http://www.castor.org/.

Common Object Request Broker Architecture (CORBA)
http://www.corba.org/.

Dynamic Invocation Interface (Dl1)
http://users.skynet.be/pascalbotte/rcx=ws-doc/dii.htm.

Fan Yu, Yang Fang, Liu.Bixin, Zhou B_in. Research and implementation of
a SOAP-CORBA gateway |system- [J]. | Computer Engineering and
Applications, 2004, 40 (29): 97-100-~

Feng Mingzheng. Integfqt_iorl of ‘Web| Services and CORBA. Journal of
Southeast University (National Science Edition). 2005-04-04.

GlassFish. Open Source Application'Server.
https://glassfish.dev.java.net/.

Gu Haiqun, Gu Qingfan, Wu Jieyi, Li Yu. Design and realization of
CORBA calls encapsulated by Web Services [J]. Computer Engineering,
2005, 31 (1): 114-116.

[10] Irmen de Jong. Web Services/SOAP and CORBA. April 27, 2002

http://www.xs4all.nl/~irmen/comp/CORBA vs SOAPhtml.

[11] Java Platform, Enterprise Edition (Java EE)

http://java.sun.com/javaee/.

[12] IDOM. Provides a complete, Javabased solution for accessing,

manipulating, and outputting XML data from Java code.
http://www.dom.org/.

68

[13] Mapping CORBA and SOAP.
http://dsrg.mff.cuni.cz/seminars/2000-10-31-kali bera-corba-soap/referat.ht
ml.

[14] Microsoft .NET http://www.microsoft.com/taiwan/net.

[15] Microsoft SOAP Toolkit 3.0
http://www.mi crosoft.com/downl oads/detail s.aspx ?Familyl D=c943c0dd-c
eec-4088-9753-86f052ec8450& DisplayL ang=en.

[16] OASIS. Organization for the Advancement of Structured Information
Standards. http://www.oasis-open.org/home/index.php.

[17] OASIS. UDDI Version 3.0.2 http://www.uddi.org/pubs/uddi_v3.htm.

[18] Object Management Group, Inc. Formal/04-04-01 WSDL-SOAP to
CORBA interworking, Version 1, 0 [S]. U.S.A., 2004.

[19] Object Management Group, = Inc. = Formal/05-02-01 CORBA to
WSDL/SOAP interworking. specification [S]. U.S.A., 2005.

[20] Object Management Group, |ne., Simple CORBA Object Access Protocol
(SCOAP). orbos/00-09-03, orb6s/00-09-04.

[21] OMG. The Object M anagemehi_i Gr%up., http:/Awww.omg.org/.

[22] Remote Method Invocati on (_RIM)
http://java.sun.com/javase/technol ogies/core/basi c/rmi/index.j sp.

[23] Rogue Wave Software Inc. XML-CORBA link (XORBA) [EB/OL].
http://www.roguewave.com/support/legacy/. 2005-09-23.

[24] SourceForge. SOAP to CORBA bridge. http://soap2corba.sourceforge.net/.

[25] Sun Microsystems. JAVA.com http://www.java.com/en/.

[26] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition)
http://www.w3.0rg/ TR/xml/.

[27] W3C. Simple Object Access Protocol (SOAP) 1.2
http://www.w3.orq/TR/soap/.

[28] W3C. Web Service Description Language (WSDL) 1.1
http://www.w3.0org/TR/wsdl.

[29] W3C. Web Services. http://www.w3.0rg/2002/ws/.

69

[30] W3C. World Wide Web Consortium. http://www.w3.org/.

[31] Web Services Description Language for Ja (WSDL4J)
http://sourceforge.net/projects/wsdl 4.

70

