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Abstract

The visual features are important in clinically diagnosing liver diseases with
ultrasound image texture. However, there is no consistent definition of these features. In
this study, several textural features proposed by Amadasun are adopted for quantifying
the visual features of ultrasound image texture. To cope with the distortion caused by
the digital scan conversion (DSC) in ultrasound imaging, a back-scan conversion (BSC)
algorithm is applied to homogenize the sampling format and sampling rate of ultrasound
image texture before measuring these features. The effectiveness of this measure is
investigated using 300 ROI’s of sponge.and Iiv.ér images. It is confirmed that BSC is an
important preprocessing step in quantifyihg.;__t_He.se features of ultrasound image texture.
By this measure, the visual featurfz§ m.ay b;'&wantiﬁed. The results show that the use of
the features is dependent on what-is.looking for; ;[hat Is, the distinction between tissue
echotexture and fully developed speckles should emphasize on the “coarseness” of the
echotexture, while the one between normal liver and cirrhosis should emphasize on the
spatial intensity variation (busyness). This study shows a correlation between the tissue
and the ultrasound echotexture.

Keyword: Back-scan conversion, ultrasound image texture, quantification of visual

features, liver, B-mode imaging



Chapter 1
Introduction

B-mode ultrasound is usually used to diagnose liver diseases for its convenience,
low cost, and real time operation. In general, B-mode images are reliable in detecting
focal liver diseases and less efficient in detecting diffuse disease by human vision [1].
Some physicians announced that visually estimated coarseness of the ultrasound image
texture is useful for classifying parenchymal liver diseases [2, 3]. Some physicians used
the terms of roughness [4-6] and heterogeneity (or-homogeneity) [7, 8] to describe the
ultrasound image textures. .

It is generally assumed that nermal |I\7§I’ has a homogeneous parenchyma, yielding
“fully developed” speckle; therefbfe,.épeckles should be randomly and homogeneously
spread over the area of liver parenchyma in ultrasound images. On the other hand, for
the case of fibrotic or cirrhotic liver, the regenerative nodules [9] make the echotexture
of the cirrhotic liver parenchyma coarsen [10]. However, there is no precise definition
of visual coarseness and various methods were proposed for quantifying the coarseness
of echotexture. Raeth et al. [11] used gray level co-occurrence matrix [12] to measure
coarseness. Kimura et al. [13] classified the echo patterns of cirrhotic liver into four

types based on nodule size. Following Kimura, Fukuda et al. [14] used an artificial

neural network to estimate the so-called “coarse score” to assess the diameter of



regenerative nodules, which is supposed to be correlated to the coarseness of
parenchymal echo pattern. Like the situation of coarseness, there are no absolute
definitions of roughness and heterogeneity. Verhoeven et al. [15] used fractal dimension
to measure the roughness of echotexture; while Wun et al. [16] devised some
second-order statistics to estimate the roughness. On the other hand, Momenan et al. [17]
calculated the heterogeneity of a four-dimensional space which comprises 2 first-order
and 2 second-order statistics of the back-scattered signal.

Except for the “coarse score” proposed by._Fukuda [14], these literatures mentioned
above do not correlate their features with “ti_ss_ue texture” well. Nevertheless, in most
clinical cases, echotexture rarely present.s%;.i'p'arent hypoechoic macro-nodules in liver
parenchyma to be estimated visuél'ly. and/ercomputationally. One reason is due to the
presentation of speckles; another might be for the cause of cirrhosis. The coarse nodular
pattern was found in a significantly higher percentage of patients with HDV-related
cirrhosis (51%) compared with those with HBV (9%), HCV (9%), ALC (11%), or PBC
(9%) [18], where HDV stands for the abbreviation of hepatitis D virus, HBV for
hepatitis B virus, HCV for hepatitis C virus, ALC for alcoholic cirrhosis, and PBC for
primary biliary cirrhosis, respectively. Therefore the method proposed by Fukuda et al.

might not be applicable to most clinical cases, and it is necessary to use other ways to

evaluate the characteristics of echotexture with consideration to the correlation between



tissue texture and the computational texture features.

Does only “fully developed speckle” comprise the echotexture of a normally
homogeneous parenchyma? Practically, if the scale of tissue structure is close to or
larger than the scale of the size of speckle, the echotexture should present the change of
tissue structure, not only the fully developed speckles. The speed of ultrasound wave is
supposed on a fixed order of 1540 m/s in soft tissue, and the frequency 3.5 MHz, and

then the wavelength of transmitted ultrasound wave is about 0.44 mm

1540 x10°

( 3.5x10°

=0.44). On the other hand, thg lateral resolution scale of the used
ultrasound machine (Toshiba SSA-700) i§ about 0.9,mm. While the scale of the lobular
structure of the liver is about 1 mm,.and t&éjébales of some components (like the central
vein and portal vein terminal) are néar thewresolution cell. Consequently, comparing
these scales, the effects caused both by the speckles and the change of tissue structure
should be taken into account simultaneously when analyzing soft tissue, like the liver.
Before that, we used sponge, which is comparatively more homogeneous than liver and
whose structure scale is less than the wavelength of transmitted ultrasound wave, as the
reference to compare the characteristics of its ultrasound images with that of the livers.
Curved-linear mode is the most common choice of the probes, in the clinical

operation of diagnosing the liver of patients using ultrasound, for its convenience with

larger area of filed of view comparative to sector mode. Because of the nature of



ultrasound B-mode imaging, digital scan conversion (DSC) transforms the data on
acoustic scan lines into that pertaining to a Cartesian raster format, leading to the
distortion of structural information and statistical distribution of the texture patterns [19,
20]. The characteristic of echotexture (i.e. speckle size) was shown by these authors to
increase proportionally to depth in an attenuating medium. Figure 1 shows two regions
at different depth of a homogeneous ultrasound image of sponge. The speckle at shorter
imaging distance is obviously finer than that at far imaging distance. If this problem is

not treated properly, any computed tex'tu'r_e féa_th:rés-vyould take these two regions as two

different texture patterns, in spite __.o'fxthe fact/tl'%af"the\y__bertain to the same ultrasound
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Figure 1: Homogeneous ultrasound sponge images. The left and right images are
zoomed sub-images of the central one, which are surrounded by white rectangle. It
can be observed that the speckle size at shorter imaging distance is smaller than that

at far imaging distance.



the effect of sampling rate caused by digital scan conversion (DSC), the nature of
ultrasound B-mode imaging, was also explored to meet the practically clinical usage of
ultrasound B-mode image.

In this article, we try to help diagnose liver cirrhosis with ultrasound image, based
on visually textural features. Chapter 2 describes how to visually diagnose liver fibrosis
with ultrasound echotexture, where contains the histology and pathophysiology of the
liver, and the correlation between ultrasound echotexture and the morphological
information of liver. The vulnerability of diagnpsis to the digital scan conversion (DSC)
and non-uniform sampling rate;is+also Flempnstrated. In Chapter 3, we introduce a
quantification model to measure textural %%tjﬁ’res Which relates highly to human vision.
A method to reduce the effect of 'DSC and‘nen-uniform sampling rate is provided here.

The experiments on quantifying these textural features are listed in Chapter 5, and then

is the discussion and conclusion.



Chapter 2
Clinical Diagnosis of Liver Diseases Based on Ultrasound

Echotexture

Since the diagnosis of liver diseases based on echotexture depends greatly on the
morphology of tissue structure, some basic histology of normal liver is given first in this
chapter, and then we describe the pathophysiology of fibrosis. At last, we try to describe
what is seen in an ultrasound image of the liver by linking the histology and

pathophysiology of the liver to its echotexture...

2.1 Histology of the Liver

The liver is encapsulated with a c;%jédive tissge capsule which branches and
extends throughout the substance qf thesliver. -The connective tissue septae is the
scaffold for supporting and provides the sinusoids along which afferent blood vessels,
lymphatic vessels and bile ducts traverse the liver. The sheets of connective tissue
divide the parenchyma of the liver into very small units called lobules. The hepatic
lobule is the structural unit of the liver which takes the shape of irregular polygonal
prisms. An idealized representation of the liver lobule is a six-sided prism about 2 mm
long and 1 mm in diameter (Figure 2).

At the corners between adjacent lobules are the so-called portal triads (portal

canals, portal areas). These are regions of connective tissue which include branches of
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Figure 2: Liver lobule is the unit in the liver, which is about a six-sided prism about 2

mm long and 1 mm in diameter

the bile duct, the portal vein, and the hepatic artery. Along the central axis of each
lobule runs a central vein, which is-a brahch-of the:hepatic vein. In cross sections, the

lobule is filled by cords of hepatic céllé,,calléd hepatbcytes, which radiate from the

4

central vein and are separated by vascmlljl'ar éﬁhusqids. The cords of hepatocytes represent
the parenchyma of the liver. .

Terminal branches of the hepatic portal vein and hepatic artery mix together as
they enter sinusoids in the liver. Sinusoids are vascular spaces lined by a fenestrated
endothelium (i.e., an endothelium that is full of holes), and bounded circumferentially
by hepatocytes. As blood flows through the sinusoids, a considerable amount of plasma
is filtered into the space between endothelium and hepatocytes; the space is called the
space of Disse. Therefore, the blood may flow freely over the exposed surfaces of the
hepatocytes in the space of Disse (Figure 3). The location of space of Disse is that of

connective tissue and the space contains scattered reticular fibers (e.g. collagen type I11)
7
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Figure 3: Liver sinusoid is a canal in which the blood passes by. The space of Disse

contains scattered reticular collagen.

which hold the hepatocytes together. More significantly, since the fenestrations of the
endothelium permit free movement .of l_)_lood pla_sma, the_ interstitial fluid in the space of
Disse is blood plasma. Hence, hepatocy?e;%éide in direct contact with blood.
2.2 Pathophysiology of Liver Fibresis

Fibrosis refers to a structural chanée in the liver with chronic injury. The
extracellular matrix (ECM) complexes that lead to fibrosis are not uniform; they differ
in age and chemical composition. The ECM is the extracellular part of connective tissue
that usually provides structural support to the cells. Over a period of many months, the
collagen fibrils of the complex become cross-linked. Fibrogenesis denotes production of
ECM. It increases in response to injury and is essential to tissue repair. Chronic injury
of the liver elicits a persistent repair response that culminates in fibrosis and scar

formation [21, 22].



The wound repair response in liver involves the stellate cells, which reside in the
space of Disse. Only a low density ECM is present in normal liver, and stellate cells are
quiescent in the state. While during liver injury, stellate cells are activated and
proliferated, leading to both morphological and functional changes. Morphological
changes include the development of prominent rough endoplasmic reticulum as the
missing hepatocytes are replaced by fibrous connective tissue. Among the functional
changes is a noticeable increase in secretion of ECM proteins, including collagens (type
I and II1) and fibronectin. These ECM compl.gxes accumulate from a net increase in
their deposition, becoming cross-linked,\in the fiver-and then constitute the roughly
reticular scaffold, also namely “scar”. m': '

Cirrhosis can be defined as"the. end.stage-consequence of fibrosis of the hepatic
parenchyma resulting in nodule formation and altered hepatic function. Many serum
markers and other non-invasive tools have been developed, liver biopsy, however, is
still the gold standard for estimating the stage of fibrosis, though it suffers the sampling
error and may induce autoimmune diseases.

2.3 Correlation between Tissue and Echotexture
What should emerge from the echotexture? Speckles, tissue structure information,

both of the above, or others? Ultrasonic wave transmitted from the scanner to the human

tissue undergoes the acoustic change of the media, and some of it returns back to the



scanner. The signal collected by the scanner contains the acoustic reaction of all the
materials the wave passes through. However, due to the large wavelength and beam
width of ultrasonic wave comparatively to the dimension of material or tissue structure,
echotexture not only presents the tissue structure but also artifact, speckles. The key
factor is the relationship between the scale of the tissue structure and the ultrasonic
beam width and wavelength. It is mentioned above that the ultrasonic wavelength is
about 0.44 mm at 3.5 MHz, and the scale of the liver lobule is about 1 mm. The
wavelength in common use is close to, the dimensions of some materials in the liver
lobule, like the central vein and portal vei\n in theliver-triad. Therefore, the echotexture
of a liver consists of both speckles.and tng.:;frUCtural information. That is, normal liver
is not a “homogeneous” medium, and the traditional assumption that normal liver is
producing fully developed speckle should be corrected.

The physical constitution of tissue comprises scatterers on several length scales so
that their backscattering changes according to their shape and size relative to the
insonifying wavelength. In general, there are three categories of scatterers with respect
to the length scale: “specular” for reflections from objects whose scales are much bigger
than a wavelength; “diffractive” for objects slightly less than a wavelength to hundreds

of wavelengths; and “diffusive” for scatterers much smaller than a wavelength. If the

object’s dimensions are much bigger than a wavelength, the reflection process can be

10



approximated by a ray incident on the object so that the scattered wavefront is nearly a
duplicate of the object shape. At the other extreme, when the wavelength is large
compared to the scatterers in a resolution cell, speckle arises from the constructive and
destructive interference of these tiny scatterers, and it appears as a light and dark
granular grainy pattern. For a diffractive scattering, the interaction between the
wavefront and object is very complicated in human tissue. The scattered waves can be
different in shape and they can have maxima and minima that vary with angle and the
product of object radius and the wavenumber. ...

To cope with different sscatterer sca}les,_some researchers proposed a scheme to
classify the tissue scattering [23]. Class..i(i)i?szciattering is on a length scale of 10 m
associated with macromolecular’ éffe'cts, which produce energy absorption. Class 1
scattering is caused by the concentrations of living cells higher than 25 per resolution
cell, and it is diffusive due to its length scale, ka<<l, where k denotes the mean
wavenumber and a is the radius. Class 2 is scattering from the structure of tissue in
concentrations near one per resolution cell, and the scatterers are independent and
distinguishable through their unique space- and frequency- dependent characteristics.
Class 3 scattering is specular on a length scale ka>>1, and is with respect to organ and

vessel boundaries. Consequently, Class 2 and 3 scatterings produce an echotexture with

contrast higher than that of Class 0 and 1, with the similar elasticity. By the way, even

11



though most ultrasound contrast agents are tiny gas-filled resonant spheres, referred to
Class 1, their high rigidity induces high contrast.
2.3.1 Echotexture of fully developed speckles

An ultrasound image of sponge may be used to present Class 0 and Class 1
scattering, as sponge is an attenuating medium and its scatterers are much smaller than
the used ultrasonic wavelength. Class 0 scattering is compensated by the time gain
compensation (TGC), while Class 1 scatterers result in speckles in the echotexture. The
tissue structure of sponge is “isotropic”, Whic_h_ means the tissue properties do not vary

with angular orientation, but the:echotexture shownuin-Eigure 1 is anisotropic. There are

I
. | [
[ el

two major reasons for this. One is becpbé‘éﬂﬁf-'thé digital scan conversion (DSC), which
transfer data in polar coordinate 'f_or}nat into t'h"a}'g in Cartesian coordinate grid on a
monitor. The other is due to the different sampling rates in the lateral and axial

orientations. If the ultrasound image of a sponge is adjusted with one fixed sampling

rates in the both orientations and is restored to be in a polar coordinate format, the

Figure 4: Ultrasound image texture of a sponge with a fixed sampling rate in both the

lateral and axial orientation. This texture is homogeneous and isotropic.
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resulting echotexture prevalently with speckles should be homogeneous and isotropic
(Figure 4). Speckles look like “superposed” on the background. As the Class 1
scattering is caused by weak scatterers in soft tissue, we may surmise that the contrast of
the echotexture of sponge is less than that of Class 2 and 3 scatterings.
2.3.2 Echotexture of the liver

In a typical ultrasound image of the liver are examples of all the four scattering

types (Figure 5). As liver parenchyma is a collection of molecules, Class 0 scatterers are

present. The speckle indicates Class 1 scatterers. Small vessels (including the terminal

branches of bile duct, hepatic artery; al:!g portal vern,in-a portal triad, the central vein in
3 . -“. N g

\ f |
al rl{“\-

-

Figure 5: Ultrasound image of a normal liver. This image exemplifies several acoustic

scattering types.
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a liver lobule) correspond to Class 2 scatterers. Eventually, the liver boundaries are
Class 3 scatterers. Comparing Figure 5 with those of sponge (Figure 1 and 4), the main
difference between the textures is there are some “white spots” with higher local
contrast in the echotexture of the liver, and these white spots represent scattering of
Class 2. Therefore, the assumption that only fully developed speckle present in the
echotexture of normal liver should be corrected.

The tissue structure of liver parenchyma is assumed isotropic. As mentioned above,

however, digital scan conversion__ and.__'the coinﬁa-ratively lower lateral sampling rate

. J? ;
make the echotexture anlsotroplc Wlﬁ the uni /%:atrenfof sampling format and sampling

rate, the echotexture of the Ilver pare s Tﬂd be more isotropic, like that of the

B Class 2

Figure 6: Ultrasound image with the unification of sampling rate.
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sponge. Figure 6 is the one in Figure 5 with the unification of the sampling format and
sampling rate. Even if the region of interest surrounded by a rectangle is somewhat
“heterogeneous”, there is no obvious tissue structure information for rough endoplasmic
reticulum. For this reason, this echotexture may be categorized as one which does not
have morphological structural change.

Connective tissue which supports the structure of the liver may be Class 1, 2 or 3,
depending on the ka number and the incident angle, where k denotes the mean
wavenumber and a is the radius. Low densit_y extracellular matrix (ECM) complex
present in the space of Disse may he congidered as'Class 1 scatterers. When the liver is
in injury, ECM complexes become cross:%jkéd, and thus most of them are associated
with Class 2 scatterers. If the d.ir'nension scale of cross-linked ECM complex
confronting the wavefront is large enough (i.e. ka>>1), this ECM complex is referred to
Class 3. According to the striking increase on the amount of Class 2 (and 3) scatterers,
forming a cross-linked reticulum, the echotexture of liver fibrosis (and liver cirrhosis)
looks “coarser” or “rougher” and its contrast is higher than that of normal liver (or the
region of tissue without obvious reticulum). Figure 7 is a typical ultrasound image of
liver cirrhosis. There is prominent reticulum, denoted as Reticulum A, which is

“superposed” on speckles. While in the subregion denoted as Reticulum B, it is not easy

to distinguish the reticulum from the speckles. With the unification of sampling format

15
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Figure 8: Ultrasound image of liver cirrhosis with the unification of sampling rate.
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and sampling format, the corresponding to Reticulum B becomes apparent (Figure 8).

This implies that the unification of sampling rate and sampling format may help

separate cross-linked reticulum from speckles based on the scale.

17



Chapter 3
Feature Extraction for B-mode Ultrasound Echotexture of the

Liver

Computer-aided diagnosis based on the ultrasonic image must meet what is seen by
the physicians. In this chapter, the useful perceptual features for ultrasound liver
echotexture are provided, and then a measure model is introduced. The textural features
are vulnerable to the non-uniform sampling rate caused by digital scan conversion
(DSC), thus we propose a “back-secan conver,_sion” method with consideration to the
sampling rate unification as a preprocessir?g before"quantifying the visual features.

3.1 Perceptual Features for Ultrasound liver Echotexture

Tissue characterization atterﬁpts.t'o providequantitative information about the state
of health of the liver interrogated by ultrasound beams. Arrangement of these beams
forms a 2-dimensional image, representing geometrically structural information of the
tissue. Nevertheless, ultrasound echotexture suffers from the low signal to noise ratio
and other physical limitation, such as the diffraction and DSC. It is hard to analyze
ultrasonic echotexture quantitatively with a reliable and reusable method. Thus
perceptual properties are widely used to measure the characteristics of an image texture,
because it is very fast to diagnose the liver disease by the human vision of well-trained

experts.

18



Clinically and usually, physicians use the terms of “coarseness” [2, 3], “roughness”
[4-6], and “heterogeneity” [13] to describe the ultrasound echotexture. As mentioned in
Chapter 2, these visual properties are indicative of cross-linked reticulum consisting of
collagens, and this cross-linked reticulum is the result of secretion caused by liver injury.
However, it is very difficult to define these terms consistently; they are individually
relative properties. Besides, the echotexture of severe liver fibrosis is inferred as more
“coarser” than that of mild liver fibrosis, or the contrast of echotexture of liver cirrhosis
is more than that of mild fibrosis.iThe quant_ities of these perceptual properties are
directly relative to the distribution of cros§-linked reticulum and the structure change of
the liver, which are important to indica.t;zi;hé stage qf liver injury. Thus, we try to
quantify the echotexture based on"the. perceptual properties.

3.2 Textural Features for Ultrasound Liver Echotexture

Ultrasound tissue characterization (UTC) could be defined as the assessment by
ultrasound of quantitative information about the characteristics of biological tissues, and
pathological changes [24]. UTC which might use B-mode echotexture to characterize
the liver of a health man was first developed by Nicholas et al. [25]. After that, many
literatures tried to detect diffuse liver diseases [4, 14-16, 20, 26-31]. Even several of
them [15, 16] used perceptual properties, like coarseness, to analyze ultrasound
echotexture, however, there is no evident relationship between the used features and

19



perceptual properties. Rosenfeld and Thurston [32] suggested that coarseness of image
texture is inversely related to the number of edges per unit area. Weszka et al. [33] used
“gray level difference statistics” to measure the degree of coarseness. Amadasun and
King [34] extended the methods proposed by Rosenfeld et al. and Haralick [35], and
provided several textural features based on the concept of “patch” to evaluate the
textural properties. Those textural features were demonstrated corresponding to parts of
the ability of human vision, in which the “coarseness” feature was used to estimate the
coarseness of echotexture of liver [36]. - Very few literatures try to analyze ultrasound
image textures based on tissue texture sta}ndp_oi_nt. The frequent textural features based
on co-occurrence matrix proposed. by ;%élick [35]_are not clinically suitable for
ultrasound echotexture of the liver. I'F is.because that one co-occurrence matrix needs a
priori distance and orientation, but for liver tissue needs several distinct distances and
orientations. It is necessary to develop a complex algorithm to compute the correlations
between the co-occurrence matrices with distinct distances and orientations, resulting to
an incredible consumption of computation complex.

Amadasun and King [34] proposed several textural features which relate highly to
visual properties, and some literatures [37-39] used these features to estimate the

characteristics of several categories of image textures. These features benefit from local

and global texture information, and the computation complexity and effort of
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Amadasun’s measure is very low. The basic interrelationships of Amadasun and King in
the gray level texture concept are as the following. The spatial organization may be
random, may have a pair-wise dependence of one pixel on a neighborhood, or may have
a dependence of n primitives at a time. The dependence may be structural and/or
probabilistic. When a small-area “patch” of an image has little variation of gray level,
the dominant property of that area is just “tone”. When a small-area “patch” has wide
variation of gray level, the dominant property of that area is “texture.” In other words,
the characteristics of textural properties .are assqciated with the spatial interrelationships
between them. This implies that:gray Ieve\l textureis, really a two-layered structure. The
first layer is to specify the local pro.r;gr{;:tjiés Which_ manifest themselves in tonal
primitives, and the second layer h'a'vih'g to.do.with.is specifying the organization among
the tonal primitives.

Amadasun’s measure [34], based on a vector s(i) called neighborhood gray-tone
difference matrix (NGTDM, see in Appendix), is chosen for texture analysis here, and it
relates highly to visual properties. The original definition of NGTDM from Amadasun

is ROI-size dependent; to make feature of ROI with different size comparable and

rational, the definition of NGTDM foran M x N ROI must be modified as follows:

N

| 22i-A
s(i) = k=l 1= ,forie N,,if N, #0, (1)
(M —2d)x (N —2d)

0 , otherwise.
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The denominator is a normalization factor for different size of ROI. s(i) is a summation
of the intensity difference of all the neighborhoods, whose central pixels are with gray
level i. Suppose 5, is the mean Laplacian pertaining to gray level i, then egn (1) may

be modified as

N

ZZ\‘ _E‘ — (1.1)

(M —2d)x(N_2d) PP

where p(i) is the probability of occurrence of intensity i. We adopt four of the textural
features proposed by Amadasun and describe their relationships to the echotexture of
liver.

3.2.1 Coarseness

=
el

=
I

The first feature proposed by Ama&asuh is used to evaluate the degree of

coarseness of ultrasound image texture, whieh is defined as

feos = {g + i p(i)s(i)r, (2)
i=0
where p(i) is the probability of occurrence of gray level i, excluding those in the
peripheral regions of the ROI, G, is the highest image gray level, and ¢ is a very
small number to prevent f . being infinite.
In an ultrasound image, speckle is inevitable and texture patterns with high spatial
frequency are usually treated as speckle; on the other hand, low frequency texture

patterns are considered coarser and have primitives with larger areas. In a coarse texture,

22



as a high degree of local uniformity in intensity, there would be small differences
between f,(k,1) and A, , leading to the value of ‘i—A,T,‘ in eqgn (A2) small.
Hence the summation of NGTDM over all image pixels would give an index of
coarseness. From egn (2), a small value of f., implies large value of s(i), which
means a significant change in intensity, and it captures the characteristics of fully
developed speckles; while a large value of f., corresponds other coarser texture
patterns, including speckles and structural information of the tissue. In other words,
f..s Might be treated as representing the chargcteristics of texture on a scale. ‘i —E‘
in eqn (A2) may be regarded. as the re§pon_se_ ofithe eight-neighbor Laplacian filter,
used to find local contrast (or edge) arg"Dnd an imqge pixel, and f., in eqn (2)
corresponds to the suggestion of Rdsghfeld etal. [32, 33].

Amadasun’s measure was demonstrated useful for ranking the coarseness of
natural images; however, it has not been demonstrated useful for ranking ultrasound
images. The efficacy of measuring coarseness of ultrasound image texture by
Amadasun’s feature is to be shown by measuring the coarseness of ROIs at different
sampling rates. Theoretically, the discrete Laplacian of a texture increases as the
sampling rate decreases unless the sampling rate is so low to make the texture loses all

information. If the sampling rate is kept to maintain texture information properly, the

shape of gray level distribution would not change much. Therefore, the change of
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coarseness will due primarily to the sampling spacing (i.e. distance between adjacent
pixels), which makes the magnitude of Laplacian increases as sampling spacing

increases. Let the coarseness at sampling rate @ be f_ (») (egn (A3) in Appendix).

‘i —A,_k,‘ in egn (2) may be regarded as the response of the eight-neighbor Laplacian
filter. If the sampling rate decreases, the numerator in eqn (2) increases, making the
output of eqn (A3) decreases; that is, the coarseness ratio, f . (®,)/f..(®,), must be a

monotonic function of ®,/w, with positive correlation. Thus, if @, >®,, then

foos (@,)/ f s (w,) >1 for the efficacy,0f Amadasun’s measure, and vise versa.

3.2.2 Contrast

Human visual system is more sensi.t%éz to contra_st than absolute luminance. We
can perceive the world similarly 'regardless of*the. huge changes in illumination. An
image is said to have a high level of contrast if the gray level difference between two
objects in the image is large. The human contrast sensitivity function shows the spatial
intensity variation of image texture also affects the contrast of an image [40]. For
example, a small checkbox seems perceptually to have a higher contrast than a coarse
checkbox with the same dynamic range of gray level. Taking these two factors into

consideration, Amadasun et al. proposed a textural feature to express the contrast of an

image:
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foon = N (N Z;p P, (I—J)} {Z:,s(i)} (3)

i=0

where Ng is the total number of different gray levels present in the image,

5 1, ifp,
=2.Qn WhereQi:{ . if p; =0,
i=0 O,

otherwise.

This feature is composed by two components. The first term is the average
weighted squared difference between the different gray levels taken in pairs, reflecting

the dynamic range of gray level. It may be expanded as follows:

G, Gy G, Gy G, Gy Gy Gy
ZZ Pi=D2=DTppi £ pp;iT =22 pipji]

i=0 j=0 i=0 j=0 i=0_j=0 i=0 j=0

2 Y ppi 2 ZpIZpJ

1=0;,j=0

[Z D.Z pn-z Z piij} (3.1)

=2-[2.piE(J2)—ﬂ}
e :
=2.[E(1)=37]

where | and J are the mean gray levels of i and j. This equation shows that the first
term is proportional to the variation in intensity. The second term is the average
difference between pixel gray level and the average gray level of their neighborhoods;
this quantity increases with the amount of local variation in gray level.

Texture of an ultrasound image is composed by speckles and the structural
scattering of the tissue. It is supposed that the spatial intensity variation of fully

developed speckles is higher than that of the structural scattering of the tissue, and the

difference of the mean gray level between an object and the background above a
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threshold leads to the discriminability of this object in ultrasound image. According to
the supposition and the definition of contrast proposed by Amadasun, an image texture
with fully developed speckles or obviously structural scattering has a higher value of fcon
than that composed by unclear structure and speckles.

If a point P~ between two adjacent pixels (P1 and P,) is sampled, the mean contrast
between P and P, with P and P; is lower than that between P; and P,. Therefore, the
ratio of contrast with higher sampling rate over that with lower sampling rate is less
than one.

3.2.3 Busyness

Busyness represents the texture of ;%fféring of t_he space. A fine image texture
with busyness is one in which there gré rapid.changes of gray level from one pixel to its
neighbor; that is the spatial intensity variation of the image texture is very high. Thus, a
fine image texture has a low level of local uniformity in gray level. On the other hand, if
the spatial intensity variation is very low, the image texture has a high degree of local

uniformity too, even if the contrast is large. Therefore, the degree of busyness was

proposed by Amadasun et al. as the following equation:

fﬁn=[ipis(i)}/[zhz“ipi—jp,} p %0, p, %0 ()

i=0 j=0
The numerator is to measure the spatial intensity variation of the image texture; while

the denominator is a summation of the differences between different gray level values,
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and each value is weighted by its probability of occurrence. The denominator results in

the suppression of the effect of contrast variations, leading to the emphasis of the spatial

intensity variation of image texture. However, there exist some problems in the

denominator proposed by Amadasun. For example, let the distribution of gray level shift

by t upward, i.e.

fin

=3 PG +t)} / [z“zh(i FO P~ (j+1) p;ﬂo}

i=0 j=0

> ps(i) / > > +0p~(] +t)p,} 1)

> pis(i) / >0 Gip= o)+ (o p,-)}.

| i=0j=0

It is obvious that the denominator is additi,anaily affected by t(p; — p;), while it should

¥

keep the same degree of busyness with 'éhly a shift"of gray level. Therefore, this

equation for measuring busyness is modified using the first term of f,, as:

fin

- > pisi)

- > pist)

/[EZ;%pipj(i—j)z}

/2[E(| 2y-17]

(4.2)

It is generally assumed that homogeneous soft parenchyma has an ultrasound

image texture with fully developed speckles; nevertheless, tissue structure affects

ultrasound image textures as well. That is, it is necessary to consider the structural

scattering in analyzing ultrasound image texture. The numerator of fs, is related to the

number of edges of a texture, implying the number of patches, but susceptible to the
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contrast of the texture; while the denominator stands for the contrast of texture caused
mainly by the tissue structure. Therefore, fi, may be used to express the spatial
frequency of an ultrasound image texture without the dependence on the texture
contrast.

For higher sampling rate, the spatial change of an echotexture becomes lower, and
then the ratio of busyness with higher sampling rate over that with lower sampling rate
is less than one.

3.2.4 Complexity

A texture is considered complex 1t i'g containsirieh, information. This occurs when
there are many patches or primitives preu;(:ent in the ';exture and the primitives have
different average gray levels. Also, a.téxture with a large number of sharp edges may be
considered as complex. All these depend on the spatial period of pattern repetition and
on the dynamic range of gray scale, which means complexity is partly correlated with
fineness and contrast.

Generally, ultrasound image textures in which the spatial intensity variation is low
tend to have few patches with different average gray levels, and the patches would be
large. Consequently, the resulting high level of local uniformity in intensity will

produce few edges. A texture in which there are rapid gray level changes is

comparatively more complex than a texture that has a high degree of local uniformity in
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intensity. However rapid gray level changes would generally result in a large number of
different gray levels, leading to a low probability of each individual value occurring.
Therefore the sizes of primitives and/or occurrence of gray level values tend to are

inverse with complexity. A proposed measure for complexity is as follows:

Sy i = j|xpis(i) + p;s())
fCOm :ZZ| | { }

i=0 j=0 Ar(pi + pj)

(®)

where A, is the area of the texture.

The feom is @ sum of differences between intensity values taken in pairs, and these
differences are weighted by the sum. of.the pfbbability-weighted s(i) and s(j). The
normalizing factor, A( pi + pj), is used -\tgr-:_r_ép.resent the Inverse relationship between
complexity and the sizes of primi?iyes.andlgf the probabilities of gray levels. Ac( pi + pj)
would be high for coarse textures-and small for fi.ne textures. The absolute differences
convey the influence of contrast variations on complexity. High values of f.,, indicates
a high degree of richness of information content.

For higher sampling rate, the spatial contrast of an echotexture becomes lower,
leading to a lower degree of complexity, and then the ratio of busyness with higher
sampling rate over that with lower sampling rate is less than one.

3.3 Unifying the Sampling Rate

In order to obtain a large field of view, a curved-linear (convex-) array transducer

is the most common choice for abdominal examination. Using this type of transducer,
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the scan lines of the presented sector image are displayed in Cartesian coordinate grid
(raster format) on a monitor, which is accomplished by a procedure called “digital scan
conversion (DSC)”. Since DSC induces various sampling rates [20, 41] according to the
depth and orientation, it is necessary to unify the sampling rate before analyze the
ultrasound images. The preprocessing contains two aspects: back-scan conversion
(sampling format unification) and sampling rate unification.
3.3.1 Sampling Format Unification

In B-mode ultrasonic imaging, the transdur_:er transmits each ultrasonic wave in one
direction according to the prior settings, andthen-.receives and places the echo
information with respect to the directioﬁ%ﬁd transmif[ting period in a 2-dimensional
matrix. This matrix pertains to ‘a pdlar coordinate (Figure 9). In order to make a
television or PC-style rectangular image, this information has to be spatially remapped
by a digital scan converter, which converts the acquired polar coordinate ultrasound
data to the Cartesian format used by digital monitors (Figure 10). Data in Cartesian
raster format are created by interpolation from real scan lines, and data at deeper depth
require more interpolations than that at shallow depth, leading to a coarser image texture.
The speckle size also determines the spatial bandwidth of the images. For imaging

distance smaller than the focal distance, the speckle size is proportional with the

imaging distance, which means the speckle size in radians is constant. For imaging
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F, F, F, F. F, F, F, F, F,

Figure 9: The left depicts the scan lines (F; to Fg) of ultrasonic wave, where O is the
intersection of the scan lines, @ the direction, and r the wave propagation (or
depth). The right is the polar matrix which stores the echo information with respect to

the positien and-position of the data.

F, F, F, F. F, F, F, F, F,

Figure 10: DSC converts the polar matrix which stores the echo information on the

left side into the raster format on the right side, where k and | are the Cartesian

coordinates.
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distance larger than the focal distance, two cases must be considered. In non-attenuating
media, the lateral speckle size keeps the same, but in attenuating media, the lateral
speckle size increases as the imaging distance increases [42]. Soft tissue is surely
attenuating media; however, most modern instruments incorporate the capability of
multiple and dynamic focusing which might reduce the depth dependence of speckle
size caused by beam diffraction.

To unify the sampling format, a method called back-scan conversion (BSC) is used
to solve the depth dependence caused by:. DSC_ by reversing the process of digital scan
conversion; that is, the data in;a polar\coo_rd_inate is, the data in a unified format.
However, it is impossible to retrieve the o?fglnal data _stored in the polar matrix of the
ultrasound machine; we could o"n'ly. approXimate. the polar coordinates in depth and
orientation. Let f(k,l) be the image value of any pixel at (k,I) in the raster grid, and
f(r,0) the image value at (r,d) in the polar coordinate corresponding to (k,lI),

where r and @ are the depth and angle from (k,I) to the intersection of scan lines

(as O depicted in Figure 11). The geometrical relationships between these two

coordinate systems are r=4/(k+R)*+1* and 6?:tan*1k | = where R is the
+

shortest distance between O and any location in the echo area, such as the length of
OA in Figure 11. Since (k,1)’s are defined on discrete grid points, the corresponding

(k,1) for any given (r,0) may not exist. Value at a given (r,8) can only be
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Figure 11: Back-scan conversion. The left is the Cartesian raster format, and the right
is the polar format. Position at (k',1) in the Cartesian raster corresponds to that at

(r,8) inthe polar format.

approximated by interpolation: technigues, and. we- used the “griddata” function in
Matlab® to calculate f (r,8) with the éub_ig _i_htérpolatidn.
3.3.2 Sampling Rate Unif!qati.o'n

. Computational texture features are *very ;usceptible to the change of image
sampling format and sampling rate, which changes the shape and intensity contrast of
texture primitives (speckle cell). Moreover, Lai et al. [36] found that the sampling rate
used in the re-sampling process of BSC should be optimized according to the used
features, corresponding to the statements of Haralick [12] and Weszka et al. [33] that
various sampling spacing should be considered for a good way of analyzing texture
coarseness. The format of sector scan makes the speckle cells sampled unevenly in two

aspects. Firstly, the sampling rate varies with the depth and orientation relative to the

intersection of scan lines, which makes the cell size of speckle spatially varying. This
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will cause a scale problem distorting any measure of a fixed scale to analyze the texture
at different positions. To reduce the dependence of textural feature measures on depth
and orientation, the sampling rate of the ultrasound image must be unified. Secondly,
the sampling axes (i.e. the (k,l) and (r,8) in last subsection) of the speckle cells are
spatially varying also, which make the shape of speckle cells varying. As the case of the
sampling rate problem, the sampling format must be unified too. Following the
quantifications proposed by Oosterveld et al. [19], the average speckle size may be
considered as the full-width-at-half-maximum (FWHM) of the autocovariance function
(ACVF) from the echographic images:
ACVF(£,¢) = E{(t (k) —y')i‘f(k redO=m) )

where g, is the mean of image value.in, the region of interest (ROI), E is the
expectation, (k,I) and (&,4) are the coordinates of the image and ACVF,
respectively. Sampling rate herein is defined as the number of samples per speckle (s/s),
I.e. the FWHM of an ACVF, both in axial and lateral directions.

In order to elaborate the characteristics of Amadasun’s measure, the sampling rate
should be isotropic to that in the orthogonal direction. One feasible way to determine
the sampling rate is to firstly measure the sampling rates of k and | directions near
the central scan line in the Cartesian raster format, where the area suffers less from DSC

than other areas. To prevent the loss of information from the conversion, the images are
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Figure 12: Ultrasound images after back-scan conversion on Figure 1. The right two

images are the zoomed sub-images of the left one, surround by white rectangles.

over-sampled during the interpolation. Besides, according to Lai et al. [36], the

of echotexture much on condition that the
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sampling rate does not affect the_se@arap-ility

S
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axial and lateral sampling rat_es-'-éiire"'t'hTsa{ne ﬁ”q it"is‘?ﬁi-gh_er than the Nyquist rate. The
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process in BSC is then determi'ned:""-Aﬁer"-tﬁé"BSG;'- a«Gaussian filter is used to reduce

F e
s

the artifact from interpolation, whose ;st;nAafdldéviation, set by 2 in the experiment, is
defined with respect to f, [43].

The sampling rates in the axial and lateral orientations should not be less than that
in the raster format. Figure 12 is the result after BSC of an ultrasound image of a sponge.
It may be observed that the sample of speckle pattern at a small depth in homogeneous
ultrasound sponge image is similar to that at a large depth. Figure 13 shows the FWHM
of the axial and lateral ACVF of Figure 12. It is also observed that, after BSC with the

unification of the sampling rate, the sample of speckle becomes practically constant, no
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Figure 13. FWHM of the axial and lateral ACVF after BSC.
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Chapter 4
Experiments & Results

In this study, we show how to quantify the visual features ultrasound image texture,
and investigate the benefit of back-scan conversion for diagnosis. First, the used
materials are described. Then the separability of each feature is demonstrated.
4.1 Material

An SSA-700 ultrasound scanner (Toshiba, Tokyo, Japan) with a curved-linear
probe (PVT-375BT, center frequency at 3.7 MHZ, and bandwidth 1.9-6 MHz) was used.
The transmit focus was at 4 cm, and. the trgnsmit_ output level and dynamic range was 87
dB and 60 dB, respectively. The imagél%%'é was 640><480 pixels and the deepest
imaging distance was 8 cm. Images .o'f 6.healthy volunteers and 14 patients with liver
cirrhosis were scanned by physicians with same imaging conditions except the TGC and
overall gain setting. TGC and overall gain were adjusted by physicians manually to
make the images visually comfortable. The data with liver cirrhosis were verified by the
clinical case histories of the patients. Because coarseness is a relative feature, images of
3 pieces of homogeneous sponges were used as the references for coarseness
comparison. The sponges were immersed in water, and the air in the sponges was
squeezed out as much as possible.

The goal of using the echotexture of sponge is to create the echotexture of fully
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developed speckle as the “pure” reference, because the quantities of visual features are
comparative. On the other hand, the “pure” echotexture of sponge may be used to
measure the efficacy of back-scan conversion with the unification of sampling rate.

The regions of interest (ROIs) of each ultrasound liver image were selected by the
following criteria: (1) the area contains only parenchymal texture without tissues such
as vessels or walls; (2) the area is as large as possible; (3) every ROI dose not overlap
with others; (4) ROIs of images after preprocessing were cropped at their corresponding
positions as that before preprocessing. Total.!y 153, 61, and 136 ROIs of original
ultrasound images of sponges; héalthy\ livers, “and-cirrhotic livers were selected,
respectively; the same amounts of ROIs ofu{'ﬁat after pre_processing at the same positions
were used for performance assesshdent'.

4.2 Efficacy of Amadasun’s measure

Figure 14 shows the distribution of coarseness ratio of the homogeneous
ultrasound sponge texture with the preprocessing of sampling format and rate
unification, in which @,=12 s/s, w,=6 s/s and ®,/w, =2. The mean value of the
coarseness ratio f_ (@)/f. (®,) is 2.71 with a standard deviation of 0.07. As
mentioned above, @,/w, >1leadsto f_ (@,)/f.(®,)>1, which confirms the efficacy

of using Amadasun’s coarseness to characterize the effect of sampling rate on the

coarseness of ultrasound image texture. It is also found that the coarseness ratio of liver
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Figure 14: Distribution of coarseness ratio of homogeneous ultrasound texture of
sponge with ratio of sampling rate equal to 2.
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Figure 15: Coarseness ration of the liver. The mean is 2.605, and the standard

deviation is 0.165
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images sampled at different rates have the same phenomena as above, but they have a
higher mean value and standard deviation as shown in Figure 15. The reason that the
standard deviation of Figure 15 is larger than that of the sponge is because parts of the
primitives of the echotexture of the liver have larger scale than the fully developed
speckles. BSC unifies the size of fully developed speckles, but distorts the geometrical
scale of the echotexture.

For the other features, the means and standard deviations of the ratios,
feon (@)/ Toon (@2) T4, (@,)/ T, (0g) " and fco_m (@y)/ foon (@,), are listed in Table 4-1

with which of the coarseness. The‘means of these, ratios confirm the lower contrast,

busyness and complexity for higher,san-ﬁ'gnfi-'r"i'g rate, indicating the efficacy of these

e

features.
Feature Coarseness Contrast Busyness Complexity
Mean 2.7119 0.3195 0.3366 0.4019
STD 0.0701 0.0164 0.0166 0.0255

Table 4-1
4.3 Efficacy of the BSC
It is important to determine whether the preprocessing actually make Amadasun’s
measure of echotexture less depth dependent. By comparing Amadasun’s measure of

the ROI of sponge at different depths, centered at 2.5, 4 and 5.5 cm, it is found that the
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mean values are 7.45, 7.83 and 8.08, and the standard deviations are 0.26, 0.32 and 0.39,
respectively, for those ROIs without preprocessing. This confirms that deep echotexture
is coarser and more heterogeneous than the one at shallow depth. The ratios of the
standard deviation over the mean at these depths are 0.035, 0.041 and 0.047,
respectively. With preprocessing, the mean values are 66.33, 64.86 and 64.13, with the
standard deviations 1.15, 1.60 and 1.36, respectively (Figure 16). The ratios of the
standard deviation over the mean at the 3 depths are 0.017, 0.025 and 0.021. Comparing

il
these data shows that preprocessing ‘rn;a_,y

. e

fein:
make ‘the echotexture more homogeneous,

—=E

it
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Figure 16: Quantities of coarseness at different depth.
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4.4 Separation between homogeneous echotexture and ultrasound
liver texture
4.4.1 Coarseness

The coarseness feature based on Amadasun’s measure was used to characterize the
ultrasound image textures. It is found that if the sampling rate is above a threshold (2 s/s)
and the sampling rates in the axial and lateral direction are the same, the sampling rate
does not affect the effect of Amadasun’s measure [36]. The sampling rate used in
back-scan conversion was about 12/s, which.was measured based on the ACVF (egn

(6)) of the sponge images. This;sampling rate was,used for all liver images too. The

‘S AT

Figure 17: Coarseness distributions of different textures in logarithmic scale. The

dashed curve stands for sponges, the solid one for livers. The mean Mahalanobis

distance is about 0.5880.
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distribution of coarseness of all ROIs without preprocessing is given in Figure 17. The

mean values of sponges and livers (including normal and cirrhotic cases) are 7.7872 and

8.5181, and the standard deviations are 0.4153 and 1.1717, respectively. It is obvious

that the coarseness values for sponges and livers overlap partially, but a portion of the

coarseness values of liver are larger than that of sponge. The separability of the two

distributions can be quantified by the Mahalanobis distance (Duda et al. [44]) to have a

value of |7.7872—8.518JJ/J0.41532 +1.1717% =0.5880. This conforms that ultrasound
image texture of liver images with responses.of structural tissue inside is coarser than

that of sponge with speckle only:

Since the scanning format of uI,trasc')'Jnd makes the sampling rate of ultrasound

0.4

0.3

0.2

0.1

Figure 18: Distributions of coarseness values with the unification of sampling rate.

The dashed curve stands for sponges, the solid one for livers. The mean

Mabhalanobis distance is about 0.6242.
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image texture nonuniform, which makes it imprecise to quantify its coarseness, the

unification of sampling rate should improve the quantification. Figure 18 shows the

distributions of coarseness value of all ROIs with preprocessing, where the mean values

of sponges and livers are 70.9698 and 78.5682, and the standard deviations are 3.9489

and 11.5144, respectively. The Mahalanobis distance of the two distributions is

70.9698 — 78.5682] /\/11.51447 + 3.94897 =0.6242. Comparing to the case in Figure 17
which has a distance of 0.5880, where no preprocessing was applied, it is obvious that
the preprocessing increases the separation, of sponge and liver images.

4.4.2 Contrast

Figure 19 depicts the feature distribﬁ"ffth)'h?s of contrast of the sponge and the liver

without the unification of sampling format and'sampling rate. The mean values of the

100

Figure 19: Distribution of contrast values without the unification of sampling rate.
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liver and sponge are 52.6617 and 59.0117, and the standard deviations are 10.9957 and
6.3127, respectively. The Mahalanobis distance is 0.5008. It is manifest that the feature
of contrast is good at separating the liver and sponge, too. Here shows that the
echotexture of sponge has higher intensity variation than that of the liver.

However, with the unification of sampling format and sampling rate, the mean
values of the liver and sponge are 3.7534 and 4.0847, and the standard deviations are
0.7622 and 0.4532, respectively (Figure 20). The Mahalanobis distance becomes 0.3737,
worse than that without BSC. The reason i_s_ that,. without BSC, the rectangle ROI
contains more Class 2 scattering:which _re:sultg in higher. contrast than the rectangle ROI

with BSC. It also means that the ariginal éEIE‘r'ﬁation of the data on the scan lines suffers

from the dynamic range which'is i'riflu;enced by t'he.:operator dependence.

Figure 20: Distribution of contrast values with the unification of sampling rate.
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Figure 21: Distribution of busyness values without the unification of sampling rate.

4.4.3 Busyness
Busyness is used to show the “clufteri_&g.‘“f.qf the echotexture. In Figure 21, it shows
. 1 -n-l.'.‘_"-.:-": | |

Il m | :
the degrees of cluttering of sponge anc? _{hat’ of the liver are very close, without the BSC.

If the cluttering of echotexture implies the-locations of speckles, Figure 21 stands for

Figure 22: Distribution of busyness values with the unification of sampling rate.
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that speckles spread all over the echotexture. Even with BSC, Figure 22 also supports
the implication as Figure 21.
4.4.4 Complexity

It is supposed that the echotexture of liver with speckles and tissue structure is
more complex than that of the sponge. Figure 23 depicts the feature distributions of
complex of the liver and the sponge, without BSC. The mean values of the liver and
sponge are 17.785 and 17.951, and the standard deviations are 6.537 and 3.560,
respectively. The Mahalanobis distance.is 0.3236, indicating that complexity is not a

good feature to discriminate the fully developed speckles and the liver echotexture

ir

without BSC. It is also observed that the raﬁg‘fé" of complexity of the sponge is embraced

i

0.2

0.15

0.1

0.05

Figure 23: Distribution of complexity values without the unification of sampling

rate.
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Figure 24: Distribution of complexity values with the unification of sampling rate.

in that of the liver. Figure 24 depicts.the diétrib_utions with BSC. The range of the

sponge is stilled contained in that of the;:_-i-iv'er, representing that “complexity” is not
: i ? . -
good at discriminate the liver from sponge:”It means that the high correlation of one

sample in the echotexture to its neighboring s;mples leads to similar echotexture
primitives.

4.5 Separation between ultrasound echotexture of normal cirrhotic
liver

451 Coarseness

Despite the achievement in discriminating the ultrasound image textures of
sponges and livers, Amadasun’s measure of coarseness does not necessarily
discriminate well between the changes of tissue structures. Figure 25 shows the

distributions of coarseness values without preprocessing for sponges, normal livers, and
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I
cirrhosis
== Normal

Figure 25: Distribution of coarseness values without the unification of sampling rate.

cirrhotic livers, with the mean values 7:7872, 8.7288.and 9.3403, and the standard
deviations 0.4153, 1.0038 and 1.2035, respectivély. It is evident that the distribution of
| ,_;n-"'m' | |

1 M :
coarseness values of normal liver overl_laps-with. that of ‘cirrhotic liver severely, and the

mean Mahalanobis distance between cirrhosis‘and.normal livers is only 0.3902. As for

I I
cirrhosis
== nNormal

Figure 26: Distribution of coarseness values with the unification of sampling rate.
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Figure 25, the distributions of coarseness values with preprocessing are given in Figure
26. The mean values of sponges, normal and cirrhotic livers are 70.9698, 82.4123 and
87.1165, and the standard deviations are 3.9489, 9.7905 and 11.2354, respectively. The
mean Mahalanobis distance between cirrhosis and normal livers is only 0.3157. The
preprocessing does not improve the result of the measure of coarseness. Consequently,
the coarseness feature proposed by Amadasun is not a good feature to separate the
echotexture of normal and cirrhotic livers.
4.5.2 Contrast

Despite the feature of contrast cou]d\disc._riminate the echotexture of the liver from

that of the fully developed speckles Witlhdff;t"'l?;SC, it'Is poor to distinguish the normal

liver and cirrhotic liver (Figure "2'7).;The Mahalanobis distance is only 0.2448. The

0.4

I
cirrhosis

== nNormal

\
0.3F- -~ .

Figure 27: Distribution of contrast values without the unification of sampling rate.
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Figure 28: Distribution of contrast values with the unification of sampling rate.

reason is the Class 2 scatterings spreading Both in the echotexture of normal and
cirrhotic livers, and the contrast propbsé,c_iﬂ. by .Amadas.un is to measure the “spatial
contrast”. But with the BSC, in Figur'e 28 the \mean‘values of normal and cirrhotic
liver are 2.8839 and 3.3806, andthe‘standard ;Jeviations are 0.7007 and 0.8624,
respectively. The Mahalanobis distance is 0.4469, greater than the one of 0.2448
without BSC. This implies that BSC may enhance spatial contrast caused by ECM
complexes, though the separability of “pure” contrast is not very good yet.
4.5.3 Busyness

In Figure 29, without BSC, the mean values of normal and cirrhotic liver are
32.7122 and 18.6388, and the standard deviations are 15.4437 and 4.7247, respectively.

The Mahalanobis distance is 0.8714, indicative of a good feature to separate the

cirrhosis from the normal liver. After BSC, the mean values of normal and cirrhotic
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Figure 29: Distribution of busyness values without the unification of sampling rate.

liver are 2.8395 and 1.5303,.and-the standard deviations are 1.1195 and 0.4091,

respectively (Figure 30). The Mahalanbbi%_-_diétance is 1.0984. It shows that busyness is
. 'R || s

very good at discriminating cirrhosis Iﬁ_lom'l'he normal Tiver, especially with BSC. The
ey w 1

reason is the suppression of the effect of contrast variations, which emphasize the
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Figure 30: Distribution of busyness values with the unification of sampling rate.
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Figure 31: Distribution of complexity values without the unification of sampling

rate.

spatial intensity variation caused by spé.cI{lEs_.. 'I.f.the ECM complex replaces the location
of hepatocytes, the degree of clutteririg c,:;Used' by fuly developed speckle decrease
significantly. The unification of sampling- rate slamples the data in a uniform grid,
reducing the effect caused by the variation of sample number, and it may enhance the
cluttering in the echotexture of normal liver.
45.4 Complexity

As mentioned before, complexity is not good at distinguishing the ultrasound
echotexture. In Figure 31 and 32, no matter with or without the unification of sampling
rate, the distributions of cirrhosis, normal liver and sponge overlap apparently. This is

because one sample in the echotexture is highly correlated to it neighbor. It also

indicates the complexity of analyzing the ultrasound echotexture pattern.
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Figure 32: Distribution of complexity values with the unification of sampling rate.

4.6 Comparison of the feattires

Table 4-2 lists the Mahalanobis.dis'tanéeS (inter-distances) of the used features
| ‘:n",_h . |

1| A || ¥
between the liver and the sponge. It is &Ieaﬁhat the coarseness is a good visual feature
ey w 1

to distinguish the echotexture of the fully speckles and that of the soft tissue. Contrast is

probably a good feature too, but it suffers from the BSC.

Feature Coarseness Contrast Busyness Complexity

Without BSC | 0.5880 0.5008 0.2805 0.0223

With BSC 0.6242 0.3737 0.3070 0.0294
Table 4-2

Table 4-3 lists the inter-distance of the used features between the normal liver and

liver cirrhosis. It shows that the busyness is very good at discriminating the cirrhosis

from the normal liver. The BSC may calibrate the intensity variation and the contrast.
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Feature Coarseness Contrast Busyness Complexity

Without BSC | 0.3902 0.2448 0.8714 0.3236

With BSC 0.3157 0.4469 1.0984 0.4131
Table 4-3

Combining several features does not improve the separability by these features.
Figure 33 shows the combination of busyness and coarseness, the three classes cluster

together. Even with the BSC, the combination is not effective (Figure 34).
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Figure 33: Feature distributions without BSC. The selected features are busyness and

coarseness.
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Figure 34: Feature distributions wi 3 The selected features are busyness
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Chapter 5
Discussion and Conclusion

DSC makes deep echotexture coarser than shallow echotexture is, and theoretically
back-scan conversion would reduce the depth dependence. However, it is found that
shallow echotexture is slightly coarser than the one at deep depth, according to results
shown in Figure 13 and the mean coarseness value at different depths mentioned above
(Figure 16). This may be due to the dynamic focusing and/or the diffraction effect, both
of them can make the image resolution uneven i_n range.

Comparing Figure 17 and Figure 18,\ two_important results can be found. The first
is that the coarseness values of sponge irﬁéé?é'are distri_buted quite compactly no matter
whether the preprocessing is apbl'ieq'or not.,.On_the other hand, the variation of the
coarseness values of liver images is reduced by preprocessing; this is the main reason
that the separability between sponge and liver images is improved by the preprocessing.
The second is that the variations of the coarseness values of sponges are much smaller
than that of liver images. This is due to the fact that the liver cells are organized in
lobules by collagen, and collagen is a strongly scattering medium which leads to the
structural scattering in the liver images and makes the liver echotexture inhomogeneous.
This result shows that the coarseness measure is more effective for the homogeneous
sponge images than for inhomogeneous liver images.
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Some interesting results can be found in this study. Firstly, in both Figure 25 and
Figure 26, variation of coarseness values of normal liver are all smaller than that of the
cirrhotic case. This means that the texture of normal liver is more homogeneous than
that of cirrhotic livers. Especially in Figure 26 the distributions of coarseness values of
texture of normal liver with preprocessing, its distribution is symmetric without long tail
as in the case in Figure 25, this reflects the usual viewpoint that “ultrasound image
texture of normal liver is homogeneous”; here, the homogeneity is confirmed via the
help of preprocessing. Such a result reveals_ that_the human vision especially the
“expert’s vision” may do his/her own cqmpen_sation to reach the conclusion that “an
unpreprocessed ultrasound image of norrr{;{ji:v'er IS homogeneous”. However, this is not
the case for computational visioﬁ.'SgbondIy, the mean coarseness value of sponges in
Figure 25 is 7.7872 ( f

), while that of normal livers is about 8.7288 ( f___ ), and

$—Cos n—Ccos

cirrhosis is 9.3403 ( f__.). These coarseness values can be transformed to be their

physical coarseness values in unit of length via the help of sponge image. Assuming that
the sponge image is homogeneous, the dimension of speckle cell has a mean size d =
0.35 mm calculated by the FWHM of ACVF. For fully developed speckle, its
coarseness measure should represent its physical speckle size. Then, the physical
coarseness of normal livers relative to sponge is (f, .../ f. ..)xd,=0.39 mm and that

of cirrhotic livers is (f__./f. .)xd ,=0.42 mm. This confirms the usual viewpoint
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that “ultrasound image texture of cirrhotic livers is coarser than that of normal liver.”

With consideration to the characteristics of ultrasonic wave and the histology of the
liver, “coarseness” proposed by Amadasun may be treated as to measure the
homogeneity in the ultrasonic resolution cell. In case that the concentration of scatterers
is higher than a threshold and the scattering power of one scatterer is close to the others
within a resolution cell, the scatterers may be regarded as spreading homogeneously
over the resolution cell. On the contrary, if the resolution cell contains some particles
which have larger scattering power  than qther scatterers, the resolution cell is
inhomogeneous. Therefore, | coarseness _may ‘distinguish the echotexture of fully
developed speckle from that of the Iiver...;'elfi;:.—i"s' difficult_ to separate liver cirrhosis from
normal liver, because the compos"itio.n' of liver.in a-resolution cell is not homogeneous.
The parenchyma of spleen is more homogeneous than that of the liver, and consequently
the coarseness feature may be used to separate the echotexture of the spleen from that of
the liver.

In Table 4-2, the performance of the contrast feature to distinguish the liver and
sponge diminishes with BSC, but it rises to separate the cirrhosis and normal liver with
BSC in Table 4-3. It is also mentioned that the ROI of the liver without BSC contains

more Class 2 scattering than that with BSC. Thus if the shape of the ROI without BSC

is modified like a “fan” (the right in Figure 10), the performance of the contrast feature
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to separate the echotexture of the liver and sponge would be better with BSC. However,
because the separability of classifying the liver and sponge is lower than that of the
coarseness feature, plus the low separability of distinguishing the normal liver and
cirrhosis, the contrast feature is not a good feature for analyzing the echotexture of soft
tissue.

Even though the busyness feature could not separate the liver and sponge, it is
workable to discriminate the liver cirrhosis from normal liver because it suppresses the
locally high contrast cause by collagen, but keep the speckles. That is, the busyness is to
measure the cluttering caused by;the fullx developed speckles, and we may surmise the
busyness feature may respond to the tissué%;%fﬁcture in the liver.

High spatial correlation of the qltrasound echotexture means the low contrast in a
neighborhood, leading to a smaller number of primitives with different intensity in the
echotexture. The primitives are monotonous, and then the complexity feature proposed
by Amadasun is useless for ultrasound image texture.

It is clear that speckles dominate in the texture of ultrasound image, and the ability
of Amadasun’s measure is to estimate the characteristic of speckles for ultrasound
image texture. Visually discriminating cross-linked reticulum from speckles is based on
their scale and contrast, and BSC with sampling rate unification helps reduce the
distortion caused by the non-uniform sampling rate. Speckle reduction would change
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the characteristic of echotexture, such as the distribution of gray level and the Laplacian.
Thus speckle reduction would affect Amadasun’s measure of echotexture. Amadasun’s
measure, like most other texture analysis, is surely instrument dependent. Coarseness of
echotexture is one of many possible features for diagnosing liver fibrosis, such as shear
modulus [45, 46]; we believe that no single feature might be used as a dominant index
for clinical diagnosis. Therefore, Amadasun’s measure could be used with other features
to reach a better diagnosis for liver cirrhosis.

In this study, we propose an approach to: quantify the visual properties of
ultrasound image texture. As these featqres are comparative respectively, ultrasound
images of sponge may be used as.the ré%éhces. It is_ demonstrated that Amadasun’s
measure is useful to estimatethe .éharacteristics of the ultrasound image texture.
Furthermore, with the unification of sampling format and rate in the axial and lateral
directions to reduce the distortion caused by scanning format, Amadasun’s measure is
very effective in estimating the coarseness of fully developed speckle texture. In spite of
this effectiveness, the use of “coarseness” does not discriminate the images of cirrhotic
liver from that of normal livers well. This is due to the reason that the “coarseness” is
not so effective in estimating the coarseness of inhomogeneous textures. The

“busyness” feature is good at separating the echotexture of the cirrhosis and normal

liver; it may respond the distribution of connective tissue in the ultrasound liver image.
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In addition to the quantification of ultrasound echotexture and the unification of the

sampling format and rate for the analysis of B-mode image, the most contribution of

this study is to combine the histology of the tissue and the ultrasound echotexture.
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Appendix
Neighborhood Gray-Tone Difference Matrix

Amadasun’s measure is based on a vector s(i), called neighborhood gray-tone
difference matrix (NGTDM). s(i) is a column vector in which every element is
calculated corresponding to the gray level i in the image. Its entries are computed based
on measuring the difference between the gray level of a pixel and the average gray level
computed over a square, sliding window centered at the pixel. The original definition of
NGTDM from Amadasun is ROI-size dependent; to. make feature of ROI with different

size comparable and rational, the definition of NGTDM must be modified as follows.

Suppose the image value f,(k,1) %at pixel(k;T)| lisidi = 0,1, ..., G,.Let A, be the
average gray level over a neighborhood. centered at. (k,l), but excluding (k,l), which

is defined as

1

A‘_‘k':ﬁ[i ifi(k+m,l+n)} (m,n) = (0,0), (AL

where W =(2d +1)? and d specifies the window size of neighborhood. The i" entry

in the NGTDM here foran M x N ROI is defined as

N

NEEp»Y
s(i) = L= , forieN,, if N, =0, (A2)
(M —2d) x (N —2d)

0, otherwise,

where {Ni} is the set for all pixels having the gray level of i. The denominator is a

normalization factor for different size of ROIl. Amadasun’s experiments showed that the
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neighborhood size being 1 or 2 does not affect the performance of the proposed features

much, since this measure is based on the concept of patches with low local contrast. For

that reason, d is set to be one for reducing computation complexity.
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