M2 3B FLBFTRTRTAIATE LT
IR

Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

FE IS AT E4 41 5

An Intelligent Task-Based-Power Cansumption

Measuré'r?_hent Taool
Hsin-Hsiung Tzeng
hERE T FEFY EL

Advisor : Hsueh Chih-Wen, Ph.D.

PERRO7TE T

July, 2008

An Intelligent Task-Based Power Consumption Measurement Tool

FEARSLITLTELAILE

A
‘E Iy
ik
H\
i
s
‘m\‘\?\
Q-
TH
| |
it
c+y
[
i)
ok
My
2

’

T
=

CIREE Rl - MRy X iy

[| n]

My N ER RS st Fhiad o d LA 2

> 2 L| |) 4 S ‘.‘ o 2 . s
wgﬁaﬁ,ﬁ@%mﬁgx%mﬁ%ﬁ%,&{&aﬁﬁﬁﬁ%’
AR F e AL & 0 RAR SO BT B B RS 5 0 g~ 5 kG - B E
BOTRAE o WOR B BT U e -g#,":smj,ﬂ{(ﬁ%} TR v B hA
T4y ¢ TR R LR BT BRI T LR E- BT
FROERERERY ¥ PAAAEZEED R ARG P
A, hinhhe v oo Ap é,_—— Brul1 eg P & Fat i ELIpIA 2

i
i BTN - B 2EYEROBIEE TR PREE
WéﬁﬂEﬁ?%%%ﬁﬁﬁlimﬁ%ﬁﬁ%?ﬁlii%

BEAEF T A 38 A R ECBORER - FHER - B3 TR

Abstract

Energy consumption measurement is very important for developers of modern
embedded systems. Basically, there are two types of measurement methods:
the simulation-based and the physical-based. For energy consumption analysis,
the simulation-based measurement is slow and inaccurate. Though the typical
physical-based measurement is fast,and.accurate, while it can not get detail sys-
tem information. Therefore;'we propose a task-based measurement that bases
on the physical-based measurement to provide: system information. However,
previous works can not use rtsystem 'informat’ion to derive more detailed hardware
dependent information well, such aS-‘t'he power consumption of CPU, memory,
[/O devices, etc. In this. thesis, VTe pﬂopose a'novel idea to extract the power
consumption of I/O deviges; and-verlfy our Work through experiments on DMA.
Experiments show that we:can use our fhethiod to have an acceptable result.
We believe this thesis is helpful for not orﬂy users who would like to measure
the energy consumption of applications, but also provide a fast approach to

developers who would like to get more hardware dependent information.

Keyword: embedded system, energy consumption, simulation-based, physical-

based, task-based.

Contents

1 Introduction
2 Related Work and Background
2.1 Simulation-Based Tool oo e o . .o
2.2 Physical Measurement-Based Tool'. . L5 . e o000
2.3 Task-Based Energy Consumption Analyskirs el 5@ . ..o
2.3.1 Features . @ ~-. R O L L
2.3.2 System Anchitecture . =—‘ L fim XA ®’ ..
2.3.3 Operation Flogv Path : ;, 1;?5.,:_ FI. R [
3 Tool Enhancement il ili '! '[
3.1 Eliminate Redundaney ..*: % | E T_L
3.2 Hardware-Aware Feature .. ., . & o ..
3.2.1 Problem Define .". ... - z
3.2.2 Power Measurement Using Seenario Grouping
3.3 Comparison With Simulation-Based Measurement Tools
4 Measurement Approach
4.1 Approach of Measurement With Hardware-Aware Feature
4.1.1 Profiled Embedded System
4.1.2 Power Consumption Analysis Tool
4.2 Implementation of DMA-Aware Functionality
4.2.1 Profiled Embedded System o000
4.2.2 Power Consumption Analysis Tool

11
12

16
17
19
19
20
22

5 Experiments For DM A Power Consumption

5.1 Onboard Experiments With DMA

5.1.1 Access Behavior

5.1.2 Evaluation of Measurement

5.1.3 Power Measurement on Different Buffer Size

5.1.4 Power Measurement on Different Bit Rate

5.2 A Formula For DMA Power Consumption

6 Conclusion and Future Work

Bibliography

ii

30
30
31
33
34
35
37

39

40

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3
5.4

The forecast of Semiconductor Global Sale 2
Operation flow path of the procedure 13
System Architecture 14
o] ST .
Insert toggles in functlon‘dd Ii{Qf'} and '____ga-iﬁ 18
Only insert toggle 1na{u cpag(’m S e 4 18
Six tasks are domg | 5 \{. - 21
Three tasks are dQU “‘%h samf wxk . N, .. \ £ 2. 21
Using Grouping t&!meas re t Q@u‘é\ nsumption of It;‘O device 23
The flow path of hhe a:p 26
Structures for measu,r g»j; 29
The measurement resu’l'.,é,r}:__;!"f,:.". oy 34
The measurement result -‘J:‘?j_j'jj e g 36
Power consumptlon of DMA with different buffer sizes 36

iii

Chapter 1

Introduction

In recent years, the number of embedded deviees show high growth rates. Mobile
technology today makes a1s miore.and m;)fe convenient. Figure 1.1 shows the
forecast of semiconductor:glebal sales, the growth:rate is about 9% per year.
It is amazing that experts point ou:-t;an average of ‘three embedded devices
per person worldwide will OWIl.!i%l 2@10 ' As' the maturity of semiconductor
becomes higher and higher; 'inic%processo'rs‘ Owira rapid speed, therefore the
power dissipation will increase heaVily. As WeAknovv, embedded devices mostly
use batteries as their power source, so energy profiling becomes an urgent issue
on system design. Not only embedded devices, but also the data center even
desktop concern about this issue because the cost of energy is extremely large.
When developers who try to measure a high performance and low-power system,
they need to know the tradeoff between software application and architectural

level. Consequently, a power consumption analysis tool will be essential.

Researches on energy profiling in embedded system try to meet the follow-

400
350
300

250
200
150
100

O -

2003 2004 2@@5@@@6@%07 2008 2009 2010 2011

u
o
1

Global Sales (Unit: Sbillion)

_-.!-.?-"-:’.": ,f- L Nea r: G
& f >N
Ay
Flgu{te]s?:I 1 Sale
LH I‘?’. I Ty
ing requirement: accuracy, ty, eas tq—uﬁe, and low cost. More-
= i =
over, embedded system'é's -np \ ﬁl] ng; 't:hey are more complex to
-—4 ! J"'l.,‘
measure the energy corr.spr&bt oI neﬂfgﬁ"- profiling tools at present
b Sn &
do not provide a good Way ﬁf_raccuq:ﬁte, nieiﬁsu{e ,zznt on system-level. Existing
Clogegs -‘J"ﬂ""

tools can be simply classified into two fybes simulation-based and physical-
based measurement tools. Simulation-based measurement tools can analyse
detail activities of the system. When we would like to measure a program,
we just set the parameters of the system architecture, then the profiling tool
will simulate the program execution on the simulated platform and analyse its
usage of system component. We also need to know the power consumption

of components in advance. In other words, the measurement result is not the

exact energy consumption of the system. Physical-based measurement tools
provide the exact power consumption of the target hardware component. They
are very fast and objective. However, the drawback of this kind of tools is
hard to get the information of system activities. Fortunately, there exists a
kind of physical-based measurement tools called task-based measurement tools.
Task-based measurement tools can analyse the power consumption precisely on
system-level. However, we still have problem on the task-based measurement
tool. The problem is the result of the measurement suffers from dynamically
changed power consumption of 1/Q! devices. So-our work is trying to further
analyse the power consumption of [/O devices,'end provide more accurate mea-

surement results.)t

In this thesis, we adopt a t.ask bﬁsed measurement tool developed by Tu
[9]. We solve the problem that fask- based measurement tools are not aware
of 1/O device by a novel method:, groupmg. We also provide an approach
that is easy to modify the tool. Thisrapproach is for developers who use task-
based measurement tools to extend the hardware-aware functionality, and for
users who want to measure the energy consumption of applications, we can also

provide a convenient and rapid way of measurement. Finally, we demonstrate

the power consumption of DMA by using our approach.

The rest of this thesis is organized as follows. We will discuss the re-

lated work and background in Chapter 2. In Chapter 3, we talk about the

tool enhancement. And Chapter 4 provides a flow of a approach to extend a
hardware-aware functionality for our tool. Chapter 5 shows the verification of
our approach and experimental results of power consumption of DMA. Finally,

this thesis is concluded in chapter 6.

Chapter 2

Related Work and Background

As researches on power-aware igsues become more important on portable embed-
ded systems. In order to.estimatesthe enéfgy consumption, we need an energy
profiling tool to help us. Basicallys=we can-eategotize those tools into two types:
simulation-based tools and physicaiV-L:Tg-i],re_gsurement—based tools. In this thesis,
we adopt a tool that is a-kind of “'pllrlys:f%_al measurement-based tools. This chap-
ter, we discuss related workyand béckgroundkpowledge about simulation-based
tools, physical-based tools, and the task=based energy consumption analysis

tool we adopt.

2.1 Simulation-Based Tool

In simulation-based measurement tool, the system will be abstracted into var-
ious components. The energy consumption of a program can be estimated
by summing all energy consumption of all components. In [3], Chunling et

al classify simulators by different granularity. According to their levels of

system and and component abstraction, there are transistor-level, cycle-level
(Microarchitecture-level), instruction-level, and system-level. Simulators be-
long to transistor-level characterize models of transistors and estimate voltage
and current behavior over time. They are also called circuit-level or gate-level.
They are useful for integrating the circuit design. Due to the heavy time-
consuming problem, they are not suitable to evaluate power consumption of
large programs. Simulators belong to cycle-level simulate the execution at the
level of individual cycles. Usually, they are used for simulations of modern su-
perscalar processors because their granularity are moderate. Three examples
of cycle-accurate simulators, Wattch [1], SimpléPower [13], and Sim-Panalyzer
6], have been applied to vAribus platfglfms, :includiﬂg ARM SA1110, Alpha, and
PISA. Simulators belong to instﬁqcti%lﬁével simulate coarser granularity. This
kind of simulators performs instlfukctidrﬁ’li—‘level energy profiling of the instruction
set of the target processors-.r: N:cifmally, inS’c:r-uctidn—level simulators are faster
than cycle-level and transistor—level; JouloBraek [7] is one of the example that
belongs to instruction-level simulator. And simulators belong to system-level
are hardware dependent architecture. These systems are composed of many dif-
ferent hardware components, and characterize the energy consumption of each
system in different states. Duke University [8] extends the POSE to a palm
OS simulator. So we can find out that it is a tradeoff between the granularity

and the speed. Although simulation-based tools with coarse granularity can

speedup the time consumed during the measurement, still there exist a gap of

speed between simulation-based tools and physical measurement tools.

2.2 Physical Measurement-Based Tool

In stead of abstracting the system, the energy of a profiled computer system will
be measured directly by an external hardware in physical measurement-based
tools. Usually, the external hardware will be digital multimeter or oscilloscope.
Advantages of physical measurement-based tools are fast and accurate, but
there must have a precise mapping between the measurement result from oscil-
loscope and the profiled program segmeﬁt. Physical-based measurement tools
use the concept of trigger:point to matching fhe oscilloscope and the profiled

segment. System designers, often fusesthis| kind of tool for power-aware issue,

- = |

and researchers [4, 11, 10] of the ;simﬁlation—based tool also need this kind of
tool to validate the result. There are hlghly dependency on precision and the
sample rate. The higher Sample rate.is, the more precise measurement result we
have. PowerScope [2] is a hardware instrumentation tool proposed by Flinn and
Satyanarayanan. PowerScope maps energy consumption to program structure
like the way CPU profilers map processor cycles to specific processes and pro-
cedures. The architecture of this tool is composed of three components: system
monitor, energy monitor, and energy analyzer. The system monitor samples
the program counter and the process identifier. The energy monitor stores the

current samples. And the energy analyzer maps samples to specific procedures,

so it can determine the power consumption of the specific process. Research

7

in (3], Hu, Jimenez, and Kremer used the oscilloscope trigger module to solve
the mapping problem. They proposed a SimPoint idea to overcome hardware
limitations and measure long program. In SimPoint, a program execution is par-
titioned into intervals with a fixed number of instructions. The similar intervals
behavior are clustered into a phase. However, the sample rate of this approach
must less than 3700 samples/sec, and it is not high enough as a result of the
long communication cost between oscilloscope and data-acquisition machine.
Moreover, this approach lacks for considering the impact from the execution
activities of operating system. In5], Dongkun Shin et al proposed an energy
profiling tool named SES. SES integrates the "p'rzoﬁled system and measurement

circuit into a PCI adapter. /SES 'ébv_llrec’p‘s_ the dati of power consumption in a

o=

—

cycle-by-cycle resolution and Wit‘HOuE’-‘?ﬁif *édditional measurement equipment.

\'1 1

But the drawback is the enviromﬁllnt 6%;broﬁled system is fix and there are many
hardware restrictions to develoPeré. So werhave a conclusion about this section,
traditional physical measurement=based tools can not provide a high sampling

measurement, and seldom consider the execution activities of operating system,

such as context switch, kernel process, interrupts, etc.

2.3 Task-Based Energy Consumption Analysis Tool

In this thesis, we enhance the task-based tool designed by Tu [9]. It is a kind of
physical measurement-based tools with high sample rate. This section we will

talk about the features, system architecture, and flow path of the measurement

8

of this tool.

2.3.1 Features

This task-based energy consumption analysis tool is a kind of physical measurement-
based analysis. Instead of the external oscilloscope, the author used a data
acquisition card: NI-5112 DAQ card for higher sampling to reduce the error
and enhance the reliability. This data acquisition card has a high speed PCI
bus as its interface and the PCI latency is insignificantly small about 32 clocks,
so the acquiring and processing large waveforms. is much faster than external
instruments. Moreover, the original data type"d:ouble in NI-5112 DAQ card was
modified to float before Sav-ing thenf_iéegs:u__réd data to hard disk, so it can reduce
the redundancy of memory spacF: Tplf?ie'.%u“chor also changed the file format to
save the measured data file fromitht to bilfléry. Cdmpare with text file, binary
file is more efficient formak -b:ecail'se of less H:iSk usége and no need to translate

textual characters. We concluderthe. characteristics above, the sample rate of

this tool is up to 3M and much higher that other researches.

In order to reduce the error, the author drop the original transformer
because it has a jitter with around 1.6% error rate. Instead, he used a stable
power supply as the power source. In addition, this tool selects a highly accurate
sense resistor with resistance shift only less than 0.5% to avoid the effect from

the resistor error.

There are two synchronized channels called channel0) and channell of DAQ
card. Channel0 attached to the left and right side of the sense resistor fetches
the measured voltage. Channell attached at the GPIO (general-purpose input-
output) pin of the evaluation board senses the variation of the pin voltage.
When measuring the desired program interval, the trigger generation code for
toggling the GPIO pin voltage must be inserted at the beginning and the end of
the interval respectively. Based on the two synchronous channels, the analysis
tool will match the measured interval within the measured data from channel0
by determining the trigger point within the onesform channell to recognize the

corresponding data form channel0.

Not only the measured programﬂ.«x_lterval, but ﬂﬁe system activities are con-
sidered by the following techniquee; SIIE;;I” ﬁo the approach as mentioned above.
The author uses a system eall t;’o'r td}ééle and insefted it into schedule() and
do_IR(Q)() in Linux kernel. Cohlsedu,ently, thlis'"analysis tool is sufficient to con-
sider that the system activities from'sehedule() and from do_I RQ)(). The former
will select a process to execute, and the latter will execute the corresponding
interrupt handler while the timer’s interrupt every 10ms for the running period

of a process or a hardware interrupt occurs.

This tool adopt Linux procfs (proc file system) mechanism to record pro-
cess execution information at runtime. The procfs is a virtual file system, and

it is not associated with a block device but exists only in memory. It takes

10

the advantage of procfs to save data to memory so that the overhead is much
smaller than to secondary storage. Based on the author’s experiment, procfs
mechanism is only 2% plus power and is 93 times faster than saving the same
data to an opened file in flash. Therefore, this is a low-overhead approach for

recording process activity.

2.3.2 System Architecture

The system architecture is composed of the measured evaluation board, a power
source, and a DAQ card. Theé evaliaation boeard is the popular embedded system
development board, where an operating Systéﬁl and some user programs can
run. In order to get a preéisely resulic_ (?f ﬁleasurefﬁent, we also use the power
source supplies the energy to mefx’ui‘%?ﬁé evaluation board’s power. The DAQ

card is an internal deviee with H I bﬁ:s{:intérface. |
; ‘ 11 ;

We use the Creator S3C2410 Developméﬁt Kit made by Microtime Com-
puter Inc board as our measured evaluation board in this tool. Several charac-

teristics mentioned below:

o ARM920T Core (200MHz)
e 16MB Flash ROM
e 64MB SDRAM

e A Linux 2.4.18 porting

11

The DAQ card this tool adopt is the National Instrument NI-5112 High Speed

Digitizer. Its main specification is described as follows:

e 2 simultaneous channels
e Max 100M samples/sec
e 16MB memory per channel

e 3-bit resolution

The output of power supply is-more stable than transformer. Moreover, the
power source in this tool uses:a power Suﬁply but not the Creator’s transformer
capable of reducing 1.6% -¢iror. 7
2.3.3 Operation Flow Path | | F"’"

A
The profiling procedure is Compqéed of tﬂree stages: pre-process stage, mea-

surement stage, and analysis stage.”"T'he profiling procedure is shown in Figure

2.1 and explained in the following sections.

The Pre-Process Stage

At the pre-process stage, we have to insert the trigger generation codes at the
beginning and the end of the profiled program to determine what program seg-
ment we want to measure. In this stage, we also need to set up the hardware.
As shown in Figure 2.2, one of the DAQ card channel (channel0) are respon-

sible for measuring the voltage across a sense resistor R which is connected in

12

Pre-ProcessStage M easurement Stage AnalysisStage
A A A
s A\ - N r A\

Simultaneously

B profiled compuler system
D ata acquisition card
D ata acquisition computer

£ A cquisition program
Ly Analysisprogram

series with the power supp ~.¢E er system. Another one
: 9 Ky :
(channell) is connecte or,; Ef input-output) pin of the
= i~] {.? ¥
profiled computer system. easurement parameters in

the acquisition program, including:: nple , data range, saved file path, etc.

The acquisition program we implement is to control the DAQ card.

The Measurement Stage

At the measurement stage, the DAQ card would begin to measure by starting
acquisition program. After that, we execute the profiled program in the profiled
computer system. The trigger generation code we inserted at the beginning and

the end of the profiled program segment would toggle the GPIO pin voltage,

13

Power Source

The Measured Evaluation Board
== Data Acquisition Card

. f | i . Channel0
o] = BT
s Channel1

= |
User mode
Kemel mode

Kernel

Operating System

Measured Program @ Other Programs

=]

Measurement and Analysis Result

M IS ST (R
Flgﬁre 2.2 :,Systern*Archl‘Eecture
; | =g i

ld ;%Vchan [pin Ggltage. So we can find the
3 L::.-‘ll_' compdring chanreld and channell’s data in
and record some data in kernel 1;

od&l'vent After measuring, we stop the

acquisition through the acqulslthn Program The DAQ card would produce two

log files from the two channels. On the other side, the profiled system would

produce the log file for analysis program.

The Analysis Stage

At the final stage, we complement an analysis program to analyze the three log
files from the measurement stage. As shown in Figure 2.2, from the measured

voltage V (t) and other hardware parameters, the power of the profiled computer

14

system can be calculated as

V() ., V(1)
? V= T(V}oml - V(t)) (2'1)

P(t) =
where the profiled system voltage V' is Viyq subtract V(t), and Vi is the
power supply voltage. The energy consumption of a period in the profiled

computer system is calculated by

EB(t) = 3 PHAt = %ZP(t) (2.2)

At represent the period between each sample, the S is the sample rate of the
DAQ card. The analysis program ititegrates the.energy data from DAQ card and
the process execution data, from kernel to produce an overall system running

information of the measured inteﬁzﬁgsfiyhiph includes scheduling result with
; - |

power information, execution tinhef, eI:T!é}jgyiQf every-.process, etc.

|

| 11
A 1

1

15

Chapter 3

Tool Enhancement

We observe that Tu’s [9] work.ecan only adoptisample testing programs to mea-
sure. Wu [12] revised this tool-to measullrr.e more complex programs. However,
there are some problems:need to-valuate— The bhiggest one is the power con-
sumption of every processes is muddk%.t@gether. Because the power we measure
by the oscilloscope is the.total f)cjgwefi;_o;f the board; we can not know the ex-
act power consumption that'belbﬁg to the;, process we want to measure. This
chapter, we illustrate how to reduce the error Vrate of the tool and its overhead
the measurement require. Furthermore, we take advantage of the task-based
analysis tool that consider the system activity like interrupt and scheduling to
adopt a new feature to estimate the power consumption of hardware by using
a novel method: scenario grouping. This method can measure the exact power
consumption caused by I/O devices without too much effort. Since we know
the power consumption of 1/O devices, we can subtract it if it is unconcerned

with the task we want to measure.

16

3.1 Eliminate Redundancy

The original architecture inserts toggles in function do IRQ() and schedule() at
kernel. As shown in Figure 3.1, the error rate is very high. The reason that
causing high error rate is the unceasing interrupts, and the time between two
interrupts are too close so that the data can not be retrieved correctly by the
oscilloscope. Because there are too many interrupts occur, like timer interrupt
or some hardware, and every interrupt will be handled by the function do TRQ(),
so it is not applicable that inserts the toggles in function do IRQ(). We observe
that they inserted those toggles justr only"want to recognize different tasks. In
fact, we can identify two diffetent tasks justyuse thefunction schedule() without
insert the toggles in function do_ IRQMI%UI‘G 3.2 shows a desirable result that
after removing the toggles in funrc&lon, do_ IRQ(), we. obviously reduce the error
rate of program measurement. ,Moreover, becapse we do not need to burden the
heavy routine after interrupt oécur' énymdre, éo we can reduce the information
that are stored by the proc filesystem. The number of records that is measured
by the original tool is about 398 per second an average. After eliminating the
redundancy of unnecessary toggles, the number of records is down to 52 per

second an average.

17

test

playmp3

ksoftirgd_CPUD

kupdated

init

rpciod

Lonl] lf] [bl
lille. [
BN

:

ummm i Itu..JrﬂhIlu Hilbak 400
H\Iu.\nuﬂut\ |.|ﬂ[||[||| [A0 o0 ko duly €O 1o
ol Il o e

0.000 0.453 0.907 1.360 1314 225? 2.721 3174 3.628 4.081 4535 4.988

test

playmp3oid

testl

ksoftirgd CPUD

init

kupdated

Figure 3.1:Imse %‘t ggl nfunt nd IRQ() and schedule()

I 1 L0000

1111 [ﬁn” uu ”NH” INRRRN

mmomimamimaonHiImnao°im:imo:nno
I|I|II|I|I|I|I|I|I|I|I|I|I|

0.000 0540 1.080 1.621 2.161 2.701 3.241 3.781 4.321 4.862

Figure 3.2: Ouly insert toggle in function schedule()

18

3.2 Hardware-Aware Feature

Hardware-aware means we can estimate the power consumption of the desired
hardware component. Pervious work only used toggles in the kernel to distin-
guish different tasks. Nevertheless, we underprice the advantage of considering
the system activity. Once we own the information of system activity, we can
use those information to measure the power consumption of the hardware. Now
we will make good use of the advantage of task-based measurement tools to add
a hardware-aware feature. This section, W will. first define the problem of the
task-based analysis tools, and giwe some ‘assunmptions to make our method of

measurement work.
3.2.1 Problem Define | | |]

First, this tool has a problérﬁ ,tﬁat isswhen WQ want to measure a desired pro-
gram, the result of the measurenient could involve the power consumption of

[/O device that is independent with this program.

Second, we investigated the power consumption relation about hardware.
The experiments in Figure 3.3 and Figure 3.4 show that six and three tasks
which every task continuous doing multiplication respectively. And other tasks
are invoked by the system, because the influence of those tasks is not big, so we
omit them here. According to these two figures we know that the power con-

sumption of each task in two figures does not have too much different. Because

19

those two experiments have the same usage of hardware. Compare to Figure
3.2, the experiment have additional application playmp3. we found the task
playmp3 has more power consumption. The additional power consumption is
due to the utilization of the hardware is vary, like the workload of processor,
activity of memory, or caching would be different, and the whole computing
would involve other hardware access. Through those experiments, we know the

power consumption is highly dependent upon hardware utilization.

Concluding the description abeve in this subsection, we propose the follow-
ing hypothesis that forms the bhasisto meet our goal: The power consumption of
the hardware would be identicalwith its hqrdwdre that have the same utilization

regardless the content of work. ﬁ.

| | i |

3.2.2 Power Measurement Using E‘fcenﬂi'jo Grouping

; |
We use a measurement prografn to segmernt:itself into different scenarios ac-
cording to different usage of 1/O devices. The usage of 1/O devices means the
utilization of I/O devices when the system is act. The purpose of measurement
program is to observe the program we want to analysis. As we know, the sys-
tem involves lots of variables like cpu utilization, memory, cache for example.
In order to reduce the inaccuracy of measurement result, the measurement pro-
gram do nothing but a infinite loop. Thus, we can observe the changing of the
power consumption without too much interference. Before the measurement,

The system will build a table to map the usage of 1/O devices. During the

20

test
S TP TEEE TR PR b b R et
testd
sl crbercr booctbor EEEe bbb ebe e Ebebe e bbb ErEr Ty

ksoftirgd_CPUD
I\\I\\I\\IIII\II\\I‘\\\\I\II\II\II\\\\\\\\l\ll\ll\l\\l\\\\\ll\

s becbertberreE beee et be ey thebe e e EEEE e Eerr
eSO e bece PEEE ToEEEEEEE e e EEeetbebee P bee el bl
b O I T T T 1 T A O TR O O
R T T T T T T I O

kupdated | | | ‘ ‘

0.000 1149 2.298 3.446 4595 5.744 6.893 8.041 9.190 10.339 11.488 12.636 13.785 14.934 16.083 17.231 18.380 19.529 20.678 21.826 22.975

Execution Time (s]

The Process Information in Measured Interval

Pid Command Execution Time(s] Energy [J) Avg Power [W)]

a test 3.756778 9.577350 2.549352

38 testd 3.730652 9.497790 2.545948

3 | ksoftirgd_CPUD 0.627091 1.571447 2.505932

39 testh 3.699237 9.417446 2.545781

37 testd 3.700206 9.420288 2.545882

36 test2 3.699523 9.416770 2.545401

35 testl 3.760143 9.573346 2.546006

6 kupdated 0.000247 0.000633 2.563570

1 init 0.001376 0.003567 2.592370

Total 22.975151 58.478638 2.545299 “
= ||
Figure 3:3: Siix e doi ing thesame work

|
1

|

1 1

e JPOERTI0N0annennannen I [|

| el G Qb bbb Db DD I D wd DD DN Dwl0hdb 0
o g b g Do DB D d0dlu B kB0 d b BB D udloloh

Kkupdated ‘ ‘ |

—
=
=
=
=
==
=
=
=
=
=
=
—
=
=
=
—
=
=
—
—_—
=
—
=
=
—
=
=
=—
=
=
=
==
=

init ‘

0.000 0.5%4 1,187 1.781 2.375 2968 3562 4.156 4749 5343 5937 6.530 7.124 7.718 8.311 6905 9.499 10.092 10.686 11.280 11.873

Execution Time [s]

The Process Information in Measured Interval

Pid Command Execution Time(s) Energy [J) Avg Power (W)
43 test 3.755228 9.543653 2.541431

42 test? 3.790567 9.620790 2.538087

3 | ksoftirgd_CPUD 0.627192 1.566569 2.497751

41 test] 3.699367 9.386019 2.537196

b kupdated 0.000219 0.000561 2.560229

1 init 0.000825 0.002143 2.597808

Total 11.873399 30.119736 2.536741

Figure 3.4: Three tasks are doing the same work

21

measurement, once the I/O device is active, the toggle will trigger the system
to record the I/O device information according to the table. For example as
shown in Figure 3.5, if we have I/O devicel and I/O device2 that we can grab its
information from toggles. At the analysis stage, the analysis tool will segment
tasks into different scenarios. Every scenario represents a situation of the usage
of I/O devices. In this case, we have four different scenarios. SO represents the
scenario that no I/O devices are active record by the table, S1 represents the
[/O devicel is active but the I/O device2 is not, S2 represents the 1/O devicel
is not active but I/O device2 is, ‘and the S3 means the I/O devicel and I/O
device2 are both active: At amalysis stage, 'th:e analysis program will collect
those segmentations WhiCh: are lab,éle,d :astche same seenarios into a group. In

e

this case, those segmentations W}}ic}F;;v%fe labeled as S0, we will collect them
o m |

into GO. Those segmentations v‘ifﬁich;ﬁfére‘- labeled ‘as S1, we will collect them
iy W) 1 :

into G1. So the power consumiptiontof hardwarel will be G1 - G0 or G3 - G2.

And the power consumption of hardware2 will be G2 - GO or G3 - G1. That

is to say, if we got more different scenarios, our measurement result would be

more precisely.

3.3 Comparison With Simulation-Based Measurement Tools

Taking three common used simulation-based measurement tools: Wattch [1],
SimplePower[13], and Sim-Panalyzer [6] as examples. Wattch can not measure

the power consumption of I/O devices because it does not have I/O model-

22

_____ — State
Hardware1 Off On Off On d
Hardware?2 Off Off On On

Group GO G1 G2 G3

E Power

4 Consumption
SO0 |S1/S0(S3[SO :
Figure 3.5: Usmg 'mllu ’ﬁ&‘:re ?Npow tion of I/O device
\.' | \ -__F;—- ;

ing support. Sim- Pan‘aiyze does O. n’ibdehng support neither.

S rer@t C

general information aboﬁ.g E/ _45 ﬁg sidr!__] yﬁi‘i‘e power consumption be-

A
sure more specific information of

Sim-Panalyzer suppor’t—“the d}eyg?es, but it can only offer

tween memory and 1/0 bus-' 1t ca:;a net niea
I/O devices like the power Consumpflon {)f bI/ O device when it is active. We
found most simulation-based measurement tools do not provide a good way of
power consumption measurement of 1/O devices. Compare with those three
profiling tools, our tool performs a better way of [/O device measuring. We can
measure the power consumption of the desired 1/O device easily by using our

tool.

23

Chapter 4

Measurement Approach

The profiling procedure has thzee stages: pre-process stage, measurement stage,
and analysis stage. Because this a,nalysislrtlool hias new hardware-aware feature,
and the main goal of thisythesis-is provides a\hardware aware measurement
approach. Therefore, the, changing 6&9 procedure is avoidless. This chapter,
we provide an approach -of exteﬁéﬂing'i;hardware—aware features. Moreover, we

will extend a DMA-aware featire on our téol as ‘an illustration.

4.1 Approach of Measurement With Hardware-Aware Feature

As shown in Figure 4.1. The approach is based on the profiling procedure.
The whole approach will take place at pre-process stage. Descriptions at block
diagram with green color mean actions which execute on profiled computer
system. The profiled computer system includes the program we want to measure
and the operating system we use. And descriptions at block diagram with blue

color mean actions which execute on the power consumption analysis tool. The

24

power consumption analysis tool include the acquisition program and analysis

program.

4.1.1 Profiled Embedded System

First, kernel modification means the embedded operating system we use to mea-
sure our profiled programs. We must know what hardware we want to measure.
And we insert toggles at kernel. In general, the activity of the hardware will
accompany with its interrupt service routine. So we can insert toggles at the
interrupt handler hardware to get the starting time of hardware access. Also we
must determine the stoping timéeof the hardWa’fe access. After that, we need to
add the activity charaeter for povsféfconsﬁinption éhalysis tool. Second, we in-
sert triggers on user apphcatlon Use‘f’ modlﬁcatlon means that we must design
a measurement program to obserxle tﬁe Changmg of the power consumption of

&
different groups.

4.1.2 Power Consumption Analysis Tool

Once the modification of profiled embedded system is complete. Then we can
gain the additional information of 1/O devices for our use. So the analysis pro-
gram also has some modifications. The analysis program must recognize which
new hardware activity character we add. So we need to register new hardware
activity as hardware scenario on our analysis tool to build a grouping table.

Once we have the grouping information, we can know the power consumption

25

Pre-Process Stage

A

4 A

1 Profiled embedded system
B Power consumption analysis tool

7" Acquisition program
L= 1 Analysis program

Because DMA is the common used solution for handling the transmission of
data between low speed I/O devices and memory. Those I/O devices include
disk, VGA card, sound card etc. Moreover, simulation-based measurement tools
do not provide a good way of measuring the power consumption of I/O devices.
This section, we will illustrate how to use the approach to measure the power

consumption of DMA.

26

Table 4.1: Activity character

character execution occurrence
a At the start of measured interval
b At the end of measured interval
S At the start of schedule()
t At the end of schedule()
d At the start of dmaDone_irq_handler()

4.2.1 Profiled Embedded System

We remove redundant do.l RQ() toggles. "In stead, we insert new toggles in
dmaDone_irq_handler(). The functla:ﬂ dmaDone Jirq-handler() is an interrupt
handler specific for DMA when the D.MA access is act. As DMA access is act,
the handler will load a buffer. and transfer data to-the destination until there is
no data. By inserting these new toggles, we can grab the starting time of DMA.
Thus, if we can also know the stoping time of DMA, we can use them to observe
the additional power consumption that caused by DMA. And the number of
records is up from 50 to 60. Compare with the number of inserting toggles in
function dmaDone_irq_handler(), inserting toggles in dmaDone_irq_handler()
is less overhead that proc filesystem must deal with. The original activity

character will be modified as shown in Table 4.1.

As mentioned in Chapter 3, we need a measure program which do nothing

27

but an infinite loop. This program will be executed until the measurement
procedure is complete. And we also insert trigger point on the program we
want to measure. So we can observe the DMA after the end of the program we
want to measure, and use the measure program to preform grouping on analysis

tool.

4.2.2 Power Consumption Analysis Tool

In analysis program, we add three structures as shown in Figure 4.2. The
structure str_group is used ds an array. Every element segment the execution
of program by different scenaries. The components of the structure str_gruop

including group_table; start, stopr,tr,e_:'nergy,. power.” The group_table is used to

1
| B

collect the elements in the same sﬁn&fﬂa’?ﬁ‘he elements start and stop record the
|

starting time and the stoping timel of dlement respeétively. The elements energy

and power will record the enetrgy and the power of the measurement program

respectively. Also, we add a structure. stramdma to observe the execution of

DMA.

28

enum group_table

{
G1,
G2
i
struct str_group
{
enum group_table table;
UINT start;
UINT stop;
float energy;
float pouwer;
i
struct str_mdma
{
UIMT cnt;
float power;
float energy;
L

Figure 4.2: Structures for measuring the power consumption of DMA

29

Chapter 5

Experiments For DMA Power
Consumption

This chapter, we will show -éxperimentsisesult of DMA power consumption
measurement. First, we interpret~the goah of those experiments, and then we
will show results. Finally, we providéjjra;;formula for DMA energy consumption.

il

|

5.1 Omnboard Experiments ;VVithKDMA

Transactions of data of the codec are handled by the DMA. So we can use a
playmp3 as the program we want to measure. As the program playmp3 is in
execution, the DMA controller will start to transfer data between memory and
codec. Our experiments are based on this program and a measure program as
mentioned before. In order to increase the number of samples of GO (means
the scenario that the DMA is not active), we disable the DMA for the first half
of time in the whole measurement. In our approach, the power consumption

measured by the tool is including the power that DMA controller transfers the

30

data between memory and codec, and the power by the codec when the codec

is making sound.

Because DMA controller have two main protocols, demand mode, and
handshake mode. We will measure our DMA on both mode. The first experi-
ment is a discussion of the access time of DMA. We will discuss the behavior of
DMA execution time. Because we found the arrival time of DMA is steady. So
we try to calculate the DMA per request to gain the stoping time of DMA. The
second experiment is an evaluation-of DMA to show our approach is feasible.
Once we verify the feasibility of our apfn'roachzon the second experiment, the
third experiment will explore ghe‘measurement,of DMA on different buffer size.
And the last experiment will discuss;fhe measure:rﬁent on different bit rate of

mp3 files. | + i 9

1

5.1.1 Access Behavior : I)

To get the starting time of DMA"is quite sample, but to get the stoping time
is more complicate. We may design a polling program to observe the stoping
time of DMA. But it is not practical because we would effect the result of
measurement. So we hope to avoid using polling as we can. In our case, we
found that the arrival time of DMA is steady. Because the serial bus must feed

the data to the codec in time or the codec would not make sound correctly. So

we can calculate the execution time of DMA by the clock frequency of bus and

31

the transfer size per request of DMA as

DSZ _ BufferSize
scrk 1°Y T Tsork

ExeuctionTime = (5.1)

DSZ is the size of data that DMA performs one atomic transfer, default is 16
bit. SCLK is the clock frequency of serial bus that the DMA transfer. And
TSC is the count that DMA controller perform data transfer per request. So
DSZ multiply TSC and then divide SCLK will be the execution time of DMA
access per request. In other words, if we know the buffer size of DMA and the
clock frequency of serial bus, we can calculate the execution time to gain the

stoping time.

The first experiment iS4 comﬁayison Between a measurement of the DMA

e

execution time using pollingiand 'a rﬁgﬁﬁiemem by calculating. We investigate
1 m 1] :
two different protocols to'see if [tﬂle measurement of execution time using cal-

|
| 11 .

culating is feasible. As shownin Figiiréwd+1, we can find the execution time of
two different protocols are quite sirﬁilar beeaiise the DMA access through the
serial bus is on time. Although the execution time of different protocols are
similar, but the access pattern are different. So the power consumption will
be different. We will discuss on the following experiments. We also find the
relation of the execution time of DMA and buffer size have direct ratio. And
the execution time between two methods of measurement is very close. The
measurement using polling is a little more then calculating. But the time will

not over then 0.1%. So we have a conclusion, the execution time of DMA can

32

Table 5.1: Execution Time of Different Buffer Size

Buffer Size 16KB | 32KB | 64KB | 128KB | 256KB
HandSahke Mode | 92880 | 185761 | 371519 | 743039 | 1486077
Demand Mode | 92880 | 185761 | 371519 | 743039 | 1486077
Calculating 92880 | 185761 | 371519 | 743039 | 1486077

be found by calculating.

5.1.2 Evaluation of Measurement

Once we have the the starting time and tHesstoping time of DMA, we can use
our tool to analysis the power consumptiofi of DMA" In this experiment, we use

L

the handshake mode as ourn criterior;?ﬁ%sldthe buffér size is 16 KB. Figure 5.1
shows the result of measuremen’é.? In "%égsk playmp3; the DMA will soon occur
that will causing lack of samplin;g'time of éO.,,Because we want to increase the
sampling number of GO, so in the first” half of the measurement we disable the
DMA. Furthermore, we can see the power consumption of DMA after the first
half of measurement. The power consumption when the execution time involve

DMA is instable because of the DMA would occur on different tasks. Finally

the measurement result will be G1 - GO.

After one hundred measurements, the result of coefficient of variation as
in table 5.2 is about 6.5%. The the coefficient of variation (CV) is a normalized

measure of dispersion of a probability distribution. In other words, the vari-

33

Table 5.2: Average and Coefficient of Variation

Average of 100 Data | Coefficient of Variation
0.02037535 6.5%

o R DURA UL RU ML D0l RARRA 0 VH DONERRRannannn Iﬂ:lﬂ N
KRN CEVN bl Ebe bbb bebe e FER e e FEE DR P EE R T

HIII]ﬂIJIlI]IJEII]I]I]EII]IIDUI]IIEIJUII!IJUI]]I!B[I]I]UI]I]IIEIUIIIIEIUIIIII]IJIII]I]IJi]n

DMA_measure
0 DO 0O 00 0D 0O D00 00 OO

IIIIIIIliIEIIIIJH]ImIIlililltll

I‘H'II 00 00 D0 0O OO 0O OO0 0D OO0 0D OO0 DO COO OO

rpciod
kupdated ‘ ‘ |
init ‘ ‘

Bosess invave OMA Tt e T T
ceess fnvalve ; ; ; ; ; A : ‘ i ...I.IIIM.IIII”.IIIII.\i.IIIIn...I.!.I,I

0.000 0.705 1.409 2.114 2.818 3.523 4.227 4.932 50636 6.341 7.045 7.750 8.454 8.159 9.863 10.568 11.272 11.977 12.662 13.386 14.091

Execution Time [s]

The Process Information in Measured Interval

Pid Command Execution Time[s) Energy [J] Avg Power [W]
30 playmp3 6.516754 18.545586 2.845832
3 | ksoftirgd_CPUO 1.077387 2.921118 2711299
29 | DMA _measure 6.490649 17.406475 2.681777
27 rpciod 0.004380 0.014634 2.938546
6 kupdated 0.000304 0.000876 2.882344
1 init 0.000549 0.001561 2.842795
Sample of G1 3.144539 8.466534 2.692456
Sample of GO 3.346110 8.939941 2.671741
Total 14.090624 38.890251 2.760009
- — - -

Figuré 5.1: The m_easiuremeht result

ability of measurement result is not over then 6.5%. We think the error rate

of the measurement result is acceptable so that our measurement approach can

be verified.

5.1.3 Power Measurement on Different Buffer Size

After we verify the feasibility of our tool. The third experiment we investigate

the power consumption of different buffer size. The result shows in Figures 5.3.

34

The bigger buffer size per request that DMA access, the less power consumption
of DMA. Because, the behavior of DMA is the same in different size, the only
different is the bigger buffer size that DMA uses, the less request that DMA
requires. This will reduce the number of routines of DMA request like interrupt

and some settings on driver level.

When DMA perform atomic transfer, the signal XnXDREQ will be syn-
chronized to signal XnXDACK called double sync. Figure 5.2 shows two differ-
ent modes of DMA. In demand modey If XnXDREQ remains asserted, the next
transfer starts immediately. Otherwise iﬁ"waits: for XnXDREQ to be asserted.
In handshake mode, if XnXDREQ is deasserted, DMA deasserts XnXDACK
in 2 cycles. Otherwise it waits untﬂ-‘;XnXDREQ 1s ideasserted In other words,

=5

demand mode will not perform dpublq]sync again untll the next request occurs.

So the effort that DMA in handshake modﬁ is/mote than in demand mode.

5.1.4 Power Measurement on Different: Bit' Rate

In the last experiment, we observe the application level with the same DMA
access pattern in both modes. In other words, we try to fix the behavior of
DMA. We use different bit rate of mp3 file as our variable. Those bit rate of
mp3 files are 128KB, 160KB, and 192KB respectively. The bigger that bit rate
of mp3 file is, the more effort that processor must handle. The purpose of this
experiment is to see if the tool would be effected by the application level or

not when our measurement subject is fixed. The result is just as we expect as

35

HI‘MMFJMMMMMUTILW
g | ‘ | : : 5

XnXDREQ

H
|
i
1 1 J‘ :
i ' I
o=) O==lop
i i 2cvc\es ! : ! %
i ! 1]
h i [1st Transler 2nd Transfer]! L Ion
XnXDACK i i L A nssi S S 'J' > E :Ma \1'\
‘])
I I

—»
Read Wnle
| : ! t Read { Wiite }] i
|

i | Ac1uai i H i i
Handshake Mode ' ; Acquwsuton \ Tlansrer l | i : i

1 1 ' I

1 ! \an
XnXDREQ \

]
!]
; : : : i
: : ‘ oo
1 i Read) Wirite I i
XnXDACK ' - e—— : —

T T
' ! - 2cycles Double synch
! i

| Double synch 1
i i

Figure-5.2:The measuzement-result

Power consumption of DMA I/O

mHandShake
mDemand

16 KB 32 KB 64 KB 128 KB 256 KB
DMA Buffer Size

o
(@)
—
(&)]

S
-
()
3
o
o

Figure 5.3: Power consumption of DMA with different buffer sizes

36

Power Consumption by DMA I/O

o
o
—
(&)

mHandShake
®Demand

3
S
Qo
3
o
o

128 KB 160 KB 196 KB
Sample Rate of MP3

'l
Figure 5.4: Power consutmptlon of DMA with different bit rates

shown in Figure 5.4. The measuTenent re’surl-t is that the bit rate of mp3 file

does not effect the power consumption of DMA.

5.2 A Formula For DM A Power Consumption

Through those experiments, we verify the feasibility of this tool. So we can use
a formula to compute the DMA’s energy with our aid by using our tool. The

formula is similar to the original formula as bellow

= Pyti) - At = ;ZPd(ti),l <i<n (5.2)

37

T denotes the sum of ¢;, which ¢; means the execution time of every DMA
request, Py(t;) denotes average power consumption DMA consume, and n de-
notes the numbers of DMA request. So our tool provide a convenient way that
perform the power consumption measurement not only the relation between

different tasks, but also a hardware power consumption.

Current measurement tools can not verify our work, because the mea-
surement result of our tool is totally different with simulation-based tools and
physical-based tools. The measurementresult of our tool is the additional power
consumption of DMA when the targ'et teiék use [/O devices. Simulation-based
tools do not know the exact power consumprt'ion of specific I/O devices, and
physical-based tools hardly/ tell apau. the power consumptlon of I/O devices
when they are used by a task: As a d,fveloper of apphcatlon or system design,
we believe that our analysis K(res%l};

is more,helpful then simulation-based tools

and physical-based tools.

38

Chapter 6

Conclusion and Future Work

Although we know the most valued power consumption comes from the CPU
or memory, but the power consumptioﬁlcaused by I/O devices can not be
unregarded, because there:are many.1/0 deyices.in a computer system like disk,
LCD, network etc. Therefore, the té&lﬁpower consumption from I/0O devices
would not less then the CPU on memljry In this thesis, we first enhance our
task-based measurement teool bif ,.removing;;it_he redundant do_IRQ)() toggles,
and reduce about 80% the nurhber of recordé that system must store. This
tool has a problem that is when we want to measure a desired program, the
result of the measurement could involve the power consumption of I/O devices
that is independent with this program. In order to solve this problem, we
propose a novel method of scenario grouping. Consequently, we can use this
method to gain the power consumption of /O devices that is separated from
total power consumption of the system. Moreover, we provide an approach for

developers who are eager to extend the hardware-aware functionality of task-

39

based measurement tools. At last, we use the approach we propose to implement
the DM A-aware functionality for our tool as a demonstration, and use this new
feature to observe the power consumption of DMA. This measurement result
reflects the current power consumption of tasks directly, it is not possible to
gain this information from physical-based tools or simulation-based tools, so we
believe our tool can provide an easy-to-use, low cost, flexible way for developers

to use.

For the future work, we would-like to adopt more hardware scenarios for
our tool like LCD, network etc. Since :t.he more. scenarios we get, the more
precise measurement result. we hayg. On the dther hand, we would like to focus
on the most important power consﬁ&pt_ion sourcé; CPU. Since we can use a
measurement program to obse]rx{ei tﬁg:;gv{fer gonsumption of 1/O devices, we
will try to design a similar way éto analysm the additional power consumption

of CPU. Finally, we hope our tool can prro{f:i'de a precise result for users on

applications of the embedded system.

40

Bibliography

[1] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimizations. In proceed-
ings of the 27th Annual International Symposium on Computer Architec-

ture, page 83, June 2000:

[2] J. Flinn and M. Satyénarayana_n. Powerscope: A tool for profiling the
energy usage of mobile appli:ca;ﬁ-'r'ﬁkiél \ In Proceedings of IEEE Workshop

I f
Mobile Comput. Systi Applicat., pages 2-10, Feb 1999.

[3] Chuling Hu, Danial A.J iménéz, and Uh;iéh Kremer. Toward an evaluation
infrastructure for power and energy optimizations. In proceedings of the
19th IEEE Internationl Parallel and Distributed Processing Symposium,
2005.

4] pClinux, Embedded Linux/Microcontroller Project.
14

http://www.uclinux.org/. 1998.

[5] Dongkun Shin, Hojun Shim, Yongsoo Joo, Han-Saem Yun, Jihong Kim,

and Naehyuck Chang. Energy-monitoring tool for low-power embedded

41

programs. [EEE Design and Test of Computers, 19:7-17, July-Aug 2002.
[6] Sim-Panalyzer. http://www.eecs.umich.edu/ panalyzer.

[7] A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool for software

energy profiling. In Design Automation Conference, pages 220-225, 2001.

[8] K. Komarov T. L. Cignetti and C. S. Ellis. Energy estimation tools for the
palmtop:. In International Workshop on Modeling Analysis and Simulation

of Wireless and Mobile Systems, pages 96-103, 2000.

[9] Wei-Yu Tu and Chih-Wen Hsueh. A task-based energy consumption analy-
sis tool in multi-tasking systems. Masterls thesis, Department of Computer
Science and Information Engin_gie_ri:ng National Chung Cheng University,

i o

2006. 1o

|| =5 |
[10] Bokyung Wang and. Siiresh |Singh. Compiitational energy cost of tcp.
In INFOCOM 2004. Tweﬁty—third Apnualdoint Conference of the IFEE

Computer and Communications Societies, volume 2, pages 785-795, March

2004.

[11] Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, Dan Connors, David Brooks,
Margaret Martonosi, and Douglas W. Clark. A dynamic compilation frame-

work for controlling microprocessor energy and performance. In Microar-
chitecture, 2005. MICRO-38. Proceedings. 38th Annual IEEE/ACM Inter-

national Symposium, Nov 2005.

42

[12] Wei-Kai Wu and Chih-Wen Hsueh. Energy consumption measurement and

analysis toll on mp3. Master’s thesis, Department of Computer Science

and Information Engineering National Taiwan University, 2007

[13] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and

use of simplepower: a cycle-accurate energy estimation tool. In Proceedings

of the 37th conference on Design automation, pages 340-345, June 2000

-
i)
et o

d 7

&
%

gL

T R ALY
L]

~

&

Ak

@Ifjigﬂﬁﬁzﬁ e
= - '\,\";. a T 5

Lr

»

[
FEfEFE

&7 (5]

E e

® }gi- .Il'::li:"
'E@jﬁ‘jltal"

43

