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中中中文文文摘摘摘要要要

在本篇論文中，我們以基因演法算來設計繞射光學元件。在所使用的演算法中，為

了深入瞭解交配機制，我們排除突變機制的影響，並且提出了一種新式的交配運算子。

在設計此新式的交配運算子時，我們利用了繞射光學元件具有明確目標光場圖形的性

質，因此，我們亦將其命名為「目標圖形導向交配運算子」。藉由利用目標光場圖形，

此運算子能夠刺激整個族群，提供演化時的動力。

在本論文中，我們探討了該運算子的特性。藉由使用不同的初始族群，我們驗證了

該演算法對初始條件的強韌性。我們觀察到繞射效率及均方根誤差的快速收斂性質；同

時，我們也發現在訊雜比的演化需要較多的世代數。另外，在演化結束後，我們發現在

整個族群的個體表現上，繞射效率與訊雜比無法達到同時優化，而必須在其中一者有所

犧牲。

我們將所提出的方法應用於二階、多階及連續相位調變繞射光學元件的設計上。我

們也針對了以本方法所設計出來的結果，與其他演算法的結果進行比較。例如，與疊代

傅立葉轉換演算法與簡單型基因演算法的結果比較。在與使用不同突變率之簡單型基因

演算法的比較上，我們提出的演算法可以在 5,000世代時達到相似的結果，這相當於只

需要簡單型基因演算法 20分之 1的世代數。而在與疊代傅立葉轉換演算法的比較上，

本方法所得結果的繞射效率與均方根誤差與其相似，並且訊雜比可以達到 2倍以上。
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Abstract

In this thesis, a method is proposed to design the diffractive optical elements (DOEs),

in which the genetic algorithm (GA) is used with a novel crossover operator. The mutation

mechanism is excluded from the method. The novel crossover operator is derived by

taking advantage of the existence of the well-defined target in the DOE design and it

is therefore entitled the TArget-oriented CrossOver (TACO) operator. By utilizing the

target property in the DOE design, the TACO operator stimulates the evolution of solution

toward the global maximum in the solution space.

The properties of the TACO operator are studied. The robustness against different

intial populations is verified. The fast convergence of efficiency and root-mean-square

error (RMSERR) is observed. On the other hand, the growth of signal-to-noise ratio

(SNR) is relatively slow. The trade-off between the efficiency and the SNR of the final

population is also observed.

The proposed method is applied to the design of the binary, multi-level, and contin-

uous phase DOEs. The performance is compared with that of other optimization algo-

rithms, such as the iterative Fourier transform algorithm (IFTA) and the simple genetic

algorithm (SGA). Compared with the SGA using different mutation rates, the proposed

method yields comparable results within a total of 5,000 generations, only 1/20 of that

used in the SGA. Also, the efficiency and the RMSERR of the result yielded by the pro-

posed algorithm are comparable to the IFTA, while the SNR is twice as high as that of the

IFTA.
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Chapter 1

Introdcution

1.1 Diffrctive Optical Elements (DOEs)

Literally, a DOE is an optical device which utilizes the diffraction nature of light wave

to produce the desired light field. By “diffraction”, “any deviation of light rays from

rectilinear paths which cannnot be interpreted as reflection or refraction” is meant, as

defined by Sommerfeld [1].

To accomplish the task of distributing the light field in a desired way, the size, the

material and the surface profile of DOEs need to be carefully designed and chosen. For

example, the feature size must be compatible with the wavelength for the diffraction phe-

nomenon to have significant effect. (Here, “feature size” means “the size of the minimum

aperture of the DOE”, as shwon in Fig. 1.1) The refractive index of a material should be

properly selected to provide the desired optical path difference (OPD). Also, the surface

profile has to be carefully calculated and arranged periodically, for instance, in order to

produce the desired diffraction order of the light.

There are many ways to catagorize the DOEs, and one of them is by the way of

1



Incident Wave

DOE

Feature Size

Figure 1.1 Feature size of a DOE

modulation. According to the modulation methods, DOEs can be catagorized into the

phase modulation DOEs and the amplitude modulation DOEs. The difference between

the two kinds of DOEs is that for amplitude modulation DOEs, the amplitude of the

incident wave is absorbed or reflected by the DOEs. The phase modulation DOEs, on ther

other hand, will change the phase and allow the amplitude after the DOEs to be the same

as the incident light, theoritically. Therefore, the phase modulation DOEs have higher

diffraction efficiency than the amplitude modulation DOEs.

The history of design of DOEs may be dated back to that the Fresnel zone plate was

designed by Rayleigh. As the advance of the modern computation technology, the com-

plex phase or amplitude modulation information can be calculated and encoded on a trans-

parency, such as computer generated holograms (CGHs).

Further, thanks to the advanced semiconductor process technology, multi-level quna-

tized DOEs can be realized to approach the continuous profiles which are difficult to man-

ufacture under the size of the wavelength. The semiconductor process technology also

makes the manufacture of the pixel-wise encoded kinoforms easiler. Figure 1.2 shows the

different kinds of DOEs.

2



Diffractive Optical Elements

Holographic Optical Elements

Computer Generated Hologram Kinoform

Binary Optics

Figure 1.2 Catagory of DOEs

There are many applications of DOEs, from imaging systems to beam shaping of

lasers [2]. For example, a laser beam with a uniform field distribution is sometimes needed

in applications such as microlithography [3]. The illuminators may utilize DOEs to ho-

mogenize the input laser beam with the Gaussian profile into a flat-top output beam [4,5].

Figure 1.3 shows the schematic diagram of the application of DOEs to beam shaping of

lasers.

1.2 Design of DOEs

The fundamental theory of DOEs is the diffraction theory, which predicts the prop-

agation of wave when light passes through the free-space system containing the DOEs.

The formalism of the diffraction theory can be derived from the Maxwell’s equations and
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Figure 1.3 Schematic diagram of beam shaping of lasers

the may possess different complexity, depending on the feature size of the DOE and the

wavelength of the incident light. In the paraxial region, the formulation can be simplified

while giving results with sufficient accuracy. Usually the scalar diffraction theory will be

adequate. However, in a real DOE design problem, except for the analytical-type DOEs, it

is not possible to realize the calculation in an analytical way. Instead, modern computers

together with numerical methods are used to carry out these tasks.

Besides the diffraction theory, an optimization method is needed in order to design

the DOEs with desired performance. Some methods use algorithms which unidirection-

aly conduct the transformation from incident field to target field, such as direct binary

search (DBS) [6, 7] and simulated annealing (SA) [8, 9] algorithms. On the other hand,

there are algorithms which transform the incident field and the target field bidirectionally,

such as Gerchberg-Saxton (GS) algorithm [10], which is also known as iterative Fourier

tansformation algorithm (IFTA).

There are other algorithms which sort to the random process in such a way that the

whole process emulates the evolution of natural species, namely “survival of the fittest”
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proposed by Darwin. Genetic algorithm (GA) [11] is the most well-known method of this

kind.

Although the fundamental theory is the same for all kinds of DOEs, the optimiza-

tion methods to design DOEs are chosen according to the applications and the desired

performance.

1.3 Motivation

The theory and application of GA has been widely studied since its debut in the late

1960s. There are several merits of optimization using GA. For example, the implementa-

tion of GA is readily to be parallelized, which then reduces a great amount of search time.

Also, the feature of parallelization enables GA to search in multiple points of the solution

space for the global optimum. These merits make GA a superior optimization algorithm

and apply GA widely to different areas.

The study on DOE design using GA is relatively less compared with other methods

such as IFTA. The application of GA and the combination of GA and SA in DOE design

have been reported [11,12]. There are studies on how the crossover and mutation mecha-

nisms affect GA in DOE design [13, 14]. In [13], it is concluded that, without mutations,

the regular crossover patterns only had limited effect on the growth of performance. On

the other hand, although the mutation mechanism enhances the searching of the global

optimum, the expense of computation resource is inevitable [14].

To further increase the performance of GA in DOE design, in this thesis, the GA used

in [13] will be improved for DOE design. In particular, a method is proposed in which

a novel crossover operator is used in the GA instead of the regular exchange crossover

pattern and the mutation mechanism. The proposed method results in the DOE profiles
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with superior performance in a relatively short time.

1.4 Thesis Orginization

In this study, the output diffractions in the optical far field of the DOEs are calculated

by the scalar diffraction theory which is briefly illustrated in Chapter 2. Based on the

far-field diffraction formula, the numerical model of DOEs in the optimization processer

is described. In particular, the encoding of DOEs and the relative parameters and merit

functions for evaluating performance of DOEs are discribed. Chapter 3 introduces the ba-

sis and implementations of GA, including the fundamental operators and the several kinds

of implementations. The results of the algorithm used in [13] and [14] are summarized. In

Chapter 4, the proposed crossover operator, entitiled Target-Oriented CrossOver (TACO)

operator, is derived. The relative parameters used in the algorithm with the TACO opera-

tor are determined. The simulation results of DOEs designed by the proposed method are

presented in Chapter 5. These results are compared with the results of DOEs designed

using IFTA. Finaly, the conclusion of this thesis and possible future study direction will

be given in Chapter 6.
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Chapter 2

Fundamental Theory of

DOEs—Diffractive Optics

2.1 Diffraction Theory

The diffraction theory begins from Maxwell’s equations. Depending on the complex-

ity of the problem, the formulation may have different appearances, which are essentially

divided into two mainstreams, namely the vector theory and the scalar theory. In the

design of DOEs, the feature size of the DOEs and the distance between the observation

plane and the DOEs play an important role in deciding whether the vector theory or the

scalar theory is used.

When the feature size of the DOEs is smaller than the magnitude of a wavelength of

the incident wave or the near field after the DOEs is of interest, the vectory theory which

sorts to rigorously solving the Maxwell’s equations is needed to calculate the diffractive

field. On the other hand, when the diffracting aperture is much larger than the wavelength

of the incident wave and the observed output diffrated field is far from the aperture, the
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analysis can be further simplified and the scalar theory yields accurate results. [15]

In the thesis, the target plane of the DOEs illuminated by a monochromatic coherent

light with uniform amplitude is in the optical far field, and therefore the scalar theory

can give accurate predictions. The formulation of the scalar theory is described in the

following sections.

2.1.1 Huygens-Fresnel Principle

The fundation of the scalar diffraction theory is the Huygens-Fresnel principle. As

shown in Fig. 2.1, the diffracting aperture Σ lies in the ξ–η plane and the output diffrac-

tive field is to be observed on the x–y plane. According to the Rayleigh-Sommerfeld

diffraction formula [15], the Huygens-Fresnel principle can be expressed as

U(P0) =
1
jλ

�

Σ

U(P1)
e jkr01

r01
cos θds, (2.1)

where U(P0) and U(P1) represent the fields after the aperture and the diffractive field,

respectively, and λ is the wavelength of the monochromatic wave. It should be noted that

the expression of (2.1) is for monochromatic waves only, which is the basic assumption

of this thesis. In (2.1), cos θ can be expressed by the distance between source point P0

and field point P1 and the distance between ξ–η plane and x–y plane:

cos θ =
z

r01
. (2.2)

Therefore, (2.1) can be written into

U(x, y) =
z
jλ

�

Σ

U(ξ, η)
e jkr01

r2
01

dξdη, (2.3)

with

r01 =
√

z2 + (x − ξ)2 + (y − η)2. (2.4)
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Figure 2.1 Geometry for explanation of the Huygens-Fresnel principle

2.1.2 Fresnel Diffraction

The Huygens-Fresnel priciple expressed in (2.3) can be simplied under certain con-

ditions into the Fresnel diffraction. First, for z � (x − ξ) and z � (y − η), one can

approximate r01 using binominal expansion with the first two terms such as

r01 ≈ z

[
1 +

1
2

( x − ξ
z

)2
+

1
2

(y − η
z

)2]
. (2.5)

Upon substituting (2.5) into (2.3), it should be noted that r01 appears two times in

(2.3), and it is not necessary that both of them be replaced with (2.5). For the r2
01 term,

considering its appearing in the denominator and the effect of square, it is obvious that

the effect of the error is so small that the result will be the same if one just replaces

r01 with z. For the r01 in the phase term, the error arising from substituting z for r01

is more sensitive and needs more care. This is caused by the multiplying of r01 by the

wave number k. The value of wave number k is usually of the order of 107 1/m for the

visible light and amplifies the error by the same order accordingly. Besides, the value of

exponetial may change greatly even with a little change of the phase. Therefore, instead of

merely replacing r01 in the phase term with z, (2.5) is used in order for sufficient accuracy.
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Then, the substitution yields

U(x, y) =
e jkz

jλz

∞�

−∞
U(ξ, η)e j k

2z[(x−ξ)2+(y−η)2]dξdη. (2.6)

Further, by factoring the term e
jk
2z (x2+y2) out of the integral, (2.6) is written into

U(x, y) =
e jkz

jλz
e j k

2z (x2+y2)

∞�

−∞

{
U(ξ, η)e j k

2z (ξ2+η2)
}
e− j 2π

λz (xξ+yη)dξdη, (2.7)

which, as well as (2.6), is referred to as the Fresnel diffraction integral. The detail analysis

of the accuracy of the Fresnel approximation can be found in [15].

2.1.3 Fraunhofer Diffraction

To further simplify (2.7), we assume that the far field condition is satisfied such that

z� k(ξ2 + η2)max

2
. (2.8)

Under this condition, the quadratic phase factor e j k
2z (ξ2+η2) in the integral of (2.7) is further

canceled out. This yields the Fraunhofer approximation as

U(x, y) =
e jkz

jλz
e j k

2z (z2+y2)

∞�

−∞
U(ξ, η)e− j 2π

λz (xξ+yη)dξdη, (2.9)

which is directly proportional to the Fourier transform of U(ξ, η) by introducing the vari-

ables fx and fy by

fx =
x
λz

and (2.10)

fy =
y
λz
. (2.11)

Then (2.9) can be written to

U(x, y) =
e jkz

jλz
e j k

2z (z2+y2)F {U(ξ, η)}
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐ fx= x

λz , fy=
y
λz

, (2.12)

where F {U(ξ, η)} denotes the two-dimensional Fourier transform of U(ξ, η).
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In this thesis, the diffractive field generated by the DOE is assumed to be in the far

field, which can be easily realized by inserting a lens between the DOE and the obser-

vation plane such that the DOE and the observation plan are located at the focal plane

in front and behind the lens, respectively [15, 16]. Therefore, in the algorithms of the

following chapters, the diffractive field will be calculated using formulae based (2.12).

2.2 Modeling of DOEs in Numerical Methods

The design of DOEs needs the use of a powerful computer and a proper numerical

method in the optimization of the DOE performance. Thus, the modeling of DOEs in

the numerical methods and the corresponding description of the diffraction formula as

introduced in the previous sections are essential. These modeling methods are discussed

in this section.

2.2.1 Multi-level Phase Modulation DOEs

The phase or the amplitude modulation of the incident wave provided by a planar

DOE can be represented by a transmittance function

t(ξ, η) = A(ξ, η)e jφ(ξ,η), (2.13)

where A(ξ, η) and φ(ξ, η) denote the amplitude and the phase modulation, respectively.

Since the amplitude modulation DOEs will absorb or reflect some of the incident wave,

insofar as the efficiency is concerned, it is usually desirable to design and use the phase

modulation DOEs, which provide a theoritically lossless transformation. That is, the

transmittance function has an amplitude of unity and can be written as

t(ξ, η) = e jφ(ξ,η). (2.14)
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Thus, the field U ′i (ξ, η) immediately behind the DOE is the product of the transmittance

function and the incident field Ui(ξ, η) such as

U′i (ξ, η) = Ui(ξ, η)t(ξ, η), (2.15)

= Ui(ξ, η)e
jφ(ξ,η), (2.16)

= |Ui(ξ, η)| e j(φi(ξ,η)+φ(ξ,η)). (2.17)

It should be noted that for the above (2.15) to (2.17) to be applicable, the DOE is as-

sumed to be thin enough so that it satisfies the “thin-lens” approximation. The “thin-lens”

approximation requires that, for a ray passing through the DOE, the entry point and exit

point of the ray have almost the same trasverse coordinates (ξ, η), namely the translation

of the ray inside the DOE can be neglected [15]. This assumption is easy to understand if

one reflects on the boundary conditions imposed by the Maxwell’s equations. For DOEs

made of dielectric materials, which is usually the case, the Maxwell’s equations require

the tangential components of the field to be continuous across the boundary. This will in

turn cause the distortion of the field inside the DOEs. However, when the DOEs are not

too thick for the distortion to spread out from the boundary to the whole field, the field

immediately behind the DOEs will has similar distribution with the incident field [16],

except for the phase retardation provided by the DOEs.

The DOEs need to be thin enough, usually no thicker than one wavelength, to sat-

isfy the “thin-lens” appoximation. To do so, it is essential to realize the fact that for a

certain phase difference, it makes no difference in effect if a multiple of 2π is added to

or subtracted from it. Hence, for any desired profile of phase difference, one can always

make the thickness of the DOEs less than one wavelength by subtracting a multiple of

wavelength from the original profile and still keep the resulted phase difference the same.

On the other hand, it is usually difficult to manufacture the continuous profiles under
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the scale of the wavelength of visible light. However, modern semiconductor process

technology enables us to approach the continuous profiles by discontinuous multiple level

profiles. The discontinuous multiple level profiles are made by quantizing the original

continuous profiles into levels of order of power of 2, each of which provides a phase

difference of φmax/M, where M is the number of levels and φmax is the max phase differece

provided by the original profiles. Figure 2.2 shows the DOE equivalence, the binary and

the four-level quantization processes of a continuous thick device.

Considering the efficiency issue and the real manufacturing process of DOEs, the

following parts of this thesis discusses the design of the DOEs with quantized multi-level

phase modulation profiles.

2.2.2 Encoding of the Multi-level Phase Modulation DOEs

To model a multi-level phase modulation DOE in numerical methods, it is convenient

to consider it as a phase transmittance function represented by a matrix. By the matrix,

the planar DOE is discretized into m × n zones or pixels, where m and n denote the

size of matrix. In each element of the matrix, the phase modulation information of the

corresponding pixel of the DOE is recorded, for example, 1, e jπ/4, e jπ/2 and e j3π/4 for a

four-level DOE. Similarly, the incident wave can also be discretized and represented by

a matrix of the same size, each element of which records the amplitude and phase of the

field at the corresponding coordinate.

Provided with the matrices of the incident wave and the DOE, the field immediately

behind the DOE is obtained by element-to-element multiplication of the incident wave

matrix and the DOE matrix. Figure 2.3 shows the encoding matrices of the incident field,

the DOE, and the output diffractive field.
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Figure 2.2 The DOE equivalence and quantization processes of a continuous thick profile
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Figure 2.3 Encoding matrices of the incident field, the dOE and the output diffractive field

After the field immediately behind the DOE is calculated and encoded, the far field is

calculated by the Fraunhofer approximation. The expression of (2.12) , however, neces-

sitates a calculation of Fourier transform of the field immediately behind the DOE. Since

the field has been discretized and encoded by a matrix, the discrete Fourier transform

(DFT) is used [17] to calculate the matrix of the far field.

Also, because it is the field intensity that is detected by the detectors or human eyes,

the intensity |U(x, y)|2 is of concern, rather than U(x, y). Therefore, the factor e jkz

j e j k
2z (x2+y2)

in (2.12) has no contribution to the intensity. In addition, the term 1
λz is just a real constant

since the incident wave is monochromatice coherent light and only the far field of the DOE

is to be observed. Thus, insofar as the far field intensity is concerned, it is reasonalbe to

use DFT to transform the field behind the DOE to the far field and neglect the factors in

front of the integral in (2.12). Figure 2.4 shows the relation between the field after the

DOE and the far field.
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Figure 2.4 Relation between the field behind the DOE and the far field

2.2.3 Evaluation of Performance of DOEs

There are many indices or parameters to evaluate the quality of the field or image

reconstructed by the DOEs. Here, the diffraction efficiency, the root-mean-square error

(RMSERR), and the signal-to-noise ratio (SNR) are introduced and used to evalutate the

performance of the DOEs designed in this thesis.

In the following definitions, the integral range S and N denote the signal region and

the noise region of the field reconstructed by the DOEs, respectively. By signal region,

the area defined by the target field is meant. The area outside this region is referred to as

the noise region. U(x, y) and Ut(x, y) represent the complex amplitude of the reconsructed

field and the target field, respectively. The definitions are as the following.

• Efficiency

Efficiency ≡

�
S

|U(x, y)|2dxdy

�
S+N

|U(x, y)|2dxdy
. (2.18)

The efficiency depicts how much energy is confined inside the signal region. The

higher the efficiency, the more energy diffracted by the DOEs contributes to the
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desired image.

• Root-mean-square Error

RMSERR ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
S+N

{|Ut(x, y)|2 − |U(x, y)|2}2dxdy

�
S+N

|Ut(x, y)|4dxdy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

. (2.19)

The RMSERR evaluates the similarity between the reconstructed field and the de-

sired image. The lower the RMSERR, the more the reconstructed field is close to

the desired image.

• Signal-to-Noise Ratio

SNR ≡
min

S
|U(x, y)|2

max
N
|U(x, y)|2 . (2.20)

The SNR shows the ratio of the smallest intensity in the signal region to the largest

intensity in the noise region. Therefore, an SNR of larger than unity indicates that

the intensity in each pixel forming the output diffractive field is larger than any of

the noise.

In the design of DOEs, the resulted DOEs seldom possess good efficiency, RMSERR

and SNR simultaneously. In most of the cases, chances are the optimization of one pa-

rameter causes the degradation of others. For example, if only the efficiency is optimized,

the RMSERR or the SNR may degrade to an unacceptable level [18]. Therefore, the merit

of optimization has to be selected carefully. Alternatively, instead of a single parameter,

a combination of several parameters with different weightings can be used to be the merit

of optimization. The resulted combination is usually called the fitness or merit function.

There are other parameters, such as the Strehl ratio and the space-bandwidth product

(SBWP). For more details, readers are referred to [2] and [18].
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Chapter 3

Optimization Methods for DOE

Design—Genetic Algorithms (GAs)

Since the debut in the 1960, GAs have been evolved dramatically, theoretically or

practically, from the original genetic plan by Holland in 1959 [19] to the first application

by Goldberg in 1983 [20]. In this chapter, the fundamental operators of the GAs and their

implementations are described first. Then the application of GA to the DOE design is

introduced.

3.1 Genetic Algorithms

The basic concept of GAs lies in the natural phenomenon called “the survival of the

fittest.” Hence, the whole algorithm can be viewed as a miniature version of the evolution

process of natural species.

The algorithm starts with an initial population. Each individual in the population

shows its adaptation or fitness to the environment. The more adaptable to the environ-

ment an individual is, the more likely the individual survives. Reproduction is the natural
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Figure 3.1 A simple genetic algorithm

instinct of species for leaving their genes. The reproduction includes the selection, the

crossover and the mutation mechanisms. The offspring cycle these processes and con-

tinue the evolution of species.

GAs emulate this evolution and consist of steps or operators corresponding to the

above processes. Figure 3.1 shows a simple genetic algorithm (SGA) [21]. The meaning

and the implementation of each step of the algorithm shown in Fig. 3.1 are described in

the following.

3.1.1 Gene Encoding and Population Initialization

At the beginning of the algorithm, an encoding mechanism is adopted to encode a

solution into what is usually called a “chromosome” or an “individual”. Here, the “so-

lution” means a random guess of the possible solutions since GAs will evolve it into the
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final optimal one. There are many encoding methods to represent a chromosome. The

most straightforward way is to encode the solution into a binary string consisting of 0’s

and 1’s, as proposed first by Holland [21]. Figure 3.2 shows an example of the binary en-

coding. Other encoding schemes, such as real-valued encoding, integer-valued encoding

etc. [21, 22], may be used depending on the applications or the problems to be solved.

Since the evolution begins from an initial population, as stated above, a group of chro-

mosomes representing different possible solutions are randomly generated. The number

of chromosomes in the initial population is usually decided according to the complexity

of the problem and the availability of the computation resource.

3.1.2 Fitness Function

After the initialization of the population, the performance or the fitness of each chro-

mosome is evaluated to determine its competence. The fitness is the main objective to be

optimized since the it is a combination of the performance parameters. The configuration

of the fitness varies from problems to problems. For instance, in the DOE design, the

fitness can be one of the performance parameters such as the efficiency, the inverse of the

RMSERR and the SNR. As an alternative, these parameters can be linearly combined to

form a complex fitness function.
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Figure 3.3 The Roulette wheel used in the selection process

Upon configuring a proper fitness function, it is essential that the fitness represents

the competence of the chromosome. Otherwise, the algorithm may be trapped into a local

maximum or simply yields a meaningless solution.

3.1.3 Selection

Following the rule of natural selection, survival of the fittest, the selection process de-

termines which chromosomes have a better chance to proceed with the further processes,

based on the results of fitness evaluation. Here, a “gene pool” is established, which con-

tains the chromosomes proceeding with the crossover process.

A basic selection scheme is the “proportionate selection scheme”, which states that

the probability of being selected into the gene pool is proportional to the fitness f i of each

chromosome [19,21]. The simplest implementation of the proportionate selection scheme

is the “Roulette wheel selection”, as shown in 3.3. The probability that the chromosome

with a fitness of fi is chosen into the gene pool is fi/ f̄ , where f̄ denotes the summation

of the fitnesses of the whole population. In each selection, a random number is generated

and the chromosome in the corresponding area of the wheel is selected.
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Although the Roulette wheel selection is straightforward, it could be noisy. There is

chance that the gene pool is occupied with chromosomes with lower fitness values and

those with higher fitness values are not selected.

Besides the proportionate selection scheme, another common selection scheme is the

“Rand-based selection scheme”, such as the “Tournament selection”, the “Truncation se-

lection” and the “μ−λ selection” [23]. Unlike the Roulette wheel selection, these methods

guarantee that the chromosomes with the highest fitness value are selected into the gene

pool and are less noisy compared with the Roulette wheel selection.

3.1.4 Crossover

In GAs, the operators which take the responsibility to “search” solutions are the

“crossover” and the “mutation” operators. The crossover operator provides a mechanism

for chromosomes to exchange genetic information to the others. Together with the above

selection process, the “good genes” possessed by the “elite” chromosomes can spread out

to the whole population.

There are many crossover operators being studied, such as the one-point crossover, the

multi-point crossover [24], the mask crossover and the uniform crossover [25]. Figure 3.4

shows an example of the simplest “one-point crossover” mechanism. First, a “crossover

point” is randomly determined. When the crossover point is set between the second and

the third genes, for example, the parental chromosomes are divided into two parts at the

crossover point. Then, the child chromosomes are formed by exchanging the correspond-

ing parts of the parents. The exchange of the genetic information in certain areas specified

by crossover points is the common implementation for all the crossover mechanisms.
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Figure 3.4 Single point crossover. P1 and P2 denote the parents; O1 and O2 denote the

offspring.

3.1.5 Mutation

Since the crossover operator provides a mechanism for chromosomes to exchange ge-

netic information which in turn starts a search in the solution space, no new information

is generated in the population. Therefore, the population may finally be saturated with

some certain gene strings and the evolved solution will be trapped into some local max-

ima. Similar to SAs, the mutation operator provides a mechanism to prevent from being

trapped into the local maxima. The mutation operator introduces new information into

the population and ignite a search toward the global maximum in the solution space. Fig-

ure 3.5 shows the relation between the local maximum and the global maximum in the

solution space.

Depending on the number of pixels to mutate, there are “one-point mutation” and

“multi-point mutation”. Figure 3.6 shows an example of the “one-point mutation” mech-

anism. Unlike the crossover operators, In practice, the mutation pixels are determined by

the so-called mutation clock which is calculated by the pre-determined mutation rate. The

reason the mutation clock is used instead of testing every gene by the mutation rate is to

reduce the computation time in the random number generation. In Fig. 3.6, the 5th gene
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Figure 3.6 Single point mutation. O1 and O2 denote the offspring before mutation; O′1 and

O′2 denote the offspring after mutation.

is chosen and replaced by its complementary digit for binary coding.

3.1.6 Replacement and Termination

The crossover and mutation operators produce the child chromosomes from the parental

population. The offspring population is generated by replacing the parent chromosomes

with the new ones. In general, there are three kinds of replacement methods.

• All replacement
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The whole offspring population consists of only the child chromosomes.

• Tournament replacement

As the selection process, the fitness values of the child chromosomes are evaluated.

The parent and the child chromosomes compete with each other in the tournament

and the ones with higher fitness survive in the offspring population.

• Elitism replacement

A pre-determined number of chromosomes in the parent population which have the

highest fitness survive in the population. Others are replaced by the child chromo-

somes.

After the replacement, the termination condition will determine whether the algorithm

should finish or not. There are usually three kinds of termination condition:

• The solution with the desired fitness is found.

• A total generation number is reached.

• The fitness values of the population converged.

3.2 The Design of DOEs using GAs

Many studies have been conducted on the basic theory [26, 27] of GAs, as well as the

applications of GAs to a wide variety of different fields [28]. Recently, the new implemen-

tation of GAs for better performance is also emerging as a study topic. In the design of

DOEs, the applications of GAs have been reported [11, 12]. Nevertheless, studies on the

mechanisms of the basic operators and new implementations with improved performance

in DOE design are still needed.
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The study on the mutation rate [14] shows that, albeit a satisfactory performance of

DOE, the computation expense is an issue. However, in the study on the crossover mech-

anism [13], the different regular exchange crossover patterns only yield DOEs with unac-

ceptable performance when the mutation mechanism is excluded from the algorithm.

To improve the performance of resulted DOEs while boosting the computing speed

of the algorithm, an algorithm similar to that used in [13] is adopted in this thesis. That

is, the mutation mechanism is not used and a new crossover operator is proposed to im-

prove the performance of the algorithm. The novel crossover operator is introduced in

the next chapter. Prior to that, the algorithm used in [13] is described and its results are

summarized in this section.

3.2.1 The Algorithm

In [13], the GA was used in the design of two-dimensional binary phase DOEs. The

input was assumed to be monochromatic coherent light with uniform amplitude and the

output diffractive field was assumed to be in the far field of the DOEs. The DOE was

discretized into 64 × 64 pixels and encoded into a matrix, as illustrated in Chapter 2. The

target pattern was a cross sign which was also encoded into a 64 × 64-pixel matrix. In

summary, the simulation parameters in [13] are listed below.

• Phase-only DOEs (64 × 64 pixels) for monochromatic coherent light with uniform

transmittance t(ξ, η) ≡ ejφ(ξ,η),

• Binary phase DOEs

φ(x, y) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
π

0

,

26



10 20 30 40 50 60

10

20

30

40

50

60

Target Field U(x, y)

DFT

DFT−1

Field after DOE U ′(ξ, η)

?64

64

Figure 3.7 Simulation setup

• Cross target pattern.

These parameters are related as in an operation loop as shown in Fig. 3.7. Note that since

the incident wave was a coherent uniform one, the amplitude |Ui(ξ, η)| was unity and the

phase φi(ξ, η) was a constant, which was assumed to be zero without losing the generality.

Therefore, the field immediately after the DOE was exactly the same as the transmittance

function e jφ(ξ,η). The cases of the multi-level and the continuous phase DOE design are

very similar to the binary one, except the setting of the phase φ. For example, in the four-

level case, the phase φ can be 0, π/2, π and 3π/2; and in the continuous case, φ can be

any real number between 0 and 2π.

The algorithm used in [13] is shown in Fig. 3.8. The algorithm follows a SGA except

for the absence of the mutation mechanism since the effect of the crossover mechanism is

the core issue of that research.
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The initial population consisted of 33 chromosomes. The fitness function was defined

by linearly combining the Efficiency, the RMSERR and the SNR as follows,

Fitness ≡ 1 × Efficiency + 10 × SNR + 10 × 1
RMSERR

, (3.1)

where the Efficiency, the RMSERR and the SNR are defined in (2.18) to (2.20). The

elitism selection was used to construct a gene pool, in which the chromosomes with the

highest efficiency, fitness and SNR got two copies in the pool. The other chromosomes

had their own copies in the pool. This resulted in the gene pool with 36 chromosomes,

in which the chromosomes with highest efficiency, fitness and SNR had chance twice as

much as others to be involved in the crossover process.

In the crossover stage, 16 crossovers were performed and the crossover pattern changed

every 100 generations. Each crossover involved two chromosomes, randomly selected

from the gene pool and produced two child chromosomes.

After the crossover process, the replacement was conducted to form the offspring pop-

ulation. Unlike the initial population, the offspring population consisted of 36 chromo-

somes, in which 32 chromosomes were produced by the 16 crossovers, 3 chromosomes

were the “elite” with the highest efficiency, fitness and SNR determined previously, and

the last one was randomly selected from the gene pool.

It should be noted that there was no mutation process in the algorithm. Without muta-

tions, after a number of generations, the population lost its diversity and the performance

did not grow as the population evolves. This phenomenon was called the population pu-

rification. In such a circumstance, a “Population Restoration” mechanism was introduced

to prevent the population from purification. The mechanism is, at some pre-determined

generation, except the three chromosomes with the highest efficiency, fitness and SNR,

the whole population will be replaced with the original population, i.e. the original 33
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Figure 3.8 Algorithm used in DOE design

chromosomes.

The loop of the evolution proceeded until the pre-determined generation number was

reached. The total generation number and the population restoration generation number

were determined experimentally.
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Figure 3.9 Orthogonal sinusoidal crossover pattern

3.2.2 The Results of Regular Exchange Crossover Patterns

In [13], several different crossover patterns were proposed, such as the random crossover

pattern, the orthogonal sinusoidal crossover pattern etc. These patterns determined the

corresponding pixels of the two parental chromosomes to be exchanged. Figure 3.9 shows

an orthogonal sinusoidal crossover pattern. The bright region denotes the pixels to be ex-

changed and the dark region represents the pixels to be kept. Figures 3.10–3.13 show the

results of the algorithm using the orthogonal sinusoidal crossover patterns as shown in

Fig. 3.9. Similar results were obtained by using other patterns proposed in [13].

According to these results, it was concluded that although the crossover mechanism

could result in evolution which improved the performance of the whole population, the

growth speed was too slow and the performance was disappointing. After a total of

500,000 generations, the best efficiency, RMSERR, and SNR were 0.34, 0.32, and 0.035,

respectively. The efficiency and RMSERR were only half as good as that obtained in [14]

and the SNR even falled into a negligible range. As expected, the best far field pattern
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Figure 3.10 Best efficiency of the orthogonal sinusoidal crossover pattern
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shown in Fig. 3.13 possesses a faint shape and is very noisy. Therefore, some stimulation

mechanisms may be needed to stimulate the evolution and boost the growth of the perfor-

mance. The mutation mechanism can provide a stimulation to the evolution and lead the

population toward the global maximum. However, the considerable computation expense

is inevitable [14].

Motivated by these problems, a novel crossover operator is proposed in the next chap-

ter to increase the growth rate of the performance. By using this crossover operator, the

optimization which yields satisfactory performance can be achieved in relatively short

time.
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Chapter 4

A Novel Crossover

Operator—TArget-oriented CrossOver

(TACO) Operator

The results and the limitations of the regular exchange crossover patterns used in the

algorithm [13] were illustrated in the previous chapter. In this chapter, a novel crossover

operator is derived. Then the related parameters used when the operator is introduced into

the algorithm are determined.

4.1 Derivation of the Novel Crossover Operator

As illustrated in Fig. 3.7, a phase DOE is to be found such that the output far field

is a cross pattern when the DOE is illuminated by a monochromatic coherent light with

uniform amplitude. All the fields and the DOE are discretized and encoded into 64-by-64-

pixel matrices. The field immediately behind the DOE and the far field can be computed

from each other using the discrete Fourier transform (DFT).
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4.1.1 Mathematical Expression of the Crossover Operator

The crossover process can be expressed mathematically as

O1 = P1 · XO1 + P2 · XO2, (4.1)

O2 = P1 · XO2 + P2 · XO1, (4.2)

where the matrices P1 and P2 represent the parental chromosomes, the matrices XO1 and

XO2 the crossover patterns, and O1 and O2 the child chromosomes. Note that although

the chromosomes Pi and Oi represent the DOEs, they also represent the field immediately

behind the DOEs. By realizing the relation that XO1 and XO2 are complementary to each

other, i.e.

XO2 = 1 − XO1, (4.3)

the above (4.1) and (4.2) can be written into

O1 = (P1 − P2) · XO1 + P2, (4.4)

O2 = (P2 − P1) · XO1 + P1. (4.5)

To derive the expression of XO1 and XO2, we take advantage of one of the most

important characteristic of this optimization problem. This property is that the target

of this problem is well-defined—a cross pattern which is encoded into a 64-by-64-pixel

matrix. Denoting the target pattern matrix as T , the ultimate goal of the optimization is

given by DFT {O1} = T or O1 = DFT−1{T }. Substituting this into (4.4) results in

XO1 =
O1 − P2

P1 − P2
,

=
DFT−1{T } − P2

P1 − P2
.

(4.6)

The above matrix operations are pixel-wise or element-to-element operations and (4.6)
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can be written in a pixel-wise sense as

xo1 =
t−1 − p2

p1 − p2
, (4.7)

where xoi, pi and t−1 denote the corresponding pixels in XOi, Pi and DFT−1{T } matrices,

respectively. Because of the pixel-wise nature of the above operations, it is possible that

the corresponding pixels of P1 and P2 are of the same values and, therefore sigulariteis

occur in the operations. The sigularity issue can be easily solved if one reflects on the

nature of GAs that if the parental chromosomes possess the same gene strings, so do the

children chromosomes. Therefore, xo1 is set to be unity, i.e. o1 = p1 = p2, wherever

p1 = p2.

Note that in (4.6), T denotes the matrix of the target pattern and possesses both the

amplitude and the phase information. Since only the intensity is detected by the detectors

or human eyes, the phase φ of T is arbitrary and can be specified at one’s convenience.

The crossover operator expressed in (4.6) and (4.7) is derived by taking advantage of

the existence of the well-defined target pattern of this optimization problem. Therefore, it

is entitled ”Target-Oriented CrossOver” operator, and is referred to as the TACO operator

hereafter.

4.1.2 Discussions on Several Cases

In this section, the situations of several kinds of the parental chromosomes Pi are

discussed.

Case 1. The two parental chromosomes are identical.

XO1 = 1 ⇒ O1 = O2 = P1 = P2.
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Case 2. None of the corresponding pixels of the two parental chromosomes are the same.

For binary phase modulation DOEs, this means that the two parents are comple-

mentary matrices, and the two child chromosomes are given by

O1 = DFT−1{T },

O2 = DFT−1{T } + P2 + P1.

It turns out that O1 is a Kinoform of T provided the phase of T is given as the

phase of DFT {P1}.

Case 3. Some of the corresponding pixels of the two parental chromosomes are the same.

The identical pixels cause sigularities to occur. In this case, (4.7) is applied for

pixels that p1 � p2 and xo is set to be unity for pixels in which p1 = p2. The

resulted O1 is a combination of P1 and DFT−1{T }.

It is noted that mostly, Case 3 is the case and Case 1 and Case 2 rarely occurs.

4.2 Determination of Relevant Parameters

To apply the TACO operator to the algorithm as shown in Fig. 3.8, there are two

parameters to be determined; one is the condition for population restoration and the other

is the termination condition for the simulation. In this section, the generation when the

population is restored is determined first. Then the termination condition is determined

using this population restoration condition.

4.2.1 Condition for Population Restoration

Ten simulations were conducted to determine the condition for population restoration.

To make a clear comparison, the initial population was chosen to be the same as that
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Figure 4.1 Best efficiencies of the population restoration test

used in [13]. The population restoration was not conducted here. The number of the

generations of the simulations was set to be 1,000. The phase φ of the target pattern

matrix T was selected as the phase of DFT {P1}.

The simulation results are shown in Figs. 4.1–4.3. Without the population restoration,

the highest efficiencies and the lowest RMSERRs soon converged to about 0.8 and 0.15

within 50 generations of evolution, respectively. On the other hand, the SNRs grew more

slowly and converged at around generations 100–200. In most cases, the highest SNRs

converged to about 0.5 to 1.0 and stagnated after 200 generations of evolution. Compared

with the increase of SNRs before generation 100, the SNRs increased more slowly in

generations 100–200. Therefore, a number between 100 to 200 may be a reasonable

generation for population restoration. In the following simulations, every 100 generations

of evolution is selected as the population restoration condition.
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Figure 4.2 Best RMSERRs of the population restoration test
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4.2.2 Condition for Termination of the Simulation

Although the total generations of a simulation may be chosen as large as the compu-

tation resource is available in order to yield the desired performance, it is of practice to

terminate a simulation in a certain number of generations. After the certain generations of

evolution, there exists chromosomes with the desired performance or the performance has

converged to a certain value and may not be better anymore. Using the population restora-

tion condition described in the previous section, another 10 simulations were conducted

to determine when to finish the simulation. In all 10 simulations, the population restora-

tion was performed every 100 generations of evolution, and a total of 10,000 generations

were conducted.

The simulated performance is shown in Figs. 4.4–4.6. As shown in Fig. 4.6, three of

ten highest SNRs kept increasing till the termination condition was fulfilled. In the rest

of the cases, the SNRs reached a level of 1.2 and the increase was not significant after

5,000 generations of evolution. To reach a compromise between the optimal performance

and the computation expense, a total of 5,000 generations will be used to terminate the

simulations in the next chapter.

The results shown in Figs. 4.4–4.6 can be compared with that shown in Figs. 4.1–4.3

to illustrate the effect of the population restoration, as described in Section 3.2.1. Taking

into account of the values at the 1,000th generation in Figs. 4.4–4.6 and comparing with

that in Figs 4.1–4.3, most of the efficiencies and the SNRs were higher and the RMSERRs

were lower. This is a prime example of the importance of the population restoration

mechanism in the absence of a mutation mechanism in order to introduce new growth

stimulation into the population.
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Figure 4.4 Best efficiencies of the total generation test
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Figure 4.5 Best RMSERRs of the total generation test
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Figure 4.6 Best SNRs of the total generation test

4.2.3 Verification of the Relative Parameters

In the above sections, the population restoration condition and the termination condi-

tion for the simulation were determined—i.e. the initial population is restored every 100

generations of evolution and the simulation is terminated when a total of 5,000 genera-

tions have evolved. These conditions yield a total of 50 restorations of population.

It is worth noting that, only after 200 generations of evolution does the real conver-

gence of the highest SNR happens, as shown in Fig. 4.3. Therefore, it is possible that the

population restoration condition of every 100 generations may be a premature one and

affect the performance of the results. To this end, an experiment was conducted to verify

the above conditions. Similar to the previous section, 10 simulations were conducted with

the same initial population. The population restoration condition was set to be every 200

generations and the simulation was terminated after a total of 10,000 generations. These

conditions were selected such that they yield a total of 50 restorations of population, the
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Figure 4.7 Best efficiencies of the simulations with comparable parameters

same as the case to be verified.

The results are shown in Figs. 4.7–4.9. From these figures, it can be concluded that

both cases yield comparable performance after 50 population restorations—efficiencies

about 0.8–0.85, RMSERRs about 0.12–0.13, and SNRs about 1.1–1.8. This is to be ex-

pected since, as indicated in previous sections, the increase in performance in generations

100–200 is not so significant as that before the generation 100. Therefore, the premature

population restoration is not an issue if the population restoration condition is set to be

every 100 generations of evolution. The parameters—population restoration every 100

generations of evolution; a total of 5,000 generations—will be used in the simulations of

the following chapter.
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Figure 4.8 Best RMSERRs of the simulations with comparable parameters
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Figure 4.9 Best SNRs of the simulations with comparable parameters
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Chapter 5

Simulation Results—Optimization

Using GA with the TACO Operator

In this chapter, the TACO operator is applied to the optimization process of the DOE

design. The simulations include the robustness test, the comprehensive information of the

final population, and the results of using different phases of the target pattern. The TACO

operator is also applied to the multi-level DOE design, and is compared with the IFTA.

5.1 Simulation Setup

Before the discussion of the results, the simulation setup is summarized as below.

1. DOE modeling

• Modulation method: Phase modulation type DOEs.

• Quantization method: binary, four-level (Section 5.5.1), and eight-level (Sec-

tion 5.5.2) quantizations.

• Incident wave: monochromatic coherent incident light with uniform ampli-

45



tude.

• Target pattern: a cross pattern.

• Discretization method: 64 × 64-pixel matrices.

2. Optimization algorithm

• Initial population: the 33 chromosomes the same as [13].

• Crossover mechanism: the TACO operator with population restoration.

• Mutation mechanism: none.

• Population restoration: every 100 generations of evolution.

• Termination of simulation: after a total of 5,000 generations.

Figure 5.1 shows the flowchart used in the following simulations.
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Figure 5.1 Flowchart of the algorithm with TACO used in the simulation
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5.2 Robustness Test

Some algorithms, such as the IFTA, yield results with performance of a wide range,

depending on the different initial conditions. On the other hand, there are algorithms

which are insensitive to the initial conditions, such as the simulated annealing (SA) algo-

rithm. A typical GA sorts mainly to the random process. Ideally, it is insensitive to the

initial condition, provided the random process is “random enough”. Since the proposed

method is based on the GA, the insensitivity to the initial condition is to be expected.

To test the robustness of the TACO operator, another five random binary populations,

each of which consisted of 33 chromosomes, were generated and used in the algorithm.

The five additional populations are numbered random binary 1 to 5. Including the orig-

inal population used in [13], each of the six populations was used in two simulations as

discussed in the following. The results were then compared with each other to verify the

robustness of the TACO operator.

The results of the first simulation are shown in Figs. 5.2–5.4. It can be observed from

the figures that all the six populations had almost the same efficiencies and RMSERRs. In

contrast, the SNRs vary from 1.2 to about 1.7—the random binary 4 had the highest SNR

and the random binary 5 had the lowest one.

One possible reason for the difference in SNR between each population is that there

are populations consisting of chromosomes superior to other populations. That is, in the

present simulation result, the chromosomes of the random binary 4 might be superior

to that of the random binary 5. To this end, the second simulation was conducted with

exactly the same six initial populations. If a certain initial population possesses superiority

over others, the results of the second simulation will resemble that of the first simulation

in the way that the random binary 4 has the highest SNR and the random binary 5 has the
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Figure 5.2 Best efficiencies of the robustness test 1

lowest one.

The results of the second simulation are shown in Figs. 5.5–5.7. Similar to that of

the first simulation, the efficiency and the RMSERR of each population were comparable

while the SNRs differed from population to population. As shown in Fig. 5.7, the original

population had the highest SNR and the random binary 2 had the lowest one—a result

different from the first simulation.

A ranking of the SNR of each population for each simulation is shown in Table 5.1.

It is clear that no specific population is certainly superior to others. Each population

has its chances to evolve to a solution with a higher or a lower SNR, depending on the

random process. Note that, albeit a somewhat lower value, the lowest SNR was still higher

than 1.2. Therefore, it is concluded that the TACO operator is robust against the initial

population.
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Figure 5.4 Best SNRs of the robustness test 1

50



0 1000 2000 3000 4000 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generation

B
es

t E
ffi

ci
en

cy

 

 

Original
Random Binary 1
Random Binary 2
Random Binary 3
Random Binary 4
Random Binary 5

Figure 5.5 Best efficiencies of the robustness test 2

0 1000 2000 3000 4000 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

B
R

M
S

E
R

R

 

 
Original
Random Binary 1
Random Binary 2
Random Binary 3
Random Binary 4
Random Binary 5

Figure 5.6 Best RMSERRs of the robustness test 2
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Figure 5.7 Best SNRs of the robustness test 2

SNR Ranking
Robustness Test 1 Robustness Test 2

Population No. Population No.

1 4 original

2 3 5

3 1 4

4 original 3

5 2 1

6 5 2

Table 5.1 SNR ranking of the robustness test
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5.3 Comprehensive Performance of a Single Population

In the selection process of the algorithm shown in Fig. 5.1, the “Elitism” was adopted.

To construct the gene pool for the crossover process, the chromosomes with the high-

est efficiency, the lowest RMSERR, and the highest SNR had one more copy than other

chromosomes. However, in order to keep the versatility of gene information, a rule was

forced on the selection process so that the highest-efficiency, the lowest-RMSERR and

the highest-SNR chromosomes are different ones. Therefore, in the results of previous

sections, it is very likely that no chromosomes possessed the highest efficiency and SNR

and the lowest RMSERR simultaneously. In this section, the efficiency, the RMSERR,

and the SNR of each chromosome in the population after the evolution are investigated to

determine the chromosome with the best performance.

As the test conducted in determining the termination conditions in the previous chap-

ter, 10 simulations were conducted. Then the best and the worst results were used to

investigate the performance of the whole final population. Since TACO operator is insen-

sitive to the initial population, as shown previously, the original population in [13] was

used as the initial population.

The results of the 10 simulations are shown in Figs. 5.8–5.10. Since the efficiency and

the RMSERR of each simulation were almost the same, the SNR was used to determine

which results were used to investigate the performance. As shown in Fig. 5.10, the 7th

simulation resulted in the highest SNR while the 6th simulation yielded the lowest one.

Tables 5.2 and 5.3 show the performance data of the best chromosomes of the 6th

and 7th simulation results, respectively. It can be seen from these tables that the SNR

of the chromosome with the highest efficiency was relatively low. In particular, the SNR

was only as low as a half of the highest SNR. On the other hand, the efficiency of the
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Figure 5.8 Best Efficiencies of the 10 simulations used in population performance inves-

tigation
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Figure 5.9 Best RMSERRs of the 10 simulations used in population performance investi-

gation
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Figure 5.10 Best SNRs of the 10 simulations used in population performance investigation

chromosome with the highest SNR, albeit somewhat lower, was still higher than 0.75.

Specifically, the efficiency was only 5% to 10% lower for the chromosomes with the

highest SNR than the highest efficiency.

Figures 5.11–5.13 show the comprehensive information of the whole population of

the 6th simulation result. Figures 5.14–5.16 show the comprehensive information of the

whole population of the 7th simulation result. According to these figures, the following

facts were observed:

• chromosomes with the highest efficiencies had relatively low SNRs, as low as a half

of that of the highest SNRs;

• chromosomes with the highest SNRs had moderate efficiencies and RMSERRs; and

• the average SNR of the whole population was not so high, although chromosomes

with high SNRs existed.
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The 6th Test Efficiency RMSERR SNR

Best Efficiency 0.8341 0.1458 0.4265

Best RMSERR 0.8005 0.1278 0.4780

Best SNR 0.7576 0.1602 1.1293

Table 5.2 Performance of the best chromosomes of the 6th simulation in population per-

formance investigation

The 7th Test Efficiency RMSERR SNR

Best Efficiency 0.8425 0.1466 0.9052

Best RMSERR 0.8096 0.1237 1.1936

Best SNR 0.8068 0.1358 2.0333

Table 5.3 Performance of the best chromosomes of the 7th simulation in population per-

formance investigation
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Figure 5.11 Efficiency v.s. RMSERR of each chromosome of the 6th simulation in popu-

lation performance investigation

The trade-off between the efficiency and the SNR may be understood if one reflects on

the definitions of these parameters. By definition, the efficiency becomes higher as long

as more energy is diffracted into the signal region. In contrast, it is not easy to increase

the SNR. As defined in (2.20), only the ratio of the smallest intensity in the signal region

to the largest one in the noise region is larger does the SNR increase. Therefore, in the

optimization process, chances are that more and more diffracted energy is concentrated

into certain pixels of the signal region while the smallest intensity in this region does not

become larger or even reduces. As a result, the chromosomes with the highest efficiencies

may still possess relative low SNRs.
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Figure 5.12 Efficiency v.s. SNR of each chromosome of the 6th simulation in population

performance investigation
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Figure 5.13 RMSERR v.s. SNR of each chromosome of the 6th simulation in population

performance investigation
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Figure 5.14 Efficiency v.s. RMSERR of each chromosome of the 7th simulation in popu-

lation performance investigation
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Figure 5.15 Efficiency v.s. SNR of each chromosome of the 7th simulation in population

performance investigation
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Figure 5.16 RMSERR v.s. SNR of each chromosome of the 7th simulation in population

performance investigation

5.4 The Phase of the Target Pattern in the TACO Opera-

tor

In the simulations conducted in the previous sections, the phase φ of the target pattern

T was chosen as the phase of DFT {P1}. Other choices of φ, such as a random phase or a

constant phase, are used in this section to make the comparisons.

5.4.1 Random Phase

For the random phase case, φ was randomly assigned upon each crossover process.

As shown in Figs. 5.17–5.19, the best efficiency, RMSERR and, SNR were about 0.46,

0.3, and 0.024 respectively. The best resulted far field is shown in 5.20. For a comparison,

the best far field resulted from another simulation, which used the phase of DFT {P1} as
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Figure 5.17 Best efficiency of DOEs for random target pattern phase

the phase φ, is shown in Fig. 5.21. The unsatisfactory results may be attributed to the lack

of the phase retrieval process such as the use of the phase of DFT {P1} which provides an

effect equivalent to that of IFTA.

5.4.2 Constant Phase

For the constant phase case, φ was selected as 0 without loss of generality. The results

are shown in Figs. 5.22–5.25. Under the same number of total generations, it is obvious

that the constant phase yielded worse results than the random phase. The best far field is

not even distinguishable after 5,000 generations of evolution.

The low performance compared with the above random phase case may be explained

as follows. The target pattern with a constant phase can be viewed as a single optimal

point in the solution space and may be difficult for the population to approach in the

optimization process. The target pattern with the randomly generated phase, produces
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Figure 5.18 Best RMSERR of DOEs for random target pattern phase

0 1000 2000 3000 4000 5000
0

0.005

0.01

0.015

0.02

0.025

Generation

B
es

t S
N

R

Figure 5.19 Best SNR of DOEs for random target pattern phase
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Figure 5.20 Best far field of DOEs for random target pattern phase
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Figure 5.21 Best far field of the simulation using the phase of DFT {P1} as the phase φ of

the target pattern
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Figure 5.22 Best efficiency of DOEs for constant target pattern phase

more possible optimal points in the muti-dimensional solution space. Therefore, during

the optimization process, the population may evolve toward the optimal points whenever

is possible. A simulation of a total of 500,000 generations was also conducted and resulted

in an efficiency of 0.38, an RMSERR of 0.32, and an SNR of 0.035. Therefore, about

100 times of the total generations were needed for the constant phase case to result in

performance comparable to the random phase case.
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Figure 5.23 Best RMSERR of DOEs for constant target pattern phase
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Figure 5.24 Best SNR of DOEs for constant target pattern phase
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Figure 5.25 Best far field of DOEs for constant target pattern phase

5.5 Application to Design of Multi-Level DOEs

To verify the application of the algorithm with the TACO operator to the design of

multi-level DOEs, the four- and eight-level cases were conducted.

5.5.1 Four-level DOEs

Figure 5.26 shows the four-level quantization process. The continuous phase is quan-

tized to 0, π/2, π, and 3π/2. Similar to that of the binary cases, 10 simulations were

conducted. The results of the 10 simulations of the four-level DOE design are shown in

Figs. 5.27–5.29.

The first impression of the results may be unfavorable since there is little difference

between the four-level cases and the binary cases. However, it is easily understood if one

keeps in mind that a binary phase DOE reconstructs both the original and the conjugate

images which are symmetric about the axis [18]. For a target with on-axis symmetry, the
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Figure 5.26 Four-level quantization

original and the conjugate images merge and there seems to be only one reconstructed im-

age. The cross pattern used in the simulations is symmetric about the axis. Consequently,

the efficiencies, the RMSERRs, and the SNRs calculated in the binary cases were con-

tributed by both of the original and the conjugate images. For example, the efficiency

of the original image was only a half of that of the merged image. That is, the efficien-

cies were about 0.4 for the binary cases, which make the results of the four-level DOEs

reasonable.

5.5.2 Eight-level DOEs

Figure 5.30 shows the eight-level quantization process. The continuous phase is quan-

tized to 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, and 7π/4.

Figures 5.31–5.33 show the results of the 10 simulations of the eight-level DOE de-
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Figure 5.27 Best efficiencies of the four-level DOEs
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Figure 5.28 Best RMSERRs of the four-level DOEs
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Figure 5.29 Best SNRs of the four-level DOEs
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Figure 5.30 Eight-level quantization
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Figure 5.31 Best efficiencies of the eight-level DOEs

sign. The best efficiencies, RMSERRs, and SNRs were as good as 0.9, 0.1, and 4.4

respectively. Compared with the binary and the four-level cases, the eight-level DOEs

yielded superior performance, as expected.

Therefore, from the results of the four- and eight-level DOEs, it is concluded that the

TACO operator is applicable to the design of multi-level DOEs. The application to design

of continuous DOEs was also implemented with superior performance—an efficiency of

0.95, an RMSERR of 0.07, and an SNR of 7.
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Figure 5.32 Best RMSERRs of the eight-level DOEs
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Figure 5.33 Best SNRs of the eight-level DOEs
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5.6 Comparisons with Other Optimization Methods

In this section, the proposed method is compared with other optimization methods.

First, the results of the iterative Fourier transform algorithm (IFTA) are compared with

our results as illustrated in the previous sections. Then the results of the simple genetic

algorithm (SGA) used in [14] are briefly described and compared with our results.

5.6.1 IFTA with Iterative Quantization Method

The theory and the application of IFTA has been widely studied since it was proposed

by Gerchberg and Saxton in 1971 [10]. Figure 5.34 shows the procedure of IFTA. There

are many implementations of IFTA to optimize the performance of the results. In this

section, the iterative quantization method [29] was used. To compare with the GA with

the TACO operator, the simulation of IFTA used the following conditions:

• the binary phase DOEs were designed;

• the initial guesses were the original 33 chromosomes used in the previous sections;

and

• a total 18 steps were used in the quantization process, i.e. 10 degrees per step.

As shown in Table 5.4, the resulted DOEs had efficiencies ranging from 0.8501 to

0.8674, RMSERRs ranging from 0.1549 to 0.1327, and SNRs ranging from 0.1695 to

0.8867. The average efficiency, RMSERR, and SNR are 0.8615, 0.1432 and, 0.5267,

respectively. A comprehensive performance of the 33 DOEs are listed in Appendix A.

To compare with the results of the algorithm with the TACO operator, the performance

of DOEs with the best efficiency, RMSERR and SNR was considered, which is shown in

Table 5.5. In particular, the DOE with the highest efficiency and SNR was selected as the
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Figure 5.34 The schematic diagram of IFTA

IFTA Results Best Worst Average

Efficiency 0.8674 0.8501 0.8615

RMSERR 0.1327 0.1549 0.1432

SNR 0.8867 0.1695 0.5267

Table 5.4 Results of IFTA (Note: resulted DOEs with best efficiency, RMSERR and SNR

may not be the same ones; the same is true for the worst cases.)
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IFTA Results Efficiency RMSERR SNR

Best Efficiency 0.8647 0.1375 0.8867

Best RMSERR 0.8538 0.1327 0.7671

Best SNR 0.8647 0.1375 0.8867

Table 5.5 Performance of Best DOEs resulted from IFTA Simulations

optimal solution of the IFTA. The results of the 6th and the 7th simulations in Section

5.3 were used in the comparison. As shown in Table 5.2, it is reasonable to choose the

chromosome with the highest SNR to be the final optimal DOE since a 2.5 times of SNR

can compensate for the 10% loss of efficiency. Similarly, the optimal DOE in the 7th

simulation was selected in the same way. The best solutions are listed in Table 5.6.

Compared with the IFTA, the GA with the TACO operator yielded DOEs with lower

efficiencies, comparable RMSERRs, and higher SNRs. Specifically, the efficiencies were

about 7.5% to 10% lower and the SNRs were about 1.3 to 2.3 times higher. Therefore,

with a little decrease of the efficiency, the GA with the TACO operator results in DOEs

with superior performance. Also, the computation time was comparable for both meth-

ods to yield the optimal results listed in Table 5.6. Under our computing environment,

which is a laptop installed with the Intel® Core™Duo L2400 1.66 GHz processor and the

MATLAB® R2007b computing package, the time duration was about a half of an hour.

5.6.2 The GA using the Mutation Mechanism

The method used in [14] was an SGA. Different mutation rates were employed to find

out a best one which resulted an optimized solution. Note that the initial population used
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Efficiency RMSERR SNR

IFTA 0.8647 0.1375 0.8867

The 6th of TACO 0.7576 0.1602 1.1293

The 7th of TACO 0.8068 0.1358 2.0333

Table 5.6 Performance of Best DOEs resulted from IFTA and GA with TACO operator

in the 6th and 7th simulation results shown in Table 5.6 is the same as that used in [14].

Using a mutation rate of 0.04% and a random crossover pattern to design the binary

phase DOEs, the method used in [14] resulted in a DOE with an efficiency of 0.8497, an

RMSERR of 0.1274, and an SNR of 2.3739, after 100,000 generation of evolution. The

performance of the DOE was comparable to the 7th simulation result of our method as

shown in Table 5.6. However, the method in [14] was far more computation expensive

than our method. Specifically, the total number of generations used in [14] was 20 times

of that used in our method. In terms of time duration, our method resulted in the 7th

simulation result within a half of an hour, while eight to ten hours were needed for the

evolution of 100,000 generations in [14].
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Chapter 6

Conclusion

6.1 Conclusion on the algorithm with the TACO operator

In this thesis, a method that introduced the novel TACO operator into the GA has been

proposed to enhance the performance of the optimization in the DOE design. The TACO

operator was derived by taking the advantage of the existence of the well-defined target

pattern of the optimization problem.

The performance of the proposed method used in the phase DOE design was stud-

ied. The method yielded DOEs with satisfactory efficiencies, RMSERRs, and SNRs. The

computation time needed for the method was effectively reduced to achieve results com-

parable with the SGA using the mutation mechanism [14]. Specifically, the number of

generations needed in the method was only 1/20 of that in [14]. Compared with the IFTA

using iterative quantization, the method resulted in binary-phase DOEs with higher SNRs

and comparable RMSERRs. The applications of the proposed method to the multi-level

and the continuous DOE design were also implemented with satisfactory performance.

The characteristics of the TACO operator were investigated, too. The robustness of
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the TACO operator against the initial population was confirmed. Depending on the choice

of the phase of the target pattern in the TACO operator, the resulted DOE may possess dif-

ferent performance. The use of the diffractive field phase resulted in superior performance

while the random phase and the constant phase provided limited increase in performance.

We believe the reasons are the lack of the effect of the phase retrieval process similar to

the IFTA and the lack of the approachable optimal points in the solution space. The per-

formance of the whole population after the final evolution was evaluated. The trade-off

between the SNR and the efficiency was also observed in the whole population.

6.2 Improvement of the Algorithm

The performance of the proposed algorithm may be further improved by using sev-

eral methods. For example, the iterative quantization technique [29, 30] may be adopted

to pursue higher performance. By introducing the constraints in a stepwise way itera-

tively, more design degree of freedom can be provided. Therefore, the stagnation of the

performance may be avoid and the movement toward the global maximum may be more

smoothly. In particular, the efficiency may be expected to increase to the level as that

of the IFTA described in Section 5.6.1. However, the computation expense and the time

duration of the simulation may still be an issue for a noticeable improvement.
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Appendix A

Comprehensive Results of IFTA

The efficiency, the RMSERR, and the SNR of the 33 resulted DOEs optimized by the

IFTA as described in Section 5.6 are shown in the following tables. The initial guesses of

the 33 IFTA results are the 33 chromosomes of the original population used in the GA in

Chapter 5.

No. Efficiency RMSERR SNR

1 0.8627 0.1430 0.2284

2 0.8608 0.1371 0.3667

3 0.8588 0.1549 0.3874

4 0.8585 0.1467 0.2786

5 0.8578 0.1393 0.5664

6 0.8581 0.1410 0.7785

7 0.8644 0.1464 0.5414

8 0.8642 0.1417 0.5772

No. Efficiency RMSERR SNR

9 0.8538 0.1327 0.7671

10 0.8572 0.1419 0.5732

11 0.8601 0.1459 0.1695

12 0.8531 0.1437 0.5497

13 0.8674 0.1375 0.8867

14 0.8589 0.1440 0.5329

15 0.8565 0.1422 0.2693

16 0.8657 0.1489 0.5405

Table A.1 The comprehensive IFTA results
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No. Efficiency RMSERR SNR

17 0.8624 0.1410 0.3826

18 0.8572 0.1377 0.6336

19 0.8569 0.1409 0.3722

20 0.8619 0.1457 0.5182

21 0.8520 0.1417 0.8631

22 0.8638 0.1462 0.2915

23 0.8638 0.1473 0.4098

24 0.8607 0.1420 0.4739

25 0.8554 0.1386 0.3548

No. Efficiency RMSERR SNR

26 0.8572 0.1480 0.3725

27 0.8624 0.1457 0.3962

28 0.8623 0.1442 0.3962

29 0.8646 0.1491 0.6289

30 0.8501 0.1400 0.7545

31 0.8665 0.1400 0.6032

32 0.8576 0.1415 0.8588

33 0.8627 0.1430 0.2284

Table A.2 The comprehensive IFTA results (contd.)
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