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中文摘要 

尋找與回溯不同生物基因體間在演化上之共同來源區段(稱之為演化同源與同

線圖譜對映，synteny and orthology mapping)，是比較基因體學中基礎的工作。隨

著定序技術的進展，愈來愈多的大型基因體序列已經定序完成或近乎完成。這一

方面使得以全基因體比對進行演化同源與同線圖譜對映顯得日益重要，另一方面

也帶來了新的研究挑戰。面對為數眾多、隨時間分歧演化且動輒數十億萬鹼基對

的基因體序列比對，我們要如何建立具備高靈敏度、高特異度以及高效率的比對

引擎與方法是其中核心的研究課題。 

我們首先針對近距大型基因體間同源與同線圖譜對映，發展出 UniMarker 方

法。以人與小鼠比對為例，此方法採用長度 16 且在這兩個基因體都只出現一次的

短序列來建立出次數頻譜，以偵測尋找同源與同線的基因體區段。實驗結果顯示，

人與小鼠（基因體長度均為約三十億萬鹼基對）的基因體同源與同線對映只需數

小時於一台個人電腦即能完成，同時其產出之圖譜與小鼠基因體定序協會(MGSC)

之圖譜有 99%的一致。 

接著，針對非近距大型基因體間同源與同線圖譜對映，我們提出新型態的種

子詞彙(seed)，稱為 maximal α-marker pairs(簡稱α-pairs)，α代表該種子詞彙在兩個

欲比對序列上之總出現次數的上限，這種選取方式有別於常見以限制種子詞彙長

度而不考慮詞頻的選取方式，例如：採用固定長度的 k-mer 與設定長度下限的 MEM

方法。奠基於增強式後綴陣列(enhanced suffix arrays)，我們提出了一個線性演算法

來產生所有的α-pairs。根據人比對小鼠、雞與河豚的實驗結果，上述α-marker 方

法較之限制長度的方法(k-mer, MEM)在連續性匹配(contiguous matching)的同源種

子詞彙選取(orthology seeding)上，能同時達成明顯較佳的靈敏度與較佳的效率。此

外，我們更延伸此詞頻探索方法到非連續性匹配(discontiguous matching)的同源種

子詞彙選取。從 ROC 曲線上的比較結果顯示，非連續性的 wobble α-pairs 明顯優

於其他未限制詞頻之非連續性種子詞彙(spaced k-mer seeds)。 

 

關鍵詞：比較基因體學，演化同線對映，演化同源對映，序列比對，後綴陣列。
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Abstract 
Motivation: Orthology/synteny mapping—finding orthologous regions among 

genomes and organizing these evolutionary counterparts into a coherent global 

picture—is fundamental to studies of comparative genomics. With the increasing 

number of completely sequenced genomes and thus the increase in comparisons of 

massive nucleotide sequences, the need for orthology/synteny mapping methods of high 

sensitivity/specificity and high efficiency becomes even more compelling. 

Results: First we have developed the UniMarker (UM) method for synteny mapping of 

large genomes that are closely related, such as the human and mouse. In this method, 

the occurrence spectra of genome-wide unique 16mer sequences present in both the 

human and mouse genome are used to directly detected orthologous genomic segments. 

Being sequence alignment-free, the UM method is very fast and the high-quality 

human-mouse synteny maps based on DNA comparisons can be completed in a few 

hours on single desktop computer. Second, we propose a new type of DNA sequence 

seed for use in orthology mapping of not closely related genomes. We call our seeds 

α-pairs, where α is an integer equal to or greater than the number of times any 

qualifying seed can be found in the compared genomes. These copy number-based seeds 

are thus distinct from the well-known length-based seeds, such as the fixed-length k-mer 

seeds or the maximal exact match (MEM) seeds which have a length ≥ k. We present a 

linear time algorithm to efficiently retrieve α-pairs in two given genomic sequences 

based on enhanced suffix arrays. A comparison of the results using α-pairs with those 

using length-based seeds for their ability to detect the orthologues annotated by 

Ensembl and COG for several vertebrate genomes/chromosomes and for prokaryote 

genomes of long evolutionary distances suggested that orthology seeding using copy 

number can achieve a higher sensitivity and better efficiency than orthology seeding 

using length. Moreover, we extend the α-pair method to generate discontiguous wobble 

seeds of maximal length with copy number constraints. The comparative results of ROC 

curves for human chr.15 vs. mouse chr.7, chicken chr.10, and pufferfish genome showed 

that the discontiguous wobble α-pairs achieved significantly better performances than 

spaced k-mer seeding methods tested. 

Keywords: comparative genomics, synteny mapping, orthology mapping, sequence 

alignment, seeding, suffix array. 
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Chapter 1 

Introduction 

1.1 Motivation 

Orthology mapping is to find orthologous regions among genomes and synteny 

mapping is to organize these evolutionary counterparts into a coherent global picture. 

Similar to Rosetta stone, orthology/synteny maps intend to provide cross-references 

among different DNA languages of their species as a foundation for functional analogy 

and evolutionary studies. As the number of completely sequenced genomes continues to 

increase rapidly, orthology identification at the nucleotide level in both coding and 

noncoding regions of genomes is becoming an indispensable approach for studying 

genome evolution and for genome annotation (Deway and Pachter 2006). However, 

orthology identification and synteny mapping based on nucleotide comparisons have to 

face several challenging issues. 1) The nucleotide comparisons between genomes are 

computationally demanding, especially for large genomes such as the human (~3Gb) to 

mouse (~3Gb). 2) There are plenty noisy local similarities between nonorthologous 

locations, such as repeats and irrelevant ancestral duplications. 3) The evolution over 

time makes things complicated, such as sequence divergence, gene duplications and 

losses, duplications and deletions of genomic regions, genomic rearrangements and 

microrearrangements, and genome duplication (Jaillon et al. 2004). Thus, the need for 

developing orthology/synteny mapping methods of high sensitivity/specificity and high 

efficiency for large genomes of different evolutionary distances becomes even more 

compelling. 
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1.2 Dissertation organization 

We introduced the necessary background in next chapter. In chapter 3, we described the 

UniMarker (UM) method for synteny mapping for closely related genomes. The UM 

method is very efficient by looking up only genome-wide unique seeds of fixed length 

and an alignment-free design for sequence comparison and the details of the method are 

given in section 3.2. The experiment results of the UM method are located in section 3.3, 

which showed that the whole synteny mapping process of giga-base genomes, such as 

human vs. mouse, can be completed in a few hours on single desktop computer. In 

chapter 4, we proposed the α-marker method based on enhanced suffix arrays for 

orthology seeding using maximal exact matches with copy number constraints. The 

definitions and algorithms of the α-marker method are stated in section 4.2. 

Comparisons of different contiguous seeding methods to detect orthologues are 

presented in section 4.3. In chapter 5, we extended the α-marker method to generate 

discontiguous wobble seeds with copy number constraints and described the method in 

section 5.2. Different contiguous and discontiguous seeding methods are compared 

using ROC curves and colinear identities per orthologue in section 5.3. Finally in 

chapter 6, we made the discussion and conclusions for this dissertation. 
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Chapter 2 

Background 

2.1 Homology and synteny 

2.1.1 Homology 

Homology is a very important term in biology and features are said to be homologous if 

they share a common evolutionary origin (Theiβen 2002). When homology is applied to 

genes or nucleotide sequences, homologues are genes (or nucleotide sequences) derived 

from a common ancestor gene (or nucleotide sequence). There are three disjoint 

subtypes of homology depending on what kind of evolutionary events it resulted from: 

orthology, paralogy and xenology, where orthology resulted from speciation events, 

paralogy resulted from duplication events, and xenology resulted from inter-species 

transfer of genomic materials (Fitch 2000). Further, since orthologous relationships are 

not limited to one-to-one (Theiβen 2002), we can divide orthologues into 1-to-1/mono- 

orthologues and co-orthologues according to if there are no duplication events after 

speciation events. More detailed definitions of homology are well described by Koonin 

(2005).  In Figure 2.1, we provide examples to illustrate orthologues, co-orthologues, 

in-paralogues, and out-paralogues (Kooin 2005). Suppose that B and C are two 

genomes to be compared and genome A is the last common ancestor of B and C in the 

species tree shown in Figure 2.1. Let there be two genes g1, g2 in A, where g2 was 

duplicated from g1 before the speciation, there be two genes g1, g2 in B without 

duplications after the speciation, and there be three genes g1, g2, g3 in C, where g3 was 

duplicated from g2 after the speciation. Then, g1 of B and g1 of C form 1-to-1 
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orthologue, and g2 of B and g2, g3 of C form co-orthologues since the duplication from 

g2 to g3 was after the speciation. Within genome C, genes g2 and g3 form an 

in-paralogue and genes g1 and g2 form an out-paralogue because the former duplication 

happened after the speciation and the latter duplication happened before the speciation. 

 

g1 g2

g1 g2 g1 g2 g3

Genome A

Genome B Genome C

: Speciation

: Duplication

: Gene No.1g1LCA of B and C

 

 

Fig. 2.1 Illustration of homology 

 

2.1.2 Synteny 

Synteny (literally “same thread”) indicates the condition of two or more 

genes/regions being on the same chromosome within one species. When synteny is 

applied to inter-species comparisons, conserved synteny refers to two or more 

orthologous (including co-orthologous) regions that are syntenic in two or more species, 

without regard to their order on each chromosome (Ehrlich et al. 1997, Frazer et al. 

2003). Operationally speaking, we define components related to conserved synteny in a 

bottom-up hierarchical way, including orthologous anchors, conserved segments, and 

syntenic blocks. Given two compared genomes, an orthologous anchor of them is a pair 

of gene/region from different genomes that are significantly similar and believed to be 
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orthologous (including co-orthologous). A conserved segment contains two or more 

orthologous anchors that are syntenic (i.e., on the same chromosomes) and contiguous 

(i.e., no interrupt by other anchors) on the both compared genomes and are arranged 

collinearly with preserving order and orientation. A syntenic block consists of two or 

more conserved segments that are syntenic and contiguous on the both compared 

genomes regardless their orientation. Hence, synteny mapping is to locate and group 

regions that are orthologous/co-orthologous among genomes by order and/or 

orientation. 

 

Genomic
Sequences

Seeds

Orthologous
Anchors

Conserved
Segments

Syntenic
Blocks

Indexing & 
Seeding

Anchoring

Chaining

Grouping

Index the sequences and 
retrieve potentially useful 
word matches as seeds.

Ungappedly/gappedly
extend from the seeds to 
find HSPs as anchors.

Colinearly chain the anchors 
into regions with conserved 
order & orientation 

Group the conserved 
segments irrelevant of 
orientation into larger blocks.

G
enom

e A
lignm

ent
Synteny G

rouping

 

Fig. 2.2 Common stages of large-scale genome comparison and synteny mapping 

 

In Figure 2.2, we introduce the common stages of large-scale genome comparison 

and synteny mapping. The major four stages are 1) indexing & seeding, 2) anchoring, 3) 

chaining, and 4) grouping. First, we can index the input genomic sequences and retrieve 

potentially useful word matches of the input sequences as seeds. Then, we can extend 

those seeds ungappedly and/or gappedly to obtain longer high-scoring segment pairs 
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(HSP, Altschul et al. 1997) as orthologous anchors. Third, we can colinearly chain those 

anchors into conserved segments with preserving anchor order and orientation. Finally, 

we can group those conserved segments into larger syntenic blocks, regardless the 

orientations of the conserved segments. 

2.2 Index-based sequence comparison 

The index-based alignment method has revolutionized sequence comparison and has led 

to numerous tools for different purposes (Batzoglou 2005). Index-based alignment 

methods first build indices for one or all of the compared sequences and then retrieve 

seeds—often word matches or transformed pieces of sequence matches—from the 

indices to obtain the alignments for inferring homology. Since seeding is necessarily the 

first step of all index-based genome alignment methods (Ureta-Vidal et al. 2003), the 

strategy employed for selecting seeds and their retrieval is fundamental to the 

performance of genome alignment methods (Brown et al. 2004). In Figure 2.3, we 

presented taxonomy of index-based sequence comparisons by seed design. 

Fixed-
length
(k-mer)

Copy 
number-
based

Contiguous
seeding

Dis-
contiguous
seeding

Unique

Variable
copies Variable-length ⎯ α-marker/α-pair

Variable-
length SeedLength ≥ k ⎯ MEM: MGA, AVID, MUMmer3

Length-
based

Wobble

Fixed-length ⎯ UniMarker

Variable-length ⎯ MUM: MUMmer1,MAM: MUMmer2

Inexact by
scoring
Inexact by
identity

Spaced

BLAST, BLASTZ, …

CHAOS, BLAT

WABA, GS-Aligner

PatternHunter

 

Fig. 2.3 Index-based sequence comparison: taxonomy by seed design 
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Most seeding strategies developed thus far are length-based, i.e., seeds are selected 

via fixed-length or variable-length constraints. The k-mer (aka k-tuple) strategy using 

exact matches of sequence words of a fixed-length as seeds is perhaps the most popular, 

which is adopted in general-purpose sequence comparison methods such as FASTA 

(Lipman and Pearson 1985) and BLAST (Altschul et al. 1990), and also in various 

genome comparison programs, such as WABA (Kent and Zahler 2000), BLAT (Kent 

2002), PatternHunter (Ma et al. 2002), CHAOS (Brudno et al. 2002), BLASTZ 

(Schwartz et al. 2003), and GS-Aligner (Shih and Li 2003). Then we categorized 

BLASTZ, CHAOS, and BLAT into two sub-branches of fixed-length contiguous 

seeding: providing inexact matching by scoring or identity as shown in Figure 2.3. In 

addition, one notable advance of k-mer approach is discontiguous seeding, such as 

WABA (Kent and Zahler 2000) and PatternHunter (Ma et al. 2002), which will be 

detailed in chapter 5. 

Another length-based seeding strategy employed in genome comparison programs, 

such as MGA (Höhl et al. 2002), AVID (Bray et al. 2003), and MUMmer3 (Kurtz et al. 

2004), uses maximal exact matches (MEMs) (Höhl et al. 2002), aka maximal pairs 

(Gusfield 1997), which include all exact matches of maximal lengths greater than or 

equal to k. By excluding numerous redundant matches, which are particularly abundant 

in short-length words, MEM methods can acquire a better efficiency of seeding than 

k-mer methods for large-scale sequence comparison (Chain et al. 2003). 

To gain more on seeding efficiency, Delcher et al. (1999) consider a subset of 

MEMs, using only the maximal unique matches (MUMs) to align two genomes, where 

a MUM is a shared substring occurring exactly once in each of the two compared 

genomes and it cannot be extended without introducing mismatches (i.e., maximal 
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length). In addition, our work in chapter 3 demonstrated that use of fixed-length seeds 

constrained by the one-to-one mapping (called UniMarkers, which, for their fixed 

length, are a subset of MUMs) is sufficient to construct a high-quality human-mouse 

synteny map with very high efficiency (Liao et al. 2004). Furthermore in chapter 4, in 

purpose to detect orthologous as well as co-orthologous regions for not closely related 

species, we designed a new seeding method, called α-marker/α-pair method, by 

relaxing the constraint of genome-wide uniqueness in MUM and UniMarker to allow 

variable copies in an upper bound way. The above mentioned methods, as shown in the 

bottom of Figure 2.3, make the branch of copy number-based seeding more solid and 

useful. 
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Chapter 3 

The UniMarker method for synteny mapping 

3.1 Introduction 

With the number of completely sequenced genomes increasing rapidly, comparative 

genomics is becoming an indispensable approach for genome annotation and for 

studying genome evolution.  Essential to this approach is whole-genome alignment, 

which is computationally demanding, particularly for large genomes, such as those of 

mammals.  Thus, despite recent advances, scores, or even hundreds, of computing 

processors are still required to compare the human and mouse genomes in a time period 

of hours or days (Waterston et al., 2002; Schwartz et al., 2003), a practical time scale 

for doing competitive research in such a rapidly evolving field as genomics.  Moreover, 

there appears to be considerable discrepancy in the various human-mouse synteny maps 

created independently by several research groups (Waterston et al., 2002; Gregory et al., 

2002; Clamp et al., 2002), even though they may use similar alignment algorithms and 

strategies (Ureta-Vidal et al., 2003). 

As many more large genomes will be sequenced in the next few years (Ureta-Vidal 

et al., 2003), there is a pressing need to develop a whole-genome alignment tool that 

can render the task feasible and practical using minimal computing facilities, such as a 

single desktop computer.  To achieve this goal, methods that deviate significantly from 

existing approaches using sequence alignment, such as BLAST (Altschul et al., 1990) 

or BLAST-derived algorithms (Schwartz et al., 2003; Zhang et al., 2000; Kent 2002; 
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Ma et al., 2002), merit exploration. 

Various articles have demonstrated that the use of a hash table (Schuler 1997; Ning 

et al., 2001) or suffix-tree (Delcher et al., 2002; Bray et al., 2003) can significantly 

speed up the computation time required for sequence mapping.  Our previous work 

(Chen et al., 2002) showed that, by matching unique 15-mer words (those that appear 

exactly once in the genome and are therefore called UniMarkers or UMs), it is possible 

to dispense with the usual requirement for sequence alignment and to genomically 

position the entire database of human single nucleotide polymorphism (SNP) sequences 

in just a few days of computing time on a single desktop computer.  In the present 

study, we introduced a new concept of using UMs to detect sequence orthologues 

without doing sequence alignment and extended the UM method for whole-genome 

synteny mapping. 

To align two very long DNA sequences, such as those of metazoan genomes, the 

most common approach starts by finding the so-called high scoring pairs (HSPs) of 

sequence fragments that are derived from words matched by consecutive (Altschul et al., 

1990; Zhang et al., 2000) or spaced (Schwartz et al., 2003; Ma et al., 2002) matching 

models.  These HSPs, in which a word or segment in one sequence may have multiple 

matches in the other sequence, then serve as seeds, which are subsequently filtered and 

combined to identify a set of longer segments that are thought to be orthologous 
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between the two sequences.  In the final step, these segments, often called anchors or 

landmarks, are extended or processed to yield an alignment or mapping of the two 

sequences (Ureta-Vidal et al., 2003).  Our UM method differs from these approaches 

by avoiding the time-consuming step of finding and processing the HSP seeds; instead, 

orthologues anchoring segments are detected directly from a genome-wide occurrence 

spectrum of UMs common to the two genomes compared.  Consequently, and as 

detailed below, the UM method is very fast and can map the entire human genome 

against the entire mouse genome, and vice versa, in just one day on a single Pentium IV 

personal computer.  This is a considerable time saving, since the time required is about 

one-tenth or one-hundredth that using, for example, the approach of MGSC (Mouse 

Genome Sequencing Consortium) (Waterston et al., 2002).  To evaluate the quality of 

the resulting UM human-mouse map, it was compared with the MGSC map and with 

that produced by the Ensembl team (Clamp et al., 2003; Hubbard et al., 2002).  The 

UM map was shown to be in excellent agreement with the MGSC map, missing only a 

few small MGSC segments, while having several small unique segments of its own.  

The agreement with the Ensembl map was also very good, though not as good as that 

with the MGSC map.  Sequence alignment using BLASTZ (Schwartz et al., 2003) on 

segments that were map-unique or disagreed between maps indicated that the UM 

method, despite being sequence alignment-free, achieved high specificity and sensitivity 
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in mapping the two mammalian genomes. 

3.2 Methods 

3.2.1 pUMp vs. hUMp 

Orthologous regions, by definition, are homologous regions shared by two genomes 

from a speciation event.  The basic idea of our approach is that, between two genomes, 

orthologous regions should share more UniMarker pairs (UMps; an UMp connects 

identical UMs in both genomes) than non-orthologous regions.  However, there are 

two kinds of UMp, those inherited from a common ancestor, hereafter referred to as 

primitive UMps (pUMps), and those that have arisen by random mutation, referred to as 

homoplastic UMps (hUMps) (Figure 3.1).  Although it is not possible to tell whether a 

given UMp is a pUMp or a hUMp, it can be distinguished as a collective group, as 

illustrated in Figure 3.1.  This is because, by definition, pUMps can exist only between 

orthologous regions, whereas hUMps can exist between any two regions, be they 

orthologous or not.  Consequently, pUMps can provide a signal for pairs of 

orthologous regions against a background noise of hUMps, and, as long as the 

signal/noise ratio is sufficiently high, i.e., the evolutionary distance between the two 

genomes is not too great, orthologous pairs should be detectable by analyzing the UMp 

distribution in the two genomes. 
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Fig. 3.1 The two types of UMp.  All UMps shared by segments from two different genomes can be 
classified into two types, those that have descended from a common ancestor, called primitive UMps 
(pUMps; black solid lines), and those that have arisen by random mutation, called homoplastic UMps 
(hUMps; gray dashed lines).  (A) Following evolutionary changes, a certain pUMp could change its 
pairing randomly, resulting in a pUMp evolving into a hUMp.  UMs (illustrated by four-letter words) 
found in both genomes are represented by shaded boxes.  The site of mutation causing a change in UM 
pairings is marked by a black triangle.  (B) The distribution of pUMps and hUMps.  When two 
genomes are compared, orthologous genomic segments will share both pUMps (shown as white boxes) 
and hUMps (shown by black boxes), but any two evolutionarily unrelated regions (e.g., the first segment 
of genome A and the second half of the genome B segment) can only share hUMps. 
 

3.2.2 Occurrence spectra of UMps and anchoring islands 

A simple, but efficient, method to identify k-mer UMs in the human genome has been 

described (Chen et al., 2002).  This method was used in the present study to identify 

16-mer UMs for each of several assemblies of the human genome and for the draft 

mouse genome sequence.  Those UMs common to a particular assembly of the human 

genome and the mouse genome were extracted; each of these constitutes an UMp, as 

defined above. 

(A) 

 
(B) 
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 The UM method for mapping two genomes, A and B, involves the following.  

Each chromosome of genome B is divided into a set of minimally overlapped fragments, 

each containing an equal number of UMps, which, in this work, was set at 300,000, i.e., 

a number slightly greater than that (~290,000) on the human Y chromosome 

(consequently, the entire human Y chromosome was a fragment).  We then scan 

genome A using a sliding window of 50 kb and a moving step of 10 kb to compute Mij, 

the ratio of the number of UMps common to both the ith window of genome A and the 

jth chromosomal fragment of genome B (Nij) to the total number of UMps found in the 

ith window of genome A (Ni) (i.e. Mij = Nij/Ni).  The values of these parameters, and of 

those described below, were empirically determined in trial runs to minimize the 

computational cost while maintaining good resolution in the resulting human and mouse 

synteny map. 
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Fig. 3.2 Identification of the anchoring islands.  (A) The Mij spectrum (see text for definition) for mouse 
chromosome 16 computed from two human chromosomal fragments, denoted by 16.2f (the 2nd fragment 
on human chromosome 16 in the forward orientation) and 3.18f.  The detected islands, regions 
containing at least four consecutive overlapping windows (each of 50 kb and with a Mij value above 
threshold, see text) are labeled as vertical bars on the mouse chromosome shown below the x-axis.  The 
boundaries for each island were set at the midpoint of the first and last of its consecutive windows.  (B) 
The distribution of Mij [for all windows (i) and all chromosomal fragments (j), see text].  The lower 
boundary of the top 1.5% of the distribution (dark area) was chosen as the Mij threshold in the present 
work.  (C) The Nkl spectrum for determining the matching island on the human chromosome, which, as 
indicated, was divided into minimally overlapped fragments with equal number of UMs, rather than base 
pairs (see text).  For each mouse chromosome, such as chromosome 16 shown here, there were a total of 
612 Mij spectra, as the human genome was divided into 612 chromosomal fragments (half forward and 
half backward); for clarity, only two are shown in (A). 
 

As illustrated in the example in Figure 3.2, the Mij spectrum allowed us to find 

orthologous regions, hereafter referred to as anchoring islands, without doing sequence 

alignment.  For a segment to qualify as an anchoring island, at this stage in genome A 
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only (Figure 3.2A), we specified that at least four consecutive windows must have a Mij 

value in the top 1.5% of all Mij (see Figure 3.2B) to suggest the presence of a pUMp, or 

orthologous relationship, between these windows of genome A and a chromosomal 

fragment of genome B.  To pin down the region in this chromosomal fragment of 

genome B with which the anchoring island of genome A was orthologous, we moved 

the sliding window to genome B, and operated it on the fragment-containing 

chromosome to compute Nkl, the number of UMps shared by the kth window (on the 

chromosome of genome B) and the lth island (on genome A).  The Nkl spectrum 

(Figure 3.2C) allowed us to delimit the matching anchoring island on genome B, which 

was specified as containing at least two consecutive windows with (i) Nkl values of at 

least 25 or (ii) Nkl values of at least 10 and within the top 3% of all Nkl for that 

particular lth island of genome A.  Note that, for this stage, there was no need to 

compute Nk, or Nkl/Nk (i.e., Mkl), and the reason for the expansion to include the whole 

chromosome, instead of just the fragment, in the computation of Nkl was to provide 

sufficient background noise (hUMps) to distinguish the signal (pUMps).  For multiple 

matches, i.e., when two or more matching anchoring islands were found on the fragment 

of genome B, the procedure for computing Nkl was repeated after switching the sliding 

window back to operate on the anchoring island-containing chromosome of genome A.  

This procedure was repeated until all anchoring islands were uniquely matched between 

the two genomes.  For the present work on the human and mouse genomes, we found 

that multiple matches occurred in about 30% of cases; most of these could be resolved 

after Nkl was calculated for the second time, and all could be resolved after the fourth 

calculation. 

3.2.3 Overlapped anchoring islands 
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A few (500-800, or 4-7%, depending on the version of genome assembly used) of the 

resulting anchoring islands overlapped; this was due to the pUMp signal being 

independently detected in overlapping windows.  There were four types of such 

overlaps (Figure 3.3).  For the first type, of partial overlaps, which accounted for 

~60-75% of overlaps, we simply set the boundary of the anchoring island at the 

midpoint of the overlap.  The second and third types (accounting for 20-40% of 

overlaps) occurred when a small island (usually < 100 kb) was embedded in a large 

island.  Further analysis indicated that embedded islands of the second type, which 

comprised ~80% of the embedded cases, probably resulted from lineage-specific 

duplication, while those of the third type resulted from micro-rearrangements.  

Accordingly, we discarded embedded islands of the second type, but kept those of the 

third type and split their encompassing island into three, as illustrated in Figure 3.3.  

The fourth type occurred when a very small island (~40 kb) of one genome contained 

two separable clusters of UMps, each of which was mapped to one of two distinct, 

usually even smaller, islands of the other genome.  The fourth type was rare, 

accounting for less than 2% of the overlaps.  For sake of computational convenience 

and automation, we kept the first of the two pairings and discarded the other. 

Although the use of a smaller window and moving step can eliminate most of the 

overlaps, particularly those of the first type, this would force the method to operate on 
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fewer UMs, which could decrease the signal/noise ratio, especially for regions 

containing a lower density of UMs (e.g., < 1,000 UMs/50 kb). 

 

 

Fig. 3.3 Schematic illustration of the rules applied to resolve overlaps in anchoring islands.  (A) Partially 
overlapped islands.  (B) Embedded islands due to lineage-specific duplication.  (C) Embedded islands 
due to micro-rearrangement.  (D) Islands with identical boundaries, but distinct pairing partners. 
 

3.2.4 Bidirectional mapping 

At this stage, we had a set of non-overlapping, one-to-one matched, anchoring islands 

for genomes A and B.  We called this set the A->B set, since the Mij for this set was 

computed on windows of genome A.  To further reduce the likelihood of the identified 

anchors being false positives, we also computed the B->A set, using identical 

procedures and parameters to those described above, and extracted the overlaps of the 

 



 

 19

two sets.  The bi-directional mapping helped us set the thresholds for Mij and Nkl (see 

above), using which more than 95% of the mapped anchoring islands were either 

identical or substantially overlapped between the two directions. 

3.2.5 Conserved segments and syntenic blocks 

The bi-directionally mapped and non-overlapping anchoring islands were then merged 

into conserved segments for any two adjacent islands in one genome that were also 

adjacent, as well as in the same orientation, in the other genome  (see Nadeau and 

Sankoff (1998) for definitions of “conserved segment” and “syntenic block” (aka 

“conserved synteny”)).  Finally, the resulting conserved segments were grouped into 

syntenic blocks, each of which consisted of conserved segments that were contiguously 

matched, irrespective of the order and the orientation of their matching, in both 

genomes and on a single chromosome. 

3.2.6 Comparison with other maps 

It is not a trivial process to compare two different synteny maps, because different 

degrees of concordance may arise for conserved segments that are equivalent between 

the two maps on either of the two genomes.  We therefore devised a set of parameters 

to assign equivalent (i.e., overlapped) conserved segments to four categories (see Figure 

3.4): ‘Agree (strong)’, ‘Agree (weak)’, ‘Disagree’, and ‘Unique’, with decreasing 

degrees of overlap.  The main distinction between the ‘Agree’ and ‘Disagree’ category 

was whether a substantial overlap in the segments was shared in both, or just one, of the 

two genomes; those that were not substantially overlapped in either genome, or were 

overlapped, but not in the same orientation, were assigned to ‘Unique’.  For the 

comparison with the MGSC and Ensembl maps, the same versions of the genome 

assembly for either human or mouse used in those maps were used to produce the 
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corresponding UM maps.  These genome assemblies were retrieved from 

ftp://ftp.ncbi.gov/genomes/H_sapiens/ and ftp://ftp.ncbi.nih.gov/genomes/M_musculus/ 

at the National Center for Biotechnology Information (NCBI).  The MGSC map, i.e., 

the genomic start and end positions and the orientation of mapped conserved segments, 

was provided by Michael Kamal (Whitehead Institute, MIT).  The Ensembl map was 

downloaded from http://www.ensembl.org/Homo_sapiens/syntenyview/ and its 

segments parsed. 

 

Fig. 3.4 Parameters and criteria used to compare two human-mouse synteny maps.  The letter notations 
are as follows: A for map A, B for map B, H for human, M for mouse, O for overlap, and L for length.  
In principle, the number of segments from one map to overlap with one segment of the other map on 
either side of the two genomes is not limited to two, but, for the purpose of illustration, two are used here. 
 

3.2.7 BLASTZ evaluation 

To evaluate the segments classed as ‘Disagree’ or ‘Unique’ between two maps, we 

subjected them to BLASTZ (Schwartz et al., 2003) sequence alignment, using 

parameters B=2, C=0, T=1, and K=5000, 9000, or 12000.  Each of the resulting 

alignments was displayed as a dot plot using the alignment viewer, Laj (Wilson et al., 
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2001), inspected, and assigned to one of five outcomes (see Figure 3.5 for illustrative 

examples), “Concordant”, “Shifted”, “Multiple”, “Reversed”, and “Unsupported”.  

Those that showed no clear evidence of homology were considered “unsupported” by 

sequence alignment and were probably false positives.  All the assignments could be 

made without much ambiguity, although, for a few segments with few and very small 

patches of matches in the dot plot, their assignment to one of the last four outcomes 

could be subjective. 

 

Fig. 3.5 Examples of BLASTZ alignment, shown as a dot plot, of conserved segments assigned as 
“Disagree” or “Unique”. (A) Concordant, (B) Shifted, (C) and (D) Multiple, (E) Reversed, (F) 
Unsupported. (A) and (E) segments are from the UM map, (B) and (E) segments from the Ensembl map, 
and (D) and (F) segments from the MGSC map. For visual clarity, BLASTZ parameter K (threshold for 
the maximal segment pair score) was set at 12000 in cases (B) and (D), 9000 in cases (A), (C), and (F), 
and 5000 in case (E). 
 

3.2.8 Software 

(A)           (B)         (C) 

 

(D)         (E)         (F) 
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Computer modules for the UM method and synteny map visualization were written in 

C\C++, and Delphi/Object Pascal. The run-time to produce a human-mouse map, which 

included both the bi-directional mapping and the merging of anchoring islands into 

conserved segments and syntenic blocks, was ~7 hours on one personal computer (2.8 

GHz Pentium IV, 2GB memory). The software is freely available at the Web site 

http://synteny.iis.sinica.edu.tw/um/. 

3.3 Results 

3.3.1 Maps from various versions of the human genome 

The speed of the UM method for producing a whole-genome synteny map allowed us to 

produce multiple maps resulting from different versions of genome assembly.  Maps 

using different human genome assemblies differ mainly in the number of small 

conserved segments which decreased with each update of the genome (Supplement 

Figure 3.6).  This corroborates the argument that errors in sequence assembly are more 

likely to produce artifactual micro-rearrangements than to affect large (e.g., > 1Mb) 

synteny blocks (Pevzner and Tesler 2003).  Given the results shown in Figure 3.6, we 

can expect a further reduction in the number of small conserved segments when a 

‘finished’ mouse genome becomes available. 



 

 23

 
Fig. 3.6 Number of conserved segments identified by the UM method using different versions of the 
human genome (all mapped against NCBI mouse Build 30). 

 

 Some parameters for the UM map using the ‘essentially complete’ human genome 

(NCBI build 33) and the mouse genome NCBI build 30 (the only NCBI build for mouse 

available at the time of this work) are summarized in Table 3.1.  Maps using human 

builds 30 and 31 gave quite similar results (data not shown).  For the conserved 

segments and synteny blocks, these data, except for those for N50, are quite comparable 

with those reported by MGSC (Waterston et al., 2002); in contrast, the 10,999 

anchoring islands are only a fraction of the 558,000 ‘landmarks’ (high scoring and 

bidirectional best sequence matches) identified by MGSC.  Since the two sets of 

syntenic anchors eventually produced very similar maps (details below), our much 

larger ‘islands’ (846.9 Mb total length covering 33.9% of the mouse genome; Table 3.1) 

are, in effect, clusters of the ‘landmarks’ obtained by sequence alignment using 

PatternHunter (Ma et al., 2002) (188 Mb total length and 7.5% mouse genome coverage 

(Waterston et al., 2002) ). 
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Table 3.1 Size and Genome Coverage of Anchoring Islands, Conserved Segments and 
Syntenic Blocks *. 

 

3.3.2 Comparison with maps produced by MGSC and Ensembl 

As the key component of a synteny map is a list of conserved segments, the easiest way 

to compare two synteny maps is to compare two corresponding lists of conserved 

segments.  Using the criteria for comparing two maps described in section 3.2.6, the 

comparison of the results for UM vs. MGSC and UM vs. Ensembl is presented in Tables 

3.2 and 3.3, respectively.  A graphical overview of these results is also presented in 

    mouse    human         
● Average 77.0 kb   81.8 kb  
● N50 50.0 kb   50.0 kb  
● Largest 1.27 Mb   1.30 Mb  
● Total Length 846.9 Mb   899.9 Mb  
   (% genome) ** (33.9%)   (31.8%)  
● Spacing Ave. 150.1 kb   182.2 kb  
● Spacing N50 70 kb   80 kb  

10,999 
anchoring 

islands 

     
● Average 6.33 Mb   7.08 Mb  
● N50 2.46 Mb   2.94 Mb  
● Largest 64.49 Mb   79.65 Mb       
● Total Length 2309.3 Mb   2585.3 Mb  

  
365      

(≥100kb)   
conserved 
segments 

   (% genome) (92.3%)   (91.3%)  
● Average 10.55 Mb   12.01 Mb  
● N50 4.78 Mb   5.58 Mb  
● Largest 146.01 Mb   143.27 Mb       
● Total Length 2363.8 Mb   2689.1 Mb  

  
224      

syntenic 
blocks 

   (% genome) (94.5%)   (94.9%)  
            

* These data are for the UM human-mouse synteny map using the ‘essentially 
complete’ human genome (NCBI build 33) and the draft mouse genome (NCBI build 
30). 

** Genome size was calculated by omitting the telomeres, centromeres, and gaps 
between supercontigs.  (Mouse: 2.501Gb; Human: 2.832Gb) 



 

 25

Figure 3.7.  As can be seen, the UM map agreed well with both the MGSC and the 

Ensembl maps, having ~99% of the mapped regions cross-covered with the former 

(Table 3.2) and up to 95% with the latter (Table 3.3).  Furthermore, the vast majority of 

the ‘Agree’ segments were in strong agreement (i.e. high degree of overlap; see Figure 

3.4), and the ‘Disagree’ or ‘Unique’ segments were mainly relatively small segments 

(see also Table 3.4), the largest being a few Mb in the comparison with the MGSC map 

and 24 Mb in the comparison with the Ensembl map.  The somewhat smaller genome 

coverage and the smaller conserved segments obtained using the UM map were 

probably due to the fact that, unlike in the other two maps, the anchoring islands were 

not extended to include as much alignable sequence as possible. 
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Table 3.2 Comparison between the UM map and the MGSC map on conserved 
segments*. 

 

  Agree  
  

 
  

 Strong Weak 
Disagree Unique 

 
Total 

UM     310 8 0 12  330 
MGSC     308 8 0 26  342 

               
    size (Mb) %mapped size (largest) size (largest) size (largest)  size %genome
               

 mouse  2260.6  99.2% 9.5 ( 3.1 ) 0.0 ( — ) 9.4 ( 2.6 )  2279.5   91.7 %
UM 

 human  2512.2  99.0% 7.6 ( 2.8 ) 0.0 ( — ) 19.1 ( 3.2 )  2539.0  90.3 %
               

 mouse  2321.7  98.7% 11.6 ( 0.8 ) 0.0 ( — ) 19.7 ( 4.2 )  2353.0  94.6 %
MGSC 

 human  2583.8  98.5% 11.7 ( 0.5 ) 0.0 ( — ) 28.2 ( 3.9 )  2623.6  93.3 %
                        

* Human assembly NCBI build 30 vs.  mouse assembly MGSCv3, with the minimum segment size cut at 300kb  

 
 

Table 3.3 Comparison between the UM map and the Ensembl map on conserved 
segments*. 

 

  Agree  
  

 
  

 Strong  Weak 
Disagree Unique 

 
Total 

UM     261  23 10 71  365 
Ensembl     277  21 5 35  338 

               
    size (Mb) %mapped  size (largest) size (largest) size (largest)  size %genome
                

 mouse  2148.0  93.0%  17.9 ( 3.3 ) 6.7 ( 1.7 ) 136.8 ( 18.9 )  2309.3 92.3 % 
UM 

 human  2387.7  92.4%  32.2 ( 4.6 ) 7.6 ( 2.0 ) 157.7 ( 24.0 )  2585.3 91.3 % 
                

 mouse  2274.1  94.5%  59.5 ( 15.1 ) 34.9 ( 21.3 ) 37.8 ( 11.5 )  2406.3 96.2 % 
Ensembl 

 human  2514.2  93.9%  72.9 ( 17.3 ) 46.6 ( 7.2 ) 43.5 ( 12.0 )  2677.2 94.5 % 
                         

* Human assembly NCBI build 33 vs.  mouse assembly NCBI build 30, with the minimum segment size cut at 
100kb  
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Fig. 3.7 A graphical overview of the comparisons of the human-mouse synteny maps obtained by the UM 
method and the corresponding map of either MGSC (A) or Ensembl (B).  The UM map is shown in the 
left chromosomes.  Each color corresponds to a particular human chromosome.  Regions within a 
dashed box indicate that the human orthologous regions are in the backward strand. 
 

 Tables 3.2 and 3.3 also show that, for all categories, the agreement between UM 

and MGSC was significantly better than that between UM and Ensembl.  This is 

attributable in part to the smaller minimal conserved segments used in the Ensembl map 
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(100 kb vs. 300 kb for the MGSC map) and to the fact that, unlike the UM and MGSC 

maps, the Ensembl map is not cleanly resolved, in that some of its segments are 

substantially overlapping with, or entirely embedded in, other segments.  The MGSC 

and Ensembl maps could not be precisely compared, because they were generated using 

different genome versions. 

3.3.3 Evaluation with sequence alignment 

Although a good sequence alignment, i.e., one resulting in a clear diagonal in the dot 

plot, does not necessary mean a pair of conserved segments are orthologous, the 

converse usually holds.  Table 3.4 gives the results of sequence alignment, using 

BLASTZ (Schwartz et al., 2003), for the ‘Disagree’ and ‘Unique’ segments from Tables 

3.2 and 3.3.  The results showed that all but 2 of the total 93 (12+71+10) UM ‘Unique’ 

or ‘Disagree’ pairs of segments were concordant with BLASTZ alignment, and the two 

exceptions were neither in the wrong orientation (“Reversed”) nor without clear 

evidence of sequence similarity (“Unsupported”).  In comparison, 2 of the 26 MGSC 

“Unique” and 10 of the 35 Ensembl “Unique” segment pairs were “unsupported” by 

BLASTZ alignment.  Further examination (Figures 3.8 and 3.9) showed that 17 of the 

23 MGSC “Unique”, BLASTZ-concordant pairs, and 8 of the 11 Ensembl “Unique”, 

BLASTZ-concordant pairs, were actually detected by the UM method, but were not 

included in the comparison because the corresponding UM segments were too small 

(<300 kb or <100 kb for the comparison with the MGSC or Ensembl map, respectively).  

These relatively small UM segments could probably be brought into agreement with the 

corresponding MGSC and Ensembl segments, if they were allowed to extend by 

sequence alignment, as discussed above.  The remaining 6 (23-17) MGSC and 3 (11-8) 

Ensembl pairs not detected by UM were all small (most < 1 Mb), and, interestingly, the 
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density of their UMps was significantly smaller than typical (Figures 3.8 and 3.9).  We 

did not carry out the same evaluation on the ‘Agree’ segments due to limited computing 

resources, but, given the consensus of the results using two very different approaches 

(UM vs. MGSC or UM vs. Ensembl), together with the results presented below of the 

Largest Increasing Subsequence (LIS) analysis (Gusfield 1997) of UMps, it is unlikely 

that they would be BLASTZ-unsupported. 

 

Fig. 3.8 Frequency distribution of the UMp densities for the whole genome and for regions covered by 
the 23 MGSC-unique BLASTZ-concordant segments (see Table 3.4).  The table below shows that the 
UM method actually detected orthologous signals for 17 of the 23, but these were not used in the 
comparison because their size in the UM map was lower than 300 kb; 3 of these were very small (< 50 kb 
on the mouse genome; labeled †).  The six segments that were not detected by the UM method are 
labeled *.  (A) Distribution on the mouse genome.  (B) Distribution on the human genome.  “*†” 
denotes results using only the segments marked * or † in the Table, and “without *†” those using all 
segments apart from these. 
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Fig. 3.9 Frequency distribution of the UMp densities for the whole genome and for regions covered by 
the 11 Ensembl-unique BLASTZ-concordant segments (see Table 3.4).  The table below shows that the 
UM method actually detected orthologous signals for 8 of the 11, but these were not used in the 
comparison because their size in the UM map was lower than 100 kb; 5 of these were very small (< 50 kb 
on the mouse genome; labeled †).  The three segments that were not detected by the UM method are 
labeled *.  (A) Distribution on the mouse genome.  (B) Distribution on the human genome.  “*†” 
denotes results using only the segments marked * or † in the Table, and “without *†” those using all 
segments apart from these. 
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Table 3.4 BLASTZ-evaluation on the "Unique" and "Disagree" conserved segments 
from UM vs. MGSC (Table 3.2) and UM vs. Ensembl (Table 3.3) comparisons. 
 

 

3.3.4 Evaluation with LIS analysis of UMps 

For a pair of conserved segments or anchoring islands, one expects the largest subset of 

UMps matched in the same direction (Figure 3.1), or LIS UMp, to be composed mainly 

of pUMps.  An LIS analysis of UMps can, therefore, be used instead of sequence 

alignment to detect questionable segment or island pairs.  Remarkably, the results of 

such an analysis (Figure 3.10) showed that, for 91% (10014/10999) of the UM 

anchoring islands, the LIS UMp ratio was 1.0, i.e.  all the UMps matched within paired 

islands were ordered in the same forward or backward orientation, and only 7 (out of 

10,999) pairs had a LIS UMp ratio smaller than 0.8.  Furthermore, all of these 7 pairs 

with a low LIS UMp ratio, including two in regions full of repetitive elements, showed 

evidence of homology as assessed by BLASTZ alignment (Figure 3.10).  As the 

islands were merged into segments (Methods), the percentage of ordered UMps would 

decrease (Figure 3.11); however, the sequence similarity of several less promising pairs, 

 Concordant *  Shifted Multiple Reversed Unsupported Total 
Unique               

UM  11 (3)  0 1 0 0 12 
MGSC  23 (2)  0 1 0 2 26 

                 
Unique          

UM  70 (33)  0 1 0 0 71 
Ensembl  11 (1)  6 5 3 10 35          
Disagree         

UM  10 (3)  0 0 0 0 10 
Ensembl  0  1 4 0 0 5 

                                  
* in parentheses are the number of conserved segments with size of the mouse segment ≥ 

1Mb 
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as suggested by the LIS analysis (Figure 3.11), was validated by BLASTZ alignment 

(data not shown). 

 

 

Fig. 3.10 LIS analysis of UMps in anchoring islands from the UM map of NCBI human build 33 vs. 
mouse build 30.  (A)-(G) are dot-plots of the BLASTZ alignment for the seven indicated island pairs, for 
each of which the ratio of LIS UMps to all UMps common to the island pair was less than 0.8. 
 

 

(A)         (B) 

     
Fig. 3.11 LIS analysis of UMps in conserved segments of the UM map, using (A) mouse MGSCv3 and 
human NCBI build 30, and (B) NCBI mouse build 30 and human build 33.  The shaded circles are 
segments found in the UM map, but not in the MGSC map (A) or the Ensembl map (B).  Circles marked 
by * were evaluated by BLASTZ alignment because they had a low LIS UMp ratio for relatively small 
segments (see text).  The line in the figure resulted from a linear regression of the data, with the 
constraint that it passed through a ratio of 1.0 at zero segment size. 
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Chapter 4 

Copy number-based orthology seeding using 

contiguous matches 

4.1 Introduction 

Identifying orthologous and co-orthologous relationships between genomes is an 

important facet of comparative genomics (Koonin 2005). As the number of completely 

sequenced genomes continues to increase rapidly, orthology identification at the 

nucleotide level in both coding and noncoding regions of genomes is becoming an 

indispensable approach for studying genome evolution and for genome annotation 

(Deway and Pachter 2006). Essential to this approach is whole genome alignment, an 

approach that is computationally demanding, especially for large genomes. To achieve 

computational efficiency, various heuristic algorithms for large-scale sequence 

alignment, particularly those using index-based strategies, have been developed. 

Index-based alignment methods first build indices for one or all of the compared 

sequences and then retrieve seeds—often word matches or transformed word 

matches—from these indices to derive alignments to infer orthology, paralogy, and/or 

xenology (Fitch 2000). Since finding seeds (seeding) is necessarily the first step in all 
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index-based genome alignment methods (Ureta-Vidal et al. 2003), the strategy 

employed for selecting seeds and their retrieval is fundamental to the performance of 

genome alignment methods (Brown et al. 2004). 

With few exceptions, most current seeding strategies are length-based, i.e., seeds 

are selected using fixed-length or variable-length constraints. The k-mer (or k-tuple) 

strategy using exact matches of words of a fixed length as seeds is perhaps the most 

popular and is used in general-purpose sequence comparison methods, such as FASTA 

(Lipman and Pearson 1985) and BLAST (Altschul et al. 1990), and in various genome 

comparison programs, which are well reviewed in Chain et al. (2003), Ureta-Vidal et al. 

(2003), Brown et al. (2004), and Batzoglou et al. (2005). Another length-based seeding 

strategy employed in genomic sequence comparison uses maximal exact matches 

(MEMs) (Höhl et al. 2002), also known as maximal pairs (Gusfield 1997), which 

include all exact matches with maximal lengths equal to or greater than k (see section 

4.2.1). By excluding numerous redundant matches, which are particularly abundant in 

short-length words, MEM methods can acquire a better efficiency of seeding than k-mer 

methods for large-scale sequence comparison (Chain et al. 2003). 

To further increase seeding efficiency, Delcher et al. (1999) proposed the use of a 

subset of MEMs, using only the maximal unique matches (MUMs) to align two 

genomes, where a MUM is a maximal substring which occurs exactly once in each of 
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the two compared genomes and cannot be extended without introducing mismatches. 

The MUMmer system works well for closely related genomes (Chain et al. 2003). In 

addition, we have presented a fixed-length seeding method, called UniMarker, with a 

one-to-one mapping constraint (Liao et al. 2004). 

Generally speaking, all seeding strategies are a trade-off between sensitivity and 

specificity. Thus, at one extreme a typical k-mer method (e.g., using k=11, the default 

setting in BLAST for nucleotide comparison) can be highly sensitive, but must deal 

with numerous non-orthologous local matches in comparing genomes, while, at the 

other, most non-orthologous local matches can be automatically masked by methods 

such as MUMmer and UniMarker, which use a unique occurrence constraint to obtain 

high specificity, but suffer from limited sensitivity in detecting orthologous regions 

lacking the unique markers owing to sequence divergence or other evolutionary events.  

Herein, we explore the possibility of devising a new seeding model that lies 

between these two extremes, while focusing on expanding the capability of the 

high-specificity methods to compare not very closely related genomes. Specifically, we 

generalized the seeding models of MUMs and UniMarkers by relaxing the constraint of 

both uniqueness and length. First, we capture all substrings of any length for which the 

total copy number (i.e., total number of copies in the compared genomes) is no larger 

than a given threshold α, and extend them to maximal length while preserving the copy 
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number. We call these substrings of maximal length with variable copy numbers 

α-markers. We then retrieve the maximal pairs, pairs of identical substrings in S1 and S2 

that cannot be extended to longer exact matches, that contain α-markers as their 

substrings as seeds for orthology detection. We call these maximal pairs of α-markers 

α-pairs. For example, if α=4 and with x:y denoting x copies in the first genome and y 

copies in the second, we consider seeds of maximal length with 1:1, 1:2, 2:1, 1:3, 2:2, 

and 3:1 copies in the two compared genomes. Note that, in this generalization, 

MUMmer (Delcher et al. 1999) and UniMarker (Liao et al., 2004) both only consider 

1:1 mapping and also have a constraint on word length of, respectively, ≥ k (k =20 is 

usually the default) or k=16. 

In the next sections of this presentation, we first give a formal definition of 

α-markers and α-pairs, along with an illustrative example, then describe a linear-time 

algorithm to retrieve α-pairs, a prerequisite for achieving computational efficiency in 

genome-scale comparisons. Our algorithm is based on enhanced suffix arrays, which are 

efficient in comparing large genomes (Abouelhoda et al. 2004). Finally, we compare our 

seeds to several length-based seeds for their ability to detect orthologues. We use two 

datasets of genomes or chromosomes. The first dataset contains genomic or 

chromosomal sequences from human, mouse, chicken, and pufferfish and was used to 

compare the ability of different types of seed to detect orthologues in human versus 

mouse, chicken, or pufferfish. The second dataset consists of seven prokaryote genomes 

and was used to compare orthologues in Mycoplasma pneumoniae with those in another 

six genomes from Eubacteria and Archaebacteria. Ensembl (Hubbard et al. 2007) and 
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COG (Clusters of Orthologous Groups of proteins; Tatusov et al. 2003) orthologues 

were used to benchmark the comparisons. The results for the vertebrate dataset showed 

that significantly fewer seeds were required for α-pairs to achieve superior sensitivity; 

in addition, a denser set of colinear identical matches in these orthologues was obtained 

using seeding of α-pairs than using a length-based method, such as MEM or k-mer. 

Similar trends, but with less profound differences, were found in the prokaryote dataset. 

4.2 Methods 
In this section, we present definitions and an algorithm to compute α-pairs. We present 

a new algorithm based on the MEM-enumeration algorithm of Abouelhoda et al. (2004) 

which can handle the enumeration of a new type of seed. 

4.2.1 α-markers and α-pairs 

Suppose that S1 and S2 are the two genome sequences to be compared. Let Wordc denote 

the set of all substrings such that each member of Wordc has a copy number x>0 in S1, 

y>0 in S2, and x+y = c (c≥2 by definition). We also denote each member in Wordc as a 

c-copy word of S1 and S2. For example, if S1 = “accgtttgag” and S2 = 

“acccgtatgagcaccgtatgg”, Word3 = {“ac”, “acc”, “ccg”, “ccgt”, “cg”, “cgt”, “gt”, “tg”}, 

where each word has a total of three instances in S1 and S2 combined. For example, 

word “ac” occurs three times at position 1 in S1 and positions 1 and 13 in S2, 

respectively (Figure 4.1). Our focus is on less frequent words, that is, the set union of 

Word2, Word3, …, Wordα, where α is a user-specified integer. In order to give a compact 

presentation of these less frequent words, we define α-markers as follows. 

Definition 4.1: We say a c-copy word of sequences S1 and S2 is right maximal if we 

cannot extend any of its instances in the right direction to obtain a longer c-copy word; 

likewise, a c-copy word is left maximal if we cannot extend it in the left direction to 
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obtain a longer c-copy word. We also denote a maximal c-copy word (a c-copy word 

that is both left and right maximal) of S1 and S2 as an α-marker of S1 and S2, for c = 2, 

3, …, α. 

 In Figure 4.1, column 3 shows the maximal c-copy words that could be extended 

from the c-copy words in column 2 while retaining the same copy number. 

 

Fig. 4.1 An example of α-markers and α-pairs. (A) Two compared sequences S1 and S2 with the sequence 
positions indicated above the sequences. (B) For S1 and S2, there are seven 2-copy words (“accgt”, …, 
“tgag”) and eight 3-copy words (“ac”, …, “tg”); these are listed in column 2. The round brackets in 
column 2 denote the positions of c-copy words in the form (genome, position, len). By extending each 
c-copy word in column 2 while preserving the same copy number, we have five maximal c-copy words 
for c=2,3, these being “accgt”, “tgag”, “acc”, “ccgt”, and “tg” in column 3. These are the α-markers for 
α=3 (Def.4.1). Column 4 shows the pairs of instances of column 3 α-markers in the form of {position in 
S1, position in S2, string length}. Column 5 checks whether a pair of instances in column 4 is an α-pair. 
For example, the instance pair {7,8,2} of “tg” is not an MEM and thus not an α-pair (Def.4.2). 
 

 In this chapter, we refer to an exact match as a pair of identical substrings in S1 and 

S2. In the following, we are interested in those matches referred to as maximal exact 

matches (MEMs) (Höhl et al. 2002) or maximal pairs (Gusfield 1997). The notation 

MEM of S1 and S2 refers to a pair of identical substrings in S1 and S2 that cannot be 

(A) 
Pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

S1=" a c c g t t t g a g "            

S2=" a c c c g t a t g a g c a c c g t a t g g "
(B) 

c
Wordc : 

(genome,position,len) 
α-marker

(α=3)
Pairs of instances
{pos1,pos2,len}

Is an 
α-pair?

accg: (S1,1,4) (S2,13,4) 
accgt: (S1,1,5) (S2,13,5) 

accgt accgt {1,13,5} Yes 

ag: (S1,9,2) (S2,10,2) 
ga: (S1,8,2) (S2,9,2) 
gag: (S1,8,3) (S2,9,3) 
tga: (S1,7,3) (S2,8,3) 

2 

tgag: (S1,7,4) (S2,8,4) 

tgag tgag {7,8,4} Yes 

ac: (S1,1,2) (S2,1,2) (S2,13,2) 
acc: (S1,1,3) (S2,1,3) (S2,13,3)

acc 
acc {1,1,3} 
acc {1,13,3} 

Yes 
No 

ccg: (S1,2,3) (S2,3,3) (S2,14,3)
ccgt: (S1,2,4) (S2,3,4) (S2,14,4)
cg: (S1,3,2) (S2,4,2) (S2,15,2) 
cgt: (S1,3,3) (S2,4,3) (S2,15,3)
gt: (S1,4,2) (S2,5,2) (S2,16,2) 

ccgt 
ccgt {2,3,4} 

ccgt {2,14,4} 
Yes 
No 

3 

tg: (S1,7,2) (S2,8,2) (S2,19,2) tg 
tg {7,8,2} 

tg {7,19,2} 
No 
Yes 
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extended to a longer exact match. Now, let us consider those MEMs of S1 and S2 that 

have α-markers as their strings. It should be emphasized that, by definition, the matches 

generated from an α-marker m are constrained by the copy number of m and not by 

their lengths. 

Definition 4.2: An MEM e of sequences S1 and S2 is said to be an α-pair of an α-marker 

m of S1 and S2 if the two strings in e are instances of m in S1 and S2, respectively. 

 Let (genome, position, len) denote the position and length of a string instance in a 

specified genome and {p1, p2, len} denote an exact match composed of string instances 

at (S1, p1, len) and (S2, p2, len) with string length len. In Figure 4.1, the three instances 

of “tg” are at (S1,7,2), (S2,8,2), and (S2,19,2), and there are two pairs of instances of “tg” 

of S1 and S2: {7,8,2} and {7,19,2}, where only {7,19,2} is a MEM. 

Lemma 4.3: Denote e as a MEM of S1 and S2. String ω of e is a c-copy word of S1 and 

S2 and c ≤ α if, and only if, e is an α-pair. 

Note that Lemma 4.3 follows directly from Definitions 4.1 and 4.2. 

4.2.2 A linear time α-pair retrieval algorithm 

According to Lemma 4.3, we can generate all α-pairs by computing the copy number c 

of each MEM’s string and by reporting a MEM if c ≤ α. Note also that MEMs may be 

enumerated using the linear-time algorithm based on enhanced suffix arrays proposed 

by Abouelhoda et al. (2004). However, since the algorithm presented by Abouelhoda et 

al. deals with a single genome, we have modified it slightly to enumerate α-pairs of two 

genomes by borrowing the position-set technique from Höhl et al. (2002). Note that an 

enhanced suffix array refers to a data structure consisting of a suffix array (Manber and 

Myers 1993) and its augmented arrays, such as the longest common prefix (lcp) array 

(Kasai et al. 2001) and the Burrows-Wheeler transformation (bwt) array (Burrows and 
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Wheeler 1994), and these arrays can be constructed in linear time (Abouelhoda et al. 

2004). 

 First, using two special symbols ‘#’ and ‘$’, we concatenate S1 and S2 into a new 

string S = S1#S2$, then build the enhanced suffix array of S as a virtual suffix tree Tv for 

the bottom-up traversal of all lcp-intervals (Kasai et al. 2001, Abouelhoda et al. 2004). 

For convenience, we say a word is a c-copy word of S if the number of times it occurs 

in S is exactly c , without paying any attention to its copy number in S1 and S2. Note that 

an lcp-interval σ is an interval of the suffix array that contains all suffixes of S prefixed 

by a right maximal c-copy word of S, say ω, for c > 0, where the size of σ is exactly the 

copy number of ω. Let n denote the size of S. Since each suffix of S is unique, there are 

n leaf nodes in Tv, where each leaf corresponds to a suffix of S. To simplify notations, in 

this paper, the notation of the right maximal c-copy word of S of σ will be referred to as 

the string of σ. For any two right maximal words of S, ω1 and ω2, we define the partial 

order relation ω1 < ω2 if ω1 is a prefix of ω2. In Tv, each node corresponds to an 

lcp-interval and a node σ1 is an ancestor of a node σ2 if, and only if, their corresponding 

right maximal words of S satisfy the partial order relation ω1 < ω2. Obviously, the string 

ω of σ is the longest common prefix of its children. 

 In the following, we present the algorithm to enumerate all α-pairs of genomes S1 

and S2. 

 Let Σ be the set of letters of S1 and S2 and let |Σ| denote the size of Σ. During the 

bottom-up traversal of Tv, for each node, σ, we maintain 2×|Σ| position sets P(g,x,σ), 

where g=1 or 2 and x∈Σ. Each element of P(g,x,σ) is a suffix of S prefixed by the string 

ω of σ in genome Sg and x is the character immediately to the left of this suffix. Note 

that only the starting position of each suffix is recorded in the position set P(g,x,σ). 
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Depending on whether σ is a leaf node or an internal node, the computation of the 

position sets is different. For each leaf node of Tv, the size of its lcp-interval is one and 

its P(g,x,σ) is obtained simply by looking up the bwt array. For each internal node σ of 

Tv, P(g,x,σ) is the set union of its children’s position sets. This position-set technique is 

adopted from Kurtz and Lonardi (2004), who showed that the position sets can be 

computed in O(|Σ|n) time. 

 For each internal node σ of Tv, if we let ω be its string and let σa and σb be any 

two distinct children of σ, we obtain starting positions of MEMs of S1 and S2 with string 

ω by computing P(1,x,σa) × P(2,y,σb) for all x≠y and for all σ’s children σa≠σb. Note 

that it is not difficult to show that, for each MEM e reported at node σ of Tv, the string 

of e is exactly the string of σ (Kurtz and Lonardi 2004, Abouelhoda et al. 2004), and 

thus each MEM enumerated in this procedure is unique. It is also known that the above 

MEM-enumeration algorithm produces all MEMs of S1 and S2 (Kurtz and Lonardi 2004, 

Abouelhoda et al. 2004), and we have modified it by performing the MEM-reporting 

procedure at node σ of Tv if the size of σ is no greater than α. According to Lemma 3, 

each produced MEM is an α-pair. Since each α-pair can be enumerated in constant time, 

the entire enumeration procedure runs in O(|Σ|n + z) time, where z is the number of 

α-pairs. 

 From the above, we know that α-pairs can be retrieved by first generating position 

sets of each node of Tv in O(|Σ|n) time, then enumerating α-pairs by traversing Tv in 

another O(|Σ|n + z) time. Thus, the total complexity of the α-pair retrieval algorithm 

runs in O(|Σ|n + z) time. Additionally, theorem 4 below ensures the completeness of the 

α-pair retrieval algorithm, while the proof of the soundness is trivial. 
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Theorem 4: Given two sequences S1 and S2, the α-pair retrieval algorithm reports every 

α-pair. 

Proof: Let us assume the contrary, i.e., there exists an α-pair p which is not reported by 

the α-pair retrieval algorithm. Denote u1 and u2 as the two suffixes prefixed by the two 

string instances of p, with u1 belonging to genome S1 and u2 to S2. In other words, p is 

the longest common prefix of u1 and u2. Let us also denote the two nodes in the virtual 

suffix tree containing u1 and u2 as σ1 and σ2, respectively. We also denote the character 

immediately to the left of u1 as a1 and the one immediately to the left of u2 as a2. Let us 

consider the marker ω of the closest common ancestor σ of σ1 and σ2. We can show that 

the strings of ω and p are the same (if we assume otherwise, then there must exist 

another common ancestor of σ1 and σ2 and this contradicts the fact that σ is the closest 

common ancestor of σ1 and σ2. The details can be easily derived by interested readers). 

Let σ1
’ and σ2

’ denote the two children of σ which are ancestors of σ1 and σ2, 

respectively. Then we can see that σ1 belongs to P(1,a1,σ1
’) and σ2 belongs to 

P(2,a2,σ2
’). Since p is not reported by the algorithm, thus the copy number of ω must be 

greater than α. However, as we mentioned earlier, the strings of ω and p are the same, 

which contradicts the assumption that p is an α-pair. 

4.2.3 Evaluation of orthology seeding 

To evaluate the ability of different types of seeds to detect orthologues, we used two 

quantitative measures: seeding sensitivity and colinear identities per orthologue. 

Seeding sensitivity is defined as 

Seeded100%Sn N N= × , 

where N denotes the total number of orthologues annotated in a reference benchmark, 
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such as the Ensembl orthology (Hubbard et al. 2007) or COG (Tatusov et al. 2003), and 

NSeeded denotes the total number of annotated orthologues containing at least one seed. 

Obviously, it is impossible to detect an orthologue if no seeds are found within the 

orthologue. Furthermore, because the sensitivity measure Sn does not gauge how likely 

the seeded orthologues will be detected, we define a second measure, the colinear 

identities per orthologue, as 

Īc =
1

N

i
i

I N
=
∑ , 

where Ii denotes the maximal number of colinearly identical base pairs decomposed 

from the seeds mapping the two sequences of the i-th orthologue. Ii can be computed 

using an algorithm for finding longest increasing subsequences (Gusfield 1997). 

* Steps for computing colinear identities 

1 Collect seeds that fall inside the i-th orthologue as a set X. 

2 For each seed {p1, p2, }a in X: 

2.1 Decompose it into  letter matches: {p1, p2,1}, {p1+1, p2+1,1}, …, {p1+ -1, 

p2+ -1,1}. 

2.2 Store the letter matches (i.e., identical base pairs) to an array Y. 

3 Sort Y by ascending order of the positions in S1 and descending order of the 

positions in S2. 

4 For each record in Y, store the positions in S2 to an integer sequence Z. 

5 Compute Ii = the length of LIS b (Longest Increasing Subsequence) of Z. 

a A seed is a substring match in the form {position p1 in S1, position p2 in S2, string length }. 

b We implemented an O(n log p) LIS algorithm (Gusfield 1997), where n is the length of the input and p 

the length of the LIS. 

 

Generally speaking, the larger I for a candidate orthologue, the easier it is to 
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identify the orthologue in a post-seeding process such as the ungapped/gapped 

extension (Altschul et al. 1997). Using the Ensembl- and COG-annotated orthologues 

for a variety of vertebrate and prokaryote species as benchmarks, we computed Sn and 

Īc for several different seeding models to compare, respectively, their sensitivity to seed 

the annotated orthologues and their relative potential to detect the annotated 

orthologues. 

4.2.4 Datasets and software 

Two datasets of genomic sequences were used to evaluate the different seeding models. 

Dataset A (Table 4.1A) consisted of human chromosome 15, mouse chromosome 7, 

chicken chromosome 10, and the freshwater pufferfish genome; the orthologues 

between human and the various species as annotated by Ensembl (Hubbard et al. 2007) 

were used as the reference answer-set for evaluation. These vertebrate genomic 

sequences were retrieved from ftp://ftp.ensembl.org/pub/release-41/, and the 

orthologues as annotated in Ensembl v.41 were obtained by querying BioMart at 

http://oct2006.archive.ense-mbl.org/Multi/martview. Dataset B (Table 4.1B) consisted 

of seven small prokaryote genomes, and their COG orthologues (Tatusov et al. 2003) 

were used as the reference answer-set. For dataset B, we retrieved genomes from 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ and COG orthologues from 

ftp://ftp.ncbi.nih.gov/pub/COG/COG/. Both the Ensembl and COG orthologues are 

determined based on protein sequence comparisons. Computer modules for our method 

were written in C/C++ and are freely downloadable from the website 

http://synteny.iis.sinica.edu.tw/am/ . 
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Table 4.1 The two datasets used in this study. 

 

4.3 Results 

4.3.1 α-pairs vs. MEM or k-mer in vertebrate sequences 

There are two common ways to parameterize exact matches of DNA sequences based 

on sequence length: 1) a k-mer pair of S1 and S2 is a pair of identical words in S1 and S2, 

where the length of the words is k, and 2) a maximal exact match (MEM) (Höhl et al. 

2002) of S1 and S2 (see Methods 2.1). We let MEMk denote the set of all MEMs for 

which the lengths are equal to, or greater than, k. For convenience, we denote the set of 

α-pairs at a specified α value as APα. We were interested in knowing whether the 

copy-number-based APα seeds conferred any advantage over the length-based MEMk 

 (A) Vertebrate dataset (reference sequence: HS chr.15, 100Mb) 

Sequence compareda,b 
ID name (size) 

Divergence 
timec 

#Orthologuesd 
(1-to-1, m-to-m) 

MM chr.7 (145 Mb) 91 Mya 124 (124, 0) 
GG chr.10 (21 Mb) 310 Mya 314 (296, 18) 

TN genome (217 Mb) 450 Mya 347 (245, 102) 

(B) Prokaryote dataset (reference sequence: Mpn genome, 816Kb) 

Sequence compareda,e  
ID name (size) 

Divergence 
timec 

#Orthologuesd 
(1-to-1, m-to-m) 

Mge genome (580 Kb) < 2600 Mya 472 (319, 153) 
Rpr genome (1112 Kb) ~ 2600 Mya 315 (191, 124) 
Buc genome (641 Kb) ~ 2600 Mya 274 (209, 65) 
Bbu genome (911 Kb) ~ 2600 Mya 333 (227, 106) 
Ctr genome (1043 Kb) ~ 2600 Mya 297 (200, 97) 
Tac genome (1565 Kb) > 4000 Mya 320 (120, 200) 

a HS: Homo sapiens; MM: Mus musculus; GG: Gallus gallus; TN: Tetraodon nigroviridis. Mpn: Mycoplasma pneumoniae; Mge: Mycoplasma 
genitalium; Rpr: Rickettsia prowazekii; Buc: Buchnera sp. APS; Bbu: Borrelia burgdorferi; Ctr: Chlamydia trachomatis; Tac: Thermoplasma 
acidophilum. HS chromosome 15 and the Mpn genome were used as the reference sequence for the comparisons in dataset A and B, respectively. The 
figures in parentheses are the size of the chromosomes or genomes compared. 
b MM chr.7 was chosen because it has a larger number of, compared to the other chromosomes, orthologues to HS chr.15. GG chr.10 was chosen by 
the same criterion.  
c Mya denotes millions of years ago. Data are from Hedges (2002). 
d The orthologues (i.e., orthologous gene pairs) in (A) are from Ensembl v.41 and those in (B) from the COG database (see Methods). m-to-m denotes 
many-to-many relationships, which include one-to-many and many-to-one mappings. 
e Mpn was used as the query genome to compare against five genomes from four phyla of Eubacteria (Firmcutes: Mpn, Mge; Proteobacteria: Rpr, 
Buc; Spirochaetes: Bbu; Chlamydiales: Ctra) and one genome from Euryarchaeota of Archaebacteria (Taci). 
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and k-mer seeds in detecting orthologues, and how their performances changed when 

the parameters α and k changed. Using dataset A (Table 4.1A) and the two measures Sn 

and Īc described above, we compared the orthology seeding results for human chr.15 

versus mouse chr.7, chicken chr.10, and the pufferfish genome using seeds of APα, 

MEMk, or k-mer pairs. The results are presented in Figures 4.2 and 4.3, and Table 4.2. 

 Figure 4.2 shows that, for the two mammals human and mouse, a minimal α (α=2) 

was sufficient for APα to seed all the orthologues of HS chr.15 vs MM chr.7 (Figure 

4.2A), and, for the more distant pair human and chicken, 99% of the orthologues of HS 

chr.15 vs GG chr.10 could still be seeded by α=3, but, to cover the last 1% (3 

orthologues, see Table 4.1A), the cost, i.e. size of α and total number of seeds, escalated 

(Figure 4.2C). In comparison, a much larger, but still small, α (~10) was needed to seed 

90% of the very distant human-fish orthologues (Figure 4.2E), while, to cover the last 

orthologue, α increased to more than a thousand (Figure 4.3A). Similarly, as the 

evolutionary distance from human increased on going from mouse to chicken to fish, 

the difficulty in actually mapping these orthologues increased accordingly, as evidenced 

by the decreasing Īc, which decreased from thousands to hundreds to scores for these 

species at relatively low α copies (Figures 4.2B, D, and F). 

 The seeding results showed that the data for the APα seeds were all much closer to 

the upper left corner of the plot than those for the MEMk or k-mer seeds (Figure 4.2A-F), 

indicating a superior performance for APα in both the Sn and Īc measures. That is, using 

the same amount of seeds, APα achieved a better Sn and Īc than MEMk or k-mer; 

conversely, to achieve the same Sn or Īc, a much larger number of seeds were required 

for MEMk or k-mer (especially the latter) than for APα. Quantitatively, depending on the 

species compared, to achieve 100% Sn, between 2 and 62 times as many seeds were 
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required for MEMk than for APα, while the k-mer/APα seed ratio was between 5 and 377. 

To achieve a nearly equal Īc, the MEMk/ APα seed ratio ranged from ~10 to ~30 and the 

k-mer/ APα seed ratio ranged from 28 to 159 (for k =14, 15, and 16; Table 4.2). The 

values of these ratios appear to depend on the values of α and k, the evolutionary 

distance, and the sizes of the sequences compared (for example, pufferfish is much 

more distant from human than is chicken, but the size of its whole genome sequence 

(217 Mb) is much larger that that of chicken chromosome 10 (21 Mb) (Table 4.1A). 

Other factors, such as the number of times a genome had been wholly or segmentally 

duplicated, might also have an effect. 
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Fig. 4.2 Sn or Īc vs. total number of seeds generated using APα, MEMk, or k-mer in the comparison of 
vertebrate sequences (Table 4.1A). (A) and (B) are the results for human chr.15 vs. mouse chr.7, (C) and 
(D) are the results for human chr.15 vs. chicken chr.10, and (E) and (F) are the results for human chr.15 
vs. the pufferfish genome. The data for the larger α and smaller k values needed to reach 100% Sn or a 
higher Īc for the human vs. pufferfish comparison are presented in Figure 4.3. 
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(E) HS chr.15 vs. TN genome (Sn)    (F) HS chr.15 vs. genome (Īc) 
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(A) HS chr.15 vs TN genome: Sn   (B) HS chr.15 vs TN genome: Īc 
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Fig. 4.3 (A) and (B) are, respectively, the extension of Figures 4.2E and 4.2F for larger 
α and smaller k values. 

 

Table 4.2 MEMk or k-mer seed to APα seed ratio at 100% Sn or an nearly equal Īc for 
detecting vertebrate orthologues (dataset A). 

 

(i) Sn 

k = 18 k = 18 α = 2 A= 377.23
Seed# = 7,734,559,863 Seed# = 1,270,153,339 Seed# = 20,503,556 B= 61.95

k = 13 k = 13 α = 31 A= 4.94
Seed# = 1,342,581,347 Seed# = 519,637,186 Seed# = 272,011,977 B= 1.91

k = 9 k = 9 α = 1252 A= 9.12
Seed# = 333,160,672,645 Seed# = 191,831,428,705 Seed# = 36,522,353,493 B= 5.25

HS chr.15, TN genome

HS chr.15, MM chr.7

HS chr.15, GG chr.10

A. Seed#(k -mer)/Seed#(AP α )
B. Seed#(MEMk )/Seed#(AP α )k -mer MEMk AP α

Sequences compared
Parameters and seed# generated at 100% Sn

(ii) Īc 
(A) HS chr.15 vs. MM chr.7
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
16 11,441,794,971 1527.04 16 2,091,308,171 1527.04 3 42,223,038 1663.10 270.98 49.53
15 14,291,762,410 1724.56 15 2,849,967,439 1724.56 5 87,128,594 1843.71 164.03 32.71
14 18,307,564,831 2069.69 14 4,015,802,421 2069.69 20 443,129,366 2259.95 41.31 9.06

Average for k =14~16 158.78 30.43

(B) HS chr.15 vs. GG chr.10
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
16 340,355,453 299.02 16 117,602,462 299.02 2 8,079,214 322.98 42.13 14.56
15 524,956,370 334.97 15 184,600,917 334.97 3 16,868,192 377.30 31.12 10.94
14 822,944,161 430.32 14 297,987,791 430.32 10 80,059,161 483.21 10.28 3.72

Average for k =14~16 27.84 9.74

(C) HS chr.15 vs. TN genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
16 16,307,700,263 66.73 16 2,821,865,633 66.73 5 101,623,422 80.08 160.47 27.77
15 20,139,059,134 79.75 15 3,831,358,871 79.75 10 235,753,891 97.16 85.42 16.25
14 25,526,195,868 114.09 14 5,387,136,734 114.09 20 509,153,134 115.14 50.13 10.58

Average for k =14~16 98.68 18.20

(iii) Summary 
Achieving Sn=100%a Achieving equal Īc b

Sequences compared 
k-mer MEMk APα k-mer MEMk APα

HS chr.15, MM chr.7 377.2 : 62.0 : 1 158.8 : 30.4 : 1
HS chr.15, GG chr.10 4.9 : 1.9 : 1 27.8 : 9.7 : 1

HS chr.15, TN genome 9.1 : 5.3 : 1 98.7 : 18.2 : 1

a Details of the data are provided in the above table (i) 
b Ratios for Īc were estimated using MEM14, MEM15, and MEM16 (see Figure 2 and the above table (ii)). 
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4.3.2 α-pairs vs. MEM or k-mer in prokaryote sequences 

The marked difference between APα and MEMk or k-mer seeds seen for the vertebrate 

orthologues above was much reduced when comparing prokaryote genomes. To achieve 

an Sn of 100% and a nearly equal Īc, the MEMk/APα and k-mer/APα (for k =7, 8, and 9) 

seed ratios were often just slightly above unity and all were less than 10 (Table 4.3). The 

small Īc, usually of the order of 10-100 (see Figure 4.4), also indicated a difficulty for 

all the three seed models in mapping these distant prokaryote orthologues, and that 

increasing copy numbers (α) would not result in as great an advantage over MEMk and 

k-mer as in the case of vertebrate orthologues (cf. Figures 4.2 and 4.4). Because these 

prokaryote genomes are 10 to several hundreds times smaller than the vertebrate 

sequences compared (Table 4.1), the results may suggest that, while APα seeds are more 

efficient than MEMk and k-mer seeds in detecting both vertebrate and prokaryote 

orthologues, this efficiency gain is considerably greater in larger-scale comparisons. 



 

 51
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(C) Mpn vs. Rpr: Sn           (D) Mpn vs. Rpr: Īc 

Mpn Genome vs. Rpr Genome
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(E) Mpn vs. Buc: Sn           (F) Mpn vs. Buc: Īc 

Mpn Genome vs. Buc Genome
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(G) Mpn vs. Bbu: Sn           (H) Mpn vs. Bbu: Īc 

Mpn Genome vs. Bbu Genome
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(I) Mpn vs. Ctr: Sn           (J) Mpn vs. Ctr: Īc 

Mpn Genome vs. Ctr Genome
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(K) Mpn vs. Tac: Sn           (L) Mpn vs. Tac: Īc 

Mpn Genome vs. Tac Genome
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Fig. 4.4 Sn or Īc vs. total number of seeds generated using APα, MEMk, or k-mer in the comparison of 
prokaryote genomes (dataset B). 
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Table 4.3 MEMk or k-mer seed to APα seed ratio at 100% Sn or an nearly equal Īc for detecting 
prokaryote orthologues (dataset B). 

 

(i) Sn 

k = 8 k = 8 α = 34 A= 7.16
Seed# = 37,465,508 Seed# = 26,656,835 Seed# = 5,232,900 B= 5.09

k = 7 k = 7 α = 411 A= 2.37
Seed# = 209,202,042 Seed# = 151,581,922 Seed# = 88,221,457 B= 1.72

k = 7 k = 7 α = 157 A= 5.80
Seed# = 137,217,332 Seed# = 98,641,496 Seed# = 23,652,853 B= 4.17

k = 7 k = 7 α = 367 A= 2.83
Seed# = 197,838,930 Seed# = 141,975,543 Seed# = 69,785,157 B= 2.03

k = 7 k = 7 α = 420 A= 1.57
Seed# = 148,041,782 Seed# = 108,666,713 Seed# = 94,306,140 B= 1.15

k = 7 k = 7 α = 235 A= 2.76
Seed# = 165,652,229 Seed# = 123,668,040 Seed# = 60,013,345 B= 2.06

Sequences compared
Parameters and seed# generated at 100% Sn A. Seed#(k -mer)/Seed#(AP α )

B. Seed#(MEMk )/Seed#(AP α )k -mer MEMk AP α

Mpn, Bbu genomes

Mpn, Ctr genomes

Mpn, Tac genomes

Mpn, Mge genomes

Mpn, Buc genomes

Mpn, Rpr genomes

 
(ii) Īc 
(A) Mpn genome vs. Mge genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 10,808,673 135.45 9 7,646,186 135.45 34 5,232,900 136.98 2.07 1.46
8 37,465,508 206.84 8 26,656,835 206.84 200 32,954,863 208.80 1.14 0.81
7 130,118,311 250.46 7 92,652,803 250.46 550 92,234,567 252.25 1.41 1.00

Average for k =7-9 1.54 1.09

(B) Mpn genome vs. Rpr genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 15,850,543 37.35 9 11,439,656 37.35 50 9,947,265 38.47 1.59 1.15
8 57,620,120 69.24 8 41,769,577 69.24 180 37,606,998 69.22 1.53 1.11
7 209,202,042 115.50 7 151,581,922 115.50 620 134,718,171 115.60 1.55 1.13

Average for k =7-9 1.56 1.13

(C) Mpn genome vs. Buc genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 10,830,804 36.15 9 7,743,848 36.15 40 5,620,685 36.43 1.93 1.38
8 38,575,836 67.50 8 27,745,032 67.50 157 23,652,853 68.94 1.63 1.17
7 137,217,332 109.15 7 98,641,496 109.15 500 78,596,947 109.36 1.75 1.26

Average for k =7-9 1.77 1.27

(D) Mpn genome vs. Ctr genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 15,755,379 38.73 9 11,262,885 38.73 55 9,716,666 39.70 1.62 1.16
8 55,863,387 71.76 8 40,108,008 71.76 190 35,263,107 72.23 1.58 1.14
7 197,838,930 119.85 7 141,975,543 119.85 650 123,433,031 120.60 1.60 1.15

Average for k =7-9 1.60 1.15

(E) Mpn genome vs. Bbu genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 10,476,247 31.95 9 7,674,858 31.95 35 7,257,329 32.12 1.44 1.06
8 39,375,069 61.74 8 28,898,822 61.74 130 28,371,621 61.93 1.39 1.02
7 148,041,782 106.89 7 108,666,713 106.89 460 103,489,389 106.91 1.43 1.05

Average for k =7-9 1.42 1.04

(F) Mpn genome vs. Tac genome
k Seed#(k -mer) Īc k Seed#(MEMk ) Īc α Seed#(AP α ) Īc Seed#(k -mer)/Seed#(AP α ) Seed#(MEMk )/Seed#(AP α )
9 10,658,274 22.00 9 7,931,466 22.00 33 7,531,808 22.19 1.42 1.05
8 41,984,189 45.40 8 31,325,915 45.40 120 29,473,289 45.69 1.42 1.06
7 165,652,229 85.93 7 123,668,040 85.93 460 119,581,616 86.43 1.39 1.03

Average for k =7-9 1.41 1.05  

(iii) Summary 
Achieving Sn=100%a Achieving equal Īc b

Sequences compared 
k-mer MEMk APα k-mer MEMk APα

Mpn genome, Mge genome 7.16 : 5.09 : 1 1.54 : 1.09 : 1
Mpn genome, Rpr genome 2.37 : 1.72 : 1 1.56 : 1.13 : 1
Mpn genome, Buc genome 5.80 : 4.17 : 1 1.77 : 1.27 : 1
Mpn genome, Bbu genome 2.83 : 2.03 : 1 1.60 : 1.15 : 1
Mpn genome, Ctr genome 1.57 : 1.15 : 1 1.42 : 1.04 : 1
Mpn genome, Tac genome 2.76 : 2.06 : 1 1.41 : 1.05 : 1

a Details of the data are provided in the above table (i). 
b Ratios for Īc were estimated using MEM7, MEM8, and MEM9 (see Figure 4.4 and the above table (ii)). 
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4.3.3 α-pairs vs. MUM or MAM 

As alluded to earlier, α-pairs can be considered as a conceptual extension of MUMs 

with the removal of the uniqueness constraint. It was therefore of interest to compare 

APα with MUMk and with MAMk (the maximal almost-unique match), which extends the 

one-to-one mapping of MUMk to one-to-many mapping (i.e., one-side uniqueness, 

Delcher et al. 2002). Note that, besides one-side or two-side uniqueness, both MUMk 

and MAMk, like MEMk, also impose a length constraint (k). 

 Table 4.4 shows the best Sn for the two datasets (Table 4.1) that could be achieved 

with MUMk and MAMk, i.e., with MUM1 and MAM1 where matches of all lengths (i.e. 

k≥1) were considered. The results showed that, as the evolutionary distance from human 

increased from mouse to chicken to pufferfish, the best possible Sn for MUMk 

decreased, and for the highly diverged bacteria genomes, it dropped to below 40%. 

Removing the unique mapping on one side, as in MAM1, resulted in a considerable 

improvement in Sn, but not to an extent that would be useful in practice, especially for 

distant genomes. In comparison, APα achieved a similar Sn and Īc to MAM1 (Table 4.5) 

at a very small α (3-5), and, unlike MUMk and MAMk, could reach 100% Sn with a 

moderate or manageable α (see below for the scalability of α-pairs), even for 

prokaryote species that have diverged for more than 4000 million years (Table 4.1B). 

Thus, by tuning copy number instead of length, the potential to map moderately, or even 

very, distant genomes seems much greater with α-pairs than with length-based seeds, 

although it remains to be determined what Īc value would be large enough to map 

highly distant orthologues in the post-seeding processes without the aid of protein 

sequence comparisons. 
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Table 4.4 From MUM/MAM to α-pairs: improving sensitivity by increasing α. 

Sn,α (APα)c 
Sequences compared 

Sn(MUM1)a

 (=Sn(AP2))
Sn(MAM1)b

 ~Sn(MAM1) Sn=100% 

HS chr.15, MM chr.7 100.0% 100.0% 100.0%,α=2 α=2 

HS chr.15, GG chr.10 95.9% 98.1% 99.0%,α=3 α=31 

HS chr.15, TN genome 72.3% 81.6% 83.9%,α=4 α=1252 

Mpn, Mge genomes 79.0% 87.5% 88.4%,α=5 α=34 

Mpn, Rpr genomes 25.1% 35.9% 37.8%,α=3 α=411 

Mpn, Buc genomes 33.2% 48.5% 49.3%,α=4 α=157 

Mpn, Bbu genomes 25.5% 33.0% 33.9%,α=3 α=367 

Mpn, Ctr genomes 29.0% 36.4% 39.1%,α=3 α=420 
Mpn, Tac genomes 16.6% 30.6% 31.9%,α=4 α=235 

a Sn achieved using MUMk (k ≥ 1) seeds, which are equivalent to AP2 (the default value of k in MUMmer 
is 20). 
b Sn achieved using MAMk (k ≥ 1) seeds. For the one-to-many mappings, the reference sequences (HS chr 
15 and the Mpn genome, respectively, for Dataset A and B) were treated as the unique side for the 
comparisons.  
c Sn achieved using APα at the specified α value. 
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Table 4.5 From MUM/MAM to α-pairs: improving Īc by increasing α. 

Īc(MUM1)a Īc, α (APα)c 
Sequences compared 

 (=Īc(AP2)) 
Īc(MAM1)b

~Īc(MAM1)d α=20 
HS chr.15, MM chr.7 1493.5  1603.0  1663.1, α=3 2260.0  
HS chr.15, GG chr.10 323.0  357.3  377.3, α=3 555.7  

HS chr.15, TN genome 51.7  68.8  73.9, α=4 115.1 
Mpn, Mge genomes 62.7  78.7  83.9, α=3 120.3 
Mpn, Rpr genomes 4.7  6.6  7.4, α=3 24.0 
Mpn, Buc genomes 5.8  10.0  11.0, α=4 25.6 
Mpn, Bbu genomes 4.0  5.4  5.9, α=3 23.1 
Mpn, Ctr genomes 5.1  6.8  7.5, α=3 23.8 
Mpn, Tac genomes 2.1  4.1  4.5, α=4 16.1 

a Īc achieved using MUMk (k ≥ 1) seeds, which are equivalent to AP2. 
b Īc achieved using MAMk (k ≥ 1) seeds. For the one-to-many mappings, the reference sequences HS 

chr.15 (dataset A) and the Mpn genome (database B) were treated as the unique side for the comparisons.  
c Īc achieved using APα at the specified α value. 
c At an Īc value close to Īc(MAM1). 

 

4.3.4 The number of α-pairs increases linearly with α 

A striking property, and a great practical advantage, of α-pairs is that their number 

increases linearly as α increases (Figure 4.5). This linear relationship holds for all the 

comparisons we made, including those made on the vertebrate dataset (Figure 4.5), 

those on the prokaryote genomes (Figure 4.6 and Table 4.6), and those made on several 

self-comparisons of diverse genomic sequences (data not shown). In fact, the R2 

regression coefficient was so high (>0.99; Table 4.6) for these comparisons that we can 

reliably estimate the number of added seeds when we increase the copy number by one: 

i.e., if |APα| is known, where |APα| denotes the number of α-pairs at a specified α value, 

we can estimate |APα+1| to be roughly (α/(α-1))×|APα| (derivation in Table 4.6). Thus, 
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the cost of enhancing the sensitivity by increasing the copy number in the α-pairs seeds 

is considerably smaller than that of enhancing the sensitivity by decreasing k in the 

length-based seeds, since the number of MEMk or k-mer pairs grows exponentially as 

the word length k decreases (Kurtz 2001, Kent 2002). 

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

α

N
um

be
r 

of
 A

P
(α

) 
(b

il
li
on

)

HS chr.15 vs. MM chr.7

GG chr10 vs. HS chr.15

HS chr.15 vs. TN genome

 

Fig. 4.5 Number of α-pair seeds as a function of α for the comparisons of vertebrate 
genomic sequences. 
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Fig. 4.6 Number of α-pair seeds as a function of α for the comparisons of prokaryote 
genomic sequences. The results of the linear regression analysis for each comparison 
are presented in Table 4.6. 
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Table 4.6. Results of linear regression analysis for the number of APα vs. α. 

 

a Double-strand DNA comparisons were performed. For each comparison, both strands 
of the smaller sequence were compared to the forward strand of the longer sequence, 
e.g., both strands of HS chr.15 (100 Mb) were compared to the forward strand of MM 
chr.7 (145 Mb). 
b The regression model used is |APα| = m⋅(α-1) for α =2..1000. From |APα| = m (α-1), 

we derived that |APα+1| = m (α+1-1) = mα = (mα / m (α-1))×m (α-1) = α/(α-1))×|APα|. 

Thus, we can estimate |APα+1| if |APα| and α are known. 

 

Sequences compared a R2 mb 
HS chr.15, MM chr.7 0.9994 26099093
HS chr.15, GG chr.10 0.9990 9620470 

HS chr.15, TN genome 0.9995 29431377
Mpn genome, Mge genome 0.9998 169095 
Mpn genome, Rpr genome 0.9989 220301 
Mpn genome, Buc genome 0.9985 158978 
Mpn genome, Bbu genome 0.9993 193531 
Mpn genome, Ctr genome 0.9993 229764 
Mpn genome, Tac genome 0.9962 262727 
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Chapter 5 

Extending α-markers/α-pairs to discontiguous 

seeding models 

5.1 Introduction 

Recently, there have been advances in the k-mer method (Brown et al. 2004; Batzoglou 

2005). One notable advance was the use of discontiguous seed, which computes only k' 

letter matches of each k-mer seed where k'<k. The idea of using discontiguous patterns 

of matching bases has been explored in order to enhance the sensitivity and/or speed of 

homology detection, such as detecting coding regions by ignoring wobble base pairs, 

(Kent and Zahler 2000), finding ungapped alignments with frequent substitutions by 

randomized seeding (Buhler 2001), and searching for homology by the PatternHunter 

method (Ma et al. 2002), which allows seed optimization and multiple seed models (Li 

et al. 2004). In principle, the α-marker method, like the k-mer method, can be extended 

to use discontiguous seeds. In this chapter, we will present a method to implement 

discontiguous seeding models for the α-marker method and then present the experiment 

results of orthology seeding using the same datasets mentioned in chapter 4. According 

to the results, some discontiguous seeding models, such as the wobble-aware model 

(Kent and Zahler 2000), achieved significant improvements in sensitivity/specificity 
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trade-off. 

5.2 Methods 

5.2.1 Discontiguous α-markers and α-pairs 

5.2.1.1 Notations of discontiguous seeds of maximal length 

Instead of using fixed-length seeds, the α-marker method uses maximal-length seeds. So 

we have to define notations for describing discontiguous seeds of maximal length. In 

Ma et al. (2002), they used binary strings to denote fixed-length discontiguous seeds (or 

called spaced seeds). In the binary strings, ‘1’ denotes a required letter match and ‘0’ 

denotes a “don’t-care” letter position. In addition, the numbers of ones in the binary 

strings are defined as weights (Ma et al. 2002) in contrast to the lengths (or spanning 

lengths) of the binary strings. For example, a 5-mer exact match is represented as 11111, 

where both the weight and length of 11111 are five. A spaced seed, which requires five 

letter matches and two “don’t care” letters of positions 4 and 6, is represented as 

1110101, where its weight is five and its length is seven. 

To describe discontiguous seeds of maximal length, we borrow the aforementioned 

notations and add some symbols from regular expressions. First we can add parentheses 

“()” in the seed model strings to mark substrings. Then we can add the superscript star 

symbol ‘*’ following the parentheses to denote the string in the preceding parentheses 

can repeat zero, one, or many times. For example, 1(1)* denotes exact matches of length 
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≥ 1 like 1, 11, 111, 1111, etc., and 1(011)* denotes discontiguous matches of length ≥ 1 

like 1, 1011, 1011011, etc.. Now the new notations are sufficient to describe 

discontiguous seeds of maximal length. 

5.2.1.2 Reusing the α-marker method to generate discontiguous wobble seeds 

In the WABA (Wobble-Aware Bulk Aligner) program of Kent and Zahler (2000), they 

proposed the use of seed model 11011011 of weight 6 to search homologous coding 

sequences owing to rapid divergence in the third, “wobble” positions of most codons, 

i.e., the 110 pattern. Following this idea, we can design many discontiguous seeds of 

fixed-lengths based on the 110 pattern, such as 101101101 of weight 6, 1101101101 and 

1101101101 of weight 7, 11011011011 and 101101101101 of weight 8, etc.. Instead of 

listing a lot of such fixed-length seeds, we can summarize them as 110-based seeds of 

maximal length. In the following, we will reuse the α-marker method in chapter 4 with 

slight modifications to generate these 110-based seeds of maximal length with copy 

number constraint. 

 Since the α-marker method only cope with the exact matching scheme, first we 

need to transform the 110-discontiguous matching scheme into all possible reading 

frames of the exact matching scheme by ignoring the positions with ‘0’ label. For 

example, given a sequence S = “123456789abcadb”, if we read S from the first position 

using the pattern read-read-ignore that corresponds to 110, we will have S1 = 
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“124578abad”; if we read S from the second position using the pattern read-read-ignore, 

we will have S2 = “235689bcdb”; if we read S from the zero position using the pattern 

read-read-ignore, we will have S0 = “134679acab”. Obviously, any discontiguous 

subsequence of the pattern (110)* in S will constitute an exact match in either S0, S1, or 

S2. However, the reverse will not always hold. For example, “ab” in S1 exactly matches 

“ab” in S0, but the corresponding subsequences in S are “ab” and “adb”, respectively, 

which will not constitute a discontiguous match. To solve this problem, we assign a 

binary number r to each letter μ of S0, S1, and S2, where r=0 indicates μ corresponds to 

the first letter of pattern 110 in S, r=1 indicates μ corresponds to the second letter of 

pattern 110 in S, and two letters with the same label r indicates the same position in 

pattern 110. Let T= S0#S1#S2, where ‘#’ is a special symbol to separate sequences. We 

can determine whether or not an exact match (posT1, posT2, len) of T corresponds to a 

discontiguous match of S by checking whether or not the r labels of posT1 and posT2 

are equal. In practice, we design the following function to transform a position from the 

coordinate of T to the coordinate of S and the position’s r label is also acquired in the 

function. Let f =0, 1, or 2 denote the number of reading frame, posT denote a position in 

T and posS denote the correspondent position of posT in S.  

 3 ,posS q r f= × + +  (5.1) 

0  if 0,   
where ( ) / 2,  ( ) mod 2,  and 

1  if 1,2.
f

q posT r posT
f

θ θ θ
=⎧

= − = − = ⎨ =⎩
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Meanwhile, it is simple to generate Sf from S by skipping the (f+2 mod 3)th base 

periodically for f=0,1,2. Thus, the 110-discontiguous matching problem of S can be 

transformed into the contiguous matching problem of T. The positions of exact matches 

in T can trace back to the corresponding positions in S by using Equation 5.1. 

 The steps for generating wobble-aware α-pairs are almost the same as the steps for 

generating exact α-pairs in chapter 4, except the preprocessing step and the 

postprocessing filter by r label checking. In the preprocessing step, we need to 

transform each input sequence to the three reading frames and concatenate them into 

one sequence. Then, we build the enhanced suffix array for the concatenated sequence. 

Next, bottom-up traverse the enhanced suffix array and generate the MEMs constrained 

by copy number c≤α as mentioned in section 4.2.2. In the postprocessing step after the 

MEM are generated, we only report MEMs whose two string instances starting from 

positions of the same r label to avoid the matches with gaps. The reported MEMs are 

exactly all the discontiguous wobble-aware seeds with a copy number constraint. If we 

want to generate discontiguous wobble-aware seeds with a weight constraint, the steps 

are the same as the above except we generate MEMs constrained by weights, which 

correspond to lengths in the transformed sequences and lcp values mentioned in section 

4.2.2. Also, we can specify both an upper bound of copy numbers and a lower bound of 

weight/length to generate more complex α-pair seeds by checking both the sizes and lcp 
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values of lcp intervals in this step of MEM generation. 

In addition, the seed models of the discontiguous wobble-aware seeds generated 

above will cover all variations based on pattern (110)*, including (110)*11 and 

10(110)*1 for even weight, and (110)*1 and 1(011)* for odd weight. This is a different 

feature from discontiguous wobble-aware seeds of fixed length. 

5.2.2 Evaluation of orthology seeding 

To evaluate the ability of different types of seeds, including contiguous and 

discountiguous matching schemes, to detect orthologues, we extended the evaluation 

measure: seeding sensitivity (Sn) described in section 4.2.3 and added a new measure: 

seeding specificity (Sp) to make the evaluation more complete. First, we used 

orthologues (i.e., orthologus gene pairs) from Ensembl orthology (Hubbard et al. 2007) 

or COG (Tatusov et al. 2003) as the answers of orthology detection and the genes that 

occur in the orthologues are called test genes. Then we defined non-orthologues as the 

cross-species test gene pairs that are not orthologues. After that, we used a criterion, 

called t-seed test, to check whether a gene pair is predicted as an orthologue or not. A 

gene pair is said to be a positive prediction under t-seed test if this gene pair contains at 

least t nonoverlapped seeds, where a seed denotes a pair of two identical subsequences 

without indels and two seeds are said to be overlapped if they are overlapped at both 

sides of the two compared sequences and can be merged into a longer seed without 
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introducing any gap. A gene pair is said to be a negative prediction under t-seed test if 

this gene pair contains at most t-1 nonoverlapped seeds. Let TP denote the number of 

orthologues that contain at least t nonoverlapped seeds, FP denote the number of 

non-orthologues that contain at least t nonoverlapped seeds, TN denote the number of 

non-orthologues that contain at most t-1 nonoverlapped seeds, and FN denote the 

number of orthologues that contain at most t-1 nonoverlapped seeds, we define seeding 

sensitivity (Sn) and specificity (Sp)under t-seed test as 

100% ( )Sn TP TP FN= × + , and 

100% ( )Sp TN TN FP= × + . 

To better understand the sensitivity-specificity trade-offs among parameters for 

different seeding methods, we plotted ROC (Receiver Operating Characteristic) curves 

(Fawcett 2004), which use Sn as the x-axis and 1-Sp as the y-axis, for each experiment 

in the results. 

5.3 Results 

In this section, we used ROC curves and figures of colinear identities vs. total number 

of seeds to compare three types of discontiguous and contiguous seeding methods, 

including discontiguous wobble-aware seeds of maximal length, spaced k-mer seeds, 

and contiguous seeds of maximal length. Discontiguous wobble-aware seeds of 

maximal length that we used consist of wobble-aware α-pairs and wobble-aware MEMs 
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mentioned in section 5.2. Spaced k-mer seeds that we used include WABA-like 

110-based seeds (Kent and Zahler 2000), Choi’s good spaced seeds for homology search 

(Choi et al. 2004), and the alternative pattern (10)x of fixed length. The detail patterns 

and weights of the spaced k-mer seeds we used are listed in Table 5.1. Contiguous seeds 

of maximal length that we used are composed of exact α-pairs and exact MEMs 

mentioned in section 4.2. The datasets we used in the following experiments are listed 

in Table 4.1. 
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Table 5.1 Spaced k-mer seeds used in this study. 

(A) Choi's good spaced seeds   

SeedPattern Weight SpanLen 
111010110100110111 12 18 
11101011001100101111 13 20 
111011100101100101111 14 21 
11110010101011001101111 15 23 
111100110101011001101111 16 24 
   
(B) Waba-like 110-based spaced seeds   

SeedPattern Weight SpanLen 
11011011011011011 12 17 
1101101101101101101 13 19 
11011011011011011011 14 20 
1101101101101101101101 15 22 
11011011011011011011011 16 23 
   
(C) Spaced seeds of alternative pattern (10)x   

SeedPattern Weight SpanLen 
10101010101010101010101 12 23 
1010101010101010101010101 13 25 
101010101010101010101010101 14 27 
10101010101010101010101010101 15 29 
1010101010101010101010101010101 16 31 

 

5.3.1 Comparisons of ROC curves for wobble-aware α-pairs/MEMs, 

spaced k-mer seeds and exact α-pairs/MEMs 

In this section, we will compare the sensitivity-specificity trade-offs among parameters 

of different seeding methods for the vertebrate and prokaryote datasets described in 

Table 4.1 using ROC (Receiver Operating Characteristic) curves (Fawcett 2004). The 
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seven seeding methods used in this study are summarized in Table 5.2. In Table 5.2, we 

combine α-pairs (denoted as AP(α)) with maximal unique matches (denoted as MUM(k)) 

because they are both copy number-based, complement to each other in terms of the full 

range of specificity, and can be generated by traversing the enhanced suffix array once 

as mentioned in sections 5.2.1 and 4.2.2. 

 

Table 5.2 Features of the seven seeding methods used in this study. 

Seeding method Matching scheme Maximal or
Fixed length

Weight/Length
contraint

Copy number
constraint

Exact MEM(k ) Contiguous Maximal Yes No

Exact AP(α )+MUM(k ) Contiguous Maximal Yes
(for α =2) Yes

Waba spaced model Discontiguous
(110-based) Fixed Yes No

Alt. spaced model Discontiguous
(10-based) Fixed Yes No

Choi's spaced model Discontiguous
(Choi's selection) Fixed Yes No

Wob. MEM(k ) Discontiguous
(110-based) Maximal Yes No

Wob. AP(α )+MUM(k ) Discontiguous
(110-based) Maximal Yes

(for α =2) Yes
 

 

As shown in Figure 5.1, for human chr.15 vs. pufferfish genome, we plotted ROC 

curves of the seven seeding methods (Table 5.2). For the contiguous matching scheme, 

the ROC curve of exact AP(α)+MUM(k) were significantly closer to the upper left than 

the ROC curve of exact MEM(k) in 1,2,3,5,10,20-seed tests, which means incorporating 
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copy number constraints to contiguous seeding methods can achieve not only higher 

sensitivity but also higher specificity. To measure the quantity of differences for ROC 

curves, we computed the AUC (Area Under ROC Curve) values for ROC curves 

(Fawcett 2004) that have full ranges of specificity (i.e., from 0 to 1) of the two datasets 

(Table 4.1) and showed the results in Table 5.3. For example, in Figure 5.1A, the AUC 

values of exact AP(α)+MUM(k) and exact MEM(k) are 0.837 and 0.703 respectively, 

where the difference is 0.134. 

For the discontiguous matching scheme, we first compared the three kinds of 

spaced k-mer seeds of weights 12, 13, 14, 15, and 16 (Table 5.1). In Figure 5.1A, we 

found WABA-like spaced seeds performed better than Choi’s spaced seeds, and spaced 

seeds of alternative pattern (10)x performed the worst. This is related to that we used 

orthologous gene pairs as the benchmarks and they always contain coding sequences, 

where the pattern 110 is designed for coding sequences (Kent and Zahler 2000). Such 

observations are concordant to the results of finding optimal seeds for homologous 

coding regions of Brejova et al. (2004). As for Figure 5.1B-F, the results of spaced 

k-mer seeds are consistent with the corresponding results in Figure 5.1A. 

 For discontiguous seeds of maximal length, the ROC curve of wobble-aware 

AP(α)+MUM(k) outperformed all the other seeding methods in Figure 5.1 and the ROC 

curve of wobble-aware MEM(k) was highly overlapped with the ROC curve of 
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WABA-like spaced seeds. The AUC values of wobble-aware AP(α)+MUM(k) and 

wobble-aware MEM(k) are 0.961 and 0.930 respectively in Figure 5.1A, where the 

difference is 0.031. This reveals that incorporating copy number constraints to 

discontiguous wobble-aware seeding can achieve both higher sensitivity and higher 

specificity. 

 The ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed 

tests for human chr.15 vs. chicken chr.10 and pufferfish genome are shown in Figure 5.2 

and Figure 5.3, which showed similar advantages of incorporating copy number 

constraints to contiguous and discontiguous seeds of maximal length. 

 

Table 5.3 List of AUC (Area Under ROC Curve) values of the exact and wobble-aware 
matching schemes  

(A) Exact matching scheme 

 AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k

HS chr.15, MM chr.7 0.9949 0.8657 0.9985 0.8164 0.9974 0.7743 0.9868 0.7304 0.9609 0.6736 0.8740 0.6351
HS chr.15, GG chr.10 0.9272 0.8499 0.9061 0.8031 0.8763 0.7606 0.8243 0.7058 0.7494 0.6351 0.6671 0.5840

HS chr.15, TN genome 0.8368 0.7028 0.7898 0.6519 0.7601 0.6209 0.7107 0.5930 0.6477 0.5610 0.5924 0.5463
Mpn, Mge genomes 0.8891 0.8874 0.8803 0.8820 0.8729 0.8722 0.8479 0.8450 0.7782 0.7584 0.7052 0.6934
Mpn, Rpr genomes 0.6330 0.6232 0.5998 0.6052 0.5993 0.6009 0.5963 0.5930 0.5865 0.5893 0.5823 0.5841
Mpn, Buc genomes 0.6266 0.6220 0.6072 0.6152 0.5932 0.5845 0.5787 0.5801 0.5704 0.5559 0.5536 0.5467
Mpn, Bbu genomes 0.5934 0.5999 0.6076 0.6017 0.6013 0.5832 0.5852 0.5815 0.5775 0.5727 0.5745 0.5630
Mpn, Ctr genomes 0.6073 0.5897 0.6023 0.5878 0.6000 0.5871 0.5905 0.5797 0.5788 0.5738 0.5629 0.5569
Mpn, Tac genomes 0.5492 0.5497 0.5638 0.5571 0.5723 0.5677 0.5717 0.5553 0.5659 0.5512 0.5670 0.5654

5-seed test 10-seed test 20-seed test
Sequences compared

1-seed test 2-seed test 3-seed test

 

(B) Wobble-aware matching scheme 

 AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k  AP α MEM k

HS chr.15, MM chr.7 0.9994 0.9877 0.9997 0.9696 0.9999 0.9525 0.9969 0.9121 0.9713 0.8382 0.8982 0.7473
HS chr.15, GG chr.10 0.9698 0.9725 0.9571 0.9516 0.9417 0.9358 0.9231 0.9039 0.8549 0.8182 0.7557 0.7144

HS chr.15, TN genome 0.9612 0.9295 0.9343 0.8846 0.9202 0.8557 0.8755 0.8003 0.7901 0.7021 0.6932 0.6295
Mpn, Mge genomes 0.9346 0.9395 0.9291 0.9308 0.9192 0.9227 0.8969 0.8918 0.8325 0.8230 0.7257 0.7161
Mpn, Rpr genomes 0.7233 0.7158 0.6926 0.6857 0.6702 0.6659 0.6355 0.6358 0.6161 0.6055 0.6045 0.6061
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(C) 3-seed test       (D) 5-seed test 
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Fig. 5.1 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed 
tests for human chr.15 vs. pufferfish genome. 
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(A) 1-seed test       (B) 2-seed test 

HS chr.15 vs. GG chr.10: 1-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model

HS chr.15 vs. GG chr.10: 2-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model

 

(C) 3-seed test       (D) 5-seed test 

HS chr.15 vs. GG chr.10: 3-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model

HS chr.15 vs. GG chr.10: 5-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model

 

(E) 10-seed test      (F) 20-seed test 
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Fig. 5.2 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed 
tests for human chr.15 vs. chicken chr.10. 
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 (A) 1-seed test       (B) 2-seed test 

HS chr.15 vs. MM chr.7: 1-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model

HS chr.15 vs. MM chr.7: 2-seed test
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1 - Sp

Sn Wob. AP(α)+MUM(k)
Wob. MEM(k)
Exact AP(α)+MUM(k)
Exact MEM(k)
Choi's spaced model
Waba spaced model
Alt. spaced model
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(E) 10-seed test      (F) 20-seed test 

HS chr.15 vs. MM chr.7: 10-seed test
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Fig. 5.3 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed 
tests for human chr.15 vs. mouse chr.7. 
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 In Figure 5.4, we plotted AUC values vs. testing methods of the seven seeding 

methods (Table 5.2) for the vertebrate dataset (Table 4.1A) to visualize the differences 

between exact/wobble-aware AP(α)+MUM(k) and MEM(k). 
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Fig. 5.4 AUC values vs. testing methods of the seven seeding methods (Table 5.2) for 
the vertebrate dataset (Table 4.1A). 
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5.3.2 Comparisons of colinear identities vs. total number of seeds for 

wobble-aware α-pairs/MEMs, spaced k-mer seeds and exact 

α-pairs/MEMs 

Here we use another viewpoint to compare different seeding methods used in this study. 

In Figures 5.5-7, we plotted Īc (defined in section 4.2.3) vs. total number of seeds 

generated using the seven seeding methods in Table 5.2 and the exact k-mer seeding 

method in the comparison of human chr.15 vs. mouse chr.7, chicken chr.10 and 

pufferfish genome. For human chr.15 vs. mouse chr.7 in Figure 5.5, we found the curve 

of wobble-aware AP(α) was closer to the upper left than that of wobble-aware MEM(k), 

and the curve of wobble-aware MEM(k) was closer to the upper left than that of WABA 

spaced models. This means less seeds are required for wobble-aware AP(α) to achieve 

equal colinear identities per orthologues than that for wobble-aware MEM(k) and that 

for WABA spaced models. Similar trends are found in Figures 5.6-7. 

For spaced k-mer seeds, Choi’s spaced seeds performed better than WABA spaced 

seeds in Figure 5.5, similar to WABA spaced seeds in Figure 5.6, and less than WABA 

spaced seeds in Figure 5.7. But Choi’s spaced seeds performed less than wobble-aware 

MEM(k) in Figures 5.5-7. As for spaced seeds based on pattern 10, they performed the 

worst among the three kinds of spaced k-mer seeds we used in Figures 5.5-7. 
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 Comparing Figures 5.5-7A to Figure 5.5-7B, we found the curves of wobble-aware 

AP(α) and exact AP(α) for human chr.15 vs. mouse chr.7 are of similar heights. The 

curve of wobble-aware AP(α) is a little higher than that of exact AP(α) for human chr.15 

vs. chicken chr.10. The curve of wobble-aware AP(α) is significantly higher than that of 

exact AP(α) for human chr.15 vs. puffersih. This reveals that for the comparison of 

distant genomes like human vs. fish, discontiguous wobble-aware seeds can perform 

much better than contiguous seeds in orthology seeding. For the comparison of closer 

genomes, the enhancement by discontiguous wobble-aware seeds is less profound. 
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Fig. 5.5 Īc vs. total number of seeds generated using (A) several discontiguous seed 
models and (B) several contiguous seed models in the comparison of human chr.15 vs. 
mouse chr.7. 
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Fig. 5.6 Īc vs. total number of seeds generated using (A) several discontiguous seed 
models and (B) several contiguous seed models in the comparison of human chr.15 vs. 
chicken chr.10. 
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Fig. 5.7 Īc vs. total number of seeds generated using (A) several discontiguous seed 
models and (B) several contiguous seed models in the comparison of human chr.15 vs. 
pufferfish genome. 
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Chapter 6 

Discussion and conclusions 

6.1 Discussion 

Orthology seeding is the process used to locate pieces of sequence matches to detect 

orthologous regions among genomes. By definition, orthologous regions are 

homologous regions shared by two genomes from a speciation event, or, more 

specifically, regions that have originated from a single ancestral genomic region in the 

last common ancestor of the compared genomes (Kooin 2005). Because losses or 

duplications of genes or genomic regions can occur after speciation, orthologous 

relationships are not just one-to-one, but may become many-to-many or may even cease 

to exist (Theiβen 2002). Thus, complete orthology identification necessarily involves 

the consideration of co-orthologous regions, defined as two or more genomic regions in 

the same lineage that are collectively orthologous to one or more genomic regions in 

another lineage due to a lineage-specific duplication (Koonin 2005). It therefore seems, 

at least conceptually, that copy number-based seeding is intrinsically more capable of 

capturing the ramifications of evolutionary processes than length-based seeding. 

Furthermore, because orthologous relationships that have not yet experienced losses or 

duplications following speciation tend to involve one-to-one mapping and 

co-orthologous relationships tend to be only involve “several-to-several” mapping, 

seeds of lower copy numbers should be more relevant to orthology detection than seeds 

with higher copy-number. These considerations provided the basic ideas behind our 

development of the upper bounded α-marker method, which also underscores the 
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feasibility of using a highly streamlined method, such as UniMarker which is essentially 

a special case of α-pairs at α=2, for mapping relatively close genomes, such as human 

and mouse (Liao et al., 2004). 

 Although the aforementioned copy number-based seed model is conceptually 

simple, the complete, compact and efficient enumeration of the required, relatively 

low-copy, word matches of any length is not. In this contribution, we showed that this 

can be done in linear complexity (see Methods). Furthermore, we showed that copy 

number-based seeds compared favorably with length-based seeds in seeding vertebrate 

and prokaryote orthologues, although the extent of performance gain cannot be simply 

explained by evolutionary distance or genome/chromosome size alone (Figures 4.2 and 

4.4 and Tables 4.2-5). It is also not clear whether there is a biological basis for the linear 

growth of α-pairs (Figures 4.5-6), but this hitherto unobserved property of genomic 

sequences nevertheless reveals an exciting potential for scaling up to map distant 

genomes and for investigating genome evolution. 

 Recently, there have been advances in the k-mer method (Brown et al. 2004; 

Batzoglou 2005). One notable advance was the use of discontiguous seed, which 

computes only k' letter matches of each k-mer seed where k'<k. The idea of using 

discontiguous patterns of matching bases has been explored in order to enhance the 

sensitivity and/or speed of homology detection. In chapter 5, we designed discontiguous 

wobble-aware seeds of maximal length to detect orthologues and demonstrated that we 

can fulfill the design using enhanced suffix arrays with copy number constraints and 

weight/length constraints. According to the results of ROC curves for the vertebrate 

dataset in section 5.3.1, the advantages of incorporating copy number constraints to 

contiguous or discontiguous wobble-aware seeds were profound. One challenging issue 

of using discontiguous seeds of maximal length is the pattern design problem, which is 
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more restricted than using discontiguous seeds of fixed length so far. It remains an open 

issue to design discontiguous seeds of maximal length for noncoding sequence 

comparison. 

In addition, besides the pairwise comparison described above, it is straightforward 

to use the α-marker method for self and multiple comparisons. One only needs to 

modify the α-pairs generating step by selecting α-pairs from P(1,x1,σ) and P(1,x1’,σ) 

where x1≠ x1’ for self comparison and from P(i,xi,σ) and P(j,xj,σ), xi≠xj, for multiple 

comparison, where 1 ≤ i < j ≤ g and g denotes the number of compared genomic 

sequences. Finally, it should be possible to incorporate copy number seeds into various 

post-seeding processes in programs such as the pairwise genome alignment tools 

MUMmer3 (Kurtz et al. 2004) and AVID (Bray et al. 2003), the genome rearrangement 

locator GRIL (Darling et al. 2004a), the multiple genome alignment tools MGA (Höhl 

et al. 2002) and Mauve (Darling et al. 2004b), and the synteny-mapping UniMarker 

method (Liao et al. 2004). 

6.2 Conclusions 

In the dissertation, we first proposed the UM method for synteny mapping of closely 

related genomes. The UM method is highly efficient by its alignment-free design and 

the whole synteny mapping process of giga-base genomes, such as human and mouse, 

can be completed in a few hours on single desktop computer with ordinary CPU and 

RAM. Second, we proposed the α-marker method for orthology seeding, generalized 

from MUM and UniMarker, suitable for from closely related genomes to not closely 

related genomes. Results from comparing to various length-based seeds in detecting the 

Ensembl and COG orthologues for several vertebrate genomes/chromosomes and 

prokaryote genomes of long evolutionary distances suggest that orthology seeding via 
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copy number can achieve higher sensitivity and better efficiency than orthology seeding 

via length. Furthermore, we extend the α-marker method to generate discontiguous 

wobble-aware seeds of maximal length with copy number constraints. The comparative 

results of ROC curves for human chr.15 vs. mouse chr.7, chicken chr.10, and pufferfish 

genome showed that discontiguous wobble-aware α-pairs achieved significantly better 

performances than spaced k-mer seeding methods tested. 
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