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摘要 

臨床醫學使用超音波影像來診斷肝臟疾病，很倚賴視覺所看到的特徵；然而

這些特徵並沒有前後一致的定義。在本論文裏，幾種由 Amadasun 所提出的特徵被

用來量化超音波影像中所看到的特徵。在量化這些特徵之前，會先利用「反掃描

轉換」來降低因為超音波成像「數位掃描轉換」所帶來的影響；這個反掃描轉換

必須考量特徵的性質而設定取樣頻率。本研究使用了 300 份海綿和肝臟的超音波

影像來探討這些特徵，以及反向掃描轉換的必要性。本研究發現所使用的特徵必

須根據所要觀察的組織特性，而 Amadasun 所提特徵中的「coarseness」和「busyness」

正好可以反映 fully developed speckle 和肝臟組織的特性。 

 

 

關鍵詞：反向掃描轉換；超音波影像紋理；視覺特徵的量化；肝臟；B-mode

成像 
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Abstract 

The visual features are important in clinically diagnosing liver diseases with 

ultrasound image texture. However, there is no consistent definition of these features. In 

this study, several textural features proposed by Amadasun are adopted for quantifying 

the visual features of ultrasound image texture. To cope with the distortion caused by 

the digital scan conversion (DSC) in ultrasound imaging, a back-scan conversion (BSC) 

algorithm is applied to homogenize the sampling format and sampling rate of ultrasound 

image texture before measuring these features. The effectiveness of this measure is 

investigated using 300 ROI’s of sponge and liver images. It is confirmed that BSC is an 

important preprocessing step in quantifying these features of ultrasound image texture. 

By this measure, the visual features may be quantified. The results show that the use of 

the features is dependent on what is looking for; that is, the distinction between tissue 

echotexture and fully developed speckles should emphasize on the “coarseness” of the 

echotexture, while the one between normal liver and cirrhosis should emphasize on the 

spatial intensity variation (busyness). This study shows a correlation between the tissue 

and the ultrasound echotexture. 

Keyword: Back-scan conversion, ultrasound image texture, quantification of visual 

features, liver, B-mode imaging
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Chapter 1  

Introduction 

B-mode ultrasound is usually used to diagnose liver diseases for its convenience, 

low cost, and real time operation. In general, B-mode images are reliable in detecting 

focal liver diseases and less efficient in detecting diffuse disease by human vision [1]. 

Some physicians announced that visually estimated coarseness of the ultrasound image 

texture is useful for classifying parenchymal liver diseases [2, 3]. Some physicians used 

the terms of roughness [4-6] and heterogeneity (or homogeneity) [7, 8] to describe the 

ultrasound image textures. 

It is generally assumed that normal liver has a homogeneous parenchyma, yielding 

“fully developed” speckle; therefore, speckles should be randomly and homogeneously 

spread over the area of liver parenchyma in ultrasound images. On the other hand, for 

the case of fibrotic or cirrhotic liver, the regenerative nodules [9] make the echotexture 

of the cirrhotic liver parenchyma coarsen [10]. However, there is no precise definition 

of visual coarseness and various methods were proposed for quantifying the coarseness 

of echotexture. Raeth et al. [11] used gray level co-occurrence matrix [12] to measure 

coarseness. Kimura et al. [13] classified the echo patterns of cirrhotic liver into four 

types based on nodule size. Following Kimura, Fukuda et al. [14] used an artificial 

neural network to estimate the so-called “coarse score” to assess the diameter of 
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regenerative nodules, which is supposed to be correlated to the coarseness of 

parenchymal echo pattern. Like the situation of coarseness, there are no absolute 

definitions of roughness and heterogeneity. Verhoeven et al. [15] used fractal dimension 

to measure the roughness of echotexture; while Wun et al. [16] devised some 

second-order statistics to estimate the roughness. On the other hand, Momenan et al. [17] 

calculated the heterogeneity of a four-dimensional space which comprises 2 first-order 

and 2 second-order statistics of the back-scattered signal. 

Except for the “coarse score” proposed by Fukuda [14], these literatures mentioned 

above do not correlate their features with “tissue texture” well. Nevertheless, in most 

clinical cases, echotexture rarely presents apparent hypoechoic macro-nodules in liver 

parenchyma to be estimated visually and/or computationally. One reason is due to the 

presentation of speckles; another might be for the cause of cirrhosis. The coarse nodular 

pattern was found in a significantly higher percentage of patients with HDV-related 

cirrhosis (51%) compared with those with HBV (9%), HCV (9%), ALC (11%), or PBC 

(9%) [18], where HDV stands for the abbreviation of hepatitis D virus, HBV for 

hepatitis B virus, HCV for hepatitis C virus, ALC for alcoholic cirrhosis, and PBC for 

primary biliary cirrhosis, respectively. Therefore the method proposed by Fukuda et al. 

might not be applicable to most clinical cases, and it is necessary to use other ways to 

evaluate the characteristics of echotexture with consideration to the correlation between 
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tissue texture and the computational texture features. 

Does only “fully developed speckle” comprise the echotexture of a normally 

homogeneous parenchyma? Practically, if the scale of tissue structure is close to or 

larger than the scale of the size of speckle, the echotexture should present the change of 

tissue structure, not only the fully developed speckles. The speed of ultrasound wave is 

supposed on a fixed order of 1540 m/s in soft tissue, and the frequency 3.5 MHz, and 

then the wavelength of transmitted ultrasound wave is about 0.44 mm 

( 44.0
105.3
101540

6

3

=
×
× ). On the other hand, the lateral resolution scale of the used 

ultrasound machine (Toshiba SSA-700) is about 0.9 mm. While the scale of the lobular 

structure of the liver is about 1 mm, and the scales of some components (like the central 

vein and portal vein terminal) are near the resolution cell. Consequently, comparing 

these scales, the effects caused both by the speckles and the change of tissue structure 

should be taken into account simultaneously when analyzing soft tissue, like the liver. 

Before that, we used sponge, which is comparatively more homogeneous than liver and 

whose structure scale is less than the wavelength of transmitted ultrasound wave, as the 

reference to compare the characteristics of its ultrasound images with that of the livers. 

Curved-linear mode is the most common choice of the probes, in the clinical 

operation of diagnosing the liver of patients using ultrasound, for its convenience with 

larger area of filed of view comparative to sector mode. Because of the nature of 
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ultrasound B-mode imaging, digital scan conversion (DSC) transforms the data on 

acoustic scan lines into that pertaining to a Cartesian raster format, leading to the 

distortion of structural information and statistical distribution of the texture patterns [19, 

20]. The characteristic of echotexture (i.e. speckle size) was shown by these authors to 

increase proportionally to depth in an attenuating medium. Figure 1 shows two regions 

at different depth of a homogeneous ultrasound image of sponge. The speckle at shorter 

imaging distance is obviously finer than that at far imaging distance. If this problem is 

not treated properly, any computed texture features would take these two regions as two 

different texture patterns, in spite of the fact that they pertain to the same ultrasound 

image of a homogeneous sponge. In addition to the feature extraction from echotexture, 

Figure 1: Homogeneous ultrasound sponge images. The left and right images are 

zoomed sub-images of the central one, which are surrounded by white rectangle. It 

can be observed that the speckle size at shorter imaging distance is smaller than that 

at far imaging distance. 
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the effect of sampling rate caused by digital scan conversion (DSC), the nature of 

ultrasound B-mode imaging, was also explored to meet the practically clinical usage of 

ultrasound B-mode image.  

In this article, we try to help diagnose liver cirrhosis with ultrasound image, based 

on visually textural features. Chapter 2 describes how to visually diagnose liver fibrosis 

with ultrasound echotexture, where contains the histology and pathophysiology of the 

liver, and the correlation between ultrasound echotexture and the morphological 

information of liver. The vulnerability of diagnosis to the digital scan conversion (DSC) 

and non-uniform sampling rate is also demonstrated. In Chapter 3, we introduce a 

quantification model to measure textural features which relates highly to human vision. 

A method to reduce the effect of DSC and non-uniform sampling rate is provided here. 

The experiments on quantifying these textural features are listed in Chapter 5, and then 

is the discussion and conclusion. 
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Chapter 2  

Clinical Diagnosis of Liver Diseases Based on Ultrasound 

Echotexture 

Since the diagnosis of liver diseases based on echotexture depends greatly on the 

morphology of tissue structure, some basic histology of normal liver is given first in this 

chapter, and then we describe the pathophysiology of fibrosis. At last, we try to describe 

what is seen in an ultrasound image of the liver by linking the histology and 

pathophysiology of the liver to its echotexture. 

2.1 Histology of the Liver 

The liver is encapsulated with a connective tissue capsule which branches and 

extends throughout the substance of the liver. The connective tissue septae is the 

scaffold for supporting and provides the sinusoids along which afferent blood vessels, 

lymphatic vessels and bile ducts traverse the liver. The sheets of connective tissue 

divide the parenchyma of the liver into very small units called lobules. The hepatic 

lobule is the structural unit of the liver which takes the shape of irregular polygonal 

prisms. An idealized representation of the liver lobule is a six-sided prism about 2 mm 

long and 1 mm in diameter (Figure 2). 

At the corners between adjacent lobules are the so-called portal triads (portal 

canals, portal areas). These are regions of connective tissue which include branches of 
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the bile duct, the portal vein, and the hepatic artery. Along the central axis of each 

lobule runs a central vein, which is a branch of the hepatic vein. In cross sections, the 

lobule is filled by cords of hepatic cells, called hepatocytes, which radiate from the 

central vein and are separated by vascular sinusoids. The cords of hepatocytes represent 

the parenchyma of the liver.  

Terminal branches of the hepatic portal vein and hepatic artery mix together as 

they enter sinusoids in the liver. Sinusoids are vascular spaces lined by a fenestrated 

endothelium (i.e., an endothelium that is full of holes), and bounded circumferentially 

by hepatocytes. As blood flows through the sinusoids, a considerable amount of plasma 

is filtered into the space between endothelium and hepatocytes; the space is called the 

space of Disse. Therefore, the blood may flow freely over the exposed surfaces of the 

hepatocytes in the space of Disse (Figure 3). The location of space of Disse is that of 

connective tissue and the space contains scattered reticular fibers (e.g. collagen type III) 

Figure 2: Liver lobule is the unit in the liver, which is about a six-sided prism about 2 

mm long and 1 mm in diameter 

lobulelobule

portal triad 

central vein

bile duct 
hepatic artery 

portal vein 
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which hold the hepatocytes together. More significantly, since the fenestrations of the 

endothelium permit free movement of blood plasma, the interstitial fluid in the space of 

Disse is blood plasma. Hence, hepatocytes reside in direct contact with blood. 

2.2 Pathophysiology of Liver Fibrosis 

Fibrosis refers to a structural change in the liver with chronic injury. The 

extracellular matrix (ECM) complexes that lead to fibrosis are not uniform; they differ 

in age and chemical composition. The ECM is the extracellular part of connective tissue 

that usually provides structural support to the cells. Over a period of many months, the 

collagen fibrils of the complex become cross-linked. Fibrogenesis denotes production of 

ECM. It increases in response to injury and is essential to tissue repair. Chronic injury 

of the liver elicits a persistent repair response that culminates in fibrosis and scar 

formation [21, 22]. 

Sinusoid lined with fenestrated endothelial cellcentral vein 

from hepatic artery

from portal vein 
space of Disse 

Figure 3: Liver sinusoid is a canal in which the blood passes by. The space of Disse 

contains scattered reticular collagen. 

hepatocytes 
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The wound repair response in liver involves the stellate cells, which reside in the 

space of Disse. Only a low density ECM is present in normal liver, and stellate cells are 

quiescent in the state. While during liver injury, stellate cells are activated and 

proliferated, leading to both morphological and functional changes. Morphological 

changes include the development of prominent rough endoplasmic reticulum as the 

missing hepatocytes are replaced by fibrous connective tissue. Among the functional 

changes is a noticeable increase in secretion of ECM proteins, including collagens (type 

I and III) and fibronectin. These ECM complexes accumulate from a net increase in 

their deposition, becoming cross-linked, in the liver and then constitute the roughly 

reticular scaffold, also namely “scar”. 

Cirrhosis can be defined as the end stage consequence of fibrosis of the hepatic 

parenchyma resulting in nodule formation and altered hepatic function. Many serum 

markers and other non-invasive tools have been developed, liver biopsy, however, is 

still the gold standard for estimating the stage of fibrosis, though it suffers the sampling 

error and may induce autoimmune diseases. 

2.3 Correlation between Tissue and Echotexture 

What should emerge from the echotexture? Speckles, tissue structure information, 

both of the above, or others? Ultrasonic wave transmitted from the scanner to the human 

tissue undergoes the acoustic change of the media, and some of it returns back to the 
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scanner. The signal collected by the scanner contains the acoustic reaction of all the 

materials the wave passes through. However, due to the large wavelength and beam 

width of ultrasonic wave comparatively to the dimension of material or tissue structure, 

echotexture not only presents the tissue structure but also artifact, speckles. The key 

factor is the relationship between the scale of the tissue structure and the ultrasonic 

beam width and wavelength. It is mentioned above that the ultrasonic wavelength is 

about 0.44 mm at 3.5 MHz, and the scale of the liver lobule is about 1 mm. The 

wavelength in common use is close to the dimensions of some materials in the liver 

lobule, like the central vein and portal vein in the liver triad. Therefore, the echotexture 

of a liver consists of both speckles and the structural information. That is, normal liver 

is not a “homogeneous” medium, and the traditional assumption that normal liver is 

producing fully developed speckle should be corrected. 

The physical constitution of tissue comprises scatterers on several length scales so 

that their backscattering changes according to their shape and size relative to the 

insonifying wavelength. In general, there are three categories of scatterers with respect 

to the length scale: “specular” for reflections from objects whose scales are much bigger 

than a wavelength; “diffractive” for objects slightly less than a wavelength to hundreds 

of wavelengths; and “diffusive” for scatterers much smaller than a wavelength. If the 

object’s dimensions are much bigger than a wavelength, the reflection process can be 
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approximated by a ray incident on the object so that the scattered wavefront is nearly a 

duplicate of the object shape. At the other extreme, when the wavelength is large 

compared to the scatterers in a resolution cell, speckle arises from the constructive and 

destructive interference of these tiny scatterers, and it appears as a light and dark 

granular grainy pattern. For a diffractive scattering, the interaction between the 

wavefront and object is very complicated in human tissue. The scattered waves can be 

different in shape and they can have maxima and minima that vary with angle and the 

product of object radius and the wavenumber. 

To cope with different scatterer scales, some researchers proposed a scheme to 

classify the tissue scattering [23]. Class 0 scattering is on a length scale of 10-10 m 

associated with macromolecular effects, which produce energy absorption. Class 1 

scattering is caused by the concentrations of living cells higher than 25 per resolution 

cell, and it is diffusive due to its length scale, ka<<1, where k denotes the mean 

wavenumber and a is the radius. Class 2 is scattering from the structure of tissue in 

concentrations near one per resolution cell, and the scatterers are independent and 

distinguishable through their unique space- and frequency- dependent characteristics. 

Class 3 scattering is specular on a length scale ka>>1, and is with respect to organ and 

vessel boundaries. Consequently, Class 2 and 3 scatterings produce an echotexture with 

contrast higher than that of Class 0 and 1, with the similar elasticity. By the way, even 
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though most ultrasound contrast agents are tiny gas-filled resonant spheres, referred to 

Class 1, their high rigidity induces high contrast. 

2.3.1 Echotexture of fully developed speckles 

An ultrasound image of sponge may be used to present Class 0 and Class 1 

scattering, as sponge is an attenuating medium and its scatterers are much smaller than 

the used ultrasonic wavelength. Class 0 scattering is compensated by the time gain 

compensation (TGC), while Class 1 scatterers result in speckles in the echotexture. The 

tissue structure of sponge is “isotropic”, which means the tissue properties do not vary 

with angular orientation, but the echotexture shown in Figure 1 is anisotropic. There are 

two major reasons for this. One is because of the digital scan conversion (DSC), which 

transfer data in polar coordinate format into that in Cartesian coordinate grid on a 

monitor. The other is due to the different sampling rates in the lateral and axial 

orientations. If the ultrasound image of a sponge is adjusted with one fixed sampling 

rates in the both orientations and is restored to be in a polar coordinate format, the 

Figure 4: Ultrasound image texture of a sponge with a fixed sampling rate in both the 

lateral and axial orientation. This texture is homogeneous and isotropic. 
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resulting echotexture prevalently with speckles should be homogeneous and isotropic  

(Figure 4). Speckles look like “superposed” on the background. As the Class 1 

scattering is caused by weak scatterers in soft tissue, we may surmise that the contrast of 

the echotexture of sponge is less than that of Class 2 and 3 scatterings.  

2.3.2 Echotexture of the liver 

In a typical ultrasound image of the liver are examples of all the four scattering 

types (Figure 5). As liver parenchyma is a collection of molecules, Class 0 scatterers are 

present. The speckle indicates Class 1 scatterers. Small vessels (including the terminal 

branches of bile duct, hepatic artery, and portal vein in a portal triad, the central vein in 

Figure 5: Ultrasound image of a normal liver. This image exemplifies several acoustic 

scattering types. 

Class 3

Class 2
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a liver lobule) correspond to Class 2 scatterers. Eventually, the liver boundaries are 

Class 3 scatterers. Comparing Figure 5 with those of sponge (Figure 1 and 4), the main 

difference between the textures is there are some “white spots” with higher local 

contrast in the echotexture of the liver, and these white spots represent scattering of 

Class 2. Therefore, the assumption that only fully developed speckle present in the 

echotexture of normal liver should be corrected.  

The tissue structure of liver parenchyma is assumed isotropic. As mentioned above, 

however, digital scan conversion and the comparatively lower lateral sampling rate 

make the echotexture anisotropic. With the unification of sampling format and sampling 

rate, the echotexture of the liver parenchyma should be more isotropic, like that of the 

Figure 6: Ultrasound image with the unification of sampling rate. 

Class 2 
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sponge. Figure 6 is the one in Figure 5 with the unification of the sampling format and 

sampling rate. Even if the region of interest surrounded by a rectangle is somewhat 

“heterogeneous”, there is no obvious tissue structure information for rough endoplasmic 

reticulum. For this reason, this echotexture may be categorized as one which does not 

have morphological structural change. 

Connective tissue which supports the structure of the liver may be Class 1, 2 or 3, 

depending on the ka number and the incident angle, where k denotes the mean 

wavenumber and a is the radius. Low density extracellular matrix (ECM) complex 

present in the space of Disse may be considered as Class 1 scatterers. When the liver is 

in injury, ECM complexes become cross-linked, and thus most of them are associated 

with Class 2 scatterers. If the dimension scale of cross-linked ECM complex 

confronting the wavefront is large enough (i.e. ka>>1), this ECM complex is referred to 

Class 3. According to the striking increase on the amount of Class 2 (and 3) scatterers, 

forming a cross-linked reticulum, the echotexture of liver fibrosis (and liver cirrhosis) 

looks “coarser” or “rougher” and its contrast is higher than that of normal liver (or the 

region of tissue without obvious reticulum). Figure 7 is a typical ultrasound image of 

liver cirrhosis. There is prominent reticulum, denoted as Reticulum A, which is 

“superposed” on speckles. While in the subregion denoted as Reticulum B, it is not easy 

to distinguish the reticulum from the speckles. With the unification of sampling format 
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Figure 8: Ultrasound image of liver cirrhosis with the unification of sampling rate. 

Reticulum A 

Boundary

Reticulum B 

Reticulum A 

Reticulum B 

Boundary 

Figure 7: Ultrasound image of liver cirrhosis. Connective tissue caused by liver 

injury is apparent. 
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and sampling format, the corresponding to Reticulum B becomes apparent (Figure 8). 

This implies that the unification of sampling rate and sampling format may help 

separate cross-linked reticulum from speckles based on the scale. 
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Chapter 3  

Feature Extraction for B-mode Ultrasound Echotexture of the 

Liver 

Computer-aided diagnosis based on the ultrasonic image must meet what is seen by 

the physicians. In this chapter, the useful perceptual features for ultrasound liver 

echotexture are provided, and then a measure model is introduced. The textural features 

are vulnerable to the non-uniform sampling rate caused by digital scan conversion 

(DSC), thus we propose a “back-scan conversion” method with consideration to the 

sampling rate unification as a preprocessing before quantifying the visual features. 

3.1 Perceptual Features for Ultrasound Liver Echotexture 

Tissue characterization attempts to provide quantitative information about the state 

of health of the liver interrogated by ultrasound beams. Arrangement of these beams 

forms a 2-dimensional image, representing geometrically structural information of the 

tissue. Nevertheless, ultrasound echotexture suffers from the low signal to noise ratio 

and other physical limitation, such as the diffraction and DSC. It is hard to analyze 

ultrasonic echotexture quantitatively with a reliable and reusable method. Thus 

perceptual properties are widely used to measure the characteristics of an image texture, 

because it is very fast to diagnose the liver disease by the human vision of well-trained 

experts. 
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Clinically and usually, physicians use the terms of “coarseness” [2, 3], “roughness” 

[4-6], and “heterogeneity” [13] to describe the ultrasound echotexture. As mentioned in 

Chapter 2, these visual properties are indicative of cross-linked reticulum consisting of 

collagens, and this cross-linked reticulum is the result of secretion caused by liver injury. 

However, it is very difficult to define these terms consistently; they are individually 

relative properties. Besides, the echotexture of severe liver fibrosis is inferred as more 

“coarser” than that of mild liver fibrosis, or the contrast of echotexture of liver cirrhosis 

is more than that of mild fibrosis. The quantities of these perceptual properties are 

directly relative to the distribution of cross-linked reticulum and the structure change of 

the liver, which are important to indicate the stage of liver injury. Thus, we try to 

quantify the echotexture based on the perceptual properties. 

3.2 Textural Features for Ultrasound Liver Echotexture 

Ultrasound tissue characterization (UTC) could be defined as the assessment by 

ultrasound of quantitative information about the characteristics of biological tissues, and 

pathological changes [24]. UTC which might use B-mode echotexture to characterize 

the liver of a health man was first developed by Nicholas et al. [25]. After that, many 

literatures tried to detect diffuse liver diseases [4, 14-16, 20, 26-31]. Even several of 

them [15, 16] used perceptual properties, like coarseness, to analyze ultrasound 

echotexture, however, there is no evident relationship between the used features and 
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perceptual properties. Rosenfeld and Thurston [32] suggested that coarseness of image 

texture is inversely related to the number of edges per unit area. Weszka et al. [33] used 

“gray level difference statistics” to measure the degree of coarseness. Amadasun and 

King [34] extended the methods proposed by Rosenfeld et al. and Haralick [35], and 

provided several textural features based on the concept of  “patch” to evaluate the 

textural properties. Those textural features were demonstrated corresponding to parts of 

the ability of human vision, in which the “coarseness” feature was used to estimate the 

coarseness of echotexture of liver [36]. Very few literatures try to analyze ultrasound 

image textures based on tissue texture standpoint. The frequent textural features based 

on co-occurrence matrix proposed by Haralick [35] are not clinically suitable for 

ultrasound echotexture of the liver. It is because that one co-occurrence matrix needs a 

priori distance and orientation, but for liver tissue needs several distinct distances and 

orientations. It is necessary to develop a complex algorithm to compute the correlations 

between the co-occurrence matrices with distinct distances and orientations, resulting to 

an incredible consumption of computation complex. 

Amadasun and King [34] proposed several textural features which relate highly to 

visual properties, and some literatures [37-39] used these features to estimate the 

characteristics of several categories of image textures. These features benefit from local 

and global texture information, and the computation complexity and effort of 
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Amadasun’s measure is very low. The basic interrelationships of Amadasun and King in 

the gray level texture concept are as the following. The spatial organization may be 

random, may have a pair-wise dependence of one pixel on a neighborhood, or may have 

a dependence of n primitives at a time. The dependence may be structural and/or 

probabilistic. When a small-area “patch” of an image has little variation of gray level, 

the dominant property of that area is just “tone”. When a small-area “patch” has wide 

variation of gray level, the dominant property of that area is “texture.” In other words, 

the characteristics of textural properties are associated with the spatial interrelationships 

between them. This implies that gray level texture is really a two-layered structure. The 

first layer is to specify the local properties which manifest themselves in tonal 

primitives, and the second layer having to do with is specifying the organization among 

the tonal primitives. 

Amadasun’s measure [34], based on a vector )(is  called neighborhood gray-tone 

difference matrix (NGTDM, see in Appendix), is chosen for texture analysis here, and it 

relates highly to visual properties. The original definition of NGTDM from Amadasun 

is ROI-size dependent; to make feature of ROI with different size comparable and 

rational, the definition of NGTDM for an NM ×  ROI must be modified as follows: 
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The denominator is a normalization factor for different size of ROI. s(i) is a summation 

of the intensity difference of all the neighborhoods, whose central pixels are with gray 

level i. Suppose iD  is the mean Laplacian pertaining to gray level i, then eqn (1) may 

be modified as 
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where p(i) is the probability of occurrence of intensity i. We adopt four of the textural 

features proposed by Amadasun and describe their relationships to the echotexture of 

liver. 

3.2.1 Coarseness 

The first feature proposed by Amadasun is used to evaluate the degree of 

coarseness of ultrasound image texture, which is defined as 

,)()(
1

0
cos

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

hG

i
isipf ε  (2) 

where )(ip  is the probability of occurrence of gray level i , excluding those in the 

peripheral regions of the ROI, hG  is the highest image gray level, and ε  is a very 

small number to prevent cosf  being infinite. 

In an ultrasound image, speckle is inevitable and texture patterns with high spatial 

frequency are usually treated as speckle; on the other hand, low frequency texture 

patterns are considered coarser and have primitives with larger areas. In a coarse texture, 
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as a high degree of local uniformity in intensity, there would be small differences 

between ),( lkf i  and iklA , leading to the value of iklAi −  in eqn )2(A  small. 

Hence the summation of NGTDM over all image pixels would give an index of 

coarseness. From eqn (2), a small value of cosf  implies large value of s(i), which 

means a significant change in intensity, and it captures the characteristics of fully 

developed speckles; while a large value of cosf  corresponds other coarser texture 

patterns, including speckles and structural information of the tissue. In other words, 

cosf  might be treated as representing the characteristics of texture on a scale. iklAi −  

in eqn )2(A  may be regarded as the response of the eight-neighbor Laplacian filter, 

used to find local contrast (or edge) around an image pixel, and cosf  in eqn (2) 

corresponds to the suggestion of Rosenfeld et al. [32, 33]. 

Amadasun’s measure was demonstrated useful for ranking the coarseness of 

natural images; however, it has not been demonstrated useful for ranking ultrasound 

images. The efficacy of measuring coarseness of ultrasound image texture by 

Amadasun’s feature is to be shown by measuring the coarseness of ROIs at different 

sampling rates. Theoretically, the discrete Laplacian of a texture increases as the 

sampling rate decreases unless the sampling rate is so low to make the texture loses all 

information. If the sampling rate is kept to maintain texture information properly, the 

shape of gray level distribution would not change much. Therefore, the change of 
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coarseness will due primarily to the sampling spacing (i.e. distance between adjacent 

pixels), which makes the magnitude of Laplacian increases as sampling spacing 

increases. Let the coarseness at sampling rate ω  be )(cos ωf  (eqn (A3) in Appendix). 

iklAi −  in eqn (2) may be regarded as the response of the eight-neighbor Laplacian 

filter. If the sampling rate decreases, the numerator in eqn (2) increases, making the 

output of eqn (A3) decreases; that is, the coarseness ratio, )()( 2cos1cos ωω ff , must be a 

monotonic function of 21 ωω  with positive correlation. Thus, if 21 ωω > , then 

)()( 2cos1cos ωω ff >1 for the efficacy of Amadasun’s measure, and vise versa. 

3.2.2 Contrast 

Human visual system is more sensitive to contrast than absolute luminance. We 

can perceive the world similarly regardless of the huge changes in illumination. An 

image is said to have a high level of contrast if the gray level difference between two 

objects in the image is large. The human contrast sensitivity function shows the spatial 

intensity variation of image texture also affects the contrast of an image [40]. For 

example, a small checkbox seems perceptually to have a higher contrast than a coarse 

checkbox with the same dynamic range of gray level. Taking these two factors into 

consideration, Amadasun et al. proposed a textural feature to express the contrast of an 

image: 
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where Ng is the total number of different gray levels present in the image, 
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This feature is composed by two components. The first term is the average 

weighted squared difference between the different gray levels taken in pairs, reflecting 

the dynamic range of gray level. It may be expanded as follows: 
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 (3.1) 

where I  and J  are the mean gray levels of i and j. This equation shows that the first 

term is proportional to the variation in intensity. The second term is the average 

difference between pixel gray level and the average gray level of their neighborhoods; 

this quantity increases with the amount of local variation in gray level. 

Texture of an ultrasound image is composed by speckles and the structural 

scattering of the tissue. It is supposed that the spatial intensity variation of fully 

developed speckles is higher than that of the structural scattering of the tissue, and the 

difference of the mean gray level between an object and the background above a 
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threshold leads to the discriminability of this object in ultrasound image. According to 

the supposition and the definition of contrast proposed by Amadasun, an image texture 

with fully developed speckles or obviously structural scattering has a higher value of fcon 

than that composed by unclear structure and speckles. 

If a point P’ between two adjacent pixels (P1 and P2) is sampled, the mean contrast 

between P’ and P1, with P’ and P2 is lower than that between P1 and P2. Therefore, the 

ratio of contrast with higher sampling rate over that with lower sampling rate is less 

than one. 

3.2.3 Busyness 

Busyness represents the texture of cluttering of the space. A fine image texture 

with busyness is one in which there are rapid changes of gray level from one pixel to its 

neighbor; that is the spatial intensity variation of the image texture is very high. Thus, a 

fine image texture has a low level of local uniformity in gray level. On the other hand, if 

the spatial intensity variation is very low, the image texture has a high degree of local 

uniformity too, even if the contrast is large. Therefore, the degree of busyness was 

proposed by Amadasun et al. as the following equation: 
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The numerator is to measure the spatial intensity variation of the image texture; while 

the denominator is a summation of the differences between different gray level values, 
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and each value is weighted by its probability of occurrence. The denominator results in 

the suppression of the effect of contrast variations, leading to the emphasis of the spatial 

intensity variation of image texture. However, there exist some problems in the 

denominator proposed by Amadasun. For example, let the distribution of gray level shift 

by t upward, i.e. 
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 (4.1) 

It is obvious that the denominator is additionally affected by )( ji ppt − , while it should 

keep the same degree of busyness with only a shift of gray level. Therefore, this 

equation for measuring busyness is modified using the first term of fcon as: 
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It is generally assumed that homogeneous soft parenchyma has an ultrasound 

image texture with fully developed speckles; nevertheless, tissue structure affects 

ultrasound image textures as well. That is, it is necessary to consider the structural 

scattering in analyzing ultrasound image texture. The numerator of ffin is related to the 

number of edges of a texture, implying the number of patches, but susceptible to the 
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contrast of the texture; while the denominator stands for the contrast of texture caused 

mainly by the tissue structure. Therefore, ffin may be used to express the spatial 

frequency of an ultrasound image texture without the dependence on the texture 

contrast. 

For higher sampling rate, the spatial change of an echotexture becomes lower, and 

then the ratio of busyness with higher sampling rate over that with lower sampling rate 

is less than one. 

3.2.4 Complexity 

A texture is considered complex if it contains rich information. This occurs when 

there are many patches or primitives present in the texture and the primitives have 

different average gray levels. Also, a texture with a large number of sharp edges may be 

considered as complex. All these depend on the spatial period of pattern repetition and 

on the dynamic range of gray scale, which means complexity is partly correlated with 

fineness and contrast. 

Generally, ultrasound image textures in which the spatial intensity variation is low 

tend to have few patches with different average gray levels, and the patches would be 

large. Consequently, the resulting high level of local uniformity in intensity will 

produce few edges. A texture in which there are rapid gray level changes is 

comparatively more complex than a texture that has a high degree of local uniformity in 
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intensity. However rapid gray level changes would generally result in a large number of 

different gray levels, leading to a low probability of each individual value occurring. 

Therefore the sizes of primitives and/or occurrence of gray level values tend to are 

inverse with complexity. A proposed measure for complexity is as follows: 
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where Ar is the area of the texture. 

The fcom is a sum of differences between intensity values taken in pairs, and these 

differences are weighted by the sum of the probability-weighted )(is  and )( js . The 

normalizing factor, Ar( pi + pj), is used to represent the inverse relationship between 

complexity and the sizes of primitives and/or the probabilities of gray levels. Ar( pi + pj) 

would be high for coarse textures and small for fine textures. The absolute differences 

convey the influence of contrast variations on complexity. High values of fcom indicates 

a high degree of richness of information content. 

For higher sampling rate, the spatial contrast of an echotexture becomes lower, 

leading to a lower degree of complexity, and then the ratio of busyness with higher 

sampling rate over that with lower sampling rate is less than one. 

3.3 Unifying the Sampling Rate 

In order to obtain a large field of view, a curved-linear (convex-) array transducer 

is the most common choice for abdominal examination. Using this type of transducer, 
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the scan lines of the presented sector image are displayed in Cartesian coordinate grid 

(raster format) on a monitor, which is accomplished by a procedure called “digital scan 

conversion (DSC)”. Since DSC induces various sampling rates [20, 41] according to the 

depth and orientation, it is necessary to unify the sampling rate before analyze the 

ultrasound images. The preprocessing contains two aspects: back-scan conversion 

(sampling format unification) and sampling rate unification. 

3.3.1 Sampling Format Unification 

In B-mode ultrasonic imaging, the transducer transmits each ultrasonic wave in one 

direction according to the prior settings, and then receives and places the echo 

information with respect to the direction and transmitting period in a 2-dimensional 

matrix. This matrix pertains to a polar coordinate (Figure 9). In order to make a 

television or PC-style rectangular image, this information has to be spatially remapped 

by a digital scan converter, which converts the acquired polar coordinate ultrasound 

data to the Cartesian format used by digital monitors (Figure 10). Data in Cartesian 

raster format are created by interpolation from real scan lines, and data at deeper depth 

require more interpolations than that at shallow depth, leading to a coarser image texture. 

The speckle size also determines the spatial bandwidth of the images. For imaging 

distance smaller than the focal distance, the speckle size is proportional with the 

imaging distance, which means the speckle size in radians is constant. For imaging 
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Figure 10: DSC converts the polar matrix which stores the echo information on the 

left side into the raster format on the right side, where k and l are the Cartesian 

coordinates. 

Figure 9: The left depicts the scan lines (F1 to F9) of ultrasonic wave, where O is the 

intersection of the scan lines, θ  the direction, and r the wave propagation (or 

depth). The right is the polar matrix which stores the echo information with respect to 

the position and position of the data. 
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distance larger than the focal distance, two cases must be considered. In non-attenuating 

media, the lateral speckle size keeps the same, but in attenuating media, the lateral 

speckle size increases as the imaging distance increases [42]. Soft tissue is surely 

attenuating media; however, most modern instruments incorporate the capability of 

multiple and dynamic focusing which might reduce the depth dependence of speckle 

size caused by beam diffraction. 

To unify the sampling format, a method called back-scan conversion (BSC) is used 

to solve the depth dependence caused by DSC by reversing the process of digital scan 

conversion; that is, the data in a polar coordinate is the data in a unified format. 

However, it is impossible to retrieve the original data stored in the polar matrix of the 

ultrasound machine; we could only approximate the polar coordinates in depth and 

orientation. Let ),( lkf  be the image value of any pixel at ),( lk  in the raster grid, and 

( , )f r θ  the image value at ),( θr  in the polar coordinate corresponding to ),( lk , 

where r  and θ  are the depth and angle from ),( lk  to the intersection of scan lines 

(as O  depicted in Figure 11). The geometrical relationships between these two 

coordinate systems are 2 2( )r k R l= + +  and 1tan l
k R

θ −=
+

, where R  is the 

shortest distance between O  and any location in the echo area, such as the length of 

OA  in Figure 11. Since ),( lk ’s are defined on discrete grid points, the corresponding 

),( lk  for any given ),( θr  may not exist. Value at a given ),( θr  can only be 
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approximated by interpolation techniques, and we used the “griddata” function in 

Matlab® to calculate ( , )f r θ  with the cubic interpolation. 

3.3.2 Sampling Rate Unification 

. Computational texture features are very susceptible to the change of image 

sampling format and sampling rate, which changes the shape and intensity contrast of 

texture primitives (speckle cell). Moreover, Lai et al. [36] found that the sampling rate 

used in the re-sampling process of BSC should be optimized according to the used 

features, corresponding to the statements of Haralick [12] and Weszka et al. [33] that 

various sampling spacing should be considered for a good way of analyzing texture 

coarseness. The format of sector scan makes the speckle cells sampled unevenly in two 

aspects. Firstly, the sampling rate varies with the depth and orientation relative to the 

intersection of scan lines, which makes the cell size of speckle spatially varying. This 

Figure 11: Back-scan conversion. The left is the Cartesian raster format, and the right 

is the polar format. Position at ),( '' lk  in the Cartesian raster corresponds to that at 

),( θr  in the polar format. 
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will cause a scale problem distorting any measure of a fixed scale to analyze the texture 

at different positions. To reduce the dependence of textural feature measures on depth 

and orientation, the sampling rate of the ultrasound image must be unified. Secondly, 

the sampling axes (i.e. the ),( lk  and ),( θr  in last subsection) of the speckle cells are 

spatially varying also, which make the shape of speckle cells varying. As the case of the 

sampling rate problem, the sampling format must be unified too. Following the 

quantifications proposed by Oosterveld et al. [19], the average speckle size may be 

considered as the full-width-at-half-maximum (FWHM) of the autocovariance function 

(ACVF) from the echographic images: 

( )( ){ }ff lkflkfE µζξµζξ −++−= ),(),(),ACVF(  (6) 

where fµ  is the mean of image value in the region of interest (ROI), E  is the 

expectation, ),( lk  and ),( ζξ  are the coordinates of the image and ACVF, 

respectively. Sampling rate herein is defined as the number of samples per speckle (s/s), 

i.e. the FWHM of an ACVF, both in axial and lateral directions. 

In order to elaborate the characteristics of Amadasun’s measure, the sampling rate 

should be isotropic to that in the orthogonal direction. One feasible way to determine 

the sampling rate is to firstly measure the sampling rates of k  and l  directions near 

the central scan line in the Cartesian raster format, where the area suffers less from DSC 

than other areas. To prevent the loss of information from the conversion, the images are 
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over-sampled during the interpolation. Besides, according to Lai et al. [36], the 

sampling rate does not affect the separability of echotexture much on condition that the 

axial and lateral sampling rates are the same and it is higher than the Nyquist rate. The 

over-sampling rate, sf , used in both axial and lateral directions during the interpolation 

process in BSC is then determined. After the BSC, a Gaussian filter is used to reduce 

the artifact from interpolation, whose standard deviation, set by 2 in the experiment, is 

defined with respect to sf  [43]. 

The sampling rates in the axial and lateral orientations should not be less than that 

in the raster format. Figure 12 is the result after BSC of an ultrasound image of a sponge. 

It may be observed that the sample of speckle pattern at a small depth in homogeneous 

ultrasound sponge image is similar to that at a large depth. Figure 13 shows the FWHM 

of the axial and lateral ACVF of Figure 12. It is also observed that, after BSC with the 

unification of the sampling rate, the sample of speckle becomes practically constant, no 

Figure 12: Ultrasound images after back-scan conversion on Figure 1. The right two 

images are the zoomed sub-images of the left one, surround by white rectangles. 
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matter in axial or lateral direction. 

 

 

Figure 13. FWHM of the axial and lateral ACVF after BSC. 
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Chapter 4  

Experiments & Results 

In this study, we show how to quantify the visual features ultrasound image texture, 

and investigate the benefit of back-scan conversion for diagnosis. First, the used 

materials are described. Then the separability of each feature is demonstrated. 

4.1 Material 

An SSA-700 ultrasound scanner (Toshiba, Tokyo, Japan) with a curved-linear 

probe (PVT-375BT, center frequency at 3.7 MHz, and bandwidth 1.9-6 MHz) was used. 

The transmit focus was at 4 cm, and the transmit output level and dynamic range was 87 

dB and 60 dB, respectively. The image size was 480640×  pixels and the deepest 

imaging distance was 8 cm. Images of 6 healthy volunteers and 14 patients with liver 

cirrhosis were scanned by physicians with same imaging conditions except the TGC and 

overall gain setting. TGC and overall gain were adjusted by physicians manually to 

make the images visually comfortable. The data with liver cirrhosis were verified by the 

clinical case histories of the patients. Because coarseness is a relative feature, images of 

3 pieces of homogeneous sponges were used as the references for coarseness 

comparison. The sponges were immersed in water, and the air in the sponges was 

squeezed out as much as possible. 

The goal of using the echotexture of sponge is to create the echotexture of fully 
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developed speckle as the “pure” reference, because the quantities of visual features are 

comparative. On the other hand, the “pure” echotexture of sponge may be used to 

measure the efficacy of back-scan conversion with the unification of sampling rate. 

The regions of interest (ROIs) of each ultrasound liver image were selected by the 

following criteria: (1) the area contains only parenchymal texture without tissues such 

as vessels or walls; (2) the area is as large as possible; (3) every ROI dose not overlap 

with others; (4) ROIs of images after preprocessing were cropped at their corresponding 

positions as that before preprocessing. Totally 153, 61, and 136 ROIs of original 

ultrasound images of sponges, healthy livers, and cirrhotic livers were selected, 

respectively; the same amounts of ROIs of that after preprocessing at the same positions 

were used for performance assessment. 

4.2 Efficacy of Amadasun’s measure 

Figure 14 shows the distribution of coarseness ratio of the homogeneous 

ultrasound sponge texture with the preprocessing of sampling format and rate 

unification, in which 1ω =12 s/s, 2ω =6 s/s and 21 ωω =2. The mean value of the 

coarseness ratio )()( 2cos1cos ωω ff  is 2.71 with a standard deviation of 0.07. As 

mentioned above, 21 ωω >1 leads to )()( 2cos1cos ωω ff >1, which confirms the efficacy 

of using Amadasun’s coarseness to characterize the effect of sampling rate on the 

coarseness of ultrasound image texture. It is also found that the coarseness ratio of liver 
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Figure 15: Coarseness ration of the liver. The mean is 2.605, and the standard 

deviation is 0.165 
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Figure 14: Distribution of coarseness ratio of homogeneous ultrasound texture of 

sponge with ratio of sampling rate equal to 2. 
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images sampled at different rates have the same phenomena as above, but they have a 

higher mean value and standard deviation as shown in Figure 15. The reason that the 

standard deviation of Figure 15 is larger than that of the sponge is because parts of the 

primitives of the echotexture of the liver have larger scale than the fully developed 

speckles. BSC unifies the size of fully developed speckles, but distorts the geometrical 

scale of the echotexture. 

For the other features, the means and standard deviations of the ratios, 

)()( 21 ωω concon ff , )()( 21 ωω finfin ff  and )()( 21 ωω comcom ff , are listed in Table 4-1 

with which of the coarseness. The means of these ratios confirm the lower contrast, 

busyness and complexity for higher sampling rate, indicating the efficacy of these 

features. 

Feature Coarseness Contrast Busyness Complexity 

Mean 2.7119 0.3195 0.3366 0.4019 

STD 0.0701 0.0164 0.0166 0.0255 

  Table 4-1   

4.3 Efficacy of the BSC 

It is important to determine whether the preprocessing actually make Amadasun’s 

measure of echotexture less depth dependent. By comparing Amadasun’s measure of 

the ROI of sponge at different depths, centered at 2.5, 4 and 5.5 cm, it is found that the 
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mean values are 7.45, 7.83 and 8.08, and the standard deviations are 0.26, 0.32 and 0.39, 

respectively, for those ROIs without preprocessing. This confirms that deep echotexture 

is coarser and more heterogeneous than the one at shallow depth. The ratios of the 

standard deviation over the mean at these depths are 0.035, 0.041 and 0.047, 

respectively. With preprocessing, the mean values are 66.33, 64.86 and 64.13, with the 

standard deviations 1.15, 1.60 and 1.36, respectively (Figure 16). The ratios of the 

standard deviation over the mean at the 3 depths are 0.017, 0.025 and 0.021. Comparing 

these data shows that preprocessing may make the echotexture more homogeneous, 

reducing the depth dependence caused by DSC, though shallow echotexture becomes 

coarser than that at deep depth very slightly.  

1.1566.33±

1.60 64.86 ±

1.3664.13±

Figure 16: Quantities of coarseness at different depth. 
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4.4 Separation between homogeneous echotexture and ultrasound 

liver texture 

4.4.1 Coarseness 

The coarseness feature based on Amadasun’s measure was used to characterize the 

ultrasound image textures. It is found that if the sampling rate is above a threshold (2 s/s) 

and the sampling rates in the axial and lateral direction are the same, the sampling rate 

does not affect the effect of Amadasun’s measure [36]. The sampling rate used in 

back-scan conversion was about 12 s/s, which was measured based on the ACVF (eqn 

(6)) of the sponge images. This sampling rate was used for all liver images too. The 
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Figure 17: Coarseness distributions of different textures in logarithmic scale. The 

dashed curve stands for sponges, the solid one for livers. The mean Mahalanobis 

distance is about 0.5880. 
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distribution of coarseness of all ROIs without preprocessing is given in Figure 17. The 

mean values of sponges and livers (including normal and cirrhotic cases) are 7.7872 and 

8.5181, and the standard deviations are 0.4153 and 1.1717, respectively. It is obvious 

that the coarseness values for sponges and livers overlap partially, but a portion of the 

coarseness values of liver are larger than that of sponge. The separability of the two 

distributions can be quantified by the Mahalanobis distance (Duda et al. [44]) to have a 

value of 22 1717.14153.0/5181.87872.7 +− =0.5880. This conforms that ultrasound 

image texture of liver images with responses of structural tissue inside is coarser than 

that of sponge with speckle only. 

Since the scanning format of ultrasound makes the sampling rate of ultrasound 
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Figure 18: Distributions of coarseness values with the unification of sampling rate. 

The dashed curve stands for sponges, the solid one for livers. The mean 

Mahalanobis distance is about 0.6242. 
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image texture nonuniform, which makes it imprecise to quantify its coarseness, the 

unification of sampling rate should improve the quantification. Figure 18 shows the 

distributions of coarseness value of all ROIs with preprocessing, where the mean values 

of sponges and livers are 70.9698 and 78.5682, and the standard deviations are 3.9489 

and 11.5144, respectively. The Mahalanobis distance of the two distributions is 

22 9489.35144.115682.789698.70 +− =0.6242. Comparing to the case in Figure 17 

which has a distance of 0.5880, where no preprocessing was applied, it is obvious that 

the preprocessing increases the separation of sponge and liver images. 

4.4.2 Contrast 

Figure 19 depicts the feature distributions of contrast of the sponge and the liver 

without the unification of sampling format and sampling rate. The mean values of the 
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Figure 19: Distribution of contrast values without the unification of sampling rate. 
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liver and sponge are 52.6617 and 59.0117, and the standard deviations are 10.9957 and 

6.3127, respectively. The Mahalanobis distance is 0.5008. It is manifest that the feature 

of contrast is good at separating the liver and sponge, too. Here shows that the 

echotexture of sponge has higher intensity variation than that of the liver. 

However, with the unification of sampling format and sampling rate, the mean 

values of the liver and sponge are 3.7534 and 4.0847, and the standard deviations are 

0.7622 and 0.4532, respectively (Figure 20). The Mahalanobis distance becomes 0.3737, 

worse than that without BSC. The reason is that, without BSC, the rectangle ROI 

contains more Class 2 scattering which results in higher contrast than the rectangle ROI 

with BSC. It also means that the original estimation of the data on the scan lines suffers 

from the dynamic range which is influenced by the operator dependence. 
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Figure 20: Distribution of contrast values with the unification of sampling rate. 
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4.4.3 Busyness 

Busyness is used to show the “cluttering” of the echotexture. In Figure 21, it shows 

the degrees of cluttering of sponge and that of the liver are very close, without the BSC. 

If the cluttering of echotexture implies the locations of speckles, Figure 21 stands for 
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Figure 22: Distribution of busyness values with the unification of sampling rate. 
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Figure 21: Distribution of busyness values without the unification of sampling rate. 



 

 47

that speckles spread all over the echotexture. Even with BSC, Figure 22 also supports 

the implication as Figure 21. 

4.4.4 Complexity 

It is supposed that the echotexture of liver with speckles and tissue structure is 

more complex than that of the sponge. Figure 23 depicts the feature distributions of 

complex of the liver and the sponge, without BSC. The mean values of the liver and 

sponge are 17.785 and 17.951, and the standard deviations are 6.537 and 3.560, 

respectively. The Mahalanobis distance is 0.3236, indicating that complexity is not a 

good feature to discriminate the fully developed speckles and the liver echotexture 

without BSC. It is also observed that the range of complexity of the sponge is embraced 
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Figure 23: Distribution of complexity values without the unification of sampling 

rate. 
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in that of the liver. Figure 24 depicts the distributions with BSC. The range of the 

sponge is stilled contained in that of the liver, representing that “complexity” is not 

good at discriminate the liver from sponge. It means that the high correlation of one 

sample in the echotexture to its neighboring samples leads to similar echotexture 

primitives. 

4.5 Separation between ultrasound echotexture of normal cirrhotic 

liver 

4.5.1 Coarseness  

Despite the achievement in discriminating the ultrasound image textures of 

sponges and livers, Amadasun’s measure of coarseness does not necessarily 

discriminate well between the changes of tissue structures. Figure 25 shows the 

distributions of coarseness values without preprocessing for sponges, normal livers, and 
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Figure 24: Distribution of complexity values with the unification of sampling rate. 
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cirrhotic livers, with the mean values 7.7872, 8.7288 and 9.3403, and the standard 

deviations 0.4153, 1.0038 and 1.2035, respectively. It is evident that the distribution of 

coarseness values of normal liver overlaps with that of cirrhotic liver severely, and the 

mean Mahalanobis distance between cirrhosis and normal livers is only 0.3902. As for 
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Figure 26: Distribution of coarseness values with the unification of sampling rate. 

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4
cirrhosis
normal
sponge

 

Figure 25: Distribution of coarseness values without the unification of sampling rate.
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Figure 25, the distributions of coarseness values with preprocessing are given in Figure 

26. The mean values of sponges, normal and cirrhotic livers are 70.9698, 82.4123 and 

87.1165, and the standard deviations are 3.9489, 9.7905 and 11.2354, respectively. The 

mean Mahalanobis distance between cirrhosis and normal livers is only 0.3157. The 

preprocessing does not improve the result of the measure of coarseness. Consequently, 

the coarseness feature proposed by Amadasun is not a good feature to separate the 

echotexture of normal and cirrhotic livers. 

4.5.2 Contrast 

Despite the feature of contrast could discriminate the echotexture of the liver from 

that of the fully developed speckles without BSC, it is poor to distinguish the normal 

liver and cirrhotic liver (Figure 27). The Mahalanobis distance is only 0.2448. The 
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Figure 27: Distribution of contrast values without the unification of sampling rate. 
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reason is the Class 2 scatterings spreading both in the echotexture of normal and 

cirrhotic livers, and the contrast proposed by Amadasun is to measure the “spatial 

contrast”.  But with the BSC, in Figure 28, the mean values of normal and cirrhotic 

liver are 2.8839 and 3.3806, and the standard deviations are 0.7007 and 0.8624, 

respectively. The Mahalanobis distance is 0.4469, greater than the one of 0.2448 

without BSC. This implies that BSC may enhance spatial contrast caused by ECM 

complexes, though the separability of “pure” contrast is not very good yet. 

4.5.3 Busyness 

In Figure 29, without BSC, the mean values of normal and cirrhotic liver are 

32.7122 and 18.6388, and the standard deviations are 15.4437 and 4.7247, respectively. 

The Mahalanobis distance is 0.8714, indicative of a good feature to separate the 

cirrhosis from the normal liver. After BSC, the mean values of normal and cirrhotic 
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Figure 28: Distribution of contrast values with the unification of sampling rate. 
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liver are 2.8395 and 1.5303, and the standard deviations are 1.1195 and 0.4091, 

respectively (Figure 30). The Mahalanobis distance is 1.0984. It shows that busyness is 

very good at discriminating cirrhosis from the normal liver, especially with BSC. The

reason is the suppression of the effect of contrast variations, which emphasize the 
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Figure 29: Distribution of busyness values without the unification of sampling rate. 

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5
cirrhosis
normal
sponge

 

Figure 30: Distribution of busyness values with the unification of sampling rate. 
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spatial intensity variation caused by speckles. If the ECM complex replaces the location 

of hepatocytes, the degree of cluttering caused by fully developed speckle decrease 

significantly. The unification of sampling rate samples the data in a uniform grid, 

reducing the effect caused by the variation of sample number, and it may enhance the 

cluttering in the echotexture of normal liver. 

4.5.4 Complexity 

As mentioned before, complexity is not good at distinguishing the ultrasound 

echotexture. In Figure 31 and 32, no matter with or without the unification of sampling 

rate, the distributions of cirrhosis, normal liver and sponge overlap apparently. This is 

because one sample in the echotexture is highly correlated to it neighbor. It also 

indicates the complexity of analyzing the ultrasound echotexture pattern.  
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Figure 31: Distribution of complexity values without the unification of sampling 

rate. 
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4.6 Comparison of the features 

Table 4-2 lists the Mahalanobis distances (inter-distances) of the used features 

between the liver and the sponge. It is clear that the coarseness is a good visual feature 

to distinguish the echotexture of the fully speckles and that of the soft tissue. Contrast is 

probably a good feature too, but it suffers from the BSC. 

Feature Coarseness Contrast Busyness Complexity 

Without BSC 0.5880 0.5008 0.2805 0.0223 

With BSC 0.6242 0.3737 0.3070 0.0294 

  Table 4-2   

Table 4-3 lists the inter-distance of the used features between the normal liver and 

liver cirrhosis. It shows that the busyness is very good at discriminating the cirrhosis 

from the normal liver. The BSC may calibrate the intensity variation and the contrast. 
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Figure 32: Distribution of complexity values with the unification of sampling rate. 



 

 55

Feature Coarseness Contrast Busyness Complexity 

Without BSC 0.3902 0.2448 0.8714 0.3236 

With BSC 0.3157 0.4469 1.0984 0.4131 

  Table 4-3   

Combining several features does not improve the separability by these features. 

Figure 33 shows the combination of busyness and coarseness, the three classes cluster 

together. Even with the BSC, the combination is not effective (Figure 34). 
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Figure 33: Feature distributions without BSC. The selected features are busyness and 

coarseness. 
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Figure 34: Feature distributions with the BSC. The selected features are busyness 

and coarseness. 
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Chapter 5  

Discussion and Conclusion 

DSC makes deep echotexture coarser than shallow echotexture is, and theoretically 

back-scan conversion would reduce the depth dependence. However, it is found that 

shallow echotexture is slightly coarser than the one at deep depth, according to results 

shown in Figure 13 and the mean coarseness value at different depths mentioned above 

(Figure 16). This may be due to the dynamic focusing and/or the diffraction effect, both 

of them can make the image resolution uneven in range. 

Comparing Figure 17 and Figure 18, two important results can be found. The first 

is that the coarseness values of sponge images are distributed quite compactly no matter 

whether the preprocessing is applied or not. On the other hand, the variation of the 

coarseness values of liver images is reduced by preprocessing; this is the main reason 

that the separability between sponge and liver images is improved by the preprocessing. 

The second is that the variations of the coarseness values of sponges are much smaller 

than that of liver images. This is due to the fact that the liver cells are organized in 

lobules by collagen, and collagen is a strongly scattering medium which leads to the 

structural scattering in the liver images and makes the liver echotexture inhomogeneous. 

This result shows that the coarseness measure is more effective for the homogeneous 

sponge images than for inhomogeneous liver images. 
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Some interesting results can be found in this study. Firstly, in both Figure 25 and 

Figure 26, variation of coarseness values of normal liver are all smaller than that of the 

cirrhotic case. This means that the texture of normal liver is more homogeneous than 

that of cirrhotic livers. Especially in Figure 26 the distributions of coarseness values of 

texture of normal liver with preprocessing, its distribution is symmetric without long tail 

as in the case in Figure 25, this reflects the usual viewpoint that “ultrasound image 

texture of normal liver is homogeneous”; here, the homogeneity is confirmed via the 

help of preprocessing. Such a result reveals that the human vision especially the 

“expert’s vision” may do his/her own compensation to reach the conclusion that “an 

unpreprocessed ultrasound image of normal liver is homogeneous”. However, this is not 

the case for computational vision. Secondly, the mean coarseness value of sponges in 

Figure 25 is 7.7872 ( cos−sf ), while that of normal livers is about 8.7288 ( cos−nf ), and 

cirrhosis is 9.3403 ( cos−cf ). These coarseness values can be transformed to be their 

physical coarseness values in unit of length via the help of sponge image. Assuming that 

the sponge image is homogeneous, the dimension of speckle cell has a mean size sd = 

0.35 mm calculated by the FWHM of ACVF. For fully developed speckle, its 

coarseness measure should represent its physical speckle size. Then, the physical 

coarseness of normal livers relative to sponge is ( ) ssn dff ×−− coscos =0.39 mm and that 

of cirrhotic livers is ( ) ssc dff ×−− coscos =0.42 mm. This confirms the usual viewpoint 
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that “ultrasound image texture of cirrhotic livers is coarser than that of normal liver.” 

With consideration to the characteristics of ultrasonic wave and the histology of the 

liver, “coarseness” proposed by Amadasun may be treated as to measure the 

homogeneity in the ultrasonic resolution cell. In case that the concentration of scatterers 

is higher than a threshold and the scattering power of one scatterer is close to the others 

within a resolution cell, the scatterers may be regarded as spreading homogeneously 

over the resolution cell. On the contrary, if the resolution cell contains some particles 

which have larger scattering power than other scatterers, the resolution cell is 

inhomogeneous. Therefore, coarseness may distinguish the echotexture of fully 

developed speckle from that of the liver. It is difficult to separate liver cirrhosis from 

normal liver, because the composition of liver in a resolution cell is not homogeneous. 

The parenchyma of spleen is more homogeneous than that of the liver, and consequently 

the coarseness feature may be used to separate the echotexture of the spleen from that of 

the liver. 

In Table 4-2, the performance of the contrast feature to distinguish the liver and 

sponge diminishes with BSC, but it rises to separate the cirrhosis and normal liver with 

BSC in Table 4-3. It is also mentioned that the ROI of the liver without BSC contains 

more Class 2 scattering than that with BSC. Thus if the shape of the ROI without BSC 

is modified like a “fan” (the right in Figure 10), the performance of the contrast feature 
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to separate the echotexture of the liver and sponge would be better with BSC. However, 

because the separability of classifying the liver and sponge is lower than that of the 

coarseness feature, plus the low separability of distinguishing the normal liver and 

cirrhosis, the contrast feature is not a good feature for analyzing the echotexture of soft 

tissue. 

Even though the busyness feature could not separate the liver and sponge, it is 

workable to discriminate the liver cirrhosis from normal liver because it suppresses the 

locally high contrast cause by collagen, but keep the speckles. That is, the busyness is to 

measure the cluttering caused by the fully developed speckles, and we may surmise the 

busyness feature may respond to the tissue structure in the liver. 

High spatial correlation of the ultrasound echotexture means the low contrast in a 

neighborhood, leading to a smaller number of primitives with different intensity in the 

echotexture. The primitives are monotonous, and then the complexity feature proposed 

by Amadasun is useless for ultrasound image texture. 

It is clear that speckles dominate in the texture of ultrasound image, and the ability 

of Amadasun’s measure is to estimate the characteristic of speckles for ultrasound 

image texture. Visually discriminating cross-linked reticulum from speckles is based on 

their scale and contrast, and BSC with sampling rate unification helps reduce the 

distortion caused by the non-uniform sampling rate. Speckle reduction would change 
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the characteristic of echotexture, such as the distribution of gray level and the Laplacian. 

Thus speckle reduction would affect Amadasun’s measure of echotexture. Amadasun’s 

measure, like most other texture analysis, is surely instrument dependent. Coarseness of 

echotexture is one of many possible features for diagnosing liver fibrosis, such as shear 

modulus [45, 46]; we believe that no single feature might be used as a dominant index 

for clinical diagnosis. Therefore, Amadasun’s measure could be used with other features 

to reach a better diagnosis for liver cirrhosis. 

In this study, we propose an approach to quantify the visual properties of 

ultrasound image texture. As these features are comparative respectively, ultrasound 

images of sponge may be used as the references. It is demonstrated that Amadasun’s 

measure is useful to estimate the characteristics of the ultrasound image texture. 

Furthermore, with the unification of sampling format and rate in the axial and lateral 

directions to reduce the distortion caused by scanning format, Amadasun’s measure is 

very effective in estimating the coarseness of fully developed speckle texture. In spite of 

this effectiveness, the use of “coarseness” does not discriminate the images of cirrhotic 

liver from that of normal livers well. This is due to the reason that the “coarseness” is 

not so effective in estimating the coarseness of inhomogeneous textures. The 

“busyness” feature is good at separating the echotexture of the cirrhosis and normal 

liver; it may respond the distribution of connective tissue in the ultrasound liver image. 
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In addition to the quantification of ultrasound echotexture and the unification of the 

sampling format and rate for the analysis of B-mode image, the most contribution of 

this study is to combine the histology of the tissue and the ultrasound echotexture. 
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Appendix 

Neighborhood Gray-Tone Difference Matrix 

Amadasun’s measure is based on a vector )(is , called neighborhood gray-tone 

difference matrix (NGTDM). )(is  is a column vector in which every element is 

calculated corresponding to the gray level i in the image. Its entries are computed based 

on measuring the difference between the gray level of a pixel and the average gray level 

computed over a square, sliding window centered at the pixel. The original definition of 

NGTDM from Amadasun is ROI-size dependent; to make feature of ROI with different 

size comparable and rational, the definition of NGTDM must be modified as follows. 

Suppose the image value ),( lkf i  at pixel ),( lk  is i, i = 0, 1, …, hG . Let iklA  be the 

average gray level over a neighborhood centered at ),( lk , but excluding ),( lk , which 

is defined as 
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where 2)12( += dW  and d  specifies the window size of neighborhood. The ith entry 

in the NGTDM here for an NM ×  ROI is defined as 
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where { }iN  is the set for all pixels having the gray level of i. The denominator is a 

normalization factor for different size of ROI. Amadasun’s experiments showed that the 
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neighborhood size being 1 or 2 does not affect the performance of the proposed features 

much, since this measure is based on the concept of patches with low local contrast. For 

that reason, d  is set to be one for reducing computation complexity. 


