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Abstract

In thisthesis, amethod is proposed to design the diffractive optical elements (DOEsS),
inwhich the genetic algorithm (GA) isused with anovel crossover operator. The mutation
mechanism is excluded from the method. The novel crossover operator is derived by
taking advantage of the existence of the well-defined target in the DOE design and it
is therefore entitled the TArget-oriented CrossOver (TACO) operator. By utilizing the
target property in the DOE design, the TACO operator stimulatesthe evolution of solution
toward the global maximum in the solution space.

The properties of the TACO operator are studied. The robustness against different
intial populations is verified. The fast convergence of efficiency and root-mean-square
error (RMSERR) is observed. On the other hand, the growth of signal-to-noise ratio
(SNR) is relatively slow. The trade-oft between the efficiency and the SNR of the final
population is also observed.

The proposed method is applied to the design of the binary, multi-level, and contin-
uous phase DOEs. The performance is compared with that of other optimization algo-
rithms, such as the iterative Fourier transform algorithm (IFTA) and the simple genetic
algorithm (SGA). Compared with the SGA using different mutation rates, the proposed
method yields comparable results within a total of 5,000 generations, only 1/20 of that
used in the SGA. Also, the efficiency and the RMSERR of the result yielded by the pro-
posed algorithm are comparableto the IFTA, while the SNR istwice as high as that of the

IFTA.
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Chapter 1

Introdcution

1.1 Diffrctive Optical Elements (DOEs5)

Literally, aDOE isan optical device which utilizesthe diffraction nature of light wave
to produce the desired light field. By “diffraction”, “any deviation of light rays from
rectilinear paths which cannnot be interpreted as reflection or refraction” is meant, as
defined by Sommerfeld [1].

To accomplish the task of distributing the light field in a desired way, the size, the
material and the surface profile of DOES need to be carefully designed and chosen. For
example, the feature size must be compatible with the wavelength for the diftraction phe-
nomenon to have significant effect. (Here, “feature size” means *“the size of the minimum
aperture of the DOE”, as shwon in Fig. 1.1) The refractive index of a material should be
properly selected to provide the desired optical path difference (OPD). Also, the surface
profile has to be carefully calculated and arranged periodically, for instance, in order to
produce the desired diffraction order of the light.

There are many ways to catagorize the DOEs, and one of them is by the way of
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Figure 1.1 Feature size of aDOE

modulation. According to the modulation methods, DOES can be catagorized into the
phase modulation DOEs and the amplitude modulation DOEs. The difference between
the two kinds of DOEs is that for amplitude modulation DOEs, the amplitude of the
incident wave is absorbed or reflected by the DOEs. The phase modulation DOEs, on ther
other hand, will change the phase and alow the amplitude after the DOEs to be the same
as the incident light, theoritically. Therefore, the phase modulation DOEs have higher
diffraction efficiency than the amplitude modulation DOEs.

The history of design of DOEs may be dated back to that the Fresnel zone plate was
designed by Rayleigh. As the advance of the modern computation technology, the com-
plex phase or amplitude modul ation information can be cal culated and encoded on atrans-
parency, such as computer generated holograms (CGHS).

Further, thanks to the advanced semiconductor process technology, multi-level quna-
tized DOES can be realized to approach the continuous profiles which are difficult to man-
ufacture under the size of the wavelength. The semiconductor process technology also
makes the manufacture of the pixel-wise encoded kinoforms easiler. Figure 1.2 showsthe

different kinds of DOEs.
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Figure 1.2 Catagory of DOEs

There are many applications of DOEs, from imaging systems to beam shaping of
lasers[2]. For example, alaser beam with auniform field distributionis sometimes needed
in applications such as microlithography [3]. The illuminators may utilize DOEs to ho-
mogenize the input laser beam with the Gaussian profile into aflat-top output beam [4,5].
Figure 1.3 shows the schematic diagram of the application of DOES to beam shaping of

|asers.

1.2 Design of DOEs

The fundamental theory of DOEs is the diffraction theory, which predicts the prop-
agation of wave when light passes through the free-space system containing the DOES.

The formalism of the diffraction theory can be derived from the Maxwell’s equations and
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Figure 1.3 Schematic diagram of beam shaping of lasers

the may possess different complexity, depending on the feature size of the DOE and the
wavelength of the incident light. In the paraxia region, the formulation can be smplified
while giving results with sufficient accuracy. Usually the scalar diffraction theory will be
adequate. However, in areal DOE design problem, except for the analytical-type DOEs, it
is not possible to realize the calculation in an analytical way. Instead, modern computers
together with numerical methods are used to carry out these tasks.

Besides the diffraction theory, an optimization method is needed in order to design
the DOEs with desired performance. Some methods use algorithms which unidirection-
aly conduct the transformation from incident field to target field, such as direct binary
search (DBYS) [6, 7] and simulated annealing (SA) [8, 9] agorithms. On the other hand,
there are algorithms which transform the incident field and the target field bidirectionally,
such as Gerchberg-Saxton (GS) algorithm [10], which is also known as iterative Fourier
tansformation algorithm (IFTA).

There are other algorithms which sort to the random process in such a way that the

whole process emulates the evolution of natural species, namely “survival of the fittest”



proposed by Darwin. Genetic algorithm (GA) [11] isthe most well-known method of this
kind.

Although the fundamental theory is the same for all kinds of DOEs, the optimiza-
tion methods to design DOEs are chosen according to the applications and the desired

performance.

1.3 Motivation

The theory and application of GA has been widely studied since its debut in the late
1960s. There are several merits of optimization using GA. For example, the implementa-
tion of GA isreadily to be parallelized, which then reduces a great amount of search time.
Also, the feature of parallelization enables GA to search in multiple points of the solution
space for the global optimum. These merits make GA a superior optimization algorithm
and apply GA widely to different areas.

The study on DOE design using GA s relatively less compared with other methods
such as IFTA. The application of GA and the combination of GA and SA in DOE design
have been reported [11, 12]. There are studies on how the crossover and mutation mecha-
nisms affect GA in DOE design [13, 14]. In [13], it is concluded that, without mutations,
the regular crossover patterns only had limited effect on the growth of performance. On
the other hand, although the mutation mechanism enhances the searching of the global
optimum, the expense of computation resource isinevitable [14].

To further increase the performance of GA in DOE design, in thisthesis, the GA used
in [13] will be improved for DOE design. In particular, a method is proposed in which
a novel crossover operator is used in the GA instead of the regular exchange crossover

pattern and the mutation mechanism. The proposed method results in the DOE profiles



with superior performance in arelatively short time.

1.4 Thesis Orginization

In this study, the output diffractions in the optical far field of the DOESs are cal cul ated
by the scalar diffraction theory which is briefly illustrated in Chapter 2. Based on the
far-field diffraction formula, the numerical model of DOES in the optimization processer
is described. In particular, the encoding of DOESs and the relative parameters and merit
functions for evaluating performance of DOEs are discribed. Chapter 3 introduces the ba-
sisand implementationsof GA, including the fundamental operators and the several kinds
of implementations. Theresults of the algorithm used in [13] and [14] are summarized. In
Chapter 4, the proposed crossover operator, entitiled Target-Oriented CrossOver (TACO)
operator, is derived. The relative parameters used in the algorithm with the TACO opera-
tor are determined. The simulation results of DOEs designed by the proposed method are
presented in Chapter 5. These results are compared with the results of DOEs designed
using IFTA. Finaly, the conclusion of this thesis and possible future study direction will

be given in Chapter 6.



Chapter 2

Fundamental Theory of

DOEs—Diffractive Optics

2.1 Diffraction Theory

The diffraction theory begins from Maxwell’s equations. Depending on the complex-
ity of the problem, the formulation may have different appearances, which are essentially
divided into two mainstreams, namely the vector theory and the scalar theory. In the
design of DOEs, the feature size of the DOEs and the distance between the observation
plane and the DOEs play an important role in deciding whether the vector theory or the
scalar theory is used.

When the feature size of the DOEs is smaller than the magnitude of a wavelength of
the incident wave or the near field after the DOEs s of interest, the vectory theory which
sorts to rigorously solving the Maxwell’s equations is needed to calculate the diffractive
field. On the other hand, when the diffracting aperture is much larger than the wavelength

of the incident wave and the observed output diffrated field is far from the aperture, the



analysis can be further smplified and the scalar theory yields accurate results. [15]

In the thesis, the target plane of the DOESs illuminated by a monochromatic coherent
light with uniform amplitude is in the optical far field, and therefore the scalar theory
can give accurate predictions. The formulation of the scalar theory is described in the

following sections.

2.1.1 Huygens-Fresnel Principle

The fundation of the scalar diffraction theory is the Huygens-Fresnel principle. As
shown in Fig. 2.1, the diffracting aperture X lies in the £&— plane and the output diffrac-
tive field is to be observed on the x—y plane. According to the Rayleigh-Sommerfeld

diffraction formula[15], the Huygens-Fresnel principle can be expressed as

1 ikt
U(Pg) = — fo(Pl) cosads, (2.1
J4 . Fo1

where U(Py) and U(P;) represent the fields after the aperture and the diffractive field,
respectively, and A is the wavelength of the monochromatic wave. 1t should be noted that
the expression of (2.1) is for monochromatic waves only, which is the basic assumption
of thisthesis. In (2.1), cosé can be expressed by the distance between source point Pg

and field point P, and the distance between £— plane and x-y plane:

cosé = i. (2.2
lo1

Therefore, (2.1) can be written into

r

Z ejkrm
U = f f U(e.n) S dedn, 23)
S 01

with

for = V2 + (X = €)%+ (y — )2 (24)
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Figure 2.1 Geometry for explanation of the Huygens-Fresnel principle

2.1.2 Fresnel Diffraction

The Huygens-Fresnel priciple expressed in (2.3) can be simplied under certain con-
ditions into the Fresnel diffraction. First, for z > (x - ¢) and z > (y — ), one can

approximate ro; using binominal expansion with the first two terms such as

A

325

Upon substituting (2.5) into (2.3), it should be noted that ro; appears two times in
(2.3), and it is not necessary that both of them be replaced with (2.5). For the r3, term,
considering its appearing in the denominator and the effect of square, it is obvious that
the effect of the error is so small that the result will be the same if one just replaces
roo With z. For the rq; in the phase term, the error arising from substituting z for rq;
is more sensitive and needs more care. Thisis caused by the multiplying of ro; by the
wave number k. The value of wave number k is usually of the order of 107 1/m for the
visible light and amplifies the error by the same order accordingly. Besides, the value of
exponetial may change greatly even with alittle change of the phase. Therefore, instead of

merely replacing ro; in the phase term with z, (2.5) isused in order for sufficient accuracy.



Then, the substitution yields
ele e yn?
Uiy = 5 [[ Ut nesle o Mgea 26
Further, by factoring the term e%°+) out of the integral, (2.6) iswritten into

Uy = S f [ (ue.nete ) e itemazy, 27

which, aswell as (2.6), isreferred to asthe Fresnel diffraction integral. The detail analysis

of the accuracy of the Fresnel approximation can be found in [15].

2.1.3 Fraunhofer Diffraction

To further simplify (2.7), we assume that the far field condition is satisfied such that

o K&+ )ma

> (2.8)

Under this condition, the quadratic phase factor el %€+ in theintegral of (2.7) isfurther

canceled out. Thisyields the Fraunhofer approximation as

U(xy) = @zzW) f f U(E. e B0 dzdy, 29)

which is directly proportional to the Fourier transform of U (¢, ) by introducing the vari-

ables f, and f, by

=Y
f, = = (2.11)

Then (2.9) can be written to

U(x,y) = erz(22+y2>¢ (UE n) , (2.12)

—_X _Yy
fx_ﬂ_z’fy_ﬂz

where ¥ {U (¢, )} denotes the two-dimensional Fourier transform of U (&, ).

10



In this thesis, the diftractive field generated by the DOE is assumed to be in the far
field, which can be easily realized by inserting a lens between the DOE and the obser-
vation plane such that the DOE and the observation plan are located at the focal plane
in front and behind the lens, respectively [15, 16]. Therefore, in the algorithms of the

following chapters, the diffractive field will be calculated using formulae based (2.12).

2.2 Modeling of DOEs in Numerical Methods

The design of DOESs needs the use of a powerful computer and a proper numerical
method in the optimization of the DOE performance. Thus, the modeling of DOEs in
the numerical methods and the corresponding description of the diffraction formula as
introduced in the previous sections are essential. These modeling methods are discussed

in this section.

2.2.1 Multi-level Phase Modulation DOEs

The phase or the amplitude modulation of the incident wave provided by a planar

DOE can be represented by a transmittance function

t(,n) = A n)e?en, (2.13)

where A(¢,n7) and ¢(£, ) denote the amplitude and the phase modulation, respectively.
Since the amplitude modulation DOEs will absorb or reflect some of the incident wave,
insofar as the efficiency is concerned, it is usually desirable to design and use the phase
modulation DOES, which provide a theoritically lossless transformation. That is, the

transmittance function has an amplitude of unity and can be written as

t(€,n) = 9. (2.14)

11



Thus, the field U/ (¢, ) immediately behind the DOE is the product of the transmittance

function and the incident field U; (¢, ) such as

= Uj(&,m)e’e, (2.16)
= |UI(§, n)l ej(¢i (5777)+¢(§777))_ (217)

It should be noted that for the above (2.15) to (2.17) to be applicable, the DOE is as-
sumed to be thin enough so that it satisfiesthe “thin-lens” approximation. The “thin-lens”
approximation requires that, for aray passing through the DOE, the entry point and exit
point of the ray have almost the same trasverse coordinates (£, i7), namely the translation
of the ray inside the DOE can be neglected [15]. Thisassumption is easy to understand if
one reflects on the boundary conditions imposed by the Maxwell’s equations. For DOEs
made of dielectric materials, which is usualy the case, the Maxwell’s equations require
the tangential components of the field to be continuous across the boundary. Thiswill in
turn cause the distortion of the field inside the DOEs. However, when the DOEs are not
too thick for the distortion to spread out from the boundary to the whole field, the field
immediately behind the DOEs will has similar distribution with the incident field [16],
except for the phase retardation provided by the DOEs.

The DOES need to be thin enough, usually no thicker than one wavelength, to sat-
isfy the “thin-lens” appoximation. To do so, it is essential to redlize the fact that for a
certain phase difference, it makes no difference in effect if a multiple of 2 is added to
or subtracted from it. Hence, for any desired profile of phase difference, one can always
make the thickness of the DOEs less than one wavelength by subtracting a multiple of
wavelength from the original profile and still keep the resulted phase difference the same.

On the other hand, it is usually difficult to manufacture the continuous profiles under
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the scale of the wavelength of visible light. However, modern semiconductor process
technology enables usto approach the continuous profiles by discontinuous multiple level
profiles. The discontinuous multiple level profiles are made by quantizing the original
continuous profiles into levels of order of power of 2, each of which provides a phase
difference of ¢max/M, where M isthe number of levelsand ¢a IS the max phase differece
provided by the original profiles. Figure 2.2 shows the DOE equivalence, the binary and
the four-level quantization processes of a continuous thick device.

Considering the efficiency issue and the real manufacturing process of DOEs, the
following parts of thisthesis discusses the design of the DOEs with quantized multi-level

phase modulation profiles.

2.2.2 Encoding of the Multi-level Phase Modulation DOEs

To model a multi-level phase modulation DOE in numerical methods, it is convenient
to consider it as a phase transmittance function represented by a matrix. By the matrix,
the planar DOE is discretized into m x n zones or pixels, where m and n denote the
size of matrix. In each element of the matrix, the phase modulation information of the
corresponding pixel of the DOE is recorded, for example, 1, e//4, e/2 and €%/ for a
four-level DOE. Similarly, the incident wave can aso be discretized and represented by
amatrix of the same size, each element of which records the amplitude and phase of the
field at the corresponding coordinate.

Provided with the matrices of the incident wave and the DOE, the field immediately
behind the DOE is obtained by element-to-element multiplication of the incident wave
matrix and the DOE matrix. Figure 2.3 shows the encoding matrices of the incident field,

the DOE, and the output diffractivefield.
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Figure 2.3 Encoding matrices of the incident field, the dOE and the output diffractivefield

After the field immediately behind the DOE is calculated and encoded, the far field is
calculated by the Fraunhofer approximation. The expression of (2.12) , however, neces-
sitates a calculation of Fourier transform of the field immediately behind the DOE. Since
the field has been discretized and encoded by a matrix, the discrete Fourier transform
(DFT) isused [17] to calculate the matrix of the far field.

Also, because it isthe field intensity that is detected by the detectors or human eyes,
the intensity |U(x, y)|? is of concern, rather than U(x, ). Therefore, the factor ijkzejzhz(xzwz)
in (2.12) has no contribution to the intensity. In addition, the term %Z isjust areal constant
since theincident waveis monochromatice coherent light and only thefar field of the DOE
isto be observed. Thus, insofar as the far field intensity is concerned, it is reasonalbe to
use DFT to transform the field behind the DOE to the far field and neglect the factorsin
front of the integral in (2.12). Figure 2.4 shows the relation between the field after the

DOE and the far field.
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2.2.3 Evaluation of Performance of DOEs

There are many indices or parameters to evaluate the quality of the field or image
reconstructed by the DOEs. Here, the diffraction efficiency, the root-mean-square error
(RMSERR), and the signal-to-noise ratio (SNR) are introduced and used to evalutate the
performance of the DOEs designed in thisthesis.

In the following definitions, the integral range S and N denote the signal region and
the noise region of the field reconstructed by the DOES, respectively. By signal region,
the area defined by the target field is meant. The area outside thisregion isreferred to as
the noiseregion. U(x, y) and U(Xx, y) represent the complex amplitude of the reconsructed

field and the target field, respectively. The definitions are as the following.

e Efficiency

JIU(x y)Pdxdy

Efficiency = — . 218
¥ = N0 y)edxdy (219

S+N

The efficiency depicts how much energy is confined inside the signal region. The

higher the efficiency, the more energy diffracted by the DOEs contributes to the
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desired image.

Root-mean-square Error
[ 10X Y2 = U (x, Y)R)2dxdy]

S+N
] 1Ut(x y)1*dxdy

S+N

RMSERR =

(2.19)

The RMSERR evaluates the similarity between the reconstructed field and the de-
sired image. The lower the RMSERR, the more the reconstructed field is close to

the desired image.

Signal-to-Noise Ratio

minjU(x, y)I?

SNR (2.20)

- m@XIU(x, Y

The SNR shows the ratio of the smallest intensity in the signal region to the largest
intensity in the noise region. Therefore, an SNR of larger than unity indicates that
the intensity in each pixel forming the output diffractive field is larger than any of

the noise.

In the design of DOEs, the resulted DOESs seldom possess good efficiency, RMSERR

and SNR simultaneously. In most of the cases, chances are the optimization of one pa-

rameter causes the degradation of others. For example, if only the efficiency is optimized,

the RMSERR or the SNR may degrade to an unacceptable level [18]. Therefore, the merit

of optimization has to be selected carefully. Alternatively, instead of a single parameter,

acombination of several parameters with different weightings can be used to be the merit

of optimization. The resulted combination is usually called the fitness or merit function.

There are other parameters, such as the Strehl ratio and the space-bandwidth product

(SBWP). For more details, readers are referred to [2] and [18].
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Chapter 3

Optimization Methods for DOE

Design—Genetic Algorithms (GAs)

Since the debut in the 1960, GAs have been evolved dramatically, theoretically or
practically, from the original genetic plan by Holland in 1959 [19] to the first application
by Goldberg in 1983 [20]. In this chapter, the fundamental operators of the GAs and their
implementations are described first. Then the application of GA to the DOE design is

introduced.

3.1 Genetic Algorithms

The basic concept of GAs liesin the natural phenomenon called “the survival of the
fittest.” Hence, the whole agorithm can be viewed as a miniature version of the evolution
process of natural species.

The algorithm starts with an initial population. Each individual in the population
shows its adaptation or fitness to the environment. The more adaptable to the environ-

ment an individual is, the more likely the individual survives. Reproduction is the natural
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Figure 3.1 A simple genetic algorithm

instinct of species for leaving their genes. The reproduction includes the selection, the
crossover and the mutation mechanisms. The offspring cycle these processes and con-
tinue the evolution of species.

GAs emulate this evolution and consist of steps or operators corresponding to the
above processes. Figure 3.1 shows a simple genetic algorithm (SGA) [21]. The meaning
and the implementation of each step of the algorithm shown in Fig. 3.1 are described in

the following.

3.1.1 Gene Encoding and Population Initialization

At the beginning of the algorithm, an encoding mechanism is adopted to encode a
solution into what is usually called a “chromosome” or an “individual”. Here, the “so-

lution” means a random guess of the possible solutions since GAs will evolve it into the
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final optimal one. There are many encoding methods to represent a chromosome. The
most straightforward way is to encode the solution into a binary string consisting of 0’'s
and 1's, as proposed first by Holland [21]. Figure 3.2 shows an example of the binary en-
coding. Other encoding schemes, such as real-valued encoding, integer-valued encoding
etc. [21,22], may be used depending on the applications or the problems to be solved.
Since the evolution beginsfrom an initial population, as stated above, agroup of chro-
mosomes representing different possible solutions are randomly generated. The number
of chromosomes in the initial population is usually decided according to the complexity

of the problem and the availability of the computation resource.

3.1.2 Fitness Function

After theinitialization of the population, the performance or the fitness of each chro-
mosome is evaluated to determine its competence. The fithess is the main objective to be
optimized since theit is a combination of the performance parameters. The configuration
of the fitness varies from problems to problems. For instance, in the DOE design, the
fitness can be one of the performance parameters such as the efficiency, the inverse of the
RMSERR and the SNR. As an alternative, these parameters can be linearly combined to

form a complex fitness function.
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Figure 3.3 The Roulette wheel used in the selection process

Upon configuring a proper fitness function, it is essential that the fitness represents
the competence of the chromosome. Otherwise, the algorithm may be trapped into alocal

maximum or simply yields a meaningless solution.

3.1.3 Selection

Following the rule of natural selection, survival of thefittest, the selection process de-
termines which chromosomes have a better chance to proceed with the further processes,
based on the results of fithess evaluation. Here, a*“gene pool” is established, which con-
tains the chromosomes proceeding with the crossover process.

A basic selection scheme is the “proportionate selection scheme”, which states that
the probability of being selected into the gene pool is proportional to the fitness f; of each
chromosome[19,21]. The simplest implementation of the proportionate sel ection scheme
isthe “Roulette wheel selection”, as shown in 3.3. The probability that the chromosome
with a fitness of f; is chosen into the gene pool is f;/f, where f denotes the summation
of the fitnesses of the whole population. In each selection, arandom number is generated

and the chromosome in the corresponding area of the wheel is selected.
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Although the Roulette wheel selection is straightforward, it could be noisy. There is
chance that the gene pool is occupied with chromosomes with lower fitness values and
those with higher fitness values are not selected.

Besides the proportionate selection scheme, another common selection scheme isthe
“Rand-based selection scheme”, such as the “ Tournament selection”, the “ Truncation se-
lection” and the* u— A selection” [23]. Unlike the Roulette wheel selection, these methods
guarantee that the chromosomes with the highest fitness value are selected into the gene

pool and are less noisy compared with the Roulette wheel selection.

3.1.4 Crossover

In GAs, the operators which take the responsibility to “search” solutions are the
“crossover” and the “mutation” operators. The crossover operator provides a mechanism
for chromosomes to exchange genetic information to the others. Together with the above
selection process, the “ good genes’ possessed by the “elite” chromosomes can spread out
to the whole population.

There are many crossover operators being studied, such asthe one-point crossover, the
multi-point crossover [24], the mask crossover and the uniform crossover [25]. Figure 3.4
shows an example of the simplest “one-point crossover” mechanism. First, a “crossover
point” is randomly determined. When the crossover point is set between the second and
the third genes, for example, the parental chromosomes are divided into two parts at the
crossover point. Then, the child chromosomes are formed by exchanging the correspond-
ing parts of the parents. The exchange of the genetic information in certain areas specified

by crossover pointsis the common implementation for all the crossover mechanisms.
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Figure 3.4 Single point crossover. P; and P, denote the parents; O, and O, denote the

offspring.

3.1.5 Mutation

Since the crossover operator provides amechanism for chromosomesto exchange ge-
netic information which in turn starts a search in the solution space, no new information
is generated in the population. Therefore, the population may finally be saturated with
some certain gene strings and the evolved solution will be trapped into some local max-
ima. Similar to SAs, the mutation operator provides a mechanism to prevent from being
trapped into the local maxima. The mutation operator introduces new information into
the population and ignite a search toward the global maximum in the solution space. Fig-
ure 3.5 shows the relation between the local maximum and the global maximum in the
solution space.

Depending on the number of pixels to mutate, there are “one-point mutation” and
“multi-point mutation”. Figure 3.6 shows an example of the * one-point mutation” mech-
anism. Unlike the crossover operators, In practice, the mutation pixels are determined by
the so-called mutation clock which is calculated by the pre-determined mutation rate. The
reason the mutation clock is used instead of testing every gene by the mutation rate is to

reduce the computation time in the random number generation. In Fig. 3.6, the 5th gene
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O, denote the offspring after mutation.

is chosen and replaced by its complementary digit for binary coding.

3.1.6 Replacement and Termination

The crossover and mutation operators produce the child chromosomesfrom the parental
population. The offspring population is generated by replacing the parent chromosomes

with the new ones. In general, there are three kinds of replacement methods.

o All replacement
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The whole oftfspring population consists of only the child chromosomes.

e Tournament replacement
Asthe selection process, the fitness values of the child chromosomes are eval uated.
The parent and the child chromosomes compete with each other in the tournament

and the ones with higher fitness survivein the offspring population.

e Elitism replacement
A pre-determined number of chromosomesin the parent population which have the
highest fitness survive in the population. Others are replaced by the child chromo-

SOMmes.

After the replacement, the termination condition will determine whether the algorithm

should finish or not. There are usually three kinds of termination condition:
e The solution with the desired fitness is found.
e A total generation number isreached.

e Thefitness values of the population converged.

3.2 The Design of DOEs using GAs

Many studies have been conducted on the basic theory [26, 27] of GAs, aswell asthe
applications of GAsto awidevariety of different fields[28]. Recently, the new implemen-
tation of GAs for better performance is also emerging as a study topic. In the design of
DOEs, the applications of GAs have been reported [11, 12]. Nevertheless, studies on the
mechanisms of the basic operators and new implementations with improved performance

in DOE design are still needed.
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The study on the mutation rate [14] shows that, albeit a satisfactory performance of
DOE, the computation expense is an issue. However, in the study on the crossover mech-
anism [13], the different regular exchange crossover patterns only yield DOEs with unac-
ceptable performance when the mutation mechanism is excluded from the algorithm.

To improve the performance of resulted DOEs while boosting the computing speed
of the algorithm, an algorithm similar to that used in [13] is adopted in this thesis. That
is, the mutation mechanism is not used and a new crossover operator is proposed to im-
prove the performance of the algorithm. The novel crossover operator is introduced in
the next chapter. Prior to that, the algorithm used in [13] is described and its results are

summarized in this section.

3.2.1 The Algorithm

In [13], the GA was used in the design of two-dimensional binary phase DOEs. The
input was assumed to be monochromatic coherent light with uniform amplitude and the
output diffractive field was assumed to be in the far field of the DOEs. The DOE was
discretized into 64 x 64 pixels and encoded into a matrix, asillustrated in Chapter 2. The
target pattern was a cross sign which was aso encoded into a 64 x 64-pixel matrix. In

summary, the simulation parametersin [13] are listed below.
e Phase-only DOES (64 x 64 pixels) for monochromatic coherent light with uniform
transmittance t(¢, n) = e,

e Binary phase DOEs

T
(X, y) = ,
0
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o Crosstarget pattern.

These parameters are related asin an operation loop as shown in Fig. 3.7. Note that since
the incident wave was a coherent uniform one, the amplitude |U;(¢, r7)] was unity and the
phase ¢;(£, 1) was a constant, which was assumed to be zero without losing the generality.
Therefore, the field immediately after the DOE was exactly the same as the transmittance
function el¢, The cases of the multi-level and the continuous phase DOE design are
very similar to the binary one, except the setting of the phase ¢. For example, in the four-
level case, the phase ¢ can be O, /2, 7 and 37/2; and in the continuous case, ¢ can be
any real number between 0 and 2.

The algorithm used in [13] isshown in Fig. 3.8. The algorithm follows a SGA except
for the absence of the mutation mechanism since the effect of the crossover mechanismis

the core issue of that research.
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Theinitial population consisted of 33 chromosomes. The fitness function was defined

by linearly combining the Efficiency, the RMSERR and the SNR as follows,

1

Fitness = 1 x Efficiency + 10 x SNR + 10 x RMSERR’

(3.1)

where the Efficiency, the RMSERR and the SNR are defined in (2.18) to (2.20). The
elitism selection was used to construct a gene pool, in which the chromosomes with the
highest efficiency, fitness and SNR got two copies in the pool. The other chromosomes
had their own copies in the pool. This resulted in the gene pool with 36 chromosomes,
in which the chromosomes with highest efficiency, fitness and SNR had chance twice as
much as others to be involved in the crossover process.

Inthe crossover stage, 16 crossoverswere performed and the crossover pattern changed
every 100 generations. Each crossover involved two chromosomes, randomly selected
from the gene pool and produced two child chromosomes.

After the crossover process, the replacement was conducted to form the offspring pop-
ulation. Unlike the initial population, the offspring population consisted of 36 chromo-
somes, in which 32 chromosomes were produced by the 16 crossovers, 3 chromosomes
were the “elite” with the highest efficiency, fitness and SNR determined previously, and
the last one was randomly selected from the gene pool.

It should be noted that there was no mutation process in the algorithm. Without muta-
tions, after a number of generations, the population lost its diversity and the performance
did not grow as the population evolves. This phenomenon was called the population pu-
rification. In such acircumstance, a“Population Restoration” mechanism was introduced
to prevent the population from purification. The mechanism is, at some pre-determined
generation, except the three chromosomes with the highest efficiency, fithess and SNR,
the whole population will be replaced with the original population, i.e. the original 33
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Figure 3.8 Algorithm used in DOE design

chromosomes.

The loop of the evolution proceeded until the pre-determined generation number was
reached. The total generation number and the population restoration generation number

were determined experimentally.
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Figure 3.9 Orthogonal sinusoidal crossover pattern

3.2.2 The Results of Regular Exchange Crossover Patterns

In[13], several different crossover patternswere proposed, such asthe random crossover
pattern, the orthogonal sinusoidal crossover pattern etc. These patterns determined the
corresponding pixels of the two parental chromosomesto be exchanged. Figure 3.9 shows
an orthogonal sinusoidal crossover pattern. The bright region denotes the pixelsto be ex-
changed and the dark region represents the pixelsto be kept. Figures 3.10-3.13 show the
results of the algorithm using the orthogonal sinusoidal crossover patterns as shown in
Fig. 3.9. Similar results were obtained by using other patterns proposed in [13].

According to these results, it was concluded that although the crossover mechanism
could result in evolution which improved the performance of the whole population, the
growth speed was too slow and the performance was disappointing. After a total of
500,000 generations, the best efficiency, RMSERR, and SNR were 0.34, 0.32, and 0.035,
respectively. The efficiency and RMSERR were only half as good as that obtained in [14]
and the SNR even falled into a negligible range. As expected, the best far field pattern
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shownin Fig. 3.13 possesses a faint shape and is very noisy. Therefore, some stimulation
mechanisms may be needed to stimulate the evolution and boost the growth of the perfor-
mance. The mutation mechanism can provide a stimulation to the evolution and lead the
population toward the global maximum. However, the considerable computation expense
isinevitable [14].

Motivated by these problems, anovel crossover operator is proposed in the next chap-
ter to increase the growth rate of the performance. By using this crossover operator, the
optimization which yields satisfactory performance can be achieved in relatively short

time.
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Chapter 4

A Novel Crossover
Operator—TArget-oriented CrossOver

(TACO) Operator

The results and the limitations of the regular exchange crossover patterns used in the
algorithm [13] were illustrated in the previous chapter. In this chapter, a novel crossover
operator is derived. Then therelated parameters used when the operator isintroduced into

the algorithm are determined.

4.1 Derivation of the Novel Crossover Operator

As illustrated in Fig. 3.7, a phase DOE is to be found such that the output far field
is a cross pattern when the DOE is illuminated by a monochromatic coherent light with
uniform amplitude. All the fields and the DOE are discretized and encoded into 64-by-64-
pixel matrices. The field immediately behind the DOE and the far field can be computed

from each other using the discrete Fourier transform (DFT).
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4.1.1 Mathematical Expression of the Crossover Operator

The crossover process can be expressed mathematically as

Ol = Pl . XOl + P2 . XOz, (41)

02 = P]_ . X02 + P2 . XO]_, (42)

where the matrices P; and P, represent the parental chromosomes, the matrices XO; and
XO, the crossover patterns, and O; and O, the child chromosomes. Note that although
the chromosomes P; and O; represent the DOES, they also represent the field immediately
behind the DOEs. By readlizing the relation that XO, and XO, are complementary to each

other, i.e.
X02 = 1 - XO]_, (43)
the above (4.1) and (4.2) can be written into

Op = (P1— Py) - XOy + Py, (4.4)

02 = (P2 - Pl) . XOl + Pl. (45)

To derive the expression of XO; and XO,, we take advantage of one of the most
important characteristic of this optimization problem. This property is that the target
of this problem is well-defined—a cross pattern which is encoded into a 64-by-64-pixel
matrix. Denoting the target pattern matrix as T, the ultimate goal of the optimization is
givenby DFT{O;} = T or O, = DFT~}T}. Substituting thisinto (4.4) resultsin

O,-P;
P - P,
_DFTYT}-P,
- Pi-P,

X0 =

(4.6)

The above matrix operations are pixel -wise or element-to-element operationsand (4.6)
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can be written in a pixel-wise sense as

X0, = t , (4.7)

where xo;, p; and t=* denote the corresponding pixelsin XO;, P; and DFT T} matrices,
respectively. Because of the pixel-wise nature of the above operations, it is possible that
the corresponding pixels of P, and P, are of the same values and, therefore sigulariteis
occur in the operations. The sigularity issue can be easily solved if one reflects on the
nature of GAs that if the parental chromosomes possess the same gene strings, so do the
children chromosomes. Therefore, xo; is set to be unity, i.e. 0, = p; = po, Wherever
P1 = P2

Note that in (4.6), T denotes the matrix of the target pattern and possesses both the
amplitude and the phase information. Since only the intensity is detected by the detectors
or human eyes, the phase ¢ of T isarbitrary and can be specified at one’s convenience.

The crossover operator expressed in (4.6) and (4.7) is derived by taking advantage of
the existence of the well-defined target pattern of this optimization problem. Therefore, it
isentitled ” Target-Oriented CrossOver” operator, and isreferred to as the TACO operator

hereafter.

4.1.2 Discussions on Several Cases

In this section, the situations of several kinds of the parental chromosomes P; are

discussed.

Case 1. Thetwo parental chromosomes are identical.

X01:1 = 01202:P1:P2.
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Case 2. None of the corresponding pixels of the two parental chromosomes are the same.
For binary phase modulation DOES, this means that the two parents are comple-

mentary matrices, and the two child chromosomes are given by
O, = DFT YT},
O, = DFT YT} + P, + Py

It turns out that O, is a Kinoform of T provided the phase of T is given as the

phase of DFT{P,}.

Case 3. Some of the corresponding pixelsof the two parental chromosomes are the same.
The identical pixels cause sigularities to occur. In this case, (4.7) is applied for
pixelsthat p; # p, and xo is set to be unity for pixelsin which p; = p,. The

resulted O, is acombination of P; and DFT%{T}.

It is noted that mostly, Case 3 isthe case and Case 1 and Case 2 rarely occurs.

4.2 Determination of Relevant Parameters

To apply the TACO operator to the algorithm as shown in Fig. 3.8, there are two
parameters to be determined; oneisthe condition for population restoration and the other
is the termination condition for the simulation. In this section, the generation when the
population is restored is determined first. Then the termination condition is determined

using this population restoration condition.

4.2.1 Condition for Population Restoration

Ten simulations were conducted to determine the condition for population restoration.
To make a clear comparison, the initial population was chosen to be the same as that
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Figure 4.1 Best efficiencies of the population restoration test

used in [13]. The population restoration was not conducted here. The number of the
generations of the simulations was set to be 1,000. The phase ¢ of the target pattern
matrix T was selected as the phase of DFT{P,}.

The simulation results are shown in Figs. 4.1-4.3. Without the population restoration,
the highest efficiencies and the lowest RM SERRS soon converged to about 0.8 and 0.15
within 50 generations of evolution, respectively. On the other hand, the SNRs grew more
slowly and converged at around generations 100-200. In most cases, the highest SNRs
converged to about 0.5 to 1.0 and stagnated after 200 generations of evolution. Compared
with the increase of SNRs before generation 100, the SNRs increased more slowly in
generations 100-200. Therefore, a number between 100 to 200 may be a reasonable
generation for popul ation restoration. In the following simulations, every 100 generations

of evolution is selected as the population restoration condition.
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4.2.2 Condition for Termination of the Simulation

Although the total generations of a simulation may be chosen as large as the compu-
tation resource is available in order to yield the desired performance, it is of practice to
terminate asimulation in acertain number of generations. After the certain generations of
evolution, there exists chromosomes with the desired performance or the performance has
converged to acertain value and may not be better anymore. Using the population restora-
tion condition described in the previous section, another 10 simulations were conducted
to determine when to finish the simulation. In al 10 simulations, the population restora-
tion was performed every 100 generations of evolution, and atotal of 10,000 generations
were conducted.

The simulated performance is shown in Figs. 4.4-4.6. As shown in Fig. 4.6, three of
ten highest SNRs kept increasing till the termination condition was fulfilled. In the rest
of the cases, the SNRs reached a level of 1.2 and the increase was not significant after
5,000 generations of evolution. To reach a compromise between the optimal performance
and the computation expense, a total of 5,000 generations will be used to terminate the
simulationsin the next chapter.

The results shown in Figs. 4.4—4.6 can be compared with that shown in Figs. 4.1-4.3
to illustrate the effect of the population restoration, as described in Section 3.2.1. Taking
into account of the values at the 1,000th generation in Figs. 4.4-4.6 and comparing with
that in Figs 4.1-4.3, most of the efficiencies and the SNRs were higher and the RM SERRs
were lower. This is a prime example of the importance of the population restoration
mechanism in the absence of a mutation mechanism in order to introduce new growth

stimulation into the population.
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4.2.3 \Verification of the Relative Parameters

In the above sections, the population restoration condition and the termination condi-
tion for the simulation were determined—i.e. the initial population is restored every 100
generations of evolution and the simulation is terminated when a total of 5,000 genera-
tions have evolved. These conditionsyield atotal of 50 restorations of popul ation.

It is worth noting that, only after 200 generations of evolution does the real conver-
gence of the highest SNR happens, as shown in Fig. 4.3. Therefore, it is possible that the
population restoration condition of every 100 generations may be a premature one and
affect the performance of the results. To this end, an experiment was conducted to verify
the above conditions. Similar to the previous section, 10 simulationswere conducted with
the same initial population. The population restoration condition was set to be every 200
generations and the simulation was terminated after atotal of 10,000 generations. These

conditions were selected such that they yield atotal of 50 restorations of population, the
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same as the case to be verified.

The results are shown in Figs. 4.7-4.9. From these figures, it can be concluded that
both cases yield comparable performance after 50 population restorations—efficiencies
about 0.8-0.85, RMSERRS about 0.12-0.13, and SNRs about 1.1-1.8. Thisis to be ex-
pected since, asindicated in previous sections, the increase in performance in generations
100-200 is not so significant as that before the generation 100. Therefore, the premature
population restoration is not an issue if the population restoration condition is set to be
every 100 generations of evolution. The parameters—population restoration every 100
generations of evolution; atotal of 5,000 generations—will be used in the simulations of

the following chapter.
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Chapter 5

Simulation Results—Optimization

Using GA with the TACO Operator

In this chapter, the TACO operator is applied to the optimization process of the DOE
design. The simulationsinclude the robustnesstest, the comprehensive information of the
final population, and the results of using different phases of the target pattern. The TACO

operator is aso applied to the multi-level DOE design, and is compared with the IFTA.

5.1 Simulation Setup

Before the discussion of the results, the simulation setup is summarized as below.
1. DOE modeling

e Modulation method: Phase modulation type DOEs.

e Quantization method: binary, four-level (Section 5.5.1), and eight-level (Sec-

tion 5.5.2) quantizations.

e Incident wave: monochromatic coherent incident light with uniform ampli-
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tude.
e Target pattern: a cross pattern.

e Discretization method: 64 x 64-pixel matrices.

2. Optimization agorithm

e Initial population: the 33 chromosomes the same as[13].

Crossover mechanism: the TACO operator with population restoration.

Mutation mechanism: none.

Population restoration: every 100 generations of evolution.

Termination of simulation: after atotal of 5,000 generations.

Figure 5.1 shows the flowchart used in the following simulations.
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Fitness Evaluation
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Termination
Condition
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Initial 33 chromosomes are restored.

Efficiency, SNR, RMSERR

Selection
Elitism: Chromosomes with the best Efficiency,
RMSERR, and SNR get one more copy.

Gene pool: 33 4+ 3 chromosomes.

Crossover

Best 3 chromosomes are reserved.

Population

Restoration
Condition

100 generations

Replacement

32 children from 16 pairwise crossover

TACO operator

3 children from best chromosomes

1 child from random selection

Figure 5.1 Flowchart of the algorithm with TACO used in the simulation
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5.2 Robustness Test

Some algorithms, such as the IFTA, yield results with performance of a wide range,
depending on the different initial conditions. On the other hand, there are agorithms
which are insensitive to the initial conditions, such as the simulated annealing (SA) algo-
rithm. A typical GA sorts mainly to the random process. Idedly, it is insensitive to the
initial condition, provided the random process is “random enough”. Since the proposed
method is based on the GA, the insensitivity to the initial condition isto be expected.

To test the robustness of the TACO operator, another five random binary populations,
each of which consisted of 33 chromosomes, were generated and used in the algorithm.
The five additional populations are numbered random binary 1 to 5. Including the orig-
inal population used in [13], each of the six populations was used in two simulations as
discussed in the following. The results were then compared with each other to verify the
robustness of the TACO operator.

The results of the first smulation are shown in Figs. 5.2-5.4. It can be observed from
the figuresthat all the six populations had amost the same efficiencies and RMSERRS. In
contrast, the SNRs vary from 1.2 to about 1.7—the random binary 4 had the highest SNR
and the random binary 5 had the lowest one.

One possible reason for the difference in SNR between each population is that there
are populations consisting of chromosomes superior to other populations. That is, in the
present simulation result, the chromosomes of the random binary 4 might be superior
to that of the random binary 5. To this end, the second simulation was conducted with
exactly the samesix initial populations. If acertaininitial popul ation possesses superiority
over others, the results of the second simulation will resemble that of the first smulation

in the way that the random binary 4 has the highest SNR and the random binary 5 has the
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lowest one.

The results of the second simulation are shown in Figs. 5.5-5.7. Similar to that of
thefirst smulation, the efficiency and the RMSERR of each population were comparable
whilethe SNRs differed from population to population. Asshownin Fig. 5.7, the original
population had the highest SNR and the random binary 2 had the lowest one—a result
different from the first simulation.

A ranking of the SNR of each population for each simulation is shown in Table 5.1.
It is clear that no specific population is certainly superior to others. Each population
has its chances to evolve to a solution with a higher or a lower SNR, depending on the
random process. Notethat, albeit asomewhat lower value, thelowest SNR was still higher
than 1.2. Therefore, it is concluded that the TACO operator is robust against the initial

population.
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Robustness Test 1 Robustness Test 2
SNR Ranking

Population No. Population No.

1 4 origina
2 3 5
3 1 4
4 original 3
5 2 1
6 5 2

Table 5.1 SNR ranking of the robustness test
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5.3 Comprehensive Performance of a Single Population

In the selection process of the algorithm shownin Fig. 5.1, the “Elitism” was adopted.
To construct the gene pool for the crossover process, the chromosomes with the high-
est efficiency, the lowest RMSERR, and the highest SNR had one more copy than other
chromosomes. However, in order to keep the versatility of gene information, a rule was
forced on the selection process so that the highest-efficiency, the lowest-RMSERR and
the highest-SNR chromosomes are different ones. Therefore, in the results of previous
sections, it is very likely that no chromosomes possessed the highest efficiency and SNR
and the lowest RMSERR simultaneously. In this section, the efficiency, the RMSERR,
and the SNR of each chromosome in the population after the evolution are investigated to
determine the chromosome with the best performance.

Asthe test conducted in determining the termination conditions in the previous chap-
ter, 10 simulations were conducted. Then the best and the worst results were used to
investigate the performance of the whole final population. Since TACO operator isinsen-
sitive to the initial population, as shown previously, the original population in [13] was
used asthe initial population.

Theresultsof the 10 simulations are shown in Figs. 5.8-5.10. Since the efficiency and
the RMSERR of each simulation were almost the same, the SNR was used to determine
which results were used to investigate the performance. As shown in Fig. 5.10, the 7th
simulation resulted in the highest SNR while the 6th simulation yielded the lowest one.

Tables 5.2 and 5.3 show the performance data of the best chromosomes of the 6th
and 7th simulation results, respectively. It can be seen from these tables that the SNR
of the chromosome with the highest efficiency was relatively low. In particular, the SNR

was only as low as a half of the highest SNR. On the other hand, the efficiency of the
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chromosome with the highest SNR, albeit somewhat lower, was still higher than 0.75.
Specificaly, the efficiency was only 5% to 10% lower for the chromosomes with the
highest SNR than the highest efficiency.

Figures 5.11-5.13 show the comprehensive information of the whole population of
the 6th simulation result. Figures 5.14-5.16 show the comprehensive information of the
whole population of the 7th simulation result. According to these figures, the following

facts were observed:

e chromosomeswith the highest efficiencies had relatively low SNRs, aslow asahalf

of that of the highest SNRs,
e chromosomeswith the highest SNRs had moderate efficiencies and RM SERRs; and
¢ the average SNR of the whole population was not so high, although chromosomes

with high SNRs existed.
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The6th Test Efficiency RMSERR  SNR

Best Efficiency  0.8341 0.1458  0.4265
Best RMSERR  0.8005 0.1278 0.4780

Best SNR  0.7576 0.1602  1.1293

Table 5.2 Performance of the best chromosomes of the 6th simulation in population per-

formance investigation

The7th Test Efficiency RMSERR  SNR

Best Efficiency  0.8425 0.1466  0.9052
Best RMSERR  0.8096 0.1237  1.1936

Best SNR  0.8068 0.1358  2.0333

Table 5.3 Performance of the best chromosomes of the 7th simulation in population per-

formance investigation
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The trade-off between the efficiency and the SNR may be understood if onereflects on
the definitions of these parameters. By definition, the efficiency becomes higher as long
as more energy is diffracted into the signal region. In contrast, it is not easy to increase
the SNR. Asdefined in (2.20), only theratio of the smallest intensity in the signal region
to the largest one in the noise region is larger does the SNR increase. Therefore, in the
optimization process, chances are that more and more diffracted energy is concentrated
into certain pixels of the signal region while the smallest intensity in this region does not

become larger or even reduces. Asaresult, the chromosomes with the highest efficiencies
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5.4 The Phase of the Target Pattern in the TACO Opera-

tor

In the ssimulations conducted in the previous sections, the phase ¢ of the target pattern
T was chosen as the phase of DFT{P;}. Other choices of ¢, such as arandom phase or a

constant phase, are used in this section to make the comparisons.

5.4.1 Random Phase

For the random phase case, ¢ was randomly assigned upon each crossover process.
As shown in Figs. 5.17-5.19, the best efficiency, RMSERR and, SNR were about 0.46,
0.3, and 0.024 respectively. The best resulted far field is shownin 5.20. For acomparison,

the best far field resulted from another simulation, which used the phase of DFT{P} as
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the phase ¢, isshownin Fig. 5.21. The unsatisfactory results may be attributed to the lack
of the phase retrieval process such as the use of the phase of DFT{P;} which provides an

effect equivalent to that of IFTA.

5.4.2 Constant Phase

For the constant phase case, ¢ was selected as 0 without loss of generality. The results
are shown in Figs. 5.22-5.25. Under the same number of total generations, it is obvious
that the constant phase yielded worse results than the random phase. The best far field is
not even distinguishable after 5,000 generations of evolution.

The low performance compared with the above random phase case may be explained
as follows. The target pattern with a constant phase can be viewed as a single optimal
point in the solution space and may be difficult for the population to approach in the

optimization process. The target pattern with the randomly generated phase, produces
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Figure 5.20 Best far field of DOESs for random target pattern phase
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Figure 5.21 Best far field of the ssmulation using the phase of DFT{P,} as the phase ¢ of

the target pattern
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more possible optimal points in the muti-dimensional solution space. Therefore, during
the optimization process, the population may evolve toward the optimal points whenever
ispossible. A ssmulation of atotal of 500,000 generationswas also conducted and resulted
in an efficiency of 0.38, an RMSERR of 0.32, and an SNR of 0.035. Therefore, about
100 times of the total generations were needed for the constant phase case to result in

performance comparabl e to the random phase case.
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Figure 5.25 Best far field of DOEs for constant target pattern phase

5.5 Application to Design of Multi-Level DOEs

To verify the application of the agorithm with the TACO operator to the design of

multi-level DOES, the four- and eight-level cases were conducted.

5.5.1 Four-level DOEs

Figure 5.26 shows the four-level quantization process. The continuous phase is quan-
tized to 0, n/2, nr, and 37/2. Similar to that of the binary cases, 10 simulations were
conducted. The results of the 10 simulations of the four-level DOE design are shown in
Figs. 5.27-5.29.

The first impression of the results may be unfavorable since there is little difference
between the four-level cases and the binary cases. However, it is easily understood if one
keeps in mind that a binary phase DOE reconstructs both the origina and the conjugate

images which are symmetric about the axis [18]. For atarget with on-axis symmetry, the
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original and the conjugate images merge and there seemsto be only one reconstructed im-
age. The cross pattern used in the simulationsis symmetric about the axis. Consequently,
the efficiencies, the RMSERRS, and the SNRs calculated in the binary cases were con-
tributed by both of the original and the conjugate images. For example, the efficiency
of the original image was only a half of that of the merged image. That is, the efficien-
cies were about 0.4 for the binary cases, which make the results of the four-level DOEs

reasonable.

5.5.2 Eight-level DOEs

Figure 5.30 showsthe eight-level quantization process. The continuous phase is quan-
tizedto 0, n/4, /2, 3n/4, nr, 57/4, 3n/2, and 7 /4.
Figures 5.31-5.33 show the results of the 10 simulations of the eight-level DOE de-
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Figure 5.28 Best RMSERRs of the four-level DOEs
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Figure 5.31 Best efficiencies of the eight-level DOESs

sign. The best efficiencies, RMSERRS, and SNRs were as good as 0.9, 0.1, and 4.4
respectively. Compared with the binary and the four-level cases, the eight-level DOEs
yielded superior performance, as expected.

Therefore, from the results of the four- and eight-level DOES, it is concluded that the
TACO operator is applicable to the design of multi-level DOEs. The application to design
of continuous DOESs was also implemented with superior performance—an efficiency of

0.95, an RMSERR of 0.07, and an SNR of 7.
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5.6 Comparisons with Other Optimization Methods

In this section, the proposed method is compared with other optimization methods.
First, the results of the iterative Fourier transform agorithm (IFTA) are compared with
our results as illustrated in the previous sections. Then the results of the simple genetic

algorithm (SGA) used in [14] are briefly described and compared with our results.

5.6.1 [IFTA with lterative Quantization Method

The theory and the application of IFTA has been widely studied since it was proposed
by Gerchberg and Saxton in 1971 [10]. Figure 5.34 shows the procedure of IFTA. There
are many implementations of IFTA to optimize the performance of the results. In this
section, the iterative quantization method [29] was used. To compare with the GA with

the TACO operator, the ssimulation of IFTA used the following conditions:
e the binary phase DOEs were designed;

¢ theinitial guesses were the original 33 chromosomes used in the previous sections;

and
e atotal 18 stepswere used in the quantization process, i.e. 10 degrees per step.

As shown in Table 5.4, the resulted DOEs had efficiencies ranging from 0.8501 to
0.8674, RMSERRSs ranging from 0.1549 to 0.1327, and SNRs ranging from 0.1695 to
0.8867. The average efficiency, RMSERR, and SNR are 0.8615, 0.1432 and, 0.5267,
respectively. A comprehensive performance of the 33 DOEs are listed in Appendix A.

To compare with the results of the algorithm with the TACO operator, the performance
of DOEs with the best efficiency, RMSERR and SNR was considered, which isshownin
Table 5.5. In particular, the DOE with the highest efficiency and SNR was selected as the
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Figure 5.34 The schematic diagram of IFTA

IFTA Results Best Worst Average

Efficiency 0.8674 0.8501 0.8615
RMSERR 0.1327 0.1549 0.1432

SNR 0.8867 0.1695 0.5267

Table 5.4 Results of IFTA (Note: resulted DOEs with best efficiency, RMSERR and SNR

may not be the same ones; the same is true for the worst cases.)
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IFTA Results Efficiency RMSERR  SNR

Best Efficiency  0.8647 0.1375  0.8867
Best RMSERR  0.8538 0.1327 0.7671

Best SNR  0.8647 0.1375  0.8867

Table 5.5 Performance of Best DOEs resulted from IFTA Simulations

optimal solution of the IFTA. The results of the 6th and the 7th simulations in Section
5.3 were used in the comparison. As shown in Table 5.2, it is reasonable to choose the
chromosome with the highest SNR to be the final optimal DOE since a 2.5 times of SNR
can compensate for the 10% loss of efficiency. Similarly, the optimal DOE in the 7th
simulation was selected in the same way. The best solutions are listed in Table 5.6.
Compared with the IFTA, the GA with the TACO operator yielded DOEs with lower
efficiencies, comparable RMSERRs, and higher SNRs. Specifically, the efficiencies were
about 7.5% to 10% lower and the SNRs were about 1.3 to 2.3 times higher. Therefore,
with alittle decrease of the efficiency, the GA with the TACO operator results in DOEs
with superior performance. Also, the computation time was comparable for both meth-
ods to yield the optimal results listed in Table 5.6. Under our computing environment,
which is alaptop installed with the Intel® Core™Duo L 2400 1.66 GHz processor and the

MATLAB® R2007b computing package, the time duration was about a half of an hour.

5.6.2 The GA using the Mutation Mechanism

The method used in [14] was an SGA. Different mutation rates were employed to find

out a best one which resulted an optimized solution. Note that the initial population used
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Efficiency RMSERR SNR

IFTA  0.8647 0.1375  0.8867

The 6th of TACO  0.7576 0.1602  1.1293

The 7th of TACO  0.8068 0.1358  2.0333

Table 5.6 Performance of Best DOEs resulted from IFTA and GA with TACO operator

in the 6th and 7th simulation results shown in Table 5.6 is the same as that used in [14].
Using a mutation rate of 0.04% and a random crossover pattern to design the binary
phase DOEs, the method used in [14] resulted in a DOE with an efficiency of 0.8497, an
RMSERR of 0.1274, and an SNR of 2.3739, after 100,000 generation of evolution. The
performance of the DOE was comparable to the 7th simulation result of our method as
shown in Table 5.6. However, the method in [14] was far more computation expensive
than our method. Specifically, the total number of generations used in [14] was 20 times
of that used in our method. In terms of time duration, our method resulted in the 7th
simulation result within a half of an hour, while eight to ten hours were needed for the

evolution of 100,000 generationsin [14].
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Chapter 6

Conclusion

6.1 Conclusionon the algorithm with the TACO operator

In thisthesis, amethod that introduced the novel TACO operator into the GA has been
proposed to enhance the performance of the optimization in the DOE design. The TACO
operator was derived by taking the advantage of the existence of the well-defined target
pattern of the optimization problem.

The performance of the proposed method used in the phase DOE design was stud-
ied. The method yielded DOEs with satisfactory efficiencies, RMSERRSs, and SNRs. The
computation time needed for the method was effectively reduced to achieve results com-
parable with the SGA using the mutation mechanism [14]. Specifically, the number of
generations needed in the method was only 1/20 of that in [14]. Compared with the IFTA
using iterative quantization, the method resulted in binary-phase DOEs with higher SNRs
and comparable RMSERRSs. The applications of the proposed method to the multi-level
and the continuous DOE design were also implemented with satisfactory performance.

The characteristics of the TACO operator were investigated, too. The robustness of
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the TACO operator against theinitial population was confirmed. Depending on the choice
of the phase of the target pattern in the TACO operator, the resulted DOE may possess dif-
ferent performance. The use of the diffractivefield phase resulted in superior performance
while the random phase and the constant phase provided limited increase in performance.
We believe the reasons are the lack of the effect of the phase retrieval process similar to
the IFTA and the lack of the approachable optimal pointsin the solution space. The per-
formance of the whole population after the final evolution was evaluated. The trade-off

between the SNR and the efficiency was also observed in the whole population.

6.2 Improvement of the Algorithm

The performance of the proposed algorithm may be further improved by using sev-
eral methods. For example, the iterative quantization technique [29, 30] may be adopted
to pursue higher performance. By introducing the constraints in a stepwise way itera-
tively, more design degree of freedom can be provided. Therefore, the stagnation of the
performance may be avoid and the movement toward the global maximum may be more
smoothly. In particular, the efficiency may be expected to increase to the level as that
of the IFTA described in Section 5.6.1. However, the computation expense and the time

duration of the ssmulation may still be an issue for a noticeable improvement.
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Appendix A

Comprehensive Results of IFTA

The efficiency, the RMSERR, and the SNR of the 33 resulted DOESs optimized by the
IFTA asdescribed in Section 5.6 are shown in the following tables. The initial guesses of

the 33 IFTA results are the 33 chromosomes of the original population used in the GA in

Chapter 5.
No. Efficiency RMSERR SNR No. Efficiency RMSERR SNR
1 0.8627 0.1430 0.2284 9 0.8538 0.1327  0.7671
2 0.8608 0.1371  0.3667 10 0.8572 0.1419 05732
3 0.8588 0.1549  0.3874 11 0.8601 0.1459  0.1695
4 0.8585 0.1467  0.2786 12 0.8531 0.1437  0.5497
5 0.8578 0.1393 0.5664 13 0.8674 0.1375  0.8867
6 0.8581 0.1410 0.7785 14 0.8589 0.1440 0.5329
7 0.8644 0.1464 05414 15 0.8565 0.1422  0.2693
8 0.8642 0.1417 05772 16 0.8657 0.1489  0.5405

Table A.1 The comprehensive IFTA results
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No. Efficiency RMSERR SNR
17 0.8624 0.1410 0.3826
18 0.8572 0.1377  0.6336
19 0.8569 0.1409 0.3722
20 0.8619 0.1457  0.5182
21 0.8520 0.1417  0.8631
22 0.8638 0.1462  0.2915
23 0.8638 0.1473  0.4098
24 0.8607 0.1420 0.4739
25 0.85%4 0.1386  0.3548

No. Efficiency RMSERR SNR
26 0.8572 0.1480 0.3725
27  0.8624 0.1457  0.3962
28  0.8623 0.1442  0.3962
29  0.8646 0.1491  0.6289
30 0.8501 0.1400 0.7545
31  0.8665 0.1400 0.6032
32 0.8576 0.1415 0.8588
33  0.8627 0.1430 0.2284

Table A.2 The comprehensive IFTA results (contd.)
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