
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering ＆ Computer Science

National Taiwan University

Master Thesis

基於模型的可延展性組態工具

An Extensible Model-based Configuration Tool

陳俊衛

Chen, Chun-Wei

指導教授：薛智文 博士

Advisor：Hsueh Chih-Wen, Ph.D.

 中華民國 97 年 7 月

July, 2008

An Extensible Model-based Configuration Tool

By
Chun-Wei Chen

A Thesis Submitted To
Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
For The Degree of Master

in
Computer Science and Information Engineering

July 2008

基於模型的可延展性組態工具

指導教授：薛智文 博士 研究生：陳俊衛

國立台灣大學資訊工程學研究所

摘要

在許多不同的領域中都需要組態，像是處理器的組態，產品組態，

軟體組態等，這些不同的組態都有其特定的專業知識。因此，延展性

與彈性成為了組態工具的重大需求。然而，現今並沒有組態工具是設

計來同時對應多個不同的領域。在這篇碩士論文中，我們提出了基於

模型的可延整性組態工具 (EMC Tool)，可以簡單地整合新的領域。

我們的工具採用了 EMCXML 作為輸入的規格，可以將專業知識用統一

的 XML 元素模型化；同時我們也採用了模組化的設計，讓使用者在

不同的狀況下能有更高的彈性。我們相信我們工具的可延展性與彈性

可以減少開發者冗長的組態工作。

關鍵字：組態，領域，專業知識，XML，模組化

Abstract

Configuration is necessary in various domains, such as processors config-

uration, product configuration, and software configuration where the specific

domain knowledge is required. Therefore, being extensible and flexible be-

comes a heavy demand for configuration tools. However, no configuration tool

is designed for various domains simultaneously nowadays. In this thesis, we

propose an Extensible Model-based Configuration Tool (EMC Tool) to allow

easy integration of new domains. Our tool uses EMCXML as input format

where the domain knowledge is modeled as uniform XML elements such that

configuration can be easily created and extended. Also we adopt modulized

design to achieve flexible configuration for users under different situations. We

believe that such extensibility and flexibility of our EMC Tool will reduce the

complexity of tedious configuration work for future developers.

Keyword: configuration, domain, domain knowledge, XML, modulize.

Contents

1 Introduction 1

2 Background 6

2.1 Configuration in Different Reasoning . 6

2.1.1 Rule-based Reasoning Configuration . 7

2.1.2 Model-based Reasoning Configuration . 8

2.1.3 Case-based Reasoning Configuration . 9

2.2 Generic Models of Configuration Tasks . 10

2.2.1 General Definition of Configuration Tasks 11

2.2.2 Restricted Version of Configuration Tasks 12

2.3 Domain Knowledge Modeling . 13

2.3.1 Components . 13

2.3.2 Functional Architecture . 14

2.3.3 Mapping from Functions to Components 14

2.4 Related Work . 15

2.4.1 VEST . 15

2.4.2 AADL . 16

3 Architecture 18

3.1 Goals of the EMC Tool . 18

3.2 EMCXML . 19

3.2.1 Key Components . 21

3.2.2 Display on Configuration Tool . 23

3.2.3 Data Type . 23

3.2.4 Output Information . 25

i

3.2.5 Ports and Children . 26

3.2.6 Constraint . 27

3.2.7 EMCXML Schema . 28

3.3 Extensible Model-based Configuration Tool . 30

4 Implementation 35

4.1 Input Layer . 35

4.2 Configuration Description Layer . 36

4.2.1 Apache Xerces2 Java Parser . 38

4.2.2 Google Web Toolkit . 39

4.2.3 Implementation of Element dependency 41

4.3 Output Layer . 42

5 An Example using EMC Tool 44

6 Conclusion and Future Work 48

Bibliography 49

ii

List of Figures

1.1 Two key features of configuration . 2

2.1 Example of Models in Embedded Systems Design 9

3.1 Flow Chart of The EMC Tool . 19

3.2 EMCXML Format . 22

3.3 A Simple Example of The Element dependency 25

3.4 A Complex Example of The Element dependency 26

3.5 The relationship between ancestors and descendants is a tree graph 27

3.6 An Example of The Element Relationship . 28

3.7 An Example of EMCXML Schema . 29

3.8 Architecture of Extensible Model-based Configuration Tool 31

3.9 An Example of Output Layer . 33

4.1 XAmple XML Editor . 37

4.2 Output Information from Configruation Description Layer to Output Layer . . . 43

5.1 Linux Booting Flow . 45

5.2 An EMC XML Example of Describing BSP . 46

5.3 Configuring BSP Using EMC Tool . 47

iii

Chapter 1

Introduction

Configuration is a special type of design activity [11] with two key features:

• The artifact being designed is assembled from instances of a set of well-

defined components,

• Components can only be connected together in pre-defined ways.

This intuitive definition fits a large number of design tasks from our daily

life. Not only in the high technology areas, many tasks are also configura-

tions, such as planning a set of actions for achieving specific goals, developing

a therapy as a composition of cure and synthesizing problem-solving strate-

gies. Moreover, product configuration in different domains [18], configuration

management, configurable operating system and integration of hardware and

software in embedded systems are configuration tasks. Therefore, it is no sur-

prise that configuration has become much more significant.

1

Component

Component

p

Component

Component
Component

ComponentComponent Component pp Component

Component

Figure 1.1: Two key features of configuration

After the abstract meaning of configuration is defined, we focus on the

concretion of configuration: configuration tasks. The specification of a con-

figuration task involves at least two distinct phases: describing the domain

knowledge and specifying the desired target [15]. The domain knowledge de-

scribes the object types available in the application domain and the relations

within object instances. After the first phase is finished, the environment of

the desired target is sketched. Then requirements of the desired target will be

proposed and must be satisfied. A special characteristic of configuration tasks

is that the problem has already been well-defined. In other words, all com-

ponents are defined completely, and the relations between distinct components

2

are described explicitly. However, to represent a configuration task is not quite

simple. Most of the complexity of solving a configuration problem lies in repre-

senting domain knowledge; therefore, how to represent the domain knowledge

is extremely critical.

Nowadays, many applications are designed to model a range of domain

knowledge and are used to configure specific targets. This kind of applications

contains built-in domain knowledge and usually has a particular aim. For in-

stances, Kbuild [8] is used to manage configuration in Linux kernel, Apache

configuration tool [19] is used to help system administrators to tune the main

Apache configuration file, etc. Nevertheless, when we face a much wider con-

dition involving large range domain knowledge, these applications are not suf-

ficient for our requirements due to the domain knowledge is built-in and hard

to modify or extend. This kind of applications lacks flexibility and extensibility

to face even a little more complex situation.

To avoid this problem, an easy approach is to separate domain knowledge

from applications. Many languages and models such as CLASSIC [2], CML2

[3] and etc, were proposed for describing domain knowledge of configuration

tasks. However, they are usually bounded in their domain, i.e., if we want

to extend our domain into a wider scenario, this kind of models will not be

sufficient. Moreover, to learn new native languages for configuration takes a

great deal of time, and the learning efforts are heavy. Besides, the native

3

language structure lacks expressiveness due to they are not in a common public

format, this characteristic will easily make developers confused.

In order to solve the problem described above, we propose an extensible

model-based configuration tool (EMC Tool) which emphasizes on both phases

of configuration, i.e., we not only propose EMCXML schema for describing

domain knowledge with more expressiveness and shorter learn curve, but also

provides a configuration GUI for users accordingly. With the public XML doc-

uments, the developers can easily understand how to use our models instead

of taking a lot of efforts, and resources about XML is very easy to find. They

do not have to learn new languages and only need to understand XML models.

After developers define their own domain knowledge by following EMCXML

schema, The EMC Tool can build configuration environments. Finally, devel-

opers can easily obtain their configuration results from our EMC Tool, and do

the following activities. According to the modulized design, the EMC Tool has

more flexibility and extensibility. For example, the EMC Tool is able to output

to different types of files, i.e, video, audio, text file, etc, by altering different

output modules. Developers can choose the most appropriate modules for their

sake. By separating domain knowledge from itself and the modulized structure,

our EMC Tool has more wide ability. Our configuration tool provides an easy

way for configuration tasks from describing domain knowledge to generating ul-

timate results. We believe that the complexity of configuration can be reduced

by using our tool.

4

The rest of the thesis is organized as follows. The next chapter introduces

the background information about different types of configuration and a general

model approach. Section 3 details how to describe the domain knowledge by

EMCXML schema and also introduces the architecture of our configuration

tool. The implementation is described in Section 4. Consequently, conclusion

and future work are given in Section 6.

5

Chapter 2

Background

In this chapter, we provide the background information before we introduce the

EMC Tool. Firstly, we introduce different types of configuration for different

reasoning in Section 2.1. Secondly, we discuss about the generic model for the

configuration tasks in Section 2.2. Finally, we point out related work of our

research.

2.1 Configuration in Different Reasoning

An abstraction configuration depends on how it represents. The most common

types of configurations are rule-based reasoning configuration, model-based con-

figuration, and case-based reasoning. The following sections introduce these

three kinds of configurations.

6

2.1.1 Rule-based Reasoning Configuration

Expert systems use production rules as a uniform mechanism for representing

not only domain knowledge, but also control strategies. In a rule-based reason-

ing system, production-rule programming languages are usually adopted. This

kind of languages involves ”if-then-else” rule statements which are simple pat-

terns, and can be searched in an inference engine by matching patterns. The

”if” indicates a condition. If the condition is true, the ”then” action will be

executed; if the condition is false, the ”else” action will be executed instead of

the ”then” element.

There are two common organizations for rules: one is forward-chaining,

also known as data-driven, and the other is backward-chaining, also known as

goal-directed [6]. In forward-chaining, at each step, the system starts with the

rules and considers only rules that can be executed. It repeats this action until

the goal is reached. Contrarily, backward-chaining starts from a goal, and looks

for rules which can apply to the goal until a conclusion is reached.

Unfortunately, rule-based reasoning bounds in a limited understanding of

configuration process. The existing rule-based systems were designed to solve

specific instances of configuration tasks [15] because no common rules can be

applied in general situations.

7

2.1.2 Model-based Reasoning Configuration

Model-based reasoning is based on a knowledge base that describes a particular

problem area in terms of the behavior of its small building components. The

main assumption behind model-based reasoning is the existence of a system’s

model, which consists of decomposable entities and pre-defined interactions

between their elements. In other words, the model is the essential element

in a model-based system during the configuration time. The most important

advantages of model-based systems are

1. A better separation between what is known and how the knowledge is used

2. Increasing ability to solve a broader range of problems

3. Increasing ability to combine knowledge from different domains within a

single model

4. Increasing ability to use existing knowledge to solve related classes or prob-

lems

The major motivation for using model-based configuration system is that

configuration in the nature is by definition a synthesis task. Therefore, to cover

the entire range of solutions is an essential ability. Although a system can

gain experience in a particular domain and use it to improve efficiency, the

system should still work without prior experience. Many systems are published

to configure a particular domain, i.e. networks, operating systems, vehicles,

8

Figure 2.1: Example of Models in Embedded Systems Design

circuit boards and etc. By modeling the domain knowledge, a complex system

can be divided into several simple and flexible parts, so that developers will

easily understand the behavior of the complex system without much effort.

Figure 2.1 shows an example of models in embedded systems design which

involves hardware and software.

2.1.3 Case-based Reasoning Configuration

Case-based reasoning is very different from other reasoning technologies pre-

sented above. The process of solving a configuration problem by case-based

reasoning relies on the solutions of previously similar problems. With case-

based reasoning, the current configuration problem attempts to solve by finding

a set of solutions in similar past problems and adjust them to the current con-

figuration. By observing the methodology of case-based reasoning, we can find

that case-based reasoning is heavily based on a assumption: Similar problems

9

have similar solutions.

As the highest level of generality, a general case-based reasoning cycle can

be described by the following four steps [1]:

1. Retrieve the most similar case or cases

2. Reuse the information and knowledge in the case to solve the problem

3. Revise the proposed solution

4. Retain the parts of this experience likely to be useful for future problem

solving

2.2 Generic Models of Configuration Tasks

In section 2.2, we introduced the model-based reasoning configuration. A cen-

tral issue in knowledge presentation is to effectively describe a complex scenario,

so that ones can use the description for flexible problem solving. Therefore, in a

model-based system, the most critical thing is how to model the domain knowl-

edge. If a general modeling of configuration tasks is existed, the complexity of

solving configuration problems will be reduced. However, it is not easy to build

a general model due to the large difference of distinct domains. In the following

sections, we will discuss how to build a general model for configuration tasks.

10

2.2.1 General Definition of Configuration Tasks

Making very few assumptions about the kinds of knowledge that might be

available; we define a configuration task the same as [11] as follows:

Given three premises:

1. A fixed, pre-defined set of components, where a component is described by

a set of properties, ports for connecting it to other components, constraints

at each port that describe the components that can be connected at that

port, and other structural constraints.

2. Some description of the desired configuration.

3. Possibly some criteria for making optimal selections.

Build:

• One or more configurations that satisfy all the requirements, where a config-

uration is a set of components and a description of the connections between

the components the set, or, detect inconsistencies in the requirements.

There are three significant aspects to this definition. The first is, the

components are fixed, i.e., no new component can be designed. The second is,

the interactions between different components are in fixed and pre-defined way.

In other words, the components cannot be modified their connectivity. ”Port”

indicates an abstraction places where a component can be connected to other

11

components. Consequently, the third is that a solution not only specifies the

actual components, but also shows how to connect them together.

The definition above clearly provides a standard of modeling for config-

uration tasks. For examples, a customer buying a car is actually configuring

from a set of components: car models, engines, brakes, etc. According to the

customer’s imaginary description for his desired car (e.g. 250 horsepower, 3000

c.c. displacement engine, red car module looks, etc), he/she would select his/her

favorite choices, then the solution will occurs. Similar examples can be found

in other domains.

2.2.2 Restricted Version of Configuration Tasks

We now introduce two restrictions on the general configuration task. These

restrictions reduce the complexity of the task and help in identifying additional

kinds of knowledge.

The first restriction is that the artifacts are configured according to some

known functional architectures. In other words, instead of trying to assemble

all possible artifacts that can be created from the given set of components, one

restricts the problem to those artifacts that are similar in their architecture.

This clearly restricts the scope of the task but not in an arbitrary way.

The second restriction is the key components per function. A component

can identify some particular component that is crucial to implement some func-

12

tions. For example, the printing function needs a printer component. Other

components needed for the printing function such as hardware interface, data

cables, power cable, fonts, and driver software can be determined once a printer

has been selected. Thus, we do not need to consider each configuration for

printing functions, we only need to start with a printer and build suitable con-

figurations from there. In this case, the printer component is the key component

of printing function.

2.3 Domain Knowledge Modeling

2.3.1 Components

Components can be described independent of how they are used by a set of

physical properties, ports and constraints. Physical properties, for example, in

an LCD, includes resolution, viewable size and so on. Ports indicate an abstrac-

tion place where other components can attach, e.g., typical ports for an LCD

include data port, power supply port, image decoder port etc. Ports themselves

can be described by some set of properties. Constraints have the ability to limit

what components can be attached there. Typically, these constraints would de-

scribe properties of the components that can be connected at that port or more

specifically properties of a port on another component. Thus, an LCD with a

”220V voltage power supply port” would have a constraint that any component

attaches to this port must match this voltage constraint. Another ability of

13

constraints is to give the limitation of some physical properties. As the voltage

power supply port mentioned above, it’s constraint is it only works when the

power is 110V or 220V.

Components are the essential elements in domain knowledge describing.

By definition [11], Components cannot be modified and created during con-

figuration time. The relationship between distinct configurations cannot be

modified either. All components are defined before configuration time and will

be picked or assembled during the period.

2.3.2 Functional Architecture

A functional architecture specifies a functional decomposition of the artifacts

and constraints on their composition. Individual functions can be simply mod-

eled by a set of properties that characterize them. For instance, the display

function may be described by properties such as source, contrast, resolution

and illumination.

2.3.3 Mapping from Functions to Components

Finally, we need to model the knowledge for mapping from functions to com-

ponents. A function can be implemented by a set of components. For example,

the display function needs components such as an LCD, a cable line, and a

signal source. On the other hand, components are often multi-functional.

14

The key component per function can help us to simplify the representation.

Functions can be indexed via their key component, so those functions will not

be ambiguous and confounded. In the former example, the key component of

the display function is its LCD component. So by select the LCD component,

we also select its corresponding unique function. Other components in the

function will be selected automatically after the LCD component is selected

immediately.

2.4 Related Work

In this section, we introduce some famous related configuration tools. They

are popular in their domain and really helpful. However, in spite of they are

very success in their domain, but they do not satisfy our requirement: domain

knowledge free. Nevertheless, they still have a great amount of reference value

for our design.

2.4.1 VEST

VEST [17] provides an environment for the composition and analysis of dis-

tributed real-time embedded systems. VEST models application components,

middleware, OS, and hardware components. This feature supports the compo-

sition and tailoring of every layer in an embedded system for a specific applica-

tion, which leads to more complete crosscutting dependency checks and more

optimization opportunities. VEST itself is not a complete requirements, design

15

and implementation tool; rather it currently focuses on the specific composition

and analysis tasks.

VEST includes features that are found in other tools. However, there are

several novel features in VEST. The major contributions of VEST are two types

of language-independent aspects referred to as aspect checks and prescriptive

aspects. Together these permit the benefits of aspects to be exercised early in

the composition process rather than in the implementation phase. A set of rep-

resentative aspect checks in embedded software is identified and implemented

in VEST. Some of these aspects are simple dependency checks; others are com-

plex and may involve the entire system, e.g., distributed real-time scheduling.

The simple fact of identifying key aspect checks improves our understanding of

specific crosscutting concerns found in distributed embedded systems, including

middleware. Prescriptive aspects allow application specific advice to be applied

to designs and they have a global effect. The significance of VEST is largely

derived from language-independent aspects.

2.4.2 AADL

In November 2004, the Society of Automotive Engineers (SAE) released the

aerospace standard AS5506, named the Architecture Analysis and Design Lan-

guage (AADL) [5]. The AADL is a modeling language that supports early and

repeated analyses of a systems architecture with respect to performance-critical

properties through an extendable notation, a tool framework, and precisely de-

16

fined semantics.

The language employs formal modeling concepts for the description and

analysis of application system architectures in terms of distinct components and

their interactions. It includes abstractions of software, computational hardware,

and system components for (a) specifying and analyzing real-time embedded

and high dependability systems, complex systems of systems, and specialized

performance capability systems and (b) mapping of software onto computa-

tional hardware elements. The AADL is especially effective for model-based

analysis and specification of complex realtime embedded systems.

17

Chapter 3

Architecture

3.1 Goals of the EMC Tool

The goal of the EMC Tool is that to help people deal with various configuration

tasks rapidly and easily. In order to achieve this goal, we not only propose

EMCXML to describe different domain knowledge into a uniform format, but

also design the architecture of the EMC Tool to be flexible. The flow chart

is illustrated in figure 5.3. Above all, developers have some configuration

problems in different domains, and they can organize their configuration domain

by EMCXML at this time. The EMC Tool admits EMCXML to be its input

format and contains no domain knowledge, therefore the EMC Tool can adopt

to a great deal of domains via EMCXML. Sequentially, a flexible architecture

to adapt to different situations is necessary. The EMC Tool is designed as a

modulized structure for this reason.

Our work can be divided into two parts: EMCXML and the EMC Tool.

Both of them are extensible and will be discussed in Section 3.2 and Section

18

Developers

Users

configure

construct

Domain A

EMCXML Input Layer

Domain B
Configuration

Layer

Domain C

Configuration

Layer

Output Layer

…

Configuration

Results

…

Output Layer

EMC ToolEMC Tool

Figure 3.1: Flow Chart of The EMC Tool

3.3.

3.2 EMCXML

XML [7] documents are intended for the storage or exchange of data or in-

formation, and can be used to store data that would traditionally be stored as

documents, letters, reports, manuals and so on or data that might associate

with databases. A part of strength in XML is, at least for developers, human-

readable. Typically, an XML developer uses element type names (or called

tag names) that are meaningful. For all these reasons, the World Wide Web

Consortium (W3C), the de facto Internet standards body, undertook to create

XML starting in 1996. In order to design to overcome limitations in HTML,

19

XML is based on an ISO standard, Standard Generalized Markup Language

(SGML). The XML 1.0 Recommendation was approved in 1998 end and, like

many XML-related recommendations, is currently maintained by the W3C.

There are many choices to be our configuration description languages, such

as regular expressions or native languages. We have many language candidates,

but why we choose XML to be our format? The answer consists of four points.

The first point is, XML is a general-purpose specific language, in the other hand,

we can define our own XML format for our sake. The second point is, XML

is a markup language, which provides well representation power, therefore the

complex scenario of configuration could easily be described by XML. The third

point is, XML is a common public standard, many resources (e.g. parsers,

editors, etc) exist and easily be found. This characteristic could efficiently

reduce the effort of developing XML-based applications. The fourth and final

point is, XML is full of human-readability. This advantage makes developers

use XML to construct their domain knowledge much easier. If they use other

representations such as regular expressions or native languages, they have to

pay a lot of time to learn. XML has a shorter learning curve, and all these four

characteristics will attracts many users to choose our approach. That is why

we select XML to be our format.

We define EMCXML (Extensible Model-based Configuration XML) to de-

scribe specification of configurations and to be the format of the configuration

20

description file is shown in figure 3.2. All the configurations are under the

element main and can be divided into two categories: the configuration defi-

nitions and the overall output information, whose corresponding elements are

config and outputfile. These two elements indicate two functions (the definition

of functions was defined in Section 2.3.2), and all the elements under them are

components.

The element config indicates configuration, which includes a set of prop-

erties, ports, are the major element in our model. It can be divided into seven

categories:

• Key components

• Display on configuration tool

• Data type

• Output information

• Ports

• Children

• Constraints

3.2.1 Key Components

As mentioned in Section 2.2.2 and Section 2.3.3, key components are indis-

pensable in a function. We define each configuration as a function; therefore,

21

Figure 3.2: EMCXML Format

22

the element config needs key components to indicate its index. For this pro-

pose, the element name is defined to be the key component. Each element

name is unique in the whole configuration description file, hence we can easily

distinguish configuration. However, we may modify configuration into a newer

version. In this case, the elements names in both old and new configurations are

identical. To solve this problem, another element version, which indicates the

current version of its configuration, is added into the EMCXML. Conclusively,

the key components in configuration are the elements name and version.

3.2.2 Display on Configuration Tool

To display each configuration on the EMC Tool needs related information. The

element display and its children elements prompt and description focus on this

task. The element prompt is given for each configuration, and it can point out

what the configuration does briefly. Subsequently, the title of each configuration

will be shown on our EMC Tool in terms of its element prompt. In addition,

users may need detailed information about configuration. For the reason, the

element description is proposed to store the detail of configuration.

3.2.3 Data Type

The most significant part of a configuration is its data type. The element

type, which defines data types in EMCXML, includes six categories of children

elements to indicate different types:

23

• text

• boolean

• choice

• value

• dependency

• menu

The element text means the data of a configuration is a text string, and

boolean means that the data of a configuration is a Boolean value: either true

or false. Choice indicates that the data of a configuration consists of multiple

options, and then users can select a proper one. Value describes a the data type

of configuration is a numeral, and it contains two children elements decimal and

hexadecimal to represent the radix. The element menu presents a configuration

is a menu object in the configuration description file when the configuration

contains no data but children configurations.

The element dependency, which is very different from the other five data

types, defines that the configuration’s data depends on other configurations. In

order to achieve this goal, we can describe a configuration’s value as a series of

script. For example, from the simple start, configuration A can be multiplied by

configuration B and configuration C, then configuration A can be described as

figure 3.3. Furthermore, instead of a simple expression, the element dependency

24

Figure 3.3: A Simple Example of The Element dependency

provides a more powerful functionality by script language as shown in figure

3.4. Therefore, by the element dependency, the value of a configuration can be

set more flexibly.

3.2.4 Output Information

In order to store output information or activities, the element output is defined

for this purpose. A configuration can not only output to a specific target, but

also multiple ones. The output information corresponding to each output target

is stored in the element block which is the child element of output. In the other

hand, a block indicates output information or activities to a specific output

target.

25

Figure 3.4: A Complex Example of The Element dependency

3.2.5 Ports and Children

The meaning of ports of a configuration was defined in Section 2.3. In EMC

Tool, there are two kinds of relations: implicit tree structure and explicit rela-

tions defined by users.

A configuration can naturally own its children and descendant. Via the

element children, we can define the children configurations of each configuration.

The ability of descendant configurations inherits their ancestor configuration,

and hence descendants are not available until ancestors are available. The

relations of ancestors and descendants become a tree graph intuitionally and

implicitly as shown in figure 3.5.

The elements relationship and enable are used to present connections and

relations between configurations. Enable indicates that the configuration is

26

Configuration Configuration

Configuration Configuration Configuration

Configuration C fi ti ConfigurationConfiguration Configuration Configuration

Figure 3.5: The relationship between ancestors and descendants is a tree graph

either available or unavailable. The element relationship describes the explicit

relations between different configurations. Via these elements, a configuration is

able to influence other configurations’s availability even they are not paternity.

For example, in figure 3.6, first we notice the symbol ˜B˜, which indicates

configuration B and will return the value of B’s enable element. Then we can

find that the configuration A is always unavailable in terms of its relationship

element always returns false (true AND false equals false). The return value of

the element relationship will overwrite the value of enable.

3.2.6 Constraint

In order to limit the value or functionality of configuration, we can give con-

figuration the element constraint. By following the element constraint, the

complexity of configuration can be reduced. For example, we can define a con-

27

Figure 3.6: An Example of The Element Relationship

figuration as an integer. However, if we don’t limit its value, then the variety

of the configuration is infinite. In order to avoid the situation, we can give

the configuration a constraint which is the integer must be equal or less than

three and could not be negative. Therefore, the value of the configuration can

only be zero, one, two or three, and hence the complexity is reduced greatly.

Another advantage of the element constraint is, by setting a constraint to each

configuration, users will take fewer mistakes cause of typo or confused. The

element constraint can reduce the complexity of configuration.

3.2.7 EMCXML Schema

XML Schema expresses shared vocabularies and allow machines to carry out

rules made by people. They provide an approach for defining the structure,

content and semantics of XML documents in more detail. XML Schema was

approved as a W3C Recommendation on 2 May 2001 and a second edition

incorporating many errata was published on 28 October 2004 [16]. An XML

28

<?xml version="1.0" encoding="utf 8"?>

<xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="main">

l<xs:complexType>

<xs:sequence>

<xs:element minOccurs="1" maxOccurs="unbounded"

name="config" type="ConfigType" />

<xs:element name="outputfile"><xs:element name outputfile >

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="1"

maxOccurs="unbounded" name="filename">

i l<xs:simpleType>

<xs:restriction base="xs:string">

<xs:minLength value="1" />

</xs:restriction>

</xs:simpleType>/xs:simpleType

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

/</xs:sequence>

</xs:complexType>

<xs:key name="PK_config">

<xs:selector xpath=".//config" />

<xs:field xpath="name" />p /

</xs:key>

<xs:key name="PK_menu">

<xs:selector xpath=".//menu" />

<xs:field xpath="name" />

/ k</xs:key>

…

Figure 3.7: An Example of EMCXML Schema

29

schema is also in XML document format, hence XML schema has the same

features as XML; therefore, XML schema is easy to modify.

EMCXML may not sufficient to all conditions, in order to adapt to more

situations, EMCXML could be extended. The extensibility is from the ability

of XML schema, which gives XML document flexibility and agility. Therefore,

EMCXML is not a fixed standard, developers can add new features into and

modify by their own. EMCXML is extensible conclusively. A part of EMCXML

Schema is shown in figure 3.7

3.3 Extensible Model-based Configuration Tool

As shown in figure 3.8, the extensible model-based configuration tool is a mod-

ulized structure, which consists of three major layers: input layer, configuration

description layer, and output layer. Developers who build domain knowledge,

will input information by EMCXML in input layer to configuration descrip-

tion layer. Configuration description layer receives EMCXML and creates a

corresponding GUI, and users can configure via the GUI. After finishing config-

uration, the output layer will generate output by the users’ choices. Developers

and users are different groups of people. Developers are who build domain

knowledge and will construct their knowledge by EMCXML. Different from de-

velopers, users only want to do configuration, they do not care about EMCXML

and only care about final results.

30

Figure 3.8: Architecture of Extensible Model-based Configuration Tool

31

The main goal of the input layer is to input XML information to the

configuration description layer. Due to our domain knowledge is described by

EMCXML, our tool provides a layer which focuses on XML input by following

EMCXML format. As shown in figure 3.8, the input layer allows different

modules inside. For instances, the input method may be by a web browser or

speech input. All the different modules can be designed for different situations,

but they have to follow EMCXML schema. Although modules are different,

but their goal are consistent: build domain knowledge by EMCXML.

The configuration description layer is the core layer of the EMC Tool.

This layer consists of three components: XML parser, user interface creator

and output generator. The domain knowledge is modeled by XML; however,

the XML document cannot be processed directly, therefore XML parser is the

first component in the configuration description layer and is used to parse XML

data into useful information. The core engine is inside of the XML parser. No

matter data dependency, configuration relationship, or anything else, this kind

of complex scenario is also handled in the XML parser. In the other hand, XML

parser is the core data processing engine in the configuration description layer.

After the EMC Tool parses the XML document and obtains the domain knowl-

edge, it will create a corresponding configuration GUI. Output generator in the

configuration description layer receives feedback from users via configuration

GUI, and then passes the information to output layer.

32

O t t LOutput Layer

GenerateGenerate

Source Code

(.c)

Header

(.h)
Trigger

GCC compiler

Executable File

Figure 3.9: An Example of Output Layer

The output layer focuses on output information to specific targets which

can be files or input of an application. The output layer can also trigger outer

functions after users finishing their configuration. This layer is also a module

and full of flexibility. The ability of the output layer is not only output to

multiple targets, but also trigger outer functions, i.e., a script, an executable

file, etc. Due to the modulized structure design, the output layer can be many

different. Hence the output ability of the EMC Tool is more widely, in other

words, the EMC Tool can output to not only text files, but also video, audio,

etc. Moreover, the EMC Tool is able to extends its ability by invoking an

outer function. By the means, users can define the automatical procedure for

the time after output, and hence they will save amount of time. An example

33

of output layer can be found in figure 3.9. Users want to configure their

C language project currently. After they finish configuring, the output layer

generates source code files and header files. Then output layer trigger an outer

function: gcc compiler and compile the whole C project. Consequently, the

final executable will be generated.

As described above, the extensibility of the EMC Tool stands on the mod-

ulized structure which is shown in figure 3.8. We can found that both input

and output layer are full of flexible and can be easily extended. Developers can

follow our format to build their own input or output modules. Therefore, we

can declare our tool architecture design is extensible.

34

Chapter 4

Implementation

In this chapter, we explain the design concept of the EMC Tool and describe

how we implement it. The framework of the EMC Tool has been presented in

Chapter 3. For portable and easy-to-modify, the whole EMC Tool is imple-

mented by Java, and the involved libraries also implemented by Java.

4.1 Input Layer

As we discussed in Section 3.3, input layer is used to model the domain knowl-

edge. In the other hand, this layer focuses on input XML information to the

configuration description layer. For this purpose, this layer needs to provide a

user interface for developers, which not only has to be user friendly, but also

follows the EMC XML format we defined in Section 3.2.

In order to achieve these two goals, we adopt an open freeware to be our

input layer named XAmple XML Editor [4]. XAmple XML Editor Project

introduces a java Swing based XML editor that analyzes a given schema and

35

then generates a document-specific graphical user interface. Unlike other XML

editors, the XAmple XML editor GUI exposes not just a tree representation

of the XML document but rather a logical combination of the XML document

and respective XML Schema. The user interface of the XML editor is highly

logical and intuitively comprehensible. To be able to prepare valid XML docu-

ments of significant complexity, a user is not required to be familiar with XML

and XML Schema languages and to have any previous knowledge about the

documents structural requirements. XAmple is published under the Apache

Software License [9].

As shown in figure 4.1, the advantage of using XAmple is that we can

easily edit a XML document and follow EMCXML format. Besides, XAmple

is implemented by Java, hence it meets our implemental need. Ultimately,

the XML document will finally be produced and passed to the configuration

description layer.

4.2 Configuration Description Layer

Configuration description layer is the core layer of the EMC Tool. After de-

velopers model the domain knowledge, the configuration description layer will

parse the XML document from input layer, and then create a configuration

graphical user interface for users. Consequently the configuration description

layer will receive the feedback from users and generate output information.

36

Figure 4.1: XAmple XML Editor

37

4.2.1 Apache Xerces2 Java Parser

The first component of configuration description layer is XML parser, which

has to understand the EMCXML syntax and make a response according to

EMCXML Schema.

Typically, there are two approaches to parse XML document: SAX and

DOM. SAX which stands for Simple API for XML, is what makes insertion of

this application-specific code into various events. The interfaces provided in the

SAX package will become an important part of any programmer’s toolkit for

handling XML [10]. Even though the SAX library is small and few in number,

they provide a critical framework for Java and XML to operate within. The

main feature of SAX is that it is event-driven and parses the XML document

once sequentially. Consequently, SAX is a light-weight library; hence its func-

tions are easier. However, according to this feature, functions in SAX are also

limited.

Unlike SAX, the Document Object Model (DOM) [12] which defined by

W3C, is a platform- and language-neutral interface that allows programs and

scripts to dynamically access and update the content, structure and style of

documents. The document can be further processed and the results of that

processing can be incorporated back into the presented page. Because the

DOM supports navigation in any direction (e.g., parent and previous sibling)

and allows for arbitrary modifications, an implementation must at least buffer

38

the document that has been read so far (or some parsed form of it). Hence the

DOM is likely to be best suited for applications where the document must be

accessed repeatedly or out of sequence order.

After the discussion between SAX and DOM, we tend to have a more func-

tional toolkit to parse our XML document. When developers want to modify

the XML parser module in the EMC Tool, flexibility and extensibility are much

more significant. Because DOM provides a more flexible solution than SAX,

for this reason, we adopt DOM to be our XML parser.

Apache Xerces2 Java Parser [13] is the next generation of high perfor-

mance, fully compliant XML parsers in the Apache Xerces family. This new

version of Xerces introduces the Xerces Native Interface (XNI), a complete

framework for building parser components and configurations that is extremely

modular and easy to program. In addition, Xerces2 supports both DOM and

SAX, and we adopt its DOM library. Xerces2 is free software available under

Apache Software License [9].

4.2.2 Google Web Toolkit

The second component in the configuration description layer is user interface

creator. This component creates a configuration graphical user interface which

provides a means for users to do their configuration according to the domain

knowledge from the input layer. Therefore, we seek a toolkit that can build

39

GUI rapidly and dynamically.

Google Web Toolkit (GWT) is an open source Java software development

framework that makes writing AJAX applications easy for developers who don’t

familiar with web-developing languages. Writing dynamic web applications to-

day is a tedious and error-prone process; developers spend huge percent of their

time working around subtle incompatibilities between web browsers and plat-

forms, and JavaScript’s lack of modularity makes sharing, testing, and reusing

AJAX components difficult and fragile. GWT helps developers avoid many

of these headaches while offering developers the same dynamic, standards-

compliant experience. Developers only need to write their front end in the

Java programming language, and the GWT compiler converts the Java classes

to browser-compliant JavaScript and HTML [20].

We adopt Google Web Toolkit to build our configuration GUI. The advan-

tage of using GWT is that we can easily create our GUI dynamically. Besides,

our configuration tool can separate constructors and users into two places. By

building a web server, our configuration GUI becomes naturally a web site,

hence every users can do their configuration remotely via internet. In addition,

we do not need to care about the portability of configuration GUI made by

GWT. All they need to do their configuration via our configuration GUI is just

a web browser and do not have to consider whether their platform is adaptable

for our system.

40

4.2.3 Implementation of Element dependency

The current implementation of the element dependency is presented as an equa-

tion. There are two different manifestations defined by the attribute type in

the element dependency. One is the configuration is presented as the element

choice, and its multiple options are assembled from other configurations whose

data type are also choice. For example, when defining data cache way: 2 or 4;

data cache set: 128 or 256; data cache line size: 32B as shown in fig 3.3 to fig

3.6. Then the available cache size will be presented as the element choice, and

their multiple options are 8 KB (2*128*32), 16 KB (2*128*32, 4*128*32), and

32 KB (4*256*32). In this case, we only configure the available cache size but

do not configure the other three.

The second manifestation is that the configuration’s data is an equation

which can involves other configuration whose data type is value. After calcu-

lating the equation, the configuration is assigned to the computing result and

will be presented as the element value. For example, the same as above, we

can define the available cache size is equal to the product of the data cache

way, data cache set, and data cache line size. After we configure the three

configurations, the value of available cache size will be generated automatically

instead of manually. This manifestation is appropriate to the configuration that

is assembled from mass configurations.

Because the element dependency is usually presented as an expression, we

41

seek a parser to obtain the answer. JEP (Java Math Expression Parser) is a

Java library for parsing and evaluating mathematical expressions. With this

package developers can enter an arbitrary formula as a string, and instantly

evaluate it. JEP supports user defined variables, constants, and functions. A

number of common mathematical functions and constants are included [14].

By using JEP, we can obtain the answer of an expression rapidly, and we can

also save the effort for building our own parser for this purpose.

4.3 Output Layer

After users finished doing their configuration, the output generator in the con-

figuration description layer receives feedbacks from user, and then transfers the

output information to the output layer.

In EMCXML, each configuration contains the element output which indi-

cates the output information to the output layer. The element output consists

of uncertain number of element block whose function is to store the output in-

formation of a specific output target, which described by the element filename

in outputfile. After users do their configuration, the output generator will mod-

ify the elements block, and send them to the specific targets. For example, if

the first element filename in the configuration description file is ”foo.bar”, then

the first element block of each configuration will output to ”foo.bar”. By this

design, our configuration tool can output to multiple targets in a sequential

42

block

block

block

output

filename

filename

filename

outputfile

Configuration Description Layer Output Layer

Figure 4.2: Output Information from Configruation Description Layer to Output Layer

series. A special case is if a configuration does not want to output to a specific

target, then its corresponding element block will be empty. After the output

is generated, the EMC Tool can trigger an outer function and do the following

jobs automatically. This action can effectively extend the ability of the EMC

Tool.

Output layer is also a module as we described before, in other words, every

output targets recorded in the element outputfile can not only be text files, but

also videos or audio files. With the assistance of the output layer, we can do

mass works we like. Besides, by adjusting the output layer, its functions are

not limited.

43

Chapter 5

An Example using EMC Tool

In embedded systems, a Board Support Package (BSP) is implementation spe-

cific support code for a given board that conforms to a given operating system.

It is commonly built with a bootloader that contains the minimal device sup-

port to load the operating system and device drivers for all the devices on the

board.

We concluded the booting process of Linux on ARM boards as shown in

figure 5.1. We classify the processes into four categories:

• On chip functions

• Peripherals

• Related Tools

• Bootstrap

On chip functions describe the hardware specification of the target board,

including processor settings, interrupt controllers, memories, etc. Peripherals

44

1.Set the CPU mode

2.Mask all IRQs
3.Setup clocks

Setup the CPU

1.Flush I/D caches

2.Disable MMU and
caches

3.RAM init.

Critical registers init.

Relocate Boot loader to

RAM

1.Setup stack
2.Setup I/O ports

3. …

Board init.

Interrupt init.

1.UART init.

2.Flash or ROM init.
3.Configure available

RAM banks
4. ...

Basic device init.

Enable interrupt

Flash ROM Loader RAM Loader

OS or Application

Figure 5.1: Linux Booting Flow

is used to describe the various peripherals of an embedded system, i.e., UART,

flash, Ethernet controller, etc. Related tools describe the tool chain of the

target board, i.e., cross compiler, debugger, etc. Bootstrap part records the

booting process of an operating system, therefore the BSP Tool can generate

the appropriate bootstrap code correspondingly.

Our EMC Tool can help developers maintain and configure BSP. The first

step is, those four categories above can be described by EMCXML respectively

as shown in figure 5.2. Sequentially, developers input the EMCXML files into

the EMC Tool, and configure their BSP via the configuration GUI provided

by our tool. The three parts, which are on chip functions, peripherals, and

bootstrap will become source code by the EMC Tool after developers finish

45

<main>

<config>

<name>OnChipFunction</name>

d l<display>

<prompt>On Chip Functions</prompt>

<description>On Chip Functions</description>

</display>

<type><type>

<menu></menu>

</type>

<output><block></block></output>

<enable>true</enable>

hild<children>

<config>

<name>core</name>

<display>

<prompt>CPU Core</prompt>prompt CPU Core /prompt

<description>Settings about CPU core.</description>

</display>

<type><menu></menu></type>

<output><block></block></output>

bl / bl<enable>true</enable>

<children>

<config>

<name>SetProcessorModeUsr</name>

<display>p y

<prompt>Set Processor Mode to Usr</prompt>

<description>Set Processor Mode to Usr</description>

</display>

<type>

t t<text>

mrs r0,cpsr

bic r0,r0,#0x1f

orr r0,r0,#0x10

Figure 5.2: An EMC XML Example of Describing BSP

46

BSP (Domain Knowledge)

On Chip

Functions
Peripherals Bootstrap

Related

Tools

EMCXML

EMC Tools

I t LInput Layer

Configuration Description Layer

O t t L

Configuration GUI

Configuring
Output Layer

Generate GenerateTrigger

Source Code Tool Chains
Final Results

ImageBuild

Figure 5.3: Configuring BSP Using EMC Tool

configuring. Developers also configure the related tools, and the EMC Tool

will build the tool chains of the target board. Ultimately, the EMC Tool will

trigger tool chains after source code is generated completely, and build the

desired image automatically. The whole configuration flow is shown in figure

5.3.

47

Chapter 6

Conclusion and Future Work

In this thesis, we propose an extensible model-based configuration tool to assist

people handling their configuration. With our tool, the complexity of configura-

tion problem can be reduced definitely. In order to adapt to different domains,

our EMC Tool has no built-in domain knowledge. We define EMCXML to

describe the domain knowledge and model each configuration. Compare to

other configuration languages, EMCXML has a short learning curve, sound ex-

pressiveness and wide extensibility. After defining the domain knowledge of

configuration, the EMC Tool is able to parse the EMCXML and create a con-

figuration graphical user interface accordingly. Via the GUI, the developers

can easily do their configuration. Besides, the configuration tool has ability

to output to distinct multiple targets and trigger outer functions consequently.

In addition, the EMC tool is modulized; hence we can modify and adjust any

modules in this configuration tool for our sake. For example, we can alter the

web GUI to a text-based GUI for text console or alter the output layer so that

48

the tool can output to video files. According to the modulized structure, our

configuration is towards a much wider scenario and scope. Therefore, we believe

that configuration can be much easier and efficient with the assistance of our

extensible model-based configuration tool. Developers do not need to worry

about the complexity of configuration and can handle configuration problems

easily.

In current implementation, the dependency of configuration is represented

as an expression, and will be improved by represented as script language. By

allowing built-in script language, the ability of EMC Tool will be greatly in-

creased. Another issue in current implementation is the concept of constraint is

not implemented into our EMC Tool, and We will also implement this feature

in the future design. In current design of EMC Tool, we can handle configura-

tion problem by modeling domain knowledge by users’ self. However, there are

some conditions that are difficult to model domain knowledge. For instances,

the domain knowledge involves subjectivity such as the degree of delicious or

beauty. In addition to this issue, our configuration tool lacks reusability of

configuration models. In future research, we will focus on how to build the con-

figuration models in an obscure condition. Besides, we will also research about

how to reuse the components so that the configuration time can be reduced.

The last issue is XML document wastes mass disk spaces, and in the future, we

will attempt the solution: XML compression.

49

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational is-

sues, methodological variations, and system approaches. Artificial Intelli-

gence Communications, 7:39–59, 1994.

[2] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and

Lori Alperin Resnick. Classic: A structural data model for objects. ACM

SIGMOD Record, 18:58–67, 1989.

[3] CML2. http://catb.org/ esr/cml2/.

[4] XAmple XML Editor. http://www.felixgolubov.com/xmleditor/.

[5] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Anal-

ysis & Design Language (AADL): An Introduction. Society of Automotive

Engineers, Feb, 2006.

[6] Frederick Hayes-Roth. Rule-based systems. Communications of the ACM,

28:921–932, 1985.

[7] Extensible Markup Language (XML) homepage of W3C.

http://www.w3.org/xml/. 1998.

50

[8] Kbuild. http://kbuild.sourceforge.net/.

[9] Apache Software License. http://xml.apache.org/license.

[10] Brett McLaughlin. Java & XML. OReilly, second edition, 2001.

[11] Sanjay Mittal and Felix Frayman. Towards a generic model of configuration

tasks. Proc. 11th Int’l Joint Conf. on Artificial Intelligence, pages 1395–

1401, 1989.

[12] W3C Document Object Model. http://www.w3.org/dom/.

[13] Apache Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/.

[14] Java Math Expression Parser. http://www.singularsys.com/jep/.

[15] Daniel Sabin and Rainer Weigel. Product configuration frameworks - a

survey. IEEE Intelligent Systems, 13:42–49, Augest, 1998.

[16] W3C XML Schema. http://www.w3.org/xml/schema.

[17] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, and Chenyang Lu.

Vest: An aspect-based real-time composition tool. Real-Time Applications

Symposium, May, 2003.

[18] J. Tiihonen, T. Soininen, T. Mnnist, and R. Sulonen. State-of-the-practice

in product configuration - a survey of 10 cases in the finnish industry.

Knowledge Intensive CAD, First Edition, 1996.

[19] Apache Configuration Tool.

http://www.zecos.com/apache/configuration.html.

51

[20] Google Web Toolkit. http://code.google.com/webtoolkit/.

52

