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摘要 
 

週期性任務在多處理器上的排程是硬性即時環境下其中一個最受

矚目的問題，而其中包括令人熟知的制式多處理器排程，在制式多處

理器環境下，每個任務在一個處理器上的執行時間是等比例於該處理

器的運算能力，在以往的成果中，制式多處理器的線上排程只有合適

的近似解；在這篇論文，隨著任務可以遷移到不同的處理器，我們首

度提出 T-Ler 平面這個嶄新的模型，用來描述任務和處理器的行為，

並在T-Ler 平面上提出兩種最佳演算法以在制式多處理器上排程動態

優先即時任務，為了讓演算法更符合真實並減少本文切換，我們提出

了複雜度在多項式時間以內的演算法來保證一個 T-Ler 平面裡重新

排程的次數，由於任務遷移在 SOC 多核心平台下較為容易達成，我

們的結果也許可以應用到非對稱的多核心平台。 

 

關鍵字：即時，制式，多處理器，最佳，線上，演算法，預防，貪婪，

切 



Abstract

In hard-real-time environment, scheduling periodic tasks upon multipro-

cessors is one of the most popular problems where uniform multiprocessor

scheduling is a well-known one. In uniform multiprocessor scheduling, execution

time of each task in one processor is proportional to the computing capacity of

this processor. From previous works, there are only approximate feasible solu-

tions for on-line scheduling on uniform multiprocessors. In this thesis, with task

migration, we first present a novel model called T-Ler plane for uniform mul-

tiprocessors to describe the behavior of tasks and processors, and two optimal

algorithms based on T-Ler plane to schedule dynamic-priority real-time tasks

on uniform multiprocessors. To make it practical and reduce context switches,

we also present a polynomial-time algorithm to bound the times of rescheduling

or task migration in a T-Ler plane and give an experimental evaluation for it.

Since task migration is easier in SOC multicore processors, our result might be

applicable and adapted to many asymmetric multicore platforms.

Keyword: real-time, uniform, multiprocessors, optimal, on-line, algo-

rithm, precaution, greedy, cut.



Contents

1 Introduction 1

2 Definitions, Assumptions, and Feasibility Condition for Uniform Multipro-
cessors 12

2.1 Definitions and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Feasibility Condition for Uniform Multiprocessors . . . . . . . . . . . . . . . . . 14

3 Model and T-Ler Plane 17

3.1 P-fair and Fluid Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 T-Ler Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Definitions in One T-Ler Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 T-Ler Plane vs T-L Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Optimal Scheduling Algorithms for Uniform Multiprocessors 25

4.1 Precaution Greedy (PG) Scheduling Algorithm . . . . . . . . . . . . . . . . . . . 27

4.2 Precaution Cut Greedy (PCG) Scheduling Algorithm . . . . . . . . . . . . . . . 27

4.3 Proof of Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Experimental Evaluation 38

5.1 Input Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 PG and PCG Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusions 45

Bibliography 46

i



List of Figures

1.1 L-C plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 T-L plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Examples of EDF and PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 T-Ler plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 T-Ler Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 kth T-Ler Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 PG Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 PCG Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Example of PG Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Example of PCG Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Task Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Input Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Schedulability of EDF on uniform multiprocessors . . . . . . . . . . . . . . . . . 40

5.3 Schedulability of PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Schedulability of PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Performance Analysis of PG while Comparing to EDF . . . . . . . . . . . . . . 42

5.6 Performance Analysis of PCG while Comparing to EDF . . . . . . . . . . . . . . 42

5.7 The number of increasing cases between PCG and PG . . . . . . . . . . . . . . 43

5.8 Performance Analysis between PCG and PG . . . . . . . . . . . . . . . . . . . . 43

ii



Chapter 1

Introduction

Multi-core processor represents a major evolution in computing technology re-

cently [1]. Many operating systems are now benefiting from multi-core proces-

sors. It offers cost-effective technology rather than single-core processor and give

users the ability to keep working while running tasks in the background. Multi-

threaded applications also benefit from it and result in performance increases. It

has lots of advantages than single-core processors, so many enterprises support

it and develop many technologies.

Asymmetric multicore platform (AMP), which consists of lots of process-

ing units on one or several chips, is capable of executing the same instructions

on each processing unit with different performance levels. AMP may ease the

transition for software developers from platforms containing a few large, pow-

erful cores to platforms containing tens or hundreds of smaller, simpler cores

where parallelism exploiting will be required in order to improve performance.

Thus scheduling on AMP may be an important problem for current enterprises,
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where many people tried to adapt real-time tasks on this platform and to en-

hance the total utilization, reducing number of context switching, and improve

performance. Calandrino et al. [5] focused on the soft real-time scheduling on

AMPs. They implemented their work on both schedsim (Linux scheduler simu-

lator) and Linux kernel, supported periodic real-time tasks, and provided good

performance for non-real-time tasks in the presence of a real-time workload.

To schedule multi-core processor, we consider the architecture in hard-real-

time environment − multiprocessors, similar to multi-core processor. If we could

schedule on multiprocessors, the scheduling algorithm might be adapted on

multi-core processors. There are three major kinds of multiprocessor platforms

as follows.

Identical parallel machines: All the processors are identical and con-

tain the same computing power. Baruah [2] had presented a strong fairness

scheduling algorithm called P-fair, where each task is scheduled resources in

proportion to its weight and it is an optimal scheduling for identical multipro-

cessors. Due to its strong fairness, and quantum-based, it will reschedule many

times and have lots of context switches. Holman and Anderson [11] also dis-

cussed about P-fair and presented the idea of fluid schedule, where each task

executes at a constant rate, ideally but impractical because there will be too

much rescheduling. In 1969, Muntz and Coffman [17] had presented a level

algorithm for identical multiprocessors. They schedule the tasks in the highest
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level first until all the tasks finish their jobs. The tasks in the same level will

be scheduled on some processors and evenly share the computing power of the

processors. Dertouzos and Mok [8] presented Laxity and Computation plane

(L-C plane) as shown in Figure 1.1. The laxity of a task is a measurement of its

urgency, represented on the x-axis. The computation is the remaining execution

time, represented on the y-axis. Clearly, the task, T1, with zero laxity must be

executed immediately and without interruption.

Cho et al. [7] based on P-fair and L-C plane, extended their idea, created

Time and Local Execution Time Planes (or T-L planes) with time represented

on the x-axis and execution time represented on the y-axis, a token represents

task status, and token movement over time in T-L plane forms a line, as shown

in Figurer 1.2. T-L plane could show the execution behavior of tasks and make it

possible for us to envision that entire scheduling over time is just the repetition

of T-L planes, so that optimal scheduling in a single T-L plane implies optimal

scheduling over all. They provided Largest Local Remaining Execution Time

First (or LLREF) scheduling algorithm based on T-L plane and proved it is an

optimal on-line scheduling algorithm for identical multiprocessors. It reduces

the times of rescheduling, defines their own urgency task, and only invokes

the scheduler before the emergency of each task. Thus, the performance is

optimized.

Uniform parallel machines: Each processor is characterized by its own

3
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computing capacity, with the interpretation that a job that executes on a pro-

cessor of computing capacity s for t time units completes s×t units of execution.

Each task can migrate to all processors, execution requirement of task is a con-

stant, and execution time of task upon processors is proportional to the com-

puting capacity of each one. Horvath et al. [12] had extended the idea from the

level algorithm for identical multiprocessors to uniform multiprocessors. They

scheduled non-periodic tasks by level algorithm, used the idea of shared sched-

ule, and proved the minimal length schedule (or makespan problem). Gonzalez

and Sahni [3] had given the off-line optimal O(m log m) scheduling algorithm

with the sorted time and no more than (m − 1) preemptions, where m is the

number of processors.

There are many works on on-line scheduling upon uniform multiprocessors.

Hochbaum and Shmoys [10] presented a polynomial approximation scheme, try-

ing to let the last job finish as quickly as possible. In static priority on-line

scheduling, based on RM (Rate Monotonic) scheduling algorithm [15], Baruah

and Goossens [4] tried to adapt RM scheduling algorithm upon uniform multi-

processors, they based on the idea of greedy scheduling algorithm, gave higher-

priority jobs upon faster processors, and got an RM-feasibility test for this prob-

lem, which is the first nontrivial feasibility test for RM scheduling algorithm

upon uniform multiprocessors. In dynamic priority on-line scheduling, based

on EDF (Earliest Deadline First) scheduling algorithm [15], Funk et al. [9] pre-

sented a feasibility condition for periodic task upon uniform multiprocessors, all
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the sets of tasks and processors need to satisfy this condition to be schedulable.

We call it FG condition in this thesis. They also presented an efficient test to

determine whether any instance of hard-real-time jobs known to be feasible on

a particular platform can be scheduled by EDF to meet all deadlines upon an-

other platform. They derived a sufficient condition to verify a periodic task set

to successfully meet all deadlines when scheduled using EDF, and got a EDF-

feasible condition. However, no quick algorithm could schedule any feasible task

set under the FG condition. From the definition of AMP and uniform multipro-

cessor [5], we know the scheduling algorithm for uniform multiprocessor could

be adapted to AMP easily. Thus, if we could find a good scheduling algorithm

for uniform multiprocessors, this algorithm might also have high performance

on AMP to achieve better parallelism.

Unrelated parallel machines: There is an execution rate ri,j associated

with each task-processor ordered pair (Ti, Pj), with the interpretation that task

Ti completes (ri,j × t) units of execution by execution on processor Pj for t time

units. To minimize the makespan of this problem, Lenstra [14] presented a

polynomial algorithm with no longer than twice of optimum and a polynomial

approximation scheme, Jansen and Porkolab [13] also give fully approxima-

tion algorithm for this problem. Srivastava [18] presented a tabu search based

heuristic for minimizing makespan that can provide good quality solution for

practical size problem with a reasonable amount of computational time.

6
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In this thesis, we focus on dynamic-priority on-line scheduling for uni-

form multiprocessors. From introduction above, there were only approximately

feasible solution, EDF-feasible, and there is not an optimal dynamic-priority on-

line scheduling algorithm in terms of feasibility condition. Figure 1.3(a) shows

an example for EDF schedule in uniform multiprocessors, task T1 = (8, 10),

(execution time, deadline), T2 = (7, 10), processor P1 with speed = 1, P2 with

speed = 0.5, where P2 runs 50 percentage as fast as P1. Based on the FG con-

dition, the set of tasks and processors is feasible, but not using EDF-feasible.

At time 0, the deadline of T1 is equal to T2, we assign T1 to P1 and T2 to P2.

At time 8, T1 finishes its job, based on EDF, we assign T2 to P1. At time 10,

the remaining execution requirement of T2 is 1, T2 misses its deadline. This

example shows that even the set of tasks and processors is feasible, it might

miss deadline by EDF-feasible scheduling algorithm. However, the task set is

schedulable as shown in Figure 1.3(b) using our optimal scheduling algorithm,

the details will be discussed later.

Therefore, we would like to derive an optimal scheduling algorithm such

that for any task set satisfying the FG consition, it is always schedulable. To

derive an optimal scheduling algorithm, based on the concept of T-L plane

for identical multiprocessors, we create Time and Local Execution Requirement

plane (or T-Ler plane) for uniform multiprocessors. T-Ler plane can describe the

execution behavior of each task on uniform multiprocessors. It is different from

processor budget that processor budget consider about the work that processor
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can provide [16], but T-Ler plane is focus on the remaining work of each task.

To discuss the characteristics of uniform multiprocessors, we create a concept

of processor boundary in T-Ler plane. It is the critical boundary of processors,

where rescheduling might be needed when some tokens meet the boundaries.

With proper ”precaution” ahead to do the rescheduling, that is before current

task status might violate the FG condition, we can find the optimal scheduling

algorithm.

Based on T-Ler plane, we derive two optimal on-line scheduling algorithms,

the first one is Precaution Greedy (or PG) scheduling algorithm. To achieve

optimum, we always reschedule at some events precautionously before the FG

condition is violated. This is because it might not be schedulable if we do not

reschedule until the most urgent event occurs as the LLREF does. When we

reschedule, we always assign greedily the task with the largest local remaining

execution requirement the fastest processor. However, the number of reschedul-

ing might be indefinitely.

Based on PG, the second one is Precaution Cut Greedy (PCG) schedul-

ing algorithm. The difference between PCG and PG is when rescheduling, local

remaining execution requirement of some task will be equal to the computing

capacity of some processor. We can assign the task to the processor all the way

to the end of T-Ler plane without affecting the schedulability. PCG dramat-

ically decrease the times of rescheduling with a upper bound of n + 1 in one

10



T-Ler plane, where n is the number of tasks.

Our contributions are as follows:

• We introduce a novel abstraction for reasoning about execution behavior of

tasks and processors on uniform multiprocessors, called T-Ler plane.

• We first present an optimal on-line scheduling algorithm for uniform multi-

processors called Precaution Greedy scheduling algorithm. There were only

approximate feasible solutions for this problem.

• We present an optimal on-line scheduling algorithm for uniform multipro-

cessors called Precaution Cut Greedy scheduling algorithm, where the times

of rescheduling in one T-Ler plane is bounded within n.

The rest of this thesis is organized as follows. The next chapter introduces

the problem definitions and assumptions, and the feasibility condition on uni-

form multiprocessors. In chapter 3, we present a new model called T-Ler plane

for scheduling on uniform multiprocessors and describe the difference from T-L

plane. In chapter 4, we present the PG and PCG scheduling algorithms and

prove the optimality. We also derive the upper-bound for PCG algorithm in

one T-Ler plane. In chapter 5, we analyze the performance of our scheduling

algorithms. This thesis is concluded in chapter 6.
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Chapter 2

Definitions, Assumptions, and
Feasibility Condition for Uniform
Multiprocessors

Before we discuss the details of PG and PCG scheduling algorithms on uniform

multiprocessors, we introduce our task model.

2.1 Definitions and Assumptions

We discuss the problem that dynamic-priority scheduling of hard-real-time sys-

tems on a uniform multiprocessors platform of m processors with n tasks.

For system environment, we have the following definitions:

• On-line scheduling - makes scheduling decisions at each time-instant based

on the characteristics of tasks.

• Static scheduling - operates on a fixed set of tasks and produces a single

schedule fixed at all time.

12



• Dynamic-priority scheduling - executes tasks with arbitrarily priorities at

run-time

• Preemptive scheduling - allows task preemption at any time.

A processor Pi is characterized by speed or computing capacity, si, and

computing capacity in a period of time t. W.l.o.g., we assume s are indexed in a

decreasing manner: s1 = 1, si > si+1, 1 ≤ i < n, all the values are proportional

to speed, positive, and larger than zero. Si =
∑i

k=1 sk represents the sum of

speed from processor 1 to processor i. W.l.o.g., we assume m = n, that is the

number of tasks is equal to the number of processors, because when m > n,

the slower processors will never be used, and when m < n, we can add dummy

processors with speed equal to 0.

A task Ti = (ci, pi) is characterized by an execution requirement ci and a

period pi - all the tasks is periodic and generate a job at each integer multiple

of pi and each has an execution requirement of ci execution units and must

complete by a deadline equal to the next integer multiple of pi. We define

ui = ci/pi to represent the utilization of task i and Ci =
∑i

k=1 ck to represent

the sum of execution requirement from task 1 to task i.

For each task, we have the following assumptions.

• Periodic and the deadline is equal to period.

• Independent task - tasks do not share resources or have any precedences.

13



• Full migration - tasks are allowed to arbitrarily migrate across processors

during their execution.

As Funk and Goossens [9] presented, we define the work-conserving schedul-

ing algorithm in the following conditions:

• No processor is idled while there are active jobs awaiting execution

• If at some instant there are fewer than n active tasks awaiting execution,

then the active tasks are executed upon the fastest processors.

2.2 Feasibility Condition for Uniform Multiprocessors

Recalled there are many works on uniform multiprocessors, Horvath et al. [12]

presented the minimal length schedule for set of tasks and processors. Funk et

al. [9] had based on them and presented the feasibility condition upon uniform

multiprocessors. We introduce their theorems here and use the FG condition

to prove PG and PCG are optimal scheduling algorithms.

Theorem 1 (Horvath et al. [12]) The level algorithm constructs a minimal

length schedule for the set of independent tasks τ with service requirements

c1 ≥ c2 ≥ . . . ≥ cn on the processing system π = (s1 ≥ s2 ≥ . . . ≥ sm), m ≤ n.

The schedule length is given by

max

(
max
1≤i≤m

(
Ci

Si

)
,
Cn

Sm

)
(2.1)

14



Theorem 2 (Funk et al. [9]) Consider a set τ = {T1, . . . , Tn} of periodic tasks

indexed according to non-increasing utilization (i.e.,ui ≥ ui+1 for all i, 1 ≤ i <

n,where ui = ei

pi
). Let Ui =

∑i
j=1 uj for all i, 1 ≤ i ≤ n. Let π denote a system

of m ≤ n uniform processors with speeds s1, s2, . . ., sm, si ≥ si+1 for all i,

1 ≤ i < m. Periodic tasks system τ can be scheduled to meet all deadlines on

uniform multiprocessor platform π if and only if the following constraints hold:

Un ≤ Sm (2.2)

Uk ≤ Sk, for all k = 1, . . . , m. (2.3)

15
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Chapter 3

Model and T-Ler Plane

Now, we are ready to introduce our new model for scheduling tasks on uniform

multiprocessors.

3.1 P-fair and Fluid Schedule

In the fluid scheduling model, each task in the schedule executes at a constant

rate, but the cost of context switching and the times of rescheduling are sig-

nificant [11]. Based on fluid scheduling model, P-fair scheduling algorithm is

optimal in identical multiprocessors with the basic idea fairness. P-fairness is a

strong notion of fairness which ensures at any instant, the absolute value of dif-

ference between the expected allocation of execution and the actual allocation

of execution to every task always be strictly less than 1 (or fluid schedule) [6].

Our idea is also based on P-fair and fluid schedule and extends to uniform

multiprocessors.

We know P-fair is optimal in identical multiprocessors, to build an opti-

17



mal scheduling algorithm, we use the concepts of fluid schedule, fairness, and

urgency in P-fair, let the time quantum be as small as possible, and schedule

urgent task first. The urgent task means if we do not schedule the task to

execute right now, it will miss deadline. The idea of fluid schedule for identical

multiprocessors could also work on uniform multiprocessors because it considers

the minimum time quantum for each processor, and the computing capacity of

all processors could accumulate virtually, and then assign to every task based

on their execution requirements.

3.2 T-Ler Planes

From Chapter 1, we know T-L plane can present the behavior of tasks for

identical multiprocessors. In T-L planes, Execution Time is represented on the

y-axis, Time is represented on the x-axis. We replace Execution Time with

Execution Requirement, extend the model for uniform multiprocessors, and call

it Time and Local Execution Requirement planes (or T-Ler planes), based on

T-L plane and L-C plane [7, 8].

To build a 2D plane for uniform multiprocessors, as shown in Figure 2.1,

Ti arrive at time t1 and its deadline is at time t1 + pi. The dotted line from

(0, ci) to (t1+pi, 0) indicates the fluid schedule, the slope can be indicated by ui.

Tasks assigned to different processors will have different execution rates. Since

the computing capacity of P1 is larger than P2, tasks have higher execution rate

18
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on P1. Thus, the slope of task while assigned to P1 is larger.

Now we consider n tasks, their fluid schedules can be constructed as shown

in Figure 3.1. As T-L plane, a right isosceles triangle (Recalled we assume s1

to be the biggest and its value is equal to 1, any task assigned to s1 will move

diagonally down) can be found between every two consecutive scheduling events,

end of periods. Here we divide all the T-Ler planes by the periods of all tasks,

the deadline of every task is not within any two consecutive scheduling events

and n triangles of each task between every two consecutive scheduling events

can be overlapped together. It means we can schedule in one T-Ler plane

without consider the deadline of each task, just consider the local execution

requirement of each task. We called the kth isosceles triangles as TLk
er, where k

is simply increasing over time. The bottom side of the triangle represents time.

The vertical side of the triangle represents remaining execution requirement of

tasks, which we call local remaining execution requirement. Fluid schedule for

each task can be constructed as overlapped in each TLk
er plane with the same

slope, and the local remaining execution requirement of task i in kth T-L plane

is equal to ui · tkf . If we finish all the jobs before the end of T-Ler plane, we

could give an optimal scheduling algorithm.

20



3.3 Definitions in One T-Ler Plane

In the T-Ler plane, we define li,j to represent the remaining execution require-

ment of task Ti at time tj, the value of li,0 is equal to ui · tkf . It shows that

li,0 > li+1,0, ∀i, 1 ≤ i < n. We also define ri,j = li,j/(tkf − tj) to represent the

local utilization of task i at time tj, the value of ri,0 is equal to ui. To distinguish

from r and to verify the set of tasks and processors is still feasible in the T-Ler

plane, we define r′i,j to represent the ri,j at the time tj sorted in decreasing

order. Therefore, the order of r′i,0 in a T-Ler plane is equal to li,0 at time 0.

3.4 T-Ler Plane vs T-L Plane

As we introduced, T-Ler planes are repeated over time. Giving a feasible

scheduling algorithm for one T-Ler plane will also schedule other T-Ler planes.

As shown in Figure 3.2, a good scheduling algorithm should keep all the tokens

move to tkf , make sure all the remaining execution requirement of tasks are equal

to 0 at time tkf ; in other words, they finish their jobs. As T-L plane, the dashed

line represents the fluid schedule for each task, every task is represented by a

token. Now we would like to discuss the details of a T-Ler plane, and describe

the innovation inspired from T-L plane.

Firstly, in T-L plane, execution time is represented on the y-axis, but

in T-Ler plane, it is replaced by execution requirement. Thus, local remaining

execution time is replaced by local remaining execution requirement for uniform

21



1P1

processor boundary of P

Event C

token

jl ,1

processor boundary of P1

fluid schedule path

1T
2P

jl ,2

Event F

2T
2P

processor boundary of P2

l

E t B
kt0

3Tjl ,3

t Event B ft0 jt

Figure 3.2: kth T-Ler Plane

22



multiprocessors. Secondly, the each processor between the time from 0 to tkf

can construct a fluid schedule path of a task with full utilization described by

solid line. We call it processor boundary, indicating it is the critical boundary

of processors, where rescheduling might be needed when some tokens meet

the boundaries. The slope of the processor boundary for each processor Pi is

proportional to s1. For example, as shown in Figure 3.2, there are two processors

P1 and P2 in this T-Ler plane, s1 and s2 are 1 and 0.5 respectively. They

have solid lines to represent the remaining computing capacity and connect all

the way to tkf . Thirdly, in T-Ler plane, tasks could be assigned to different

processors and move downward in different slopes. For example, as shown in

Figure 3.2, when task 2 is assigned to processor 1, its token would move 45

degrees downward, when task 3 is assigned to processor 2, its token would

move 22.5 degrees downward due to the speed of P2 is 0.5.

In T-Ler plane, we observe that there are three kinds of time instants where

rescheduling is needed. Firstly, when the local remaining execution requirement

of a task is equal to 0, it would hit the bottom of a T-Ler plane. As T-L

plane, we call it bottom hitting event (or event B). Secondly, when the local

remaining execution requirement of a task is equal to e1 (the computing capacity

of processor P1), it would hit the ceiling of a T-Ler plane. As T-L plane, we call

it ceiling hitting event (or event C). We should assign this task to processor P1,

otherwise, it could not finish in this T-Ler plane. Thirdly, there is a new event

in uniform multiprocessors. When execution requirement of a task is equal to
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the computing capacity of processor i, it will hit the processor boundary of

processor i. We call it floor hitting event (or event F). Although, when event

F occurs, it is not necessary to reschedule to satisfy FG condition, it is the

precaution time instant to reschedule for our optimal scheduling algorithms.

Whenever any of these three events occurs, we will reschedule all the tasks in

our optimal scheduling algorithms.
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Chapter 4

Optimal Scheduling Algorithms for
Uniform Multiprocessors

Our scheduling algorithms for uniform multiprocessors are based on the idea

of ”precaution”. That is we reschedule precautionously when the C, F, and

B events occur before the FG condition is violated. When we reschedule, we

always assign greedily the task with the largest local remaining execution re-

quirement the fastest processor. Therefore, the two scheduling algorithms we

are going to present are called Precaution Greedy (PG) and Precaution Cut

Greedy (PCG) scheduling algorithms. The name ”Cut” in PCG scheduling

algorithm is because we cut the times of rescheduling dramatically. We will

present the two scheduling algorithms in the following sections and prove its

optimality.
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Algorithm Precaution Greedy

Input: A set τ of n tasks { T1, T2, ..., Tn } with Utilization u1, u2, ..., un.

A set π of n processors { P1, P2, ..., Pn } with Speed {s1, s2, ..., sn}.

1. while (any event [C|F |B] occurs at time tk) {
2. while (there are ready tasks) {
3. assign task with largest remaining execution

4. requirement to the fastest idle processor.

5. }
6. }

Figure 4.1: PG Scheduling Algorithm
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4.1 Precaution Greedy (PG) Scheduling Algorithm

Based on the FG condition, it is easy to check whether a task and processor set is

feasible. However, the problem is when to do rescheduling so that the feasible set

is schedulable and how to minimize the number of rescheduling. We know that

it might not be schedulable if we do not reschedule until the most urgent event

occurs as the LLREF does. To achieve optimum, we would like to reschedule at

some events precautionously before the FG condition is violated. Fortunately,

we find that before the FG condition is violated there must be some events

occur earlier. Therefore, PG scheduling algorithm schedules greedily the task

with largest local remaining execution requirement first to the fastest processor

and reschedules when any event occurs until there is not any idle task or idle

processor. It is described in Figure 4.1 and an example is given in Figure 4.3.

Although PG is simple, it is the first optimal scheduling algorithm for uniform

multiprocessors. However, it might have indefinite times of rescheduling. We

will prove its optimality later and propose a more efficient optimal scheduling

algorithm.

4.2 Precaution Cut Greedy (PCG) Scheduling Algorithm

Based on PG, PCG scheduling algorithm is also a precaution based scheduling

algorithm to reduce the number of rescheduling. It reschedules when event

[B|C|F ] occurs as shown in Figure 4.2 and an example is given in Figure 4.4.
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Algorithm Precaution Cut Greedy

Input: A set τ of n tasks { T1, T2, ..., Tn } with Utilization u1, u2, ..., un.

A set π of n processors { P1, P2, ..., Pn } with Speed {s1, s2, ..., sn}.

1. while (any event [C|F |B] occurs at time tk) {
2. if si = rj,k

3. assign Tj to Pi until the end of T-Ler plane

4. remove Pi from π, remove Tj from τ

5. else rj,k = 0

6. remove Tj from τ

7. while (there are ready tasks)

8. assign task with largest remaining execution

9. requirement to the fastest idle processor.

10. }

Figure 4.2: PCG Scheduling Algorithm
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When any event occurs, there exists a task on a processor boundary in T-Ler

plane or the execution requirement of this task is equal to 0. PCG removes

the task and the processor and the remaining task and processor set is still

feasible. PCG also schedules greedily the remaining tasks with largest local

remaining execution requirement first to the fastest processors and reschedules

when any event occurs until there is not any idle task or idle processor. With

the removal of task and processor, the number of rescheduling in PCG decreases

dramatically. Its optimality will be proved later.

PCG gives better performance than PG, as shown in Figure 4.3 and Fig-

ure 4.4 with 3 tasks and 2 processors, where T1 = T2 = T3 = (4.6, 10), s1 = 1,

s2 = 0.5. Obviously, by PCG, the times of rescheduling is 4, but by PG, the

times of rescheduling is much more than PCG. At time 0, if the values of r1,0, r2,0,

and r3,0 are closer to s2, the times of rescheduling will increase dramatically.

The worst, the times of rescheduling might be close to ∞.

4.3 Proof of Optimality

Here, we will prove the optimality of PG and PCG scheduling algorithms. In

T-Ler plane, we will reschedule when any event [B|C|F ] occurs. Actually, all

the events occur when the execution requirement of some task is equal to the

computing capacity of some processor or 0. To prove the optimality of the

algorithm, we define the task order to be the decreasing sequence of task local
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Figure 4.3: Example of PG Scheduling Algorithm

remaining execution requirement. As each task consumes processor computing

capacity differently, the task order in a T-Ler plane are changed dynamically.

Therefore, it is not necessarily equal to the mapping of tasks assigned to proces-

sors. As shown in Figure 4.5, at time 0, task 1 has larger remaining execution

requirement than task 2, but at time tj, the order exchanges. However, the

task assignment is still the same. If we can guarantee that at any event the FG

condition holds according to the local remaining execution requirements in the
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Figure 4.4: Example of PCG Scheduling Algorithm

task order, by the definition of FG condition, the task set is feasible.

Theorem 3 When any event occurs, the set of tasks and processors is feasible

by PG and PCG scheduling algorithms.

Proof. Since both PG and PCG reschedule when any event [B|C|F ] occurs,

the feasibility condition is the same at this moment. In the beginning, the time

is 0, suppose the event occurs after time tg lapses. Both PG and PCG assign
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Ti to Pi, ∀i, 1 ≤ i ≤ n. Let r′i,g to represent the new ri,g at time tg, actually

li,0 − si · tg, ∀i, 1 ≤ i ≤ n, sorted in decreasing order. As we can see that the

order of r′i,g might change. Moreover, we let R′
i,g represent

∑i
j=1 r′j,g and T ′

i

represent the new ith task at time tg in the order of r′i,g.

We show that any event occurs earlier than FG condition is violated. Ac-

cording the definition of FG condition, before it is violated, at time tg, there
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must exist that

Si ≥ R′
i,g, ∀i, 1 ≤ i ≤ n, ∃Sk = R′

k,g, 1 ≤ k ≤ n (4.1)

This is to say the FG condition would be violated if we do not reschedule when,

s1 ≥ r′i,g, ∀ i, 1 ≤ i ≤ k (or event C occurs), and sk ≤ r′k,g (because Sk−1 ≥
R′

k−1,g and Sk = R′
k,g). To derive the time tg when condition 4 holds, we can

solve the following equation:

k∑
j=1

sj =
k∑

j=1

(lij,0 − sij · tg)/(tkf − tg), 1 ≤ ij−1 < ij ≤ n

Therefore, we can find some T ′
i , 1 ≤ i ≤ k, �∈ {Tj|1 ≤ j ≤ k}, or we

could not solve t, that means the FG condition still holds. That is there exists

Ta ∈ {Tj|1 ≤ j ≤ k} and Ta �∈ {T ′
j|1 ≤ j ≤ k}, corresponsively, and Tb �∈

{Tj|1 ≤ j ≤ k} and Tb ∈ {T ′
j|1 ≤ j ≤ k}. If s1 > r′a,g ≥ sk, Ta would hit

processor boundary of Pk+1 and event F occurs (because sk+1 ≥ r′k+1,g when

Sk = R′
k,g). If sk > ra,g > 0, Tb would hit processor boundary of Pk and event

F occurs (because rb,g is smaller than ra,g and sk).

Therefore, there exists an event occurs before FG condition is violated

while scheduling by PG or PCG. In other words, rescheduling when any event

occurs, the set of tasks and processors will be feasible using PG and PCG

scheduling algorithm.

Theorem 4 For a feasible set of n tasks and n processors, the PG scheduling

algorithm is optimal and feasible for uniform multiprocessors.
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Proof. Since the set of tasks and processors is feasible, it follows the FG

condition. Since PG reschedules at any events, according to Theorem 3, the

new task set is still feasible in the T-Ler plane. Since each T-Ler plane is

independent, the while schedule is feasible. Therefore, any feasible task set can

be schedulable using PG. That is PG scheduling algorithm is optimal.

Theorem 5 When any event occurs, there exists a task on a processor boundary

in T-Ler plane or the execution requirement of this task is equal to 0. If we

remove the task and the processor, the remaining set of tasks and processors

will still be feasible.

Proof. According to theorem 2, the FG condition, we know if

Si ≥ Ui and Si ≥ R′
i,a at time ta∀i, 1 ≤ i ≤ n, (4.2)

the set of tasks and processors is feasible. By theorem 3, we know rescheduling

when any event occurs, the set of tasks and processors are still feasible, therefore

condition 5 still hold. Suppose when event [C|F ] occurs at time tg, we assume

task Tj hits processor boundary of Pi, 1 ≤ i, j ≤ n, and when event B occurs,

we assume task Tj finishes its job. Suppose when Tj is removed from the task

set τ , the new rk,g’ will be reindexing as r′k+1,g, ∀j ≤ k < n, The relationship

between si and r′j,g before removal can be classified into four cases:

Case 1: si = r′j,g, 1 ≤ i = j ≤ n

By condition 5, after removal, we can derive the FG condition of new task and
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processor set as

Sk ≥ R′
k,g, ∀k, 1 ≤ k ≤ i − 1

Sk ≥ R′
k,g − r′i,g, ∀k, i < k ≤ n

With proper reindexing, the FG condition still hold.

Case 2: si = r′j,g, 1 ≤ j < i ≤ n

By condition 5, after removal, we can derive the FG condition of new task and

processor set as

Sk ≥ R′
k,g, ∀k, 1 ≤ k ≤ j − 1

and for 1 ≤ k ≤ j < i ≤ m ≤ n, sk ≥ si = r′j,g ≥ r′m,g, We can derive that

Sk ≥ R′
k+1,g − r′j,g, ∀k, j ≤ k < i

and Sk − si ≥ R′
k,g − r′j,g, ∀k, i < k ≤ n

With proper reindexing, the FG condition still hold.

Case 3: si = r′j,g, 1 ≤ i < j ≤ n

By condition 5, after removal, we can derive the FG condition of new task and

processor set as

Sk − si ≥ R′
k,g − r′j,g, ∀k, j < k ≤ n

Since Sk ≥ R′
k,g and sk ≤ si = r′j,g ≤ r′m,g,

∀k, i − 1 ≤ k ≤ n, ∀m, 1 ≤ m ≤ j − 1
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We can derive that

Sk − si ≥ R′
k,g − r′k,g, ∀k, i ≤ k < j

Finally, as we showed above

Sk ≥ Rk,g, ∀k, 1 ≤ k < i

With proper reindexing, the FG condition still hold.

Case 4: One task finishes, we assume r′j,g = 0

This indicates j equals to n. With proper reindexing after removal, the FG

condition still hold.

Theorem 6 For a feasible set of n tasks and n processors, the PCG scheduling

algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the FG

condition. Since PCG reschedules at any events, according to Theorem 3 and

Theorem 5, the new task set is still feasible in the T-Ler plane. Since each T-

Ler plane is independent, the while schedule is feasible. Therefore, any feasible

task set can be schedulable using PCG. That is PCG scheduling algorithm is

optimal.

In PCG scheduling algorithm, when any event happens, the number of

tasks and processors will decrease by 1 respectively. Therefore, the maximal
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number of rescheduling in one T-Ler plane is n. The times of rescheduling will

be dramatically less than PG and fluid schedule.
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Chapter 5

Experimental Evaluation

5.1 Input Generator

We construct simulation-based experiments for PG and PCG scheduling algo-

rithms. Before simulation, We give an input generator which will generate set

of tasks and processors randomly, and check whether they are feasible by FG

condition. Because our simulation is based on multiprocessors, we would like

to discuss about the precautionary utilization for all processors as shown in

Figure 5.1. As we known, the computing capacity of each processor might be

different, it could not be sure the utilization of each processor before scheduling,

we consider Cn/En to represent the precautionary utilization, the value is only

for foreseeing.

5.2 PG and PCG Performance Evaluation

To give a comparison for PG and PCG, we implement EDF according to the

following rules presented by Funk [9]:
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Figure 5.1: Input Generator

• No processor is idled while there is an active job awaiting execution.

• When fewer than m jobs are active, they are required to execution upon

the fastest processors while the slowest are idled.

• Higher priority jobs are executed on faster processors.

To analyze the schedulability of EDF on uniform multiprocessors, as shown

in Figure 5.2, we generate 1000000 set of tasks and processors for each pair of

tasks and processors. In Figure 5.2(a), the number of tasks and processors is

equal, in Figure 5.2(b), the number of tasks is 10. It is easy to show while the

number of tasks and processors increase, EDF will miss deadline because the

complexity of assignment raising. EDF only considers about the deadline of

each task, it will miss deadline while the urgent tasks have not be executed.
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Figure 5.2: Schedulability of EDF on uniform multiprocessors
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Figure 5.3: Schedulability of PG

To analyze the schedulability of PG and PCG on uniform multiprocessors,

as shown in Figure 5.3 and Figure 5.4, we generate 1000000 set of tasks and

processors for each pair of tasks and processors. In Figure 5.3(a), the number
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Figure 5.4: Schedulability of PCG

of tasks and processors is equal, in Figure 5.3(b), the number of tasks is 10.

In Figure 5.4(a), the number of tasks and processors is equal, in Figure 5.4(b),

the number of tasks is 10. PG and PCG could schedule all the set of tasks and

processors.

Although PG and PCG is schedulable for all cases on uniform multiproces-

sors, the times of context switches is increasing based on the number of T-Ler

planes. As shown in Figure 5.5 and Figure 5.6, we generate 100000000 set for

each pair of tasks and processors. In Figure 5.5(a), the number of tasks and

processors is equal, in Figure 5.5(b), the number of tasks is 10. In Figure 5.6(a),

the number of tasks and processors is equal, in Figure 5.6(b), the number of

tasks is 10. We could figure out the times of context switching by PG and PCG

is larger than EDF, While the number of tasks and processors increase, the
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Figure 5.6: Performance Analysis of PCG while Comparing to EDF

times of context switching will increase, too. This is because We generate all

the tasks randomly, the period of them is different, PG and PCG will generate

lots of T-Ler planes and have lots of scheduling within each plane. It shows
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although the schedulability of PG and PCG is optimal, the time complexity of

them is larger, too.
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Now we want to discuss about the performance between PG and PCG as

shown in Figure 5.7 and Figure 5.8. In Figure 5.7(a), the number of tasks and

processors is equal, in Figure 5.7(b), the number of tasks is 10. In Figure 5.8(a),

the number of tasks and processors is equal, in Figure 5.8(b), the number of

tasks is 30. It shows that PCG give better performance than PG, and when the

number of tasks and processors increase, PCG will not give better performance.

This is because the number of T-Ler planes is significant, although PCG give an

upper bound n in a T-Ler plane, when the number of T-Ler planes even larger,

it could not be sure the performance of it is still good.

While we are based on the concept of T-L planes, the bottleneck of our

scheduling algorithm is the number of T-Ler planes. When the period of each

task is harmonic, the number of T-Ler planes will decrease. On the other hand,

when the period of each task is diverse, the number of T-Ler planes will increase

dramatically.
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Chapter 6

Conclusions

Although feasible on-line scheduling algorithm for uniform multiprocessors is

difficult, we provide a novel T-Ler plane model for uniform multiprocessors to

observe the behavior of task and processor easily. We present the Precaution

Greedy algorithm, which is the first optimal dynamic-priority scheduling algo-

rithm for uniform multiprocessors and the Precaution Cut Greedy scheduling

algorithm, which is also optimal and with the times of rescheduling decreased

dramatically. We also prove the optimality of the above algorithms and an

upper bound n of the times of rescheduling in a T-Ler plane. Finally we give

an experimental evaluation for PG, PCG, and EDF scheduling, prove PCG will

give better performance than PG. We believe the results might be applicable

to current asymmetric multicore platforms of similar uniform multiprocessors,

where the processing units are capable of executing the same instruction with

different rates, rising the performance in parallel and decreasing the times of

context switching. Because the simplicity of our results, it might be also appli-

45



cable to the most complicated unrelated parallel machines while each task Ti

completes (ri,j × t) units of execution by executing on processor Pj for t time

units, the execution work for each task will be an constant value, therefore, we

might migrate the same model on unrelated multiprocessors.
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