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Abstract

To know the adaptation of plant society under climate change impacts is based on
knowledge of the potential distribution of vegetation distributions. Vegetation is a
society of plant species. Applying combination of species distribution models (SDMs)
results to establish potential vegetation maps (PVMs) need determination strategies.
This article firstly analyzes the relationship between Taiwan Hemlock (Tsuga chinensis
var. formosana Li and Keng) and 16 topographical and climatic variables and then to
generate a probability map by Maxent to test how 3 different situations of model input
affects the model performance: (i) selection and analysis of suitable environmental
variables by principal component analysis (PCA), classification and regression tree
(CART) and conditional inference tree (CIT) method, (ii) sample size and homogeneity
of species and vegetation sub-unit occurtence data (iii) resolution for environmental
layers. Model evaluated by area under receiver-operating characteristic (ROC) curve
(AUC) and Kappa statistic. 2 modelfcombination approeaches is also applied in this
study to aid to generate the potential Vé.gc‘lt:gfti_(’)_n'map (PVM) of Taiwan Hemlock. PVM
is evaluated by error matrix and its de;ive%ﬁdices. The result of vegetation analysis by
cluster analysis classified Taiwan Hemléck'}ﬁto 4 sub-Unit vegetation type. The result of
environmental analysis and modéiing: revealed-that, the environmental variable that is
affecting spatial distribution of Taiwén Hemlock miost is majorly elevation gradient and
the secondary is precipitation and both are climatic variables. Topographical showed
minor contribution to the model. Sample size test showed more accurately when input
the smaller size and more homogeneous samples. Resolution of environmental layers
showed no sigibificant effect on model performance in this case. Overlaying Taiwan
Hemlock vegetation sub-unit probability maps with 2 deterministic combination
approaches synthesizes a potential vegetation map of Taiwan Hemlock. Modification of
strategy for predicting PVMs is according to local ecological theory and further study
on testing the potential ability from the environmental variable is really suitable for the

target species.

Keywords: Tsuga chinensis, CART, CIT, Maxent, AUC, confusion matrix, PVM.
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Chapter 1. Introduction

1.1 Background

The question about plants and animals’ current distribution is discussed for a long
history and makes many ecologists find the explanation. Many modelers root in
species-environment relationships to establish many modeling approaches for solving
this question (Guisan and Thuiller, 2005). Analysis of the species’ geographic
distribution has always been an important issue in vegetation science, and is currently
focused by other sub-disciplines suchias bibgeography and landscape ecology. The
relationship between environmental gradiﬂents_, and vegetation distribution is one of the
most important issues examined in Vege‘[..ai;%f-l;' science (Miller et al., 2007). The ability
to quantify the relationship leac.lsf 1o prledlct poténtial (i-istribution of vegetation and is
applicable for predicting spatial distribution unde;:changing environmental conditions,

such as climate change occurring (Miller et al., 2007).

The purpose of potential vegetation field survey is to understand plant ecology and
apply to ecological conservation, landscape restoration, and landscape planting (Yang,
1997). Survey data for estimating or predicting potential vegetation according to plant
ecology, or plant geography, explain forest composition, structure, and function, further
more, the relationship with environmental variables and its succession stage. Those data
information allow us to predict the next succession, current or future distribution of
species and vegetation and are useful for forest ecosystem management, biological

conservation, and landscape restoration. On the contrary to traditional survey analysis,
1



Chiou et al. (2006) introduced GIS technique and several models are rapidly developed
in recent years. Combining vegetation mapping and analysis of satellite images with
GIS generate predictive vegetation model, a new approach for analysis
species/vegetation and environmental variables (such as Gu et al., 2006; Tsao, 2007;
Yen, 2007) (Franklin, 1995; Guisan and Zimmermann, 2000; Scott et al., 2002) and this

study is also based on the new approach.

Climate change has become an important focused issue in recent years, as a basis
for assessing whether anthropogenic greenhouse effect has enhanced climate change
and how the continuingly growing greenhouse gas concentration will lead to an
unknown future climate. According to’the IPCC’s Third Assessment Reports (TAR,
IPCC, 2001), the average temperature of globgl surface has increased by about 0.6 °C in
the past century, and to the [IPCC’s F ortil .@-e.s.sment Report (AR4), warming in the last
100 years has increased by 0.74 °C'in I.gilob;'f ave_:fage teinperature. This is above the 0.6
°C increase in the 20" century prior to the Third Alssessment Report (IPCC, 2007).
Taiwan has been moving toward a warmer and drier climate. Enhanced precipitation is
observed in the limited areas in the limited times, however, a systematic trend (or
change) is not observed (Hsu, 2002). In general, under constant climate change and
global warming conditions possibly forces the distribution area of current vegetation
diminishing, and increases the risk of species extinction. To predict the change of
distribution of species under different climate scenarios is essential to assess the risk of
species extinction under climate change (Thomas et al., 2004). Thus, the first mission is

to establish predictable models for species potential distribution range (Tsao, 2007).



Previous ecologist in Taiwan mainly focused on classifying the plant communities
and identifying the relationships between plant societies and environmental variables
(i.e. Su, 1984a; 1984b). Island of Taiwan has a great diversity of fauna and flora due to
a high degree of topographical complexity and an about 4000 m variation in altitude
(elevation). A large proportion of Taiwan is not easy to access for field survey due to its
hilly topography. Available field data might not be completely enough to support
decision making of conservational or environmental policies (Song et al., 2007).
Species distribution models provide a possible way to fill up the gap of incomplete

vegetation data (Franklin, 1998).

Projections of species distribution under climate and environmental change are of
great scientific and social relevance; and basing'on'species distribution models (SDMs)

make some assumptions such as gpecies @'-ﬁdopt to global dispersal in evolution and

F

consistency of limiting factors (Dorma}nln, 22)'07)_.'A1th0{1gh some of the assumptions are
ecologically untenable, the predic.tions. of-the SDMS are still a useful reference to policy
maker for climate change impact assessment and conservation management. This study
examines the relationships between distributions of dominant species, Taiwan Hemlock
(Tsuga chinensis (Franch.) Pritz. ex Diels var. formosana (Hayata) Li and Keng) of
alpine forest in Taiwan, and climatic and topographical environmental variables. Not
only traditional statistical approaches, but importance of new direction of data mining
approaches in analyzing relationships between species and environmental factors will

lead more precise insight and performance on SDMs prediction.



1.2 Objective

Although SDM are widely spread in many fields, the analysis of relationship in
species-environment is still methodologically not well organized. This study will focus
on comparing statistical and data mining methods to find the suitable environmental
layers for building the spatial distribution of Taiwan Hemlock vegetation. Additionally,
some studies of SDM application can be found in Taiwan (Gu et al., 2006; Tsao, 2007;
Yen, 2007) but fewer studies in Taiwan considers the comparison of difference model
setting (like Song, 2007). Smaller grid size of the predicted background can reflect the
more detail of topographical variables than climatic variables but is time consuming due
to a very large data size for model estiffation. Contrarily,larger grid size of background
is much faster when calculating but..la(‘_:hl_g‘s.:_o't." or redﬁces detail information of the
meso-environmental variables: .Thus,'this{'_%_t-u.dy also takes grid size, predicted area,

locality units, and environmental selectionofithe modelinput into account.

Pervious studies for SDMs (mentioned later in Ch. 2 literature review) were using
multiple model combination to improve the predictive accuracy for each species’ spatial
distribution, however, combining different hierarchy units of species and vegetation to
increase the predictive accuracy are seldom seen in resent researches. Therefore,
comparing model techniques combination and species-vegetation unit combination is to
compare and combine different SDMs to synthesize potential vegetation map of Taiwan
Hemlock another goal of this study. The combination criteria are utilized to determine
the binomial potential distribution area that Taiwan Hemlock may occur. There are 4

main objectives listed as follow:



1. Using data mining approach (classification and regression tree, CART and
conditional inference tree, CIT) compared to statistical approaches (detrened
correspondence analysis, DCA, principal component analysis, PCA and correlation
analysis, CA) for analysis of relationship between species distributions and
environmental variables.

2. Assess how localities inputs of different vegetation and species based sub-units on
distribution modeling relate to environmental variables.

3. Evaluate how difference grid resolution affects the model performance and
relationship between target species and environmental variables.

4. Model combination and synthesis of'potential nature vegetation maps.

=

i -
"

= =



Chapter 2: Literaturereview

2.1 Climatic Factor and Vegetation Distribution in Taiwan

Alpine ecosystem’s unique characteristic environment, such as strongly wind
blowing, shallow soil, low temperature, snow cover, is unsuitable for growing and is
sensitive to climate change (Luckman, 1990; Walther, 2004). Therefore, monitoring
alpine ecosystem for climate change impact assessment on alpine forest is a very

important approach worldwide (Luckman, 1990).

Vegetation Zone differentiation in-Taiwan-changes-along with altitude gradient and
variation of vegetation in Taiwan/is spec1f;‘if'd by|vegetation zones or vegetation biomes
divided by different elevation (I?i_u, !9I’62;-L.Su,_ .1984b;. Su, 1992). Su (1984a; 1984b)
described the relationships between vegetation: zc;nes and climate factors and tried to
divide the range of vegetation distribution by temperature factor. Su (1984b)
investigated vegetation of Chou-Shui river basin in mid-Taiwan and established the
relationships between elevation and temperature by regression analysis and determined
the up and low limits of elevation for every vegetation zone. Su’s vegetation zone

(1984b) is a high hierarchy classification unit and each zone may contain different

forest types due to differentiation of topography, soil, or succession stage.

Many ecologists considered latitude and elevation are the main factor to species
distribution (Kellman, 1980; Su, 1985; Su, 1987; Guissan et al., 1998, Liang, 2004; Yen

et al., 2007). Previous studies on vegetation science in Taiwan restricted to financial
6



support and thus most vegetation survey sites limited within local area like boundary of
watershed, naturally conserved area, or administrative area, such as Su’s (1988) study
site in Single-seed Juniper conserved area, Su (1984b) in Chou-shui river basin, Liu et
al. (1999) in Sha Li Shian watershed, and Fu (2002) in Dan-Da area. Those local studies
with varied purposes, methods, and location, which boundary doesn’t represent the real
boundary of species’ distribution, hardly integrate the vegetation distribution in Taiwan

(Chiou et al., 2006).

Chiou et al. (2006) analyzed the distribution characteristic of Taiwan Hemlock
community in Taiwan using cluster analysis and compared with environmental
conditions, altitude, latitude, and warmth index. Two methods of the comparison are
order and inter-specific association,/¥en et al ._(2007) and Tsao (2007) firstly introduced
the model techniques for modeling speéié?édiétribution over the whole Taiwan Island.
Yen et al. (2007) used second-order Ilogiéﬁc régressibn in generalized linear model
(GLM) to estimate the probabilis.tic distribution of Taiwan Hemlock in Taiwan by two
of the most important environmental variables, latitude and altitude. Tsao (2007) used
generalized additive model (GAM) to establish the relationships between distribution
ranges and environmental variables for six conifer species, Chamaecyparis obtusa var.
formosana, Chamaecyparis formosensis, Abies kawakamii, Tsuga chinensis, Picea
morrisonicola, and Pinus taiwanensis, of Taiwan. Tsao’s result shows all of the six
GAM models select the variable of mean annual temperature for building model, in
other words, distribution of six plant species is affected by mean annual temperature.

Annual precipitation, however, is not selected by any of the six models. Therefore, the

probable explanation may be Taiwan Island receives abundant precipitation all year



round, so precipitation is not a limiting factor for vegetation distribution in Taiwan

(Kuo, 1978; Yen, 2007).

2.2 Data Mining Approach in Environmental Factor Analysis

2.2.1 CART

Classification and regression tree (CART) is a kind of decision tree. Breiman et
al.’s (1984) CART is a common basis for some ensemble procedures such as bagging
(Breiman, 1996), random forest (Breiman, 2_001), and stochastic gradient boosting
(Friedman, 2001a). Kriegler (2007) mentionéd four key aspects of CART are (i)

Splitting criteria for regression tree, (11)Erumng and knowing when to stop making

—— =
—

splits, (iii) Costs and the relation to pripréj?ﬁd (1v) Obtaining fitted values. CART can
handle both numeric (regression tree)‘and categorical (classification tree) predictor and

response variable.

De’Ath and Fabricius (2000) described CART is ideally suitable for analyzing the
complex ecological data, which is usually strongly non-linear, involving higher order
iteration, unbalanced, and containing missing values. Because CART is flexible and
robust analytical methods and can handle for such complex data. Furthermore, CART
results are simple to understand and easily interpretable by its graphical representation
with root (undivided data) at the top and branches and leaves (final groups) underneath.
The explanation for variation of a single response variable for trees is using one or more

explanatory variables (continuous/categorical) to repeatedly split the data into more



homogeneous groups, which is defined by a single rule based on single explanatory
variable, but to remain the tree reasonably small. Splitting is continued until an
overlarge tree is grown and then pruning reshapes it back to the desired size. Each
group/leaf is characterized by a typical value of the response variable (mean value for
numeric response and distribution for categorical response), the number of observations
in the group, and the values of the explanatory variables that define it. The tree is

represented graphically, and this aids exploration and understanding.

Trees are interactive exploration and both descriptive and predictive for patterns
and processes. De’Ath and Fabricius (2000) stated advantages of CART including: (i)
the flexibility to handle different types . of response. variables, numeric, categorical,
ratings, and survival data; (i) inva_riance_ to “monotonic transformations of the

explanatory variables; (iii) the capacity':_:fé_-f-_.-_-interactive exploration, description, and

F

prediction; (iv) ease and robu'stnessl Iof C;:(")nst_rilction;. (v) ease of interpretation by
graphical representation; and (Vi). the .ability to handle missing values in both response
and explanatory variables. Therefore, CART is an alternative to many traditional
statistical techniques, such as multiple regression, analysis of variance, logistic
regression, log-linear models, linear discriminant analysis, and survival models for

complement or representation (De’ Ath and Fabricius, 2000).
222CIT

CIT is an abbreviation of conditional inference tree, which can deal with recursive
partitioning for continuous, censored, ordered, nominal and multivariate response

variables and the implementation utilizes a unified framework for conditional inference
9



developed by Strasser and Weber (1999). Hothorn et al. (2006) described conditional
inference framework for recursive binary partitioning can be solve two fundamental
problems of exhaustive search procedures, (i) over fitting and (ii) a selection bias
towards covariates with many possible splits or missing values, by (i) pruning
procedures and (i) embedding tree-structured regression models into a well defined

theory of conditional inference procedures, based on invariant p-value.

Roughly, the algorithm of CIT works as follow steps: (i) Test the global null
hypothesis of independence between any of the explanatory and the response variables
and stop if this hypothesis cannot be rejected (i.e. the explanatory and response
variables in a specific splitting node are not independent to each other). Otherwise select
the explanatory variable with strongest ass_og:iation to the response variable with

measuring a p-value corresponding to A tefia;for the pastial null hypothesis of a single

F

explanatory variable and the résponsé variable} (ar) Split binaurally in the selected

explanatory variable. (iii) Recursively repeat steps ':(i) and (ii).

The stop criterion in step (i) is either based on multiplicity adjusted or univariate
p-values and it is shown that the predictive performance of the resulting trees is as good
as the performance of established exhaustive search procedures (Hothorn €t al., 2006).
This statistical test ensures that the right side of the tree is grown and no form of
pruning or cross-validation. The selection of the explanatory variable to split in is based
on the univariate p-values preventing a variable selection bias from explanatory
variables with too many possible splitting points. Moreover, the prediction accuracy of
trees with early stopping is equivalent to the prediction accuracy of pruned trees with

unbiased variable selection.
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2.3 Ecological Niche and Species Distribution Model

2.3.1 Predicted Vegetation Modeling

Maps of vegetation composition have traditionally been produced by field survey
and photo interpretation, but these methods are costly and inefficient. Predictive
vegetation modeling (PVM) can be defined as predicting the distribution of vegetation
across a landscape based on the relationship between the spatial distribution of
vegetation and relevant environmental variables (Franklin, 1995). Fraklin (1995)
provided the relationship between environmental variables and their process affecting

distribution of potential natural and actual vegetation (Figure 1).

< ’;F‘J |
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Figure 1. Conceptual model showing relationships and processes between climatic determinants, direct

gradients, potential natural vegetation and actual vegetation (revised from Franklin, 1995)
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PNV is determined by environmental determinants (climatic, geographic, and
topographic factors) which changes local soil nutrients, moisture, and temperature.
After natural and/or anthropogenic disturbance, like competition, succession, land-use,

actual vegetation and land-use type form as mosaics on landscape.

To evaluate potential vegetation, predicting vegetation mapping (PVM) is firstly
considered. Three steps described by Franklin (1995) and Chen (1997) for PVM are (i)
Traditional approach: explanation by aerial photos or numeric vegetation map from
geographic mapping combines with geographic information system (GIS) for decision
making. (i) Numeric approach: establishment of mathematical relationship between
environmental variables (such as temperature, precipitation, soil type) and traditional
field survey records helps to understand the distributio_n of vegetation. (iii) Predicting
vegetation mapping. Step 1 actually not ’réé"k_-él_ﬁ'.dlyze the data as step 2 does, in the other
words, the spatial pattern of species ilsinotl'a%énly'simpl}./ digitizing the survey data, but
also establishes the statistically. Or: .mechanis_ticé:ﬂly mathematical relationship with

environmental variables.

Development methodology of PVM traced to Kessell’s (1976) series studies on
connecting real spatial object with abstract spatial model by gradient modeling with GIS
in Glacier National Park, USA; Box (1981) used empirical model to generate
distribution of global vegetation with global plant communities and macro-scaled
climatic variables. After this point plenty of relevant studies followed. Table 1

integrates the methods of recent 20 years studies for PVM.
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Climate-Vegetation classification model, one of PVM, assumes that major
vegetation of any site is the result of environmental factors and considers climatic
variables playing an important role on it (Tuhkanen, 1980). Koppen (1931) and
Holdridge (1967) established the classification of global vegetation and its life zone,
Walter (2002) divided 9 zonal biomes in macro-scale mapping of vegetation, Chiu et al.
(2005) mapped Holdridge’s life zones at Taiwan. Ecologists also consider the dominant
vegetation type is response by reaction of climatic variables and every climatic zone

should have its vegetation type (Whittaker, 1975).

Table 1. Predicted vegetation modeling (PVM) techniques with continuous and categorical data (revised

from Franklin, 1995; Chen, 1997)

Dependent Independent variable
variable Continuous N /Mixed = Categorical
RM ANEOVA ANCOVA
Contimuons T Wy MaNcovag | MANCOVA
GLM RT < RT
& S GLMg GLM
MLC - MLEC.with priors Contingency Table
Logit (GLM) Logit (GLM) Logit (GLM)
DA GAM GAM
Categorical GAM CART CART
CART NN NN
GA GA
ES ES

Notes: ANCOVA: Analysis of Co-Variance; CART: Classification and Regression Tree; DA:
Discriminant analysis; ES: Expert System; GA: Genetic Algorithms; GAM: Generalized Additive Models;
GLM: Generalized Linear Models; MANCOVA: Multivariate Analysis of Co-Variance; MLC: Maximum

Likehood Classification; NN: Neural Network; RM: Regression Tree; RT: Regression Tree.

Chen (1997) described two scales for studying PVM. (i) Regional scale and (ii)

Local scale. Study range of regional scale is considering global and continental area and

14



the environmental variable is mainly climatic variable. In this scale the
climate-vegetation model belongs to static model (Lowell, 1991) and is based on
assumption of the equilibrium between distribution of vegetation and environmental

variables. (Leniha and Neilson, 1993) » and this assumption is acceptable for larger area

and loner time (Cramer and Leemans, 1993). Study range of local scale is smaller than
regional scale such as a watershed and the environmental variables are selected for this
scale such like topographic variable, slope, aspect, and soil type. In this scale, predicting
of PVM is not only the static model, but also considers the topographic and
micro-climate variables to project the active procedures of species’ birth, growth, and
death (Urban et al., 1991). However, the complex background knowledge about
climate-vegetation interaction is needed for- the dynamic models (Brovkin, 2002).
Unfortunately, few dynamic mechanisms. of interaction of vegetation and ecosystem are

well developed (Foley et al., 1998).

-]

Chen (1997) introduced three:stage of _modef building in GIS: (i) establish spatial
database, digitalizing the survey records and environmental variables for spatial analysis
and further application in GIS. (ii) Set up the mathematical relationship between species
and environmental variables. (iii)) Combine the mathematical model and GIS tool and

database to output and display the results.

Potential natural vegetation maps are applied to communicate the natural baseline
conditions for assessing ecosystem health, predictions of vegetation distribution which
is caused by responding to environmental factors to management, and determination of
potential resource value (Jansen et al., 2002). Danijela (2003) applied predictive

vegetation model to manage and conserve the developed area based on the PNV
15



conception. PNV concept is not only for vegetation mapping, but also for land-use
development and as a potential and basic reference for describing and integrating
ecosystems (Hardtle, 1995; Seibert and Conrad-Brauner, 1995). For example, PNV
represents the climax stage of vegetation under the stable environmental condition and
can be used as a guide for ecosystem restoration (Danijela, 2003). In Japan, many cities
have their own actual and potential vegetation maps for land-use planning and integrate
the PNV studies concluding which native species is better for planting on the area.
(Miyawaki et al., 1987; Miyawaki and Fujiwara, 1988; Miyawaki, 1988). PNV is also
applied in simulating global and local climate change impacts, such as Cha (1998)

estimated potential change of forest area under 2 times CO, concentration.

2.3.2 SODM/ENM

. g.s I

=

Species distribution modelé (SDMs) o-r;::ecol;)gical ﬁiche-based models (ENMs) are
two kinds of the PVM techniques” and' are emi)irical models relating field survey
observations to environmental predictor variables, which is based on statistically or
theoretically derived response layers (Guisan and Zimmermann, 2000). SDMs describes
the spatial distribution of a species or species groups, as a function of environmental
predictor variable such as latitude, longitude, altitude, climate, topography, land-use
type, vegetation type, soil conditions, and so on. Species presence-only and
presence-absence data are two major formats of the SDMs’ explanatory variables and
the former data type is usually easier to obtain by historical records such as museum
specimens, private collections, or field surveys. In other words, the potential species
distribution model (PSDM) is developed from a set of environmental variables for a set

of rasters, together with a set of data localities where the species are observed and
16



predicts the suitability for the target species as functions of environmental variables.

(Phillips et al., 2006; Prates-Clark et al., 2008).

Guisan and Thuiller (2005) describe three phases of SDMs by author’s personal
communication to S. Ferrier:
(1) Non-spatial statistical quantification of species—environment relationship based on
empirical data,
(i) expert-based (non-statistical, non-empirical) spatial modeling of species
distribution.

(iii) Spatially explicit statistical and empirical modeling of species distribution.

Species distribution models;(SPMs) of plants and animals are interested widely in
the last two decades and applied many 1ss1d_:':iesm ecology, biogeography, evolution and,
in conservation biology and ¢limate qhéngé"res_e'arch(Guisan and Thuiller, 2005), such
as predicting species distributioﬁs fr.om rr_1use_urﬁ and herbarium records (Elith and
Leathwick, 2007), predicting future range of species distributions under climate change
impacts (Thomas et al., 2004), mapping species ranges and species richness (Graham
and Hijmans, 2006), predicting the invasive spread of a cactus species in Australia
(Johnson, 1989) (quoted in Pearson and Dawson, 2003), assessing the climatic
determinants of the distribution of several European species (Hengeveld, 1990) (quoted
in Pearson and Dawson, 2003), enhancing a regional vegetation map (Franklin, 2002),

biodiversity conservation (Rodriguez et al., 2007) ...etc. Table 2 shows the application

of SDMs in ecology fields.
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Table 2. Some application of SDMs in ecology fields (revised from Guisan and Thuiller, 2005)

Type of use

References

Quantifying the ecological niche of species

Testing biogeographical, ecological and

evolutionary hypotheses
Assessing species invasion and proliferation

Assessing the impact of climate, land use and
other environmental impacts on species

distributions

Suggesting unsurveyed sites of high po.ten:dal of
occurrence for rare, endemie, threatened sp:):éples
Supporting appropriate management pléns for
species recovery and mapping suitable sites for:
species reintroduction

Supporting conservation planning and reserve

selection
Modeling species assemblages (biodiversity,
composition)/vegetation from individual species

predictions

Predicting distribution of high value trees

Vegetation mapping support

Austin et al. (1990), Peterson €t al.
(2002), Vetaas (2002), Sattler et al.
(2007), Rissler and Apodaca
(2007), Raxworthy et al. (2008)
Leathwick (1998), Anderson et al.
(2002), Graham et al. (2004b)
Beerling et al. (1995), Peterson
(2003), Sanchez-Flores (2007),
Wang et al. (2007)

Thomas et al. (2004), Thuiller
(2004), Early et al. (2007),
Dormann (2007)

Elith and Burgman (2002),
Raxworthy et al. (2003), Engler et
al. (2004), Zimmermann €t al.

| (2007)

I;earce and Lindenmayer (1998)

Ferrier (2002), Arau’jo et al.
(2004), Pape and Gaubert (2007
Guisan and Theurillat (2000),
Cairns (2001), Ferrier et al. (2002),
Graham and Hijmans (2006),
Rodrguez (2007), Saatchi et al.
(2008)

Prates-Clark et al. (2008)

Scott et al. (2001), Franklin (2002),
Cawsey et al. (2002), Tatsuhara
and Antatsu (2007)
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ENM is slightly difference in the definition to SDM. Models of ecological niches
are designed to estimate the potential niche’s area of the target species, and thus ENM
predicts broader range than actual distribution (Phillips et al., 2006; Peterson et al.,

2008).

James and McCulloch (1990) stated all parametric statistical models face to the
problem with highly non-Gaussian distribution data such as most environmental

variables. Stocktwell (2006) described:

“The ideal ENM method will (1) be capable of modeling a wide range of responses,
(2) allow critical examination of assumptions, (3) bea simple approach that will not fit
inappropriate functions, but (4); will _handle_ extremely non-linear data, and (5) will
efficiently turn an increasing .flood of d:éia from satellites, geographic information

]

systems and climate model outputs nto jsim‘f")"le, scalable ENMs.”
2.3.3 DMs and Ecological Theory

Niche based models like some of SDM or ENM (Maxent, GARP, GAM ...etc)
representing the approximation of species’ ecological niche in the examined
environmental layers (Phillips et al., 2006). ENM is based on the idea of ecological
niches defined as the set of conditions under which a species is able to maintain
populations without immigration (Grinnell, 1917; 1924; Hutchinson, 1957; Hutchinson,
1978; and Austin et al., 1990). The ecological niche includes the fundamental niche,
which consists of a set of conditions for species’ long-term survival, and realized niche,

which is subset of fundamental niche for species’ actual occupation (Hutchinson, 1957).
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Therefore the realized niche of a species may be smaller than its fundamental niche due
to disturbances from human influence, biotic interaction (such as competition),
geographic barriers, and/or natural disasters, and such factors are influential to its
survival range and prevent the species from fully spreading its ecologically potential
niche (Pulliam, 2000; Anderson and Mart inez-Meyer, 2004; Phillips €t al., 2006). Thus
niche based models estimate the approximation of species’ realized niche in
environmental layers considered, however, the departure between realized and
fundamental niche remains unknown in practice (Phillips et al., 2006). Realized niche
can be estimated by removing areas that species is known or inferred not to inhabit from
the predictive distribution such as areas suitable for the target species without colonized
due to geographic barriers (Peterson et*al., 1999; Anderson, 2003), biotic interactions

(Anderson et al., 2002), and human.nfluences (Anderson and Mart'inez-Meyer, 2004).

. g.s I

=)
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Phillips et al. (2006) de'scribeflij the:"eco_llogical. assumption of environmental
variables used for modeling are ti) teﬁporal co_rréspondence, (i1) scale, (iii) space and
time. Temporal correspondence will be existed when using locality record that
investigated very long time age for current land-cover classification (Anderson and
Mart’inez-Meyer, 2004). Mackey and Lindenmayer (2001) defined environmental
variables for different scale: (i) global and meso-scales: climatic variables such as
temperature and precipitation, (ii) meso- and topo-scales: topographic variables such as
elevation and aspect, and (iii) micro-scales: land-cover variables such as forest canopy.
Su (1983) also introduced the classification of factors affecting species habitat: (i)
direct/indirect factors, (ii) scales, (iii) affection, and (iv) sources. For source

classification environmental variables influence habitat divided into 4 categories:
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(1) Climatic factors: such as radiation, air temperature, precipitation, wetness.

(i1) Edaphic factors: also called soil factors, such as soil type, soil temperature.

(iii) Physiographic factors: also called topographic factors, such as aspect, altitude,
slope, curvature.

(iv) Biotic factors: such as anthropogenic or biotic interactions or disturbances.

SDM has applied in Taiwan vegetation science for just a few years. Song et al.
(2007) compared the model performance of three SDM techniques, Maxent, GARP, and
GAM, by evaluating sensitivity, specificity, and area under receiver operating
characteristic (ROC) curve. Tsao (2007) used GAM to establish the relationships
between distribution ranges and' environmental variables for six conifer species,
Chamaecyparis obtusa var. formosana, Chamaecyparis_ formosensis, Abies kawakamii,

Tsuga chinensis, Picea morrisonicola, andf_'Bmus taiwanensls, of Taiwan.

F

2.3.4 MAXENT

Maxent program for maximum entropy based machine-learning modeling
technique predicts species geographical distributions and is firstly introduced by
Phillips et al. (2005). Maxent model’s estimation is based on a decision theoretic
perspective as robust Bayes estimation (Phillips and Dudi’k, 2008) and simulates
predictions from data with incomplete information to estimate a probability distribution
by finding the probability distribution of maximum entropy (Della Pietra et al., 1997)
(i.e. the Maxent approach assumes that the occurrence data of incomplete empirical
probability distribution can be approximated with a probability distribution of

maximum entropy subject to environmental layer’s constraints, and use this
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approximated distribution for predicting a species potential geographic distribution
(Phillips et al., 2005). Phillips and Dudi’k (2008) described the Maxent model uses the
species’ occurrence data to define the region of probability with maximum entropy. The
probability distribution © over the set X of plots is non-negative value and the sum of
n(x) is one, where the x is the sample of the population X. The &t is displayed in terms of
“gain”—the log (the number of rasters) - the log (loss) (i.e. the average of the negative
log (probabilities of the sample locations) (Prates-Clark et al., 2008) and coincides with
the potential distribution stated by biologists (Phillips €t al., 2004). The simple function
of environmental variables are a set of real-valued variables and called features, and the
constraints are the mean of predictive features required to be near the empirical average

over the occurrence sites (Phillips €t al.;’2006).

Initially, each environmental Varlalj'hls treated as potentially an important
predictor variable to develop the modél. Jl'z'ékk;ﬁfe test re-sampling method (Peterson
and Cohoon, 1999) of Maxent’é intérnal _procedﬁres reduces the bias of correlated
environmental variables and to diagnose which environmental variables were the most
important variables for building models. The environmental variables with the highest

gain means higher the relative importance of variables that potentially, contribute to

generating the SDM (Phillips et al., 2004).

Maxent displays the influence of each environmental variable in response curve
diagrams. As the Maxent model is an exponential model (Della Pictra et al., 1997), the
probability of prediction is proportional to the exponential contribution of each
environmental variable (Phillips et al., 2006). The response curves in version 3.2.1 are

in logistic (probability) space, rather than exponent (linear) space, so they're easier to
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interpret. Statistical approaches for evaluating model performance such as dependent
omission rate and independent AUC of ROC analysis are also including the internal
procedures of the Maxent. Some other features of Maxent 3.2.1 can visit Maxent

website (http://www.cs.princeton.edu/~schapire/maxent/) for more information. Maxent

with pros and cons were reviewed by some study. The advantages of Maxent include
the usage of both categorical and continuous environmental data (Prates-Clark et al.,

2008).

2.4 Model Performance Evaluation

Model performance can be evaluated by the -acecuracy of model predictions, the
interpretability and rationality of the explanat@ry variables, and the validity of predicted
shape of response curves (Pearce and Femger 2000) A good prediction includes both
reliable and discriminatory predlc‘uon Rehable predlctlon means the accurate
estimation of probability for a species’ occurr'enc”e site and discriminatory prediction
means the ability to discriminate the species occupied or unoccupied site in the study
area. The model predicts each site from the study area with a probability © for species
occurrence and the observation from each site consists of presence or absence of the
target species y. Murphy and Winkler (1987; 1992) factorized the joint distribution of

and y into a conditional distribution ( p(y | #) or p(x|y))and a marginal distribution
(p(z) or p(y)) as shown in Figure 2, where p(y|x) and p(x) reflect model
calibration and refinement respectively; p(z|y) and p(y) represent the ability to

discriminate and base rate (prevalence) respectively. If the model is well calibrated then

the points should lie along a 45° line of the scatter plot for predicted probabilities
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comparing with observed occurrence and if the is well discriminated then little overlap
between presence/absence distributions on the plot of frequency distribution of the
predicted values for occupied sites comparing with unoccupied sites. The prevalence
needs to be moderately large for examining the predictive performance of a model

(Pearce and Ferrier, 2000).

Figure 2. Frequency table of observation y and p.redié__ti_{/e value ' from model for each evaluated site.

—— =
—
= |

| A

Two of factorizations introduced by Murphyland Winkler (1987) are equivalent:
P(, x) = p(x | 7)- p(m) = p(z | x)- pP(¥)

Therefore since the base rate (prevalence) is a constant, a model which has good
calibration and refinement must also have a good discrimination, on the contrary,
however, a good discrimination is not necessarily with good calibration and refinement.
These two aspects of model performance, calibration/refinement and
discrimination/base rate reflect the reliable prediction of absolute value about how
closely the predicted probabilities match the occurrence proportions and the ability of

prediction to discriminate the observed presence to absence of predictions.
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2.4.1 Confusion Matrix for Measuring Discrimination Performance

2 x 2 classification table (Table 3) often examines the model performance by
comparing predicted value and actual observation (Pearce and Ferrier, 2000).
Generally thinking, greater numbers of both observed/predicted presence and absence
(A and D in table 3) imply a good performance of the prediction, on the other hand,
greater numbers of predicted presence and absence but actually absence and presence (B
and C in Table 3) tell a bad performance of the prediction. False positive (B) and false
negative (C) are also called omission (including unsuitable sites in the prediction) and
commission (leaving out from distributional area) respectively (Peterson et al., 2008).
Predicted presence or absence is Qetermined' By predicted probability value which is
higher or lower than the specific thresholdl.. The-four'condition of the classification table

1 i,

can calculate four more indices: sensitivaty,;~specificity, false positive fraction, false

| A

negative fraction, and other measures of model pérformahce listed in Table 4.
ol | b

Table 3. 2 x 2 classification table (confusion matrix), each of the values A to D
represents the number of species observed (revised from Pearce and Ferrier, 2000;

Wang et al., 2007)

Observed
Presence Absence
Presence A B A+B
Predicted
Absence C D C+D
A+C B+D A+B+CH+D

Note: A: true positive, B: false positive, C: false negative, D: true negative
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Table 4. Indices derived from confusion matrix of Table 3 (revised from Fielding and Bell, 1997, Pearce

and Ferrier, 2000; Wang et al., 2007; Tsao, 2007)

Index Description and Formula
Number of positive sites correctly predicted A
Sensitivity =
Total number of positive sites A+C
Number of negative sites correctly predicted D
Specificity =
Total number of negative sites B+D
Number of false positive predictions C
False Positive Fraction =
Total number of positive sites A+C
Number of false negative predictions B
False Negative Fraction =
Total number of negative sites B+D
Accuracy Number of total sites correctly predicted A+D
(Correct classification rate) .~ Total'number of sample sites A+B+C+D
Number of total miselassified sites B+C
Misclassification rate | “ i \ =
thall:?ﬁ?nbdr oof sample sites A+B+C+D
m |
Totlal n};:mber' of negative sites B+D
Overall diagnostic power =4 || VL =
b _'H'otal number of sample sites A+B+C+D
Total number of positive sites A+C
Prevalence =
Total number of sample sites A+B+C+D
Number of positive sites correctly predicted A
Positive predict power (PPP) =
Total number of predicted positive sites A+B
Number of negative sites correctly predicted D
Negative predict power (NPP) =
Total number of predicted negative sites C+D

Note: A: true positive, B: false positive, C: false negative, D: true negative
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Table 4. Indices derived from confusion matrix of Table 3 (revised from Fielding and Bell, 1997, Pearce

and Ferrier, 2000; Wang et al., 2007; Tsao, 2007) (cont.)

Index Description and Formula
Ratio between total correctly predicted and total AD
Odds-ratio =
eITorsS CB

(A+D)-{[(A+C)(A+B)+(B+D)(C+D)])/(A+B+C+D)}
Kappa
(A+B+C+D)- {[(A+C)(A+B)+(B+D)(C+D))/(A+B+C+D)}
Normalized mutual information -Aln(A)-BIn(B)-Cln(C)-DIn(D)+(A+B)In(A+B)+(C+D)In(C+D)
(NMI) (A+B+C+D)In(A+B+C+D)-((A+C)In(A+C)+(B+D)In(B+D))
True Skill Statistic (TTS) Sensitivity + Specificity — 1
In ROC curve, 1- specificity values are plotted on X axis and sensitivity

Area Under ROC Curve (AUC)
values are plotted.on Y. axis respectively.

Note: A: true positive, B: false positive, C: false negative, D: true negative

The sensitivity represents true posi’t.i.{;{.“_iéfﬁ;tes. A greater true positive rate indicates

[l M _
model has higher ability to predic:c .spe:cies p¥eseﬁbe when observed presence occurs. On
the contrary, the value of specificity repres_entsl the.true negative rate which indicates
model ability to predict spices absence when observed absence occurs. Landis and Koch

(1977) have suggested 3 ranges of agreement for Kappa statistic K: (i) poor; K < 0.4, (i1)

good; 0.4 <K <0.75, (iii1) excellent; K > 0.75.

2.4.2 Threshold Independence AUC

The abbreviation of AUC means area under ROC curve. ROC means receiver
operating characteristic analysis which is firstly introduced in evaluation the ability to
receive radar signals and applied to medical field (Wang, 2007) and the broad

application in many ENM and SDM studies (take Elith et al., 2006, Guisan et al., 2007
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for instance) happened in resent ten years. Figure 3 is an example demonstrated the
ROC curve an AUC value. ROC analysis plots “sensitivity” (equal to 1 - omission error
rate) against “1 minus specificity” (equal to commission error rate) (Cantor et al., 1999)
and calculates the area under ROC curve (AUC), and then compare the predicted AUC
against null expectation (the area under the line from origin to the upright corner of the
graph) probabilistically (Peterson et al., 2008). Figure 3 is an example of ROC analysis.
Y-axis is sensitivity of Table 3, which is calculated by A/(A+C), and X-axis is
1-specificity, which is calculated by B/(B+C). The procedure of ROC analysis is using
threshold to generate points on ROC plots. For a continuous probability distribution,
larger threshold means smaller distribution area than smaller threshold does, thus a
specific threshold selection leads to a proportion of presence/absence’s distribution area.
The specific threshold selection; implies sele_c:ting different threshold for dividing the
continuous probability distribution into bfnomlal presence/absence parts and leads to
changing the values of the evaluated @nldic;s" in_Table 3"such as sensitivity, specificity,
and accuracy. The feature of .RO.C. analysis is" threshold independent and from
prevalence and often used for evaluating accuracy of diagnostic tests (Swets, 1988;
Tsao, 2007). To achieve this independency, ROC analysis estimates all thresholds of the
probability distribution (from 0 to 1) to plot each value of sensitivity against 1 —
specificity generated by specific threshold on the scatter plot of ROC and joints each
points to become the ROC curve and the area under this curve is AUC. The ROC
analysis represents the tradeoffs between the omission and commission error and AUC
represents a specific metric for evaluating diagnostic procedures because it is a
representation of the average sensitivity over all possible specificities (Prates-Clark et
al., 2008). If a larger threshold is selected then the area of predicted presence contains

partial observed presence points and area of predicted absence contains almost observed
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absence points, and therefore, the ROC algorithm almost doesn’t falsely identifies
absence, but fails to indentify most presence and generates a point with larger omission
and smaller commission plotted near down-left corner (0, 0) of the plot. Continuously
diminishing the threshold to a smaller one, the area of predicted presence contains
almost observed presence points and area of predicted absence contains fewer observed
absence, and thus, the algorithm indentifies most true presence correctly, but
misclassifies most absence as positive and generates a point with smaller omission and
larger commission plotted near the up-right comer (1, 1) of the plot. Ideally the top-left
corner (0, 1) of ROC plot means the algorithm correctly indentifies every true presence

and never misclassifies a true absence as a presence (Peterson et al., 2008).

-]
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Figure 3. ROC analysis by PresenceAbsence package in R. where Y-axis is sensitivity of Table 3,

which is calculated by A/(A+C) , and X-axis is 1-specificity, which is calculated by B/(B+C).

Prates-Clark et al. (2008) described 2 data sets for evaluating predicted models: (i)
a training data set for model building, and (ii) a test data set for model validation. A low
omission rate (high sensitivity) of species presence is essential for predicting predicted
range of distribution (Anderson et al., 2003). After selecting a threshold, model
performance can be evaluated using both: (i) the extrinsic omission rate (using test

dataset); (ii) the proportional predicted area (Prates-Clark et al., 2008).
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Unlike sensitivity and specificity, area under ROC curve (AUC) value is
independent from prevalence and often used for evaluating accuracy of diagnostic tests
(Swets, 1988; Tsao, 2007). AUC value combines sensitivity and specificity to estimate
model performance and ranging from 0.5-1. According to Swets (1988), AUC value is
0.5, that means accuracy of model happen by chance; AUC value falling between
0.5-0.7 means the discrimination of model is low; AUC value falling between 0.7-0.9
means the prediction is responsible good and can be applied to other researches; AUC

value is grater than 0.9 representing very good model accuracy.

2.5 Model Comparison and Combination

A L
i -
—_

As motioned formerly, SDM has gﬁgome an expanding tool in the areas of
conservation biology, climate cha{rige :research, iand-use/land-cover change assessment,
and biodiversity estimation (Guisan and Zirﬁmérrnann, 2000). Although there are many
available statistical methods, previous model comparison studies show that the
prediction accuracy from different models was little in difference (Franklin, 1998;
Vayssiéres et al., 2000; Cairns, 2001; Thuiller et al., 2003; Mufoz and Felicisimo,
2004). Moisen and Frescino (2002) compared predictive performance of five methods,
linear models (LM), generalized additive models (GAM), classification and regression
trees (CART), multivariate adaptive regression splines (MARS), and artificial neural
networks (ANN), however, still found little difference among those methods (Moisen
and Frescino, 2002). And besides, Elith and Burgman (2003) found greater disparities in
accuracy among the plant species being modeled than among the four modeling
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methods that were compared. Guisan et al. (2007) compared 10 model techniques,
BIOCLIM, BRUTO, BRT, DOMAIN, GDMSS GAM, GLM, MAXENT, MARS, and
OM-GARP, 30 tree species in Switzerland, and found the greater difference in model
accuracy among species than model techniques and also found that location error and
sample size reduced predictive performance of many models, whereas resolution of
environmental grids had little effect on most model techniques, and no model technique
is able to rescue difficultly predictive target species. Therefore, to maximize accuracy of
multiple model performances is needed since there is no study founding a best model

(Gilmer, 2007).

Model combination (also known':as consensus modeling, composite models,
forecast aggregation, forecast -synthesis and forecast combination) is one of the
alternative ways to improve predictive’ agauracy of multiple models (Gilmer, 2007).
Clemen (1989), Reid (1968), Bates an:dj Grl';ﬁger_ (1969); and Batchelor and Dua (1995)
suggested model combination is .optir.nal and can ':yield greatest benefits for predictive
accuracy. In niche model predictions, multiple models can be created for each species
and the model outputs combined to determine locations present or absent of each
species (Anderson et al., 2002a; Lim et al., 2002; Anderson €t al., 2003; Aratjo et al.
2006). Olmeda and Fernandez (1997) combined models by a simple voting scheme,
called “majority-vote criterion”, to determine the presence/absence of locations and
founded that less accurate models combination produced less predictive accuracy than

the single models. Aragjo et al. (2005) also suggested model averaging gave best

predictive performance and accuracy. Clemen (1989) concluded model combination as:
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“Combining forecasts has been shown to be practical, economical and useful.
Underlying theory has been developed, and many empirical tests have demonstrated the
value of composite forecasting. We no longer need to justify this methodology. We do

need to find ways to make the implementation of the technique easy and efficient.”

Gilmer (2007) used three kinds of model combination approaches: (i) Composite
(Anderson et al., 2002a; and Lim et al., 2002), (ii) Averaging (See and Abrahart, 2001),
(iii) Summation (Anderson et al., 2003). Composite (i.e. majority vote criteria) uses
conditional statement to determine the final prediction. For instance, if there three
binary outputs from individual models, any location are given value 2 representing
presence, otherwise absence. Averaging means averaging standardized probabilistic
outputs from different individual:medels and (_ie‘;errnined presence/absence by threshold.
Summation gives useful visual expla;léﬁé_ﬁ.:- .by summing the binary outputs from

i |

individual models (i.e. the higher numbér thelocation géts, the more model supports).
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Chapter 3: Materialsand Methods

3.1 Sudy Area

Taiwan Island expends 394 km from north to south (ca. 25°20' N to 21°55' N),
stretching 140 km from east to west (ca. 22° E to 20° E) and measures about 35800 km” .
Peaks above 3000 m in elevation are about 200 in number, locating in Central Range.

(Huang et al., 1994).

Although climatic zones of Taiwan Islaﬁd are range widely, the area has distinct
oceanic and subtropical monsoon /climate. Coenstant"wind from the sea and frequent
rains and typhoons make climate in Tai\;v;%ji?ﬁﬂd and with a high humidity (Huang et al.,
1994). Frost is rare in the lowlaﬁqs_ wl:le're r-r-:lé)st _o.f the ﬁopulation is concentrated. Mean
monthly temperatures range from 15°C t0,20°C m the winter to around 28°C in the
summer. The highest (40.2°C in May 2004) and lowest (-1.0°C in February 1901) urban
temperatures were recorded in Taitung and Taichung, respectively. Taiwan's surface

temperature has increased about 1.4°C in the past 100 years, about twice the global

mean (0.6°C) (TGIO, 2008).

3.2 Target Soecies

Elith et al. (2006) described the distribution patterns of rare species are hard to

predict and hilly complexity topography of Taiwan might increase the difficulty for
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modeling. Thus, a conifer species, which is widely spread in habitat ranging from
2400-3100 m in elevation (Su, 1984b), minimal anthropogenic impacts, endemic
species of Taiwan, filling with ecological meanings, and sensitive to climate change
impacts, was selected for the target of the model input. Tsuga chinensis commonly
called Taiwan Hemlock is an evergreen large tree native to Taiwan Island, southern,
central, and eastern China, and this variety is endemic to Taiwan, up to 50 m tall and 2
m in diameter, in altitudes of 2000 to 3500 m, in association with other trees or forming
pure stand, (Huang et al., 1994), especially mixing with the Taiwan Spruce (Picea
morrisonicola Hayata), Taiwan Cypress (Chamaecyparis formosensis Matsu), Taiwan
Red Pine (Pinus taiwanensis Hayata), Masters Pine (Pinus armandii Franchet var.
masteriana Hayata), and Quercus'zone (Su, 1984b; Su, 1991; Ou €t al., 1994, Liu and

Tseng, 1999; Lu, 2003; Chiou et-al 4 2006; Yen et al., 2007; Song, 2007).

A I-.;ﬂs -IE'-

According to recent studies of Chioii" et al. (2006), the distribution of Taiwan
Hemlock along the elevation is from 1400 to 3400 m (similar to Huang et al., 1994) and

the optimal range is from 2800 to 3000 m (converted from warmth indices 30 to 140 ‘C

and similar to Chen, 2004).

3.3 Data Preparation and Preprocessing

Methodological flow chart of this study is listed in Figure 4 as followed. Four parts
of them are (i) data preparation, (ii) environmental variable analysis, (iii) model
building, and (iv) model assessment. Data preparation phase prepares the localities for

model inputs. Environmental variable analysis phase sieves and selects the
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environmental variables for model inputs. Model building phase attempts to compare
how four types of model inputs, environmental selection, sample size, resolution, and
predicted area, will affect model performance. Final phase exams the model
performance of each approach: Principal component analysis (PCA), classification and

regression tree (CART), and conditional inference tree (CIT).
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Figure 4. Flowchart of methodology in this study
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3.3.1 Occurrence Data

Data of T. chinensis presence and absence are consisted of field survey samples
from the National Vegetation Diversity Inventory and Mapping Project (NVDIMP) and
Third Forest Resource and Land-Use Inventory (TFRLUI), conducted by Forestry
Bureau, Council of Agriculture, Taiwan (R.O.C.). The TFRLUI records were compiled
from aerial photographs by systematic sampling method, in which a plot was sampled
every 500 by 250 m (Forest Bureau, 1995; Yen, 2007) and the dataset is established on
Taiwan Vegetation Information System (Chiou et al., 2005). 212 samples of Taiwan
Hemlock presence from TFRLUI are used for. model building and the rest 3784 absence
samples from TFRLUI (total 3996, samples; figure 5) are selected together with 408
samples of Taiwan Hemlock presence'lqcaliti_es from: NVDIMP (Figure 6) for model
evaluation. FElith and Leathwick (200%if'déscribed the inventory pseudo-absence

strongly outperforms the random pseudo-absence. Elevation range of Taiwan Hemlock

from the two data sets is listed in Table 5.
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Figure 5. 212 occurrence and 3784 absence samples of Taiwan Hemlock from Third Forest Resource and

Land-Use Inventory (TFRLUI)
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Figure 6. 408 occurrence of Taiwan Hemlock from National Vegetation Diversity Inventory and Mapping

Project (NVDIMP)
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Table 5. Elevation range of Taiwan Hemlock from National Vegetation Diversity Inventory and Mapping

Project (NVDIMP) and Third Forest Resource and Land-Use Inventory (TFRLUI) data sets

Elevation (m) TFRLUI NVDIMP
Minimum value 600 1400
Maximum value 3300 3300

Mean value 2400 2500
Standard Deviation 400 400

3.3.2 Environmental Layers

Altitude and latitude are the two main environmental factors that affect the species
distribution (Su, 1987; Guisan et al., 1998; Ye‘n, 2007). Other variable such as annual
precipitation is not as important for determine species distribution in Taiwan as altitude

Al

and latitude, because Taiwan Island rgcei\;“c?‘-%ibundant precipitation all year round, thus
precipitation is not a limited faé‘_go_r to -Eveg-;[atio;l distrﬁaution in Taiwan (Kuo > 1978;
Yen, 2007). Different latitude and altitude lead to different radiation absorption and
energy (heat) store. Thus temperature is the major limiting factor to vegetation
distribution (Su, 1992). In this study warmth index (WI) layer calculates from
temperature layers of Liang (2004) estimated by linear equation model of Taiwan.
Lang’s data obtained from weather stations of Central Weather Bureau and Water

Resource Agency since 1990 to 2002. Warmth Index is a proxy of annual sum of

monthly average temperature, which is greater than 5 C (Kira, 1948).
WI=>T,-5 ; T,>5C
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Where WI is the abbreviation of Warmth Index.

Table 6 shows abbreviation and description of 16 environmental layers conducted
by Resource Investigation and Analysis Laboratory (RIAL), School of Forestry and

Resource Conservation, National Taiwan University.

Table 6. List of environmental variables (revised by Lindsay, 2005)

Variable Names Description Unit Reference  Software
Direction of maximum Zevenbergen
ASP  Aspect . Degrees and Thorne, ArcGis
downward gradient
1987
Tangential Curvature e
Tangential ~ Curvaturelin an inclined Mit'a'sov'a
CUR £ s Deg./m and Hofierka, TAS
Curvature plane (Mit’a sev a-and 1993
Hofierka,4993)
ELE  Elevation Efgvatign den*v'-?g- ien M . Liang, 2006 ArcGis
DTM =
Plan-curyature /1 : Gallant and
PLA Pl : | <= Deg./ TAS
an Along:-slope curvature A Wilson, 2000
Spri A ipitation of
prcsp SPrnE o Average PIRCIPIEHOROTS Mm  Liang, 2004 ArcGis
Precipitation Mar. to May.
A ipitati f
pRCSR Dummer - Average precipifation of 0 2004 ArcGis
Precipitation Jun. to Aug.
Aut A ipitation of
PRCAU ~Wwmn - AVErage precipiidion ot -y iang 2004 ArcGis
Precipitation Sep. to Nov.
Wint A ipitati f
PRCWT ' ner  AVEraBe PrECPRAtOn Ot iy [iang, 2004 ArcGis
Precipitation Dec. to Feb.
PRCME Meal‘i 9f a'nn. Average precipitation of Mm  Liang, 2004 ArcGis
Precipitation a year
f th tion of
pregy Sum of month Summation of every i 0004 ArcGis
Precipitation monthly precipitation
Profile curvature Down
slope curvature Moore et al.,
PRO  Profil Deg./ TAS
rotre (Zevenbergen and &M 1993

Thorne, 1987)
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Table 6. List of environmental variables (revised by Lindsay, 2005) (Cont.)

Variable Names Description Unit Reference  Software
Slope gradient Zevenbergen
SLP  Slope (Zevenbergen and Degrees and Thorne, ArcGis
Thorne, 1987) 1987
hang et al.
STH  Southness Southness = 180 - | aspect - 180 | Unitless SO (a)lz?g > ArcGis
Sky View Factor (SVF),
. represents an estimation
Sky V .. ) Steyn, 1980; .
SVF y View of the visible area of the Unitless —. > SkyRatio
Factor Oke, 1981
sky from a ground
viewpoint
Warmth Sum of monthly mean Chiou et l
WI I (ailrm temperatures greater than ~ C 205211 al ArcGis
naex 5 °C from Jan to Dec
Chang et al.
WST  Westness westness = | 180 - | aspect - 270 | | Unitless 20 (E)lrg > ArcGis

The spatial location of each en_\_/ironme{ltai laygrs are recorded by using the
2-degree Transverse Mercator prOJectgﬁlﬁ ‘Coordinate system (TM2), including
latitude/longitude (TMX and TMY); .iclinl:iéte variables (WI and PCP), digital terrain
model (DTM), and its topograph;c; anld radi.atio_il. derivate models (Chang et al., 2004)
provided by Forestry Bureau, Council of Agriculture, Taiwan (R.O.C.). Table 5 shows a
list of environmental layers. Topographic information derived from DTM includes
aspect (ASP), slop (SLP), curvature (CUR), profile curvature (PRO), and plan curvature
(PLA). Southness index (STH), westness index (WST) are derived form ASP (Chang et
al., 2004). Solar radiation derived from DTM includes sky view factor (SVF). Climate
variable includes warmth index (WI), precipitation (PRC) and its derivate including
spring precipitation (PRCSP, from Mar. to May), summer precipitation (PRCSR, from
Jun. to Aug), autumn precipitation (PRCAU, from Sep. to Nov.), winter precipitation

(PRCW, from Dec. to Feb.), annual mean precipitation (PRCME), and sum of annual

precipitation (PRCSU) are investigated by Liang (2004).
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3.3.3 Vegetation Analysis

Using dominant species for representing forest subtype, firstly calculate the
relative dominance (RDo) of 212 Taiwan Hemlock presence localities from TFRLUI to
emphasize the importance of dominance tree and to lower the disturbance of rare or
small species. RDo is calculated by following:

n Do,
Do=>» BA, RDo, =——

=l > Do,

=1

Where Do represents dominance, BA represents basal area of the tree, Do
represents dominance for ju species, and RDo; represents relative dominance for jg

species.

To group sample plots, cluster. ana‘:}:;'lsm supported by PC-ORD 5.0 statistical
software (McCune, B. and MJ Me;ff-iord.-:: 1995 PC-éRD. Multivariate Analysis of
Ecological Data. MjM Software, Gleneden Beach,.::Oregon, USA) is used in classifying
Taiwan Hemlock presence data, and then uses Euclidean method for distance measure
and Ward’s method for group linkage method of cluster analysis. Detrended
correspondence analysis (DCA) and principal component analysis (PCA) ordination are
used for representing relationships between classified groups and environmental

gradients.
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3.4 Environmental Factor Analysis for SDMs Performance

3.4.1 Avoidance of Multicollinearity

Multicollinearity refers to highly correlation among two or more explanatory
variables and leads to over estimate of least square estimation and enlarges variance of
the estimation, thus, inference might be misleading (Lin and Chen, 2005). Although two
highly correlated predictor variables can both appear non-significant, each would
explain a significant proportion of the deviance if considered separately (Guisan et al.,
2002). To avoid such case, correlation analysis is chosen for distinguishing variables
that are highly multicollinearity by, comp'flring their cotrelation coefficients. If absolute
correlation coefficient is larger than 0.1 ’a.r.ll_:gd_ir‘-ism.aller than+0.3, there is a small correlation
between two variables; if abselute corrélatllziln coefficient is larger than 0.3 and smaller
than 0.5, there is a medium corrélation between two variables; if absolute correlation
coefficient is larger than 0.5 and smaller than 0.1, there is a large correlation between
two variables (Cohen, 1988). Thus, the variables with high correlation will be removed

to 1 variable to retain. Algorithm of correlation coefficient is analyzed by R foundation

for ecological computing (version 2.6.2.).

3.4.2 Attributes of Environmental variables

Descriptive statistic provides a basic sense and structure of the data. Presence and

(N = 212) absence localities (N = 3784) from TFRLUI are compared by extracting
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values from environmental layers without high correlation to each other. Descriptive
statistic is calculated by pastecs package in R foundation for ecological computing
(version 2.6.2.). Basic statistic includes the number of values, the number of missing
values, the minimal value, the maximal value, the range, and the sum of all non-missing
values; the descriptive statistic includes the median, the mean, the standard error on the
mean, the confidence interval of the mean, the variance, the standard deviation and the
variation coefficient defined as the standard deviation divided by the mean. Normal
Q-Q plot method is used to see if the data are normal distributed and then two-tailed
t-test and 95 % confidence interval are used to test if the two data sets are significant the
difference. Finally use histograms to demonstrate the attribute of each extracted

environmental variable.

3.4.3 Try and Error Approach || f-v
- .I .; i
: c
Try each of 16 environmental layers to.build §DM and compare results. Each of 16
environmental layers has its own attributes and influences the model performance
separately. To identify how each environmental layer affects SDM results, single
environmental layer prediction is able to provide each contribution of environmental
layer to the model performance. On the other hand, to identify interaction of

environmental variable effects, all 16 environmental layers for modeling contrasting the

single input is the other way for testing model performance.
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3.4.4 PCA Approach

Try and error approach shows how does single and all environmental layers
contribute the model performance and is lack of statistical test for species in relation to
environmental layers. Statistical approaches used in this study are principal component
analysis (PCA) supported by PC-ORD 5.0. Those approaches mainly focus on finding
the most variant axis to environmental layers and suppose the environmental variable of
the axis is the most explainable for the species occurs. The first 3 components of PCA
are able to explain the most variance of the data and thus are selected for model

building.

3.4.5 Data Mining Approach

-]

Except statistical approacheé, oné of machiné learning technique, data mining, is
also introduced in this study. Data mining is the search for new, valuable, and nontrivial
information in environmental layers. Two of the data mining approaches are adopted
here: (i) classification and regression tree (CART) and (ii) conditional inference tree
(CIT). CART model uses the package tree (Ripley, 1996) in R foundation for
ecological computing (2.6.2.). CIT model uses the package party (Hothorn et al.,
2006) in R foundation for ecological computing (2.6.2.). The extracted environmental
variables that are selected by those two methods for splitting the nodes of the tree are
used for further model building because those selected variables are able to reduce the
variance of each split groups and to distinguish each vegetation type by using influential

environmental variables.
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3.5 Predicting Species Distribution

3.5.1 Model Building

According to the two data sets (NVDIMP and TFRLUI) are independently
surveyed, TFRLUI data set uses for training (build the model) because the data of
TFRLUI are systematic sampled and suitable for model building without
autocorrelation and NVDIMP data set uses for testing (evaluate the model performance).
Thus, there is no need to partition data. And besides, the number of data from NVDIMP
(408) is greater than the number of data. from TFRLUI (212) and it represents using
more localities to test the model perfqmancg for mere precise evaluation. This study
used maximum entropy (MAXENT) : ;c.é_:,f_éhni.que (Phillips et al., 2004) for SDM
development. Since occurrence'data ancll enl'zilironhlental.layers are available, input those
data with appropriate format to tﬁe models (approp:riate data format of SDMs is listed in
Table 7.) and set any parameter if needed. Detailed model setting for each SDM will

describe in next two sections.

Table 7. Data format of SDM

Model Input  Output
] Type of data software URL
techniques format format
Occurrence
Csv Asc
Maximum data . .
Maxent http://www.cs.princeton.edu/~schapire/maxent/
entropy  environmenta Mxe
Asc
1 layers Grd
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Maxent program for maximum entropy modeling predicts species geographical
distributions and is firstly introduced by Phillips et al. (2006). The probability
distribution of maximum entropy, which is the concept of Maxent, is the distribution
closest to uniform distribution or most spread out. Maxent evaluate a target probability
distribution through looking for the distribution for maximum entropy (Phillips €t al.,
2006). The incomplete information for the target is represent by a set of constrains
which is influential to Maxent. A set of real value (also called feature, observed value)
is used as the available information for the target distribution. Constrains are obtained
by matching expected value of each feature with empirical average, an average value of

a set of sample localities derived from the target distribution.

The tutorial of Maxent stated that' while running procedure, the gain calculated by

Maxent is closely related to deviance, a nfaasure of goedness of fit used in GAM and

F

GLM and starts at 0 and increases towgfds an asyinptoté. The gain is defined as:
gain=log(p)—k

Where log(p)the average log probability of the presence localities and k is a

constant that makes the uniform distribution have zero gain.

Finally, the gain indicates how closely the model is closed around the presence
localities; for example, if the gain is 1.5, it means that the average likelihood of the
presence samples is exp(1.5) = 4.5 times higher than that of a random background pixel.

Note that Maxent isn’t directly calculating “probability of occurrence” and raw values
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are an exponential function of the environmental variables, however, logistic format

transforms it into probability of presence and sets to default option.

3.5.2 How Map Resolution and Environmental Variables Affect Model

Performance

Higher resolution (smaller grid size) of the predicted background can reflect the
more detail of topographical variables than climatic variables but is time consuming due
to a very large data size for model estimation. Lower resolution (larger grid size) of
background, on the other hand, is.much: faster'when calculating but lacks of or reduces
detail information of the meso-envi.ronr_nental Vgﬁables. A grid of lower resolution may

contains more than 1 presence or abseéfice: localities, and causes misleading when

¥

presence and absence localities™in the same environmental grid. To test the effect of
background resolution, three I‘GSO.Jh.lti_O.l’lS are selected for modeling, 40x40 m ,100x100
m, and 1000x1000 m respectively, for the following analysis. Environmental variable
combination of 7 different methods mentioned in section 3.4 will be compared to each
other to find the most explainable combination of environmental variables by

comparing their AUC values.

3.5.3 Vegetation and Species Units for Model Input

Assume species unit of Taiwan Hemlock is not as homogeneity as vegetation unit

which may be suitable for difference environmental condition. Therefore, use all
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Taiwan Hemlock presence localities and classified Taiwan Hemlock vegetation type
subunit separately for model input to compare how difference between vegetation and
species units relates to the environmental variable selected by Maxent and then to
produce a potential vegetation map of Taiwan Hemlock with sub vegetation unit within

it.

3.6 Model Evaluation

Although unbiased estimate of a model’s predictive performance is evaluating with
independent data collected from sites‘other than'those used to train the model (Pearce
and Ferrier, 2000), splitting the data info two pattition, one for training and the other for
test, is the alternative way for the modéi» aé_gesérﬁent whiie a independent testing data set
is not available. Model performance lis tilen tested -at fixed specifically thresholds

(threshold-dependent) and across all thresholds (threshold-independent) methods.

3.6.1 Threshold Independent AUC

ROC analysis provides the whole information that each threshold contributes a pair
of sensitivity (absence of omission error) and 1 — specificity (commission error) and
represents the trade-off for both values. Only AUC measurement for the performance of
SDM is invariable to the prevalence (proportion of presence to sum of presence and
absence) (Pearce and Ferrier, 2000; Rase and Steege, 2007). The larger the AUC
estimated, the higher the sensitivity rate and the lower the 1-specificity rate happened.

An AUC value of 1 represents an ideally diagnostic test because it means the value of
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both sensitivity and specificity are also 1 (i.e. no either omission or commission error).
An AUC value of 0.5 indicates high omission and commission errors and random

prediction. (Cantor et al., 1999; Rase and Steege, 2007).

In this study, AUC value is calculated by PresenceAbsence package in R
(2.6.2) with 408 Taiwan Hemlock presence localities from NVDIMP and 3784 Taiwan
Hemlock absence localities from TFRLUI respectively. Phillips et al. (2006) suggested
a sufficiently large sample of pseudo-absence is needed, typically 1000 to 10000, to
reasonably represent the environmental variable restricted by the geographical area.
Those pseudo-absences, however, results in a low prevalence value because the
pseudo-absences are much larger than ptresences.. A major drawback of using
pseudo-absence is changing the perfect ﬁt Val}le_. of AUC 1s 1 - a/2 instead of 1, where a
is the geographical area substituting to asﬁ"eeﬁes’ true distribution (Phillips et al., 2006;
Rase and Steege, 2007). Therefore, 37:8,!4 irli%entlolry pseﬁdo-absence are large enough to

evaluate the model performance.

3.6.2 Threshold Dependent Confusion Matrix

Outputs of SDMs are continuous probability distribution layers of MAXENT. Use
the test samples to complete confusion matrix and calculate the sensitivity, specificity of

each model output after selecting a specific threshold.

Kappa statistic value is calculated by equation of table 3 from confusion matrix

and relative to the accuracy that may have resulted by only chance. It ranges from
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negative one to positive one which indicates flawless agreement between observations
and predictions and the value less or equal to 0 indicates no better performance than
random classification (Tsoar et al., 2007). If Kappa value ranges from 0 to 0.4, it means
low strength of predicted accuracy; from 0.4 to 0.75, represents a good predicted
accuracy; from 0.75 to 1, motioned above with perfect predicted accuracy (Landis and

Koch, 1977; Tsao, 2007).

3.6.3 Null Model for Sgnificant test

A null model is a model based on randemizations of the ecological data or random
sampling from a know area (Gotelli and M(.:Gill,. 2006; Rase and Steege, 2007). To
ensure prediction of SDM is based on “environmental”layer to survey plots and not
randomly selects from spatial locahtles ﬁrtspy estlmates the AUC value of a SDM and a
null model is established by repeating 999 times randomly selecting points equal to the
number of the input occurrences from background arca to estimate the AUC value and
to generate a randomly AUC distribution on a histogram and compare with their output
of AUC results and test if the null model is true. Using one-tailed 95 % CI for the null
probability distribution of the randomly generated AUC values to test the significance
as conventional statistic does (Rase and Steege, 2007). If there is a significant difference
between output’s AUC value and null model’s AUC value, surveyed occurrences of T.
chinensis are not randomly appeared by chance but are relative to environmental

variables. In this study, 14 null models are generated for 7 projection areas which are

the area of Taiwan Island and 6 geo-climatic regions multiplying 2 grid resolutions.
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3.7 Potential Nature Vegetation Mapping

3.7.1 Specific Threshold to Presence

Muiioz and Felicisimo (2004) noted that the objective of the study determines the
final threshold for PVM, considers how relative importance of false positives and false
negatives error rates affects the PNM, and the decision made independent of model
accuracy results. Mufioz and Felicisimo (2004) concluded that if the goal of the study is
to identify localities where a species occurrence can be predicted with a great certainty,
the false positive error rates should be minimized; conversely, if the purpose is
conservation of the a species, the threshold mﬁst be chosen to minimize false negative
error rates. The ultimate objective of PVhﬁ! i -ﬁsually a map of vegetation occurrence

thus requiring a specific threshold to be se-_If:cted to determine which probability range

will be considered present (Gilmer, 2007).

A threshold that determines which predictions are considered absent/present have
to be identified for most classification accuracy methods (Gilmer, 2007); however,
threshold selection is subjective and can be selected based on several methods: (i)
threshold = 0.5, (ii) sensitivity = specificity, (iii) maximizes (sensitivity+specificity)/2,
(iv) maximizes Kappa, (v) maximizes percent correctly classified (PCC), (vi) predicted
prevalence=observed prevalence, (vii) threshold=observed prevalence, (viii) mean
predicted probability, and (ix) minimizes distance between ROC plot and up-left corner
(0,1) (Cantor et al., 1999; Manel et al. 2001; Wilson et al., 2004) and those methods are
available in PresenceAbsence package of R.
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Although many studies use 0.5 as the threshold for considering present or absent,
this value is somewhat arbitrary and can result in unacceptably low model sensitivity
when the target species is rare (Fielding and Bell, 1997; Manel et al., 1999; Miller,
2005). Miller (2005) and Gilmer (2007) selected the threshold near the point that
sensitivity and specificity cross, with an emphasis on ensuring sensitivity is relatively
high. Miller and Franklin (2002) used maximize CPP due to sensitivity and specificity
did not cross when plotted on a 0 to 1 scale, placing more importance on CPP, as is
usually the case in vegetation mapping. Tsao (2007) and Tsoar et al., (2007) selected
the threshold with maximize kappa statistic. Prates-Clark et al. (2008) threshold
selection was calculated based on'the number of the probability of species’ occurrence
are 30, 40, 50, and 75 % and this method prqvided information which threshold made
the greatest contribution to the modei,.'gh_d.-_- élso indicated which model should be
remained as the best potential predilc;tingf%"speg'ies distribution model. In this study,
Taiwan Hemlock is not endanéereci species. but'a dominance tree in the alpine

ecosystem in Taiwan. Therefore, threshold with max-Kappa is selected for higher

predicted accuracy.

3.7.2 Model Combination and PNV Mapping Criteria

Prates-Clark et al. (2008) described the ideally and accurately predictive model for
each tree species’ potential geographical distribution based on (i) the lowest omission
and commission rates, (i1) highest AUC value, (iii) higher percentage of predicted

probability of species’ presence localities, and (iv) a set of predictor variables
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biologically meaningful to summarize the ecological niche of its species. Predicted map

generates by GIS platform and for this study ArcGIS 9.2 is used.

Input the raster of probability layers generated by SDMs for model combination.
There are two kinds of strategies for combination used in this study. One of which is to
combine the individual probability maps of sub-units of vegetation from vegetation
analysis to generate potential vegetation map of Taiwan Hemlock sub-unit vegetation.
The other combines the vegetation based sub-units and Taiwan Hemlock species based
unit probability map into the potential vegetation map of Taiwan Hemlock. The method
of combining vegetation sub-unit maps of Taiwan Hemlock is determined by the pixels
with the greatest probability value'of which vegetation sub-units. For example, if there
are three vegetation sub-units probability maps generated by a SDM, overlapping the

three probability maps and each pixel woul:_t'Lhave three probability values. If the highest

F

value of probability is from sub-unit Yegeta%ion _type | ‘and then this pixel is determined
to the potential area that sub-unit.vege.tation_ type 1'would occur and so on. The method
of the second combination is to overlap the Taiwan Hemlock species probability map
with all the sub-unit vegetation maps of Taiwan Hemlock and to demonstrate the
potential distribution of species Taiwan Hemlock including the detail information of

spatial distribution area of Taiwan Hemlock vegetation sub-units.
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Chapter 4: Results

4.1 Vegetation Classification of Taiwan Hemlock Presence

There are 16 samples of outliner excluded at final classification due to the sample
with too low relative dominance of Taiwan Hemlock or some rare or unique species
occurred in the sample which might produce meaningless groups with very few samples
or mislead the classified group. Classification of cluster analysis (Figure 7 and 8) by
PC-ORD divides 196 plots into 6 sub groups and each group represents different species
dominance companying with Taiwan Hemlock':.'

Vi: Vegetation type 1 represen"cs.. :-%ﬁi'Wan Hemlock-Taiwan Cypress (Tsuga
chinensis-Chamaecyparis for moégensi S) ﬁonii-ﬁanée ve ge.tation type.

V,: Vegetation type 2 represents Taiwan -Hé:mlock (Tsuga chinensis) dominance
vegetation type.

V3. Vegetation type 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga
chinensis-Abies kawakamii) dominance vegetation type.

V4. Vegetation type 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga
chinensis-Pinus taiwanensis) dominance vegetation type.

Vs: Vegetation type 5 represents Taiwan Hemlock-Taiwan Spruce (Tsuga
chinensis-Picea morrisonicola) dominance vegetation type.

Vi: Vegetation type 6 represents Taiwan Hemlock-Taiwan Yellow Cypress (Tsuga

chinensis-Chamaecyparis obtusa Var. formosana) dominance vegetation type.
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Table 8 shows the correlation between environmental variables and DCA axis.
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Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c)

Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis

formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis)

dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies

kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga

chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan

Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan

Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance

vegetation type.
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Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c)
Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis
formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis)
dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies
kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga
chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan
Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan
Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance

vegetation type.
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Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c)

Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis

formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis)

dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies

kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga

chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan

Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan

Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance

vegetation type.
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Figure 8. Cluster analysis dendrogram of 6 sub groups of Taiwan Hemlock.
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Table 8. Pearson and Kendall correlation between surveyed environmental gradients and DCA and PCA

axes. (N=196)

Env. DCA-1 DCA-2 DCA-3 PC1 PC2 PC3
Elevation 0.52 -0.22 -0.06 -0.54 0.58 0.08
Slope 0.03 -0.04 0.08 -0.51 -0.51 -0.68

Note: DCA-1 to DCA-3 represents axis 1 to axis 3; PC1 to PC3 represents component 1 to component 3

of PCA. Env.: environmental variable

Elevation gradient has high correlation with axis 1 (correlation coefficient is 0.52)
and relative small correlation with axis 2 (correlation coefficient is -0.22). Axis 3,
however, shows little correlation with beth environmental gradient Elevation and Slope

(correlation coefficient is -0.06.and0.08 respecﬁvely).

MYl 'l
—

Table 9. Pearson and Kendall correlation between fﬁg'é;&racted environmental gradients and DCA and

PCA axes. (N=196)

Env. DCA-1 DCA-2= DCA3 PCl1 PC2 PC3

ASP -0.09 -0.04 0.00 -0.08 0.13 -0.35
CUR -0.01 0.03 -0.06 -0.86 -0.39 0.17
PLA -0.04 0.04 -0.02 -0.78 -0.31 0.14
PRCAU -0.18 0.03 -0.12 -0.12 0.09 -0.47
PRCME -0.13 0.07 0.03 -0.36 0.83 0.34
PRCSP 0.11 -0.10 0.09 0.08 0.31 0.77
PRCSU -0.13 0.07 0.03 -0.36 0.83 0.34
PRCSR -0.13 0.18 0.03 -0.52 0.71 0.08
PRCWT 0.11 -0.17 0.08 0.41 -0.04 0.48
PRO -0.04 -0.01 0.08 0.74 0.39 -0.16
SLP -0.11 -0.01 0.10 0.15 0.20 -0.14
STH 0.00 0.00 -0.20 -0.04 -0.10 0.08
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Table 9. Pearson and Kendall correlation between 16 extracted environmental gradients and DCA and

PCA axes. (N=196) (Cont.)

Env. DCA-1 DCA-2 DCA-3 PC1 PC2 PC3
SVF 0.11 -0.02 -0.11 -0.66 -0.47 0.25
ELE 0.52 -0.22 -0.07 0.31 -0.28 0.68
WST -0.06 -0.02 0.02 -0.10 0.02 -0.36

Note: ASP: Aspect; CUR: Tangential Curvature, PLA: Plan curvature; PRCAU: Autumn Precipitation
(from Sep. to Nov.); PRCME: Mean of annual Precipitation, PRCSP: Spring Precipitation (from Mar. to
May); PRCSU: Sum of annual Precipitation; PRCSR: Summer Precipitation (from Jun. to Aug.); PRCWT:
Winter Precipitation (from Dec. to Feb.); PRO: Profile curvature; SLP: Slope; STH: Southness Index;

SVF: Sky View Factor; ELE: Elevation; WI: Warmth Index; WST: Westness Index.

There is similar trend while examining correlation with extracted environmental
variables from RIAL and each axis (Pable "9). Except elevation gradient, axis 1 is
slightly correlated with precipitation, 'é}o_pe, fé__uid sky view factor variable (correlation

coefficients are all about 0.1 for each yariébié). Axis 2 is also slightly correlated with
precipitation in spring, summer, ‘and winten (correlation coefficients are all about 0.1).

Axis 3 is slightly correlated with “autumn précipitation, sky view factor and slope

variable (correlation coefficients are all about 0.1).

PCA for the relationship between 4 surveyed and 16 extracted environmental
variables and 196 Taiwan Hemlock presence localities was showed in Figure 8 and 9,
and Eigen value of each component was listed in Table 10 and 11. In 4 surveyed
environmental variables case, the first 3 components of PCA explained 79 % variance.
On the other hand, the first 5 component of 16 extracted environmental variables PCA
explained 75% variance. This result indicates that whether 4 or 16 environmental

variables had many similar variance trends (see Figure 9 and 10) and spread radically on
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the principal component axes and leaded to average each component of variance (i.e.
each component almost equally explained the variance of variables). This situation
might cause PCA unable to find which direction varied most and leaded to the low
explanation of the former components. The following correlation analysis is used to

reduce similar variables and avoid of multicollinearity.

Table 10. Variance extracted first 10 axes of PCA from 4 surveyed environmental variables.

Axis Eigen value % of Variance Cum.% of Var.  Eigen value
1 1.2 29.7 29.7 2.1
2 1.1 27.2 56.8 1.1
3 0.9 223 79.1 0.6
4 0.8 20.9 & 100.0 0.3

Note: Cum.% of Var.: cumulative percentage of variaiice; %: percentage
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(a)
Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and
WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3.
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(b)
Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and

WST. (a) Axis 1 and 2, (b) Axis | and 3, and (c) Axis 2 and 3.
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(c)
Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and
WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3.
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Table 11. Variance extracted first 10 components of PCA from 16 extracted environmental variables.

Axis  Eigen value % of Variance Cum.% of Var. Eigen value
1 33 20.8 20.8 3.4
2 29 18.0 38.8 24
3 2.6 16.5 55.2 1.9
4 1.7 10.5 65.7 1.5
5 1.6 10.1 75.8 1.3
6 1.1 6.9 82.7 1.1
7 1.0 6.5 89.2 0.9
8 0.8 4.8 93.9 0.8
9 0.4 2.7 96.6 0.7
10 0.3 1.7 98.3 0.6

Note: Cum.% of Var.: cumulative percentage of variance; %: percentage
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AXis 2

% (a) B
Figure 10. PCA ordination of Taiwan Hemlock with 16 extracted environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3.
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Figure 10. PCA ordination of Taiwan Hemlock \fi/-ith"l6' extracted environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and
WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3.
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Figure 10. PCA ordination of Taiwan Hemlock with 16 extracted environtment variables including ASP,

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, W1, and
WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3.
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4.2 Environmental Layers Analysis

4.2.1 Correlation Analysis of Environmental Variables

Table 12 demonstrated the results of correlation among 16 environmental variables.
To avoiding multicollinearity, the pair with correlation coefficient larger than 0.7 is
considered as high correlation to each other and combined in a group to leave 1 variable

for building model. The highly correlative variable groups are listed as follow:

(i) ASP, WST
(ii) CUR, PLA, PRO
(iii) PRCAU, PRCSP, PRCW

(iv) PRCME, PRCSU, PRCSR

-]

(v) ELE, WI

For ecological consideration, choose the correlative variables which influence the
plant’s distribution most. First group, westness index indicates the gradient strength to
east and west which is easier to understand than quantitative aspect variable. For
example, north aspect both includes 315° to 360° and 0° to 45° and that may cause the
greatest and smallest values the same aspect. Second, CUR is selected because CUR
represents the curvature of the topographic of Taiwan Island and high value of it
indicates convex and low value of it indicates concave. PLA and PRO are similar
variables with CUR and only differ at down slope or up slope direction of curvature.

PRCW is selected in third group because of difference of dryness and wetness in
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southern and northern Taiwan in winter. In the fourth group, PRCSU is selected because
the summation of the total precipitation represents the maximum intensity of the
variable to reflect the extremely climate condition. In the last group, although
temperature can be limiting factor to plant growth, ELE is selected because it was
directly measured while WI is generate by secondary estimation and might contain more
uncertainties than ELE. After correlation analysis, 8 environmental variables are

remained: CUR, PRCSU, PRCW, SLP, STH, SVF, WST, and ELE.

L AT
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Table 12. Correlation analysis for extracted environmental variable of 196 localities of Taiwan Hemlock.

ASP CUR PLA PRCAU PRCME PRCSP PRCSU PRCSR PRCWT PRO SLP STH SVF ELE WST WI

ASP 1
CUR  -0.02 1
PLA  -0.02 091 1

PRCAU 0.03-0.04 -0.01 1

PRCME 0.03 0.03 0.07 0.16 1

PRCSP -0.05 0.00 0.02 -0.67 0.42 1 =

PRCSU 0.03 0.03 0.07 0.16 1.00 £ 042 1

PRCSR 0.07 0.11 0.10  -0.05 0.76 “/0’14 .76 * |\
PRCWT -0.06-0.12-0.08  -0.15 0.04 + 0.55 (I-%’-‘l- | }-0.54 1

PRO  0.01-086-057 008 002 7001 obe 100977 L0141

SLP  0.01-0.04-005 -0.07  0.00 ~0.05 |_0400 10.004 0.06 0.03 1

STH  0.07 0.00 0.03 003 000 -0.03_ 000" -001 001 0.04-025 1

SVF  -0.06 0.66 0.55 0.03 -0.02 -0.08 -0.02 008 -022-0.63-046 0.17 1

ELE  -0.17-0.10-0.13 -0.17 -0.05 023 -0.05 -0.15  0.19 0.05-0.12 0.09 0.17 1

WST 072 0.04 006 0.04 -005 -0.10 -0.05 0.0 -0.11 0.01 0.05 0.04 0.01-0.13 1
WI 0.17 0.12 0.14 021 0.3 -028 0.13 029 -0.32-0.07 0.12-0.09-0.14-0.98 0.11 1
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4.2.2 Attributes of Environmental Variables

Descriptive statistic provides a basic sense and structure of the data. Taiwan
Hemlock presence data set (N = 196) and absence localities (N = 3784) are compared
by extracting values from 8 selected environmental layers. Missing values are removed
from the extracted absence localities and remains 3770 absence localities instead. Both

basic and descriptive statistics are listed in Table 13 and 14.

Table 13. Basic and descriptive statistic of presence localities (N = 196)

CUR  PRCSU PRCWT SLP STH SVF ELE WST

min -7.50 1949 33 8 1 061 559 2
max 431 3396 1850553 . 180  1.00 3315 179
range 11.81 WaT/ O\ 152 457 179 038 2756 177
median 0.13 25508 | =97\ | 35 ° 82 089 2440 87
mean 0.03 2577 4 || o7 | 34°% 83 0.88 2416 89
std.dev 2.00 302 32104 52 007 430 50

Table 14. Basic and descriptive statistic of absence localities (N = 3770)

CUR  PRCSU PRCWT SLP STH SVF ELE  WST

min -7.56 1132 13 0 0 045 0 0
max 10.25 5489 649 67 180 1.00 3777 180
range 17.81 4357 636 67 180 0.55 3777 180
median 0.00 2300 60 19 85 0.96 375 91
mean 0.05 2365 80 19 84 093 685 93
std.dev 1.41 673 71 16 56 0.07 767 50

Before t-test, normal Q-Q plot method showed in Figure 11 represented the data is
almost normal distributed at Taiwan Hemlock presence data sets but not at Taiwan
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Hemlock absence data sets. Two-tailed t-test and 95 % confidence interval are used to
test if the two data sets are significantly difference (Table 15.). The null hypothesis of
the t-test is that true difference in means is equal to 0 and alternative hypothesis is that
true difference in means is not equal to 0. Only STH and SVF are not significantly
difference between absence and presence localities. On the other hand, the rest 5
environmental variables are significant difference between absence and presence
localities. Figure 12 shows the visual sense of the difference in environmental variables

between absence and presence by histograms with relative frequency at y axis.
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Figure 11.Normal Q-Q plot of 8 extracted environmental variables (a) Taiwan Hemlock presence

localities, (b) Taiwan Hemlock absence localities.
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Figure 11.Normal Q-Q plot of 8 extracted ¢nvirenmental-«variables (a) Taiwan Hemlock presence

localities, (b) Taiwan Hemlock absence logalities. : —~

Table 15. t-test of absence and presence Tocalities

CUR PRCSU PRCW SLP  'STH SVF ELE WST

t 0.1 -8.8 -6.5 -21.1 0.3 10.3 -52.2 1.0

p-value 092 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 0.32

k3 k3 k3 ks k3

Note: **: significant
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Figure 12. Histogram of 8 extracted environemtal variable between absence and presence localities. Y

axis represents the relative frequency of counts of sample. (a) Presence data set. (b) Absence data set.
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Figure 12. Histogram of 8 extracted environemtal variable between absence and presence localities. Y

axis represents the relative frequency of counts of sample. (a) Presence data set. (b) Absence data set.
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4.2.3 PCA Approaches

Plots of two PCA analysis for all occurrences (N = 196) is showed in Figure 13

and revealing similar trend whether in axis 1, 2, or 3.

AXis 2

SVE

0o

(@)

Figure 13. PCA ordination of Taiwan Hemlock and 8 extracted environtment variables including CUR,

PRCSU, PRCWT, SLP, STH, SVF, ELE and WST. (N=196) (a) Axis 1 and 2, (b) Axis 1 and 3, and (c)
Axis 2 and 3.
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Figure 13. PCA ordination of Taiwan Hemlock and 8 extracted environtment variables including CUR,

PRCSU, PRCWT, SLP, STH, SVF, ELE and WST. (N=196) (a) Axis 1 and 2, (b) Axis 1 and 3, and (c)
Axis 2 and 3.
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The variance explained by the component 1 to 3 are 24%, 17%, and 13%
respectively for all occurrences data and cumulative percentage of variance explained
by the first three components are 24%, 41% and 55% respectively (Table 16). First 6
eigenvectors, listed in Table 17 and each scaled to its standard deviation (SD),
sometimes called V vectors, and when applied to PCA of a correlation matrix, are the
same as the correlation coefficient between scores for occurrence data and the
environmental variables. First component is highly related to the three environmental
variables, CUR, SLP, and SVF, second component is highly related to the PRCWT and
ELE variables, and the third component is highly related to the STH and WST variable

respectively (Table 17).

Table 16. Percentage of variance and cumulative pé;gé{_i‘tage of variance from extracted 8 components of

PCA. - A
Axis Eigen value % of Varianée éum.% of Var. Eigen value
1 2.0 24.4 ' 24.4 2.7
2 1.4 17.3 41.8 1.7
3 1.1 13.7 55.5 1.2
4 1.0 12.6 68.1 0.9
5 0.9 11.3 79.4 0.6
6 0.8 9.7 89.0 0.4
7 0.7 8.7 97.8 0.3
8 0.2 2.2 100.0 0.1

Note: Cum.% of Var.: cumulative percentage of variance; %: percentage
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Table 17. First 6 eigenvectors each scaled to its standard deviation of PCA.

Eigenvector
Env. 1 2 3 4 5 6
CUR -0.70  0.37 040 0.14 -0.28 -0.23
PRCSU 002 0.02 048 -0.83 -0.11 0.28
PRCWT 032 -054 026 003 -0.54 -0.34
SLP 0.60 039 023 0.18 -0.28 -0.14
STH -0.33  -037 -0.50 -0.41 -0.09 -0.43
SVF -093 001 0.14 0.11 -0.07 0.05
ELE -0.13 -0.71 0.08 030 -0.21 047
WST -0.04 042 -056 -0.08 -0.62 0.31

4.2.4 Data Mining Approach: CART

11 of 16 environmental variables, EL,E, P_RCSU, PRO, ASP, PRCAU, PRCSR, WI,
PRCSP, WST, SVF, and STH;-are sel‘ecte.?c:ﬁ.b-}./ the ‘classification tree to split each node
of the tree (see Figure 14). First flbde:is split by ELE variable indicates ELE is able to
distinguish the two groups divided it. /n .oth(.er word, ELE is the most explainable
variable from the 16 environmental variables due to the two groups split by ELE having
more homogeneity than original one. And besides, the second splitting variable using by
classification tree is PRCSU and WI and the third is PRCSR and PRO in the same node.
On the left hand side of the tree is mainly consist of V; and a few V; and Vs, on the
middle of the tree is mainly consist of V3 and Vs, and on the right hand side is mostly
V, and mixed with Vzand V,4. Total number of terminal nodes is 24 and residual mean
deviance is 1.74. Misclassification error rate of the six vegetation type is 32 %. Figure
15 and 16 showed how each split reduces the variance and the misclassifying rate of
split groups.
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Figure 14. Tree plot of classification and regression tree (CART) analysis with 6 groups of 196 Taiwan

Hemlock presence localities and 16 extracted environmental variables from RIAL.
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Figure 16. Missclassification of tree plot from Figure 13 shows how each split reduces misclassification

number.
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Figure 17 showed the result of combining V;and Vginto V; due to similar habitat
of both vegetation types found in field surveys. The combination resulted in lowering
misclassifying rate from 35% into 27%. If considering V4 for succession type and taking
it as Vj, the misclassification of each group was reduced into 23%. The details of
summary of CART analysis for 6 groups and 16 extracted environmental variables are
listed in Table 18. First three splitting variables of Figure 16 are the same as the results
of Figure 13. On the left hand side of the tree is mainly consist of V| and a few V, and
Vs, on the middle of it is consist of V,and Vs, and on the left hand side is V3 and a few

V, and Vs. Total number of terminal nodes is 24 and residual mean deviance is 1.5.

L AT
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Figure 17. Tree plot of classification and regression tree (CART) analysis with 5 groups (combining V;
and Vginto Vi) of 196 Taiwan Hemlock presence localities 16 extracted environmental variables from

RIAL.

The numbers of classified plot are greater than the original number of V,, Vs and

Vs vegetation type. In Vi, Vs, and V4 situation, however, the numbers of classified plot

are lesser than the origin number.
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Table 18. Summary of CART analysis with 6 groups of 196 Taiwan Hemlock Presence localities 16

extracted environmental variables from RIAL.

Vi Vo V3 Vy Vs Vg

Number of original plot 64 46 11 32 28 15
Number of classified plot 61 60 4 27 32 16
Missing plot 18 9 7 21 6 7
Missing rate (%) 28 20 64 66 21 47
Total missing rate (%) 35

4.2.5 Data Mining Approach: CIT

Only 1 of the 16 environmental variables, WI;-was actually used to construct the
conditional inference tree and represe'h_t\“-.}hq-’_ significant difference between the both

| P | | . .
groups split by the environmentalyvariablg on| thesiode and the originally undivided

group (Figure 18). Total numbers:6f the terminal nodes’is 3.
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Figure 18. Tree plot of CTT analysis with 6 groups of 196 Taiwan Hemlock presence localities 16

extracted environmental variables from RIAL.

On the right hand side of CIT in Figure 17 is mainly consist of V; and mixed V;
and Vg, on the middle of the node is mainly consist of V, mixed with V; , V4 and V5,
and on the left hand side is V3 and companied with V, V4 and Vs. The results indicated
that warmth index gradient could distinguish Taiwan Hemlock presence localities into 3
three groups: (i)Taiwan Hemlock- Taiwan Cypress group, (ii)Taiwan Hemlock mixed

with conifers groups, and (iii)) Taiwan Hemlock-Taiwan Fir group. The details of
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summary of CART analysis for 6 groups and 16 extracted environmental variables are
listed in Table 19. The result of CIT showed relative high misclassification rate

comparing to the results of CART analysis.

V4 to Vgare not classified by the CIT analysis and gains 100 % missing rate which
influencing the total misclassification rate in comparing to the misclassification rate of
occurrences data without V4 to Vg vegetation type or V4 to Vg are able to be
distinguished by 16 extracted environmental variables. And besides, V4 and Vs were
mainly predicted to V, and V3 and that indicated they shared similar environmental
gradient with V; to V3; Vg was mainly predicted to V; and V, and still implied its
environmental gradient was similar with-V, and V,. The numbers of classified plot are
greater than the original number.of M>and V; _Ve;getatior_l type. In V; situation, however,
the number of classified plotis lesser thaiﬁ gh}é_.oﬂgin number.

]

Table 19. Summary of CIT analysis with-6 groups of 196 Taiwan Hemlock Presence localities 16

extracted environmental variables from RIAL.

Vi Vo, V3V Vs Vs

Number of original plot 64 46 11 32 28 15
Number of classified plot 49 113 34 0 0 0
Missing plot 32 14 1 32 28 15
Missing rate (%) 50 30 9 100 100 100
Total missing rate (%) 62

16 environmental variables are reduced to 8 by correlation analysis and then
partially selected by each statistical and data mining methods summarized in Table 20.
PC1 selected 3 environmental variables, CUR, SLP, and SVF, PC2 selected 2

environmental variables, PRCWT and ELE, PC3 selected 2 environmental variables,
90



STH and WST, CART selects almost all environmental variables except CUR, PLA,
PRCME, PRCWT and SLP, and CIT selects only 1 environmental variable, WI. In
addition to the methods mentioned above, try and error approach (i.e. selecting all and
individual environmental variables for model building) is also considered while

building the Maxent distribution model.

Table 20. Summary of all approaches selecting influential environmental variables to distribution of

Taiwan Hemlock. Character “V”’ means the variable is selected by the method.

CA PCl1 PC2 PC3 CART CIT ALL

ASP v Y
CUR Y v Y
PLA \

PRCAU ) ' \% \%

PRCME /) \
PRCSP = v Y
PRCSU \ E & A% \
PRCSR A LA % v

PRCWT Y WV ' \
PRO v v
SLP v v \
STH v \ \ \
SVF \ v v \
ELE v v v v
WST \ v v Y
WI v \ \

Note: V means the environmental variable was selected by each method; CA means correlation analysis;
PCI1 represents environmental variables with high correlation with component 1 of PCA.PC2 and PC3
represent the same meaning with PC1; CART represents classification and regression tree; CIT means

conditional inference tree; ALL represents all 16 extracted environmental variables.
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Therefore Total 23 combination of environmental selection for SDM building
including 7 environmental combinations in Table 20 (CA, PC1, PC2, PC3, CART, CIT,

and ALL) and each of 16 extracted environmental variables.

4.3 SDM Outputs and AUC

4.3.1 Resolution, Presence Unit, Environmental Variable Selection and

AUC

Vegetation unit is considered:a more hoﬁiogeneous unit and stable in succession
stage than all species occurrence localiti’e_s.whi.c_h may, contain mixed plant compositions
and more variant in data structuresF 1gurer,f9 -"shows hqw AUC of Vi, V,, V3, Vs, and
V. differ from each other. Due to'Vy _ahd V6 usually“appear in similar environment and
nearby on DCA plot, they were combined into V, (.)nly. In V4 situation, pine species are
not only considered as succession species and it is reasonable to explain the pure stand
of Taiwan Hemlock with some disturbance and companies with pine species in nature,
but also near to V, on DCA plot. So V, and V4 are combined together into V,
vegetation type. Multiple Behrens-Fisher tests by Package of npmc in R for 3 units,
including resolution, input locality, and environmental variable combination, reveal
effects of different respects. Three resolutions did not differ from each other
significantly (all p-values > 0.86). For input locality perspective, only V; and Vs are

significant different with p-value equal to 0.048 and the rest combination did not differ

significantly among each other (Table 21). There was no significant difference among
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ALL, CA, CART, CIT and PC2 (all p-values > 0.99) and PC1 and PC3 are not only
significantly differ to the former 5 combination but also significantly differ to each
other (p-value < 0.001). Thus 3 rank of environmental combination estimated by npmc
package are ALL, CA, CART, CIT and PC2 for rank 1, PCI1 for rank 2 and PC3 for
rank 3 respectively. The p-value of inter-group is almost 0 and that indicated each group

of rank differ significantly.
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Figure 19. Differences on AUC among 7 environmental variable combinations,ALL, CA, CART, CIT,
PC1, PC2, PC3, and 5 type of occurrence localies, Vi, V,, V3, Vs, and V, at 3 different kinds of map

resulotion: (a) 40 x 40 m, (b) 100 x 100 m, and (¢) 1 x 1 km.
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Figure 19. Differences on AUC among 7 environmental variable combinations,ALL, CA, CART, CIT,
PC1, PC2, PC3, and 5 type of occurrence localiés, Vl.;- V,, V3, Vs, and Vy at 3 different kinds of map
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After comparing AUC values :ldlf d}fferéfllt situations, environmental variable
combination by CIT method wa{;.the Ihighest AIUC value among the 7 methods and
CART method is the second high of AUC value. Maxent generates a series of statistical
analysis and predicts the distribution probability of target species in logistic format (by
default). Although CIT method of environmental variable selection performed best, it
covered almost all alpine area of Taiwan and that is usually covered with Taiwan Fir
pure stand or alpine grassland and not necessarily suitable for Taiwan Hemlock, and
thus CART might be the best prediction for distribution of Taiwan Hemlock. Figure 20

shows 5 spatial predictions for Taiwan Hemlock (Vi, V,, V3, Vs, and V) in logistic

format from Maxent by using CART method of environmental variable combination.

94



Table 21. Results of the multiple Behrens-Fisher tests for 4 vegetation types, Vi, V,, V3, Vs, and Vall

Taiwan Hemlock localities Vall by 2-sided p-value.

Compare vegetation types 2-sided p-value
Vi-V, 0.094
Vi- V3 0.066
Vi- Vs 0.048
Vi- Vai 0.530
V,- V3 0.055
V2- Vs 0.123
Va- Vai 0.151
V3- Vs 0.071
Vi- Van ..:1:-=--’- .=1--'3.’-'-'_-'-.'{k. Rey, 0.065

:1. e

Vs- Vai P 0,056

'i{)\‘, _..T

-_'5‘.' 3 -1
| y ~N Il ~
Note: ** represent significant with ‘E_Va'l ﬁrj (m
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Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART

method. (a) All occurrences data V,; vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and
Taiwan Cypress dominance V, vegetation type. (c) Taiwan Hemlock mixed with pine species dominance
V, vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V; vegetation type. (¢) Taiwan

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 X 40 m in resolution)
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Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART

method. (a) All occurrences data V,; vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and
Taiwan Cypress dominance V, vegetation type. (c) Taiwan Hemlock mixed with pine species dominance
V, vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V; vegetation type. (e¢) Taiwan

Hemlock and Taiwan Spruce dominance Vs vegetation type. (40 X 40 m in resolution)
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Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART

method. (a) All occurrences data V,; vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and
Taiwan Cypress dominance V, vegetation type. (c) Taiwan Hemlock mixed with pine species dominance
V, vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V; vegetation type. (e) Taiwan

Hemlock and Taiwan Spruce dominance Vs vegetation type. (40 X 40 m in resolution)
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Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART

method. (a) All occurrences data V,; vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and
Taiwan Cypress dominance V, vegetation type. (c) Taiwan Hemlock mixed with pine species dominance
V, vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V; vegetation type. (e¢) Taiwan

Hemlock and Taiwan Spruce dominance Vs vegetation type. (40 X 40 m in resolution)
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Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART

method. (a) All occurrences data V,; vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and
Taiwan Cypress dominance V, vegetation type. (c) Taiwan Hemlock mixed with pine species dominance
V, vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V; vegetation type. (¢) Taiwan

Hemlock and Taiwan Spruce dominance Vs vegetation type. (40 X 40 m in resolution)
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Reponses curves show how each environmental variable affected the Maxent
prediction (Figure 21; 40 X 40 m in resolution) on all occurrences data V,; vegetation
type. The y-axis was predicted probability of suitable conditions, given by the logistic
method, with each variable set to their average value over the set of presence localities.
The response curve of ASP was gradually the same high from 0 to 361 degree. The
response of ELE was peaked from 2000 to 3100 m. The response of PRCAU, PRCSP,
and PRCSR were different in amount of precipitation, but the response of total sum of
annual precipitation PRCSU was range from 2400 to 3200 mm. The response curves of
PRO, STH, SVF, and WST showed no trend of peak for predicted probability. The

response curve of WI was higher ranging from 40 to 80 C.

-]
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Figure 21. 11 Responese Curves of enwﬁillal varlabli f})‘r Maant prediction of All occurrences data

Va1 vegetation type. X-axis is the range of enV1ro‘nmenta1'yar1able Value and Y-axis is the logistic output of

i
probability of presence (40 x 40 m in resolutlon).

In summary, V, is suitable for elevation range from 2000 to 3100 m, sum of
annual precipitation range from 2400 to 3200 mm, and warmth index ranging from 40
to 80 ‘C. Table 22 gives a heuristic estimate of relative contributions of the
environmental variables to the Maxent model. The variable contributions should be
interpreted with caution when the predictor variables are correlated. WI and ELE had
most contribution for modeling and the precipitation variables, the rest environmental

variables were specific contribution for model to different vegetation type.
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Table 22. Contributions of the environmental variables to the Maxent model with V,;, Vi, V, and V3

Percent Percent Percent Percent Percent

Rank Va” contribution contribution contribution contribution contribution
1 WI 50.9 ELE 89.4 ELE 88.1 WI 51.3 ELE 91.3
2 ELE 43.7 PRCSR 23 WI 9.5 ELE 473 WI 4.6
3 PRCAU 1.6 STH 1.8 PRCAU 1.6 PRCSP 1.4 PRCAU 1.1
4 PRCSR 0.7 WwI 1.8 ASP 0.2 PRCSR 0 SVF 0.9
5 PRCSU 0.7 PRCAU 1.6 PRCSP 0.2 PRCSU 0 ASP 0.9
6 STH 0.6 WST 1 PRO 0.2 PRCAU 0 WST 0.4
7 ASP 0.6 PRCSU 0.9 STH 0.1 WST 0 PRCSP 0.4
8 SVF 0.5 SVF 0.4 PRCSR 0.1 SVF 0 PRCSU 0.2
9 WST 0.5 PRO 0.2 PRCSU 0 STH 0 PRCSR 0.2
10 PRO 0.2 PRCSP 0.2, SVF 0 PRO 0 STH 0.1
11 PRCSP 0.1 ASP 0.2 WsT - 0. ASP 0 PRO 0

4.4 SDM Assessment with Threﬁﬁold and Null Model

4.4.1 Threshold to Presence

Table 23 lists 8 methods for determination of threshold to presence. Although
threshold selection is depending on the purpose of the study, MaxKappa is chosen for
more accurately binary predicted map with presence and absence values. Noted that,
threshold of MaxKappa method are actually lower in geo-climatic regions than the

whole Taiwan Island.
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Table 23. The 8 methods of threshold selection produced by PresenceAbsence package of R

Method Vau Vi A\ V3 Vs
Sens=Spec 0.27 0.31 0.19 0.17 0.11
MaxSens+Spec 0.18 0.24 0.09 0.07 0.11
MaxKappa 0.40 0.50 0.32 0.34 0.70
MaxPCC 0.50 0.78 0.62 0.90 0.90
PredPrev=0bs 0.47 0.56 0.50 0.64 0.77
ObsPrev 0.10 0.04 0.05 0.01 0.00
MeanProb 0.10 0.09 0.07 0.03 0.04
MinROCdist 0.19 0.27 0.16 0.16 0.11

Note: Sens=Spec: sensitivity=specificity; MaxSens+Spec: maximizes; (sensitivity+specificity)/2;
MaxKappa: maximizes Kappa; MaxPCC: maximizes PCC (percent correctly classified); PredPrev=0Obs:
predicted prevalence=observed prevalence; ObsPrev:: threshold=observed prevalence; MeanProb: mean

predicted probability; MinROCdist: minimizes distance between ROC plot and (0,1)

| g
el

4.4.2 Threshold Dependent Indices <

¥

i |
%

After a specific threshold is selécted, confusion matrix can derive many indices to
calculate model performance. Table 24 and 25 compared a specific threshold is chosen
based on the MaxKappa occurs and outperformed simply using a half probability with a
0.5 value for deciding a threshold. Noted that, AUC is threshold independent and
therefore will not be changed by different threshold is selected. When threshold = 0.5,
there is lower value of sensitivity for all models and while threshold changed to
MaxKappa, sensitivity is raised but did not drop the value specificity too many. Thus

applying a specific threshold is necessary when implement to the specific aim.
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Table 24. Threshold dependent indices for each occurrence unit in threshold = 0.5

Unit threshold PCC Sensitivity specificity Kappa AUC
Vil 0.5 0.93 0.55 0.97 0.55 0.96
Vi 0.5 0.94 0.57 0.96 0.41 0.95
V, 0.5 0.95 0.51 0.97 0.48 0.96
V; 0.5 0.98 0.61 0.98 0.41 0.98
Vs 0.5 0.97 0.50 0.97 0.03 0.96

Note: PCC: percent correctly classified; AUC: area under ROC curve

Table 25. Threshold dependent indices for each occurrence unit in threshold = MaxKappa

threshold=
Unit PCC Sensitivity specificity Kappa AUC
MaxKappa
Vi 0.4 0.92 0.74 0.94 0.61 0.96
Vi 0.5 0.94 > 05T - 0.96 0.41 0.95
Vs 0.32 0.93 ~0.80 . . 0.94 0.52 0.96
V3 0.34 098 | (089 0.98 045 098
Vs 0.7 D.99W || 025 , -~ 0.99 0.08 0.96

| ]
Note: PCC: percent correctly classified; AUC: area under ROC clirve

4.4.3 Null Model for Sgnificant test

To test if the model’s algorithm could succeed to analysis the relationship between
species’ occurrences and environmental variables and predict the species’ spatial
distribution rather than predicting by chance, a null model was generated by randomly
repeating sampling for 999 times of background cells for the same number of the
presence data set to get the random AUC’s distribution (Figure 22). By adding the
predicted AUC values to the null model to see if the model result is high governed by

chance.
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Figure 22. Null model test for V,; data set-fFhe.black doten the bottom-right is the AUC value generated
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4.5 PNV Mapping Criteria and PVM f_gr' Taiwan Hemlock

To map the potential vegetation map of Taiwan Hemlock, 5 probability maps were
considered, Vi, V,, Vi, Vs and V) respectively from 40 x 40 m size in raster files. The
potential vegetation maps of Taiwan Hemlock are as following. The composition of the
Taiwan Hemlock species map of Vs and Taiwan Hemlock sub-units vegetation map of
Vi, V,, V3, and Vs was generated from each binary map split by threshold and then
summed together (Figure 23). Finally, in order to evaluate potential predicted area, all
occurrence data of Taiwan Hemlock from NVDIMP (N = 408) and absence data of
Taiwan Hemlock from TFRILU (N= 3770) were used to calculate the accuracy of the

model predicted presence.
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The confusion matrix of each potential predicted map was listed from Table 26 to
30. Table 31 listed indices derived from confusion matrix (from Table 28 to 32). All
Taiwan Hemlock species presence data set V) predicted the most widely spatial range
of Taiwan Hemlock with a high value of sensitivity (0.77) and specificity (0.94) and
with the highest the Kappa statistic. That meant 77 % of Taiwan Hemlock presence
localities were successfully predicted presence and 94% of Taiwan Hemlock absence
localities were also successfully predicted absence. The sub-units of Taiwan Hemlock
vegetation type were all predicted too constrain area and thus decline the sensitivity for
each predicted map. The best sensitivity was at V, vegetation map and the best
specificity appeared at V,, V3, and Vs (with' specificity 0.99). Because the predicted
range of sub-unit vegetation types were so lim.ited that there was a very high rate of
predicting absence successfully and lea’dé;.;jf‘z'_t@.-_-.a high value of specificity. The smallest
predicted area of the maps is'Vs belclaus;"it héd only 4 occurrence samples of the
sub-unit vegetation type. Va mai) waé also had the highest value of positive predicted
power (PPP = 0.57) because it predicted more true positive localities than other 4

vegetation maps. On the other hand, 5 vegetation maps predicted relative the same true

negative localities and gained with high value of negative predicted power (NPP).
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Table 26. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V,, with

threshold equals to MaxKappa.

actual
presence absence
. presence 313 235
predicted
absence 95 3535

Table 27. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V; with

threshold equals to MaxKappa.

actual
presence absence
' presence 47 202
predicted
absence 85 3817

Table 28. Confusion matrix of potential natur_%l_y_e:getation map of Taiwan Hemlock by V, with

—
i |

threshold equals to MaxKappa. [ ]
actual
presence absence
_ presence 53 105
predicted
absence 148 3872

Table 29. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V; with

threshold equals to MaxKappa.

actual
presence absence
) presence 17 61
predicted
absence 27 4073
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Table 30. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by Vs with

threshold equals to MaxKappa.

actual
presence absence
. presence 1 30
predicted
absence 3 4144

Table 31. Indices derived from confusion matrix of potential natural vegetation map of Taiwan Hemlock

with threshold equals to MaxKappa.

Type Sensitivity Specificity PPP NPP Odds-ratio Kappa Predicted Area (km?)

Vai 0.77 0.94 0.57 0.97  49.56 0.61 3780
Vi 0.26 0.97 0.34 0.96 13.21 0.26 1800
V, 0.39 0.99 0.2270.99 42.04 0.27 960
V3 0.25 0.99 0.03 1 46.04 0.06 360
Vs 0.25 0.99 0.05 (TN | /36.04% \=> 0,06 240

Note: PPP: Positive Predicted Power; NPP: Negati\_.g:_é‘;n_Predicted Power

]
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Figure 23. Potential vegetation map of Taiwan Hemlock with threshold equals to MaxKappa and 4

sub-units of Taiwan Hemlock vegetation types (Vy, V,, V3, and Vs).
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Chapter 5: Discussion

5.1 Vegetation Analysis

Vegetation analysis grouped Taiwan Hemlock presence localities into 6 main
composition of vegetation type. Taiwan Hemlock species centered on the DCA plot and
displayed some attributes that match the field experience. First, Taiwan Hemlock and
Taiwan Fir dominance V; vegetation type is far away from the rest 5 groups and
indicated that this vegetation type would not mix with the vegetation type of the farthest
distance groups V; and Vs which represented: Taiwan Hemlock and Taiwan Cypress
dominance and Taiwan Hemlock énd .Taiwan Yellow, Cypress dominance vegetation
type respectively. And beside, Vj groupdgthe DCA plot gathered like a line and it
indicated the pure stand composition lof Tgliwan' Hemlock-Taiwan Fir vegetation type
and this result could indirectlyr éupborted by Chen (1995) introduced 3 kinds of
vegetation type of Taiwan Fir classiﬁed. by Sen (1937) companied with Taiwan
Hemlock tree species. On the other hand, V| might mix with some near groups on the
DCA plots like V,, V4 and Vs and revealed that they were at similar elevation range
because the first 2 axes was relative to the elevation gradient. V4 was also concentrated
on the center of the DCA plot like V; did and that was a interesting result that indicating
they were also stay at similar elevation but not specifically close to any other vegetation
type. One reasonable explanation is V4 belongs to V; but suffered some disturbance and
the pioneer pine species gathered in. The results of Maxent model was also predicted

well of distribution of V, vegetation type.
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5.2 Analysis of Species-Environment Relationship

Environmental variables are extracted from GIS environmental grid layers to field
surveys points. This extraction could cause uncertainty because of little difference when
synthesize and transform points to layer models from different ordinations. The results
show that each approach selects its own environmental variable group which is the most
variant to Taiwan Hemlock localities. Correlation analysis avoids the problem of co
linearity and reduces the numbers of highly relative predictive variables. This approach,

however, does not provide the relationship between species and environmental layers.

The results of PCA reveal traditionally..é.tati.stical analysis could not handle the
non-linear distribution of $o many \ envii‘onmental variables, whereas some
environmental variables are chosen to Eepresent the most variant environmental
variables to Taiwan Hemlock: Component 1 and % of PCA can explain about 50%
variation of the data. The ordination “of ‘the’ daéa for PCA shows the cluster-like
ordination of data points and means none specific variable spread out in the axis 1, 2,
and 3. Moreover, the first component of PCA represents the most variant axis of the
data but is not necessarily relative to or limiting species’ distribution. The second

component of PCA (composite of temperature and precipitation factors) had a higher

contribution to the distribution of Taiwan Hemlock than component 1.

The results of CART and CIT showed two different ways of environmental
variable selection. CART chooses elevation for the early splits and almost all other

topographical and climatic variables for further splits (except slope, curvature and plan
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curvature, precipitation of winter and month mean precipitation). CIT on the other hand,
split by elevation only and was the most important environmental variable to the
distribution of Taiwan Hemlock because the variable split by CIT separates two groups
with significant difference. This result indicates that CART has the ability to distinguish
as detailed homogeneous groups as if sufficient variables are given. CIT, however, has
the ability to choose the variable that split node with more homogenous offspring

groups significantly different with mother group.

5.3 Environmental Variables to Taiwan Hemlock and Model

Assessment

Kappa statistic yields similar resul.tgs -fgthé'AUC (Gﬁisan et al., 2007) as well as the
result of this study. According to Swet;ﬁ(i§88), AUC values greater than 0.9 are
considered with high accuracy, ifl'rarige from,0.7-to 0.9 are considered as useful, and
lower than 0.7 though of poorly. In this stﬁdy, the first rank group of environmental
combination for AUC evaluation included the ALL, CA, CART, CIT, and PC2 and
elevation variable was always contained by each environmental variable combination. It
indicates that elevation variable is the most important environmental variable to
distribution of Taiwan Hemlock in this study. The only elevation variable chosen by
CIT method reached AUC value to 0.96 and it was vary well performance of the
predicted. However, the result of inputting environmental variables chosen by CIT
might over predict at the alpine area because of lacking of test samples so the AUC is
still high in this situation. CART, on the other hand, avoid this problem of predicting
Taiwan Hemlock presence over all alpine area. The first environmental variable splits of
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CART was also elevation and that split reduced the most of the variance of the offspring
groups and it implied the same signal that elevation is the most important environmental
variable for splitting Taiwan Hemlock species into sub unit vegetation type. The
environmental variable far from the root of the tree is minor to contribute for reducing
the variance (i.e. relatively lower contribution to the predicted model). This situation
was also proved by the contribution of environmental variable to the Maxent model
(Table 24). In this study, therefore, precipitation is the second important environmental
variable for Taiwan Hemlock. The topographic variables were not as important as the
former 2 variables for Taiwan Hemlock distribution. The maximum AUC of the
environmental variable combination is CIT and then ALL, CART, CA, PC2, PC1 and
then PC3 orderly. CIT combination used the fewest environmental variables to achieve
the best model performance but;only can coqclude CIT combination is the best fit for

Maxent modeling and had the ability to &i_jé@;ﬁminate between a suitable environmental

F

condition and a random absence 1jaither'-:"tha_ri suitable and unsuitable conditions
(Hernandez et al., 2006). Althouéh mény studies used of Kappa statistic for measuring
model performance, Kappa is a threshold dependent statistic that calculated the
proportion of correctly classified units (A+D) in confusion matrix after accounting for
the probability of chance agreement. As threshold is larger tends to decrease
commission error and increase omission error (Fielding and Bell, 1997) and affects the
Kappa statistic. AUC measured with full information provided by all possible
thresholds (Pearce and Ferrier, 2000) and more informative than Kappa statistic in a 0.5
threshold. Hernandez et al. (2006) described that multiple evaluation measures were

suitable for evaluating the model performance with presence only-data.

114



Maxent performed well if suitable environmental variables were puts into it.
CART and CIT successfully analyzed and chose the most effective environmental
variable to the distribution of Taiwan Hemlock and this approach is useful while too

many irrelative environmental variables are available.

Lobo et al. (2008) described five drawbacks of AUC assessment including (i) AUC
is discriminant assessment and ignores predictive probability values and goodness-of-fit
of the model, (ii) it summaries the test performance which one would rarely operate, (iii)
it weights both omission and commission errors equally, (iv) it does not offer
information about the spatial distribution of model errors, and (v) well predicted
absences and the AUC scores area influenced by the total extent. This study used the
equal number of presence and absence locali_tigs while testing the model to avoid the
fifth point stated by Lobo €t al. They ;ﬂ's;;o'f'g'c-_é.ncluded that AUC provides information
about the generalist or restricted dis@rlibutfi%én Qf a target species along with specific
environmental variables in the st.udy. érea, but does rot provide information about the
good performance of the model (Lobo et al., 2008) and that means model uncertainties
will not be considered by AUC. One purpose of this study is to predict the spatial range

of Taiwan Hemlock and AUC provides a good discriminant between presence and

absence localities.

5.4 Vegetation and Species Based Units and Map Resolution

Vegetation units derived form all occurrence data of Taiwan Hemlock is a special

case to the sample size reduction. Hernandez et al. (2006) concluded Maxent was more
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capable to model and produced useful results while data was incomplete or sample size
is as small as 25 or even lower (smallest 5 samples in their study) and model accuracy
was better to the species with small range in geographic distribution and limited
environmental tolerance. The sample size effect on vegetation (smaller sample size) and
species (total sample size) of this study demonstrated the similar results as the
Hernandez et al. (2006). Pearson et al. (2007) described vary low sample sizes (as low
as five records) to a fixed Maxent probability value of 10 to significantly recover all
known presences. In the same context, a lower Maxent value was useful in revealing
uncertain but potentially important distributional ranges. V3 with the smallest sample
size resulted in that perfect accurate in AUC measure (valued to 0.98) compared to the

rest (AUC of Vi, V,, V3 and V, are 0.96,0.95,0.96, and 0.96 respectively).

As motioned above, resolution envii{éﬁ_i-_ﬁ_ental variables and background pixels is
really influential to the model perfonnancé? The resulf of this study does not support

the statement that resolution of ‘environmental Vvariable and background cells is

influential to the distribution of Taiwan Hemlock in 40, 100 and 1000 m resolution.
5.5 Combination of Models for Predicting Vegetation Map

Although combining models reaches out the optimization of each model algorithm
and reduces model based uncertainties (Clemen, 1989; Gilmer, 2008), some risk of
combining models with less accuracies predictions are needed to consider. In this study,
4 vegetation sub-unit based models with different sample size smaller than the whole

occurrence data of Taiwan Hemlock classified by cluster analysis had a higher accurate
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prediction, would it be the effects of small sample to the AUC (Hernandez et al., 2006).
Because the Vi, V,, V3 and V5 are partial samples of V) and the good performance of

each sub-unit model predicted probability value higher at surrounding grid cells.

Maxent was not yet clear how significant were the differences between various
probability distribution values (Phillips et al., 2006); as such, the difficult task to the
user of selecting the appropriate threshold, below which the model may loose predictive
power and become too general (Pape and Gaubert, 2007). Pearson et al. (2007)
addressed the threshold issue of small samples available for ENM. The acceptable
threshold value depends on the purpose: if the interest is in observing general
distributional patterns, then a ‘free’ ‘threshold is suitable (i.e. over-predicting is
informative). When conservation app_l_icatior_ls,. however, are of principal interest, a
‘conservative’ threshold is more adequa"[e.' ::'(jé_é_..-_-éver-predicting is not suitable) (Pape and
Gaubert, 2007). Although in this stud); Isele%"ced _the threshold by the threshold that gave
the maximum of Kappa statistic, .too Iﬁany abse_ncé localities limited the threshold to be
more conservative to presence localities because if a liberal threshold was selected, too
many absence localities would be predicted presence incorrectly. And the threshold
affected the potential maps of each sub-unit vegetation type and limited the predicted
area of each map resulting in a conservative prediction of potential vegetation map of

Taiwan Hemlock. Thus, lower sensitivity were appeared in each map evaluation but

specificity performed well for evaluating each vegetation map.

Confusion matrix of each vegetation map was high at specificity because too many
of absence localities to be correctly predicted. Some problem with so many absence data

because if too many absence data, there was easy to predicted all localities absence and
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would get not bad model performance. Another question is the realized niche we
observed is not necessarily the whole environment that suitable for the target species
and maybe geographical limitation leaded the suitable environment without the target
species. Therefore, too many absence localities will constrain the potential area and
decline the model performance. On the other hand, if too few absence localities were
used, it would come up with a liberal threshold selection and over-predict the map for

more information (Pape and Gaubert, 2007).

Why predicted area is so important because of the low prevalence of the data (i.e.
absence localities are much greater than presence). An error rate of wider predicted
range might cause in many commission.errors than.a limited predicted range which
might cause in fewer omissionzerpor. The reasontis.t00 many absence localities can

cause more error rate where a relative fewspresence localities is not able to reach. For

I

conservative perspective, if the'veget;ltlion'ir'hap of Taiwan Hemlock generated in this
study is able to distinguish 77.% of all _Tai_wah Hemlock presence localities, the
predicted area is conservatively suitable for Taiwan Hemlock. On the other hand, the
predicted area for Taiwan Hemlock sub-unit vegetation map is more conservatively

constrained or limited each vegetation sub-unit of Taiwan Hemlock.
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Chapter 6: Conclusion

Taiwan Hemlock concentrates in range from 2000 to 3100 m in elevation, 2000 to
3100 mm in annual precipitation, and 25 to 40 degrees in slope and consists of 4 main
vegetation type, Taiwan Hemlock-Taiwan Cypress-Taiwan Yellow Cypress dominance,
Taiwan Hemlock-Pine species dominance, Taiwan Hemlock-Taiwan Fir dominance,
and Taiwan Hemlock-Taiwan Spruce dominance vegetation types. The classification is
response to the environmental variables mainly by elevation and warmth index which is
highly relative with elevation. Whether CART, CIT or Maxent method chose the
elevation variable for representing the characte;istics of distribution of Taiwan Hemlock.
Other variables used in this study were minér to-affect the distribution of Taiwan

Hemlock.

-]

The analysis of species distribuﬁén and én\_{ironmental relationships reveals the
extrinsic effects on species’ distribﬁtion. None of the best model is defined as the
universal tools for predicting species distribution, however, the attempt to analysis those
relationships gives the implication of how the species reacts to any environmental
disturbance and where does the species can escape from this impact of changes. Clemen

(1989) concluded model combination as:

“Combining forecasts has been shown to be practical, economical and useful.
Underlying theory has been developed, and many empirical tests have demonstrated the
value of composite forecasting. We no longer need to justify this methodology. We do

need to find ways to make the implementation of the technique easy and efficient.”
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The analysis of the relationship between species and environmental variables is
quantified by many new approaches rather than using just a traditional statistical
analysis. Machine learning methods jump over the traditional method due to the
multi-consideration of the algorithm with modern computer intensive ability to analyze
more precisely prediction. Many tasks of SDM discussed in this study such as how to
select appropriate environmental variables, if more homogeneous samples affects the
selection of environmental variables?, and resolution of the environmental layers and
the cell space to be predicted. However, restricted to the unavailable data quality, the
accuracy of the SDM still needs to be revised by actually examined by a specific
experiment on id the potential environmental condition really suitable for the target
species or the potential predicted area’is reauy.suitable_ for planting or growing of the
target species? Although nowadays the pré"dlcted modeling is widely spread the model

F

needs more experiments by further study to'%ﬁppdrt the PVM.

Maxent performed well if suitable environmental variables were puts into it.
CART and CIT successfully analyzed and chose the most effective environmental
variable to the distribution of Taiwan Hemlock and this approach is useful while too

many irrelevant environmental variables are available.

Combining model approach makes the SDM and its relevant model such as ENM
more flexible to apply in a specific purpose. However, it still need further study for
completing it and encourages the recent scientists to have the foundation to establish
new combination approaches, as in this study pays efforts on changing combination

target from model techniques to species and vegetation units, which is followed the

120



plant community conception. How can ecological theory help the model performance of
accuracy is still needs further study, however, this research gives an initial implication

and hopes for more interesting ideas.

For conservation management, further alpine ecological researches are needed in
Taiwan to adapt the climate change impact. A physical based model is the possible
approach to improve the cons in the statistic models, i.e. the parameters are still robust

under the climate change?
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