
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

智慧型個別工作耗電量分析工具

An Intelligent Task-Based Power Consumption

Measurement Tool

曾信雄

Hsin-Hsiung Tzeng

指導教授：薛智文 博士

Advisor：Hsueh Chih-Wen, Ph.D.

 中華民國 97 年 7 月

July, 2008

An Intelligent Task-Based Power Consumption Measurement Tool

By
Hsin-Hsiung Tzeng

A Thesis Submitted To
Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
For The Degree of Master

in
Computer Science and Information Engineering

July, 2008

智慧型個別工作耗電量分析工具

指導教授：薛智文 博士 研究生：曾信雄

國立台灣大學資訊工程學研究所

摘要

現今的嵌入式裝置被廣泛的運用於日常生活中，由於半導體產業

的高成長率，處理器的速度也變的越來越快；但是處理器速度越快，

相對的能耗量也就越大。因此能耗量測成為了嵌入式系統裡面一個重

要的議題。模擬量測可以提供使用者非常細微的分析結果，但是在分

析過程當中所要花的時間太長；傳統的實體量測可以提供一個快速且

真確的量測結果給使用者，但是往往無法觀察出系統在執行時的情

形；在這篇論文中，我們在一個別工作量測工具上延伸了觀測硬體之

功能，並且提出了一個方法對周邊輸入輸出裝置作觀察。相信這套能

耗量測分析工具的實驗方法能對此工具的開發者與使用此工具之使

用者有所幫助。

關鍵字：嵌入式系統、能耗值、模擬量測、實體量測、個別工作量測

Abstract

Energy consumption measurement is very important for developers of modern

embedded systems. Basically, there are two types of measurement methods:

the simulation-based and the physical-based. For energy consumption analysis,

the simulation-based measurement is slow and inaccurate. Though the typical

physical-based measurement is fast and accurate, while it can not get detail sys-

tem information. Therefore, we propose a task-based measurement that bases

on the physical-based measurement to provide system information. However,

previous works can not use system information to derive more detailed hardware

dependent information well, such as the power consumption of CPU, memory,

I/O devices, etc. In this thesis, we propose a novel idea to extract the power

consumption of I/O devices, and verify our work through experiments on DMA.

Experiments show that we can use our method to have an acceptable result.

We believe this thesis is helpful for not only users who would like to measure

the energy consumption of applications, but also provide a fast approach to

developers who would like to get more hardware dependent information.

Keyword: embedded system, energy consumption, simulation-based, physical-

based, task-based.

Contents

1 Introduction 1

2 Related Work and Background 5

2.1 Simulation-Based Tool . 5

2.2 Physical Measurement-Based Tool . 7

2.3 Task-Based Energy Consumption Analysis Tool 8

2.3.1 Features . 9

2.3.2 System Architecture . 11

2.3.3 Operation Flow Path . 12

3 Tool Enhancement 16

3.1 Eliminate Redundancy . 17

3.2 Hardware-Aware Feature . 19

3.2.1 Problem Define . 19

3.2.2 Power Measurement Using Scenario Grouping 20

3.3 Comparison With Simulation-Based Measurement Tools 22

4 Measurement Approach 24

4.1 Approach of Measurement With Hardware-Aware Feature 24

4.1.1 Profiled Embedded System . 25

4.1.2 Power Consumption Analysis Tool . 25

4.2 Implementation of DMA-Aware Functionality 26

4.2.1 Profiled Embedded System . 27

4.2.2 Power Consumption Analysis Tool . 28

i

5 Experiments For DMA Power Consumption 30

5.1 Onboard Experiments With DMA . 30

5.1.1 Access Behavior . 31

5.1.2 Evaluation of Measurement . 33

5.1.3 Power Measurement on Different Buffer Size 34

5.1.4 Power Measurement on Different Bit Rate 35

5.2 A Formula For DMA Power Consumption . 37

6 Conclusion and Future Work 39

Bibliography 40

ii

List of Figures

1.1 The forecast of Semiconductor Global Sale . 2

2.1 Operation flow path of the procedure . 13

2.2 System Architecture . 14

3.1 Insert toggles in function do IRQ() and schedule() 18

3.2 Only insert toggle in function schedule() . 18

3.3 Six tasks are doing the same work . 21

3.4 Three tasks are doing the same work . 21

3.5 Using Grouping to measure the power consumption of I/O device 23

4.1 The flow path of the approach . 26

4.2 Structures for measuring the power consumption of DMA 29

5.1 The measurement result . 34

5.2 The measurement result . 36

5.3 Power consumption of DMA with different buffer sizes 36

5.4 Power consumption of DMA with different bit rates 37

iii

Chapter 1

Introduction

In recent years, the number of embedded devices show high growth rates. Mobile

technology today makes us more and more convenient. Figure 1.1 shows the

forecast of semiconductor global sales, the growth rate is about 9% per year.

It is amazing that experts point out an average of three embedded devices

per person worldwide will own in 2010. As the maturity of semiconductor

becomes higher and higher, microprocessors own a rapid speed, therefore the

power dissipation will increase heavily. As we know, embedded devices mostly

use batteries as their power source, so energy profiling becomes an urgent issue

on system design. Not only embedded devices, but also the data center even

desktop concern about this issue because the cost of energy is extremely large.

When developers who try to measure a high performance and low-power system,

they need to know the tradeoff between software application and architectural

level. Consequently, a power consumption analysis tool will be essential.

Researches on energy profiling in embedded system try to meet the follow-

1

0

50

100

150

200

250

300

350

400

2003 2004 2005 2006 2007 2008 2009 2010 2011

G
lo

b
a

l S
a

le
s

(U
n

it
:

$
b

il
li

o
n

)

Year

Figure 1.1: The forecast of Semiconductor Global Sale

ing requirement: accuracy, fine-granularity, easy-to-use, and low cost. More-

over, embedded systems nowadays are multi-tasking, they are more complex to

measure the energy consumption. However, energy profiling tools at present

do not provide a good way of accurate measurement on system-level. Existing

tools can be simply classified into two types: simulation-based and physical-

based measurement tools. Simulation-based measurement tools can analyse

detail activities of the system. When we would like to measure a program,

we just set the parameters of the system architecture, then the profiling tool

will simulate the program execution on the simulated platform and analyse its

usage of system component. We also need to know the power consumption

of components in advance. In other words, the measurement result is not the

2

exact energy consumption of the system. Physical-based measurement tools

provide the exact power consumption of the target hardware component. They

are very fast and objective. However, the drawback of this kind of tools is

hard to get the information of system activities. Fortunately, there exists a

kind of physical-based measurement tools called task-based measurement tools.

Task-based measurement tools can analyse the power consumption precisely on

system-level. However, we still have problem on the task-based measurement

tool. The problem is the result of the measurement suffers from dynamically

changed power consumption of I/O devices. So our work is trying to further

analyse the power consumption of I/O devices, and provide more accurate mea-

surement results.

In this thesis, we adopt a task-based measurement tool developed by Tu

[9]. We solve the problem that task-based measurement tools are not aware

of I/O device by a novel method: grouping. We also provide an approach

that is easy to modify the tool. This approach is for developers who use task-

based measurement tools to extend the hardware-aware functionality, and for

users who want to measure the energy consumption of applications, we can also

provide a convenient and rapid way of measurement. Finally, we demonstrate

the power consumption of DMA by using our approach.

The rest of this thesis is organized as follows. We will discuss the re-

lated work and background in Chapter 2. In Chapter 3, we talk about the

3

tool enhancement. And Chapter 4 provides a flow of a approach to extend a

hardware-aware functionality for our tool. Chapter 5 shows the verification of

our approach and experimental results of power consumption of DMA. Finally,

this thesis is concluded in chapter 6.

4

Chapter 2

Related Work and Background

As researches on power-aware issues become more important on portable embed-

ded systems. In order to estimate the energy consumption, we need an energy

profiling tool to help us. Basically, we can categorize those tools into two types:

simulation-based tools and physical measurement-based tools. In this thesis,

we adopt a tool that is a kind of physical measurement-based tools. This chap-

ter, we discuss related work and background knowledge about simulation-based

tools, physical-based tools, and the task-based energy consumption analysis

tool we adopt.

2.1 Simulation-Based Tool

In simulation-based measurement tool, the system will be abstracted into var-

ious components. The energy consumption of a program can be estimated

by summing all energy consumption of all components. In [3], Chunling et

al classify simulators by different granularity. According to their levels of

5

system and and component abstraction, there are transistor-level, cycle-level

(Microarchitecture-level), instruction-level, and system-level. Simulators be-

long to transistor-level characterize models of transistors and estimate voltage

and current behavior over time. They are also called circuit-level or gate-level.

They are useful for integrating the circuit design. Due to the heavy time-

consuming problem, they are not suitable to evaluate power consumption of

large programs. Simulators belong to cycle-level simulate the execution at the

level of individual cycles. Usually, they are used for simulations of modern su-

perscalar processors because their granularity are moderate. Three examples

of cycle-accurate simulators, Wattch [1], SimplePower [13], and Sim-Panalyzer

[6], have been applied to various platforms, including ARM SA1110, Alpha, and

PISA. Simulators belong to instruction-level simulate coarser granularity. This

kind of simulators performs instruction-level energy profiling of the instruction

set of the target processors. Normally, instruction-level simulators are faster

than cycle-level and transistor-level. JouleTrack [7] is one of the example that

belongs to instruction-level simulator. And simulators belong to system-level

are hardware dependent architecture. These systems are composed of many dif-

ferent hardware components, and characterize the energy consumption of each

system in different states. Duke University [8] extends the POSE to a palm

OS simulator. So we can find out that it is a tradeoff between the granularity

and the speed. Although simulation-based tools with coarse granularity can

speedup the time consumed during the measurement, still there exist a gap of

6

speed between simulation-based tools and physical measurement tools.

2.2 Physical Measurement-Based Tool

In stead of abstracting the system, the energy of a profiled computer system will

be measured directly by an external hardware in physical measurement-based

tools. Usually, the external hardware will be digital multimeter or oscilloscope.

Advantages of physical measurement-based tools are fast and accurate, but

there must have a precise mapping between the measurement result from oscil-

loscope and the profiled program segment. Physical-based measurement tools

use the concept of trigger point to matching the oscilloscope and the profiled

segment. System designers often use this kind of tool for power-aware issue,

and researchers [4, 11, 10] of the simulation-based tool also need this kind of

tool to validate the result. There are highly dependency on precision and the

sample rate. The higher sample rate is, the more precise measurement result we

have. PowerScope [2] is a hardware instrumentation tool proposed by Flinn and

Satyanarayanan. PowerScope maps energy consumption to program structure

like the way CPU profilers map processor cycles to specific processes and pro-

cedures. The architecture of this tool is composed of three components: system

monitor, energy monitor, and energy analyzer. The system monitor samples

the program counter and the process identifier. The energy monitor stores the

current samples. And the energy analyzer maps samples to specific procedures,

so it can determine the power consumption of the specific process. Research

7

in [3], Hu, Jimenez, and Kremer used the oscilloscope trigger module to solve

the mapping problem. They proposed a SimPoint idea to overcome hardware

limitations and measure long program. In SimPoint, a program execution is par-

titioned into intervals with a fixed number of instructions. The similar intervals

behavior are clustered into a phase. However, the sample rate of this approach

must less than 3700 samples/sec, and it is not high enough as a result of the

long communication cost between oscilloscope and data-acquisition machine.

Moreover, this approach lacks for considering the impact from the execution

activities of operating system. In [5], Dongkun Shin et al proposed an energy

profiling tool named SES. SES integrates the profiled system and measurement

circuit into a PCI adapter. SES collects the data of power consumption in a

cycle-by-cycle resolution and without any additional measurement equipment.

But the drawback is the environment of profiled system is fix and there are many

hardware restrictions to developers. So we have a conclusion about this section,

traditional physical measurement-based tools can not provide a high sampling

measurement, and seldom consider the execution activities of operating system,

such as context switch, kernel process, interrupts, etc.

2.3 Task-Based Energy Consumption Analysis Tool

In this thesis, we enhance the task-based tool designed by Tu [9]. It is a kind of

physical measurement-based tools with high sample rate. This section we will

talk about the features, system architecture, and flow path of the measurement

8

of this tool.

2.3.1 Features

This task-based energy consumption analysis tool is a kind of physical measurement-

based analysis. Instead of the external oscilloscope, the author used a data

acquisition card: NI-5112 DAQ card for higher sampling to reduce the error

and enhance the reliability. This data acquisition card has a high speed PCI

bus as its interface and the PCI latency is insignificantly small about 32 clocks,

so the acquiring and processing large waveforms is much faster than external

instruments. Moreover, the original data type double in NI-5112 DAQ card was

modified to float before saving the measured data to hard disk, so it can reduce

the redundancy of memory space. The author also changed the file format to

save the measured data file from text to binary. Compare with text file, binary

file is more efficient format because of less disk usage and no need to translate

textual characters. We conclude the characteristics above, the sample rate of

this tool is up to 3M and much higher that other researches.

In order to reduce the error, the author drop the original transformer

because it has a jitter with around 1.6% error rate. Instead, he used a stable

power supply as the power source. In addition, this tool selects a highly accurate

sense resistor with resistance shift only less than 0.5% to avoid the effect from

the resistor error.

9

There are two synchronized channels called channel0 and channel1 of DAQ

card. Channel0 attached to the left and right side of the sense resistor fetches

the measured voltage. Channel1 attached at the GPIO (general-purpose input-

output) pin of the evaluation board senses the variation of the pin voltage.

When measuring the desired program interval, the trigger generation code for

toggling the GPIO pin voltage must be inserted at the beginning and the end of

the interval respectively. Based on the two synchronous channels, the analysis

tool will match the measured interval within the measured data from channel0

by determining the trigger point within the ones form channel1 to recognize the

corresponding data form channel0.

Not only the measured program interval, but the system activities are con-

sidered by the following technique similar to the approach as mentioned above.

The author uses a system call for toggle and inserted it into schedule() and

do IRQ() in Linux kernel. Consequently, this analysis tool is sufficient to con-

sider that the system activities from schedule() and from do IRQ(). The former

will select a process to execute, and the latter will execute the corresponding

interrupt handler while the timer’s interrupt every 10ms for the running period

of a process or a hardware interrupt occurs.

This tool adopt Linux procfs (proc file system) mechanism to record pro-

cess execution information at runtime. The procfs is a virtual file system, and

it is not associated with a block device but exists only in memory. It takes

10

the advantage of procfs to save data to memory so that the overhead is much

smaller than to secondary storage. Based on the author’s experiment, procfs

mechanism is only 2% plus power and is 93 times faster than saving the same

data to an opened file in flash. Therefore, this is a low-overhead approach for

recording process activity.

2.3.2 System Architecture

The system architecture is composed of the measured evaluation board, a power

source, and a DAQ card. The evaluation board is the popular embedded system

development board, where an operating system and some user programs can

run. In order to get a precisely result of measurement, we also use the power

source supplies the energy to measure the evaluation board’s power. The DAQ

card is an internal device with PCI bus interface.

We use the Creator S3C2410 Development Kit made by Microtime Com-

puter Inc board as our measured evaluation board in this tool. Several charac-

teristics mentioned below:

• ARM920T Core (200MHz)

• 16MB Flash ROM

• 64MB SDRAM

• A Linux 2.4.18 porting

11

The DAQ card this tool adopt is the National Instrument NI-5112 High Speed

Digitizer. Its main specification is described as follows:

• 2 simultaneous channels

• Max 100M samples/sec

• 16MB memory per channel

• 8-bit resolution

The output of power supply is more stable than transformer. Moreover, the

power source in this tool uses a power supply but not the Creator’s transformer

capable of reducing 1.6% error.

2.3.3 Operation Flow Path

The profiling procedure is composed of three stages: pre-process stage, mea-

surement stage, and analysis stage. The profiling procedure is shown in Figure

2.1 and explained in the following sections.

The Pre-Process Stage

At the pre-process stage, we have to insert the trigger generation codes at the

beginning and the end of the profiled program to determine what program seg-

ment we want to measure. In this stage, we also need to set up the hardware.

As shown in Figure 2.2, one of the DAQ card channel (channel0) are respon-

sible for measuring the voltage across a sense resistor R which is connected in

12

I n s e r t T r i g g e r

G e n e r a t i o n
C o d e

S e t

M e a s u r e m e n t
P a r a m e t e r s

S t a r t
A c q u is it io n

S t o p

A c q u is it io n

A n a ly z e

D a t a

D i s p l a y

R e s u l t

E x e c u t e T h e

P r o f i l e d

P r o g r a m

T r i g g e r S i g n a l

a n d R e c o r d

E x e c u t i o n D a t a

M e a s u r e m e n t

S i m u l t a n e o u s l y

P r o f i l e d c o m p u t e r s y s t e m
D a t a a c q u i s i t i o n c a r d

D a t a a c q u i s i t i o n c o m p u t e r

A c q u i s i t i o n p r o g r a m
A n a l y s i s p r o g r a m

P r e - P r o c e s s S t a g e A n a l y s i s S t a g eM e a s u r e m e n t S t a g e

Figure 2.1: Operation flow path of the procedure

series with the power supply and the profiled computer system. Another one

(channel1) is connected to the GPIO (general-purpose input-output) pin of the

profiled computer system. After that, we set the measurement parameters in

the acquisition program, including sample rate, data range, saved file path, etc.

The acquisition program we implement is to control the DAQ card.

The Measurement Stage

At the measurement stage, the DAQ card would begin to measure by starting

acquisition program. After that, we execute the profiled program in the profiled

computer system. The trigger generation code we inserted at the beginning and

the end of the profiled program segment would toggle the GPIO pin voltage,

13

Figure 2.2: System Architecture

and then channel1 would sense the change of pin voltage. So we can find the

measured interval in channel0 by comparing channel0 and channel1’s data in

the analysis stage. In addition to the beginning and the end of the profiled

program, the functions context switch or an interrupt would trigger the toggle

and record some data in kernel to log this event. After measuring, we stop the

acquisition through the acquisition program. The DAQ card would produce two

log files from the two channels. On the other side, the profiled system would

produce the log file for analysis program.

The Analysis Stage

At the final stage, we complement an analysis program to analyze the three log

files from the measurement stage. As shown in Figure 2.2, from the measured

voltage V (t) and other hardware parameters, the power of the profiled computer

14

system can be calculated as

P (t) =
V (t)

R
· V ′ =

V (t)

R
(Vtotal − V (t)) (2.1)

where the profiled system voltage V ′ is Vtotal subtract V (t), and Vtotal is the

power supply voltage. The energy consumption of a period in the profiled

computer system is calculated by

E(t) =
∑

P (t)∆t =
1

S

∑
P (t) (2.2)

∆t represent the period between each sample, the S is the sample rate of the

DAQ card. The analysis program integrates the energy data from DAQ card and

the process execution data from kernel to produce an overall system running

information of the measured interval, which includes scheduling result with

power information, execution time, energy of every process, etc.

15

Chapter 3

Tool Enhancement

We observe that Tu’s [9] work can only adopt sample testing programs to mea-

sure. Wu [12] revised this tool to measure more complex programs. However,

there are some problems need to valuate. The biggest one is the power con-

sumption of every processes is muddled together. Because the power we measure

by the oscilloscope is the total power of the board, we can not know the ex-

act power consumption that belong to the process we want to measure. This

chapter, we illustrate how to reduce the error rate of the tool and its overhead

the measurement require. Furthermore, we take advantage of the task-based

analysis tool that consider the system activity like interrupt and scheduling to

adopt a new feature to estimate the power consumption of hardware by using

a novel method: scenario grouping. This method can measure the exact power

consumption caused by I/O devices without too much effort. Since we know

the power consumption of I/O devices, we can subtract it if it is unconcerned

with the task we want to measure.

16

3.1 Eliminate Redundancy

The original architecture inserts toggles in function do IRQ() and schedule() at

kernel. As shown in Figure 3.1, the error rate is very high. The reason that

causing high error rate is the unceasing interrupts, and the time between two

interrupts are too close so that the data can not be retrieved correctly by the

oscilloscope. Because there are too many interrupts occur, like timer interrupt

or some hardware, and every interrupt will be handled by the function do IRQ(),

so it is not applicable that inserts the toggles in function do IRQ(). We observe

that they inserted those toggles just only want to recognize different tasks. In

fact, we can identify two different tasks just use the function schedule() without

insert the toggles in function do IRQ(). Figure 3.2 shows a desirable result that

after removing the toggles in function do IRQ(), we obviously reduce the error

rate of program measurement. Moreover, because we do not need to burden the

heavy routine after interrupt occur anymore, so we can reduce the information

that are stored by the proc filesystem. The number of records that is measured

by the original tool is about 398 per second an average. After eliminating the

redundancy of unnecessary toggles, the number of records is down to 52 per

second an average.

17

Figure 3.1: Insert toggles in function do IRQ() and schedule()

Figure 3.2: Only insert toggle in function schedule()

18

3.2 Hardware-Aware Feature

Hardware-aware means we can estimate the power consumption of the desired

hardware component. Pervious work only used toggles in the kernel to distin-

guish different tasks. Nevertheless, we underprice the advantage of considering

the system activity. Once we own the information of system activity, we can

use those information to measure the power consumption of the hardware. Now

we will make good use of the advantage of task-based measurement tools to add

a hardware-aware feature. This section, we will first define the problem of the

task-based analysis tools, and give some assumptions to make our method of

measurement work.

3.2.1 Problem Define

First, this tool has a problem that is when we want to measure a desired pro-

gram, the result of the measurement could involve the power consumption of

I/O device that is independent with this program.

Second, we investigated the power consumption relation about hardware.

The experiments in Figure 3.3 and Figure 3.4 show that six and three tasks

which every task continuous doing multiplication respectively. And other tasks

are invoked by the system, because the influence of those tasks is not big, so we

omit them here. According to these two figures we know that the power con-

sumption of each task in two figures does not have too much different. Because

19

those two experiments have the same usage of hardware. Compare to Figure

3.2, the experiment have additional application playmp3. we found the task

playmp3 has more power consumption. The additional power consumption is

due to the utilization of the hardware is vary, like the workload of processor,

activity of memory, or caching would be different, and the whole computing

would involve other hardware access. Through those experiments, we know the

power consumption is highly dependent upon hardware utilization.

Concluding the description above in this subsection, we propose the follow-

ing hypothesis that forms the basis to meet our goal: The power consumption of

the hardware would be identical with its hardware that have the same utilization

regardless the content of work.

3.2.2 Power Measurement Using Scenario Grouping

We use a measurement program to segment itself into different scenarios ac-

cording to different usage of I/O devices. The usage of I/O devices means the

utilization of I/O devices when the system is act. The purpose of measurement

program is to observe the program we want to analysis. As we know, the sys-

tem involves lots of variables like cpu utilization, memory, cache for example.

In order to reduce the inaccuracy of measurement result, the measurement pro-

gram do nothing but a infinite loop. Thus, we can observe the changing of the

power consumption without too much interference. Before the measurement,

The system will build a table to map the usage of I/O devices. During the

20

Figure 3.3: Six tasks are doing the same work

Figure 3.4: Three tasks are doing the same work

21

measurement, once the I/O device is active, the toggle will trigger the system

to record the I/O device information according to the table. For example as

shown in Figure 3.5, if we have I/O device1 and I/O device2 that we can grab its

information from toggles. At the analysis stage, the analysis tool will segment

tasks into different scenarios. Every scenario represents a situation of the usage

of I/O devices. In this case, we have four different scenarios. S0 represents the

scenario that no I/O devices are active record by the table, S1 represents the

I/O device1 is active but the I/O device2 is not, S2 represents the I/O device1

is not active but I/O device2 is, and the S3 means the I/O device1 and I/O

device2 are both active. At analysis stage, the analysis program will collect

those segmentations which are labeled as the same scenarios into a group. In

this case, those segmentations which were labeled as S0, we will collect them

into G0. Those segmentations which were labeled as S1, we will collect them

into G1. So the power consumption of hardware1 will be G1 - G0 or G3 - G2.

And the power consumption of hardware2 will be G2 - G0 or G3 - G1. That

is to say, if we got more different scenarios, our measurement result would be

more precisely.

3.3 Comparison With Simulation-Based Measurement Tools

Taking three common used simulation-based measurement tools: Wattch [1],

SimplePower[13], and Sim-Panalyzer [6] as examples. Wattch can not measure

the power consumption of I/O devices because it does not have I/O model-

22

Hardware State

H ardw are1 O ff O n O ff O n

H ardw are2 O ff O ff O n O n

G roup G 0 G 1 G 2 G 3

Hardware1 Hardware2

P o w e r

C o n su m p tio n
G 1 – G 0

G 3 – G 2

G 2 – G 0

G 3 – G 1
S 0 S 1 S 0S 3S 0

Figure 3.5: Using Grouping to measure the power consumption of I/O device

ing support. Sim-Panalyzer does not have any I/O modeling support neither.

Sim-Panalyzer support the measurement of I/O devices, but it can only offer

general information about I/O transmissions like the power consumption be-

tween memory and I/O bus, it can not measure more specific information of

I/O devices like the power consumption of I/O device when it is active. We

found most simulation-based measurement tools do not provide a good way of

power consumption measurement of I/O devices. Compare with those three

profiling tools, our tool performs a better way of I/O device measuring. We can

measure the power consumption of the desired I/O device easily by using our

tool.

23

Chapter 4

Measurement Approach

The profiling procedure has three stages: pre-process stage, measurement stage,

and analysis stage. Because this analysis tool has new hardware-aware feature,

and the main goal of this thesis is provides a hardware aware measurement

approach. Therefore, the changing of the procedure is avoidless. This chapter,

we provide an approach of extending hardware-aware features. Moreover, we

will extend a DMA-aware feature on our tool as an illustration.

4.1 Approach of Measurement With Hardware-Aware Feature

As shown in Figure 4.1. The approach is based on the profiling procedure.

The whole approach will take place at pre-process stage. Descriptions at block

diagram with green color mean actions which execute on profiled computer

system. The profiled computer system includes the program we want to measure

and the operating system we use. And descriptions at block diagram with blue

color mean actions which execute on the power consumption analysis tool. The

24

power consumption analysis tool include the acquisition program and analysis

program.

4.1.1 Profiled Embedded System

First, kernel modification means the embedded operating system we use to mea-

sure our profiled programs. We must know what hardware we want to measure.

And we insert toggles at kernel. In general, the activity of the hardware will

accompany with its interrupt service routine. So we can insert toggles at the

interrupt handler hardware to get the starting time of hardware access. Also we

must determine the stoping time of the hardware access. After that, we need to

add the activity character for power consumption analysis tool. Second, we in-

sert triggers on user application. User modification means that we must design

a measurement program to observe the changing of the power consumption of

different groups.

4.1.2 Power Consumption Analysis Tool

Once the modification of profiled embedded system is complete. Then we can

gain the additional information of I/O devices for our use. So the analysis pro-

gram also has some modifications. The analysis program must recognize which

new hardware activity character we add. So we need to register new hardware

activity as hardware scenario on our analysis tool to build a grouping table.

Once we have the grouping information, we can know the power consumption

25

Kernel

Modification

Application

Modification

Set Measurement

Parameters

Profiled embedded system

Power consumption analysis tool

Pre-Process Stage

Register Hardware

Scenario and Build

Grouping Table

Acquisition program

Analysis program

Figure 4.1: The flow path of the approach

of I/O devices.

4.2 Implementation of DMA-Aware Functionality

Because DMA is the common used solution for handling the transmission of

data between low speed I/O devices and memory. Those I/O devices include

disk, VGA card, sound card etc. Moreover, simulation-based measurement tools

do not provide a good way of measuring the power consumption of I/O devices.

This section, we will illustrate how to use the approach to measure the power

consumption of DMA.

26

Table 4.1: Activity character

character execution occurrence

a At the start of measured interval

b At the end of measured interval

s At the start of schedule()

t At the end of schedule()

d At the start of dmaDone irq handler()

4.2.1 Profiled Embedded System

We remove redundant do IRQ() toggles. In stead, we insert new toggles in

dmaDone irq handler(). The function dmaDone irq handler() is an interrupt

handler specific for DMA when the DMA access is act. As DMA access is act,

the handler will load a buffer and transfer data to the destination until there is

no data. By inserting these new toggles, we can grab the starting time of DMA.

Thus, if we can also know the stoping time of DMA, we can use them to observe

the additional power consumption that caused by DMA. And the number of

records is up from 50 to 60. Compare with the number of inserting toggles in

function dmaDone irq handler(), inserting toggles in dmaDone irq handler()

is less overhead that proc filesystem must deal with. The original activity

character will be modified as shown in Table 4.1.

As mentioned in Chapter 3, we need a measure program which do nothing

27

but an infinite loop. This program will be executed until the measurement

procedure is complete. And we also insert trigger point on the program we

want to measure. So we can observe the DMA after the end of the program we

want to measure, and use the measure program to preform grouping on analysis

tool.

4.2.2 Power Consumption Analysis Tool

In analysis program, we add three structures as shown in Figure 4.2. The

structure str group is used as an array. Every element segment the execution

of program by different scenarios. The components of the structure str gruop

including group table, start, stop, energy, power. The group table is used to

collect the elements in the same scenario. The elements start and stop record the

starting time and the stoping time of element respectively. The elements energy

and power will record the energy and the power of the measurement program

respectively. Also, we add a structure str mdma to observe the execution of

DMA.

28

Figure 4.2: Structures for measuring the power consumption of DMA

29

Chapter 5

Experiments For DMA Power
Consumption

This chapter, we will show experiments result of DMA power consumption

measurement. First, we interpret the goal of those experiments, and then we

will show results. Finally, we provide a formula for DMA energy consumption.

5.1 Onboard Experiments With DMA

Transactions of data of the codec are handled by the DMA. So we can use a

playmp3 as the program we want to measure. As the program playmp3 is in

execution, the DMA controller will start to transfer data between memory and

codec. Our experiments are based on this program and a measure program as

mentioned before. In order to increase the number of samples of G0 (means

the scenario that the DMA is not active), we disable the DMA for the first half

of time in the whole measurement. In our approach, the power consumption

measured by the tool is including the power that DMA controller transfers the

30

data between memory and codec, and the power by the codec when the codec

is making sound.

Because DMA controller have two main protocols, demand mode, and

handshake mode. We will measure our DMA on both mode. The first experi-

ment is a discussion of the access time of DMA. We will discuss the behavior of

DMA execution time. Because we found the arrival time of DMA is steady. So

we try to calculate the DMA per request to gain the stoping time of DMA. The

second experiment is an evaluation of DMA to show our approach is feasible.

Once we verify the feasibility of our approach on the second experiment, the

third experiment will explore the measurement of DMA on different buffer size.

And the last experiment will discuss the measurement on different bit rate of

mp3 files.

5.1.1 Access Behavior

To get the starting time of DMA is quite sample, but to get the stoping time

is more complicate. We may design a polling program to observe the stoping

time of DMA. But it is not practical because we would effect the result of

measurement. So we hope to avoid using polling as we can. In our case, we

found that the arrival time of DMA is steady. Because the serial bus must feed

the data to the codec in time or the codec would not make sound correctly. So

we can calculate the execution time of DMA by the clock frequency of bus and

31

the transfer size per request of DMA as

ExeuctionT ime =
DSZ

SCLK
· TSC =

BufferSize

SCLK
(5.1)

DSZ is the size of data that DMA performs one atomic transfer, default is 16

bit. SCLK is the clock frequency of serial bus that the DMA transfer. And

TSC is the count that DMA controller perform data transfer per request. So

DSZ multiply TSC and then divide SCLK will be the execution time of DMA

access per request. In other words, if we know the buffer size of DMA and the

clock frequency of serial bus, we can calculate the execution time to gain the

stoping time.

The first experiment is a comparison between a measurement of the DMA

execution time using polling and a measurement by calculating. We investigate

two different protocols to see if the measurement of execution time using cal-

culating is feasible. As shown in Figure 5.1, we can find the execution time of

two different protocols are quite similar because the DMA access through the

serial bus is on time. Although the execution time of different protocols are

similar, but the access pattern are different. So the power consumption will

be different. We will discuss on the following experiments. We also find the

relation of the execution time of DMA and buffer size have direct ratio. And

the execution time between two methods of measurement is very close. The

measurement using polling is a little more then calculating. But the time will

not over then 0.1%. So we have a conclusion, the execution time of DMA can

32

Table 5.1: Execution Time of Different Buffer Size

Buffer Size 16KB 32KB 64KB 128KB 256KB

HandSahke Mode 92880 185761 371519 743039 1486077

Demand Mode 92880 185761 371519 743039 1486077

Calculating 92880 185761 371519 743039 1486077

be found by calculating.

5.1.2 Evaluation of Measurement

Once we have the the starting time and the stoping time of DMA, we can use

our tool to analysis the power consumption of DMA. In this experiment, we use

the handshake mode as our criterion, and the buffer size is 16 KB. Figure 5.1

shows the result of measurement. In task playmp3, the DMA will soon occur

that will causing lack of sampling time of G0. Because we want to increase the

sampling number of G0, so in the first half of the measurement we disable the

DMA. Furthermore, we can see the power consumption of DMA after the first

half of measurement. The power consumption when the execution time involve

DMA is instable because of the DMA would occur on different tasks. Finally

the measurement result will be G1 - G0.

After one hundred measurements, the result of coefficient of variation as

in table 5.2 is about 6.5%. The the coefficient of variation (CV) is a normalized

measure of dispersion of a probability distribution. In other words, the vari-

33

Table 5.2: Average and Coefficient of Variation

Average of 100 Data Coefficient of Variation

0.02037535 6.5%

Figure 5.1: The measurement result

ability of measurement result is not over then 6.5%. We think the error rate

of the measurement result is acceptable so that our measurement approach can

be verified.

5.1.3 Power Measurement on Different Buffer Size

After we verify the feasibility of our tool. The third experiment we investigate

the power consumption of different buffer size. The result shows in Figures 5.3.

34

The bigger buffer size per request that DMA access, the less power consumption

of DMA. Because, the behavior of DMA is the same in different size, the only

different is the bigger buffer size that DMA uses, the less request that DMA

requires. This will reduce the number of routines of DMA request like interrupt

and some settings on driver level.

When DMA perform atomic transfer, the signal XnXDREQ will be syn-

chronized to signal XnXDACK called double sync. Figure 5.2 shows two differ-

ent modes of DMA. In demand mode, If XnXDREQ remains asserted, the next

transfer starts immediately. Otherwise it waits for XnXDREQ to be asserted.

In handshake mode, if XnXDREQ is deasserted, DMA deasserts XnXDACK

in 2 cycles. Otherwise it waits until XnXDREQ is deasserted. In other words,

demand mode will not perform double sync again until the next request occurs.

So the effort that DMA in handshake mode is more than in demand mode.

5.1.4 Power Measurement on Different Bit Rate

In the last experiment, we observe the application level with the same DMA

access pattern in both modes. In other words, we try to fix the behavior of

DMA. We use different bit rate of mp3 file as our variable. Those bit rate of

mp3 files are 128KB, 160KB, and 192KB respectively. The bigger that bit rate

of mp3 file is, the more effort that processor must handle. The purpose of this

experiment is to see if the tool would be effected by the application level or

not when our measurement subject is fixed. The result is just as we expect as

35

Figure 5.2: The measurement result

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

1 6 K B 3 2 K B 6 4 K B 1 2 8 K B 2 5 6 K B

P
o

w
e

r
 (

W
)

DMA Buffer Size

Power consumption of DMA I/O

H a n d S h a ke

D e m a n d

Figure 5.3: Power consumption of DMA with different buffer sizes

36

0

0.005

0.01

0.015

0.02

0.025

128 K B 160 K B 196 K B

P
o

w
e
r
 (

W
)

Sample Rate of MP3

Power Consumption by DMA I/O

H andS hake

D em and

Figure 5.4: Power consumption of DMA with different bit rates

shown in Figure 5.4. The measurement result is that the bit rate of mp3 file

does not effect the power consumption of DMA.

5.2 A Formula For DMA Power Consumption

Through those experiments, we verify the feasibility of this tool. So we can use

a formula to compute the DMA’s energy with our aid by using our tool. The

formula is similar to the original formula as bellow

E(T) =
∑

Pd(ti) · ∆t =
1

S

∑
Pd(ti), 1 ≤ i ≤ n (5.2)

37

T denotes the sum of ti, which ti means the execution time of every DMA

request, Pd(ti) denotes average power consumption DMA consume, and n de-

notes the numbers of DMA request. So our tool provide a convenient way that

perform the power consumption measurement not only the relation between

different tasks, but also a hardware power consumption.

Current measurement tools can not verify our work, because the mea-

surement result of our tool is totally different with simulation-based tools and

physical-based tools. The measurement result of our tool is the additional power

consumption of DMA when the target task use I/O devices. Simulation-based

tools do not know the exact power consumption of specific I/O devices, and

physical-based tools hardly tell apart the power consumption of I/O devices

when they are used by a task. As a developer of application or system design,

we believe that our analysis result is more helpful then simulation-based tools

and physical-based tools.

38

Chapter 6

Conclusion and Future Work

Although we know the most valued power consumption comes from the CPU

or memory, but the power consumption caused by I/O devices can not be

unregarded, because there are many I/O devices in a computer system like disk,

LCD, network etc. Therefore, the total power consumption from I/O devices

would not less then the CPU or memory. In this thesis, we first enhance our

task-based measurement tool by removing the redundant do IRQ() toggles,

and reduce about 80% the number of records that system must store. This

tool has a problem that is when we want to measure a desired program, the

result of the measurement could involve the power consumption of I/O devices

that is independent with this program. In order to solve this problem, we

propose a novel method of scenario grouping. Consequently, we can use this

method to gain the power consumption of I/O devices that is separated from

total power consumption of the system. Moreover, we provide an approach for

developers who are eager to extend the hardware-aware functionality of task-

39

based measurement tools. At last, we use the approach we propose to implement

the DMA-aware functionality for our tool as a demonstration, and use this new

feature to observe the power consumption of DMA. This measurement result

reflects the current power consumption of tasks directly, it is not possible to

gain this information from physical-based tools or simulation-based tools, so we

believe our tool can provide an easy-to-use, low cost, flexible way for developers

to use.

For the future work, we would like to adopt more hardware scenarios for

our tool like LCD, network etc. Since the more scenarios we get, the more

precise measurement result we have. On the other hand, we would like to focus

on the most important power consumption source: CPU. Since we can use a

measurement program to observe the power consumption of I/O devices, we

will try to design a similar way to analysis the additional power consumption

of CPU. Finally, we hope our tool can provide a precise result for users on

applications of the embedded system.

40

Bibliography

[1] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a frame-

work for architectural-level power analysis and optimizations. In proceed-

ings of the 27th Annual International Symposium on Computer Architec-

ture, page 83, June 2000.

[2] J. Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the

energy usage of mobile applications. In Proceedings of IEEE Workshop

Mobile Comput. Syst. Applicat., pages 2–10, Feb 1999.

[3] Chuling Hu, Danial A. Jimenez, and Ulrich Kremer. Toward an evaluation

infrastructure for power and energy optimizations. In proceedings of the

19th IEEE Internationl Parallel and Distributed Processing Symposium,

2005.

[4] µClinux, Embedded Linux/Microcontroller Project.

http://www.uclinux.org/. 1998.

[5] Dongkun Shin, Hojun Shim, Yongsoo Joo, Han-Saem Yun, Jihong Kim,

and Naehyuck Chang. Energy-monitoring tool for low-power embedded

41

programs. IEEE Design and Test of Computers, 19:7–17, July-Aug 2002.

[6] Sim-Panalyzer. http://www.eecs.umich.edu/ panalyzer.

[7] A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool for software

energy profiling. In Design Automation Conference, pages 220-225, 2001.

[8] K. Komarov T. L. Cignetti and C. S. Ellis. Energy estimation tools for the

palmtop:. In International Workshop on Modeling Analysis and Simulation

of Wireless and Mobile Systems, pages 96-103, 2000.

[9] Wei-Yu Tu and Chih-Wen Hsueh. A task-based energy consumption analy-

sis tool in multi-tasking systems. Master’s thesis, Department of Computer

Science and Information Engineering National Chung Cheng University,

2006.

[10] Bokyung Wang and Suresh Singh. Computational energy cost of tcp.

In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, volume 2, pages 785–795, March

2004.

[11] Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, Dan Connors, David Brooks,

Margaret Martonosi, and Douglas W. Clark. A dynamic compilation frame-

work for controlling microprocessor energy and performance. In Microar-

chitecture, 2005. MICRO-38. Proceedings. 38th Annual IEEE/ACM Inter-

national Symposium, Nov 2005.

42

[12] Wei-Kai Wu and Chih-Wen Hsueh. Energy consumption measurement and

analysis toll on mp3. Master’s thesis, Department of Computer Science

and Information Engineering National Taiwan University, 2007.

[13] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and

use of simplepower: a cycle-accurate energy estimation tool. In Proceedings

of the 37th conference on Design automation, pages 340–345, June 2000.

43

