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摘要 

     

由於人為活動增加過量的溫室氣體，導致氣候變遷下環境也可能發生改變，

在未知的變動下植群社會要如何面對氣候變遷所造成的衝擊，了解植物社會是如

何適應自然環境，將是首要的任務。近年來物種分布模式(Species Distribution 

Models, SDM)被廣泛的使用在了解物種與環境之間的關係，並且應用在生物多樣

性保育與經營上。本研究的目標物種為台灣鐵杉(Tsuga chinensis var. formosana Li 

and Keng)出現樣點，以 16 個環境因子(包括大尺度的氣候因子與中尺度的地形因

子)為 Maxent 物種分布預測模式的輸入，並測試三種不同的輸入各是如何影響預測

模式的表現：(1)以種成分分析法(principal component analysis, PCA)與分類樹

(classification and regression tree, CART)和條件推論樹(conditional inference tree, 

CIT)分析種環境因子與台灣鐵杉的關係當作預測模式環境因子選擇的依據，(2)比

較所有台灣鐵杉出現的樣點數與以矩陣群團分析法分類之台灣鐵杉次植群型單位

的樣點數，(3)不同的環境因子解析度。並分析植群與優勢物種分布和環境因子對

模式的貢獻程度，進一步以 Maxent 物種分布模式預測出機率分布圖，預測之結果

以受試者工作特徵曲線面積(AUC)值來評估台灣鐵杉植群型分布模式的準確性。應

用 2 種合併模式的方法結合機率模式的結果與門檻值的篩選產生台灣鐵杉的潛在

植群圖(potential vegetation map)並以誤差矩陣(confusion matrix)來評估潛在植群圖

的準確性。植群分析結果產生四群台灣鐵杉次植群型，環境分析和模式預測結果

顯示影響台灣鐵杉的空間分布為主要的環境因子為海拔，次之為雨量，都屬於氣

候因子；地形因子及對預測模式沒有主要的貢獻，但是仍然使預測模式更加精確。

樣點數較小較且均質的植群型單位模式有著比樣點數較多的物種單位模式還高的

模式預測能力。本研究中環境圖層的解析度對模式的預測能力沒有特別顯著的影

響，預測的區域因為受到樣本數跟著改變的影響來無法突顯預測範圍的大小是否

影響模式的表現，潛在植群圖的合成有助於應用的決策和考量，使得物種分布模

式的應用更具有彈性。最後預測植群圖的可適用性能需要進一步的實驗預測的環

境條件是否真的是和目標物種的生存來加以支持預測物種的空間分布。 

 

關鍵字：台灣鐵杉、分類樹、條件推論樹、Maxent、AUC、誤差矩陣、潛在植群。 
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Abstract 
     

To know the adaptation of plant society under climate change impacts is based on 

knowledge of the potential distribution of vegetation distributions. Vegetation is a 

society of plant species. Applying combination of species distribution models (SDMs) 

results to establish potential vegetation maps (PVMs) need determination strategies. 

This article firstly analyzes the relationship between Taiwan Hemlock (Tsuga chinensis 

var. formosana Li and Keng) and 16 topographical and climatic variables and then to 

generate a probability map by Maxent to test how 3 different situations of model input 

affects the model performance: (i) selection and analysis of suitable environmental 

variables by principal component analysis (PCA), classification and regression tree 

(CART) and conditional inference tree (CIT) method, (ii) sample size and homogeneity 

of species and vegetation sub-unit occurrence data (iii) resolution for environmental 

layers. Model evaluated by area under receiver-operating characteristic (ROC) curve 

(AUC) and Kappa statistic. 2 model combination approaches is also applied in this 

study to aid to generate the potential vegetation map (PVM) of Taiwan Hemlock. PVM 

is evaluated by error matrix and its derived indices. The result of vegetation analysis by 

cluster analysis classified Taiwan Hemlock into 4 sub-unit vegetation type. The result of 

environmental analysis and modeling revealed that the environmental variable that is 

affecting spatial distribution of Taiwan Hemlock most is majorly elevation gradient and 

the secondary is precipitation and both are climatic variables. Topographical showed 

minor contribution to the model. Sample size test showed more accurately when input 

the smaller size and more homogeneous samples. Resolution of environmental layers 

showed no sigibificant effect on model performance in this case. Overlaying Taiwan 

Hemlock vegetation sub-unit probability maps with 2 deterministic combination 

approaches synthesizes a potential vegetation map of Taiwan Hemlock. Modification of 

strategy for predicting PVMs is according to local ecological theory and further study 

on testing the potential ability from the environmental variable is really suitable for the 

target species. 

 

 

Keywords: Tsuga chinensis, CART, CIT, Maxent, AUC, confusion matrix, PVM. 
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Chapter 1: Introduction 

 

1.1 Background 

 

The question about plants and animals’ current distribution is discussed for a long 

history and makes many ecologists find the explanation. Many modelers root in 

species-environment relationships to establish many modeling approaches for solving 

this question (Guisan and Thuiller, 2005). Analysis of the species’ geographic 

distribution has always been an important issue in vegetation science, and is currently 

focused by other sub-disciplines such as biogeography and landscape ecology. The 

relationship between environmental gradients and vegetation distribution is one of the 

most important issues examined in vegetation science (Miller et al., 2007). The ability 

to quantify the relationship leads to predict potential distribution of vegetation and is 

applicable for predicting spatial distribution under changing environmental conditions, 

such as climate change occurring (Miller et al., 2007). 

 

The purpose of potential vegetation field survey is to understand plant ecology and 

apply to ecological conservation, landscape restoration, and landscape planting (Yang, 

1997). Survey data for estimating or predicting potential vegetation according to plant 

ecology, or plant geography, explain forest composition, structure, and function, further 

more, the relationship with environmental variables and its succession stage. Those data 

information allow us to predict the next succession, current or future distribution of 

species and vegetation and are useful for forest ecosystem management, biological 

conservation, and landscape restoration. On the contrary to traditional survey analysis, 
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Chiou et al. (2006) introduced GIS technique and several models are rapidly developed 

in recent years. Combining vegetation mapping and analysis of satellite images with 

GIS generate predictive vegetation model, a new approach for analysis 

species/vegetation and environmental variables (such as Gu et al., 2006; Tsao, 2007; 

Yen, 2007) (Franklin, 1995; Guisan and Zimmermann, 2000; Scott et al., 2002) and this 

study is also based on the new approach. 

 

Climate change has become an important focused issue in recent years, as a basis 

for assessing whether anthropogenic greenhouse effect has enhanced climate change 

and how the continuingly growing greenhouse gas concentration will lead to an 

unknown future climate. According to the IPCC’s Third Assessment Reports (TAR, 

IPCC, 2001), the average temperature of global surface has increased by about 0.6 °C in 

the past century, and to the IPCC’s Forth Assessment Report (AR4), warming in the last 

100 years has increased by 0.74 °C in global average temperature. This is above the 0.6 

°C increase in the 20th century prior to the Third Assessment Report (IPCC, 2007). 

Taiwan has been moving toward a warmer and drier climate. Enhanced precipitation is 

observed in the limited areas in the limited times, however, a systematic trend (or 

change) is not observed (Hsu, 2002). In general, under constant climate change and 

global warming conditions possibly forces the distribution area of current vegetation 

diminishing, and increases the risk of species extinction. To predict the change of 

distribution of species under different climate scenarios is essential to assess the risk of 

species extinction under climate change (Thomas et al., 2004). Thus, the first mission is 

to establish predictable models for species potential distribution range (Tsao, 2007). 
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Previous ecologist in Taiwan mainly focused on classifying the plant communities 

and identifying the relationships between plant societies and environmental variables 

(i.e. Su, 1984a; 1984b). Island of Taiwan has a great diversity of fauna and flora due to 

a high degree of topographical complexity and an about 4000 m variation in altitude 

(elevation). A large proportion of Taiwan is not easy to access for field survey due to its 

hilly topography. Available field data might not be completely enough to support 

decision making of conservational or environmental policies (Song et al., 2007). 

Species distribution models provide a possible way to fill up the gap of incomplete 

vegetation data (Franklin, 1998).  

 

Projections of species distribution under climate and environmental change are of 

great scientific and social relevance, and basing on species distribution models (SDMs) 

make some assumptions such as species not adopt to global dispersal in evolution and 

consistency of limiting factors (Dormann, 2007). Although some of the assumptions are 

ecologically untenable, the predictions of the SDMs are still a useful reference to policy 

maker for climate change impact assessment and conservation management. This study 

examines the relationships between distributions of dominant species, Taiwan Hemlock 

(Tsuga chinensis (Franch.) Pritz. ex Diels var. formosana (Hayata) Li and Keng) of 

alpine forest in Taiwan, and climatic and topographical environmental variables. Not 

only traditional statistical approaches, but importance of new direction of data mining 

approaches in analyzing relationships between species and environmental factors will 

lead more precise insight and performance on SDMs prediction. 
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1.2 Objective 

 

Although SDM are widely spread in many fields, the analysis of relationship in 

species-environment is still methodologically not well organized. This study will focus 

on comparing statistical and data mining methods to find the suitable environmental 

layers for building the spatial distribution of Taiwan Hemlock vegetation. Additionally, 

some studies of SDM application can be found in Taiwan (Gu et al., 2006; Tsao, 2007; 

Yen, 2007) but fewer studies in Taiwan considers the comparison of difference model 

setting (like Song, 2007). Smaller grid size of the predicted background can reflect the 

more detail of topographical variables than climatic variables but is time consuming due 

to a very large data size for model estimation. Contrarily, larger grid size of background 

is much faster when calculating but lacks of or reduces detail information of the 

meso-environmental variables. Thus, this study also takes grid size, predicted area, 

locality units, and environmental selection of the model input into account.  

 

Pervious studies for SDMs (mentioned later in Ch. 2 literature review) were using 

multiple model combination to improve the predictive accuracy for each species’ spatial 

distribution, however, combining different hierarchy units of species and vegetation to 

increase the predictive accuracy are seldom seen in resent researches. Therefore, 

comparing model techniques combination and species-vegetation unit combination is to 

compare and combine different SDMs to synthesize potential vegetation map of Taiwan 

Hemlock another goal of this study. The combination criteria are utilized to determine 

the binomial potential distribution area that Taiwan Hemlock may occur. There are 4 

main objectives listed as follow: 
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1. Using data mining approach (classification and regression tree, CART and 

conditional inference tree, CIT) compared to statistical approaches (detrened 

correspondence analysis, DCA, principal component analysis, PCA and correlation 

analysis, CA) for analysis of relationship between species distributions and 

environmental variables. 

2. Assess how localities inputs of different vegetation and species based sub-units on 

distribution modeling relate to environmental variables. 

3. Evaluate how difference grid resolution affects the model performance and 

relationship between target species and environmental variables. 

4. Model combination and synthesis of potential nature vegetation maps. 
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Chapter 2: Literature review 

 

2.1 Climatic Factor and Vegetation Distribution in Taiwan 

 

Alpine ecosystem’s unique characteristic environment, such as strongly wind 

blowing, shallow soil, low temperature, snow cover, is unsuitable for growing and is 

sensitive to climate change (Luckman, 1990; Walther, 2004). Therefore, monitoring 

alpine ecosystem for climate change impact assessment on alpine forest is a very 

important approach worldwide (Luckman, 1990). 

 

Vegetation Zone differentiation in Taiwan changes along with altitude gradient and 

variation of vegetation in Taiwan is specified by vegetation zones or vegetation biomes 

divided by different elevation (Liu, 1962; Su, 1984b; Su, 1992). Su (1984a; 1984b) 

described the relationships between vegetation zones and climate factors and tried to 

divide the range of vegetation distribution by temperature factor. Su (1984b) 

investigated vegetation of Chou-Shui river basin in mid-Taiwan and established the 

relationships between elevation and temperature by regression analysis and determined 

the up and low limits of elevation for every vegetation zone. Su’s vegetation zone 

(1984b) is a high hierarchy classification unit and each zone may contain different 

forest types due to differentiation of topography, soil, or succession stage.  

 

Many ecologists considered latitude and elevation are the main factor to species 

distribution (Kellman, 1980; Su, 1985; Su, 1987; Guissan et al., 1998, Liang, 2004; Yen 

et al., 2007). Previous studies on vegetation science in Taiwan restricted to financial 
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support and thus most vegetation survey sites limited within local area like boundary of 

watershed, naturally conserved area, or administrative area, such as Su’s (1988) study 

site in Single-seed Juniper conserved area, Su (1984b) in Chou-shui river basin, Liu et 

al. (1999) in Sha Li Shian watershed, and Fu (2002) in Dan-Da area. Those local studies 

with varied purposes, methods, and location, which boundary doesn’t represent the real 

boundary of species’ distribution, hardly integrate the vegetation distribution in Taiwan 

(Chiou et al., 2006). 

 

Chiou et al. (2006) analyzed the distribution characteristic of Taiwan Hemlock 

community in Taiwan using cluster analysis and compared with environmental 

conditions, altitude, latitude, and warmth index. Two methods of the comparison are 

order and inter-specific association. Yen et al. (2007) and Tsao (2007) firstly introduced 

the model techniques for modeling species distribution over the whole Taiwan Island. 

Yen et al. (2007) used second-order logistic regression in generalized linear model 

(GLM) to estimate the probabilistic distribution of Taiwan Hemlock in Taiwan by two 

of the most important environmental variables, latitude and altitude. Tsao (2007) used 

generalized additive model (GAM) to establish the relationships between distribution 

ranges and environmental variables for six conifer species, Chamaecyparis obtusa var. 

formosana, Chamaecyparis formosensis, Abies kawakamii, Tsuga chinensis, Picea 

morrisonicola, and Pinus taiwanensis, of Taiwan. Tsao’s result shows all of the six 

GAM models select the variable of mean annual temperature for building model, in 

other words, distribution of six plant species is affected by mean annual temperature. 

Annual precipitation, however, is not selected by any of the six models. Therefore, the 

probable explanation may be Taiwan Island receives abundant precipitation all year 
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round, so precipitation is not a limiting factor for vegetation distribution in Taiwan 

(Kuo, 1978; Yen, 2007). 

 

2.2 Data Mining Approach in Environmental Factor Analysis 

 

2.2.1 CART 

 

Classification and regression tree (CART) is a kind of decision tree. Breiman et 

al.’s (1984) CART is a common basis for some ensemble procedures such as bagging 

(Breiman, 1996), random forest (Breiman, 2001), and stochastic gradient boosting 

(Friedman, 2001a). Kriegler (2007) mentioned four key aspects of CART are (i) 

Splitting criteria for regression tree, (ii) Pruning and knowing when to stop making 

splits, (iii) Costs and the relation to priors, and (iv) Obtaining fitted values. CART can 

handle both numeric (regression tree) and categorical (classification tree) predictor and 

response variable. 

 

De’Ath and Fabricius (2000) described CART is ideally suitable for analyzing the 

complex ecological data, which is usually strongly non-linear, involving higher order 

iteration, unbalanced, and containing missing values. Because CART is flexible and 

robust analytical methods and can handle for such complex data. Furthermore, CART 

results are simple to understand and easily interpretable by its graphical representation 

with root (undivided data) at the top and branches and leaves (final groups) underneath. 

The explanation for variation of a single response variable for trees is using one or more 

explanatory variables (continuous/categorical) to repeatedly split the data into more 
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homogeneous groups, which is defined by a single rule based on single explanatory 

variable, but to remain the tree reasonably small. Splitting is continued until an 

overlarge tree is grown and then pruning reshapes it back to the desired size. Each 

group/leaf is characterized by a typical value of the response variable (mean value for 

numeric response and distribution for categorical response), the number of observations 

in the group, and the values of the explanatory variables that define it. The tree is 

represented graphically, and this aids exploration and understanding. 

 

Trees are interactive exploration and both descriptive and predictive for patterns 

and processes. De’Ath and Fabricius (2000) stated advantages of CART including: (i) 

the flexibility to handle different types of response variables, numeric, categorical, 

ratings, and survival data; (ii) invariance to monotonic transformations of the 

explanatory variables; (iii) the capacity for interactive exploration, description, and 

prediction; (iv) ease and robustness of construction; (v) ease of interpretation by 

graphical representation; and (vi) the ability to handle missing values in both response 

and explanatory variables. Therefore, CART is an alternative to many traditional 

statistical techniques, such as multiple regression, analysis of variance, logistic 

regression, log-linear models, linear discriminant analysis, and survival models for 

complement or representation (De’Ath and Fabricius, 2000). 

 

2.2.2 CIT 

 

CIT is an abbreviation of conditional inference tree, which can deal with recursive 

partitioning for continuous, censored, ordered, nominal and multivariate response 

variables and the implementation utilizes a unified framework for conditional inference 
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developed by Strasser and Weber (1999). Hothorn et al. (2006) described conditional 

inference framework for recursive binary partitioning can be solve two fundamental 

problems of exhaustive search procedures, (i) over fitting and (ii) a selection bias 

towards covariates with many possible splits or missing values, by (i) pruning 

procedures and (ii) embedding tree-structured regression models into a well defined 

theory of conditional inference procedures, based on invariant p-value.  

 

Roughly, the algorithm of CIT works as follow steps: (i) Test the global null 

hypothesis of independence between any of the explanatory and the response variables 

and stop if this hypothesis cannot be rejected (i.e. the explanatory and response 

variables in a specific splitting node are not independent to each other). Otherwise select 

the explanatory variable with strongest association to the response variable with 

measuring a p-value corresponding to a test for the partial null hypothesis of a single 

explanatory variable and the response variable. (ii) Split binaurally in the selected 

explanatory variable. (iii) Recursively repeat steps (i) and (ii). 

 

The stop criterion in step (i) is either based on multiplicity adjusted or univariate 

p-values and it is shown that the predictive performance of the resulting trees is as good 

as the performance of established exhaustive search procedures (Hothorn et al., 2006). 

This statistical test ensures that the right side of the tree is grown and no form of 

pruning or cross-validation. The selection of the explanatory variable to split in is based 

on the univariate p-values preventing a variable selection bias from explanatory 

variables with too many possible splitting points. Moreover, the prediction accuracy of 

trees with early stopping is equivalent to the prediction accuracy of pruned trees with 

unbiased variable selection. 
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2.3 Ecological Niche and Species Distribution Model 

 

2.3.1 Predicted Vegetation Modeling 

 

Maps of vegetation composition have traditionally been produced by field survey 

and photo interpretation, but these methods are costly and inefficient. Predictive 

vegetation modeling (PVM) can be defined as predicting the distribution of vegetation 

across a landscape based on the relationship between the spatial distribution of 

vegetation and relevant environmental variables (Franklin, 1995). Fraklin (1995) 

provided the relationship between environmental variables and their process affecting 

distribution of potential natural and actual vegetation (Figure 1). 
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Figure 1. Conceptual model showing relationships and processes between climatic determinants, direct 

gradients, potential natural vegetation and actual vegetation (revised from Franklin, 1995) 
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PNV is determined by environmental determinants (climatic, geographic, and 

topographic factors) which changes local soil nutrients, moisture, and temperature. 

After natural and/or anthropogenic disturbance, like competition, succession, land-use, 

actual vegetation and land-use type form as mosaics on landscape. 

 

To evaluate potential vegetation, predicting vegetation mapping (PVM) is firstly 

considered. Three steps described by Franklin (1995) and Chen (1997) for PVM are (i) 

Traditional approach: explanation by aerial photos or numeric vegetation map from 

geographic mapping combines with geographic information system (GIS) for decision 

making. (ii) Numeric approach: establishment of mathematical relationship between 

environmental variables (such as temperature, precipitation, soil type) and traditional 

field survey records helps to understand the distribution of vegetation. (iii) Predicting 

vegetation mapping. Step 1 actually not real analyze the data as step 2 does, in the other 

words, the spatial pattern of species is not only simply digitizing the survey data, but 

also establishes the statistically or mechanistically mathematical relationship with 

environmental variables.  

 

    Development methodology of PVM traced to Kessell’s (1976) series studies on 

connecting real spatial object with abstract spatial model by gradient modeling with GIS 

in Glacier National Park, USA; Box (1981) used empirical model to generate 

distribution of global vegetation with global plant communities and macro-scaled 

climatic variables. After this point plenty of relevant studies followed. Table 1 

integrates the methods of recent 20 years studies for PVM.  
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   Climate-Vegetation classification model, one of PVM, assumes that major 

vegetation of any site is the result of environmental factors and considers climatic 

variables playing an important role on it (Tuhkanen, 1980). Köppen (1931) and 

Holdridge (1967) established the classification of global vegetation and its life zone, 

Walter (2002) divided 9 zonal biomes in macro-scale mapping of vegetation, Chiu et al. 

(2005) mapped Holdridge’s life zones at Taiwan. Ecologists also consider the dominant 

vegetation type is response by reaction of climatic variables and every climatic zone 

should have its vegetation type (Whittaker, 1975).  

 

Table 1. Predicted vegetation modeling (PVM) techniques with continuous and categorical data (revised 

from Franklin, 1995; Chen, 1997) 

Dependent 
variable 

Independent variable 
Continuous Mixed Categorical 

Continuous 

RM ANCOVA ANCOVA 
RT MANCOVA MANCOVA 
GLM RT RT 
 GLM) GLM 

Categorical 

MLC MLC with priors Contingency Table 
Logit (GLM) Logit (GLM) Logit (GLM) 
DA GAM GAM 
GAM CART CART 
CART NN NN 
 GA GA 
 ES ES 

Notes: ANCOVA: Analysis of Co-Variance; CART: Classification and Regression Tree; DA: 

Discriminant analysis; ES: Expert System; GA: Genetic Algorithms; GAM: Generalized Additive Models; 

GLM: Generalized Linear Models; MANCOVA: Multivariate Analysis of Co-Variance; MLC: Maximum 

Likehood Classification; NN: Neural Network; RM: Regression Tree; RT: Regression Tree. 

 

Chen (1997) described two scales for studying PVM. (i) Regional scale and (ii) 

Local scale. Study range of regional scale is considering global and continental area and 
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the environmental variable is mainly climatic variable. In this scale the 

climate-vegetation model belongs to static model (Lowell, 1991) and is based on 

assumption of the equilibrium between distribution of vegetation and environmental 

variables. (Leniha and Neilson, 1993)，and this assumption is acceptable for larger area 

and loner time  (Cramer and Leemans, 1993). Study range of local scale is smaller than 

regional scale such as a watershed and the environmental variables are selected for this 

scale such like topographic variable, slope, aspect, and soil type. In this scale, predicting 

of PVM is not only the static model, but also considers the topographic and 

micro-climate variables to project the active procedures of species’ birth, growth, and 

death (Urban et al., 1991). However, the complex background knowledge about 

climate-vegetation interaction is needed for the dynamic models (Brovkin, 2002). 

Unfortunately, few dynamic mechanisms of interaction of vegetation and ecosystem are 

well developed (Foley et al., 1998). 

 

Chen (1997) introduced three stage of model building in GIS: (i) establish spatial 

database, digitalizing the survey records and environmental variables for spatial analysis 

and further application in GIS. (ii) Set up the mathematical relationship between species 

and environmental variables. (iii) Combine the mathematical model and GIS tool and 

database to output and display the results. 

 

Potential natural vegetation maps are applied to communicate the natural baseline 

conditions for assessing ecosystem health, predictions of vegetation distribution which 

is caused by responding to environmental factors to management, and determination of 

potential resource value (Jansen et al., 2002). Danijela (2003) applied predictive 

vegetation model to manage and conserve the developed area based on the PNV 
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conception. PNV concept is not only for vegetation mapping, but also for land-use 

development and as a potential and basic reference for describing and integrating 

ecosystems (Hardtle, 1995; Seibert and Conrad-Brauner, 1995). For example, PNV 

represents the climax stage of vegetation under the stable environmental condition and 

can be used as a guide for ecosystem restoration (Danijela, 2003). In Japan, many cities 

have their own actual and potential vegetation maps for land-use planning and integrate 

the PNV studies concluding which native species is better for planting on the area. 

(Miyawaki et al., 1987; Miyawaki and Fujiwara, 1988; Miyawaki, 1988). PNV is also 

applied in simulating global and local climate change impacts, such as Cha (1998) 

estimated potential change of forest area under 2 times CO2 concentration. 

 

2.3.2 SDM/ENM 

 

Species distribution models (SDMs) or ecological niche-based models (ENMs) are 

two kinds of the PVM techniques and are empirical models relating field survey 

observations to environmental predictor variables, which is based on statistically or 

theoretically derived response layers (Guisan and Zimmermann, 2000). SDMs describes 

the spatial distribution of a species or species groups, as a function of environmental 

predictor variable such as latitude, longitude, altitude, climate, topography, land-use 

type, vegetation type, soil conditions, and so on. Species presence-only and 

presence-absence data are two major formats of the SDMs’ explanatory variables and 

the former data type is usually easier to obtain by historical records such as museum 

specimens, private collections, or field surveys. In other words, the potential species 

distribution model (PSDM) is developed from a set of environmental variables for a set 

of rasters, together with a set of data localities where the species are observed and 
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predicts the suitability for the target species as functions of environmental variables. 

(Phillips et al., 2006; Prates-Clark et al., 2008). 

 

Guisan and Thuiller (2005) describe three phases of SDMs by author’s personal 

communication to S. Ferrier:  

(i) Non-spatial statistical quantification of species–environment relationship based on 

empirical data, 

(ii) expert-based (non-statistical, non-empirical) spatial modeling of species 

distribution. 

(iii) Spatially explicit statistical and empirical modeling of species distribution. 

 

Species distribution models (SDMs) of plants and animals are interested widely in 

the last two decades and applied many issues in ecology, biogeography, evolution and, 

in conservation biology and climate change research(Guisan and Thuiller, 2005), such 

as predicting species distributions from museum and herbarium records (Elith and 

Leathwick, 2007), predicting future range of species distributions under climate change 

impacts (Thomas et al., 2004), mapping species ranges and species richness (Graham 

and Hijmans, 2006), predicting the invasive spread of a cactus species in Australia 

(Johnson, 1989) (quoted in Pearson and Dawson, 2003), assessing the climatic 

determinants of the distribution of several European species (Hengeveld, 1990) (quoted 

in Pearson and Dawson, 2003), enhancing a regional vegetation map (Franklin, 2002), 

biodiversity conservation (Rodríguez et al., 2007) …etc. Table 2 shows the application 

of SDMs in ecology fields. 
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Table 2. Some application of SDMs in ecology fields (revised from Guisan and Thuiller, 2005) 

Type of use References 

Quantifying the ecological niche of species  

Austin et al. (1990), Peterson et al. 

(2002), Vetaas (2002), Sattler et al. 

(2007), Rissler and Apodaca 

(2007), Raxworthy et al. (2008) 

Testing biogeographical, ecological and 

evolutionary hypotheses  

Leathwick (1998), Anderson et al. 

(2002), Graham et al. (2004b) 

Assessing species invasion and proliferation  

Beerling et al. (1995), Peterson 

(2003), Sanchez-Flores  (2007), 

Wang et al. (2007) 

Assessing the impact of climate, land use and 

other environmental impacts on species 

distributions 

Thomas et al. (2004), Thuiller 

(2004), Early et al. (2007), 

Dormann (2007) 

Suggesting unsurveyed sites of high potential of 

occurrence for rare, endemic, threatened species

Elith and Burgman (2002), 

Raxworthy et al. (2003), Engler et 

al. (2004), Zimmermann et al. 

(2007) 

Supporting appropriate management plans for 

species recovery and mapping suitable sites for 

species reintroduction 

Pearce and Lindenmayer (1998) 

Supporting conservation planning and reserve 

selection  

Ferrier (2002), Arau´jo et al. 

(2004), Pape and Gaubert (2007 

Modeling species assemblages (biodiversity, 

composition)/vegetation from individual species 

predictions 

Guisan and Theurillat (2000), 

Cairns (2001), Ferrier et al. (2002), 

Graham and Hijmans (2006),  

Rodrguez (2007), Saatchi et al. 

(2008) 

Predicting distribution of high value trees Prates-Clark et al. (2008) 

Vegetation mapping support 

Scott et al. (2001), Franklin (2002), 

Cawsey et al. (2002), Tatsuhara 

and Antatsu (2007)  
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ENM is slightly difference in the definition to SDM. Models of ecological niches 

are designed to estimate the potential niche’s area of the target species, and thus ENM 

predicts broader range than actual distribution (Phillips et al., 2006; Peterson et al., 

2008). 

 

James and McCulloch (1990) stated all parametric statistical models face to the 

problem with highly non-Gaussian distribution data such as most environmental 

variables. Stocktwell (2006) described: 

 

“The ideal ENM method will (1) be capable of modeling a wide range of responses, 

(2) allow critical examination of assumptions, (3) be a simple approach that will not fit 

inappropriate functions, but (4) will handle extremely non-linear data, and (5) will 

efficiently turn an increasing flood of data from satellites, geographic information 

systems and climate model outputs into simple, scalable ENMs.” 

 

2.3.3 SDMs and Ecological Theory 

 

Niche based models like some of SDM or ENM (Maxent, GARP, GAM …etc) 

representing the approximation of species’ ecological niche in the examined 

environmental layers (Phillips et al., 2006). ENM is based on the idea of ecological 

niches defined as the set of conditions under which a species is able to maintain 

populations without immigration (Grinnell, 1917; 1924; Hutchinson, 1957; Hutchinson, 

1978; and Austin et al., 1990). The ecological niche includes the fundamental niche, 

which consists of a set of conditions for species’ long-term survival, and realized niche, 

which is subset of fundamental niche for species’ actual occupation (Hutchinson, 1957). 
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Therefore the realized niche of a species may be smaller than its fundamental niche due 

to disturbances from human influence, biotic interaction (such as competition), 

geographic barriers, and/or natural disasters, and such factors are influential to its 

survival range and prevent the species from fully spreading its ecologically potential 

niche (Pulliam, 2000; Anderson and Mart´ınez-Meyer, 2004; Phillips et al., 2006). Thus 

niche based models estimate the approximation of species’ realized niche in 

environmental layers considered, however, the departure between realized and 

fundamental niche remains unknown in practice (Phillips et al., 2006). Realized niche 

can be estimated by removing areas that species is known or inferred not to inhabit from 

the predictive distribution such as areas suitable for the target species without colonized 

due to geographic barriers (Peterson et al., 1999; Anderson, 2003), biotic interactions 

(Anderson et al., 2002), and human influences (Anderson and Mart´ınez-Meyer, 2004). 

 

Phillips et al. (2006) described the ecological assumption of environmental 

variables used for modeling are (i) temporal correspondence, (ii) scale, (iii) space and 

time. Temporal correspondence will be existed when using locality record that 

investigated very long time age for current land-cover classification (Anderson and 

Mart´ınez-Meyer, 2004). Mackey and Lindenmayer (2001) defined environmental 

variables for different scale: (i) global and meso-scales: climatic variables such as 

temperature and precipitation, (ii) meso- and topo-scales: topographic variables such as 

elevation and aspect, and (iii) micro-scales: land-cover variables such as forest canopy. 

Su (1983) also introduced the classification of factors affecting species habitat: (i) 

direct/indirect factors, (ii) scales, (iii) affection, and (iv) sources. For source 

classification environmental variables influence habitat divided into 4 categories: 
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(i) Climatic factors: such as radiation, air temperature, precipitation, wetness. 

(ii) Edaphic factors: also called soil factors, such as soil type, soil temperature. 

(iii) Physiographic factors: also called topographic factors, such as aspect, altitude, 

slope, curvature. 

(iv) Biotic factors: such as anthropogenic or biotic interactions or disturbances. 

 

SDM has applied in Taiwan vegetation science for just a few years. Song et al. 

(2007) compared the model performance of three SDM techniques, Maxent, GARP, and 

GAM, by evaluating sensitivity, specificity, and area under receiver operating 

characteristic (ROC) curve. Tsao (2007) used GAM to establish the relationships 

between distribution ranges and environmental variables for six conifer species, 

Chamaecyparis obtusa var. formosana, Chamaecyparis formosensis, Abies kawakamii, 

Tsuga chinensis, Picea morrisonicola, and Pinus taiwanensis, of Taiwan. 

 

2.3.4 MAXENT 

 

Maxent program for maximum entropy based machine-learning modeling 

technique predicts species geographical distributions and is firstly introduced by 

Phillips et al. (2005). Maxent model’s estimation is based on a decision theoretic 

perspective as robust Bayes estimation (Phillips and Dudı´k, 2008) and simulates 

predictions from data with incomplete information to estimate a probability distribution 

by finding the probability distribution of maximum entropy (Della Pietra et al., 1997) 

(i.e. the Maxent approach assumes that the occurrence data of incomplete empirical 

probability distribution can be approximated with a probability distribution of 

maximum entropy subject to environmental layer’s constraints, and use this 
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approximated distribution for predicting a species potential geographic distribution 

(Phillips et al., 2005). Phillips and Dudı´k (2008) described the Maxent model uses the 

species’ occurrence data to define the region of probability with maximum entropy. The 

probability distribution π over the set X of plots is non-negative value and the sum of 

π(x) is one, where the x is the sample of the population X. The π is displayed in terms of 

“gain”—the log (the number of rasters) - the log (loss) (i.e. the average of the negative 

log (probabilities of the sample locations) (Prates-Clark et al., 2008) and coincides with 

the potential distribution stated by biologists (Phillips et al., 2004). The simple function 

of environmental variables are a set of real-valued variables and called features, and the 

constraints are the mean of predictive features required to be near the empirical average 

over the occurrence sites (Phillips et al., 2006).  

 

Initially, each environmental variable is treated as potentially an important 

predictor variable to develop the model. Jackknife test re-sampling method (Peterson 

and Cohoon, 1999) of Maxent’s internal procedures reduces the bias of correlated 

environmental variables and to diagnose which environmental variables were the most 

important variables for building models. The environmental variables with the highest 

gain means higher the relative importance of variables that potentially, contribute to 

generating the SDM (Phillips et al., 2004).  

 

Maxent displays the influence of each environmental variable in response curve 

diagrams. As the Maxent model is an exponential model (Della Pietra et al., 1997), the 

probability of prediction is proportional to the exponential contribution of each 

environmental variable (Phillips et al., 2006). The response curves in version 3.2.1 are 

in logistic (probability) space, rather than exponent (linear) space, so they're easier to 
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interpret. Statistical approaches for evaluating model performance such as dependent 

omission rate and independent AUC of ROC analysis are also including the internal 

procedures of the Maxent. Some other features of Maxent 3.2.1 can visit Maxent 

website (http://www.cs.princeton.edu/~schapire/maxent/) for more information. Maxent 

with pros and cons were reviewed by some study. The advantages of Maxent include 

the usage of both categorical and continuous environmental data (Prates-Clark et al., 

2008). 

 

2.4 Model Performance Evaluation 

 

Model performance can be evaluated by the accuracy of model predictions, the 

interpretability and rationality of the explanatory variables, and the validity of predicted 

shape of response curves (Pearce and Ferrier, 2000). A good prediction includes both 

reliable and discriminatory prediction. Reliable prediction means the accurate 

estimation of probability for a species’ occurrence site and discriminatory prediction 

means the ability to discriminate the species occupied or unoccupied site in the study 

area. The model predicts each site from the study area with a probability π for species 

occurrence and the observation from each site consists of presence or absence of the 

target species χ. Murphy and Winkler (1987; 1992) factorized the joint distribution of π 

and χ into a conditional distribution ( )|( πχp  or )|( χπp )and a marginal distribution 

( )(πp  or )(χp ) as shown in Figure 2, where )|( πχp  and )(πp  reflect model 

calibration and refinement respectively; )|( χπp  and )(χp  represent the ability to 

discriminate and base rate (prevalence) respectively. If the model is well calibrated then 

the points should lie along a 45° line of the scatter plot for predicted probabilities 
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comparing with observed occurrence and if the is well discriminated then little overlap 

between presence/absence distributions on the plot of frequency distribution of the 

predicted values for occupied sites comparing with unoccupied sites. The prevalence 

needs to be moderately large for examining the predictive performance of a model 

(Pearce and Ferrier, 2000). 
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Figure 2. Frequency table of observation χ and predictive value π from model for each evaluated site. 

 

Two of factorizations introduced by Murphy and Winkler (1987) are equivalent: 

 

)()|()()|(),( χχπππχχπ ppppp ⋅=⋅=  

 

Therefore since the base rate (prevalence) is a constant, a model which has good 

calibration and refinement must also have a good discrimination, on the contrary, 

however, a good discrimination is not necessarily with good calibration and refinement. 

These two aspects of model performance, calibration/refinement and 

discrimination/base rate reflect the reliable prediction of absolute value about how 

closely the predicted probabilities match the occurrence proportions and the ability of 

prediction to discriminate the observed presence to absence of predictions. 
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2.4.1 Confusion Matrix for Measuring Discrimination Performance 

 

2 × 2 classification table (Table 3) often examines the model performance by 

comparing predicted value and actual observation (Pearce and Ferrier, 2000).  

Generally thinking, greater numbers of both observed/predicted presence and absence 

(A and D in table 3) imply a good performance of the prediction, on the other hand, 

greater numbers of predicted presence and absence but actually absence and presence (B 

and C in Table 3) tell a bad performance of the prediction. False positive (B) and false 

negative (C) are also called omission (including unsuitable sites in the prediction) and 

commission (leaving out from distributional area) respectively (Peterson et al., 2008). 

Predicted presence or absence is determined by predicted probability value which is 

higher or lower than the specific threshold. The four condition of the classification table 

can calculate four more indices: sensitivity, specificity, false positive fraction, false 

negative fraction, and other measures of model performance listed in Table 4. 

 

Table 3. 2 × 2 classification table (confusion matrix), each of the values A to D 

represents the number of species observed (revised from Pearce and Ferrier, 2000; 

Wang et al., 2007) 

 
Observed 

Presence Absence  

Predicted 
Presence A B A+B 

Absence C D C+D 

 A+C B+D A+B+C+D 

Note: A: true positive, B: false positive, C: false negative, D: true negative 
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Table 4. Indices derived from confusion matrix of Table 3 (revised from Fielding and Bell, 1997, Pearce 

and Ferrier, 2000; Wang et al., 2007; Tsao, 2007) 

Index Description and Formula 

Sensitivity 
Number of positive sites correctly predicted 

= 
A 

Total number of positive sites A+C 

Specificity 
Number of negative sites correctly predicted 

= 
D 

Total number of negative sites B+D 

False Positive Fraction 
Number of false positive predictions 

= 
C 

Total number of positive sites A+C 

False Negative Fraction 
Number of false negative predictions 

= 
B 

Total number of negative sites B+D 

Accuracy 

(Correct classification rate) 

Number of total sites correctly predicted 
= 

A+D 

Total number of sample sites A+B+C+D 

Misclassification rate 
Number of total misclassified sites 

= 
B+C 

Total number of sample sites A+B+C+D 

Overall diagnostic power 
Total number of negative sites 

= 
B+D 

Total number of sample sites A+B+C+D 

Prevalence 
Total number of positive sites 

= 
A+C 

Total number of sample sites A+B+C+D 

Positive predict power (PPP) 
Number of positive sites correctly predicted 

= 
A 

Total number of predicted positive sites A+B 

Negative predict power (NPP) 
Number of negative sites correctly predicted 

= 
D 

Total number of predicted negative sites C+D 

Note: A: true positive, B: false positive, C: false negative, D: true negative 
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Table 4. Indices derived from confusion matrix of Table 3 (revised from Fielding and Bell, 1997, Pearce 

and Ferrier, 2000; Wang et al., 2007; Tsao, 2007) (cont.) 

Index Description and Formula 

Odds-ratio 
Ratio between total correctly predicted and total 

errors 
= 

AD 

CB 

Kappa 
(A+D)-{[(A+C)(A+B)+(B+D)(C+D)]/(A+B+C+D)} 

(A+B+C+D)-{[(A+C)(A+B)+(B+D)(C+D)]/(A+B+C+D)} 

Normalized mutual information 

(NMI) 

-Aln(A)-Bln(B)-Cln(C)-Dln(D)+(A+B)ln(A+B)+(C+D)ln(C+D) 

(A+B+C+D)ln(A+B+C+D)-((A+C)ln(A+C)+(B+D)ln(B+D)) 

True Skill Statistic (TTS) Sensitivity + Specificity – 1 

Area Under ROC Curve (AUC) 
In ROC curve, 1- specificity values are plotted on X axis and sensitivity 

values are plotted on Y axis respectively.  

Note: A: true positive, B: false positive, C: false negative, D: true negative 

 

The sensitivity represents true positive rates. A greater true positive rate indicates 

model has higher ability to predict species presence when observed presence occurs. On 

the contrary, the value of specificity represents the true negative rate which indicates 

model ability to predict spices absence when observed absence occurs. Landis and Koch 

(1977) have suggested 3 ranges of agreement for Kappa statistic K: (i) poor; K < 0.4, (ii) 

good; 0.4 < K <0.75, (iii) excellent; K > 0.75. 

 

2.4.2 Threshold Independence AUC 

 

The abbreviation of AUC means area under ROC curve. ROC means receiver 

operating characteristic analysis which is firstly introduced in evaluation the ability to 

receive radar signals and applied to medical field (Wang, 2007) and the broad 

application in many ENM and SDM studies (take Elith et al., 2006, Guisan et al., 2007 
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for instance) happened in resent ten years. Figure 3 is an example demonstrated the 

ROC curve an AUC value. ROC analysis plots “sensitivity” (equal to 1 - omission error 

rate) against “1 minus specificity” (equal to commission error rate) (Cantor et al., 1999) 

and calculates the area under ROC curve (AUC), and then compare the predicted AUC 

against null expectation (the area under the line from origin to the upright corner of the 

graph) probabilistically (Peterson et al., 2008). Figure 3 is an example of ROC analysis. 

Y-axis is sensitivity of Table 3, which is calculated by A/(A+C), and X-axis is 

1-specificity, which is calculated by B/(B+C). The procedure of ROC analysis is using 

threshold to generate points on ROC plots. For a continuous probability distribution, 

larger threshold means smaller distribution area than smaller threshold does, thus a 

specific threshold selection leads to a proportion of presence/absence’s distribution area. 

The specific threshold selection implies selecting different threshold for dividing the 

continuous probability distribution into binomial presence/absence parts and leads to 

changing the values of the evaluated indices in Table 3 such as sensitivity, specificity, 

and accuracy. The feature of ROC analysis is threshold independent and from 

prevalence and often used for evaluating accuracy of diagnostic tests (Swets, 1988; 

Tsao, 2007). To achieve this independency, ROC analysis estimates all thresholds of the 

probability distribution (from 0 to 1) to plot each value of sensitivity against 1 – 

specificity generated by specific threshold on the scatter plot of ROC and joints each 

points to become the ROC curve and the area under this curve is AUC. The ROC 

analysis represents the tradeoffs between the omission and commission error and AUC 

represents a specific metric for evaluating diagnostic procedures because it is a 

representation of the average sensitivity over all possible specificities (Prates-Clark et 

al., 2008). If a larger threshold is selected then the area of predicted presence contains 

partial observed presence points and area of predicted absence contains almost observed 
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absence points, and therefore, the ROC algorithm almost doesn’t falsely identifies 

absence, but fails to indentify most presence and generates a point with larger omission 

and smaller commission plotted near down-left corner (0, 0) of the plot. Continuously 

diminishing the threshold to a smaller one, the area of predicted presence contains 

almost observed presence points and area of predicted absence contains fewer observed 

absence, and thus, the algorithm indentifies most true presence correctly, but 

misclassifies most absence as positive and generates a point with smaller omission and 

larger commission plotted near the up-right comer (1, 1) of the plot. Ideally the top-left 

corner (0, 1) of ROC plot means the algorithm correctly indentifies every true presence 

and never misclassifies a true absence as a presence (Peterson et al., 2008). 
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Figure 3. ROC analysis by PresenceAbsence package in R. where Y-axis is sensitivity of Table 3, 

which is calculated by A/(A+C) , and X-axis is 1-specificity, which is calculated by B/(B+C). 

 

Prates-Clark et al. (2008) described 2 data sets for evaluating predicted models: (i) 

a training data set for model building, and (ii) a test data set for model validation. A low 

omission rate (high sensitivity) of species presence is essential for predicting predicted 

range of distribution (Anderson et al., 2003). After selecting a threshold, model 

performance can be evaluated using both: (i) the extrinsic omission rate (using test 

dataset); (ii) the proportional predicted area (Prates-Clark et al., 2008). 
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Unlike sensitivity and specificity, area under ROC curve (AUC) value is 

independent from prevalence and often used for evaluating accuracy of diagnostic tests 

(Swets, 1988; Tsao, 2007). AUC value combines sensitivity and specificity to estimate 

model performance and ranging from 0.5-1. According to Swets (1988), AUC value is 

0.5, that means accuracy of model happen by chance; AUC value falling between 

0.5-0.7 means the discrimination of model is low; AUC value falling between 0.7-0.9 

means the prediction is responsible good and can be applied to other researches; AUC 

value is grater than 0.9 representing very good model accuracy. 

 

2.5 Model Comparison and Combination 

 

As motioned formerly, SDM has become an expanding tool in the areas of 

conservation biology, climate change research, land-use/land-cover change assessment, 

and biodiversity estimation (Guisan and Zimmermann, 2000). Although there are many 

available statistical methods, previous model comparison studies show that the 

prediction accuracy from different models was little in difference (Franklin, 1998; 

Vayssières et al., 2000; Cairns, 2001; Thuiller et al., 2003; Muñoz and Felicísimo, 

2004). Moisen and Frescino (2002) compared predictive performance of five methods, 

linear models (LM), generalized additive models (GAM), classification and regression 

trees (CART), multivariate adaptive regression splines (MARS), and artificial neural 

networks (ANN), however, still found little difference among those methods (Moisen 

and Frescino, 2002). And besides, Elith and Burgman (2003) found greater disparities in 

accuracy among the plant species being modeled than among the four modeling 
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methods that were compared. Guisan et al. (2007) compared 10 model techniques, 

BIOCLIM, BRUTO, BRT, DOMAIN, GDMSS GAM, GLM, MAXENT, MARS, and 

OM-GARP, 30 tree species in Switzerland, and found the greater difference in model 

accuracy among species than model techniques and also found that location error and 

sample size reduced predictive performance of many models, whereas resolution of 

environmental grids had little effect on most model techniques, and no model technique 

is able to rescue difficultly predictive target species. Therefore, to maximize accuracy of 

multiple model performances is needed since there is no study founding a best model 

(Gilmer, 2007). 

 

Model combination (also known as consensus modeling, composite models, 

forecast aggregation, forecast synthesis and forecast combination) is one of the 

alternative ways to improve predictive accuracy of multiple models (Gilmer, 2007). 

Clemen (1989), Reid (1968), Bates and Granger (1969), and Batchelor and Dua (1995) 

suggested model combination is optimal and can yield greatest benefits for predictive 

accuracy. In niche model predictions, multiple models can be created for each species 

and the model outputs combined to determine locations present or absent of each 

species (Anderson et al., 2002a; Lim et al., 2002; Anderson et al., 2003; Araújo et al. 

2006). Olmeda and Fernández (1997) combined models by a simple voting scheme, 

called “majority-vote criterion”, to determine the presence/absence of locations and 

founded that less accurate models combination produced less predictive accuracy than 

the single models. Araújo et al. (2005) also suggested model averaging gave best 

predictive performance and accuracy. Clemen (1989) concluded model combination as: 
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“Combining forecasts has been shown to be practical, economical and useful. 

Underlying theory has been developed, and many empirical tests have demonstrated the 

value of composite forecasting. We no longer need to justify this methodology. We do 

need to find ways to make the implementation of the technique easy and efficient.”  

 

Gilmer (2007) used three kinds of model combination approaches: (i) Composite 

(Anderson et al., 2002a; and Lim et al., 2002), (ii) Averaging (See and Abrahart, 2001), 

(iii) Summation (Anderson et al., 2003). Composite (i.e. majority vote criteria) uses 

conditional statement to determine the final prediction. For instance, if there three 

binary outputs from individual models, any location are given value 2 representing 

presence, otherwise absence. Averaging means averaging standardized probabilistic 

outputs from different individual models and determined presence/absence by threshold. 

Summation gives useful visual explanation by summing the binary outputs from 

individual models (i.e. the higher number the location gets, the more model supports). 
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Chapter 3: Materials and Methods 

 

3.1 Study Area 

 

Taiwan Island expends 394 km from north to south (ca. 25°20' N to 21°55' N), 

stretching 140 km from east to west (ca. 22° E to 20° E) and measures about 35800 km2 . 

Peaks above 3000 m in elevation are about 200 in number, locating in Central Range. 

(Huang et al., 1994).  

 

Although climatic zones of Taiwan Island are range widely, the area has distinct 

oceanic and subtropical monsoon climate. Constant wind from the sea and frequent 

rains and typhoons make climate in Taiwan mild and with a high humidity (Huang et al., 

1994). Frost is rare in the lowlands where most of the population is concentrated. Mean 

monthly temperatures range from 15°C to 20°C in the winter to around 28°C in the 

summer. The highest (40.2°C in May 2004) and lowest (-1.0°C in February 1901) urban 

temperatures were recorded in Taitung and Taichung, respectively. Taiwan's surface 

temperature has increased about 1.4°C in the past 100 years, about twice the global 

mean (0.6°C) (TGIO, 2008).  

 

3.2 Target Species 

 

Elith et al. (2006) described the distribution patterns of rare species are hard to 

predict and hilly complexity topography of Taiwan might increase the difficulty for 
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modeling. Thus, a conifer species, which is widely spread in habitat ranging from 

2400-3100 m in elevation (Su, 1984b), minimal anthropogenic impacts, endemic 

species of Taiwan, filling with ecological meanings, and sensitive to climate change 

impacts, was selected for the target of the model input. Tsuga chinensis commonly 

called Taiwan Hemlock is an evergreen large tree native to Taiwan Island, southern, 

central, and eastern China, and this variety is endemic to Taiwan, up to 50 m tall and 2 

m in diameter, in altitudes of 2000 to 3500 m, in association with other trees or forming 

pure stand, (Huang et al., 1994), especially mixing with the Taiwan Spruce (Picea 

morrisonicola Hayata), Taiwan Cypress (Chamaecyparis formosensis Matsu), Taiwan 

Red Pine (Pinus taiwanensis Hayata), Masters Pine (Pinus armandii Franchet var. 

masteriana Hayata), and Quercus zone (Su, 1984b; Su, 1991; Ou et al., 1994, Liu and 

Tseng, 1999; Lu, 2003; Chiou et al., 2006; Yen et al., 2007; Song, 2007). 

 

According to recent studies of Chiou et al. (2006), the distribution of Taiwan 

Hemlock along the elevation is from 1400 to 3400 m (similar to Huang et al., 1994) and 

the optimal range is from 2800 to 3000 m (converted from warmth indices 30 to 140 ℃ 

and similar to Chen, 2004). 

 

3.3 Data Preparation and Preprocessing 

 

Methodological flow chart of this study is listed in Figure 4 as followed. Four parts 

of them are (i) data preparation, (ii) environmental variable analysis, (iii) model 

building, and (iv) model assessment. Data preparation phase prepares the localities for 

model inputs. Environmental variable analysis phase sieves and selects the 
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environmental variables for model inputs. Model building phase attempts to compare 

how four types of model inputs, environmental selection, sample size, resolution, and 

predicted area, will affect model performance. Final phase exams the model 

performance of each approach: Principal component analysis (PCA), classification and 

regression tree (CART), and conditional inference tree (CIT). 
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Figure 4. Flowchart of methodology in this study 
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3.3.1 Occurrence Data 

 

Data of T. chinensis presence and absence are consisted of field survey samples 

from the National Vegetation Diversity Inventory and Mapping Project (NVDIMP) and 

Third Forest Resource and Land-Use Inventory (TFRLUI), conducted by Forestry 

Bureau, Council of Agriculture, Taiwan (R.O.C.). The TFRLUI records were compiled 

from aerial photographs by systematic sampling method, in which a plot was sampled 

every 500 by 250 m (Forest Bureau, 1995; Yen, 2007) and the dataset is established on 

Taiwan Vegetation Information System (Chiou et al., 2005). 212 samples of Taiwan 

Hemlock presence from TFRLUI are used for model building and the rest 3784 absence 

samples from TFRLUI (total 3996 samples, Figure 5) are selected together with 408 

samples of Taiwan Hemlock presence localities from NVDIMP (Figure 6) for model 

evaluation. Elith and Leathwick (2007) described the inventory pseudo-absence 

strongly outperforms the random pseudo-absence. Elevation range of Taiwan Hemlock 

from the two data sets is listed in Table 5. 
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Figure 5. 212 occurrence and 3784 absence samples of Taiwan Hemlock from Third Forest Resource and 

Land-Use Inventory (TFRLUI) 
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Figure 6. 408 occurrence of Taiwan Hemlock from National Vegetation Diversity Inventory and Mapping 

Project (NVDIMP) 
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Table 5. Elevation range of Taiwan Hemlock from National Vegetation Diversity Inventory and Mapping 

Project (NVDIMP) and Third Forest Resource and Land-Use Inventory (TFRLUI) data sets 

Elevation (m) TFRLUI NVDIMP 

Minimum value 600 1400 

Maximum value 3300 3300 

Mean value 2400 2500 

Standard Deviation 400 400 

 

3.3.2 Environmental Layers 

 

Altitude and latitude are the two main environmental factors that affect the species 

distribution (Su, 1987; Guisan et al., 1998; Yen, 2007). Other variable such as annual 

precipitation is not as important for determine species distribution in Taiwan as altitude 

and latitude, because Taiwan Island receives abundant precipitation all year round, thus 

precipitation is not a limited factor to vegetation distribution in Taiwan (Kuo，1978; 

Yen, 2007). Different latitude and altitude lead to different radiation absorption and 

energy (heat) store. Thus temperature is the major limiting factor to vegetation 

distribution (Su, 1992). In this study warmth index (WI) layer calculates from 

temperature layers of Liang (2004) estimated by linear equation model of Taiwan. 

Lang’s data obtained from weather stations of Central Weather Bureau and Water 

Resource Agency since 1990 to 2002. Warmth Index is a proxy of annual sum of 

monthly average temperature, which is greater than 5 ℃ (Kira, 1948).  

 

WI = )5( −∑ mT  ; mT > 5 ℃ 
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Where WI is the abbreviation of Warmth Index. 

 

Table 6 shows abbreviation and description of 16 environmental layers conducted 

by Resource Investigation and Analysis Laboratory (RIAL), School of Forestry and 

Resource Conservation, National Taiwan University. 

 

Table 6. List of environmental variables (revised by Lindsay, 2005) 

Variable Names Description Unit Reference Software

ASP Aspect 
Direction of maximum 
downward gradient 

Degrees
Zevenbergen 
and Thorne, 
1987 

ArcGis 

CUR 
Tangential 
Curvature 

Tangential Curvature 
Curvature in an inclined 
plane (Mit´aˇsov´a and 
Hofierka, 1993) 

Deg./m
Mit´aˇsov´a 
and Hofierka, 
1993 

TAS 

ELE Elevation 
Elevation derived from 
DTM 

M Liang, 2006 ArcGis 

PLA Plan 
Plan curvature 
Along-slope curvature 

Deg./m
Gallant and 
Wilson, 2000 

TAS 

PRCSP 
Spring 
Precipitation 

Average precipitation of 
Mar. to May. 

Mm Liang, 2004 ArcGis 

PRCSR 
Summer 
Precipitation 

Average precipitation of 
Jun. to Aug. 

Mm Liang, 2004 ArcGis 

PRCAU 
Autumn 
Precipitation 

Average precipitation of 
Sep. to Nov. 

Mm Liang, 2004 ArcGis 

PRCWT 
Winter 
Precipitation 

Average precipitation of 
Dec. to Feb. 

Mm Liang, 2004 ArcGis 

PRCME 
Mean of ann. 
Precipitation 

Average precipitation of 
a year 

Mm Liang, 2004 ArcGis 

PRCSU 
Sum of month 
Precipitation 

Summation of  every 
monthly precipitation 

Mm Liang, 2004 ArcGis 

PRO Profile 

Profile curvature Down 
slope curvature 
(Zevenbergen and 
Thorne, 1987) 

Deg./m
Moore et al., 
1993  

TAS 
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Table 6. List of environmental variables (revised by Lindsay, 2005) (Cont.) 

Variable Names Description Unit Reference Software

SLP Slope 
Slope gradient 
(Zevenbergen and 
Thorne, 1987) 

Degrees
Zevenbergen 
and Thorne, 
1987 

ArcGis 

STH Southness Southness = 180 - | aspect - 180 | Unitless
Chang et al., 
2004 

ArcGis 

SVF 
Sky View 
Factor 

Sky View Factor (SVF), 
represents an estimation 
of the visible area of the 
sky from a ground 
viewpoint 

Unitless
Steyn, 1980; 
Oke, 1981 

SkyRatio

WI 
Warmth 
Index 

Sum of monthly mean 
temperatures greater than 
5 ℃ from Jan to Dec 

℃ Chiou et al., 
2004 

ArcGis 

WST Westness westness = | 180 - | aspect - 270 | | Unitless
Chang et al., 
2004 

ArcGis 

 

The spatial location of each environmental layers are recorded by using the 

2-degree Transverse Mercator projection coordinate system (TM2), including 

latitude/longitude (TMX and  TMY), climate variables (WI and PCP), digital terrain 

model (DTM), and its topographic and radiation derivate models (Chang et al., 2004) 

provided by Forestry Bureau, Council of Agriculture, Taiwan (R.O.C.). Table 5 shows a 

list of environmental layers. Topographic information derived from DTM includes 

aspect (ASP), slop (SLP), curvature (CUR), profile curvature (PRO), and plan curvature 

(PLA). Southness index (STH), westness index (WST) are derived form ASP (Chang et 

al., 2004). Solar radiation derived from DTM includes sky view factor (SVF). Climate 

variable includes warmth index (WI), precipitation (PRC) and its derivate including 

spring precipitation (PRCSP, from Mar. to May), summer precipitation (PRCSR, from 

Jun. to Aug), autumn precipitation (PRCAU, from Sep. to Nov.), winter precipitation 

(PRCW, from Dec. to Feb.), annual mean precipitation (PRCME), and sum of annual 

precipitation (PRCSU) are investigated by Liang (2004). 
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3.3.3 Vegetation Analysis 

 

Using dominant species for representing forest subtype, firstly calculate the 

relative dominance (RDo) of 212 Taiwan Hemlock presence localities from TFRLUI to 

emphasize the importance of dominance tree and to lower the disturbance of rare or 

small species. RDo is calculated by following: 

∑
=

=
n

i
iBADo

1
, 

∑
=

= n

j
j

j
j

Do

Do
RDo

1

 

Where Do represents dominance, BA represents basal area of the tree, Doj 

represents dominance for jth species, and RDoj represents relative dominance for jth 

species.  

To group sample plots, cluster analysis supported by PC-ORD 5.0 statistical 

software (McCune, B. and M.J. Mefford., 1999 PC-ORD. Multivariate Analysis of 

Ecological Data. MjM Software, Gleneden Beach, Oregon, USA) is used in classifying 

Taiwan Hemlock presence data, and then uses Euclidean method for distance measure 

and Ward’s method for group linkage method of cluster analysis. Detrended 

correspondence analysis (DCA) and principal component analysis (PCA) ordination are 

used for representing relationships between classified groups and environmental 

gradients.  
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3.4 Environmental Factor Analysis for SDMs Performance 

 

3.4.1 Avoidance of Multicollinearity 

 

Multicollinearity refers to highly correlation among two or more explanatory 

variables and leads to over estimate of least square estimation and enlarges variance of 

the estimation, thus, inference might be misleading (Lin and Chen, 2005). Although two 

highly correlated predictor variables can both appear non-significant, each would 

explain a significant proportion of the deviance if considered separately (Guisan et al., 

2002). To avoid such case, correlation analysis is chosen for distinguishing variables 

that are highly multicollinearity by comparing their correlation coefficients. If absolute 

correlation coefficient is larger than 0.1 and smaller than 0.3, there is a small correlation 

between two variables; if absolute correlation coefficient is larger than 0.3 and smaller 

than 0.5, there is a medium correlation between two variables; if absolute correlation 

coefficient is larger than 0.5 and smaller than 0.1, there is a large correlation between 

two variables (Cohen, 1988). Thus, the variables with high correlation will be removed 

to 1 variable to retain. Algorithm of correlation coefficient is analyzed by R foundation 

for ecological computing (version 2.6.2.). 

 

3.4.2 Attributes of Environmental variables 

 

Descriptive statistic provides a basic sense and structure of the data. Presence and 

(N = 212) absence localities (N = 3784) from TFRLUI are compared by extracting 
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values from environmental layers without high correlation to each other. Descriptive 

statistic is calculated by pastecs package in R foundation for ecological computing 

(version 2.6.2.). Basic statistic includes the number of values, the number of missing 

values, the minimal value, the maximal value, the range, and the sum of all non-missing 

values; the descriptive statistic includes the median, the mean, the standard error on the 

mean, the confidence interval of the mean, the variance, the standard deviation and the 

variation coefficient defined as the standard deviation divided by the mean. Normal 

Q-Q plot method is used to see if the data are normal distributed and then two-tailed 

t-test and 95 % confidence interval are used to test if the two data sets are significant the 

difference. Finally use histograms to demonstrate the attribute of each extracted 

environmental variable. 

 

3.4.3 Try and Error Approach 

 

Try each of 16 environmental layers to build SDM and compare results. Each of 16 

environmental layers has its own attributes and influences the model performance 

separately. To identify how each environmental layer affects SDM results, single 

environmental layer prediction is able to provide each contribution of environmental 

layer to the model performance. On the other hand, to identify interaction of 

environmental variable effects, all 16 environmental layers for modeling contrasting the 

single input is the other way for testing model performance. 
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3.4.4 PCA Approach 

 

Try and error approach shows how does single and all environmental layers 

contribute the model performance and is lack of statistical test for species in relation to 

environmental layers. Statistical approaches used in this study are principal component 

analysis (PCA) supported by PC-ORD 5.0. Those approaches mainly focus on finding 

the most variant axis to environmental layers and suppose the environmental variable of 

the axis is the most explainable for the species occurs. The first 3 components of PCA 

are able to explain the most variance of the data and thus are selected for model 

building. 

 

3.4.5 Data Mining Approach 

 

Except statistical approaches, one of machine learning technique, data mining, is 

also introduced in this study. Data mining is the search for new, valuable, and nontrivial 

information in environmental layers. Two of the data mining approaches are adopted 

here: (i) classification and regression tree (CART) and (ii) conditional inference tree 

(CIT). CART model uses the package tree (Ripley, 1996) in R foundation for 

ecological computing (2.6.2.). CIT model uses the package party (Hothorn et al., 

2006) in R foundation for ecological computing (2.6.2.). The extracted environmental 

variables that are selected by those two methods for splitting the nodes of the tree are 

used for further model building because those selected variables are able to reduce the 

variance of each split groups and to distinguish each vegetation type by using influential 

environmental variables. 
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3.5 Predicting Species Distribution 

 

3.5.1 Model Building 

 

According to the two data sets (NVDIMP and TFRLUI) are independently 

surveyed, TFRLUI data set uses for training (build the model) because the data of 

TFRLUI are systematic sampled and suitable for model building without 

autocorrelation and NVDIMP data set uses for testing (evaluate the model performance). 

Thus, there is no need to partition data. And besides, the number of data from NVDIMP 

(408) is greater than the number of data from TFRLUI (212) and it represents using 

more localities to test the model performance for more precise evaluation. This study 

used maximum entropy (MAXENT) technique (Phillips et al., 2004) for SDM 

development. Since occurrence data and environmental layers are available, input those 

data with appropriate format to the models (appropriate data format of SDMs is listed in 

Table 7.) and set any parameter if needed. Detailed model setting for each SDM will 

describe in next two sections. 

 

Table 7. Data format of SDM 

Model 

techniques 
Type of data 

Input 

format 

Output 

format
software URL 

Maximum 

entropy 

Occurrence 

data 
Csv Asc 

Maxent http://www.cs.princeton.edu/~schapire/maxent/
environmenta

l layers 
Asc 

Mxe 

Grd 
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Maxent program for maximum entropy modeling predicts species geographical 

distributions and is firstly introduced by Phillips et al. (2006). The probability 

distribution of maximum entropy, which is the concept of Maxent, is the distribution 

closest to uniform distribution or most spread out. Maxent evaluate a target probability 

distribution through looking for the distribution for maximum entropy (Phillips et al., 

2006). The incomplete information for the target is represent by a set of constrains 

which is influential to Maxent. A set of real value (also called feature, observed value) 

is used as the available information for the target distribution. Constrains are obtained 

by matching expected value of each feature with empirical average, an average value of 

a set of sample localities derived from the target distribution.  

 

The tutorial of Maxent stated that while running procedure, the gain calculated by 

Maxent is closely related to deviance, a measure of goodness of fit used in GAM and 

GLM and starts at 0 and increases towards an asymptote. The gain is defined as: 

 

kpgain −= )log(  

 

 Where )log( p the average log probability of the presence localities and k is a 

constant that makes the uniform distribution have zero gain.  

 

Finally, the gain indicates how closely the model is closed around the presence 

localities; for example, if the gain is 1.5, it means that the average likelihood of the 

presence samples is exp(1.5) ≈ 4.5 times higher than that of a random background pixel.  

Note that Maxent isn’t directly calculating “probability of occurrence” and raw values 
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are an exponential function of the environmental variables, however, logistic format 

transforms it into probability of presence and sets to default option.  

 

3.5.2 How Map Resolution and Environmental Variables Affect Model 

Performance 

 

Higher resolution (smaller grid size) of the predicted background can reflect the 

more detail of topographical variables than climatic variables but is time consuming due 

to a very large data size for model estimation. Lower resolution (larger grid size) of 

background, on the other hand, is much faster when calculating but lacks of or reduces 

detail information of the meso-environmental variables. A grid of lower resolution may 

contains more than 1 presence or absence localities and causes misleading when 

presence and absence localities in the same environmental grid. To test the effect of 

background resolution, three resolutions are selected for modeling, 40×40 m ,100×100 

m, and 1000×1000 m respectively, for the following analysis. Environmental variable 

combination of 7 different methods mentioned in section 3.4 will be compared to each 

other to find the most explainable combination of environmental variables by 

comparing their AUC values.  

 

3.5.3 Vegetation and Species Units for Model Input 

 

Assume species unit of Taiwan Hemlock is not as homogeneity as vegetation unit 

which may be suitable for difference environmental condition. Therefore, use all 
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Taiwan Hemlock presence localities and classified Taiwan Hemlock vegetation type 

subunit separately for model input to compare how difference between vegetation and 

species units relates to the environmental variable selected by Maxent and then to 

produce a potential vegetation map of Taiwan Hemlock with sub vegetation unit within 

it. 

 

3.6 Model Evaluation 

 

Although unbiased estimate of a model’s predictive performance is evaluating with 

independent data collected from sites other than those used to train the model (Pearce 

and Ferrier, 2000), splitting the data into two partition, one for training and the other for 

test, is the alternative way for the model assessment while a independent testing data set 

is not available. Model performance is then tested at fixed specifically thresholds 

(threshold-dependent) and across all thresholds (threshold-independent) methods. 

 

3.6.1 Threshold Independent AUC  

 

ROC analysis provides the whole information that each threshold contributes a pair 

of sensitivity (absence of omission error) and 1 – specificity (commission error) and 

represents the trade-off for both values. Only AUC measurement for the performance of 

SDM is invariable to the prevalence (proportion of presence to sum of presence and 

absence) (Pearce and Ferrier, 2000; Rase and Steege, 2007). The larger the AUC 

estimated, the higher the sensitivity rate and the lower the 1-specificity rate happened. 

An AUC value of 1 represents an ideally diagnostic test because it means the value of 
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both sensitivity and specificity are also 1 (i.e. no either omission or commission error). 

An AUC value of 0.5 indicates high omission and commission errors and random 

prediction. (Cantor et al., 1999; Rase and Steege, 2007).  

 

In this study, AUC value is calculated by PresenceAbsence package in R 

(2.6.2) with 408 Taiwan Hemlock presence localities from NVDIMP and 3784 Taiwan 

Hemlock absence localities from TFRLUI respectively. Phillips et al. (2006) suggested 

a sufficiently large sample of pseudo-absence is needed, typically 1000 to 10000, to 

reasonably represent the environmental variable restricted by the geographical area. 

Those pseudo-absences, however, results in a low prevalence value because the 

pseudo-absences are much larger than presences. A major drawback of using 

pseudo-absence is changing the perfect fit value of AUC is 1 - a/2 instead of 1, where a 

is the geographical area substituting to a species’ true distribution (Phillips et al., 2006; 

Rase and Steege, 2007). Therefore, 3784 inventory pseudo-absence are large enough to 

evaluate the model performance. 

 

3.6.2 Threshold Dependent Confusion Matrix 

 

Outputs of SDMs are continuous probability distribution layers of MAXENT. Use 

the test samples to complete confusion matrix and calculate the sensitivity, specificity of 

each model output after selecting a specific threshold. 

 

Kappa statistic value is calculated by equation of table 3 from confusion matrix 

and relative to the accuracy that may have resulted by only chance. It ranges from 
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negative one to positive one which indicates flawless agreement between observations 

and predictions and the value less or equal to 0 indicates no better performance than 

random classification (Tsoar et al., 2007). If Kappa value ranges from 0 to 0.4, it means 

low strength of predicted accuracy; from 0.4 to 0.75, represents a good predicted 

accuracy; from 0.75 to 1, motioned above with perfect predicted accuracy (Landis and 

Koch, 1977; Tsao, 2007). 

 

3.6.3 Null Model for Significant test 

 

A null model is a model based on randomizations of the ecological data or random 

sampling from a know area (Gotelli and McGill, 2006; Rase and Steege, 2007). To 

ensure prediction of SDM is based on environmental layer to survey plots and not 

randomly selects from spatial localities, firstly estimates the AUC value of a SDM and a 

null model is established by repeating 999 times randomly selecting points equal to the 

number of the input occurrences from background area to estimate the AUC value and 

to generate a randomly AUC distribution on a histogram and compare with their output 

of AUC results and test if the null model is true. Using one-tailed 95 % CI for the null 

probability distribution of the randomly generated AUC values to test the significance 

as conventional statistic does (Rase and Steege, 2007). If there is a significant difference 

between output’s AUC value and null model’s AUC value, surveyed occurrences of T. 

chinensis are not randomly appeared by chance but are relative to environmental 

variables. In this study, 14 null models are generated for 7 projection areas which are 

the area of Taiwan Island and 6 geo-climatic regions multiplying 2 grid resolutions. 
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3.7 Potential Nature Vegetation Mapping 

 

3.7.1 Specific Threshold to Presence 

 

Muñoz and Felicísimo (2004) noted that the objective of the study determines the 

final threshold for PVM, considers how relative importance of false positives and false 

negatives error rates affects the PNM, and the decision made independent of model 

accuracy results. Muñoz and Felicísimo (2004) concluded that if the goal of the study is 

to identify localities where a species occurrence can be predicted with a great certainty, 

the false positive error rates should be minimized; conversely, if the purpose is 

conservation of the a species, the threshold must be chosen to minimize false negative 

error rates. The ultimate objective of PVM is usually a map of vegetation occurrence 

thus requiring a specific threshold to be selected to determine which probability range 

will be considered present (Gilmer, 2007). 

 

A threshold that determines which predictions are considered absent/present have 

to be identified for most classification accuracy methods (Gilmer, 2007); however, 

threshold selection is subjective and can be selected based on several methods: (i) 

threshold = 0.5, (ii) sensitivity = specificity, (iii) maximizes (sensitivity+specificity)/2,  

(iv) maximizes Kappa, (v) maximizes percent correctly classified (PCC), (vi) predicted 

prevalence=observed prevalence, (vii) threshold=observed prevalence, (viii) mean 

predicted probability, and (ix) minimizes distance between ROC plot and up-left corner 

(0,1) (Cantor et al., 1999; Manel et al. 2001; Wilson et al., 2004) and those methods are 

available in PresenceAbsence package of R. 
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Although many studies use 0.5 as the threshold for considering present or absent, 

this value is somewhat arbitrary and can result in unacceptably low model sensitivity 

when the target species is rare (Fielding and Bell, 1997; Manel et al., 1999; Miller, 

2005). Miller (2005) and Gilmer (2007) selected the threshold near the point that 

sensitivity and specificity cross, with an emphasis on ensuring sensitivity is relatively 

high. Miller and Franklin (2002) used maximize CPP due to sensitivity and specificity 

did not cross when plotted on a 0 to 1 scale, placing more importance on CPP, as is 

usually the case in vegetation mapping. Tsao (2007) and Tsoar et al., (2007) selected 

the threshold with maximize kappa statistic. Prates-Clark et al. (2008) threshold 

selection was calculated based on the number of the probability of species’ occurrence 

are 30, 40, 50, and 75 % and this method provided information which threshold made 

the greatest contribution to the model, and also indicated which model should be 

remained as the best potential predicting species distribution model. In this study, 

Taiwan Hemlock is not endangered species but a dominance tree in the alpine 

ecosystem in Taiwan. Therefore, threshold with max-Kappa is selected for higher 

predicted accuracy. 

 

3.7.2 Model Combination and PNV Mapping Criteria 

 

Prates-Clark et al. (2008) described the ideally and accurately predictive model for 

each tree species’ potential geographical distribution based on (i) the lowest omission 

and commission rates, (ii) highest AUC value, (iii) higher percentage of predicted 

probability of species’ presence localities, and (iv) a set of predictor variables 
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biologically meaningful to summarize the ecological niche of its species. Predicted map 

generates by GIS platform and for this study ArcGIS 9.2 is used.  

 

Input the raster of probability layers generated by SDMs for model combination. 

There are two kinds of strategies for combination used in this study. One of which is to 

combine the individual probability maps of sub-units of vegetation from vegetation 

analysis to generate potential vegetation map of Taiwan Hemlock sub-unit vegetation. 

The other combines the vegetation based sub-units and Taiwan Hemlock species based 

unit probability map into the potential vegetation map of Taiwan Hemlock. The method 

of combining vegetation sub-unit maps of Taiwan Hemlock is determined by the pixels 

with the greatest probability value of which vegetation sub-units. For example, if there 

are three vegetation sub-units probability maps generated by a SDM, overlapping the 

three probability maps and each pixel would have three probability values. If the highest 

value of probability is from sub-unit vegetation type 1 and then this pixel is determined 

to the potential area that sub-unit vegetation type 1 would occur and so on. The method 

of the second combination is to overlap the Taiwan Hemlock species probability map 

with all the sub-unit vegetation maps of Taiwan Hemlock and to demonstrate the 

potential distribution of species Taiwan Hemlock including the detail information of 

spatial distribution area of Taiwan Hemlock vegetation sub-units. 
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Chapter 4: Results 

 

4.1 Vegetation Classification of Taiwan Hemlock Presence 

 

There are 16 samples of outliner excluded at final classification due to the sample 

with too low relative dominance of Taiwan Hemlock or some rare or unique species 

occurred in the sample which might produce meaningless groups with very few samples 

or mislead the classified group. Classification of cluster analysis (Figure 7 and 8) by 

PC-ORD divides 196 plots into 6 sub groups and each group represents different species 

dominance companying with Taiwan Hemlock:  

 

V1: Vegetation type 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga 

chinensis-Chamaecyparis formosensis) dominance vegetation type. 

V2: Vegetation type 2 represents Taiwan Hemlock (Tsuga chinensis) dominance 

vegetation type. 

V3: Vegetation type 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga 

chinensis-Abies kawakamii) dominance vegetation type. 

V4: Vegetation type 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga 

chinensis-Pinus taiwanensis) dominance vegetation type. 

V5: Vegetation type 5 represents Taiwan Hemlock-Taiwan Spruce (Tsuga 

chinensis-Picea morrisonicola) dominance vegetation type. 

V6: Vegetation type 6 represents Taiwan Hemlock-Taiwan Yellow Cypress (Tsuga 

chinensis-Chamaecyparis obtusa Var. formosana) dominance vegetation type. 
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Table 8 shows the correlation between environmental variables and DCA axis. 

Elevatio
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(a) 

Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) 

Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis 

formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis) 

dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies 

kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga 

chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan 

Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan 

Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance 

vegetation type. 
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(b) 

Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) 

Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis 

formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis) 

dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies 

kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga 

chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan 

Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan 

Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance 

vegetation type. 
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(c) 

 

Figure 7. DCA odination of 6 sub groups of Taiwan Hemlock: (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) 

Axsis 2 and 3. Vtype 1 represents Taiwan Hemlock-Taiwan Cypress (Tsuga chinensis-Chamaecyparis 

formosensis) dominance vegetation type; Vtype 2 represents Taiwan Hemlock (Tsuga chinensis) 

dominance vegetation type; Vtype 3 represents Taiwan Hemlock-Taiwan Fir (Tsuga chinensis-Abies 

kawakamii) dominance vegetation type; Vtype 4 represents Taiwan Hemlock-Taiwan Red Pine (Tsuga 

chinensis-Pinus taiwanensis) dominance vegetation type; Vtype 5 represents Taiwan Hemlock-Taiwan 

Spruce (Tsuga chinensis-Picea morrisonicola) dominance vegetation type; Vtype 6 represents Taiwan 

Hemlock-Taiwan Yellow Cypress (Tsuga chinensis-Chamaecyparis obtusa Var. formosana) dominance 

vegetation type. 
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Figure 8. Cluster analysis dendrogram of 6 sub groups of Taiwan Hemlock. 



 

62 
 

Table 8. Pearson and Kendall correlation between surveyed environmental gradients and DCA and PCA 

axes. (N= 196) 

Env. DCA-1 DCA-2 DCA-3 PC1 PC2 PC3 

Elevation 0.52 -0.22 -0.06 -0.54 0.58 0.08 

Slope 0.03 -0.04 0.08 -0.51 -0.51 -0.68 

Note: DCA-1 to DCA-3 represents axis 1 to axis 3; PC1 to PC3 represents component 1 to component 3 

of PCA. Env.: environmental variable 

 

Elevation gradient has high correlation with axis 1 (correlation coefficient is 0.52) 

and relative small correlation with axis 2 (correlation coefficient is -0.22). Axis 3, 

however, shows little correlation with both environmental gradient Elevation and Slope 

(correlation coefficient is -0.06 and 0.08 respectively).  

 

Table 9. Pearson and Kendall correlation between 16 extracted environmental gradients and DCA and 

PCA axes. (N= 196) 

Env. DCA-1 DCA-2 DCA-3 PC1 PC2 PC3 

ASP -0.09 -0.04 0.00 -0.08 0.13 -0.35 

CUR -0.01 0.03 -0.06 -0.86 -0.39 0.17 

PLA -0.04 0.04 -0.02 -0.78 -0.31 0.14 

PRCAU -0.18 0.03 -0.12 -0.12 0.09 -0.47 

PRCME -0.13 0.07 0.03 -0.36 0.83 0.34 

PRCSP 0.11 -0.10 0.09 0.08 0.31 0.77 

PRCSU -0.13 0.07 0.03 -0.36 0.83 0.34 

PRCSR -0.13 0.18 0.03 -0.52 0.71 0.08 

PRCWT 0.11 -0.17 0.08 0.41 -0.04 0.48 

PRO -0.04 -0.01 0.08 0.74 0.39 -0.16 

SLP -0.11 -0.01 0.10 0.15 0.20 -0.14 

STH 0.00 0.00 -0.20 -0.04 -0.10 0.08 
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Table 9. Pearson and Kendall correlation between 16 extracted environmental gradients and DCA and 

PCA axes. (N= 196) (Cont.) 

Env. DCA-1 DCA-2 DCA-3 PC1 PC2 PC3 

SVF 0.11 -0.02 -0.11 -0.66 -0.47 0.25 

ELE 0.52 -0.22 -0.07 0.31 -0.28 0.68 

WST -0.06 -0.02 0.02 -0.10 0.02 -0.36 
Note: ASP: Aspect; CUR: Tangential Curvature, PLA: Plan curvature; PRCAU: Autumn Precipitation 

(from Sep. to Nov.); PRCME: Mean of annual Precipitation; PRCSP: Spring Precipitation (from Mar. to 

May); PRCSU: Sum of annual Precipitation; PRCSR: Summer Precipitation (from Jun. to Aug.); PRCWT: 

Winter Precipitation (from Dec. to Feb.); PRO: Profile curvature; SLP: Slope; STH: Southness Index; 

SVF: Sky View Factor; ELE: Elevation; WI: Warmth Index; WST: Westness Index. 

 

There is similar trend while examining correlation with extracted environmental 

variables from RIAL and each axis (Table 9). Except elevation gradient, axis 1 is 

slightly correlated with precipitation, slope, and sky view factor variable (correlation 

coefficients are all about 0.1 for each variable). Axis 2 is also slightly correlated with 

precipitation in spring, summer, and winter (correlation coefficients are all about 0.1). 

Axis 3 is slightly correlated with autumn precipitation, sky view factor and slope 

variable (correlation coefficients are all about 0.1). 

 

PCA for the relationship between 4 surveyed and 16 extracted environmental 

variables and 196 Taiwan Hemlock presence localities was showed in Figure 8 and 9, 

and Eigen value of each component was listed in Table 10 and 11. In 4 surveyed 

environmental variables case, the first 3 components of PCA explained 79 % variance. 

On the other hand, the first 5 component of 16 extracted environmental variables PCA 

explained 75% variance. This result indicates that whether 4 or 16 environmental 

variables had many similar variance trends (see Figure 9 and 10) and spread radically on 
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the principal component axes and leaded to average each component of variance (i.e. 

each component almost equally explained the variance of variables). This situation 

might cause PCA unable to find which direction varied most and leaded to the low 

explanation of the former components. The following correlation analysis is used to 

reduce similar variables and avoid of multicollinearity.  

 

Table 10. Variance extracted first 10 axes of PCA from 4 surveyed environmental variables. 

Axis Eigen value % of Variance Cum.% of Var. Eigen value 

1 1.2 29.7 29.7 2.1 

2 1.1 27.2 56.8 1.1 

3 0.9 22.3 79.1 0.6 

4 0.8 20.9 100.0 0.3 
Note: Cum.% of Var.: cumulative percentage of variance; %: percentage
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(a) 

Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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(b) 

Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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(c) 

Figure 9. PCA ordination of Taiwan Hemlock with 4 surveyed environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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Table 11. Variance extracted first 10 components of PCA from 16 extracted environmental variables.

Axis Eigen value % of Variance Cum.% of Var. Eigen value 

1 3.3 20.8 20.8 3.4 

2 2.9 18.0 38.8 2.4 

3 2.6 16.5 55.2 1.9 

4 1.7 10.5 65.7 1.5 

5 1.6 10.1 75.8 1.3 

6 1.1 6.9 82.7 1.1 

7 1.0 6.5 89.2 0.9 

8 0.8 4.8 93.9 0.8 

9 0.4 2.7 96.6 0.7 

10 0.3 1.7 98.3 0.6 
Note: Cum.% of Var.: cumulative percentage of variance; %: percentage
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(a) 

Figure 10. PCA ordination of Taiwan Hemlock with 16 extracted environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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(b) 

Figure 10. PCA ordination of Taiwan Hemlock with 16 extracted environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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(c) 

Figure 10. PCA ordination of Taiwan Hemlock with 16 extracted environtment variables including ASP, 

CUR, ELE, PLA, PRCSP, PRCSR, PRCAU, PRCWT, PRCME, PRCSU, PRO, SLP, STH, SVF, WI, and 

WST. (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) Axis 2 and 3. 
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4.2 Environmental Layers Analysis  

 

4.2.1 Correlation Analysis of Environmental Variables 

 

Table 12 demonstrated the results of correlation among 16 environmental variables. 

To avoiding multicollinearity, the pair with correlation coefficient larger than 0.7 is 

considered as high correlation to each other and combined in a group to leave 1 variable 

for building model. The highly correlative variable groups are listed as follow: 

 

(i) ASP, WST 

(ii) CUR, PLA, PRO 

(iii) PRCAU, PRCSP, PRCW 

(iv) PRCME, PRCSU, PRCSR  

(v) ELE, WI 

 

For ecological consideration, choose the correlative variables which influence the 

plant’s distribution most. First group, westness index indicates the gradient strength to 

east and west which is easier to understand than quantitative aspect variable. For 

example, north aspect both includes 315° to 360° and 0° to 45° and that may cause the 

greatest and smallest values the same aspect. Second, CUR is selected because CUR 

represents the curvature of the topographic of Taiwan Island and high value of it 

indicates convex and low value of it indicates concave. PLA and PRO are similar 

variables with CUR and only differ at down slope or up slope direction of curvature. 

PRCW is selected in third group because of difference of dryness and wetness in 
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southern and northern Taiwan in winter. In the fourth group, PRCSU is selected because 

the summation of the total precipitation represents the maximum intensity of the 

variable to reflect the extremely climate condition. In the last group, although 

temperature can be limiting factor to plant growth, ELE is selected because it was 

directly measured while WI is generate by secondary estimation and might contain more 

uncertainties than ELE. After correlation analysis, 8 environmental variables are 

remained: CUR, PRCSU, PRCW, SLP, STH, SVF, WST, and ELE. 
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Table 12. Correlation analysis for extracted environmental variable of 196 localities of Taiwan Hemlock. 

 ASP CUR PLA PRCAU PRCME PRCSP PRCSU PRCSR PRCWT PRO SLP STH SVF ELE WST WI

ASP 1                

CUR -0.02 1               

PLA -0.02 0.91 1              

PRCAU 0.03 -0.04 -0.01 1             

PRCME 0.03 0.03 0.07 0.16 1            

PRCSP -0.05 0.00 0.02 -0.67 0.42 1           

PRCSU 0.03 0.03 0.07 0.16 1.00 0.42 1          

PRCSR 0.07 0.11 0.10 -0.05 0.76 0.14 0.76 1         

PRCWT -0.06 -0.12 -0.08 -0.15 0.04 0.55 0.04 -0.54 1        

PRO 0.01 -0.86 -0.57 0.08 0.02 0.01 0.02 -0.09 0.14 1       

SLP 0.01 -0.04 -0.05 -0.07 0.00 0.05 0.00 0.00 0.06 0.03 1      

STH 0.07 0.00 0.03 0.03 0.00 -0.03 0.00 -0.01 0.01 0.04 -0.25 1     

SVF -0.06 0.66 0.55 0.03 -0.02 -0.08 -0.02 0.08 -0.22 -0.63 -0.46 0.17 1    

ELE -0.17 -0.10 -0.13 -0.17 -0.05 0.23 -0.05 -0.15 0.19 0.05 -0.12 0.09 0.17 1   

WST 0.72 0.04 0.06 0.04 -0.05 -0.10 -0.05 0.01 -0.11 0.01 0.05 0.04 0.01 -0.13 1  

WI 0.17 0.12 0.14 0.21 0.13 -0.28 0.13 0.29 -0.32 -0.07 0.12 -0.09 -0.14 -0.98 0.11 1 
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4.2.2 Attributes of Environmental Variables 

 

Descriptive statistic provides a basic sense and structure of the data. Taiwan 

Hemlock presence data set (N = 196) and absence localities (N = 3784) are compared 

by extracting values from 8 selected environmental layers. Missing values are removed 

from the extracted absence localities and remains 3770 absence localities instead. Both 

basic and descriptive statistics are listed in Table 13 and 14.  

 

Table 13. Basic and descriptive statistic of presence localities (N = 196) 

 CUR PRCSU PRCWT SLP STH SVF ELE WST 

min -7.50 1949 33 8 1 0.61 559 2 

max 4.31 3396 185 53 180 1.00 3315 179 

range 11.81 1447 152 45 179 0.38 2756 177 

median 0.13 2550 97 35 82 0.89 2440 87 

mean 0.03 2577 97 34 83 0.88 2416 89 

std.dev 2.00 302 32 10 52 0.07 430 50 

 

Table 14. Basic and descriptive statistic of absence localities (N = 3770) 

 CUR PRCSU PRCWT SLP STH SVF ELE WST 

min -7.56 1132 13 0 0 0.45 0 0 

max 10.25 5489 649 67 180 1.00 3777 180 

range 17.81 4357 636 67 180 0.55 3777 180 

median 0.00 2300 60 19 85 0.96 375 91 

mean 0.05 2365 80 19 84 0.93 685 93 

std.dev 1.41 673 71 16 56 0.07 767 50 

  

Before t-test, normal Q-Q plot method showed in Figure 11 represented the data is 

almost normal distributed at Taiwan Hemlock presence data sets but not at Taiwan 
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Hemlock absence data sets. Two-tailed t-test and 95 % confidence interval are used to 

test if the two data sets are significantly difference (Table 15.). The null hypothesis of 

the t-test is that true difference in means is equal to 0 and alternative hypothesis is that 

true difference in means is not equal to 0. Only STH and SVF are not significantly 

difference between absence and presence localities. On the other hand, the rest 5 

environmental variables are significant difference between absence and presence 

localities. Figure 12 shows the visual sense of the difference in environmental variables 

between absence and presence by histograms with relative frequency at y axis. 
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(a) 

Figure 11.Normal Q-Q plot of 8 extracted environmental variables (a) Taiwan Hemlock presence 

localities, (b) Taiwan Hemlock absence localities. 
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(b) 

Figure 11.Normal Q-Q plot of 8 extracted environmental variables (a) Taiwan Hemlock presence 

localities, (b) Taiwan Hemlock absence localities. 

 

 

Table 15. t-test of absence and presence localities 

 CUR PRCSU PRCW SLP STH SVF ELE WST

t 0.1 -8.8 -6.5 -21.1 0.3 10.3 -52.2 1.0

p-value 0.92 < 0.001 < 0.001 < 0.001 0.8 < 0.001 < 0.001 0.32

  ** ** **  ** **  

Note: **: significant 
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(a) 

Figure 12. Histogram of 8 extracted environemtal variable between absence and presence localities. Y 

axis represents the relative frequency of counts of sample. (a) Presence data set. (b) Absence data set. 
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(b) 

Figure 12. Histogram of 8 extracted environemtal variable between absence and presence localities. Y 

axis represents the relative frequency of counts of sample. (a) Presence data set. (b) Absence data set. 
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4.2.3 PCA Approaches 

 

Plots of two PCA analysis for all occurrences (N = 196) is showed in Figure 13 

and revealing similar trend whether in axis 1, 2, or 3.  
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(a) 

Figure 13. PCA ordination of Taiwan Hemlock and 8 extracted environtment variables including CUR, 

PRCSU, PRCWT, SLP, STH, SVF, ELE and WST. (N=196) (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) 

Axis 2 and 3. 
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(c) 

 

Figure 13. PCA ordination of Taiwan Hemlock and 8 extracted environtment variables including CUR, 

PRCSU, PRCWT, SLP, STH, SVF, ELE and WST. (N=196) (a) Axis 1 and 2, (b) Axis 1 and 3, and (c) 

Axis 2 and 3. 
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The variance explained by the component 1 to 3 are 24%, 17%, and 13% 

respectively for all occurrences data and cumulative percentage of variance explained 

by the first three components are 24%, 41% and 55% respectively (Table 16). First 6 

eigenvectors, listed in Table 17 and each scaled to its standard deviation (SD), 

sometimes called V vectors, and when applied to PCA of a correlation matrix, are the 

same as the correlation coefficient between scores for occurrence data and the 

environmental variables. First component is highly related to the three environmental 

variables, CUR, SLP, and SVF, second component is highly related to the PRCWT and 

ELE variables, and the third component is highly related to the STH and WST variable 

respectively (Table 17). 

 

 

Table 16. Percentage of variance and cumulative percentage of variance from extracted 8 components of 

PCA. 

Axis Eigen value % of Variance Cum.% of Var. Eigen value 

1 2.0 24.4 24.4 2.7 

2 1.4 17.3 41.8 1.7 

3 1.1 13.7 55.5 1.2 

4 1.0 12.6 68.1 0.9 

5 0.9 11.3 79.4 0.6 

6 0.8 9.7 89.0 0.4 

7 0.7 8.7 97.8 0.3 

8 0.2 2.2 100.0 0.1 

Note: Cum.% of Var.: cumulative percentage of variance; %: percentage
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Table 17. First 6 eigenvectors each scaled to its standard deviation of PCA. 

 Eigenvector 

Env. 1 2 3 4 5 6 

CUR -0.70 0.37 0.40 0.14 -0.28 -0.23 

PRCSU 0.02 0.02 0.48 -0.83 -0.11 0.28 

PRCWT 0.32 -0.54 0.26 0.03 -0.54 -0.34 

SLP 0.60 0.39 0.23 0.18 -0.28 -0.14 

STH -0.33 -0.37 -0.50 -0.41 -0.09 -0.43 

SVF -0.93 0.01 0.14 0.11 -0.07 0.05 

ELE -0.13 -0.71 0.08 0.30 -0.21 0.47 

WST -0.04 0.42 -0.56 -0.08 -0.62 0.31 

 

4.2.4 Data Mining Approach: CART 

 

11 of 16 environmental variables, ELE, PRCSU, PRO, ASP, PRCAU, PRCSR, WI, 

PRCSP, WST, SVF, and STH, are selected by the classification tree to split each node 

of the tree (see Figure 14). First node is split by ELE variable indicates ELE is able to 

distinguish the two groups divided it. In other word, ELE is the most explainable 

variable from the 16 environmental variables due to the two groups split by ELE having 

more homogeneity than original one. And besides, the second splitting variable using by 

classification tree is PRCSU and WI and the third is PRCSR and PRO in the same node. 

On the left hand side of the tree is mainly consist of V1 and a few V2 and V5, on the 

middle of the tree is mainly consist of V3 and V5, and on the right hand side is mostly 

V2 and mixed with V3 and V4. Total number of terminal nodes is 24 and residual mean 

deviance is 1.74. Misclassification error rate of the six vegetation type is 32 %. Figure 

15 and 16 showed how each split reduces the variance and the misclassifying rate of 

split groups.  
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Figure 14. Tree plot of classification and regression tree (CART) analysis with 6 groups of 196 Taiwan 

Hemlock presence localities and 16 extracted environmental variables from RIAL. 
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Figure 15. Prune tree of CART analysis from Figure 13 shows how each split affects the deviance. 
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Figure 16. Missclassification of tree plot from Figure 13 shows how each split reduces misclassification 

number. 



 

86 
 

Figure 17 showed the result of combining V1 and V6 into V1 due to similar habitat 

of both vegetation types found in field surveys. The combination resulted in lowering 

misclassifying rate from 35% into 27%. If considering V4 for succession type and taking 

it as V1, the misclassification of each group was reduced into 23%. The details of 

summary of CART analysis for 6 groups and 16 extracted environmental variables are 

listed in Table 18. First three splitting variables of Figure 16 are the same as the results 

of Figure 13. On the left hand side of the tree is mainly consist of V1 and a few V2 and 

V5, on the middle of it is consist of V2 and V5, and on the left hand side is V3 and a few 

V2 and V5. Total number of terminal nodes is 24 and residual mean deviance is 1.5.  
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Figure 17. Tree plot of classification and regression tree (CART) analysis with 5 groups (combining V1 

and V6 into V1) of 196 Taiwan Hemlock presence localities 16 extracted environmental variables from 

RIAL. 

 

The numbers of classified plot are greater than the original number of V2, V5 and 

V6 vegetation type. In V1, V3, and V4 situation, however, the numbers of classified plot 

are lesser than the origin number. 
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Table 18. Summary of CART analysis with 6 groups of 196 Taiwan Hemlock Presence localities 16 

extracted environmental variables from RIAL. 

 V1 V2 V3 V4 V5 V6 

Number of original plot 64 46 11 32 28 15

Number of classified plot 61 60 4 27 32 16

Missing plot 18 9 7 21 6 7

Missing rate (%) 28 20 64 66 21 47

Total missing rate (%) 35 

 

 

4.2.5 Data Mining Approach: CIT 

 

Only 1 of the 16 environmental variables, WI, was actually used to construct the 

conditional inference tree and represent the significant difference between the both 

groups split by the environmental variable on the node and the originally undivided 

group (Figure 18). Total numbers of the terminal nodes is 3.  
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Figure 18. Tree plot of CTT analysis with 6 groups of 196 Taiwan Hemlock presence localities 16 

extracted environmental variables from RIAL. 

 

On the right hand side of CIT in Figure 17 is mainly consist of V1 and mixed V2 

and V6, on the middle of the node is mainly consist of V2 mixed with V1 , V4 and V5, 

and on the left hand side is V3 and companied with V2, V4 and V5. The results indicated 

that warmth index gradient could distinguish Taiwan Hemlock presence localities into 3 

three groups: (i)Taiwan Hemlock- Taiwan Cypress group, (ii)Taiwan Hemlock mixed 

with conifers groups, and (iii) Taiwan Hemlock-Taiwan Fir group. The details of 
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summary of CART analysis for 6 groups and 16 extracted environmental variables are 

listed in Table 19. The result of CIT showed relative high misclassification rate 

comparing to the results of CART analysis.  

 

V4 to V6 are not classified by the CIT analysis and gains 100 % missing rate which 

influencing the total misclassification rate in comparing to the misclassification rate of 

occurrences data without V4 to V6 vegetation type or V4 to V6 are able to be 

distinguished by 16 extracted environmental variables. And besides, V4 and V5 were 

mainly predicted to V2 and V3 and that indicated they shared similar environmental 

gradient with V2 to V3; V6 was mainly predicted to V1 and V2 and still implied its 

environmental gradient was similar with V1 and V2. The numbers of classified plot are 

greater than the original number of V2 and V3 vegetation type. In V1 situation, however, 

the number of classified plot is lesser than the origin number. 

 

Table 19. Summary of CIT analysis with 6 groups of 196 Taiwan Hemlock Presence localities 16 

extracted environmental variables from RIAL. 

 V1 V2 V3 V4 V5 V6 

Number of original plot 64 46 11 32 28 15

Number of classified plot 49 113 34 0 0 0

Missing plot 32 14 1 32 28 15

Missing rate (%) 50 30 9 100 100 100

Total missing rate (%) 62 

 

16 environmental variables are reduced to 8 by correlation analysis and then 

partially selected by each statistical and data mining methods summarized in Table 20. 

PC1 selected 3 environmental variables, CUR, SLP, and SVF, PC2 selected 2 

environmental variables, PRCWT and ELE, PC3 selected 2 environmental variables, 
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STH and WST, CART selects almost all environmental variables except CUR, PLA, 

PRCME, PRCWT and SLP, and CIT selects only 1 environmental variable, WI. In 

addition to the methods mentioned above, try and error approach (i.e. selecting all and 

individual environmental variables for model building) is also considered while 

building the Maxent distribution model.  

 

Table 20. Summary of all approaches selecting influential environmental variables to distribution of 

Taiwan Hemlock. Character “V” means the variable is selected by the method. 

 CA PC1 PC2 PC3 CART CIT ALL 

ASP     V  V 

CUR V V     V 

PLA       V 

PRCAU     V  V 

PRCME       V 

PRCSP     V  V 

PRCSU V    V  V 

PRCSR     V  V 

PRCWT V  V    V 

PRO     V  V 

SLP V V     V 

STH V   V V  V 

SVF V V   V  V 

ELE V  V  V  V 

WST V   V V  V 

WI     V V V 

Note: V means the environmental variable was selected by each method; CA means correlation analysis; 

PC1 represents environmental variables with high correlation with component 1 of PCA.PC2 and PC3 

represent the same meaning with PC1; CART represents classification and regression tree; CIT means 

conditional inference tree; ALL represents all 16 extracted environmental variables. 
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Therefore Total 23 combination of environmental selection for SDM building 

including 7 environmental combinations in Table 20 (CA, PC1, PC2, PC3, CART, CIT, 

and ALL) and each of 16 extracted environmental variables. 

 

4.3 SDM Outputs and AUC 

 

4.3.1 Resolution, Presence Unit, Environmental Variable Selection and 

AUC 

 

Vegetation unit is considered a more homogeneous unit and stable in succession 

stage than all species occurrence localities which may contain mixed plant compositions 

and more variant in data structure. Figure 19 shows how AUC of V1, V2, V3, V5, and 

Vall differ from each other. Due to V1 and V6 usually appear in similar environment and 

nearby on DCA plot, they were combined into V1 only. In V4 situation, pine species are 

not only considered as succession species and it is reasonable to explain the pure stand 

of Taiwan Hemlock with some disturbance and companies with pine species in nature, 

but also near to V2 on DCA plot. So V2 and V4 are combined together into V2 

vegetation type. Multiple Behrens-Fisher tests by Package of npmc in R for 3 units, 

including resolution, input locality, and environmental variable combination, reveal 

effects of different respects. Three resolutions did not differ from each other 

significantly (all p-values > 0.86). For input locality perspective, only V1 and V5 are 

significant different with p-value equal to 0.048 and the rest combination did not differ 

significantly among each other (Table 21). There was no significant difference among 
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ALL, CA, CART, CIT and PC2 (all p-values > 0.99) and PC1 and PC3 are not only 

significantly differ to the former 5 combination but also significantly differ to each 

other (p-value < 0.001). Thus 3 rank of environmental combination estimated by npmc 

package are ALL, CA, CART, CIT and PC2 for rank 1, PC1 for rank 2 and PC3 for 

rank 3 respectively. The p-value of inter-group is almost 0 and that indicated each group 

of rank differ significantly.  
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(b) 

Figure 19. Differences on AUC among 7 environmental variable combinations,ALL, CA, CART, CIT, 

PC1, PC2, PC3, and 5 type of occurrence localies, V1, V2, V3, V5, and Vall at 3 different kinds of map 

resulotion: (a) 40 × 40 m, (b) 100 × 100 m, and (c) 1 × 1 km. 
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(c) 

Figure 19. Differences on AUC among 7 environmental variable combinations,ALL, CA, CART, CIT, 

PC1, PC2, PC3, and 5 type of occurrence localies, V1, V2, V3, V5, and Vall at 3 different kinds of map 

resulotion: (a) 40 × 40 m, (b) 100 × 100 m, and (c) 1 × 1 km. 

 

After comparing AUC values of different situations, environmental variable 

combination by CIT method was the highest AUC value among the 7 methods and 

CART method is the second high of AUC value. Maxent generates a series of statistical 

analysis and predicts the distribution probability of target species in logistic format (by 

default). Although CIT method of environmental variable selection performed best, it 

covered almost all alpine area of Taiwan and that is usually covered with Taiwan Fir 

pure stand or alpine grassland and not necessarily suitable for Taiwan Hemlock, and 

thus CART might be the best prediction for distribution of Taiwan Hemlock. Figure 20 

shows 5 spatial predictions for Taiwan Hemlock (V1, V2, V3, V5, and Vall) in logistic 

format from Maxent by using CART method of environmental variable combination.  
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Table 21. Results of the multiple Behrens-Fisher tests for 4 vegetation types, V1, V2, V3, V5, and Vall 

Taiwan Hemlock localities Vall by 2-sided p-value.  

Compare vegetation types 2-sided p-value  

V1- V2 0.094  

V1- V3 0.066  

V1- V5 0.048 **

V1- Vall 0.530  

V2- V3 0.055  

V2- V5 0.123  

V2- Vall 0.151  

V3- V5 0.071  

V3- Vall 0.065  

V5- Vall 0.056  
Note: ** represent significant with p-value less than 0.05 
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(a) 

Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART 

method. (a) All occurrences data Vall vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and 

Taiwan Cypress dominance V1 vegetation type. (c) Taiwan Hemlock mixed with pine species dominance 

V2 vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V3 vegetation type. (e) Taiwan 

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 × 40 m in resolution) 
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(b) 

Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART 

method. (a) All occurrences data Vall vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and 

Taiwan Cypress dominance V1 vegetation type. (c) Taiwan Hemlock mixed with pine species dominance 

V2 vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V3 vegetation type. (e) Taiwan 

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 × 40 m in resolution) 
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(c) 

Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART 

method. (a) All occurrences data Vall vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and 

Taiwan Cypress dominance V1 vegetation type. (c) Taiwan Hemlock mixed with pine species dominance 

V2 vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V3 vegetation type. (e) Taiwan 

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 × 40 m in resolution) 
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(d) 

Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART 

method. (a) All occurrences data Vall vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and 

Taiwan Cypress dominance V1 vegetation type. (c) Taiwan Hemlock mixed with pine species dominance 

V2 vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V3 vegetation type. (e) Taiwan 

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 × 40 m in resolution) 
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(e) 

Figure 20. Probability pictures of Maxent model which uses environmental variable combination by CART 

method. (a) All occurrences data Vall vegetation type. (b) Taiwan Hemlock Taiwan Yellow Cypress and 

Taiwan Cypress dominance V1 vegetation type. (c) Taiwan Hemlock mixed with pine species dominance 

V2 vegetation type. (d) Taiwan Hemlock and Taiwan Fir dominance V3 vegetation type. (e) Taiwan 

Hemlock and Taiwan Spruce dominance V5 vegetation type. (40 × 40 m in resolution) 
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Reponses curves show how each environmental variable affected the Maxent 

prediction (Figure 21; 40 × 40 m in resolution) on all occurrences data Vall vegetation 

type. The y-axis was predicted probability of suitable conditions, given by the logistic 

method, with each variable set to their average value over the set of presence localities. 

The response curve of ASP was gradually the same high from 0 to 361 degree. The 

response of ELE was peaked from 2000 to 3100 m. The response of PRCAU, PRCSP, 

and PRCSR were different in amount of precipitation, but the response of total sum of 

annual precipitation PRCSU was range from 2400 to 3200 mm. The response curves of 

PRO, STH, SVF, and WST showed no trend of peak for predicted probability. The 

response curve of WI was higher ranging from 40 to 80 . ℃  
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Figure 21. 11 Responese Curves of environmental variables for Maxent prediction of All occurrences data 

Vall vegetation type. X-axis is the range of environmental variable value and Y-axis is the logistic output of 

probability of presence (40 × 40 m in resolution). 

 

In summary, Vall is suitable for elevation range from 2000 to 3100 m, sum of 

annual precipitation range from 2400 to 3200 mm, and warmth index ranging from 40 

to 80 . Table 22 gives a heuristic estimate of relative contributions of the ℃

environmental variables to the Maxent model. The variable contributions should be 

interpreted with caution when the predictor variables are correlated. WI and ELE had 

most contribution for modeling and the precipitation variables, the rest environmental 

variables were specific contribution for model to different vegetation type.  
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Table 22. Contributions of the environmental variables to the Maxent model with Vall, V1, V2 and V3 

Rank Vall 
Percent 

contribution 
V1 

Percent 

contribution
V2 

Percent 

contribution
V3 

Percent 

contribution 
V3 

Percent 

contribution

1 WI 50.9 ELE 89.4 ELE 88.1 WI 51.3 ELE 91.3

2 ELE 43.7 PRCSR 2.3 WI 9.5 ELE 47.3 WI 4.6

3 PRCAU 1.6 STH 1.8 PRCAU 1.6 PRCSP 1.4 PRCAU 1.1

4 PRCSR 0.7 WI 1.8 ASP 0.2 PRCSR 0 SVF 0.9

5 PRCSU 0.7 PRCAU 1.6 PRCSP 0.2 PRCSU 0 ASP 0.9

6 STH 0.6 WST 1 PRO 0.2 PRCAU 0 WST 0.4

7 ASP 0.6 PRCSU 0.9 STH 0.1 WST 0 PRCSP 0.4

8 SVF 0.5 SVF 0.4 PRCSR 0.1 SVF 0 PRCSU 0.2

9 WST 0.5 PRO 0.2 PRCSU 0 STH 0 PRCSR 0.2

10 PRO 0.2 PRCSP 0.2 SVF 0 PRO 0 STH 0.1

11 PRCSP 0.1 ASP 0.2 WST 0 ASP 0 PRO 0

 

4.4 SDM Assessment with Threshold and Null Model 

 

4.4.1 Threshold to Presence 

 

Table 23 lists 8 methods for determination of threshold to presence. Although 

threshold selection is depending on the purpose of the study, MaxKappa is chosen for 

more accurately binary predicted map with presence and absence values. Noted that, 

threshold of MaxKappa method are actually lower in geo-climatic regions than the 

whole Taiwan Island.  
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Table 23. The 8 methods of threshold selection produced by PresenceAbsence package of R 

Method Vall V1 V2 V3 V5 

Sens=Spec 0.27 0.31 0.19 0.17 0.11 

MaxSens+Spec 0.18 0.24 0.09 0.07 0.11 

MaxKappa 0.40 0.50 0.32 0.34 0.70 

MaxPCC 0.50 0.78 0.62 0.90 0.90 

PredPrev=Obs 0.47 0.56 0.50 0.64 0.77 

ObsPrev 0.10 0.04 0.05 0.01 0.00 

MeanProb 0.10 0.09 0.07 0.03 0.04 

MinROCdist 0.19 0.27 0.16 0.16 0.11 

Note: Sens=Spec: sensitivity=specificity; MaxSens+Spec: maximizes; (sensitivity+specificity)/2; 

MaxKappa: maximizes Kappa; MaxPCC: maximizes PCC (percent correctly classified); PredPrev=Obs: 

predicted prevalence=observed prevalence; ObsPrev: threshold=observed prevalence; MeanProb: mean 

predicted probability; MinROCdist: minimizes distance between ROC plot and (0,1) 

 

4.4.2 Threshold Dependent Indices 

 

After a specific threshold is selected, confusion matrix can derive many indices to 

calculate model performance. Table 24 and 25 compared a specific threshold is chosen 

based on the MaxKappa occurs and outperformed simply using a half probability with a 

0.5 value for deciding a threshold. Noted that, AUC is threshold independent and 

therefore will not be changed by different threshold is selected. When threshold = 0.5, 

there is lower value of sensitivity for all models and while threshold changed to 

MaxKappa, sensitivity is raised but did not drop the value specificity too many. Thus 

applying a specific threshold is necessary when implement to the specific aim. 
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Table 24. Threshold dependent indices for each occurrence unit in threshold = 0.5 

Unit threshold PCC Sensitivity specificity Kappa AUC 

Vall 0.5 0.93 0.55 0.97 0.55 0.96 

V1 0.5 0.94 0.57 0.96 0.41 0.95 

V2 0.5 0.95 0.51 0.97 0.48 0.96 

V3 0.5 0.98 0.61 0.98 0.41 0.98 

V5 0.5 0.97 0.50 0.97 0.03 0.96 

Note: PCC: percent correctly classified; AUC: area under ROC curve 

 

Table 25. Threshold dependent indices for each occurrence unit in threshold = MaxKappa 

Unit 
threshold= 

MaxKappa 
PCC Sensitivity specificity Kappa AUC

Vall 0.4 0.92 0.74 0.94 0.61 0.96 

V1 0.5 0.94 0.57 0.96 0.41 0.95 

V2 0.32 0.93 0.80 0.94 0.52 0.96 

V3 0.34 0.98 0.89 0.98 0.45 0.98 

V5 0.7 0.99 0.25 0.99 0.08 0.96 

Note: PCC: percent correctly classified; AUC: area under ROC curve

 

4.4.3 Null Model for Significant test 

  

To test if the model’s algorithm could succeed to analysis the relationship between 

species’ occurrences and environmental variables and predict the species’’ spatial 

distribution rather than predicting by chance, a null model was generated by randomly 

repeating sampling for 999 times of background cells for the same number of the 

presence data set to get the random AUC’s distribution (Figure 22). By adding the 

predicted AUC values to the null model to see if the model result is high governed by 

chance. 
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Figure 22. Null model test for Vall data set. The black dot on the bottom-right is the AUC value generated 

by the predictied model Maxent. 

 

4.5 PNV Mapping Criteria and PVM for Taiwan Hemlock 

 

To map the potential vegetation map of Taiwan Hemlock, 5 probability maps were 

considered, V1, V2, V3, V5 and Vall respectively from 40 × 40 m size in raster files. The 

potential vegetation maps of Taiwan Hemlock are as following. The composition of the 

Taiwan Hemlock species map of V5 and Taiwan Hemlock sub-units vegetation map of 

V1, V2, V3, and V5 was generated from each binary map split by threshold and then 

summed together (Figure 23). Finally, in order to evaluate potential predicted area, all 

occurrence data of Taiwan Hemlock from NVDIMP (N = 408) and absence data of 

Taiwan Hemlock from TFRILU (N= 3770) were used to calculate the accuracy of the 

model predicted presence.  
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The confusion matrix of each potential predicted map was listed from Table 26 to 

30. Table 31 listed indices derived from confusion matrix (from Table 28 to 32). All 

Taiwan Hemlock species presence data set Vall predicted the most widely spatial range 

of Taiwan Hemlock with a high value of sensitivity (0.77) and specificity (0.94) and 

with the highest the Kappa statistic. That meant 77 % of Taiwan Hemlock presence 

localities were successfully predicted presence and 94% of Taiwan Hemlock absence 

localities were also successfully predicted absence. The sub-units of Taiwan Hemlock 

vegetation type were all predicted too constrain area and thus decline the sensitivity for 

each predicted map. The best sensitivity was at V2 vegetation map and the best 

specificity appeared at V2, V3, and V5 (with specificity 0.99). Because the predicted 

range of sub-unit vegetation types were so limited that there was a very high rate of 

predicting absence successfully and leaded to a high value of specificity. The smallest 

predicted area of the maps is V5 because it had only 4 occurrence samples of the 

sub-unit vegetation type. Vall map was also had the highest value of positive predicted 

power (PPP = 0.57) because it predicted more true positive localities than other 4 

vegetation maps. On the other hand, 5 vegetation maps predicted relative the same true 

negative localities and gained with high value of negative predicted power (NPP). 
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Table 26. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by Vall with 

threshold equals to MaxKappa. 

  actual 

  presence absence 

predicted 
presence 313 235 

absence 95 3535 

 

Table 27. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V1 with 

threshold equals to MaxKappa. 

  actual 

  presence absence 

predicted 
presence 47 202 

absence 85 3817 

 

Table 28. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V2 with 

threshold equals to MaxKappa. 

  actual 

  presence absence 

predicted 
presence 53 105 

absence 148 3872 

 

Table 29. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V3 with 

threshold equals to MaxKappa. 

  actual 

  presence absence 

predicted 
presence 17 61 

absence 27 4073 
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Table 30. Confusion matrix of potential natural vegetation map of Taiwan Hemlock by V5 with 

threshold equals to MaxKappa. 

  actual 

  presence absence 

predicted 
presence 1 30 

absence 3 4144 

 

Table 31. Indices derived from confusion matrix of potential natural vegetation map of Taiwan Hemlock 

with threshold equals to MaxKappa. 

Type Sensitivity Specificity PPP NPP Odds-ratio Kappa Predicted Area (km2)

Vall 0.77 0.94 0.57 0.97 49.56 0.61 3780 

V1 0.26 0.97 0.34 0.96 13.21 0.26 1800 

V2 0.39 0.99 0.22 0.99 42.04 0.27 960 

V3 0.25 0.99 0.03 1 46.04 0.06 360 

V5 0.25 0.99 0.03 1 46.04 0.06 240 

Note: PPP: Positive Predicted Power; NPP: Negative Predicted Power
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Figure 23. Potential vegetation map of Taiwan Hemlock with threshold equals to MaxKappa and 4 

sub-units of Taiwan Hemlock vegetation types (V1, V2, V3, and V5). 
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Chapter 5: Discussion 

 

5.1 Vegetation Analysis 

 

Vegetation analysis grouped Taiwan Hemlock presence localities into 6 main 

composition of vegetation type. Taiwan Hemlock species centered on the DCA plot and 

displayed some attributes that match the field experience. First, Taiwan Hemlock and 

Taiwan Fir dominance V3 vegetation type is far away from the rest 5 groups and 

indicated that this vegetation type would not mix with the vegetation type of the farthest 

distance groups V1 and V6 which represented Taiwan Hemlock and Taiwan Cypress 

dominance and Taiwan Hemlock and Taiwan Yellow Cypress dominance vegetation 

type respectively. And beside, V3 group on the DCA plot gathered like a line and it 

indicated the pure stand composition of Taiwan Hemlock-Taiwan Fir vegetation type 

and this result could indirectly supported by Chen (1995) introduced 3 kinds of 

vegetation type of Taiwan Fir classified by Sen (1937) companied with Taiwan 

Hemlock tree species. On the other hand, V1 might mix with some near groups on the 

DCA plots like V2, V4 and V5 and revealed that they were at similar elevation range 

because the first 2 axes was relative to the elevation gradient. V4 was also concentrated 

on the center of the DCA plot like V2 did and that was a interesting result that indicating 

they were also stay at similar elevation but not specifically close to any other vegetation 

type. One reasonable explanation is V4 belongs to V2 but suffered some disturbance and 

the pioneer pine species gathered in. The results of Maxent model was also predicted 

well of distribution of V2 vegetation type. 
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5.2 Analysis of Species-Environment Relationship 

 

Environmental variables are extracted from GIS environmental grid layers to field 

surveys points. This extraction could cause uncertainty because of little difference when 

synthesize and transform points to layer models from different ordinations. The results 

show that each approach selects its own environmental variable group which is the most 

variant to Taiwan Hemlock localities. Correlation analysis avoids the problem of co 

linearity and reduces the numbers of highly relative predictive variables. This approach, 

however, does not provide the relationship between species and environmental layers. 

 

The results of PCA reveal traditionally statistical analysis could not handle the 

non-linear distribution of so many environmental variables, whereas some 

environmental variables are chosen to represent the most variant environmental 

variables to Taiwan Hemlock. Component 1 and 2 of PCA can explain about 50% 

variation of the data. The ordination of the data for PCA shows the cluster-like 

ordination of data points and means none specific variable spread out in the axis 1, 2, 

and 3. Moreover, the first component of PCA represents the most variant axis of the 

data but is not necessarily relative to or limiting species’ distribution. The second 

component of PCA (composite of temperature and precipitation factors) had a higher 

contribution to the distribution of Taiwan Hemlock than component 1. 

 

The results of CART and CIT showed two different ways of environmental 

variable selection. CART chooses elevation for the early splits and almost all other 

topographical and climatic variables for further splits (except slope, curvature and plan 
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curvature, precipitation of winter and month mean precipitation). CIT on the other hand, 

split by elevation only and was the most important environmental variable to the 

distribution of Taiwan Hemlock because the variable split by CIT separates two groups 

with significant difference. This result indicates that CART has the ability to distinguish 

as detailed homogeneous groups as if sufficient variables are given. CIT, however, has 

the ability to choose the variable that split node with more homogenous offspring 

groups significantly different with mother group. 

 

5.3 Environmental Variables to Taiwan Hemlock and Model 

Assessment 

 

Kappa statistic yields similar results to the AUC (Guisan et al., 2007) as well as the 

result of this study. According to Swets (1988), AUC values greater than 0.9 are 

considered with high accuracy, in range from 0.7 to 0.9 are considered as useful, and 

lower than 0.7 though of poorly. In this study, the first rank group of environmental 

combination for AUC evaluation included the ALL, CA, CART, CIT, and PC2 and 

elevation variable was always contained by each environmental variable combination. It 

indicates that elevation variable is the most important environmental variable to 

distribution of Taiwan Hemlock in this study. The only elevation variable chosen by 

CIT method reached AUC value to 0.96 and it was vary well performance of the 

predicted. However, the result of inputting environmental variables chosen by CIT 

might over predict at the alpine area because of lacking of test samples so the AUC is 

still high in this situation. CART, on the other hand, avoid this problem of predicting 

Taiwan Hemlock presence over all alpine area. The first environmental variable splits of 
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CART was also elevation and that split reduced the most of the variance of the offspring 

groups and it implied the same signal that elevation is the most important environmental 

variable for splitting Taiwan Hemlock species into sub unit vegetation type. The 

environmental variable far from the root of the tree is minor to contribute for reducing 

the variance (i.e. relatively lower contribution to the predicted model). This situation 

was also proved by the contribution of environmental variable to the Maxent model 

(Table 24). In this study, therefore, precipitation is the second important environmental 

variable for Taiwan Hemlock. The topographic variables were not as important as the 

former 2 variables for Taiwan Hemlock distribution. The maximum AUC of the 

environmental variable combination is CIT and then ALL, CART, CA, PC2, PC1 and 

then PC3 orderly. CIT combination used the fewest environmental variables to achieve 

the best model performance but only can conclude CIT combination is the best fit for 

Maxent modeling and had the ability to discriminate between a suitable environmental 

condition and a random absence rather than suitable and unsuitable conditions 

(Hernandez et al., 2006). Although many studies used of Kappa statistic for measuring 

model performance, Kappa is a threshold dependent statistic that calculated the 

proportion of correctly classified units (A+D) in confusion matrix after accounting for 

the probability of chance agreement. As threshold is larger tends to decrease 

commission error and increase omission error (Fielding and Bell, 1997) and affects the 

Kappa statistic. AUC measured with full information provided by all possible 

thresholds (Pearce and Ferrier, 2000) and more informative than Kappa statistic in a 0.5 

threshold. Hernandez et al. (2006) described that multiple evaluation measures were 

suitable for evaluating the model performance with presence only-data. 
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Maxent performed well if suitable environmental variables were puts into it. 

CART and CIT successfully analyzed and chose the most effective environmental 

variable to the distribution of Taiwan Hemlock and this approach is useful while too 

many irrelative environmental variables are available. 

 

Lobo et al. (2008) described five drawbacks of AUC assessment including (i) AUC 

is discriminant assessment and ignores predictive probability values and goodness-of-fit 

of the model, (ii) it summaries the test performance which one would rarely operate, (iii) 

it weights both omission and commission errors equally, (iv) it does not offer 

information about the spatial distribution of model errors, and (v) well predicted 

absences and the AUC scores area influenced by the total extent. This study used the 

equal number of presence and absence localities while testing the model to avoid the 

fifth point stated by Lobo et al. They also concluded that AUC provides information 

about the generalist or restricted distribution of a target species along with specific 

environmental variables in the study area, but does not provide information about the 

good performance of the model (Lobo et al., 2008) and that means model uncertainties 

will not be considered by AUC. One purpose of this study is to predict the spatial range 

of Taiwan Hemlock and AUC provides a good discriminant between presence and 

absence localities. 

 

5.4 Vegetation and Species Based Units and Map Resolution 

 

Vegetation units derived form all occurrence data of Taiwan Hemlock is a special 

case to the sample size reduction. Hernandez et al. (2006) concluded Maxent was more 
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capable to model and produced useful results while data was incomplete or sample size 

is as small as 25 or even lower (smallest 5 samples in their study) and model accuracy 

was better to the species with small range in geographic distribution and limited 

environmental tolerance. The sample size effect on vegetation (smaller sample size) and 

species (total sample size) of this study demonstrated the similar results as the 

Hernandez et al. (2006). Pearson et al. (2007) described vary low sample sizes (as low 

as five records) to a fixed Maxent probability value of 10 to significantly recover all 

known presences. In the same context, a lower Maxent value was useful in revealing 

uncertain but potentially important distributional ranges. V3 with the smallest sample 

size resulted in that perfect accurate in AUC measure (valued to 0.98) compared to the 

rest (AUC of V1, V2, V3 and Vall are 0.96, 0.95, 0.96, and 0.96 respectively).  

 

As motioned above, resolution environmental variables and background pixels is 

really influential to the model performance? The result of this study does not support 

the statement that resolution of environmental variable and background cells is 

influential to the distribution of Taiwan Hemlock in 40, 100 and 1000 m resolution.  

 

5.5 Combination of Models for Predicting Vegetation Map 

 

Although combining models reaches out the optimization of each model algorithm 

and reduces model based uncertainties (Clemen, 1989; Gilmer, 2008), some risk of 

combining models with less accuracies predictions are needed to consider. In this study, 

4 vegetation sub-unit based models with different sample size smaller than the whole 

occurrence data of Taiwan Hemlock classified by cluster analysis had a higher accurate 
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prediction, would it be the effects of small sample to the AUC (Hernandez et al., 2006). 

Because the V1, V2, V3 and V5 are partial samples of Vall and the good performance of 

each sub-unit model predicted probability value higher at surrounding grid cells.  

 

Maxent was not yet clear how significant were the differences between various 

probability distribution values (Phillips et al., 2006); as such, the difficult task to the 

user of selecting the appropriate threshold, below which the model may loose predictive 

power and become too general (Pape and Gaubert, 2007). Pearson et al. (2007) 

addressed the threshold issue of small samples available for ENM. The acceptable 

threshold value depends on the purpose: if the interest is in observing general 

distributional patterns, then a ‘free’ threshold is suitable (i.e. over-predicting is 

informative). When conservation applications, however, are of principal interest, a 

‘conservative’ threshold is more adequate (i.e. over-predicting is not suitable) (Pape and 

Gaubert, 2007). Although in this study selected the threshold by the threshold that gave 

the maximum of Kappa statistic, too many absence localities limited the threshold to be 

more conservative to presence localities because if a liberal threshold was selected, too 

many absence localities would be predicted presence incorrectly. And the threshold 

affected the potential maps of each sub-unit vegetation type and limited the predicted 

area of each map resulting in a conservative prediction of potential vegetation map of 

Taiwan Hemlock. Thus, lower sensitivity were appeared in each map evaluation but 

specificity performed well for evaluating each vegetation map. 

 

Confusion matrix of each vegetation map was high at specificity because too many 

of absence localities to be correctly predicted. Some problem with so many absence data 

because if too many absence data, there was easy to predicted all localities absence and 
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would get not bad model performance. Another question is the realized niche we 

observed is not necessarily the whole environment that suitable for the target species 

and maybe geographical limitation leaded the suitable environment without the target 

species. Therefore, too many absence localities will constrain the potential area and 

decline the model performance. On the other hand, if too few absence localities were 

used, it would come up with a liberal threshold selection and over-predict the map for 

more information (Pape and Gaubert, 2007). 

 

Why predicted area is so important because of the low prevalence of the data (i.e. 

absence localities are much greater than presence). An error rate of wider predicted 

range might cause in many commission errors than a limited predicted range which 

might cause in fewer omission error. The reason is too many absence localities can 

cause more error rate where a relative few presence localities is not able to reach. For 

conservative perspective, if the vegetation map of Taiwan Hemlock generated in this 

study is able to distinguish 77% of all Taiwan Hemlock presence localities, the 

predicted area is conservatively suitable for Taiwan Hemlock. On the other hand, the 

predicted area for Taiwan Hemlock sub-unit vegetation map is more conservatively 

constrained or limited each vegetation sub-unit of Taiwan Hemlock. 
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Chapter 6: Conclusion 

 

Taiwan Hemlock concentrates in range from 2000 to 3100 m in elevation, 2000 to 

3100 mm in annual precipitation, and 25 to 40 degrees in slope and consists of 4 main 

vegetation type, Taiwan Hemlock-Taiwan Cypress-Taiwan Yellow Cypress dominance, 

Taiwan Hemlock-Pine species dominance, Taiwan Hemlock-Taiwan Fir dominance, 

and Taiwan Hemlock-Taiwan Spruce dominance vegetation types. The classification is 

response to the environmental variables mainly by elevation and warmth index which is 

highly relative with elevation. Whether CART, CIT or Maxent method chose the 

elevation variable for representing the characteristics of distribution of Taiwan Hemlock. 

Other variables used in this study were minor to affect the distribution of Taiwan 

Hemlock.  

 

The analysis of species distribution and environmental relationships reveals the 

extrinsic effects on species’ distribution. None of the best model is defined as the 

universal tools for predicting species distribution, however, the attempt to analysis those 

relationships gives the implication of how the species reacts to any environmental 

disturbance and where does the species can escape from this impact of changes. Clemen 

(1989) concluded model combination as: 

 

“Combining forecasts has been shown to be practical, economical and useful. 

Underlying theory has been developed, and many empirical tests have demonstrated the 

value of composite forecasting. We no longer need to justify this methodology. We do 

need to find ways to make the implementation of the technique easy and efficient.”  
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The analysis of the relationship between species and environmental variables is 

quantified by many new approaches rather than using just a traditional statistical 

analysis. Machine learning methods jump over the traditional method due to the 

multi-consideration of the algorithm with modern computer intensive ability to analyze 

more precisely prediction. Many tasks of SDM discussed in this study such as how to 

select appropriate environmental variables, if more homogeneous samples affects the 

selection of environmental variables?, and resolution of the environmental layers and 

the cell space to be predicted. However, restricted to the unavailable data quality, the 

accuracy of the SDM still needs to be revised by actually examined by a specific 

experiment on id the potential environmental condition really suitable for the target 

species or the potential predicted area is really suitable for planting or growing of the 

target species? Although nowadays the predicted modeling is widely spread the model 

needs more experiments by further study to support the PVM. 

 

Maxent performed well if suitable environmental variables were puts into it. 

CART and CIT successfully analyzed and chose the most effective environmental 

variable to the distribution of Taiwan Hemlock and this approach is useful while too 

many irrelevant environmental variables are available. 

 

Combining model approach makes the SDM and its relevant model such as ENM 

more flexible to apply in a specific purpose. However, it still need further study for 

completing it and encourages the recent scientists to have the foundation to establish 

new combination approaches, as in this study pays efforts on changing combination 

target from model techniques to species and vegetation units, which is followed the 
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plant community conception. How can ecological theory help the model performance of 

accuracy is still needs further study, however, this research gives an initial implication 

and hopes for more interesting ideas. 

 

For conservation management, further alpine ecological researches are needed in 

Taiwan to adapt the climate change impact. A physical based model is the possible 

approach to improve the cons in the statistic models, i.e. the parameters are still robust 

under the climate change? 
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