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Abstract

Motivation: Orthology/synteny mapping—finding orthologous regions among
genomes and organizing these evolutionary counterparts into a coherent global
picture—is fundamental to studies of comparative genomics. With the increasing
number of completely sequenced genomes and thus the increase in comparisons of
massive nucleotide sequences, the need for orthology/synteny mapping methods of high
sensitivity/specificity and high efficiency becomes even more compelling.

Results: First we have developed the UniMarker (UM) method for synteny mapping of
large genomes that are closely related, such as the human and mouse. In this method,
the occurrence spectra of genome-wide unique 16mer sequences present in both the
human and mouse genome are used to directly detected orthologous genomic segments.
Being sequence alignment-free, the UM method is very fast and the high-quality
human-mouse synteny maps basedion DNA comparisons can be completed in a few
hours on single desktop computer:iSecond, Wé propose a new type of DNA sequence
seed for use in orthology mapping of net closely related genomes. We call our seeds
o~pairs, where « is an integer equal;t.'(:)_:f;c_if-_- .greater than the number of times any
qualifying seed can be found in-the compargd genomes. These copy number-based seeds
are thus distinct from the well-known iength-bas'ed_:seeds, such as the fixed-length k-mer
seeds or the maximal exact match (MEM) seeds which have a length > k. We present a
linear time algorithm to efficiently retrieve o~pairs in two given genomic sequences
based on enhanced suffix arrays. A comparison of the results using o-pairs with those
using length-based seeds for their ability to detect the orthologues annotated by
Ensembl and COG for several vertebrate genomes/chromosomes and for prokaryote
genomes of long evolutionary distances suggested that orthology seeding using copy
number can achieve a higher sensitivity and better efficiency than orthology seeding
using length. Moreover, we extend the o~pair method to generate discontiguous wobble
seeds of maximal length with copy number constraints. The comparative results of ROC
curves for human chr.15 vs. mouse chr.7, chicken chr.10, and pufferfish genome showed
that the discontiguous wobble o-pairs achieved significantly better performances than
spaced k-mer seeding methods tested.

Keywords. comparative genomics, synteny mapping, orthology mapping, sequence

alignment, seeding, suffix array.
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Chapter 1

| ntr oduction

1.1 Motivation

Orthology mapping is to find orthologous regions among genomes and synteny
mapping is to organize these evolutionary counterparts into a coherent global picture.
Similar to Rosetta stone, orthology/synteny maps intend to provide cross-references
among different DNA languages of their species as a foundation for functional analogy
and evolutionary studies. As the number'of completely sequenced genomes continues to
increase rapidly, orthology identification at tﬁe nucleotide level in both coding and

noncoding regions of genomes is beéonii,ng' an indisbensable approach for studying

==
"

genome evolution and for genome annot:;’t}(.).n (Deway..and Pachter 2006). However,
orthology identification and syntény mapping based on.nucleotide comparisons have to
face several challenging issues. 1) "fhe nucleotide comparisons between genomes are
computationally demanding, especially for large genomes such as the human (~3Gb) to
mouse (~3Gb). 2) There are plenty noisy local similarities between nonorthologous
locations, such as repeats and irrelevant ancestral duplications. 3) The evolution over
time makes things complicated, such as sequence divergence, gene duplications and
losses, duplications and deletions of genomic regions, genomic rearrangements and
microrearrangements, and genome duplication (Jaillon ef al. 2004). Thus, the need for
developing orthology/synteny mapping methods of high sensitivity/specificity and high
efficiency for large genomes of different evolutionary distances becomes even more

compelling.



1.2 Dissertation organization

We introduced the necessary background in next chapter. In chapter 3, we described the
UniMarker (UM) method for synteny mapping for closely related genomes. The UM
method is very efficient by looking up only genome-wide unique seeds of fixed length
and an alignment-free design for sequence comparison and the details of the method are
given in section 3.2. The experiment results of the UM method are located in section 3.3,
which showed that the whole synteny mapping process of giga-base genomes, such as
human vs. mouse, can be completed in a few hours on single desktop computer. In
chapter 4, we proposed the ormarker method based on enhanced suffix arrays for
orthology seeding using maximal exact-matches with copy number constraints. The
definitions and algorithms ofy the q—r‘narléer_ method are stated in section 4.2.
Comparisons of different contiguousJ se:édmg methods to detect orthologues are
presented in section 4.3. In chép:cgr 5 jwe'zgxte_n.ded tﬁe o-marker method to generate
discontiguous wobble seeds with copy number coﬁstraints and described the method in
section 5.2. Different contiguous and discontiguous seeding methods are compared

using ROC curves and colinear identities per orthologue in section 5.3. Finally in

chapter 6, we made the discussion and conclusions for this dissertation.



Chapter 2

Background

2.1 Homology and synteny
2.1.1 Homology

Homology is a very important term in biology and features are said to be homologous if
they share a common evolutionary origin (Theifen 2002). When homology is applied to
genes or nucleotide sequences, homologues are genes (or nucleotide sequences) derived
from a common ancestor gene (or nucleotide sequence). There are three disjoint
subtypes of homology depending 01.1 What kind 'of evolqtionary events it resulted from:
orthology, paralogy and xenology, whéf@'r_.i;ﬁology resulted from speciation events,
paralogy resulted from duplication e:v'ents?and' xenology resulted from inter-species
transfer of genomic materials (Fi;c.h _2:000). Further, since orthologous relationships are
not limited to one-to-one (Theifen 2002), we can divide orthologues into 1-to-1/mono-
orthologues and co-orthologues according to if there are no duplication events after
speciation events. More detailed definitions of homology are well described by Koonin
(2005). In Figure 2.1, we provide examples to illustrate orthologues, co-orthologues,
in-paralogues, and out-paralogues (Kooin 2005). Suppose that B and C are two
genomes to be compared and genome A is the last common ancestor of B and C in the
species tree shown in Figure 2.1. Let there be two genes gl, g2 in A, where g2 was
duplicated from gl before the speciation, there be two genes gl, g2 in B without
duplications after the speciation, and there be three genes gl, g2, g3 in C, where g3 was

duplicated from g2 after the speciation. Then, gl of B and gl of C form I-to-1



orthologue, and g2 of B and g2, g3 of C form co-orthologues since the duplication from
g2 to g3 was after the speciation. Within genome C, genes g2 and g3 form an
in-paralogue and genes gl and g2 form an out-paralogue because the former duplication

happened after the speciation and the latter duplication happened before the speciation.

l : Speciation

........ »: Duplication

.: Gene No.1
’.]Genome C

Genome A[ ‘
LCA of B and C
— X))

[l
piil
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i gth

] LT
% =
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Fig. 2.1 Illustration of homoiogy r:@, *:".'3* #.:

2.1.2 Synteny ) S

Synteny (literally = “same thread” ) indicates the condition of two or more

genes/regions being on the same chromosome within one species. When synteny is
applied to inter-species comparisons, conserved synteny refers to two or more
orthologous (including co-orthologous) regions that are syntenic in two or more species,
without regard to their order on each chromosome (Ehrlich et al. 1997, Frazer et al.
2003). Operationally speaking, we define components related to conserved synteny in a
bottom-up hierarchical way, including orthologous anchors, conserved segments, and
syntenic blocks. Given two compared genomes, an orthologous anchor of them is a pair

of gene/region from different genomes that are significantly similar and believed to be



orthologous (including co-orthologous). A conserved segment contains two or more
orthologous anchors that are syntenic (i.e., on the same chromosomes) and contiguous
(i.e., no interrupt by other anchors) on the both compared genomes and are arranged
collinearly with preserving order and orientation. A syntenic block consists of two or
more conserved segments that are syntenic and contiguous on the both compared
genomes regardless their orientation. Hence, synteny mapping is to locate and group

regions that are orthologous/co-orthologous among genomes by order and/or

orientation.

Genomic | dex th q o
_ Sequences In ex the sequences and &
retrieve potentially useful o
p word matches as seeds. 3
) | =
L el Eﬁgﬁgppedly/gappedly 5
xtend from the seeds to %

s 1 ' J
ErihaleEenE :EdrfISPs as anchors. 3

]
___Anchors ‘Colinearly chain the anchory &
into regions with conserved | =
Conserved ‘order & orientation >3
@)
- cgments Group the conserved é
segments irrelevant of o,
Syntenic orientation into larger blocks. @
Blocks

Fig. 2.2 Common stages of large-scale genome comparison and synteny mapping

In Figure 2.2, we introduce the common stages of large-scale genome comparison
and synteny mapping. The major four stages are 1) indexing & seeding, 2) anchoring, 3)
chaining, and 4) grouping. First, we can index the input genomic sequences and retrieve
potentially useful word matches of the input sequences as seeds. Then, we can extend

those seeds ungappedly and/or gappedly to obtain longer high-scoring segment pairs



(HSP, Altschul et al. 1997) as orthologous anchors. Third, we can colinearly chain those
anchors into conserved segments with preserving anchor order and orientation. Finally,
we can group those conserved segments into larger syntenic blocks, regardless the

orientations of the conserved segments.

2.2 Index-based sequence comparison

The index-based alignment method has revolutionized sequence comparison and has led
to numerous tools for different purposes (Batzoglou 2005). Index-based alignment
methods first build indices for one or all of the compared sequences and then retrieve

seeds—often word matches or transformed pieces of sequence matches—from the
el ey

indices to obtain the alignments fgs?mfeh:m lgfnold}gﬁ Since seeding is necessarily the

&
first step of all index-based g;gq \‘( reta-Vidal et al. 2003), the
strategy employed for sel%étin etrleval is fundamental to the
performance of genome al1g-n;h7’ {é}\ *al 2004). In Figure 2.3, we
presented taxonomy of index- b:aség, S.éqt_i»;nce qg;ngé’rlébns by seed design.
g T .L‘Tﬂ'

BLAST, BLASTZ, ...

CHAQS, BLAT

WABA, GS-Aligner

PatternHunter

MEM: MGA, AVID, MUMmer3

UniMarker
MUM: MUMmerl,MAM: MUMmer2

a-marker/o-pair

Fig. 2.3 Index-based sequence comparison: taxonomy by seed design



Most seeding strategies developed thus far are length-based, i.e., seeds are selected
via fixed-length or variable-length constraints. The k-mer (aka k-tuple) strategy using
exact matches of sequence words of a fixed-length as seeds is perhaps the most popular,
which is adopted in general-purpose sequence comparison methods such as FASTA
(Lipman and Pearson 1985) and BLAST (Altschul et al. 1990), and also in various
genome comparison programs, such as WABA (Kent and Zahler 2000), BLAT (Kent
2002), PatternHunter (Ma et al. 2002), CHAOS (Brudno et al. 2002), BLASTZ
(Schwartz et al. 2003), and GS-Aligner (Shih and Li 2003). Then we categorized
BLASTZ, CHAOS, and BLAT into two sub-branches of fixed-length contiguous
seeding: providing inexact matching by scoring or identity as shown in Figure 2.3. In
addition, one notable advance of /f-mer appf;')ach 1s discontiguous seeding, such as

WABA (Kent and Zahler 2000): and PatternHunter. (Ma et al. 2002), which will be

1

z

detailed in chapter 5. 5

i

Another length-based seeding, strr::lt'egy- :émployed in genome comparison programs,

such as MGA (Hohl et al. 2002), AVID-(Bray et -al. 2003), and MUMmer3 (Kurtz ef al.
2004), uses maximal exact matches (MEMs) (Hohl et al. 2002), aka maximal pairs

(Gusfield 1997), which include all exact matches of maximal lengths greater than or
equal to k. By excluding numerous redundant matches, which are particularly abundant
in short-length words, MEM methods can acquire a better efficiency of seeding than
k-mer methods for large-scale sequence comparison (Chain ef al. 2003).

To gain more on seeding efficiency, Delcher et al. (1999) consider a subset of
MEMs, using only the maximal unique matches (MUMs) to align two genomes, where
a MUM is a shared substring occurring exactly once in each of the two compared

genomes and it cannot be extended without introducing mismatches (i.e., maximal



length). In addition, our work in chapter 3 demonstrated that use of fixed-length seeds
constrained by the one-to-one mapping (called UniMarkers, which, for their fixed
length, are a subset of MUMs) is sufficient to construct a high-quality human-mouse
synteny map with very high efficiency (Liao et al. 2004). Furthermore in chapter 4, in
purpose to detect orthologous as well as co-orthologous regions for not closely related
species, we designed a new seeding method, called o~marker/o~pair method, by
relaxing the constraint of genome-wide uniqueness in MUM and UniMarker to allow
variable copies in an upper bound way. The above mentioned methods, as shown in the
bottom of Figure 2.3, make the branch of copy number-based seeding more solid and

useful.

2 AT



Chapter 3

The UniMarker method for synteny mapping

3.1 Introduction

With the number of completely sequenced genomes increasing rapidly, comparative
genomics is becoming an indispensable approach for genome annotation and for
studying genome evolution. Essential to this approach is whole-genome alignment,
which is computationally demanding, particularly for large genomes, such as those of
mammals. Thus, despite recent advances, scores, or even hundreds, of computing
processors are still required to comparethe hurﬁan and mouse genomes in a time period
of hours or days (Waterston et all, 20(').2;_‘§<_:hw.artz et dl., 2003), a practical time scale
for doing competitive research in such a rar;dly evolving field as genomics. Moreover,
there appears to be considerable discreépancyuin the various human-mouse synteny maps
created independently by several rese.arch groups(Waterston e al., 2002; Gregory et al.,

2002; Clamp et al., 2002), even though they may use similar alignment algorithms and

strategies (Ureta-Vidal et al., 2003).

As many more large genomes will be sequenced in the next few years (Ureta-Vidal
et al., 2003), there is a pressing need to develop a whole-genome alignment tool that
can render the task feasible and practical using minimal computing facilities, such as a
single desktop computer. To achieve this goal, methods that deviate significantly from
existing approaches using sequence alignment, such as BLAST (Altschul et al., 1990)

or BLAST-derived algorithms (Schwartz et al., 2003; Zhang et al., 2000; Kent 2002;
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Ma et al., 2002), merit exploration.

Various articles have demonstrated that the use of a hash table (Schuler 1997; Ning
et al., 2001) or suffix-tree (Delcher et al., 2002; Bray et al., 2003) can significantly
speed up the computation time required for sequence mapping. Our previous work
(Chen et al., 2002) showed that, by matching unique 15-mer words (those that appear
exactly once in the genome and are therefore called UniMarkers or UMs), it is possible
to dispense with the usual requirement for sequence alignment and to genomically
position the entire database of human single nu_cleotide polymorphism (SNP) sequences
in just a few days of computing time___013 a §iqglé desktop computer. In the present

an

study, we introduced a new coneept .Of :%.fﬁg UMs to detect sequence orthologues
: BN L

without doing sequence alignment ar'ld extendled_;:the UM method for whole-genome

synteny mapping.

To align two very long DNA sequences, such as those of metazoan genomes, the
most common approach starts by finding the so-called high scoring pairs (HSPs) of
sequence fragments that are derived from words matched by consecutive (Altschul et al.,
1990; Zhang et al., 2000) or spaced (Schwartz et al., 2003; Ma et al., 2002) matching
models. These HSPs, in which a word or segment in one sequence may have multiple

matches in the other sequence, then serve as seeds, which are subsequently filtered and

combined to identify a set of longer segments that are thought to be orthologous
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between the two sequences. In the final step, these segments, often called anchors or
landmarks, are extended or processed to yield an alignment or mapping of the two
sequences (Ureta-Vidal ef al., 2003). Our UM method differs from these approaches
by avoiding the time-consuming step of finding and processing the HSP seeds; instead,
orthologues anchoring segments are detected directly from a genome-wide occurrence
spectrum of UMs common to the two genomes compared. Consequently, and as
detailed below, the UM method is very fast and can map the entire human genome
against the entire mouse genome, and vice versa, in just one day on a single Pentium IV
personal computer. This is a considelj_ablxle tir._pe\ sa;/ing,.since the time required is about

an

one-tenth or one-hundredth that using,l fg”:-r: e-‘):(z.lmple, the approach of MGSC (Mouse
: '3 |
Genome Sequencing Consortium) '(Wailt.erston etl‘ al 2.002). To evaluate the quality of
the resulting UM human-mouse map, it was compared with the MGSC map and with
that produced by the Ensembl team (Clamp et al., 2003; Hubbard et al., 2002). The
UM map was shown to be in excellent agreement with the MGSC map, missing only a
few small MGSC segments, while having several small unique segments of its own.
The agreement with the Ensembl map was also very good, though not as good as that
with the MGSC map. Sequence alignment using BLASTZ (Schwartz et al., 2003) on

segments that were map-unique or disagreed between maps indicated that the UM

method, despite being sequence alignment-free, achieved high specificity and sensitivity
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in mapping the two mammalian genomes.

3.2 Methods

3.2.1pUMpvs. hUMp

Orthologous regions, by definition, are homologous regions shared by two genomes
from a speciation event. The basic idea of our approach is that, between two genomes,
orthologous regions should share more UniMarker pairs (UMps; an UMp connects
identical UMs in both genomes) than non-orthologous regions. However, there are
two kinds of UMp, those inherited from a common ancestor, hereafter referred to as
primitive UMps (pUMps), and those that have arisen by random mutation, referred to as
homoplastic UMps (hUMps) (Figure 3.1). A'lfhough it is not possible to tell whether a
given UMp is a pUMp or a hUMp, it-can be.distinguished as a collective group, as
illustrated in Figure 3.1. Thisis becausc;,:.%- ﬁeﬁnition, pUMps can exist only between
orthologous regions, whereas hUMps carf :exi_s.t betv&;een any two regions, be they
orthologous or not.  Consequently, “pUMps cém provide a signal for pairs of
orthologous regions against a background noise of hUMps, and, as long as the
signal/noise ratio is sufficiently high, i.e., the evolutionary distance between the two
genomes is not too great, orthologous pairs should be detectable by analyzing the UMp

distribution in the two genomes.
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(A)

Genome A [Tacg] —— pUMp
Genome B hUMp
disappearance disappearance
of unigueness of pairing
e Y__ v
Genome A TCCG i TCCG o s
Genome B
reappearance reappearance
of uniqueness of pé;lrlng
Genome A reca rece
Genome B
Genome A

Fig. 3.1 The two types of UMp. All UMps: shared by segments from two different genomes can be
classified into two types, those that have descended ﬁ"pm a common ancestor, called primitive UMps
(pUMps; black solid lines), and those that have arisen by random mutation, called homoplastic UMps
(hUMps; gray dashed lines). (A) Foilowmg /gyolutlonary changes a certain pUMp could change its
pairing randomly, resulting in a pUMp evolvin_,g:}nto ’athMp UMs (illustrated by four-letter words)
found in both genomes are represented by sha dﬁxﬂ | The siterof mutation causing a change in UM
pairings is marked by a black triangle. (ﬂ% Thg dlst]ribunon of pUMps and hUMps. When two
genomes are compared, orthologous genomic segments will share both pUMps (shown as white boxes)
and hUMps (shown by black boxes), but any(l

of genome A and the second half of the genome B- segmeht) can only share hUMps.

WO evolutléﬂarlly unrelated regions (e.g., the first segment

3.2.2 Occurrence spectra of UM ps and anchoring islands

A simple, but efficient, method to identify k-mer UMs in the human genome has been
described (Chen et al., 2002). This method was used in the present study to identify
16-mer UMs for each of several assemblies of the human genome and for the draft
mouse genome sequence. Those UMs common to a particular assembly of the human
genome and the mouse genome were extracted; each of these constitutes an UMp, as

defined above.
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The UM method for mapping two genomes, A and B, involves the following.
Each chromosome of genome B is divided into a set of minimally overlapped fragments,
each containing an equal number of UMps, which, in this work, was set at 300,000, i.e.,
a number slightly greater than that (~290,000) on the human Y chromosome
(consequently, the entire human Y chromosome was a fragment). We then scan
genome A using a sliding window of 50 kb and a moving step of 10 kb to compute M;;,
the ratio of the number of UMps common to both the ith window of genome A and the
Jjth chromosomal fragment of genome B-(N;;) to the total number of UMps found in the
ith window of genome A (Nj) (1.e; Mij= NU/NI) ”l:he values of these parameters, and of
those described below, were emp1r1q:e|1;ll% . (;,flrllined_ in trial runs to minimize the
computational cost while maintaiﬁing lgood resohl'”ti_pn. in the resulting human and mouse

synteny map.

14



(A) o013} (B) s
0.12¢ ‘f:g' ;
0.1 L{} - -
010 e 4
0.09+ ol
0.08 % 3
0.07
2 2
M;; 096 |
0.05 1 159
0.04 1 1 1 1 h‘L.l.__l. ]
ol "8 s e 8 g & &M
a0zl 8 8 8 8 8 8 8 8
- o o o o (=] (=] (=] (=]
0.01 | threshold ]
0.00 [t el AssbbAl 41 TRIIRE, s ot b lio 0ot b o MO e, Wb
( T TN | mouse chromosome 16 | )
(C) 110 '
100 L
90 o0 T
801 R
Nig 30 &/ .
20 ° ) ]
o L,
0 . 1 l.uLhu...l...nh... e . PO N1 T Py Py h..-l_‘..n.u.m.uml-uuz
: X human chromosome 16 )
I —— | e e -
|- =] e e e 1

fragments of the forward strand of human chr16
T ] |15

Fig. 3.2 Identification of the anchoring islands. ..(A) The-_M}}“spectfum (see text for definition) for mouse
chromosome 16 computed from two human chromosomal fragments, denoted by 16.2f (the 2nd fragment
on human chromosome 16 in the forward ofientation) and 3.18f. The detected islands, regions
containing at least four consecutive overlapping windows (each of 50 kb and with a M;; value above
threshold, see text) are labeled as vertical bars on the mouse chromosome shown below the x-axis. The
boundaries for each island were set at the midpoint of the first and last of its consecutive windows. (B)
The distribution of Mj; [for all windows (i) and all chromosomal fragments (j), see text]. The lower
boundary of the top 1.5% of the distribution (dark area) was chosen as the Mj; threshold in the present
work. (C) The Ny, spectrum for determining the matching island on the human chromosome, which, as
indicated, was divided into minimally overlapped fragments with equal number of UMs, rather than base
pairs (see text). For each mouse chromosome, such as chromosome 16 shown here, there were a total of
612 Mj; spectra, as the human genome was divided into 612 chromosomal fragments (half forward and
half backward); for clarity, only two are shown in (A).

As illustrated in the example in Figure 3.2, the Mj; spectrum allowed us to find
orthologous regions, hereafter referred to as anchoring islands, without doing sequence

alignment. For a segment to qualify as an anchoring island, at this stage in genome A
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only (Figure 3.2A), we specified that at least four consecutive windows must have a Mj;
value in the top 1.5% of all M;; (see Figure 3.2B) to suggest the presence of a pUMp, or
orthologous relationship, between these windows of genome A and a chromosomal
fragment of genome B. To pin down the region in this chromosomal fragment of
genome B with which the anchoring island of genome A was orthologous, we moved
the sliding window to genome B, and operated it on the fragment-containing
chromosome to compute Ny, the number of UMps shared by the Ath window (on the
chromosome of genome B) and the /th island (on genome A). The Ny spectrum
(Figure 3.2C) allowed us to delimit the matching anchoring island on genome B, which
was specified as containing at least two consecutive windows with (i) Ny values of at
least 25 or (ii) Ny values of at least 10 an& within the top 3% of all Ny for that
particular /th island of genome''A.” Nete that, for this stage, there was no need to
compute N, or Ny/Nk (i.e., Myj), and ther:é'ason for the ‘expansion to include the whole
chromosome, instead of just th.e_? frag:n;entf:in tﬁe conr-lputation of Ny was to provide
sufficient background noise (hUMps) to distinguisi1 the signal (pUMps). For multiple
matches, i.e., when two or more matching anchoring islands were found on the fragment
of genome B, the procedure for computing Ny; was repeated after switching the sliding
window back to operate on the anchoring island-containing chromosome of genome A.
This procedure was repeated until all anchoring islands were uniquely matched between
the two genomes. For the present work on the human and mouse genomes, we found
that multiple matches occurred in about 30% of cases; most of these could be resolved
after Ny was calculated for the second time, and all could be resolved after the fourth

calculation.

3.2.3 Overlapped anchoring islands
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A few (500-800, or 4-7%, depending on the version of genome assembly used) of the
resulting anchoring islands overlapped; this was due to the pUMp signal being
independently detected in overlapping windows. There were four types of such
overlaps (Figure 3.3). For the first type, of partial overlaps, which accounted for
~60-75% of overlaps, we simply set the boundary of the anchoring island at the
midpoint of the overlap. The second and third types (accounting for 20-40% of
overlaps) occurred when a small island (usually < 100 kb) was embedded in a large
island. Further analysis indicated that embedded islands of the second type, which
comprised ~80% of the embedded _gagles, ._fp_r\ob‘ably resulted from lineage-specific

an

duplication, while those of the th,irld :t;.pé resulted from micro-rearrangements.
: R0 L

Accordingly, we discarded embeadeqiiglands of the second type, but kept those of the
third type and split their encompassing island into three, as illustrated in Figure 3.3.
The fourth type occurred when a very small island (~40 kb) of one genome contained
two separable clusters of UMps, each of which was mapped to one of two distinct,
usually even smaller, islands of the other genome. The fourth type was rare,
accounting for less than 2% of the overlaps. For sake of computational convenience
and automation, we kept the first of the two pairings and discarded the other.

Although the use of a smaller window and moving step can eliminate most of the

overlaps, particularly those of the first type, this would force the method to operate on
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fewer UMs, which could decrease the signal/noise ratio, especially for regions

containing a lower density of UMs (e.g., < 1,000 UMs/50 kb).

(A) ; »

® = »

©) | e | I | . i

(D) » o

Fig. 3.3 Schematic illustration of the rules applied to resolve overlaps in anchoring islands. (A) Partially
overlapped islands. (B) Embedded islands due to lineage-specific duplication. (C) Embedded islands
due to micro-rearrangement. (D) Islands with identical boundaries, but distinct pairing partners.

3.2.4 Bidirectional mapping

At this stage, we had a set of non-overlapping, one-to-one matched, anchoring islands
for genomes A and B. We called this set the A->B set, since the Mj; for this set was
computed on windows of genome A. To further reduce the likelihood of the identified
anchors being false positives, we also computed the B->A set, using identical

procedures and parameters to those described above, and extracted the overlaps of the
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two sets. The bi-directional mapping helped us set the thresholds for M;; and Ny (see
above), using which more than 95% of the mapped anchoring islands were either

identical or substantially overlapped between the two directions.

3.2.5 Conserved segments and syntenic blocks

The bi-directionally mapped and non-overlapping anchoring islands were then merged
into conserved segments for any two adjacent islands in one genome that were also
adjacent, as well as in the same orientation, in the other genome (see Nadeau and
Sankoff (1998) for definitions of “conserved segment” and “syntenic block” (aka
“conserved synteny”)). Finally, the resulting conserved segments were grouped into
syntenic blocks, each of which consisted of cor_lserved segments that were contiguously
matched, irrespective of the order—amd the erientation of their matching, in both

genomes and on a single chromosome.|

.a :"*,,'s i

3.2.6 Comparison with other maps

It is not a trivial process to compare two dlfferent synteny maps, because different
degrees of concordance may arise for conserved segments that are equivalent between
the two maps on either of the two genomes. We therefore devised a set of parameters
to assign equivalent (i.e., overlapped) conserved segments to four categories (see Figure
3.4): ‘Agree (strong)’, ‘Agree (weak)’, ‘Disagree’, and ‘Unique’, with decreasing
degrees of overlap. The main distinction between the ‘Agree’ and ‘Disagree’ category
was whether a substantial overlap in the segments was shared in both, or just one, of the
two genomes; those that were not substantially overlapped in either genome, or were
overlapped, but not in the same orientation, were assigned to ‘Unique’. For the
comparison with the MGSC and Ensembl maps, the same versions of the genome

assembly for either human or mouse used in those maps were used to produce the
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corresponding UM  maps. These genome assemblies were retrieved from
ftp://ftp.ncbi.gov/genomes/H_sapiens/ and ftp://ftp.ncbi.nih.gov/genomes/M musculus/
at the National Center for Biotechnology Information (NCBI). The MGSC map, i.e.,
the genomic start and end positions and the orientation of mapped conserved segments,
was provided by Michael Kamal (Whitehead Institute, MIT). The Ensembl map was
downloaded from http://www.ensembl.org/Homo sapiens/syntenyview/ and its

segments parsed.

Category Criteria

Agree Has strong overlaps* on
(strong) both sides (i.e. both genomes)

Agree Has considerable* but not
(weak) strong overlaps on both sides

Has considerable** overlap

Disagree i
9 on one side only

No considerable overlaps**

(awosoLLiolys uewny e jo uolfiay )

( Region of amouse chromosome )

Unique on either side
* Strong overlap:
+(Lp+ Laz+(Les+Lpa)

o |AverageLengthy,= W) AverageLengthy =—————— | = OverlapLength = 50Kb
= S OverlapRatio > 50%
o { OverlapLengthy =Oy; +Oy; OverlapLengthy = Oy + Op2 S« Considerable overlap:
= @, )
£ OverlapRatioy; - OverlapLengthy  oyeriapRatioy = OverlapLengthy | & OverlapLength = 50Kb

AverageLengthy, Averagelengthy OverlapRatio > 10%

Fig. 3.4 Parameters and criteria used to compare two human-mouse synteny maps. The letter notations
are as follows: A for map A, B for map B, H for human, M for mouse, O for overlap, and L for length.
In principle, the number of segments from one map to overlap with one segment of the other map on
either side of the two genomes is not limited to two, but, for the purpose of illustration, two are used here.

3.2.7 BLASTZ evaluation

To evaluate the segments classed as ‘Disagree’ or ‘Unique’ between two maps, we
subjected them to BLASTZ (Schwartz et al, 2003) sequence alignment, using
parameters B=2, C=0, T=1, and K=5000, 9000, or 12000. Each of the resulting

alignments was displayed as a dot plot using the alignment viewer, Laj (Wilson et al.,
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2001), inspected, and assigned to one of five outcomes (see Figure 3.5 for illustrative
examples), “Concordant”, “Shifted”, “Multiple”, “Reversed”, and “Unsupported”.
Those that showed no clear evidence of homology were considered “unsupported” by
sequence alignment and were probably false positives. All the assignments could be
made without much ambiguity, although, for a few segments with few and very small
patches of matches in the dot plot, their assignment to one of the last four outcomes

could be subjective.
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Fig. 3.5 Examples of BLASTZ alignment, shown as a dot plot, of conserved segments assigned as
“Disagree” or “Unique”. (A) Concordant, (B) Shifted, (C) and (D) Multiple, (E) Reversed, (F)
Unsupported. (A) and (E) segments are from the UM map, (B) and (E) segments from the Ensembl map,
and (D) and (F) segments from the MGSC map. For visual clarity, BLASTZ parameter K (threshold for
the maximal segment pair score) was set at 12000 in cases (B) and (D), 9000 in cases (A), (C), and (F),
and 5000 in case (E).

3.2.8 Software
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Computer modules for the UM method and synteny map visualization were written in
C\C++, and Delphi/Object Pascal. The run-time to produce a human-mouse map, which
included both the bi-directional mapping and the merging of anchoring islands into
conserved segments and syntenic blocks, was ~7 hours on one personal computer (2.8
GHz Pentium IV, 2GB memory). The software is freely available at the Web site

http://synteny.iis.sinica.edu.tw/um/.

3.3 Results

3.3.1 Mapsfrom various versions of the human genome

The speed of the UM method for producing a whole-genome synteny map allowed us to
produce multiple maps resulting from differeﬂt versions of genome assembly. Maps
using different human genome asseniB_:t_EE;.s":'__differ mainly in the number of small
conserved segments which dec.riza_lsed:, I\Vité:eacﬁ upda-te of the genome (Supplement
Figure 3.6). This corroborates the afgumerit that-errors in sequence assembly are more
likely to produce artifactual micro-rearrangements than to affect large (e.g., > 1Mb)
synteny blocks (Pevzner and Tesler 2003). Given the results shown in Figure 3.6, we

can expect a further reduction in the number of small conserved segments when a

‘finished’ mouse genome becomes available.
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Fig. 3.6 Number of conserved segments identified by the UM method using different versions of the
human genome (all mapped against NCBI mouse Build 30).

Some parameters for the UM map uSl_r_lgthe ‘essentially complete’ human genome
(NCBI build 33) and the mouse _genomei N@Bf bl:llild 30__(the only NCBI build for mouse
available at the time of this work) aré:sur;l.l-narizlg_d in’ Table 3.1. Maps using human
builds 30 and 31 gave quite similar. results '(da;a not shown). For the conserved
segments and synteny blocks, these data, except for those for N50, are quite comparable
with those reported by MGSC (Waterston et al., 2002); in contrast, the 10,999
anchoring islands are only a fraction of the 558,000 ‘landmarks’ (high scoring and
bidirectional best sequence matches) identified by MGSC. Since the two sets of
syntenic anchors eventually produced very similar maps (details below), our much
larger ‘islands’ (846.9 Mb total length covering 33.9% of the mouse genome; Table 3.1)
are, in effect, clusters of the ‘landmarks’ obtained by sequence alignment using
PatternHunter (Ma ef al., 2002) (188 Mb total length and 7.5% mouse genome coverage

(Waterston et al., 2002) ).
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Table 3.1 Size and Genome Coverage of Anchoring Islands, Conserved Segments and

Syntenic Blocks *.

mouse human

e Average 77.0 kb 81.8 kb

o N50 50.0 kb 50.0 kb

10,999 o Largest 1.27 Mb 1.30 Mb

anchoring e Total Length 846.9 Mb 899.9 Mb

islands (% genome) ** (33.9%) (31.8%)

e Spacing Ave. 150.1 kb 182.2 kb

e Spacing N50 70 kb 80 kb

o Average 6.33 Mb 7.08 Mb

365 Nso 2.46 Mb 2.94 Mb

(2100kb) | argest 64.49 Mb 79.65 Mb
conserved

segments  °® Total Length 2309:3 Mb 2585.3 Mb

(% genome)’’ (92:3%) (91.3%)

o Average ~, 10:55 Mb 12.01 Mb

294 o N50 T =478 Mb 5.58 Mb

syntenic o Largest  _ 146.01 Mb . 143.27 Mb

blocks o Total Length. 2363.8 Mb 2689.1 Mb

(% genome) "(94.5%) (94.9%)

* These data are for the UM human-mouse synteny map using the ‘essentially
complete’ human genome (NCBI build 33) and the draft mouse genome (NCBI build

30).

** Genome size was calculated by omitting the telomeres, centromeres, and gaps

between supercontigs. (Mouse: 2.501Gb; Human: 2.832Gh)

3.3.2 Comparison with maps produced by MGSC and Ensembl

As the key component of a synteny map is a list of conserved segments, the easiest way
to compare two synteny maps is to compare two corresponding lists of conserved
segments. Using the criteria for comparing two maps described in section 3.2.6, the
comparison of the results for UM vs. MGSC and UM vs. Ensembl is presented in Tables

3.2 and 3.3, respectively. A graphical overview of these results is also presented in
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Figure 3.7. As can be seen, the UM map agreed well with both the MGSC and the
Ensembl maps, having ~99% of the mapped regions cross-covered with the former
(Table 3.2) and up to 95% with the latter (Table 3.3). Furthermore, the vast majority of
the ‘Agree’ segments were in strong agreement (i.e. high degree of overlap; see Figure
3.4), and the ‘Disagree’ or ‘Unique’ segments were mainly relatively small segments
(see also Table 3.4), the largest being a few Mb in the comparison with the MGSC map
and 24 Mb in the comparison with the Ensembl map. The somewhat smaller genome
coverage and the smaller conserved segments obtained using the UM map were
probably due to the fact that, unlike in the other two maps, the anchoring islands were

not extended to include as much alignable sequence as possible.

2 AT
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Table 3.2 Comparison between the UM map and the MGSC map on conserved

segments®.
Agree . .
Disagree Unique Total
Strong Weak
UM 310 8 0 12 330
MGSC 308 8 0 26 342

size (Mb) %mapped size (largest) size (largest)  size (largest) size %genome

mouse  2260.6  99.2% 95 (3.1) 00 (—) 94 (2.6) 22795 91.7%
human 25122  99.0% 7.6 (28) 00 (—) 191 (32)  2539.0 90.3%

UM

mouse 23217  98.7% 116 (0.8) 00 (—) 19.7 (42)  2353.0 94.6%
MGSC
human  2583.8  985% 147 (0.5) .00+ (—) 282 (3.9) 26236 93.3%

* Human assembly NCBI build 30 vs. .mousé assehbly MG'SC_v:aj., ‘with the minimum segment size cut at 300kb
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Table 3.3 Comparison between the UlT/d me{’ﬁ and I:the Ensembl map on conserved

L.
segments®. U et )
Agree . :
Disagree Unique Total
Strong Weak
UM 261 23 10 71 365
Ensembl 277 21 5 35 338
size (Mb) %mapped size (largest) size (largest) size (largest) size %genome
mouse 2148.0 93.0% 179 (3.3) 6.7 (1.7) 136.8(18.9) 2309.3 923 %
UM
human 2387.7 92.4% 322 (4.6) 76 (20) 157.7(240) 25853 913%

mouse 2274.1 94.5% 59.5 (15.1) 349 (21.3) 37.8 (115) 2406.3 96.2%
Ensembl
human 25142 93.9% 729 (17.3)  46.6 (7.2) 435 (120) 26772 945%

* Human assembly NCBI build 33 vs. mouse assembly NCBI build 30, with the minimum segment size cut at
100kb

26



0 11 12 13 14 15 16 17 18 19 X

=

e

| —
; =_' I
T IR TR

———
ol I | ﬂ!=ﬁﬂﬂs—

| S <

< S0 ﬂg—l!

EEVEEEE EENE

1 2 3 4 5 6 7 8 910 11
Human

SEEE EEEER @»

13 14 15 16 17 18 19 20 21 22 X

Fig. 3.7 A graphical overview of the comparisons of the human-mouse synteny maps obtained by the UM
method and the corresponding map of either MGSC (A) or Ensembl (B). The UM map is shown in the
left chromosomes. Each color corresponds to a particular human chromosome. Regions within a
dashed box indicate that the human orthologous regions are in the backward strand.

Tables 3.2 and 3.3 also show that, for all categories, the agreement between UM

and MGSC was significantly better than that between UM and Ensembl. This is

attributable in part to the smaller minimal conserved segments used in the Ensembl map
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(100 kb vs. 300 kb for the MGSC map) and to the fact that, unlike the UM and MGSC
maps, the Ensembl map is not cleanly resolved, in that some of its segments are
substantially overlapping with, or entirely embedded in, other segments. The MGSC
and Ensembl maps could not be precisely compared, because they were generated using

different genome versions.

3.3.3 Evaluation with sequence alignment

Although a good sequence alignment, i.e., one resulting in a clear diagonal in the dot
plot, does not necessary mean a pair of conserved segments are orthologous, the
converse usually holds. Table 3.4 gives the results of sequence alignment, using
BLASTZ (Schwartz et al., 2003), for the ‘Disagree’ and ‘Unique’ segments from Tables
3.2 and 3.3. The results showed that all but 2 6f the total 93 (12+71+10) UM ‘Unique’

or ‘Disagree’ pairs of segments were cbn_ég_rc_li_aﬂt with BLASTZ alignment, and the two

i &
"

exceptions were neither in_ the "wrong -?(;{Iié.nta_tion (“Reversed”) nor without clear
evidence of sequence similarity (“Unéﬁpported"’)._: I ecomparison, 2 of the 26 MGSC
“Unique” and 10 of the 35 Ensembi “Unique’; segment pairs were “unsupported” by
BLASTZ alignment. Further examination (Figures 3.8 and 3.9) showed that 17 of the
23 MGSC “Unique”, BLASTZ-concordant pairs, and 8 of the 11 Ensembl “Unique”,
BLASTZ-concordant pairs, were actually detected by the UM method, but were not
included in the comparison because the corresponding UM segments were too small
(<300 kb or <100 kb for the comparison with the MGSC or Ensembl map, respectively).
These relatively small UM segments could probably be brought into agreement with the
corresponding MGSC and Ensembl segments, if they were allowed to extend by
sequence alignment, as discussed above. The remaining 6 (23-17) MGSC and 3 (11-8)

Ensembl pairs not detected by UM were all small (most < 1 Mb), and, interestingly, the
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density of their UMps was significantly smaller than typical (Figures 3.8 and 3.9). We
did not carry out the same evaluation on the ‘Agree’ segments due to limited computing
resources, but, given the consensus of the results using two very different approaches
(UM vs. MGSC or UM vs. Ensembl), together with the results presented below of the
Largest Increasing Subsequence (LIS) analysis (Gusfield 1997) of UMps, it is unlikely

that they would be BLASTZ-unsupported.
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* Mo comesponding segments mapped by UM method
1 The segment mapped by UM method is smaller than S0kb on the mouse genome

Fig. 3.8 Frequency distribution of the UMp densities for the whole genome and for regions covered by
the 23 MGSC-unique BLASTZ-concordant segments (see Table 3.4). The table below shows that the
UM method actually detected orthologous signals for 17 of the 23, but these were not used in the
comparison because their size in the UM map was lower than 300 kb; 3 of these were very small (< 50 kb
on the mouse genome; labeled 1). The six segments that were not detected by the UM method are
labeled *. (A) Distribution on the mouse genome. (B) Distribution on the human genome. “*{”
denotes results using only the segments marked * or § in the Table, and “without *{” those using all
segments apart from these.
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* Mo comesponding segments mapped by UM method
t The segment mapped by UM method is smaller than S0kb on S mouse genome

Fig. 3.9 Frequency distribution ofl-jthelt'l'Mp densiti he whole g}nome and for regions covered by
the 11 Ensembl-unique BLASTZ-Ebnco ant Table 3. 4L The table below shows that the
UM method actually detected oﬂ.ho_ljg e-11, but these were not used in the
comparison because their size in the U p kb"‘*S of these were very small (< 50 kb
on the mouse genome; labeled 7). Ihg\t’hr
labeled *. (A) Distribution on the moyse* gehmme 1(113)
denotes results using only the segments markedr *or fin the Table, and “without *{” those using all

1§thbut10n on the human genome. “*{”

segments apart from these.
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Table 3.4 BLASTZ-evaluation on the "Unique" and "Disagree" conserved segments
from UM vs. MGSC (Table 3.2) and UM vs. Ensembl (Table 3.3) comparisons.

Concordant*  Shifted Multiple Reversed Unsupported Total

Unigue
UM 11 (3) 0 1 0 0 12
MGSC 23 (2) 0 1 0 2 26
Unigue
UM 70 (33) 0 1 0 0 71
Ensembl 11 (1) 6 5 3 10 35
Disagree
UM 10 (3) 0 0 0 0 10
Ensembl 0 1 4 0 0 5

* in parentheses are the number of conserved segments with size of the mouse segment >
1Mb

3.3.4 Evaluation with LIS analysié@"—UM pS

For a pair of conserved segmenfs Of agchoffﬁg i_siands, -one expects the largest subset of
UMps matched in the same direction (Figure 3.1),.:0r LIS UMp, to be composed mainly
of pUMps. An LIS analysis of UMps can, therefore, be used instead of sequence
alignment to detect questionable segment or island pairs. Remarkably, the results of
such an analysis (Figure 3.10) showed that, for 91% (10014/10999) of the UM
anchoring islands, the LIS UMp ratio was 1.0, i.e. all the UMps matched within paired
islands were ordered in the same forward or backward orientation, and only 7 (out of
10,999) pairs had a LIS UMp ratio smaller than 0.8. Furthermore, all of these 7 pairs
with a low LIS UMp ratio, including two in regions full of repetitive elements, showed
evidence of homology as assessed by BLASTZ alignment (Figure 3.10). As the
islands were merged into segments (Methods), the percentage of ordered UMps would

decrease (Figure 3.11); however, the sequence similarity of several less promising pairs,
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as suggested by the LIS analysis (Figure 3.11), was validated by BLASTZ alignment

(data not shown).
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Fig. 3.10 LIS analysis of UMps in anchering 1:'sl'ands ‘ffom_ the'UM map of NCBI human build 33 vs.
mouse build 30.  (A)-(G) are dot-plots of the BLASTZ align}nen_t_ for the seven indicated island pairs, for
each of which the ratio of LIS UMps to all UMp‘s*qommoh_lto the island pair was less than 0.8.
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Fig. 3.11 LIS analysis of UMps in conserved segments of the UM map, using (A) mouse MGSCv3 and
human NCBI build 30, and (B) NCBI mouse build 30 and human build 33. The shaded circles are
segments found in the UM map, but not in the MGSC map (A) or the Ensembl map (B). Circles marked
by * were evaluated by BLASTZ alignment because they had a low LIS UMp ratio for relatively small
segments (see text). The line in the figure resulted from a linear regression of the data, with the
constraint that it passed through a ratio of 1.0 at zero segment size.
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Chapter 4

Copy number-based orthology seeding using

contiguous matches

4.1 Introduction

Identifying orthologous and co-orthologous relationships between genomes is an
important facet of comparative genomics:(Koonin2005). As the number of completely
sequenced genomes continues jto increase rapidly;orthology identification at the
nucleotide level in both coding and noné%j(.ii'ng regions of genomes is becoming an
indispensable approach for studfy'in.g' genome-evolution and for genome annotation
(Deway and Pachter 2006). Essential to this approach is whole genome alignment, an
approach that is computationally demanding, especially for large genomes. To achieve
computational efficiency, various heuristic algorithms for large-scale sequence
alignment, particularly those using index-based strategies, have been developed.
Index-based alignment methods first build indices for one or all of the compared
sequences and then retrieve seeds—often word matches or transformed word

matches—from these indices to derive alignments to infer orthology, paralogy, and/or

xenology (Fitch 2000). Since finding seeds (seeding) is necessarily the first step in all
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index-based genome alignment methods (Ureta-Vidal et al. 2003), the strategy
employed for selecting seeds and their retrieval is fundamental to the performance of
genome alignment methods (Brown et al. 2004).

With few exceptions, most current seeding strategies are length-based, i.e., seeds
are selected using fixed-length or variable-length constraints. The k-mer (or A-tuple)
strategy using exact matches of words of a fixed length as seeds is perhaps the most
popular and is used in general-purpose sequence comparison methods, such as FASTA
(Lipman and Pearson 1985) and BLAST (Altsc_hul et al. 1990), and in various genome
comparison programs, which are;well r__e_vixlewe;d m éhain et al. (2003), Ureta-Vidal et al.

(2003), Brown et al. (2004), and Batzogloﬁ;e:t:al. (2005). Another length-based seeding

|

strategy employed in genomic 'fs'eq.uie.nce comlp'a,_gison uses maximal exact matches
(MEMs) (Hohl et al. 2002), also known as maximal pairs (Gusfield 1997), which
include all exact matches with maximal lengths equal to or greater than & (see section
4.2.1). By excluding numerous redundant matches, which are particularly abundant in
short-length words, MEM methods can acquire a better efficiency of seeding than k-mer
methods for large-scale sequence comparison (Chain et al. 2003).

To further increase seeding efficiency, Delcher ef al. (1999) proposed the use of a

subset of MEMs, using only the maximal unique matches (MUMs) to align two

genomes, where a MUM is a maximal substring which occurs exactly once in each of
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the two compared genomes and cannot be extended without introducing mismatches.
The MUMmer system works well for closely related genomes (Chain et al. 2003). In
addition, we have presented a fixed-length seeding method, called UniMarker, with a
one-to-one mapping constraint (Liao et al. 2004).

Generally speaking, all seeding strategies are a trade-off between sensitivity and
specificity. Thus, at one extreme a typical k-mer method (e.g., using k=11, the default
setting in BLAST for nucleotide comparison) can be highly sensitive, but must deal
with numerous non-orthologous local match_e§ m: comparing genomes, while, at the
other, most non-orthologous local ma_‘_c_ch?s can b; automatically masked by methods

. = ) . .
such as MUMmer and UniMarkerywhich Use a Lnique occurrence constraint to obtain
| '\.. 1 =

| s | ¥V

high specificity, but suffer from 'lin.ﬁt.ed sensi‘éi'vi_:[y in detecting orthologous regions
lacking the unique markers owing to sequence divergence or other evolutionary events.

Herein, we explore the possibility of devising a new seeding model that lies
between these two extremes, while focusing on expanding the capability of the
high-specificity methods to compare not very closely related genomes. Specifically, we
generalized the seeding models of MUMs and UniMarkers by relaxing the constraint of
both uniqueness and length. First, we capture all substrings of any length for which the

total copy number (i.e., total number of copies in the compared genomes) is no larger

than a given threshold ¢, and extend them to maximal length while preserving the copy

35



number. We call these substrings of maximal length with variable copy numbers
o-markers. We then retrieve the maximal pairs, pairs of identical substrings in S} and S»
that cannot be extended to longer exact matches, that contain o~-markers as their
substrings as seeds for orthology detection. We call these maximal pairs of o-markers
o-pairs. For example, if =4 and with x:y denoting x copies in the first genome and y
copies in the second, we consider seeds of maximal length with 1:1, 1:2, 2:1, 1:3, 2:2,
and 3:1 copies in the two compared genomes. Note that, in this generalization,
MUMmer (Delcher et al. 1999) and UniMark_e_r (Liao et al., 2004) both only consider

1:1 mapping and also have a constraint on word length of, respectively, 2 k (k =20 is

= | |

usually the default) or £=16.

In the next sections of tﬁi_,s_pr@s'entzglic-ion, .we first give a formal definition of
o-markers and o~pairs, along with an illustrative I:example, then describe a linear-time
algorithm to retrieve o~pairs, a prerequisite for achieving computational efficiency in
genome-scale comparisons. Our algorithm is based on enhanced suffix arrays, which are
efficient in comparing large genomes (Abouelhoda et al. 2004). Finally, we compare our
seeds to several length-based seeds for their ability to detect orthologues. We use two
datasets of genomes or chromosomes. The first dataset contains genomic or
chromosomal sequences from human, mouse, chicken, and pufferfish and was used to
compare the ability of different types of seed to detect orthologues in human versus
mouse, chicken, or pufferfish. The second dataset consists of seven prokaryote genomes
and was used to compare orthologues in Mycoplasma pneumoniae with those in another

six genomes from Eubacteria and Archaebacteria. Ensembl (Hubbard et al. 2007) and
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COG (Clusters of Orthologous Groups of proteins; Tatusov et al. 2003) orthologues
were used to benchmark the comparisons. The results for the vertebrate dataset showed
that significantly fewer seeds were required for o~pairs to achieve superior sensitivity;
in addition, a denser set of colinear identical matches in these orthologues was obtained
using seeding of o~pairs than using a length-based method, such as MEM or k-mer.

Similar trends, but with less profound differences, were found in the prokaryote dataset.

4.2 Methods

In this section, we present definitions and an algorithm to compute o~pairs. We present
a new algorithm based on the MEM-enumeration algorithm of Abouelhoda ef al. (2004)

which can handle the enumeration of a new type of seed.

4.2.1 a-markersand a-pairs

Suppose that S; and S, are the two geno;l{égéégiﬁences tobe compared. Let Word, denote
the set of all substrings such that cach ﬁer?i‘ber _6f Wordc has a copy number x>0 in §j,
¥>0 in S5, and x+y = ¢ (c22 by d.eﬁn-i‘;ion). We also dénote each member in Word, as a
c-copy word of S; and S,. For example, if S; = “accgtttgag” and S, =
“acccgtatgagcaccgtatgg”, Words = {“ac”, “acc”, “ccg”, “ccgt”, “cg”, “cgt”, “gt”, “tg”},
where each word has a total of three instances in S; and S, combined. For example,
word “ac” occurs three times at position 1 in §; and positions 1 and 13 in S,
respectively (Figure 4.1). Our focus is on less frequent words, that is, the set union of
Word,, Words, ..., Word,, where o is a user-specified integer. In order to give a compact
presentation of these less frequent words, we define o~-markers as follows.

Definition 4.1: We say a c-copy word of sequences S; and S, is right maximal if we

cannot extend any of its instances in the right direction to obtain a longer c-copy word;

likewise, a c-copy word is left maximal if we cannot extend it in the left direction to
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obtain a longer c-copy word. We also denote a maximal c-copy word (a c-copy word
that is both left and right maximal) of S} and S, as an a~marker of S| and S, for ¢ = 2,
3, ..., C

In Figure 4.1, column 3 shows the maximal c-copy words that could be extended

from the c-copy words in column 2 while retaining the same copy number.

(A)
Pos 1 23456789 1011121314151617 18192021
S="accgtttgag"
SS"acccgtatgagcaccgtatgg"
B)
i Word, : o-marker | Pairs of instances| Is an
¢ (genome,position,len) (a=3) | {posl pos2len} | o-pair?

accg: (S1,1,4) (55,13,4)
accgt: (51,1,5) (52,13,5)
ag: (51,9,2) (5,,10,2)

2 |ga: (S1,8,2) (52,9,2)
gag: (51,8,3) (52,9:3) tgag tgag {7,8,4} Yes
tga: (51,7,3) (52,8,3)% .
tgag: (S1,7,4) (5,,8,4)
ac: (S1,1,2) (S2,1_;2) (5,13,2)- " - ace £1,1,3} Yes

accgt accgt {1,13,5} Yes

ace: (S1,1,3) (5,1,3) (1330 | T || ace {1,133} No
ccg: (51,23) (5:,338) (S 143 | |
t: (51,2,4) (S2.3M(S-14,0) | 4. |
3 e s(3lz )5(22 )s(1245 ) | Puped | v
Cg-(l,,)(z,,)(z,l,.) Lrecg W &% Ohas No
ogt: (51,3,3) (524,38, 153) .
lt: (51,4,2) (S9:2) (55516.2) ~la
: : tg {7.8,2} No
tg: (51,7,2) ($:,8,2) (83519,2) | *
8 (51,7.,2) (52,8,2) (55;19,2) tg te 17,192} Yes

Fig. 4.1 An example of a-markers and a-pairs. (A) Two compared sequences S; and S, with the sequence
positions indicated above the sequences. (B) For S| and S,, there are seven 2-copy words (“accgt”, ...,
“tgag”) and eight 3-copy words (“ac”, ..., “tg”); these are listed in column 2. The round brackets in
column 2 denote the positions of c-copy words in the form (genome, position, len). By extending each
c-copy word in column 2 while preserving the same copy number, we have five maximal c-copy words

9 99 G LRI

for ¢=2,3, these being “accgt”, “tgag”, “acc”, “ccgt”, and “tg” in column 3. These are the a-markers for

0=3 (Def.4.1). Column 4 shows the pairs of instances of column 3 a-markers in the form of {position in
S, position in S, string length}. Column 5 checks whether a pair of instances in column 4 is an a-pair.
For example, the instance pair {7,8,2} of “tg” is not an MEM and thus not an a-pair (Def.4.2).

In this chapter, we refer to an exact match as a pair of identical substrings in S} and
S,. In the following, we are interested in those matches referred to as maximal exact

matches (MEMs) (Hohl et al. 2002) or maximal pairs (Gusfield 1997). The notation

MEM of S; and S, refers to a pair of identical substrings in S} and S, that cannot be
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extended to a longer exact match. Now, let us consider those MEMs of S} and S, that
have o~markers as their strings. It should be emphasized that, by definition, the matches
generated from an o~marker m are constrained by the copy number of m and not by
their lengths.

Definition 4.2: An MEM e of sequences S; and S, is said to be an o~pair of an o~marker
m of S and §; if the two strings in e are instances of m in §; and S,, respectively.

Let (genome, position, len) denote the position and length of a string instance in a
specified genome and {p;, p, len} denote an exact match composed of string instances
at (S, p1, len) and (S», p2, len) with string length /en. In Figure 4.1, the three instances
of “tg” are at (51,7,2), (52,8,2), and (52,19,2),7and there are two pairs of instances of “tg”
of Sy and S»: {7,8,2} and {7,19,2}, where only. {7,19,2} is a MEM.

Lemma 4.3: Denote e as a MEM of Sj 'Ja_r_lld 53, String @ of e is a c-copy word of S} and

S, and ¢ < erif, and only if, ¢ is an\@pair.

Note that Lemma 4.3 follows diréctly from Deﬁhitions 4.1 and 4.2.

4.2.2 A linear time a-pair retrieval algorithm

According to Lemma 4.3, we can generate all o~pairs by computing the copy number ¢
of each MEM’s string and by reporting a MEM if ¢ < . Note also that MEMs may be
enumerated using the linear-time algorithm based on enhanced suffix arrays proposed
by Abouelhoda ef al. (2004). However, since the algorithm presented by Abouelhoda et
al. deals with a single genome, we have modified it slightly to enumerate o~pairs of two
genomes by borrowing the position-set technique from Hohl e al. (2002). Note that an
enhanced suffix array refers to a data structure consisting of a suffix array (Manber and
Myers 1993) and its augmented arrays, such as the longest common prefix (Icp) array

(Kasai ef al. 2001) and the Burrows-Wheeler transformation (bwt) array (Burrows and
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Wheeler 1994), and these arrays can be constructed in linear time (Abouelhoda et al.
2004).

First, using two special symbols ‘#’ and ‘$’, we concatenate S; and S, into a new
string S = S1#5,9$, then build the enhanced suffix array of S as a virtual suffix tree 7v for
the bottom-up traversal of all Icp-intervals (Kasai ef al. 2001, Abouelhoda et al. 2004).
For convenience, we say a word is a c-copy word of S if the number of times it occurs
in S is exactly ¢ , without paying any attention to its copy number in S} and S,. Note that
an Icp-interval ois an interval of the suffix array that contains all suffixes of S prefixed
by a right maximal c-copy word of S, say @, for ¢ > 0, where the size of o is exactly the
copy number of @. Let n denote the size,of S:-Since each suffix of S is unique, there are
n leaf nodes in 7v, where each leaf eorrespondé 10 a suffix of S. To simplify notations, in

this paper, the notation of the right max"ian:ral C'—’__cbpy word of S of o will be referred to as

— -
—

the string of o: For any two right max-imaf-?ygrds of S, @ and a», we define the partial
order relation @ < a» if @, 1s'@ pr:eflix of a)z In .T v, each node corresponds to an
Icp-interval and a node o is an anceétor of é node 0, if, and only if, their corresponding
right maximal words of S satisfy the partial order relation @ < @». Obviously, the string
w of ois the longest common prefix of its children.

In the following, we present the algorithm to enumerate all o~pairs of genomes S
and S,.

Let X'be the set of letters of S; and S, and let |2] denote the size of 2. During the
bottom-up traversal of 7v, for each node, 0, we maintain 2x|2] position sets P(g.x,0),
where g=1 or 2 and xe 2. Each element of P(g,x,0) is a suffix of S prefixed by the string
w of o in genome S, and x is the character immediately to the left of this suffix. Note

that only the starting position of each suffix is recorded in the position set P(g.x,0).

40



Depending on whether o is a leaf node or an internal node, the computation of the
position sets is different. For each leaf node of 7v, the size of its Icp-interval is one and
its P(g,x,0) is obtained simply by looking up the bwt array. For each internal node o of
Tv, P(g,x,0) is the set union of its children’s position sets. This position-set technique is
adopted from Kurtz and Lonardi (2004), who showed that the position sets can be
computed in O(|2]n) time.

For each internal node o of Tv, if we let w be its string and let ¢, and o} be any
two distinct children of ¢, we obtain starting positions of MEMs of S| and S, with string
o by computing P(1,x,0,) X P(2,y,05) for all x#y and for all ¢’s children o,#0;. Note
that it is not difficult to show that, for'each MEM e reported at node o of 7v, the string
of e is exactly the string of o (Kuﬁz and Lonardi 2004, Abouelhoda ef al. 2004), and
thus each MEM enumerated in this préc’e’é_iﬁnﬂr‘c_::'_:i's. unique.. It is also known that the above
MEM-enumeration algorithm produces all KﬁEMS of Syvand S> (Kurtz and Lonardi 2004,
Abouelhoda et al. 2004), and Wé hq\;e modiﬁea it:by performing the MEM-reporting
procedure at node o of 7v if the size of O'iS. no greater than ¢. According to Lemma 3,
each produced MEM is an o~pair. Since each o~pair can be enumerated in constant time,
the entire enumeration procedure runs in O(|2r + z) time, where z is the number of
o-pairs.

From the above, we know that o~pairs can be retrieved by first generating position
sets of each node of 7v in O(|2n) time, then enumerating o-pairs by traversing 7v in
another O(|2jn + z) time. Thus, the total complexity of the o~pair retrieval algorithm
runs in O(|2n + z) time. Additionally, theorem 4 below ensures the completeness of the

o~pair retrieval algorithm, while the proof of the soundness is trivial.
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Theorem 4: Given two sequences S; and S,, the o~pair retrieval algorithm reports every
o-pair.

Proof: Let us assume the contrary, i.c., there exists an o-pair p which is not reported by
the o~pair retrieval algorithm. Denote u; and u, as the two suffixes prefixed by the two
string instances of p, with u; belonging to genome S; and u, to S,. In other words, p is
the longest common prefix of u; and u,. Let us also denote the two nodes in the virtual
suffix tree containing #; and u; as 0j and 03, respectively. We also denote the character
immediately to the left of u; as a; and the one immediately to the left of u; as a,. Let us
consider the marker w of the closest common ancestor o of ¢ and ;. We can show that
the strings of @ and p are the same!(if we assume otherwise, then there must exist
another common ancestor of o; anci o and this contradicts the fact that o is the closest
common ancestor of ¢ and 6>. The de.t.aii;g-nﬁép'.ﬁe easil}.f derived by interested readers).
Let 0i and o5 denote the two chillc:irer;;‘:.bf g which are ancestors of o and 03,
respectively. Then we can see : 1;hat: (3] beloﬁgsf tol P(1,a1;,01) and o> belongs to
P(2,a2,0%). Since p is not reported by the algorithm, thus the copy number of @ must be
greater than oo However, as we mentioned earlier, the strings of @ and p are the same,

which contradicts the assumption that p is an o~pair.

4.2.3 Evaluation of orthology seeding

To evaluate the ability of different types of seeds to detect orthologues, we used two
quantitative measures: seeding sensitivity and colinear identities per orthologue.
Seeding sensitivity is defined as

Sn=100%x N, /N,

where N denotes the total number of orthologues annotated in a reference benchmark,
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such as the Ensembl orthology (Hubbard et al. 2007) or COG (Tatusov et al. 2003), and
Nseedea denotes the total number of annotated orthologues containing at least one seed.
Obviously, it is impossible to detect an orthologue if no seeds are found within the
orthologue. Furthermore, because the sensitivity measure Sn does not gauge how likely
the seeded orthologues will be detected, we define a second measure, the colinear

identities per orthologue, as

N
ic:;L/N,

where /; denotes the maximal number of colinearly identical base pairs decomposed
from the seeds mapping the two sequences of the i-th orthologue. /; can be computed

using an algorithm for finding longest increasing subsequences (Gusfield 1997).

* Steps for computing colinear identities™,

i

1 Collect seeds that fall inside the i-th of“t?‘dfbgue as a set X.

2 For each seed {p1, p2, 0 }* in.)_f(:_

2.1 Decompose it into /¢ letter matches: -{pI;pz,l}, {pit1, pr 1,1}, ..., {1+ 0-1,
patl-1,1}.

2.2 Store the letter matches (i.e., identical base pairs) to an array Y.

3 Sort ¥ by ascending order of the positions in S; and descending order of the
positions in ;.

4 For each record in ¥, store the positions in S, to an integer sequence Z.

5 Compute /; = the length of LIS b (Longest Increasing Subsequence) of Z.

® A seed is a substring match in the form {position p; in S}, position p, in S, string length £ }.

® We implemented an O(n log p) LIS algorithm (Gusfield 1997), where n is the length of the input and p
the length of the LIS.

Generally speaking, the larger / for a candidate orthologue, the easier it is to
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identify the orthologue in a post-seeding process such as the ungapped/gapped
extension (Altschul et al. 1997). Using the Ensembl- and COG-annotated orthologues
for a variety of vertebrate and prokaryote species as benchmarks, we computed Sn and
Ic for several different seeding models to compare, respectively, their sensitivity to seed
the annotated orthologues and their relative potential to detect the annotated

orthologues.

4.2 4 Datasets and software

Two datasets of genomic sequences were used to evaluate the different seeding models.
Dataset A (Table 4.1A) consisted of human chromosome 15, mouse chromosome 7,
chicken chromosome 10, and the freshwat§r pufferfish genome; the orthologues
between human and the various speciesias annétated by Ensembl (Hubbard et al. 2007)

were used as the reference answertsef| fof-evaluation. These vertebrate genomic

a—
e

sequences were retrieved f_rom -ftp:7/{;1-0.er_lsembl.0rg/pub/release-41/, and the
orthologues as annotated in Ensembll v.44 w'erc_a_ obtained by querying BioMart at

http://oct2006.archive.ense-mbl.org/Multi/maﬁView. Dataset B (Table 4.1B) consisted

of seven small prokaryote genomes, and their COG orthologues (Tatusov et al. 2003)
were used as the reference answer-set. For dataset B, we retrieved genomes from

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ and COoG orthologues from

ftp://ftp.ncbi.nih.gov/pub/COG/COG/. Both the Ensembl and COG orthologues are

determined based on protein sequence comparisons. Computer modules for our method
were written in C/C++ and are freely downloadable from the website

http://synteny.iis.sinica.edu.tw/anm/ .
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Table 4.1 The two datasets used in this study.

(A) Vertebrate dataset (reference sequence: HS chr.15, 100Mb)

Sequence compared™® Divergence #Orthologues®
ID name (size) time* (1-to-1, m-to-m)
MM chr.7 (145_Mb) 91 Mya 124 (124, 0)
GG chr.10 (21 _Mb) 310 Mya 314 (296, 18)
TN genome (217 Mb) 450 Mya 347 (245, 102)

(B) Prokaryote dataset (reference sequence: Mpn genome, 816Kb)

Sequence compared™ Divergence #Orthologues’
ID name (size) time® (1-to-1, m-to-m)
Mge genome (580 Kb) <2600 Mya 472 (319, 153)
Rpr genome (1112 Kb) ~2600 Mya 315 (191, 124)
Buc genome (641 Kb) ~ 2600 Mya 274 (209, 65)
Bbu genome (911 Kb) ~ 2600 Mya 333 (227, 106)
Ctr genome (1043 Kb) ~2600 Mya 297 (200, 97)
Tac genome (1565 Kb) >4000 Mya 320 (120, 200)

* HS: Homo sapiens; MM: Mus musculus; GG: Gallus gallus; TN: Tetraoden® nigroviridis. Mpn: Mycoplasma pneumoniae; Mge: Mycoplasma
genitalium; Rpr: Rickettsia prowazekii; Buc: Buchnera spi-APS;:Bbu: Borrelia bu__rgdorferi; Ctr: Chlamydia trachomatis; Tac: Thermoplasma
acidophilum. HS chromosome 15 and the Mpn genome were ‘uséd as the reference sequence for the comparisons in dataset A and B, respectively. The
figures in parentheses are the size of the chromosomes.of genomes compared

® MM chr.7 was chosen because it has a larger nurnber of compared _to the Ot!hel:. chromosomes, orthologues to HS chr.15. GG chr.10 was chosen by

the same criterion. -

i '.,f.-".-::i

¢ Mya denotes millions of years ago. Data are from Hedges (2002)[

m
4 The orthologues (i.e., orthologous gene pairs) in (A afe from Ensimbl v.4l.and thpse in (B)from the COG database (see Methods). m-to-m denotes
many-to-many relationships, which include one-to-many and‘many-fo-one mappm%s

¢ Mpn was used as the query genome to compare agamsf five genomes.from four phyla of*Eubacteria (Firmcutes: Mpn, Mge; Proteobacteria: Rpr,
Buc; Spirochaetes: Bbu; Chlamydiales: Ctra) and one genome fr_om Euryarchaeota-of Archacbacteria (Taci).

4.3 Results

4.3.1 a-pairsvs. MEM or k-mer in vertebrate sequences

There are two common ways to parameterize exact matches of DNA sequences based
on sequence length: 1) a k-mer pair of S; and S is a pair of identical words in S} and S,
where the length of the words is k&, and 2) a maximal exact match (MEM) (Hohl et al.
2002) of S; and S, (see Methods 2.1). We let MEM; denote the set of all MEMs for
which the lengths are equal to, or greater than, k. For convenience, we denote the set of

o-pairs at a specified o value as AP,. We were interested in knowing whether the

copy-number-based 4P, seeds conferred any advantage over the length-based MEM;
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and k-mer seeds in detecting orthologues, and how their performances changed when
the parameters o and k changed. Using dataset A (Table 4.1A) and the two measures Sn
and /c described above, we compared the orthology seeding results for human chr.15
versus mouse chr.7, chicken chr.10, and the pufferfish genome using seeds of AP,
MEM;, or k-mer pairs. The results are presented in Figures 4.2 and 4.3, and Table 4.2.

Figure 4.2 shows that, for the two mammals human and mouse, a minimal o (o=2)
was sufficient for AP, to seed all the orthologues of HS chr.15 vs MM chr.7 (Figure
4.2A), and, for the more distant pair human and chicken, 99% of the orthologues of HS
chr.15 vs GG chr.10 could still be seeded by =3, but, to cover the last 1% (3
orthologues, see Table 4.1A), the cost;ii.e. size_ of'e and total number of seeds, escalated
(Figure 4.2C). In comparison, @ muchdarger, bufistill small, o (~10) was needed to seed
90% of the very distant human-fish or;[.hdj]ﬁglie..s (Figuré 4.2E), while, to cover the last
orthologue, ¢ increased to meore thar:l aﬁi:t._il--(;usand (Figure 4.3A). Similarly, as the
evolutionary distance from human il.lér.eased oﬂ goin.g from mouse to chicken to fish,
the difficulty in actually mapping these orthéloéues increased accordingly, as evidenced
by the decreasing Ic, which decreased from thousands to hundreds to scores for these
species at relatively low « copies (Figures 4.2B, D, and F).

The seeding results showed that the data for the 4P, seeds were all much closer to
the upper left corner of the plot than those for the MEM; or k-mer seeds (Figure 4.2A-F),
indicating a superior performance for AP, in both the Sn and Jc measures. That is, using
the same amount of seeds, AP, achieved a better Sn and Ic than MEM; or k-mer;
conversely, to achieve the same Sn or Ic, a much larger number of seeds were required
for MEM;, or k-mer (especially the latter) than for AP,. Quantitatively, depending on the

species compared, to achieve 100% Sn, between 2 and 62 times as many seeds were
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required for MEMy than for AP, while the k-mer/4AP,, seed ratio was between 5 and 377.
To achieve a nearly equal Ic, the MEM}, AP,, seed ratio ranged from ~10 to ~30 and the
k-mer/ AP, seed ratio ranged from 28 to 159 (for £ =14, 15, and 16; Table 4.2). The
values of these ratios appear to depend on the values of « and k, the evolutionary
distance, and the sizes of the sequences compared (for example, pufferfish is much
more distant from human than is chicken, but the size of its whole genome sequence
(217 Mb) is much larger that that of chicken chromosome 10 (21 Mb) (Table 4.1A).
Other factors, such as the number of times a genome had been wholly or segmentally

duplicated, might also have an effect.
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(A) HS chr.15 vs. MM chr.7 (Sn)

(B) HS chr.15 vs. MM chr.7 (Ic)
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Fig. 4.2 Sn or Ic vs. total number of seeds generated using 4P,, MEM, or k-mer in the comparison of
vertebrate sequences (Table 4.1A). (A) and (B) are the results for human chr.15 vs. mouse chr.7, (C) and
(D) are the results for human chr.15 vs. chicken chr.10, and (E) and (F) are the results for human chr.15
vs. the pufferfish genome. The data for the larger a and smaller & values needed to reach 100% Sn or a
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higher Ic for the human vs. pufferfish comparison are presented in Figure 4.3.
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(A) HS chr.15 vs TN genome: Sn
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Fig. 4.3 (A) and (B) are, respectively, the extension of Figures 4.2E and 4.2F for larger

o and smaller £ values.

Table 4.2 MEM;, or k-mer seed to AP, seedratio at 100% Sn or an nearly equal /¢ for
detecting vertebrate orthologues (dataset A). =

i

(i) Sn .
S d Parameters and see€d# generated aty]1 00% Sn A. Seed#(k -mer)/Seed#(AP ,,)
equences compare k-mer MEN, [~ | AP, B. Seed#(MEM, )/Seed#(4P ,,)
k=18 TENEC =4 =2 A= 377.23
HS chr.15, MM chr.7 - -
U MV T | Seedt = 7,734,559,863 Secdt = 12705395 | | | sedd = 20,503,556 B- 6L95
k=13 k=1 i Al ] a=31 A= 494
HS chr.15, GG chr.10 - - O >
i, D e Seed = 1,342,581,347 Seed#q5ﬁ9,637‘,186 | || Seed#<%272,011,977 B- 191
k=9 k=9 I Ta= 1252 A= 912
HS chr.15, TN =i 1L
o BOMOME | Seed = 333,160,672,645 1| 1Sded# = 191,831428,705 | Seedff =36,522,353,493 |B= 5.25

(ii) I

(A) HS chr.15 vs. MM chr.7

k Seed#(k -mer) Ic k | Seed#(MEM;) Ic o | Seed#(4P ,) Ic Seed#(k -mer)/Seed#(4P ,) Seed#(MEM, )/Seed#(AP )
16| 11,441,794,971 | 1527.04 [ 16] 2,091,308,171 [ 1527.04 [ 3 [ 42,223,038 | 1663.10 270.98 49.53
15| 14,291,762,410 | 1724.56 | 15[ 2,849,967,439 | 1724.56 | 5 | 87,128,594 | 1843.71 164.03 32.71
14| 18,307,564,831 | 2069.69 | 14 4,015,802,421 | 2069.69 | 20| 443,129,366 | 2259.95 41.31 9.06
Average for k=14~16 158.78 30.43
(B) HS chr.15 vs. GG chr.10
k | Seedt(k-mer) I k | Seed#(MEM,) | I a| seeditur )| Ie Seed#(k -mer)/Seed#(AP ,) | Seed#(MEM, )/Seed#(4P ,)
16| 340,355,453 299.02 | 16] 117,602,462 299.02 | 2 8,079,214 322.98 42.13 14.56
15| 524,956,370 33497 | 15] 184,600,917 33497 | 3 | 16,868,192 377.30 31.12 10.94
14| 822,944,161 430.32 [14] 297,987,791 430.32 [ 10| 80,059,161 | 483.21 10.28 3.72
Average for k=14~16 27.84 9.74
(C) HS chr.15 vs. TN genome
k Seed#(k -mer) Ic k | Seed#(MEM;) Ic o | Seed#(AP ,) Ic Seed#(k -mer)/Seed#(4P ,) Seed#(MEM, )/Seed#(AP )
16| 16,307,700,263 66.73 16| 2,821,865,633 66.73 5] 101,623,422 80.08 160.47 27.77
15| 20,139,059,134 79.75 15| 3,831,358,871 79.75 10| 235,753,891 97.16 85.42 16.25
14| 25,526,195,868 | 114.09 | 14| 5,387,136,734 | 114.09 |20 509,153,134 | 115.14 50.13 10.58
Average for k=14~16 98.68 18.20
(iii) Summary
Sequences compared Achieving Sn=100%" | Achieving equal Ic®
9 P kemer  MEM, AP, |k-mer MEM; AP,
HS chr.15, MM chr.7 3772 : 62.0 1 | 158.8 : 304 1
HS chr.15, GG chr.10 4.9 1.9 1 | 278 9.7 1
HS chr.15, TN genome 9.1 53 1 98.7 18.2 1

? Details of the data are provided in the above table (i)

® Ratios for Ic were estimated using MEM,,, MEM 5, and MEM 4 (see Figure 2 and the above table (ii)).
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4.3.2 a-pairsvs. MEM or k-mer in prokaryote sequences

The marked difference between AP, and MEM;, or k-mer seeds seen for the vertebrate
orthologues above was much reduced when comparing prokaryote genomes. To achieve
an Sn of 100% and a nearly equal Ic, the MEM,/AP, and k-mer/AP,, (for k =7, 8, and 9)
seed ratios were often just slightly above unity and all were less than 10 (Table 4.3). The
small Ic, usually of the order of 10-100 (see Figure 4.4), also indicated a difficulty for
all the three seed models in mapping these distant prokaryote orthologues, and that
increasing copy numbers (&) would not result in as great an advantage over MEM;, and
k-mer as in the case of vertebrate orthologues.(cf.-Figures 4.2 and 4.4). Because these
prokaryote genomes are 10 o sevefal hundréds times smaller than the vertebrate
sequences compared (Table 4.1), the re;ul}_:gz-lr}_ié? sugges‘.[ that, while 4P, seeds are more
efficient than MEM, and k-mer seeds i;iag:._-detecting both vertebrate and prokaryote

orthologues, this efficiency gain is coﬁsiderably greater in larger-scale comparisons.
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(A) Mpn vs. Mge: Sn
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(G) Mpn vs. Bbu: Sn (H) Mpn vs. Bbu: Ic
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Fig. 4.4 Sn or Ic vs. total number of seeds generated using 4P,, MEM;,, or k-mer in the comparison of
prokaryote genomes (dataset B).
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Table 4.3 MEM;, or k-mer seed to AP, seed ratio at 100% Sr or an nearly equal Ic for detecting
prokaryote orthologues (dataset B).

(i) Sn
S d Parameters and seed# generated at 100% Sn A. Seed#(k -mer)/Seed#(4P )
equences compare k-mer MEM, AP, B. Seed#(MEM, )/Seed#(4P )
Mo, Mee sonomes k=8 k=3 o= 34 A= 7.16
p, Mees Seedf = 37,465,508 | Seed# = 26,656,835 | Seed# = 5,232,900 |B= 5.09
k=7 k=7 a=411 A- 237
Mpn, Rpr genomes
Seed# = 209,202,042 | Seedt = 151,581,922 | Seedt = 88221457 |B= 1.72
k=7 k=7 a=157 A- 580
Mpn, Buc genomes
Seed# = 137,217,332 | Seed# = 98,641,496 | Seedt# = 23,652,853 |B= 4.17
Mo Bbs semomes k=7 k=7 =367 A- 283
P, Bou 8 Seed# = 197,838,930 | Sced# = 141,975,543 | Seedt = 69,785,157 |B= 2.03
k=7 k=17 a=420 A= 157
Mpn, Ctr genomes
Seed# = 148,041,782 | Seedt = 108,666,713 | Seedt = 94,306,140 |B= 115
Mpn, Tac genomes k=7 k=7 @= 235 A= 276
P, fac g Seed# = 165,652,229 | Seed# = 123,668,040 | Seed# = 60,013,345 |B= 2.06
(i) Ic

(A) Mpn genome vs. Mge genome

k| Seed#(k-mer) Ic k| Seed#(MEM,) Ic o | Seed#(AP ,) Ic Seed#(k -mer)/Seed#(4AP ,) Seed#(MEM, )/Seed#(AP ,)
9] 10,808,673 13545 19| 7,646,186 13545 | 34 5,232,900 136.98 2.07 1.46
8| 37,465,508 206.84 | 8] 26,656,835 206.84 | 200 | 32,954,863 | 208.80 1.14 0.81
7] 130,118,311 |[250.46 | 7| 92,652,803 250.46 | 550 | 92,234,567 | 252.25 1.41 1.00
Average for k=7-9 1.54 1.09
(B) Mpn genome vs. Rpr genome
k| Seed#(k-mer) Ic k| Seed#(MEM,) Ic o | Seed#(4P,) Ic Seed#(k -mer)/Seed#(AP ,) | Seed#(MEM, )/Seed#(A4P ,)
9| 15,850,543 37.35 |9] 11,439,656 3735 50 9,947,265 38.47 1.59 1.15
8| 57,620,120 69.24 | 8| 41,769,577 69.24 | 180 | 37,606,998 | 69.22 1.53 1.11
7] 209,202,042 | 115.50 | 7] 151,581,922 | 115.50 | 620 | 134,718,171 | 115.60 1.55 1.13
Average for k=7-9 x 1.56 1.13
(C) Mpn genome vs. Buc genome
k| Seed#(k-mer) Ic k| Seed#(MEM,) Ic a | Seed#(4P,) Ic Seed#(k -mer)/Seed#(4P ,) | Seed#(MEM,)/Seed#(4P ,)
9] 10,830,804 36.15 |9] 7,743,848 36.15 40 5,620,685 36.43 1.93 1.38
8| 38,575,836 67.50 | 8| 27,745,032 67.50 | 157 | 23,652,853 | 68.94 1.63 1.17
7| 137,217,332 ] 109.15 | 7] 98,641,496 109.15 | 500 | 78,596,947 | 109.36 1.75 1.26
Average for k=7-9 I-E 1.77 1.27
| £l =
(D) Mpn genome vs. Ctr genome ] 1 |
k| Seed#(k-mer) Ic k| Seed#(MEM;) Ic o | Seed#(4P ,) Ic Seed#(k-mer)/Seed#(AP ,) | Seed#(MEM, )/Seed#(4P ,)
9| 15,755,379 3873 9| 11,262,885 38.73 55 9,716,666 39.70 1.62 1.16
8| 55,863,387 71.76 | 8| 40,108,008 71.76 | 190 | 35,263,107 | 72.23 1.58 1.14
7| 197,838,930 | 119.85 | 7| 141,975,543 | 119.85 | 650 | 123,433,031 [ 120.60 1.60 1.15
Average for k=7-9 1.60 1.15
(E) Mpn genome vs. Bbu genome
k| Seed#(k-mer) Ic k| Seed#(MEM;) Ic o | Seed#(4P ,) Ie Seed#(k -mer)/Seed#(AP ,) | Seed#(MEM, )/Seed#(4P )
9| 10,476,247 3195 9| 7,674,858 31.95 35 7,257,329 32.12 1.44 1.06
8] 39,375,069 61.74 8| 28,898,822 61.74 | 130 | 28,371,621 61.93 1.39 1.02
7] 148,041,782 | 106.89 | 7| 108,666,713 | 106.89 [ 460 | 103,489,389 | 106.91 1.43 1.05
Average for k=7-9 1.42 1.04
(F) Mpn genome vs. Tac genome
k| Seed#(k-mer) Ic k | Seed#(MEM;) Ic o | Seed#(4P ,) Ic Seed#(k-mer)/Seed#(4P ,) | Seed#(MEM, )/Seed#(4P ,)
9| 10,658,274 22.00 |9 7,931,466 22.00 33 7,531,808 22.19 1.42 1.05
8| 41,984,189 4540 8] 31,325,915 45.40 | 120 | 29,473,289 [ 45.69 1.42 1.06
7] 165,652,229 85.93 | 7| 123,668,040 85.93 | 460 | 119,581,616 | 86.43 1.39 1.03
Average for k=7-9 1.41 1.05

(iii) Summary

Achieving Sn=100%" | Achieving equal /c®
Sequences compared

k-mer MEM; AP,|k-mer MEM, AP,
Mpn genome, Mge genome | 7.16 5.09 1 | 154 : 1.09 1
Mpn genome, Rpr genome | 2.37 1.72 1 | 156 : 1.13 1
Mpn genome, Buc genome | 5.80 4.17 1| 1.77 @ 1.27 1
Mpn genome, Bbu genome | 2.83 2.03 1 160 : 1.15 1
Mpn genome, Ctr genome | 1.57 1.15 1 | 142 : 1.04 1
Mpn genome, Tac genome | 2.76 2.06 1 | 141 1.05 1

 Details of the data are provided in the above table (i).

® Ratios for Jc were estimated using MEM;, MEMy, and MEM, (see Figure 4.4 and the above table (ii)).
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4.3.3 a-pairsvs. MUM or MAM

As alluded to earlier, o~pairs can be considered as a conceptual extension of MUMs
with the removal of the uniqueness constraint. It was therefore of interest to compare
AP, with MUM,, and with MAMj (the maximal almost-unique match), which extends the
one-to-one mapping of MUM; to one-to-many mapping (i.e., one-side uniqueness,
Delcher et al. 2002). Note that, besides one-side or two-side uniqueness, both MUM,
and MAMy, like MEMy, also impose a length constraint (k).

Table 4.4 shows the best Sn for the two datasets (Table 4.1) that could be achieved
with MUM;, and MAMy, i.e., with MUM, and MAM, where matches of all lengths (i.e.
k=1) were considered. The results showed that, as the evolutionary distance from human
increased from mouse to chicken 40 pufferﬁsh the best possible Sn for MUM;
decreased, and for the highly dlverged bacterla genomes, it dropped to below 40%.
Removing the unique mapping-on one 51(11‘6 as|in. MAMj, resulted in a considerable
improvement in Sn, but not to an’ exteht that Would be useful in practice, especially for
distant genomes. In comparison, AP, achiev.ed é similar Sn and Ic to MAM, (Table 4.5)
at a very small « (3-5), and, unlike MUM; and MAM;, could reach 100% Sr with a
moderate or manageable « (see below for the scalability of o~pairs), even for
prokaryote species that have diverged for more than 4000 million years (Table 4.1B).
Thus, by tuning copy number instead of length, the potential to map moderately, or even
very, distant genomes seems much greater with o~pairs than with length-based seeds,
although it remains to be determined what /c value would be large enough to map
highly distant orthologues in the post-seeding processes without the aid of protein

sequence comparisons.
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Table 4.4 From MUM/MAM to o~pairs: improving sensitivity by increasing o.

Sn(MUM,)*  Sn(MAM,)" Sn,ot (APy)°
(=Sn(4P>))

Sequences compared
~Sn(MAM,) Sn=100%

HS chr.15, MM chr.7 100.0% 100.0% 100.0%,0=2  o=2
HS chr.15, GG chr.10 95.9% 98.1%  99.0%,0=3 =31
HS chr.15, TN genome 72.3% 81.6%  83.9%,0=4 0=1252
Mpn, Mge genomes 79.0% 87.5% 88.4%,0=5 o=34
Mpn, Rpr genomes 25.1% 359% 37.8%,0=3 o411
Mpn, Buc genomes 33.2% 48.5% 49.3%,0=4 o=157
Mpn, Bbu genomes 25.5% 33.0% 33.9%,0=3 =367
Mpn, Ctr genomes 29.0% 36.4% 39.1%,0=3 0=420
Mpn, Tac genomes 16.6% ~ ©2.30.6% 31.9%,0/4 =235

* Sn achieved using MUM;, (k = 1) seeds, whichsate equivalentto AP, (the default value of k¥ in MUMmer
is 20).

® Sn achieved using MAM; (k > 1) seeds. For the-oﬁl_g—té_—rpany mappings, the reference sequences (HS chr
15 and the Mpn genome, respectively, for Da:ltasié'ﬂ%' and B) wete treated as the unique side for the
comparisons. | | 11

¢ Sn achieved using AP, at the specified. g value. ; |
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Table 4.5 From MUM/MAM to a-pairs: improving Ic by increasing c.

Ie(MUM)* b Ic, at(APy)
Sequences compared _ Ic(MAM,) -
(=Ic(AP>)) ~le(MAM,)! =20
HS chr.15, MM chr.7 1493.5 1603.0 1663.1, =3  2260.0
HS chr.15, GG chr.10 323.0 357.3 377.3, o=3 555.7
HS chr.15, TN genome 51.7 68.8 73.9, o=4 115.1
Mpn, Mge genomes 62.7 78.7 83.9, =3 120.3
Mpn, Rpr genomes 4.7 6.6 7.4, =3 24.0
Mpn, Buc genomes 5.8 10.0 11.0, o=4 25.6
Mpn, Bbu genomes 4.0 54 5.9, =3 23.1
Mpn, Ctr genomes 5.1 6.8 7.5, =3 23.8
Mpn, Tac genomes 2.1 4.1 4.5, o=4 16.1

# Ic achieved using MUM;, (k > 1) seeds, which are equivalent to'4P,.
® J¢ achieved using MAM, (k > 1) seeds. Eof the one-to=miany mappings, the reference sequences HS
chr.15 (dataset A) and the Mpn genome (database'B) weteitreated:as the unique side for the comparisons.

¢ Ic achieved using AP,, at the specified avalue! :-n

¢ At an Ic value close to Ic(MAM,). [l &

4.3.4 The number of a-pairsincreasesiinearly with a

A striking property, and a great practical advantage, of o~pairs is that their number
increases linearly as « increases (Figure 4.5). This linear relationship holds for all the
comparisons we made, including those made on the vertebrate dataset (Figure 4.5),
those on the prokaryote genomes (Figure 4.6 and Table 4.6), and those made on several
self-comparisons of diverse genomic sequences (data not shown). In fact, the R’
regression coefficient was so high (>0.99; Table 4.6) for these comparisons that we can
reliably estimate the number of added seeds when we increase the copy number by one:

i.e., if [AP,| is known, where |4P,| denotes the number of o~pairs at a specified o value,

we can estimate |APy+1| to be roughly (o/(0-1))x|4P,| (derivation in Table 4.6). Thus,
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the cost of enhancing the sensitivity by increasing the copy number in the o~pairs seeds
is considerably smaller than that of enhancing the sensitivity by decreasing k in the
length-based seeds, since the number of MEM; or k-mer pairs grows exponentially as

the word length k£ decreases (Kurtz 2001, Kent 2002).
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Fig. 4.6 Number of a-pair seeds as a function of o for the comparisons of prokaryote
genomic sequences. The results of the linear regression analysis for each comparison
are presented in Table 4.6.
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Table 4.6. Results of linear regression analysis for the number of AP, vs. a.

Sequences compared * R’ m®
HS chr.15, MM chr.7 0.9994 26099093
HS chr.15, GG chr.10 0.9990 9620470
HS chr.15, TN genome  0.9995 29431377
Mpn genome, Mge genome 0.9998 169095
Mpn genome, Rpr genome 0.9989 220301
Mpn genome, Buc genome 0.9985 158978
Mpn genome, Bbu genome 0.9993 193531
Mpn genome, Ctr genome 0.9993 229764
Mpn genome, Tac genome 0.9962 262727

“ Double-strand DNA comparisons were performed. For each comparison, both strands

of the smaller sequence were compared to the.forward strand of the longer sequence,
e.g., both strands of HS chr.154(100-Mb) wereycompared to the forward strand of MM

chr 7 (145 Mb).
® The regression model used is IAPaI m: _{-_a 1) for o 2 .1000. From |4P, = m (o-1),

we derived that [AP 4| = m (at+1-1) = 11110{ (ma/ m (a—l))><m (arl) = dl(0r1))X|AP,.

Thus, we can estimate |[AP 1] if |AP0,|_ and'arare known.
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Chapter 5

Extending a-markers/a-pairs to discontiguous

seeding models

5.1 Introduction

Recently, there have been advances in the k-mer method (Brown et al. 2004; Batzoglou
2005). One notable advance was the use of discontiguous seed, which computes only &’
letter matches of each k-mer seed Where'k'<k. The idea of using discontiguous patterns

of matching bases has been explored in order/to'enhanee the sensitivity and/or speed of

N

homology detection, such as detecting colc-_ﬁng regions: by ignoring wobble base pairs,
(Kent and Zahler 2000), ﬁnding. l.mg.apped_ alignments with frequent substitutions by
randomized seeding (Buhler 2001), and searching for homology by the PatternHunter
method (Ma et al. 2002), which allows seed optimization and multiple seed models (Li
et al. 2004). In principle, the ormarker method, like the k-mer method, can be extended
to use discontiguous seeds. In this chapter, we will present a method to implement
discontiguous seeding models for the o~marker method and then present the experiment
results of orthology seeding using the same datasets mentioned in chapter 4. According
to the results, some discontiguous seeding models, such as the wobble-aware model

(Kent and Zahler 2000), achieved significant improvements in sensitivity/specificity
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trade-off.
5.2 Methods
5.2.1 Discontiguous a-markersand a-pairs
5.2.1.1 Notations of discontiguous seeds of maximal length
Instead of using fixed-length seeds, the a-marker method uses maximal-length seeds. So
we have to define notations for describing discontiguous seeds of maximal length. In
Ma et al. (2002), they used binary strings to denote fixed-length discontiguous seeds (or
called spaced seeds). In the binary strings, ‘1_’._ denotes a required letter match and 0’
denotes a “don’t-care” letter position._lnxl ad@itjon; the. numbers of ones in the binary
strings are defined as weights (Ma etql;‘?OZ) .in contrast to the lengths (or spanning
lengths) of the binary strings. For'fe'xa.r;nf)le, a 5—rﬁer: e>.<act match is represented as 11111,
where both the weight and length of 11111 are five. A spaced seed, which requires five
letter matches and two “don’t care” letters of positions 4 and 6, is represented as
1110101, where its weight is five and its length is seven.

To describe discontiguous seeds of maximal length, we borrow the aforementioned
notations and add some symbols from regular expressions. First we can add parentheses
“()” in the seed model strings to mark substrings. Then we can add the superscript star

symbol < following the parentheses to denote the string in the preceding parentheses

can repeat zero, one, or many times. For example, 1(1)* denotes exact matches of length
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>1 like 1, 11, 111, 1111, etc., and 1(011)* denotes discontiguous matches of length > 1
like 1, 1011, 1011011, etc.. Now the new notations are sufficient to describe
discontiguous seeds of maximal length.

5.2.1.2 Reusing the a-marker method to gener ate discontiguous wobble seeds

In the WABA (Wobble-Aware Bulk Aligner) program of Kent and Zahler (2000), they
proposed the use of seed model 11011011 of weight 6 to search homologous coding
sequences owing to rapid divergence in the third, “wobble” positions of most codons,
i.e., the 110 pattern. Following thistidea, we can design many discontiguous seeds of
fixed-lengths based on the 110 pattern,___sucsh as 1 01‘101 101 of weight 6, 1101101101 and

1101101101 of weight 7, 11011011011 anJﬁ:l-‘(illOllOllOl of weight 8, etc.. Instead of
7 i - |

listing a lot of such fixed-length 'fséec.lic,,. we can :Smpmarize them as 110-based seeds of
maximal length. In the following, we will reuse the a-marker method in chapter 4 with
slight modifications to generate these 110-based seeds of maximal length with copy
number constraint.

Since the a-marker method only cope with the exact matching scheme, first we
need to transform the 110-discontiguous matching scheme into all possible reading
frames of the exact matching scheme by ignoring the positions with ‘0’ label. For

example, given a sequence S = “123456789%abcadb”, if we read S from the first position

using the pattern read-read-ignore that corresponds to 110, we will have §' =
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“124578abad”; if we read S from the second position using the pattern read-read-ignore,
we will have % = “235689bcdb”; if we read S from the zero position using the pattern
read-read-ignore, we will have S° = “134679acab”. Obviously, any discontiguous
subsequence of the pattern (1 10)* in S will constitute an exact match in either S°, S', or
S?. However, the reverse will not always hold. For example, “ab” in ' exactly matches
“ab” in S°, but the corresponding subsequences in S are “ab” and “adb”, respectively,
which will not constitute a discontiguous match. To solve this problem, we assign a
binary number 7 to each letter 1 of 8% 5", and §'2, where =0 indicates u corresponds to

the first letter of pattern 110 i, #=1 indicates zt'certesponds to the second letter of

. . = | 8 e
pattern 110 in S, and two letters ‘with the"lfame label 7 indicates the same position in

pattern 110. Let 7= S*#S'#5%, Wh'fe're.‘i#’ is a spééigl éymbol to separate sequences. We
can determine whether or not an exact match (posT1, posT2, len) of T corresponds to a
discontiguous match of S by checking whether or not the r labels of posT1 and posT2
are equal. In practice, we design the following function to transform a position from the
coordinate of T to the coordinate of § and the position’s » label is also acquired in the
function. Let /=0, 1, or 2 denote the number of reading frame, posT denote a position in
T and posS denote the correspondent position of posT in S.

posS =3xXqg+r+f, (5.1)

0 iff =0,

here g = (posT —6)/2, r=(posT —6) mod 2, and =1
where g = (pos )12, r=(pos )mod 2, an {1 iff=12.
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Meanwhile, it is simple to generate S from S by skipping the (f+2 mod 3)th base
periodically for /=0,1,2. Thus, the 110-discontiguous matching problem of S can be
transformed into the contiguous matching problem of 7. The positions of exact matches
in T can trace back to the corresponding positions in S by using Equation 5.1.

The steps for generating wobble-aware a-pairs are almost the same as the steps for
generating exact a-pairs in chapter 4, except the preprocessing step and the
postprocessing filter by r label checking. In the preprocessing step, we need to
transform each input sequence to_the three ree_lding frames and concatenate them into
one sequence. Then, we build the enhe_l_nc?d S},lf-flx ‘array. for the concatenated sequence.
Next, bottom-up traverse the enhanced Isuf%;(érray and generate the MEMs constrained
by copy number c<a as mentioned ip isection 4.I2'.2: In the postprocessing step after the
MEM are generated, we only report MEMs whose two string instances starting from
positions of the same r label to avoid the matches with gaps. The reported MEMs are
exactly all the discontiguous wobble-aware seeds with a copy number constraint. If we
want to generate discontiguous wobble-aware seeds with a weight constraint, the steps
are the same as the above except we generate MEMs constrained by weights, which
correspond to lengths in the transformed sequences and lcp values mentioned in section

4.2.2. Also, we can specify both an upper bound of copy numbers and a lower bound of

weight/length to generate more complex a-pair seeds by checking both the sizes and Icp
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values of Icp intervals in this step of MEM generation.

In addition, the seed models of the discontiguous wobble-aware seeds generated
above will cover all variations based on pattern (110)*, including (110)*11 and
10(110)*1 for even weight, and (110)*1 and 1(011)* for odd weight. This is a different
feature from discontiguous wobble-aware seeds of fixed length.

5.2.2 Evaluation of orthology seeding

To evaluate the ability of different types of seeds, including contiguous and
discountiguous matching schemes, to detect _o_rthologues, we extended the evaluation
measure: seeding sensitivity (Sn) desc_r_ib(?ld 1n s\ectzion 4.2.3 and added a new measure:

an

seeding specificity (Sp) to make thle gs?;l-ﬁlétion more complete. First, we used
: 'S ||V
orthologues (i.e., orthologus gene pai.ris) from EflSe;nbl orthology (Hubbard et al. 2007)
or COG (Tatusov et al. 2003) as the answers of orthology detection and the genes that
occur in the orthologues are called test genes. Then we defined non-orthologues as the
cross-species test gene pairs that are not orthologues. After that, we used a criterion,
called r-seed test, to check whether a gene pair is predicted as an orthologue or not. A
gene pair is said to be a positive prediction under z-seed test if this gene pair contains at
least ¢ nonoverlapped seeds, where a seed denotes a pair of two identical subsequences

without indels and two seeds are said to be overlapped if they are overlapped at both

sides of the two compared sequences and can be merged into a longer seed without
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introducing any gap. A gene pair is said to be a negative prediction under z-seed test if
this gene pair contains at most #-1 nonoverlapped seeds. Let TP denote the number of
orthologues that contain at least ¢ nonoverlapped seeds, FP denote the number of
non-orthologues that contain at least # nonoverlapped seeds, TN denote the number of
non-orthologues that contain at most #-1 nonoverlapped seeds, and FN denote the
number of orthologues that contain at most #-1 nonoverlapped seeds, we define seeding

sensitivity (Sn) and specificity (Sp)under #-seed test as

Sn=100%xTP/(IP+ FN) , and

Sp =100%% TN(EN-+ FP)..

To better understand the sensitiVth}.}%é;iﬁcity trade-offs among parameters for
1l

different seeding methods, we pletted! I:{OC (Re',cejlve'r Operating Characteristic) curves
(Fawcett 2004), which use Sn as the x-axis .and. 1-Sp as the y-axis, for each experiment
in the results.
5.3 Results
In this section, we used ROC curves and figures of colinear identities vs. total number
of seeds to compare three types of discontiguous and contiguous seeding methods,
including discontiguous wobble-aware seeds of maximal length, spaced k-mer seeds,

and contiguous seeds of maximal length. Discontiguous wobble-aware seeds of

maximal length that we used consist of wobble-aware a-pairs and wobble-aware MEMs
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mentioned in section 5.2. Spaced k-mer seeds that we used include WABA-like

110-based seeds (Kent and Zahler 2000), Choi’s good spaced seeds for homology search

(Choi et al. 2004), and the alternative pattern (10)" of fixed length. The detail patterns

and weights of the spaced k-mer seeds we used are listed in Table 5.1. Contiguous seeds

of maximal length that we used are composed of exact a-pairs and exact MEMs

mentioned in section 4.2. The datasets we used in the following experiments are listed

in Table 4.1.
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Table 5.1 Spaced k-mer seeds used in this study.

(A) Choti's good spaced seeds

SeedPattern Weight SpanLen
111010110100110111 12 18
11101011001100101111 13 20
111011100101100101111 14 21
11110010101011001101111 15 23
111100110101011001101111 16 24

(B) Waba-like 110-based spaced seeds

SeedPattern Weight SpanLen
11011011011011011 12 17
1101101101101101101 13 19
11011011011011011011 14 20
1101101101101101101101 15 22

11011011011011011014011 . 16 23

(C) Spaced seeds of altematiriptﬁaftem 1oy

SeedPatterhi T . Weight SpanLen
10101010101010161010101 W w2 23
101010101010101010T010101 = - 13 25
101010101010101010101010101 14 27
10101010101010101010101010101 15 29
1010101010101010101010101010101 16 31

5.3.1 Comparisons of ROC curves for wobble-aware a-pairYMEMs,
spaced k-mer seeds and exact a-pairsSMEMSs

In this section, we will compare the sensitivity-specificity trade-offs among parameters
of different seeding methods for the vertebrate and prokaryote datasets described in

Table 4.1 using ROC (Receiver Operating Characteristic) curves (Fawcett 2004). The
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seven seeding methods used in this study are summarized in Table 5.2. In Table 5.2, we
combine a-pairs (denoted as AP(a)) with maximal unique matches (denoted as MUM(k))
because they are both copy number-based, complement to each other in terms of the full
range of specificity, and can be generated by traversing the enhanced suffix array once

as mentioned in sections 5.2.1 and 4.2.2.

Table 5.2 Features of the seven seeding methods used in this study.

Maximal or Weight/Length Copy number

Seeding method Matchinggtigme Fixed length contraint constraint
Exact MEM(k) Contiguous Maximal Yes No
Exact AP(a )JtMUM(k) Contiguous’ W Maximal | Yes Yes
. = -] (for a=2)
Discontiguous [ : :
1 - | 2 i . Y N
Waba spaced mode (110-based) _1xedl es 0
Discontiguous L2
Alt. spaced model (102based) .le,ed Yes No
. Discontiguous ;
Choi's spaced model (Choi's selection) Fixed Yes No
Discontiguous .
Wob. MEM(k) (110-based) Maximal Yes No
Discontiguous . Yes
) +
Wob. AP(a )+MUM(k) (110-based) Maximal (for a=2) Yes

As shown in Figure 5.1, for human chr.15 vs. pufferfish genome, we plotted ROC
curves of the seven seeding methods (Table 5.2). For the contiguous matching scheme,
the ROC curve of exact AP(a)+MUM(k) were significantly closer to the upper left than

the ROC curve of exact MEM(k) in 1,2,3,5,10,20-seed tests, which means incorporating
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copy number constraints to contiguous seeding methods can achieve not only higher
sensitivity but also higher specificity. To measure the quantity of differences for ROC
curves, we computed the AUC (Area Under ROC Curve) values for ROC curves
(Fawcett 2004) that have full ranges of specificity (i.e., from 0 to 1) of the two datasets
(Table 4.1) and showed the results in Table 5.3. For example, in Figure 5.1A, the AUC
values of exact AP(a)*MUM(k) and exact MEM(k) are 0.837 and 0.703 respectively,
where the difference is 0.134.

For the discontiguous matching scheme,_ we first compared the three kinds of
spaced k-mer seeds of weights 12, 137"14}.’ 1%, _\an(‘i 16 (Table 5.1). In Figure 5.1A, we
found WABA-like spaced seeds perfonlne%:é%tér than Choi’s spaced seeds, and spaced

: '3 |
seeds of alternative pattern (IO)x'fper.fio.rmed thé 'W:Ol‘.St. This is related to that we used
orthologous gene pairs as the benchmarks and they always contain coding sequences,
where the pattern 110 is designed for coding sequences (Kent and Zahler 2000). Such
observations are concordant to the results of finding optimal seeds for homologous
coding regions of Brejova et al. (2004). As for Figure 5.1B-F, the results of spaced
k-mer seeds are consistent with the corresponding results in Figure 5.1A.

For discontiguous seeds of maximal length, the ROC curve of wobble-aware

AP(a)+*MUM(k) outperformed all the other seeding methods in Figure 5.1 and the ROC

curve of wobble-aware MEM(k) was highly overlapped with the ROC curve of
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WABA-like spaced seeds. The AUC values of wobble-aware AP(a)+MUM(k) and
wobble-aware MEM(k) are 0.961 and 0.930 respectively in Figure 5.1A, where the
difference is 0.031. This reveals that incorporating copy number constraints to
discontiguous wobble-aware seeding can achieve both higher sensitivity and higher
specificity.

The ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed
tests for human chr.15 vs. chicken chr.10 and pufterfish genome are shown in Figure 5.2
and Figure 5.3, which showed similar adygntages of incorporating copy number

constraints to contiguous and.discontiguous seeds ofimaximal length.

|

T

-

-:'. ¥ i . 1 :
Table 5.3 List of AUC (Area UnderRO€«Curve) values of the exact and wobble-aware

matching schemes

4,

4

(A) Exact matching scheme

1-seed test 2-seed test 3-seed test 5-seed test 10-seed test 20-seed test
AP,  MEM, AP, MEM, AP, MEM, AP, MEM, AP, MEM, AP,  MEM,
HS chr.15, MM chr.7 | 0.9949  0.8657 | 0.9985 0.8164 | 0.9974 0.7743 | 0.9868 0.7304 [ 0.9609 0.6736 | 0.8740  0.6351
HS chr.15, GG chr.10 | 0.9272  0.8499 [ 0.9061 0.8031 | 0.8763 0.7606 | 0.8243  0.7058 | 0.7494  0.6351 | 0.6671  0.5840
HS chr.15, TN genome | 0.8368 0.7028 | 0.7898  0.6519 [ 0.7601  0.6209 | 0.7107 0.5930 | 0.6477 0.5610 | 0.5924  0.5463
Mpn, Mge genomes 0.8891 0.8874 | 0.8803 0.8820 | 0.8729  0.8722 | 0.8479 0.8450 [ 0.7782  0.7584 | 0.7052  0.6934
Mpn, Rpr genomes 0.6330  0.6232 | 0.5998 0.6052 | 0.5993  0.6009 | 0.5963  0.5930 | 0.5865 0.5893 [ 0.5823  0.5841
Mpn, Buc genomes 0.6266  0.6220 | 0.6072 0.6152 | 0.5932  0.5845 | 0.5787 0.5801 [ 0.5704 0.5559 | 0.5536 0.5467
Mpn, Bbu genomes 0.5934  0.5999 | 0.6076 0.6017 | 0.6013  0.5832 | 0.5852 0.5815 [ 0.5775 0.5727 | 0.5745 0.5630
Mpn, Ctr genomes 0.6073  0.5897 | 0.6023  0.5878 | 0.6000 0.5871 | 0.5905 0.5797 | 0.5788  0.5738 | 0.5629  0.5569
Mpn, Tac genomes 0.5492  0.5497 | 0.5638 0.5571 | 0.5723 0.5677 | 0.5717 0.5553 | 0.5659 0.5512 | 0.5670 0.5654

Sequences compared

(B) Wobble-aware matching scheme

1-seed test 2-seed test 3-seed test 5-seed test 10-seed test 20-seed test
AP, MEM, AP, MEM, AP, MEM, AP, MEM, AP, MEM, AP, MEM,
HS chr.15, MM chr.7 | 0.9994 0.9877 | 0.9997 0.9696 | 0.9999 0.9525 | 0.9969 0.9121 [ 0.9713 0.8382 | 0.8982 0.7473
HS chr.15, GG chr.10 [ 0.9698  0.9725 [ 0.9571 0.9516 | 0.9417 0.9358 | 0.9231 0.9039 | 0.8549 0.8182 [ 0.7557 0.7144
HS chr.15, TN genome | 0.9612  0.9295 | 0.9343  0.8846 | 0.9202 0.8557 | 0.8755 0.8003 | 0.7901 0.7021 | 0.6932 0.6295
Mpn, Mge genomes 0.9346  0.9395 | 0.9291 0.9308 | 0.9192 0.9227 | 0.8969 0.8918 | 0.8325 0.8230 | 0.7257 0.7161
Mpn, Rpr genomes 0.7233  0.7158 | 0.6926  0.6857 | 0.6702  0.6659 | 0.6355 0.6358 | 0.6161  0.6055 [ 0.6045 0.6061
Mpn, Buc genomes 0.7412  0.7290 | 0.7080 0.6887 | 0.6753  0.6653 | 0.6464  0.6257 [ 0.6028  0.5900 | 0.5749  0.5750
Mpn, Bbu genomes 0.7201  0.7021 | 0.6991 0.6805 | 0.6722  0.6591 | 0.6480 0.6384 | 0.6195 0.6065 | 0.5996 0.5799
Mpn, Ctr genomes 0.7148  0.7291 | 0.6828 0.6823 | 0.6601 0.6601 | 0.6285 0.6347 [ 0.6016  0.5888 | 0.5838  0.5780
Mpn, Tac genomes 0.6457  0.6422 | 0.6407 0.6320 | 0.6209  0.6242 | 0.6085 0.5998 [ 0.5878 0.5875 | 0.5802 0.5715

Sequences compared
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Fig. 5.1 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed
tests for human chr.15 vs. pufferfish genome.
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(A) 1-seed test
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(E) 10-seed test
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Fig. 5.2 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed

(B) 2-seed test
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(F) 20-seed test
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tests for human chr.15 vs. chicken chr.10.
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Fig. 5.3 ROC curves of the seven seeding methods (Table 5.2) using 1,2,3,5,10,20-seed
tests for human chr.15 vs. mouse chr.7.
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In Figure 5.4, we plotted AUC values vs. testing methods of the seven seeding

methods (Table 5.2) for the vertebrate dataset (Table 4.1A) to visualize the differences

between exact/wobble-aware AP(a)+MUM(k) and MEM(k).
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Fig. 5.4 AUC values vs. testing methods of the seven seeding methods (Table 5.2) for
the vertebrate dataset (Table 4.1A).
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5.3.2 Comparisons of colinear identities vs. total number of seeds for
wobble-aware a-pairssMEMs, spaced k-mer seeds and exact
a-pairYMEMs
Here we use another viewpoint to compare different seeding methods used in this study.
In Figures 5.5-7, we plotted Ic (defined in section 4.2.3) vs. total number of seeds
generated using the seven seeding methods in Table 5.2 and the exact k-mer seeding
method in the comparison of human chr.15._ vs:-mouse chr.7, chicken chr.10 and
pufferfish genome. For human chr. I57vs. {n011_§e_ ch.r.7 m, Figure 5.5, we found the curve
of wobble-aware AP(a) was closer to t,h;e u’%})er lgft thaq that of wobble-aware MEM(k),
and the curve of wobble-aware MEM(k) was cldse; tol the upper left than that of WABA
spaced models. This means less seeds are rt.equired for wobble-aware AP(a) to achieve
equal colinear identities per orthologues than that for wobble-aware MEM(k) and that
for WABA spaced models. Similar trends are found in Figures 5.6-7.

For spaced k-mer seeds, Choi’s spaced seeds performed better than WABA spaced
seeds in Figure 5.5, similar to WABA spaced seeds in Figure 5.6, and less than WABA
spaced seeds in Figure 5.7. But Choi’s spaced seeds performed less than wobble-aware

MEM(k) in Figures 5.5-7. As for spaced seeds based on pattern 10, they performed the

worst among the three kinds of spaced k-mer seeds we used in Figures 5.5-7.
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Comparing Figures 5.5-7A to Figure 5.5-7B, we found the curves of wobble-aware
AP(a) and exact AP(a) for human chr.15 vs. mouse chr.7 are of similar heights. The
curve of wobble-aware AP(«) is a little higher than that of exact AP(a) for human chr.15
vs. chicken chr.10. The curve of wobble-aware AP(«) is significantly higher than that of
exact AP(a) for human chr.15 vs. puffersih. This reveals that for the comparison of
distant genomes like human vs. fish, discontiguous wobble-aware seeds can perform
much better than contiguous seeds in orthology seeding. For the comparison of closer

genomes, the enhancement by discontiguous wobble-aware seeds is less profound.
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Fig. 5.5 Ic vs. total number of seeds generated using (A) several discontiguous seed
models and (B) several contiguous seed models in the comparison of human chr.15 vs.
mouse chr.7.

77



(A)

Colinear Identities per Orthologue (J¢)

(B)

Colinear Identities per Orthologue (J¢)

12001 =100 ——Wob. AP(a)
- -[- - W, /
B w=D Wob. MEM(k)
1000 — A— Waba spaced model
3 — © — Choi's spaced model
800 _ fw:/12 -4 w=12 — X- = Alt. spaced model
o ==
o -
] .- Tw=12
600=3 e - W
=) o -
w=lw P w=14 “w=13
W g misx)
d W=>i$' w=14
200 % ) 16_15
HS chr.15 vs. GG chr.10
O | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Number of Seeds (million)
1200 7 —e— Exact AP(@)
- -®- - FExact MEM (k)
1000 — & - Exact k-mer

—
—
—
—
—
—_

HS chr.15 vs. GG chr.10

0

200

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Number of Seeds (million)

Fig. 5.6 Ic vs. total number of seeds generated using (A) several discontiguous seed
models and (B) several contiguous seed models in the comparison of human chr.15 vs.

chicken chr.10.
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Fig. 5.7 Ic vs. total number of seeds generated using (A) several discontiguous seed
models and (B) several contiguous seed models in the comparison of human chr.15 vs.
pufferfish genome.
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Chapter 6

Discussion and conclusions

6.1 Discussion

Orthology seeding is the process used to locate pieces of sequence matches to detect
orthologous regions among genomes. By definition, orthologous regions are
homologous regions shared by two genomes from a speciation event, or, more
specifically, regions that have originated from a single ancestral genomic region in the
last common ancestor of the compared genomes (Kooin 2005). Because losses or
duplications of genes or genomic regions c.an occur after speciation, orthologous

relationships are not just one-to-one, but-may /become many-to-many or may even cease

— -
—

to exist (Theifen 2002). Thus, complete %?_“_rhology 1dentification necessarily involves
the consideration of co-orthologous re:gions, deﬁne_:_d astwo or more genomic regions in
the same lineage that are collectively orthdlogéus to one or more genomic regions in
another lineage due to a lineage-specific duplication (Koonin 2005). It therefore seems,
at least conceptually, that copy number-based seeding is intrinsically more capable of
capturing the ramifications of evolutionary processes than length-based seeding.
Furthermore, because orthologous relationships that have not yet experienced losses or
duplications following speciation tend to involve one-to-one mapping and
co-orthologous relationships tend to be only involve “several-to-several” mapping,
seeds of lower copy numbers should be more relevant to orthology detection than seeds
with higher copy-number. These considerations provided the basic ideas behind our

development of the upper bounded o~marker method, which also underscores the
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feasibility of using a highly streamlined method, such as UniMarker which is essentially
a special case of opairs at =2, for mapping relatively close genomes, such as human
and mouse (Liao et al., 2004).

Although the aforementioned copy number-based seed model is conceptually
simple, the complete, compact and efficient enumeration of the required, relatively
low-copy, word matches of any length is not. In this contribution, we showed that this
can be done in linear complexity (see Methods). Furthermore, we showed that copy
number-based seeds compared favorably with length-based seeds in seeding vertebrate
and prokaryote orthologues, although the extent of performance gain cannot be simply
explained by evolutionary distance or genome/chromosome size alone (Figures 4.2 and
4.4 and Tables 4.2-5). It is also not clear whetﬁér there'is a biological basis for the linear
growth of o~pairs (Figures 4.5¢6), but t_his hitherto, unobserved property of genomic
sequences nevertheless reveals an exlciti:'f?:g‘."f)otential _for scaling up to map distant
genomes and for investigating génome_ évol-l:l-tion.

Recently, there have been advances in ‘the &“mer method (Brown et al. 2004;
Batzoglou 2005). One notable advance was the use of discontiguous seed, which
computes only k' letter matches of each k-mer seed where k'<k. The idea of using
discontiguous patterns of matching bases has been explored in order to enhance the
sensitivity and/or speed of homology detection. In chapter 5, we designed discontiguous
wobble-aware seeds of maximal length to detect orthologues and demonstrated that we
can fulfill the design using enhanced suffix arrays with copy number constraints and
weight/length constraints. According to the results of ROC curves for the vertebrate
dataset in section 5.3.1, the advantages of incorporating copy number constraints to
contiguous or discontiguous wobble-aware seeds were profound. One challenging issue
of using discontiguous seeds of maximal length is the pattern design problem, which is
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more restricted than using discontiguous seeds of fixed length so far. It remains an open
issue to design discontiguous seeds of maximal length for noncoding sequence
comparison.

In addition, besides the pairwise comparison described above, it is straightforward
to use the o-marker method for self and multiple comparisons. One only needs to
modify the o-pairs generating step by selecting o~pairs from P(1,x;,0) and P(1,x,°,0)
where x# x;” for self comparison and from P(i,x;0) and P(jx;,0), x#x;, for multiple
comparison, where 1 < i < j < g and g denotes the number of compared genomic
sequences. Finally, it should be possible to incorporate copy number seeds into various
post-seeding processes in programs.such as the pairwise genome alignment tools
MUMmer3 (Kurtz et al. 2004) and"AVID (Bray et-al. 2003), the genome rearrangement
locator GRIL (Darling et al. 2004a), th§ _ml_ll.f_ip.le genome alignment tools MGA (Hohl
et al. 2002) and Mauve (Darlir_lg et al. 25?)4b), and the synteny-mapping UniMarker

method (Liao et al. 2004).

6.2 Conclusions

In the dissertation, we first proposed the UM method for synteny mapping of closely
related genomes. The UM method is highly efficient by its alignment-free design and
the whole synteny mapping process of giga-base genomes, such as human and mouse,
can be completed in a few hours on single desktop computer with ordinary CPU and
RAM. Second, we proposed the o~marker method for orthology seeding, generalized
from MUM and UniMarker, suitable for from closely related genomes to not closely
related genomes. Results from comparing to various length-based seeds in detecting the
Ensembl and COG orthologues for several vertebrate genomes/chromosomes and

prokaryote genomes of long evolutionary distances suggest that orthology seeding via
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copy number can achieve higher sensitivity and better efficiency than orthology seeding
via length. Furthermore, we extend the o~marker method to generate discontiguous
wobble-aware seeds of maximal length with copy number constraints. The comparative
results of ROC curves for human chr.15 vs. mouse chr.7, chicken chr.10, and pufferfish
genome showed that discontiguous wobble-aware o~pairs achieved significantly better

performances than spaced k-mer seeding methods tested.
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