Rt 8- 8T W FTAFRFTALIREF T 9
R~
Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering & Computer Science

National Taiwan University

Master Thesis

A 3l ee R

An Extensible I\/Iodel-."based Configuration Tool
R i
Chen, Chun-Wei

ok R B
Advisor : Hsueh Chih-Wen, Ph.D.

POEAEO7E T

July, 2008

An Extensible Model-based Configuration Tool

1
ot] LU (T I
THE L

’

R o f?A) 23

Ty
=

v

hiF 57 AR f{_,fgrs:%j
FREET TR
ﬁﬁﬁ$ﬁlg@1%ﬁﬁ
FREREHE S B A =2 :
Al enw e i1 & (EMC Tool) » 7 4 ff B 3 B & 37enAf 3 o
Afeen1 B gr 5 EMCXML f%ﬁgj N R SR EVE R o N T
1 XML Bl A B Rk SRR A
ka$ﬁ1ﬁpi%mﬁﬁoﬂWﬁg%W1£mvﬁ%ﬁﬁﬁﬁ
LR B LR e i iE e

S —

Ju

)
= =
e

MeEF i f o AEE o B XML e

Abstract

Configuration is necessary in various domains, such as processors config-
uration, product configuration, and software configuration where the specific
domain knowledge is required. Therefore, being extensible and flexible be-
comes a heavy demand for configuration toeels. However, no configuration tool
is designed for various domains Simultaﬁéously nowadays. In this thesis, we
propose an Extensible Model-based Conﬁgur“atiqn Tool (EMC Tool) to allow
easy integration of new domainé..,i..:@grftj:?ﬁlol uses EMCXML as input format
where the domain knowledge is Hmocgﬂé'd‘ asi‘ uniform XML elements such that
configuration can be easily Createled and e)“gtendedf- Also we adopt modulized
design to achieve flexible co"h‘ﬁgdrétion for |u‘sglrs -‘L‘mder different situations. We
believe that such extensibilitynéind\ flexibility 6f our EMC Tool will reduce the

complexity of tedious configuration work for future developers.

Keyword: configuration, domain, domain knowledge, XML, modulize.

Contents

1 Introduction

2 Background

2.1 Configuration in Different Reasoning %
2.1.1 Rule-based Reasoning Conﬁgurat;i'on .
2.1.2 Model-based Reasonmg Conﬁguratlon.. SR
2.1.3 Case-based Reasomng Conﬁguratlon N .

2.2 Generic Models of Conﬁguratm)n Tasksnrqq | SN
2.2.1 General Definition of Co ﬁ@mlll Tasksf .« &8
222 Restricted Version of do ﬁglﬂ@tloq Tasks T

2.3 Domain Knowledge Modehng e ; N
2.3.1 Components ., 1% { “ e
2.3.2 Functional Architectire 3. . . v .
2.3.3 Mapping from Functions ﬁo Cg)mponents

2.4 Related Work
2.4.1 VEST
2.4.2 AADL

3 Architecture

3.1 Goals of the EMC Tool

3.2 EMCXML
3.2.1 Key Components
3.2.2 Display on Configuration Tool
323 DataType
3.2.4 Output Information

3.2.5 Ports and Children oL
3.2.6 Constraint
3.277 EMCXML Schema
3.3 Extensible Model-based Configuration Tool
4 Implementation
4.1 Input Layer e
4.2 Configuration Description Layer
4.2.1 Apache Xerces2 Java Parser
4.2.2 Google Web Toolkit
4.2.3 Implementation of Element dependency
4.3 Output Layer R s e e

6 Conclusion and Future)
"@

Bibliography

ii

35
35
36
38
39
41
42

44

48

49

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
5.2
5.3

Two key features of configuration
Example of Models in Embedded Systems Design

Flow Chart of The EMC Tool . .owwmen. o . . oo oo
EMCXML Format - . . PR R - . o . - . -
A Simple Example of The! Element dependency b
A Complex Example of ThefBlement dependency
The relationship between anceﬁfor‘ﬂ andfdeSCendants is a tree graph
An Example of The Element R Zatmsth' - X A
An Example of EMCXML Sclje a g il, l a5
Architecture of Extensible Modél-based anﬁguratlon Tool
An Example of Output-Laycr F[;

XAmple XML Editor . T =, :“;.' T

Output Information from Configruation Description Layer to Output Layer . . .

Linux Booting Flow
An EMC XML Example of Describing BSP
Configuring BSP Using EMC Tool

iii

Chapter 1

Introduction

Configuration is a special typeof design activity [11] with two key features:

e The artifact being designed’is assembled from instances of a set of well-

defined components, alrr/al

_ - |

e Components can only be coﬁrrectgg togéther in pre-defined ways.
h ' 1 ; .

This intuitive deﬁnitié‘h. fits a large nﬁrﬁber of design tasks from our daily
life. Not only in the high technoiog& aréas, many tasks are also configura-
tions, such as planning a set of actions for achieving specific goals, developing
a therapy as a composition of cure and synthesizing problem-solving strate-
gies. Moreover, product configuration in different domains [18], configuration
management, configurable operating system and integration of hardware and

software in embedded systems are configuration tasks. Therefore, it is no sur-

prise that configuration has become much more significant.

Compo

nent
Component

Figure 1.1: Tiwo kefz:fea‘thfes: of configuration

e

After the abstract meaning ﬂOf ;%??pﬁguration is defined, we focus on the
concretion of conﬁguration;-:-f‘-coﬂﬁguration;” fasks’” The specification of a con-
figuration task involves at leést two disti‘nc‘;: phases: describing the domain
knowledge and specifying the desired target [15]. The domain knowledge de-
scribes the object types available in the application domain and the relations
within object instances. After the first phase is finished, the environment of
the desired target is sketched. Then requirements of the desired target will be
proposed and must be satisfied. A special characteristic of configuration tasks
is that the problem has already been well-defined. In other words, all com-

ponents are defined completely, and the relations between distinct components

are described explicitly. However, to represent a configuration task is not quite
simple. Most of the complexity of solving a configuration problem lies in repre-
senting domain knowledge; therefore, how to represent the domain knowledge

is extremely critical.

Nowadays, many applications are designed to model a range of domain
knowledge and are used to configure specific targets. This kind of applications
contains built-in domain knowledge and usually has a particular aim. For in-
stances, Kbuild [8] is used to managereonfiguration in Linux kernel, Apache
configuration tool [19] is use,(il to help sy‘étem administrators to tune the main
Apache configuration file,.etc, Neyertheless, ;Nhen we face a much wider con-
dition involving large rané;e doméi-ni\]inogvliédge, tile.se applications are not suf-
ficient for our requirements due uto fﬁ@f&ﬂ(l)main anWledge is built-in and hard
to modify or extend. ThiSlliiI.ld qf-app-l:i-catib%ls lacké. flexibility and extensibility

to face even a little more complex sittuation.

To avoid this problem, an easy approach is to separate domain knowledge
from applications. Many languages and models such as CLASSIC [2], CML2
[3] and etc, were proposed for describing domain knowledge of configuration
tasks. However, they are usually bounded in their domain, i.e., if we want
to extend our domain into a wider scenario, this kind of models will not be
sufficient. Moreover, to learn new native languages for configuration takes a

great deal of time, and the learning efforts are heavy. Besides, the native

language structure lacks expressiveness due to they are not in a common public

format, this characteristic will easily make developers confused.

In order to solve the problem described above, we propose an extensible
model-based configuration tool (EMC Tool) which emphasizes on both phases
of configuration, i.e., we not only propose EMCXML schema for describing
domain knowledge with more expressiveness and shorter learn curve, but also
provides a configuration GUI for users accordingly. With the public XML doc-
uments, the developers can easily understand how to use our models instead
of taking a lot of efforts, and resources dbout XML is very easy to find. They
do not have to learn new languages and only need to understand XML models.
After developers define thelr OWIY dc)malq knowledge by following EMCXML
schema, The EMC Tool can budd cor?igiguratlon environments. Finally, devel-
opers can easily obtain th.e;jrp.corliﬁguréic-ion ;r%zsult's ffom our EMC Tool, and do
the following activities. Accordingl; tothe rlr'lodillized design, the EMC Tool has
more flexibility and extensibility.” For e.xample, the EMC Tool is able to output
to different types of files, i.e, video, audio, text file, etc, by altering different
output modules. Developers can choose the most appropriate modules for their
sake. By separating domain knowledge from itself and the modulized structure,
our EMC Tool has more wide ability. Our configuration tool provides an easy
way for configuration tasks from describing domain knowledge to generating ul-

timate results. We believe that the complexity of configuration can be reduced

by using our tool.

The rest of the thesis is organized as follows. The next chapter introduces
the background information about different types of configuration and a general
model approach. Section 3 details how to describe the domain knowledge by
EMCXML schema and also introduces the architecture of our configuration

tool. The implementation is described in Section 4. Consequently, conclusion

and future work are given in Section 6.

;;-
=iy
Sy

=

Ly
i,
‘5"".!';'*%

(% r
. 8

Chapter 2

Background

In this chapter, we provide thebackground infermation before we introduce the
EMC Tool. Firstly, we introduce differehf types of configuration for different
reasoning in Section 2.1.:Se¢ondly, we dﬁ_isc:uss about the generic model for the
configuration tasks in Section 22 Eg,nally, we point out related work of our

research. : ! ﬂ

2.1 Configuration in Different Reaspnfhg

An abstraction configuration depends on how it represents. The most common
types of configurations are rule-based reasoning configuration, model-based con-
figuration, and case-based reasoning. The following sections introduce these

three kinds of configurations.

2.1.1 Rule-based Reasoning Configuration

Expert systems use production rules as a uniform mechanism for representing
not only domain knowledge, but also control strategies. In a rule-based reason-
ing system, production-rule programming languages are usually adopted. This
kind of languages involves "if-then-else” rule statements which are simple pat-
terns, and can be searched in an inference engine by matching patterns. The
”if” indicates a condition. If the condition is true, the "then” action will be
executed; if the condition is false, the "else® action will be executed instead of

the "then” element.

There are two common orgamzatlons for rules: one is forward-chaining,

¥ J
\

|
also known as data-driven, and the 5@1‘1@1‘ 1s backward-chaining, also known as

goal-directed [6]. In forward= chalhmg, at each step, the system starts with the
1

rules and considers only rules thgt can be e‘xecuted It repeats this action until

the goal is reached. Contrarily, backward—chammg starts from a goal, and looks

for rules which can apply to the goal until a conclusion is reached.

Unfortunately, rule-based reasoning bounds in a limited understanding of
configuration process. The existing rule-based systems were designed to solve
specific instances of configuration tasks [15] because no common rules can be

applied in general situations.

2.1.2 Model-based Reasoning Configuration

Model-based reasoning is based on a knowledge base that describes a particular
problem area in terms of the behavior of its small building components. The
main assumption behind model-based reasoning is the existence of a system’s
model, which consists of decomposable entities and pre-defined interactions
between their elements. In other words, the model is the essential element
in a model-based system during the configuration time. The most important

advantages of model-based systems are

1. A better separation'between what is knowai and how the knowledge is used

2. Increasing ability to solve a brd”alalﬁ;el?“ ‘:Tétr“}ge of problems

_—u:-l-n. |

| | P 1]
3. Increasing ability to (;ombin“ei kn(%yledgp fromi different domains within a

single model %5 N 1

4. Increasing ability to use existing kﬁowiedge to solve related classes or prob-

lems

The major motivation for using model-based configuration system is that
configuration in the nature is by definition a synthesis task. Therefore, to cover
the entire range of solutions is an essential ability. Although a system can
gain experience in a particular domain and use it to improve efficiency, the
system should still work without prior experience. Many systems are published

to configure a particular domain, i.e. networks, operating systems, vehicles,

8

CPU — —] Bootloader

Memory || | Operating
Module System
hU [—| Embedded System — | Biivers
|| System
TLB | Software
Storage | — Applications
Systems

Figure 2.1: Example of Models in Embedded Systems Design

circuit boards and etc. By modeling the .d.omain knowledge, a complex system

can be divided into several éimple and flexible parts, so that developers will

casily understand the behavior of the gq’fnplex“system without much effort.

Figure 2.1 shows an example oJf m(';:éels m embedded systems design which
i ‘

involves hardware and software. ﬂ

i {
|
‘

2.1.3 Case-based Reasoning Configuration 3

Case-based reasoning is very different from other reasoning technologies pre-
sented above. The process of solving a configuration problem by case-based
reasoning relies on the solutions of previously similar problems. With case-
based reasoning, the current configuration problem attempts to solve by finding
a set of solutions in similar past problems and adjust them to the current con-
figuration. By observing the methodology of case-based reasoning, we can find

that case-based reasoning is heavily based on a assumption: Similar problems

have similar solutions.

As the highest level of generality, a general case-based reasoning cycle can

be described by the following four steps [1]:

1. Retrieve the most similar case or cases
2. Reuse the information and knowledge in the case to solve the problem
3. Revise the proposed solution

4. Retain the parts of this experience likely to be useful for future problem

solving

2.2 Generic Models of Conﬁgugtion Tasks

-l | |

| | il “‘\ | .
In section 2.2, we introdu(.:.eid. th@la qudéi—ba;s%)d reasbning configuration. A cen-
tral issue in knowledge preséﬁtafoio.n is to eﬂ”ééﬁvely describe a complex scenario,
so that ones can use the descriptioﬁ for.ﬂexible problem solving. Therefore, in a
model-based system, the most critical thing is how to model the domain knowl-
edge. If a general modeling of configuration tasks is existed, the complexity of
solving configuration problems will be reduced. However, it is not easy to build

a general model due to the large difference of distinct domains. In the following

sections, we will discuss how to build a general model for configuration tasks.

10

2.2.1 General Definition of Configuration Tasks

Making very few assumptions about the kinds of knowledge that might be

available; we define a configuration task the same as [11] as follows:

Given three premises:

1. A fixed, pre-defined set of components, where a component is described by
a set of properties, ports for connecting it to other components, constraints
at each port that describe therecomponents that can be connected at that
port, and other structural constraints:

2. Some description of the desired.configuration.

- S 'l J

3. Possibly some criteria for makingﬁ‘b%inial selections.

1 m |

1

Build: 2\ iy

e One or more configurations'that sa‘tisfy' all the requirements, where a config-
uration is a set of components and a description of the connections between

the components the set, or, detect inconsistencies in the requirements.

There are three significant aspects to this definition. The first is, the
components are fixed, i.e., no new component can be designed. The second is,
the interactions between different components are in fixed and pre-defined way.
In other words, the components cannot be modified their connectivity. ” Port”

indicates an abstraction places where a component can be connected to other

11

components. Consequently, the third is that a solution not only specifies the

actual components, but also shows how to connect them together.

The definition above clearly provides a standard of modeling for config-
uration tasks. For examples, a customer buying a car is actually configuring
from a set of components: car models, engines, brakes, etc. According to the
customer’s imaginary description for his desired car (e.g. 250 horsepower, 3000
c.c. displacement engine, red car module looks, etc), he/she would select his/her
favorite choices, then the solution willioceurs. Similar examples can be found

in other domains.

2.2.2 Restricted Version of! Conﬁguratlon Tasks

Vi 4

2 _—.s-hn.:.-hl |1

We now introduce two l"eStI‘ICtlthS OI; the general configuration task. These
restrictions reduce the comple)qt}y of the task and help in identifying additional

kinds of knowledge.

The first restriction is that the artifacts are configured according to some
known functional architectures. In other words, instead of trying to assemble
all possible artifacts that can be created from the given set of components, one
restricts the problem to those artifacts that are similar in their architecture.

This clearly restricts the scope of the task but not in an arbitrary way.

The second restriction is the key components per function. A component

can identify some particular component that is crucial to implement some func-

12

tions. For example, the printing function needs a printer component. Other
components needed for the printing function such as hardware interface, data
cables, power cable, fonts, and driver software can be determined once a printer
has been selected. Thus, we do not need to consider each configuration for
printing functions, we only need to start with a printer and build suitable con-
figurations from there. In this case, the printer component is the key component

of printing function.

2.3 Domain Knowledge Modeling

2.3.1 Components

Components can be described mdepfg_dﬂeﬂt of how they are used by a set of
physical properties, ports and C()u11|str'e;_’f_%1ts. I%’hysicall properties, for example, in
an LCD, includes resolution; Vie\iva;tble size é;fld s¢ons Ports indicate an abstrac-
tion place where other compdﬁénts can at-tacﬁﬁ, e.g., typical ports for an LCD
include data port, power supply port, image decoder port etc. Ports themselves
can be described by some set of properties. Constraints have the ability to limit
what components can be attached there. Typically, these constraints would de-
scribe properties of the components that can be connected at that port or more
specifically properties of a port on another component. Thus, an LCD with a
7220V voltage power supply port” would have a constraint that any component

attaches to this port must match this voltage constraint. Another ability of

13

constraints is to give the limitation of some physical properties. As the voltage

power supply port mentioned above, it’s constraint is it only works when the

power is 110V or 220V.

Components are the essential elements in domain knowledge describing.
By definition [11], Components cannot be modified and created during con-
figuration time. The relationship between distinct configurations cannot be
modified either. All components are defined before configuration time and will

be picked or assembled during the period:

2.3.2 Functional Architecturé"

A functional architecture speciﬁes‘aﬁ-ﬁuﬂcqibnal decomposition of the artifacts

n#m. l.'l'l 1

and constraints on their compesit oﬁ:-;ﬂ\hdi{“/iﬁdual functions can be simply mod-
eled by a set of properties that; characterize fthem. For instance, the display
function may be described by .pererties .suéh as source, contrast, resolution

and illumination.

2.3.3 Mapping from Functions to Components

Finally, we need to model the knowledge for mapping from functions to com-
ponents. A function can be implemented by a set of components. For example,
the display function needs components such as an LCD, a cable line, and a

signal source. On the other hand, components are often multi-functional.

14

The key component per function can help us to simplify the representation.
Functions can be indexed via their key component, so those functions will not
be ambiguous and confounded. In the former example, the key component of
the display function is its LCD component. So by select the LCD component,
we also select its corresponding unique function. Other components in the
function will be selected automatically after the LCD component is selected

immediately.

2.4 Related Work

In this section, we introducessome famous related configuration tools. They
are popular in their domain and ?é"ac}bf;‘Lhélﬁ)ful. However, in spite of they are

<= | |
very success in their domain, but |they§ do hotsatisty our requirement: domain

knowledge free. Nevertheless, they still hax}q a great amount of reference value

for our design.

2.4.1 VEST

VEST [17] provides an environment for the composition and analysis of dis-
tributed real-time embedded systems. VEST models application components,
middleware, OS, and hardware components. This feature supports the compo-
sition and tailoring of every layer in an embedded system for a specific applica-
tion, which leads to more complete crosscutting dependency checks and more

optimization opportunities. VEST itself is not a complete requirements, design

15

and implementation tool; rather it currently focuses on the specific composition

and analysis tasks.

VEST includes features that are found in other tools. However, there are
several novel features in VEST. The major contributions of VEST are two types
of language-independent aspects referred to as aspect checks and prescriptive
aspects. Together these permit the benefits of aspects to be exercised early in
the composition process rather than in the implementation phase. A set of rep-
resentative aspect checks in embeddedsoftware is identified and implemented
in VEST. Some of these aspects are simplle dependency checks; others are com-
plex and may involve the entire System e g ‘.Idistributed real-time scheduling.
The simple fact of 1dent1fy1ng key asp.ect cbeeks improves our understanding of
specific crosscutting concerns fouﬁnd i;rmdlstrlbuted embedded systems, including
middleware. Prescriptive aepects? allow appﬂrfetlon spe(:1ﬁc advice to be applied

to designs and they have a glbbal‘effect. .TH:e significance of VEST is largely

derived from language-independent aspects.

2.4.2 AADL

In November 2004, the Society of Automotive Engineers (SAE) released the
aerospace standard AS5506, named the Architecture Analysis and Design Lan-
guage (AADL) [5]. The AADL is a modeling language that supports early and
repeated analyses of a systems architecture with respect to performance-critical

properties through an extendable notation, a tool framework, and precisely de-

16

fined semantics.

The language employs formal modeling concepts for the description and
analysis of application system architectures in terms of distinct components and
their interactions. It includes abstractions of software, computational hardware,
and system components for (a) specifying and analyzing real-time embedded
and high dependability systems, complex systems of systems, and specialized
performance capability systems and (b) mapping of software onto computa-
tional hardware elements. Thgﬂéé]}_}l@%%k:%_‘sl}.)fcially effective for model-based

AT, =
analysis and specification Qﬁ@om;ﬁléﬁt realtime.cmbedded systems.

& y VA Y
& \

17

Chapter 3

Architecture

3.1 Goals of the EMC Tool

The goal of the EMC Tool is tiqat to help people deal with various configuration
tasks rapidly and easily. o order ’uo aéh-ikeve hiE goal, we not only propose
EMCXML to describe different ?omﬁm knowledge into a uniform format, but
also design the archltecture of thﬂe ENC TOOI to be flexible. The flow chart
is illustrated in figure 5. 3 Above all, developers have some configuration
problems in different domains, and they can-organize their configuration domain
by EMCXML at this time. The EMC Tool admits EMCXML to be its input
format and contains no domain knowledge, therefore the EMC Tool can adopt
to a great deal of domains via EMCXML. Sequentially, a flexible architecture
to adapt to different situations is necessary. The EMC Tool is designed as a

modulized structure for this reason.

Our work can be divided into two parts: EMCXML and the EMC Tool.

Both of them are extensible and will be discussed in Section 3.2 and Section

18

Developers
‘ construct

‘ configure

Domain A
EMCXML 4 Input Layer

3

Configuration
Layer

¥
Output Layer Configuration
Results

EMC Tool

Domain B

Domain C

Figure/3.1: F_lo,W Chart‘o_f._nThe EMC Tool

3.3. (=
3.2 EMCXML

XML [7] documents are intended. for thé storage or exchange of data or in-
formation, and can be used to store data that would traditionally be stored as
documents, letters, reports, manuals and so on or data that might associate
with databases. A part of strength in XML is, at least for developers, human-
readable. Typically, an XML developer uses element type names (or called
tag names) that are meaningful. For all these reasons, the World Wide Web
Consortium (W3C), the de facto Internet standards body, undertook to create

XML starting in 1996. In order to design to overcome limitations in HTML,

19

XML is based on an ISO standard, Standard Generalized Markup Language
(SGML). The XML 1.0 Recommendation was approved in 1998 end and, like

many XML-related recommendations, is currently maintained by the W3C.

There are many choices to be our configuration description languages, such
as regular expressions or native languages. We have many language candidates,
but why we choose XML to be our format? The answer consists of four points.
The first point is, XML is a general-purpose specific language, in the other hand,
we can define our own XML formatsfor-our sake. The second point is, XML
is a markup language, which provides wéi-l representation power, therefore the
complex scenario of Conﬁguratlon could easﬂy be_ descrlbed by XML. The third
point is, XML is a common pubhc .stancjard many resources (e.g. parsers,
editors, etc) exist and easﬂy b¢ fourtd ThlS Characterlstlc could efficiently
reduce the effort of develog_rrlg)I(L—baseq ?pplrcatlons. The fourth and final
point is, XML is full of huma"n—readability.. This advantage makes developers
use XML to construct their domain krlowledge much easier. If they use other
representations such as regular expressions or native languages, they have to
pay a lot of time to learn. XML has a shorter learning curve, and all these four
characteristics will attracts many users to choose our approach. That is why

we select XML to be our format.

We define EMCXML (Extensible Model-based Configuration XML) to de-

scribe specification of configurations and to be the format of the configuration

20

description file is shown in figure 3.2. All the configurations are under the
element main and can be divided into two categories: the configuration defi-
nitions and the overall output information, whose corresponding elements are
config and outputfile. These two elements indicate two functions (the definition
of functions was defined in Section 2.3.2), and all the elements under them are

components.

The element config indicates configuration, which includes a set of prop-
erties, ports, are the major element im eur model. It can be divided into seven

categories:

e Key components

e Display on configuration.to Hli -
e Data type | ‘ 19
e Output information

e Ports

e Children

e Constraints

3.2.1 Key Components

As mentioned in Section 2.2.2 and Section 2.3.3, key components are indis-

pensable in a function. We define each configuration as a function; therefore,

21

Schema Root”

config

[E] main

[E] outputfile

ED ConfigType

IED ConfigType

[E] name : string
[E] version : string
prompt : string
[E] display o
description : string
[E] text : skring
[E] boolean : boolean
'E e [E] option : string
choice
default : integer
: ConfigType
e +ff [E] type]
decimal : decimal
value o-|_§
[E] hexadecimal: string
[E] dependency: string :inkt
menu : string
[E] output "Es L [E] block : string
a1 relationship : string
[E] enable : boolean
. [E] children '-EE L [E] config : ConfigType

-

1 [E] filename : string

Figure 3.2: EMCXML Format

22

the element config needs key components to indicate its index. For this pro-
pose, the element name is defined to be the key component. Each element
name is unique in the whole configuration description file, hence we can easily
distinguish configuration. However, we may modify configuration into a newer
version. In this case, the elements names in both old and new configurations are
identical. To solve this problem, another element version, which indicates the
current version of its configuration, is added into the EMCXML. Conclusively,

the key components in configuration are the elements name and version.

3.2.2 Display on Configuration Tool-

To display each conﬁguratign on theE_MCuTool r;ééds related information. The
element display and its childzen f:lem%:t’ﬁzcs'” p;’ompt and description focus on this
task. The element promptl 1s giveLJl fofm::e.ach| I'fzonﬁgﬁfation, and it can point out
what the configuration does.:-jolrie.ﬂ}'f. Subseqﬁéﬁ.tly, the title of each configuration
will be shown on our EMC Tool ih te.rmslof its element prompt. In addition,
users may need detailed information about configuration. For the reason, the

element description is proposed to store the detail of configuration.

3.2.3 Data Type

The most significant part of a configuration is its data type. The element
type, which defines data types in EMCXML, includes six categories of children

elements to indicate different types:

23

e text

boolean

choice

value

dependency

® menuy

The element text means the data of a configuration is a text string, and
boolean means that the data of@ configuratien is a Boolean value: either true

or false. Choice indicates that tﬁé:data;'bfma configuration consists of multiple
(=g] |

options, and then users can selec% a p’[’c’i‘ﬁe‘r rbﬁe. Value describes a the data type

of configuration is a numeral, and lt Cdﬁfainé two children elements decimal and
5y S v

hezadecimal to represent the radix=Theelement menu presents a configuration

is a menu object in the conﬁguration' deseription file when the configuration

contains no data but children configurations.

The element dependency, which is very different from the other five data
types, defines that the configuration’s data depends on other configurations. In
order to achieve this goal, we can describe a configuration’s value as a series of
script. For example, from the simple start, configuration A can be multiplied by
configuration B and configuration C, then configuration A can be described as

figure 3.3. Furthermore, instead of a simple expression, the element dependency

24

<name> A </name>

<type>
<dependency>
~B~ * ~C~
</dependency>
</type>

Figure 3.3: A Simple Examplé of The Element dependency

5

provides a more powerful fuqctioﬁality By script language as shown in figure
3.4. Therefore, by the element de&endenc}y_, the value of a configuration can be
g / -\‘. 7N ok

'}
'

set more flexibly. i a-rcd “

3.2.4 Output Information ‘ a= | 'H

In order to store output infOrﬁiéLtiQn or act'ivit.":iés, the element output is defined
for this purpose. A configuration can not only output to a specific target, but
also multiple ones. The output information corresponding to each output target
is stored in the element block which is the child element of output. In the other

hand, a block indicates output information or activities to a specific output

target.

25

<name> A </name>
<type>
<dependency>
if ~B~>10
s Slei(Ger @5
else
~A~=~C~*2
</dependency>
</type>

Figure 3.4: A CQmplex Examplel of The Element dependency

3.2.5 Ports and Children -

The meaning of ports of*a conﬁguraﬁﬁm was definéd in Section 2.3. In EMC

”5;
Tool, there are two kinds of relatlbns 1mp1101t tree structure and explicit rela-

|
3

tions defined by users.

A configuration can naturally owh ité children and descendant. Via the
element children, we can define the children configurations of each configuration.
The ability of descendant configurations inherits their ancestor configuration,
and hence descendants are not available until ancestors are available. The
relations of ancestors and descendants become a tree graph intuitionally and

implicitly as shown in figure 3.5.

The elements relationship and enable are used to present connections and

relations between configurations. FEnable indicates that the configuration is

26

[Configuration] [Configuration] Configuration

Configuration Configuration

Configuration

Figure 3.5: The relationship between ancestors and descendants is a tree graph
either available or unavaila‘bllé‘ Tﬂe elemént re"‘latz'o'nshz'p describes the explicit
relations between different: conﬁguratlons “Via these elements, a configuration is
able to influence other conﬁguratlf;r;;r;;aplablhty even they are not paternity.
For example, in figure 376, ﬁrSt‘we %othé the symbol “"B7, which indicates
configuration B and will return Lhe value cbft B s “eable element. Then we can
find that the configuration A is always unavallable in terms of its relationship

element always returns false (true AND false equals false). The return value of

the element relationship will overwrite the value of enable.

3.2.6 Constraint

In order to limit the value or functionality of configuration, we can give con-
figuration the element constraint. By following the element constraint, the

complexity of configuration can be reduced. For example, we can define a con-

27

<name> A </name>

<relationship>
~B~ && I~B~
</relationship>

Figure 3.6: An Example of The Element Relationship

figuration as an integer. However, if we don’t limit its value, then the variety
of the configuration is infinite. In orderlqto avoid the situation, we can give
the configuration a constralnt Whlch is the mteger must be equal or less than
three and could not be negatlve ‘Thereff)re the value of the configuration can
only be zero, one, two or three, f nﬁ!éa;cp‘the complexity is reduced greatly.
Another advantage of the eleme j constmm't is, by setting a constraint to each

1 r :
configuration, users will take feW‘er mlstaﬁes cause of typo or confused. The

element constraint can reduce the Complex1ty of configuration.

3.2.7 EMCXML Schema

XML Schema expresses shared vocabularies and allow machines to carry out
rules made by people. They provide an approach for defining the structure,
content and semantics of XML documents in more detail. XML Schema was
approved as a W3C Recommendation on 2 May 2001 and a second edition

incorporating many errata was published on 28 October 2004 [16]. An XML

28

<?xml version="1.0" encoding="utf-8"?>
<xmlins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="main">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded"
name="config" type="ConfigType" />
<xs:element name="outputfile">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1"
maxOccurs="unbounded" name="filename">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_config">
<xs:selector xpath=".//config" />
<xs:field xpath="name" />
</xs:key>
<xs:key name="PK_menu">
<xs:selector xpath=".//menu" />
<xs:field xpath="name" />
</xs:key>

29

Figure 3.7: An Example of EMCXML Schema

schema is also in XML document format, hence XML schema has the same

features as XML; therefore, XML schema is easy to modify.

EMCXML may not sufficient to all conditions, in order to adapt to more
situations, EMCXML could be extended. The extensibility is from the ability
of XML schema, which gives XML document flexibility and agility. Therefore,
EMCXML is not a fixed standard, developers can add new features into and
modify by their own. EMCXML is extensible conclusively. A part of EMCXML

Schema is shown in figure 3.7

3.3 Extensible Modél-based Conﬁguration Tool

As shown in figure 3.8, the extens1ble‘m0del based configuration tool is a mod-
ulized structure, which consists of h‘chree major layers input layer, configuration
description layer, and output 1@%1". Developgrs Who build domain knowledge,
will input information by EMCXML in ihpu:c layer to configuration descrip-
tion layer. Configuration description layer receives EMCXML and creates a
corresponding GUI, and users can configure via the GUI. After finishing config-
uration, the output layer will generate output by the users’ choices. Developers
and users are different groups of people. Developers are who build domain
knowledge and will construct their knowledge by EMCXML. Different from de-
velopers, users only want to do configuration, they do not care about EMCXML

and only care about final results.

30

Developers

Configuration Description Layer _
XML Parser (Apache Xerces Java Parser)
EMCTool - |

GUI Creator (Google Web Toolkit) |
‘ Output Generator :

. |

Figure 3.8: Architecture of Extensible Model-based Configuration Tool

Modeling Domain Knowledge

- & B
3

- Input Layer :
[ocuie [wodue S wwodoe
‘ XAmple Web Extend by oneself
¥ EMCXML

b

[viocure [woduie J woiore |

- ‘ F“Es Audio Extend by oneself

Users

ol

31

A4

Configuration GUI
(Web Pages)

Final Result

26/34

The main goal of the input layer is to input XML information to the
configuration description layer. Due to our domain knowledge is described by
EMCXML, our tool provides a layer which focuses on XML input by following
EMCXML format. As shown in figure 3.8, the input layer allows different
modules inside. For instances, the input method may be by a web browser or
speech input. All the different modules can be designed for different situations,
but they have to follow EMCXML schema. Although modules are different,
but their goal are consistent: build domain knowledge by EMCXML.

The configuration descr,i_lption layer'\.is the core layer of the EMC Tool.
This layer consists of three components: XML parser, user interface creator
and output generator. The dom‘éiﬂ\lfldgvv}édge 1s r.nodeled by XML; however,
the XML document cannot'be pﬂrocéggélﬂ‘ directly, fcherefore XML parser is the
first component in the con.ﬁ"rguraqion d'-e:s-cript:ion layér and is used to parse XML
data into useful information. “T,he“ core enginé*is inside of the XML parser. No
matter data dependency, conﬁguratioﬂ relationship, or anything else, this kind
of complex scenario is also handled in the XML parser. In the other hand, XML
parser is the core data processing engine in the configuration description layer.
After the EMC Tool parses the XML document and obtains the domain knowl-
edge, it will create a corresponding configuration GUI. Output generator in the

configuration description layer receives feedback from users via configuration

GUI, and then passes the information to output layer.

32

Output Layer

‘ Generate ‘ Generate

Source Code Header Trigger
(.c) (-h)
& \ 4
GCC compiler
g

Executable File

Figire.9: An Example. of Otpuf Layer

The output layer focuses on ou’g_'ﬁ,l.t ihformation to specific targets which
can be files or input of an. applic‘adtionE_The output layer can also trigger outer
functions after users finishing their conﬁgdra‘pioﬁ. This layer is also a module
and full of flexibility. The agility of .the"ou.t“:put layer is not only output to
multiple targets, but also trigger outer functions, i.e., a script, an executable
file, etc. Due to the modulized structure design, the output layer can be many
different. Hence the output ability of the EMC Tool is more widely, in other
words, the EMC Tool can output to not only text files, but also video, audio,
etc. Moreover, the EMC Tool is able to extends its ability by invoking an
outer function. By the means, users can define the automatical procedure for

the time after output, and hence they will save amount of time. An example

33

of output layer can be found in figure 3.9. Users want to configure their
C language project currently. After they finish configuring, the output layer
generates source code files and header files. Then output layer trigger an outer
function: gce compiler and compile the whole C project. Consequently, the

final executable will be generated.

As described above, the extensibility of the EMC Tool stands on the mod-
ulized structure which is shown in figure 3.8. We can found that both input
and output layer are full of flexible;andscan be easily extended. Developers can
follow our format to buildstheir OWh inﬁﬁt or.output modules. Therefore, we

can declare our tool architecture design is extensible.

» if
| II a
Fa'

=) |
.,f‘";:' H i

| F
i

y ‘

34

Chapter 4

Implementation

In this chapter, we explain the design coneept of the EMC Tool and describe
how we implement it. The framework of fhe EMC Tool has been presented in
Chapter 3. For portableiand easy=to-modify, the whole EMC Tool is imple-

mented by Java, and the involvedflli.‘fb:fgfijés‘l also implemented by Java.
4.1 Input Layer 2\ 11 | “

As we discussed in Section 3.3, inpﬁt léyer.is used to model the domain knowl-
edge. In the other hand, this layer focuses on input XML information to the
configuration description layer. For this purpose, this layer needs to provide a
user interface for developers, which not only has to be user friendly, but also

follows the EMC XML format we defined in Section 3.2.

In order to achieve these two goals, we adopt an open freeware to be our
input layer named XAmple XML Editor [4]. XAmple XML Editor Project

introduces a java Swing based XML editor that analyzes a given schema and

35

then generates a document-specific graphical user interface. Unlike other XML
editors, the XAmple XML editor GUI exposes not just a tree representation
of the XML document but rather a logical combination of the XML document
and respective XML Schema. The user interface of the XML editor is highly
logical and intuitively comprehensible. To be able to prepare valid XML docu-
ments of significant complexity, a user is not required to be familiar with XML
and XML Schema languages and to have any previous knowledge about the
documents structural requirements. XAmple is published under the Apache

Software License [9].

As shown in figure 4. 1 the advantage of usmg XAmple is that we can

easily edit a XML document and f@llow EMCXML format. Besides, XAmple

n#ﬂi_h |

is implemented by Java, henceult m@ets our 1mplemental need. Ultimately,
the XML document will ﬁnallyibe produqed and passed to the configuration

description layer.

4.2 Configuration Description Layer

Configuration description layer is the core layer of the EMC Tool. After de-
velopers model the domain knowledge, the configuration description layer will
parse the XML document from input layer, and then create a configuration
graphical user interface for users. Consequently the configuration description

layer will receive the feedback from users and generate output information.

36

Xample - BSP_XML_schema.xsd @ test.xml

File Look &Feel Help
u T I [!
wreo||wu-| |0 |E] |0 8]
Edit XML document
“1 XML Editor Damo. Felix Galubov, 2003 =
M 7 ES main
i @@ array (1..unbounded) of config
[] =5 config
7 s
[¥] version |¥ L
HS: [v EE display
: [v] & prompt Processor Seftings|
@ [#| & description Frocessor Settings|
— [] 7 E5 tme
= e — i
® g
[v]ES output
ﬂ r [ﬁ‘_] array (1..unbounded) of block
] @ relationship =
MS={Default Namespace} Ok ‘
Folder: |

Figure 4.1: XAmple XML Editor

37

4.2.1 Apache Xerces2 Java Parser

The first component of configuration description layer is XML parser, which
has to understand the EMCXML syntax and make a response according to
EMCXML Schema.

Typically, there are two approaches to parse XML document: SAX and
DOM. SAX which stands for Simple API for XML, is what makes insertion of
this application-specific code into various events. The interfaces provided in the
SAX package will become an important:part of any programmer’s toolkit for
handling XML [10]. Even theugh the SAXulibrary is small and few in number,
they provide a critical framework f@r Java and XML to operate within. The
main feature of SAX is that it 1s eve;ﬁ—eren and *parses the XML document
once sequentially. Consequently, $AX s allight- Welght library; hence its func-

tions are easier. However, aeeordmg tonthis- fe_ature, functions in SAX are also

limited.

Unlike SAX, the Document Object Model (DOM) [12] which defined by
W3C, is a platform- and language-neutral interface that allows programs and
scripts to dynamically access and update the content, structure and style of
documents. The document can be further processed and the results of that
processing can be incorporated back into the presented page. Because the
DOM supports navigation in any direction (e.g., parent and previous sibling)

and allows for arbitrary modifications, an implementation must at least buffer

38

the document that has been read so far (or some parsed form of it). Hence the
DOM is likely to be best suited for applications where the document must be

accessed repeatedly or out of sequence order.

After the discussion between SAX and DOM, we tend to have a more func-
tional toolkit to parse our XML document. When developers want to modify
the XML parser module in the EMC Tool, flexibility and extensibility are much
more significant. Because DOM provides a more flexible solution than SAX,

for this reason, we adopt DOM to be our, XML parser.

Apache Xerces2 Java Patser {13] is the next. generation of high perfor-
mance, fully compliant XML parsers in the Apache Xerces family. This new

version of Xerces introduces the Xéj"{:e% hl\tative Interface (XNI), a complete
framework for building parser COHPO'I;{’EB‘::HJCS aitld configurations that is extremely
modular and easy to program. In additioﬁ,‘i Xefces2 supports both DOM and
SAX, and we adopt its DOM nliﬂbrary. _XerCesé is free software available under

Apache Software License [9].

4.2.2 Google Web Toolkit

The second component in the configuration description layer is user interface
creator. This component creates a configuration graphical user interface which
provides a means for users to do their configuration according to the domain

knowledge from the input layer. Therefore, we seek a toolkit that can build

39

GUI rapidly and dynamically.

Google Web Toolkit (GWT) is an open source Java software development
framework that makes writing AJAX applications easy for developers who don’t
familiar with web-developing languages. Writing dynamic web applications to-
day is a tedious and error-prone process; developers spend huge percent of their
time working around subtle incompatibilities between web browsers and plat-
forms, and JavaScript’s lack of modularity makes sharing, testing, and reusing
AJAX components difficult and fragile. . GW'T helps developers avoid many
of these headaches while offering develepers the same dynamic, standards-
compliant experience. Developers only need to erte their front end in the
Java programming language and the..GWT Compller converts the Java classes

to browser-compliant JavaScrlptuand kIT ML 20]

1

We adopt Google Web:-Toolk}t to bulld our configuration GUI. The advan-
tage of using GW'T is that we nc”‘an easily cree;;:e our GUI dynamically. Besides,
our configuration tool can separate constructors and users into two places. By
building a web server, our configuration GUI becomes naturally a web site,
hence every users can do their configuration remotely via internet. In addition,
we do not need to care about the portability of configuration GUI made by
GWT. All they need to do their configuration via our configuration GUI is just
a web browser and do not have to consider whether their platform is adaptable

for our system.

40

4.2.3 Implementation of Element dependency

The current implementation of the element dependency is presented as an equa-
tion. There are two different manifestations defined by the attribute type in
the element dependency. One is the configuration is presented as the element
choice, and its multiple options are assembled from other configurations whose
data type are also choice. For example, when defining data cache way: 2 or 4;
data cache set: 128 or 256; data cache line size: 32B as shown in fig 3.3 to fig
3.6. Then the available cache size will be presented as the element choice, and
their multiple options are 8 KB (2*128*32), 16:KB. (2*128*32, 4*128*32), and
32 KB (4%256*32). In thisicase, we only eonfigute the available cache size but
do not configure the other three. ':]

- |

The second manifestation 1s chat?f'the‘i, ("conﬁgui‘ation’s data is an equation
which can involves other cgﬁﬁgdration Whloéq:data type is value. After calcu-
lating the equation, the conﬁglll‘ration is aésigned to the computing result and
will be presented as the element value. For example, the same as above, we
can define the available cache size is equal to the product of the data cache
way, data cache set, and data cache line size. After we configure the three
configurations, the value of available cache size will be generated automatically

instead of manually. This manifestation is appropriate to the configuration that

is assembled from mass configurations.

Because the element dependency is usually presented as an expression, we

41

seek a parser to obtain the answer. JEP (Java Math Expression Parser) is a
Java library for parsing and evaluating mathematical expressions. With this
package developers can enter an arbitrary formula as a string, and instantly
evaluate it. JEP supports user defined variables, constants, and functions. A
number of common mathematical functions and constants are included [14].
By using JEP, we can obtain the answer of an expression rapidly, and we can

also save the effort for building our own parser for this purpose.

4.3 Output Layer

After users finished doing their configuration, the-output generator in the con-

figuration description layer receivq’sf"flgad;ij‘a:bll{s from user, and then transfers the
2 | -?:p-;_: J |

output information to theloutpuyt ilayé?;_ 4 ‘

In EMCXML, each coﬁﬁgu*étion con‘cluaf-ir_}s t-‘he element output which indi-
cates the output information to the output la-}.fer. The element output consists
of uncertain number of element block whose function is to store the output in-
formation of a specific output target, which described by the element filename
in outputfile. After users do their configuration, the output generator will mod-
ify the elements block, and send them to the specific targets. For example, if
the first element filename in the configuration description file is ”foo.bar”, then
the first element block of each configuration will output to "foo.bar”. By this

design, our configuration tool can output to multiple targets in a sequential

42

Configuration Description Layer Output Layer

block filename

\§ J |\ J

e N 4 N
block filename

. J

4)\ 'a N\
block filename

\§ J |\ J
output outpultfile

o N /

» if
H'

Figure 4.2: Output, Information fréni'@éﬂﬁgfﬁa{“tién Description Layer to Output Layer
series. A special case is if a Conﬁlgrlraﬁe)n (Ilqes notiwant to output to a specific
target, then its Correspondmg eiement blobk Wlll be empty. After the output
is generated, the EMC Tool can trigger an outer function and do the following
jobs automatically. This action can effectively extend the ability of the EMC

Tool.

Output layer is also a module as we described before, in other words, every
output targets recorded in the element outputfile can not only be text files, but
also videos or audio files. With the assistance of the output layer, we can do
mass works we like. Besides, by adjusting the output layer, its functions are

not limited.

43

Chapter 5

An Example using EMC Tool

In embedded systems, a Board:Support Package (BSP) is implementation spe-
cific support code for a given-beardthat c;)nfqrms to a given operating system.
It is commonly built withia bootl-oagler that contains the minimal device sup-
port to load the operating system'.é@dé;\.fice drivers for all the devices on the

board. . : J 1

We concluded the bodjcing ;]g);"ocess of-Finux on ARM boards as shown in
figure 5.1. We classify the proéesses into four categories:
e On chip functions
e Peripherals
e Related Tools
e Bootstrap
On chip functions describe the hardware specification of the target board,

including processor settings, interrupt controllers, memories, etc. Peripherals

44

Flash ROM Loader RAM Loader

Setup the CPU

1.Set the CPU mode Interrupt init.
2.Mask all IRQs
3.Setup clocks

Board init.

1.Setup stack
Critical registers init. 2.Setup /O ports

3....

1.Flush I/D caches

2.Disable MMU and
caches

3.RAM init.

Basic device init.

1.UART init.
2.Flash or ROM init.

3.Configure available
Relocate Boot loader to RAM banks

RAM

][

Enable interrupt

OS or Application
-, Fightte'5.1: Linux Bootinlé Flow
. ~
is used to describe the varlous periplgals Iof an embedded system, i.e., UART,
flash, Ethernet controller, ete: !l ela,@ed tpiols descrlbe the tool chain of the
target board, i.e., cross complldr debdggerd etcir Bootstrap part records the

booting process of an operatmg system, therefore the BSP Tool can generate

the appropriate bootstrap code correspondingly.

Our EMC Tool can help developers maintain and configure BSP. The first
step is, those four categories above can be described by EMCXML respectively
as shown in figure 5.2. Sequentially, developers input the EMCXML files into
the EMC Tool, and configure their BSP via the configuration GUI provided
by our tool. The three parts, which are on chip functions, peripherals, and

bootstrap will become source code by the EMC Tool after developers finish

45

<main>
<config>
<name>0nChipFunction</name>
<display>
<prompt>0n Chip Functions</prompt>
<description>0n Chip Functions</description>
</display>
<type>
<menu></menu>
</type>
<output><block></block></output>
<enable>true</enable>
<children>
<config>
<name>core</name>
<display>
<prompt>CPU Core</prompt>
<description>Settings about CPU core.</description>
</display>
<type><menu></menu></type>
<output><block></block></output>
<enable>true</enable>
<children>
<config>
<name>SetProcessorModeUsr</name>
<display>
<prompt>Set Processor Mode to Usr</prompt>
<description>Set Processor Mode to Usr</description>
</display>
<type>
<text>
mrs rO,cpsr
bic r0,r0,#0x1f
orr r0,r0,#0x10

Figure 5.2: An EMC XML Example of Describing BSP

46

BSP (Domain Knowledge)

On Chip . Related
Functions Peripherals | | Bootstrap Tools

-

¥

Input Layer

Confi tion GUI
Configuration Description Layer o |gua |n
Configuring

Output Layer

‘Generate , Trigger ‘ Generate
Final Results
Source Code | N—) Tool Chains
g

Figure 5.3:-Configtiring BSP.Using. EMC Tool

configuring. Developers also configure the related: tools, and the EMC Tool
will build the tool chains of the taréét board. Ultimately, the EMC Tool will
trigger tool chains after-source code':is generated, completely, and build the

desired image automatically’ The whele configuration flow is shown in figure

5.3.

47

Chapter 6

Conclusion and Future Work

In this thesis, we propose an exténsible model-based configuration tool to assist
people handling their configurationsWith bur tool, the complexity of configura-
tion problem can be reduced deﬁnitqu. I_ﬂn@rder to.adapt to different domains,
our EMC Tool has no huilt-in dé@i@'.knowledge. We define EMCXML to
describe the domain knowledge'ﬁtnd '_Erpodel each ‘configuration. Compare to
other configuration languages, EMCXML Has.a Shott learning curve, sound ex-
pressiveness and wide extensiBility. After dgﬁning the domain knowledge of
configuration, the EMC Tool is able to parse the EMCXML and create a con-
figuration graphical user interface accordingly. Via the GUI, the developers
can easily do their configuration. Besides, the configuration tool has ability
to output to distinct multiple targets and trigger outer functions consequently.
In addition, the EMC tool is modulized; hence we can modify and adjust any
modules in this configuration tool for our sake. For example, we can alter the

web GUI to a text-based GUI for text console or alter the output layer so that

48

the tool can output to video files. According to the modulized structure, our
configuration is towards a much wider scenario and scope. Therefore, we believe
that configuration can be much easier and efficient with the assistance of our
extensible model-based configuration tool. Developers do not need to worry
about the complexity of configuration and can handle configuration problems

easily.

In current implementation, the dependency of configuration is represented
as an expression, and will be improvedsby represented as script language. By
allowing built-in script language the ab"iiity of EMC Tool will be greatly in-
creased. Another issue in Current 1mplementat10n is the concept of constraint is
not implemented into our EMC TO@},..and We Wlll also implement this feature
in the future design. In Current (ﬁ 51gmﬁ of EMC Tool we can handle configura-
tion problem by modeling domaﬁn knowledgg by users’ self. However, there are
some conditions that are dlfﬁcult.to model demain knowledge. For instances,
the domain knowledge involves subjec.tivity such as the degree of delicious or
beauty. In addition to this issue, our configuration tool lacks reusability of
configuration models. In future research, we will focus on how to build the con-
figuration models in an obscure condition. Besides, we will also research about
how to reuse the components so that the configuration time can be reduced.

The last issue is XML document wastes mass disk spaces, and in the future, we

will attempt the solution: XML compression.

49

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches. Artificial Intelli-

gence Communications, 7:39-959, 1994.

[2] Alexander Borgida, Ronéld J. Brachmair, Deborah L. McGuinness, and
Lori Alperin Resnick.’ Classm A structural data model for objects. ACM

SIGMOD Record, 18:58-67, 1989—“
!’E.

[3] CML2. http://catb.org/ esr,/l:le/.
= |

[4] XAmple XML Editor. htfp: ¥ www.felixg?ﬂubov.com/xmleditor/ :
[5] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Anal-

ysis € Design Language (AADL): An Introduction. Society of Automotive
Engineers, Feb, 2006.

[6] Frederick Hayes-Roth. Rule-based systems. Communications of the ACM,
98:921-932, 1985.

[7] Extensible =~ Markup Language (XML) homepage of W3C.
http://www.w3.org/xml/. 1998.

50

[8] Kbuild. http://kbuild.sourceforge.net/.
[9] Apache Software License. http://xml.apache.org/license.
[10] Brett McLaughlin. Java & XML. OReilly, second edition, 2001.

[11] Sanjay Mittal and Felix Frayman. Towards a generic model of configuration
tasks. Proc. 11th Int’l Joint Conf. on Artificial Intelligence, pages 1395—
1401, 1989.

[12] W3C Document Object Model. http://www.w3.org/dom/.
[13] Apache Xerces2 Java Parser. hitp: //Xerces.apache.org/xerces2-j/.
[14] Java Math Expression. Pagser. http://www singularsys.com/jep/.

[15] Daniel Sabin and Rainer Walgeﬁ”_Prbduct copfiguration frameworks - a
survey. IEEE Intelligent Syﬁtfmsgfg:13:42—49, Angest, 1998

[16] W3C XML Schema. htvtp:/‘)www.WB.()!ré/:xml/schema.
[17] John A. Stankovic, Ruiqing Zhu, 'Rar.n Poornalingam, and Chenyang Lu.

Vest: An aspect-based real-time composition tool. Real-Time Applications

Symposium, May, 2003.

[18] J. Tiihonen, T. Soininen, T. Mnnist, and R. Sulonen. State-of-the-practice
in product configuration - a survey of 10 cases in the finnish industry.

Knowledge Intensive CAD, First Edition, 1996.

[19] Apache Configuration Tool.

http:/ /www.zecos.com /apache/configuration.html.

o1

[20] Google Web Toolkit. http://code.google.com/webtoolkit/.

52

