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Abstract

Statistical Analysis draws much research attention in recent years. In this work, with
the static timing analysis as target application, a mathematical analysis is made to
provide another viewpoint of its statistical resuit. Starting from the experiment model, a
statistical analysis approach based on tﬁé'\'_filfiteg.ration method is provided and proven to
be exact with respect to the mogdel under- ::thesé requi.rements for the model: (1) the
model is well-defined; (2) the mode.l is.based.on'mutually independent variables; (3)

there is at least a bi-partition of independent variables, says A; and A,, such that there’s

an onto function from the union of A, and properties to A;.
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Chapter 1

Introduction

Systematic yield model for process.-i.r.}%med uncertdinty remains a challenge since
its firstly identified as a challenge by Intemational Technology Roadmap for
Semiconductors (ITRS) in 2001[1]. Among all research topics involved, referring to the
viewpoint from EETimes, statistical static timing analysis (SSTA) draws extensive
discussion to be used for verification of the designs manufactured at 90 nm or below
since  DAC’05[2]. However, even SSTA itself does still not yet acquire
well-acknowledged industrial success. In this work, a model-based statistical analysis
approach is proposed. This approach would be proved to be exact with respect to the

model under these requirements for the model: (1) the model is well-defined; (2) the



model is based on mutually independent variables; (3) there is at least a bi-partition of
independent variables, says A; and A,, such that there’s an onto function from the union
of A, and properties to A;. With this approach, some issues of recent path-based and

block-based SSTA methodology are discussed.
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Chapter 2
Preliminary and Related Work

The framework of statistical timing é\);f:L'}ation proposed in this work is based on the
deterministic timing model. When talking about the deterministic model, it can be
traced back to the previous work about static timing analysis. With the shrinking of the
feature size, SSTA emerges. Two main branches, path-based SSTA and block-based

SSTA are then described.

2.1. Static timing analysis (STA)

Static timing analysis (STA) is a widely-used method for performance evaluation in
electronic design automation. In this section, no detailed or tedious concepts would be

introduced. A sketch is made based on the idea proposed in [3, 4] by R.B. Hitchcock et



A 4

A 4

Fig. 2-1 A Sample Circuit

al. 1t’s assumed that the delay is contributed by.the gate. This assumption is still valid if
interconnect is treated as a special kind Of\Qgtef An example is given as Fig. 2-1.

And it’s obvious that the time-delay a;'an event c.ould be modeled as an activity
network. The arrival time (AT) couid then be computed with the method by [5] and
shown as Fig. 2-2. It’s convenient to find that from this methodology, if defined AT(g)
as the arrival time at the output of the specific gate g, FANi,(g) as the set of input cells
of the gate, and d(g,0i) as the gate delay of the gate with respect some input signal from
gate gi:

AT(g) =max{d(g.g;)+AT(g;)| g; € FAN,, (g)} (2-1)

It’s very important to clearly point out the two basic operations in this type of timing

analysis: add operator and max operator. The add operator reflects the fact that the
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Fig. 2-2 STA Result

arrival time is the summation of sensitized gate'delay. And the max operator is related to

the concern of critical delay. (=
2.2. Statistical static'timing analysis (SSTA)

This topic is not recently emerged one. SSTA could be traced back to some works
over ten years such as [6]. The main difference is that the concerned delay or arrival
time is no longer a deterministic value, but described with a distribution instead. For
example, the sample circuit in Fig.2-1, now is assumed with the behavior illustrated as
Fig.2-3.

Assuming a simplest but impractical property that every delay distribution and every

possible summation of the delay distributions is independent, arrival time could be
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Fig. 2-3 Circuit with delay described in a distribution

found with the method mentioned in,[7] as Fig. 2<4. The main idea in [7] is that the max

operator for two random variables eould be computed-with the cumulative distribution

e

function of one variable and the probability%jistribution function of the other variable. It
directly copes with the distribution. Since both the add operation and max operation are
defined, the SSTA goes almost the same as.STA In equation 2-1. It must be noted that
the result in Fig.2-4 is based on impractical assumptions. In general cases, the delays are
correlated. Recalling to the cause of the distribution, [8] illustrate that we can relate the
variation of timing properties to the variation of some design parameters. In this sense,
there are works describes the delay as various model such as first order canonical model
in [9] as equation 2-2:

AR, (2-2)

n+l

n
d:a0+2aiAXi+a

i=1



,\where a, is the nominal value, AX, are random variables representing the global
variations, and AR, is another random variable referring to the uncorrelated variation.
In [10], it extends the uncorrelated term in equation 2-2 to vector of local variance. And
in [11] it gives another viewpoint of equation 2-2 from Taylor expansion. As another
example, in [12], it provides the quadratic timing model as equation 2-3:
D=my+aR+) BG +> TI,GG, (2-3)
i i

This suggests a series of approaches that with well-defined timing model and two

basic operators, add and max, SSTA could be operated as STA. For the timing models

mentioned above, add operator-is a linear. combination of the operands with respect to

e
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the coefficients of the timing model. However, max operator is not the case due to its
non-linearity. The strategy to the use of max operates creates two branches which are

not mutually exclusive: block-based SSTA and path-based SSTA.

2.2.1. Block-based SSTA

The term “block-based” means that the delay would be resolved, i.e. max operator is
applied, at some internal block before further computation. In the extreme case, the
SSTA is operated as conventional STA in.the sense of equation 2-1. As a result, in a
block-based SSTA, the main task .is' to fina a <relationship between the resolved
coefficients of the timing model and tirﬁiﬁig':;m_ddels of the operands. The most common
method is to assume every variation Is mdaeled as a éaussian random variable. With
this assumption of Gaussian random. variables; Clark’s approximation [13] which is a
linear approximation would be used for this max operator. There is other solution not
based on the Clark’s approximation such as [14], which uses curve-fitting to find the
resulted coefficients to the results of the max operation. In [15], it proposes a
conditional max approximation which uses a pre-computed skewness to determine the

linearity of the max operator. Block-based SSTA in the documents is typically expected

to have better performance in runtime.



2.2.2. Path-based SSTA

Path-based SSTA goes in another track. If reviewing the equation 2-1, it’s possible

in the equation that keeps the max operator unresolved. At the sink node, arrival time

from various signal propagation path could be collected. Taking a max operator to this

collection, the distribution of critical delay will then be found. The most arguable point

is that path-based SSTA might require the enumeration of a great amount of paths. In

[16] it suggests that the information of criticality could be used to skip non-critical path,

and the methods in [17] and [18] aredadopted insthat work. Path-based typically takes

the advantage of better accuracy. This cdrﬁfeé.fr_om twa sources: one is from the less uses
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Fig. 2-5 SSTA considering reconvergence path



of max operations; the other is that the path-based strategy facilitates tracking the
correlation. The Fig.2-5 is an example illustrating that if the structural correlation due to
the reconvergence path is taken into consideration. With the path-based SSTA, it’s much
easier to cancel the effect of common path and re-calculate the correlation from path to
path since the information of the paths is kept. It doesn’t mean that path-based SSTA is
an exact engine. As the example of Fig. 2-5 suggesting, the accuracy still relies on the

well-extracted correlation from path to path.

2.3. Slope Propagation

The impact of timing with respect ta s'i':g_hal_ transition. time is well pointed out in [19]
and [20] with STA. Although it’s. not d}'rectly followed additive effects with the
parametric variation sources, the ihpact does hold. Worse than that, this impact of
signal transition would not be strictly a deterministic value. It would be a distribution as

the delay time between gates.

2.4. Monte Carlo method and SSTA

Monte Carlo method is widely used in SSTA, usually for the validation of proposed
SSTA methodology. However, there are works such as proposed in [21]. It directly lists

every function of the delay and output transition time in canonical form and then

10



rearranges it as a large sparse matrix. With this sparse matrix, it extracts the statistical
result with Monte Carlo method. From this study, we find that the evaluated timing
performance of the design is bound if the parametric timing model is given. This stands

as the basis of our work.

= NI
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Chapter 3
Proposed Method

To give our method an introdugtion i.s tﬁ’at it starts'from the deterministic model. The
term “model” refers to a set of well-defined variab!es and functions, and by knowing the
practical parameters, one can use the functions to predict any property of the design that
provided by the model. In the successive sections, firstly we’ll start from deterministic
model where all parameters are treated as some particular values. And then the
deterministic model will be extended to statistical one by knowing that every sampling
to the statistical space would result in a set of deterministic values. And since each
sampling is a set of deterministic values, it would not violate the deterministic model.

From section 3.1 to section 3.3, the model is separated into two parts: in section 3.1 and

12



section 3.2, the model is used to relate the intermediate signals or parameters about the
relationship between the signals; in section 3.3, the model is further used to relate those
signals to the concerned properties. In section 3.4 all the pieces above are meshed up
and give a formal methodology to gain statistical distribution of the concerned property
from a deterministic model. At the final section of this chapter, 3.5, some examples are

given to illustrate how the method proposed in this work is used in application.

3.1. Model, Response, and general overview

It’s very obvious that as a model istbound, t.he response or behavior expected by the
model is then fixed for any particular deéi'@g:__d;._ _

Take Fig.3-1 as an example. The t_arget-:éomponent is an inverter. To determine the
behavior of the inverter, we may ruﬁ simulations based on some extracted behavior or
take measurement to a real element. By given its input signals and estimating its output
response under various specification of the gate, the result can finally be summarized as

a characterized library. Fig. 3-2 illustrates a possible result in the form of a table.

Signal_in I: Signal_out

Fig.3-1 An Inverter with load

13
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A A
Specification 1
Signal% \{%I_out R Sign% \§nal_out
t= t=

V4

V4 V4
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Gate and Load
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> g

VA . ] VA
Gate and Load ! _
Specification n |Signal_j Signal out /, Signal_jih Signal_out
| -_,:-’;'.:' . | R
n (] : t

| A [}
| = )

Fig.3-2 Chgracterized Libra-ry
Assuming that all signals are ramp-shaped with known Vg, it follows that every
signal can be described with a single variable referring to the slope as in Fig.3-3(a).
Considering a pair of stimulus and response as in Fig.3-3(b), then another variable
describing the delay between input and output is required if this delay is concerned.
Letting that a vector X containing four variables is used to determine the specification
of the gate itself and the load it’s connected to, then the output signal, now described

with a particular slew, could be fit with a pre-guessed function as a model. So is the

14



Vv VA

Vag [777777 Vg
Vga/2

v

4]

(a) Single signal (b) Stimulus-Response Pair
Fig.3-3 Signal Representation

delay d. This relationship could be written as following equations that:

{Sout = f“a_u/> (X' Sin)’ } = [xl xz x3 x4 ]T " (3-1)
d=f,(X,s,) :

It’s very important that in this'modeled refationship, all the behaviors to this gate

I
=
_—"

have been explicitly determined ifall the fég_direc_l parameters are known, no matter as a
deterministic value, or as a set of Valu_es with-a'probability distribution.
For instance, this always holds true that: if vector X and s;, is known, such as

X=X,=[ 2 3 4] and s, =3.15, then

sue =/ (1 2 3 4] 3.15) (3-2)
d=f,1 2 3 4] 3.15)

It’s worth of noting that this claim about model never assumes the correctness of the
model. The only requirement is that the model itself is “well-defined”, that is, every
property derived by this model should be consistent. But even a pair of soand d is

computed in the model, it doesn’t mean the same value will be estimated in practical

15



usage. This must be remarkably claimed here that “models take all the responsibility
for its self-consistency and the consistency between the expected behavior and the
practical response.”

In this sense, everything based on a particular model is known if that model is
clearly given. In this work, the method to analyze the behavior is illustrated. A

widely-used first-order canonical model is adopted as an example.

3.2. Models and Cascading of Functions

Without loss of generality, it’s assuimed that'the model has already been given. For

the successive sections in this chapter, thé'§ignals are discussed as the slew-based model

a3

in section 3.1. Now we can describe the bélhaviors of-the design by the conjunction of
the functions. For example:
As Fig.3-4, following the relationship as Eq. 3-1 assumed in section 3.1, it can be

written:

S, = fs,]NVl(@Sl)

d, =fd,1NV1(@’S1)
S3 :fc,INVZ(@SZ)
dy = [y (X i s2)

(3-3)

Cascading those functions, i.e., replacing the intermediate responses, s, in this case,

with the respective function, it results in Eq. 3-4.

16



INV1 INV2
Sl Sz,dz S3;d3

Fig.3-4 Connected Gates

S; = fv,lNVl(@:Sl)

d, :fd,mVl(Xﬂasl) o

S = fomwe (@: S ()ﬂ: 51))
dy = fomve(Xpwar fo i (X p1:51))

(3-4)

Considering that all vectors X;nv could be concatenated as a new vector containing
all the variables required, the set of equations 3-4 could be re-written with this new

vector as:

Sp = fs,INVl (Xspec)

X[NVl |-
d2 = fd,]NVl (Xspec) A X ':“"_-:.' (3 5
1<% spec T INV2 | ',.E - )
Sy = S (Xspec) % [ R || :
1 |

ds = f1mr2(X )

It’s worth noting for this simplified symboiic representation that the cardinality of
the vector Xspec may not be equal to the sum of the cardinality of the vector Xnv1and
Xinvz plus one because there may be repeated variables and only one copy is kept in the
concatenated Xspec. And finally, the set of equations 3-5 can be written as:

S fs,INVl (Xspec)
dz fd,INVl (Xspec)
)

Y=| 2|=|lem
S3 j:v,INVZ (Xspec

d3 _fd,]NVZ (Xspec )_

= f(X,.) (3-6)

17



3.3. Models and Particular Property

Considering the case in Fig.3-4, if some property, such as the arrival time(AT) at
terminal of INV; is concerned, this property, could be calculated with:
ATy, =d, +d, (3-7)
The equation 3-7 could imply a particular sense if the equations 3-6 are taken into

consideration together, that is:

ATy, =d, +d,
=0-5,+1-d,+0-5,+1-d;
=0- fs,lNVl (Xspec) +1 fd,[NVl.(Xspec) T O f:s,INVZ (Xspec) +1. fz/,lNVZ (Xspec)

—

=o 1 0 1] F(x

(3-8)

spec )

"1

Although Eq. 3-8 is in the form of Iiné_’a_r cambination, not every property could be
written as a linear combination of the'set of the flinctions in Eq. 3-6. For example, one
might find that in order to improve the accuracy, there must be some cubic correction

term with respect to szas Eq. (3-9).

ATINVZ = O ’ f‘s,INVl (Xspec) +1. fd,INVl (Xspec) + a(fs,[NVZ (Xspec ))3 +1 fd,INVZ (Xspec) (3-9)
Or as another example, it’s found that the model require a correction term with
respect to s, and sz if both s, and s3 are larger than some threshold such as equation

3-10.

18



1,x>0

JH(x) = { (3-10)

e 1B L] FX,) H s, = 5,)H (ss —5,) >0
e 0,x<0

- [0 10 1]-7’(?1%),0therwise
As a consequence, it’s preferred to represent all the cases together with a function
representation. These function representation could be further re-arranged as a
composite function. For the cases of AT in above, it may then look like:
ATy, =g(f (X)) = g2 [(X,,..) (3-11)
The form of composite function gives a great insight the property AT is a function of
Xspec. Carefully recalling the reasoning abeut.equation 3-11, there’s almost no limitation
to the left-hand side of the equation 3411. That. is, for any property variable P which is
predictable in the model, the model shoUIc'J\Ifi_éQ_r.\_téin a special function g such that:
P=gof(X) NPy | (3-12)
The suffix “spec’ is omitted in eqﬁation 3-12-for visualized simplicity. The equation
3-12 could be extends by jointly listing several properties with each respective function
g such that:
P=g(f(X)=g° /(X) (3-13)
The equation 3-13 should be treated as a part of the requirement to the property
“well-defined” mentioned in section 3.1 when the properties of the design is taken as a

part of the model. And it must be reminded that the function g, and the composite

function are both not restricted to any type. That is, it may be very complex,

19



discontinuous, or even just a list of relations, while equation 3-13 still holds valid.

3.4. From deterministic model to statistical result

Without loss of generality, assuming that the models of the signal and each
functional element are given, every design is then a cascading of functional element
such as logic gates and connected with intermediate signals. Now we can describe any
behavior by the conjunction of the functions as section 3.2. Now it’s assumed here that
every design discussed in successive parts;of:this work is capable of evaluation through
Monte Carlo method. This sometimess achiev.ed by properly selecting a set of Xspec OF
applying principal component analysis 'td\'ff_f'jn_d_ a|new X’ spec Such that the variables are
mutually independent. With this property, aII functions ;:an be re-written as functions of
independent variables. As a consequénce, a.bigifunction system could be found with
respect to these independent variables. It’s better to make a remark that all previous
works requiring evaluation based on Monte Carlo method inevitably demands this
assumption. This provides a good reason for this work to hold the assumption.

Following the equations 3-6, it’s very straight-forward that whatever model it is, it
could be finally written in the form:

Y = f(X) (3-14)

And in section 3.3, we conclude that that for any property P in equation 3-12:

20



P=go f(X)
Since all Xs are mutually independent, this theorem holds:
Theorem 1:
If P=go f(X), where X=[x, - x| and each (x,,x,) pair is mutually

independent, then the distribution of property P, say p,(P):

p(P)= Y p-(X)= ¥ [pri(x,«))ffé[xl S (3-15)

go/(X)=P gof(X)=P\ i
Proof:

Since the summation counts events that ére mutually exclusive, by the addition
principle, the first equality mark:is trué."\'fbt_e.h since each x; is mutually independent,
according to the multiplication principle the secbnd eduality mark is true. As a result,
the theorem is true.

If in the theorem 1, starting from equation 3-13 rather than equation 3-12, we get
another similar theorem:

Theorem 2:
IfP=go f(X), where X=[x, - x| and each (x,,x,) pair is mutually

independent, then the joint distribution of property vector P, say p; (13) :

p,P= ¥ p.(X)= ¥ _[prxxi)]?f:[xl wox, ] (3-16)

gof (X)=P gof (X)=P\ i

21



Proof:

Similarly, the first equality holds for addition principle and multiplication principle
for the second one. And consequently, the theorem is true.

Now considering how the solution set is found. For simplicity, we take the case of
single property as example. For the constraint that {} ‘g ° ?()7) = P}, apparently,
go ?(}) = P is the only limitation for X to be satisfied.

Assume this property holds:

P=go [(X)=h(x,)+h(X) & '- (3-17),

Where X' = [0 I}{X}l_l]}. This'may pot,be true for all ‘cases. Especially the function

e
-

go f may be very complicated and no vgﬁiéble isiseparable. However, for usual cases
of artificial models, it’s not a rarefc.ase.to haye linear terms. If hy is properly selected, we
have its respective X; being selected without loss of generality. Rearranging equation
3-17, we get:
Iy (x,) = by (X') — P (3-18)
It’s assumed here that h; is invertible. This is not always true. However, if linear
term as mentioned above is selected as hy, this assumption holds. Then from equation
3-18, we get:

x, = b (h,(X) — P) (3-19)

22



In the equation 3-19, noted that every x; besides x; is free, the equation 3-15 in

theorem 1 then becomes:

400

poP)= | o [ pu (7Y~ PO (o, (5)ds) (3-20)

Xp=T0 X, =0

And in the case of property vector, it’s more complicated.

—_ - —

Starting from equation 3-13, it’s known that P = go f(X). Assume m properties are
considered, as equation 3-17, we may get:

A Iy, (xl) hy, (F)
P, . hzl(xz) N hy, (X"

F == [xm+1 ~y 'xn ]T (3-21)

P | ha(x)] |8, (X7

\ —
e

Similarly rearranging equation 3-21 ai_h_d assuming- that every h; is invertible, it
follows that:

X hl_ll (hlz ({l: ) - Pl)
X2 — hz_ll(hzz (X™) _Pz)

(3-22)
%] ik, (X")~B,)
With equation 3-22, the equation 3-16 becomes:
py(P)= [ - | TIp, O (X =) T (2, (x)d,) (3-23)

Xpyaq =—0 X, == i=1 i=m+1

Carefully reviewing the reasoning progress to derive the equation, it’s apparently

that the linear condition in equation 3-17 is not necessary. For successive reasoning to
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hold valid, the only condition it required is that it exist some relationship that some

variable, e.g. X, is separable such that there’s an invertible function h; where:

hy(x,) = H(X", P) (3-24)
For example, another possible operation is multiplication. If we have:

P=h(x) h(X) (3-25)

Then, similarly,

4, P

X = bt (=) (3-26)
hy (X)
And finally:
+00 +0 P e S~ )
- )l - Ydx, 3-27
P»(P) ) j_w j_mp)q(l MX,)))Q%_ST,) x,) (3-27)

i |

For the case of the property.vector, it becomes :

A hyy (x) - hyy ()L':)
P, _ By (x,) -y (X™)

(3-28)
Pl | hys(x,) b, (X7)
Rearranging with the inversion of hj;:
., P
It (— A=)
% i (X)
P
x ha (—2=)
K -1 Pm
ml e )
hmZ(X )

And finally the joint PDF is found:
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+00

- o m P n
_(P) = ht(——— Ndx. 3-30
p,Py= [ - [ [1p. (s (h,.z (X,,)»H(px,, (x,)dx;) (3-30)

Xppq=—0 X, =00 i=1l i=m+1

In the examples listed above, we conclude the two lemmas below.
Lemma 1:

IfP=go ?()7) , the probability distribution function of P would be in the form:

+00

peP)= [ = [ po RGP T(p, (x)a) (3-31)

Xjig=—0 X, =0 i=k+1

if and only if there is an onto function R from l:XZ} to fl where

P
z:[xl —ox ], 72=[xk+1 iy xn]T,aﬁd ¥<k<nkeN.
Proof: | = |
(if-part)

If there’s an onto function R as cléimed, by theorem 1, equation 3-31 is true..
(only if-part)

For equation 3-31 to hold true, R must be at least a function to be used as the
argument of the probability function. And then the only problem is the onto relation.
Considering the equation 3-31 which is a special case of equation 3-15, since theorem 1
relies on all cases enumeration to support the equality of equation 3-15, all possible Z

must be considered for equation 3-31 to hold true. Therefore, for each Z there is
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—_—

some [XZ} such that R(E,P):Z. If not, there is a special {ﬁ} such that
P

2

_

gOF([ﬁil) is undefined which is a contradiction to the well-defined property. By

2

—_—

definition, R is an onto function from {Xz} to X, .
P

Lemma 2:

—_ - —

Iff):gof(X), the joint probability distribution function of P would be in the

form:

P = [ = [ py R PIF (o, o)e8, (3-32)

if and only if there is an ‘onto rélation. R ‘from {{2} to fl where
vl P

z:[xl —ox ], yz):[xk+l o ,and 1<k <nkeN.

Proof:

(if-part)

If there’s an onto relation R as claimed, by theorem 2, equation 3-32 is true..

(only if-part)

For equation 3-31 to hold true, R must be at least a function to be used as the

argument of the probability function. And then the only problem is the onto relation.

Considering the equation 3-32 which is a special case of equation 3-16, since theorem 2
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relies on all cases enumeration to support the equality of equation 3-16, all possible Z

must be considered for equation 3-32 to hold true. Therefore, for each Z there is

—_—

some [{2} such that R(z,f’)=fl. If not, there is a special {ﬁ} such that
P 2

_

gOF([ﬁil) is undefined which is a contradiction to the well-defined property. By

2

definition, R is an onto function from {{2} to fl .
P

It’s obvious that the examples to separate.the variables by additive inverse or by

multiplicative inverse are both special€ases of abeve lemmas.
3.5. Examples and Simulation Results

In this section, some simple example.would-be given to give more illustration about
how to compute the distribution analytically.

Example 1: Given a gate model as Fig. 3-4, by given that:

AD=a X, +a,X, +a,X,

(3-33),
AS =B X, + B, X, + B X,

where the nominal value is ignored and only the difference variables are modeled.
Assuming that every X is mutually independent standard Gaussian random variable, i.e.
N(0, 1), calculate the joint distribution of the delta delay and delta slew at the output

terminal.
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— Gate —

Fig. 3-5 A single Gate

Sol:

From the system 3-33, we can write that:

{ADz[% a, aS][Xl X, Xs]T:[al «, as}[X Y X]T_|:AD:|
ASZ[ﬂl b, ﬁ3][X1 X, Xs]T B B P ' i ’

Its augmented matrix then is:

a, a, a;:AD
LB 5 B EAS} (3-34)

Without loss of generality, the reduceds€chelon form of 3-34 is:

a3, —a, s - ADS, — ASar, || ¢ _-;

Boos ~ Bt oti— Pty || (3-35)
o,y —a, B ASa, = ADJ, ' { "

Bra, — pa,  Bra, = Pt

From 3-35, it’s followed that:

ADB, —ASa, a3f, —a,p; X
X - - 3
L _| Ban—Pa, P —pia, (3-36)
X, ASa, —ADS,  ayf; — a5 X
3
By - B, pray - pa,

By Theorem 2, and from 3-36 the joint distribution is:
Papas (AD,AS) = [ po (X1) Py, (X,) Py, (Xo)dX, (3-37)
Replacing the X3, X, in Eq. 3-37 with 3-36, and introducing the probability distribution

function of the standard Gaussian random variable, the integration would then be:
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3
D (ASa,-ADg,)
i=1

1 a — Ba.)e N @hraps) H(@ps-af)’ Hap,-ah)’)
Pap,as (AD,AS) = 2— ('82 1= A 2)2 - - (3-38)
7 \/(a3ﬂ2 —a, )" + (s —as ) + (a8, —a, 3y)

We can validate this result by given random instances and comparing to the Monte
Carlo method. For example, one instance might be:

e _ T
{AD—[ 04326 0.1253 -1.1465|[X, X, X,] (3-39)

AS =[-1.1656 0.2877 1.1909][x, X, X,|
The Fig. 3-6 shows the result. The LHS figure is from the equation 3-38 and the RHS is
from the Monte Carlo method with two millien.samples. The upper figure illustrates the

respective joint distribution and the lower figurelis.the contour.

%

Example 2: Let everything invariant but-“g'jﬁ_iiﬁeﬁrﬂ't\l‘]e gate model as

Fig. 3-6 Simulation result of example 1
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AD=a X, +a,X, +a;X;+a,X, +a; X

(3-40)
AS = ﬁle +ﬁ2X2 +ﬁ3X3 +:B4X4 +ﬂ5X5

Repeat example 1.

Sol:

Similarly, from 3-40, calculating its reduced echelon form of its augmented matrix,

then it can be found:

ADp, - ASa, P, =Py afr—ay, B, a5, —a,fs X,
X, _| PP, || Bon-pa, P -pa,  pan-pa, X, | (3-41)
X, ASa, —ADp, By, — pas By - B, Psay - Pa X4
Ba, - Ba, by — pa, B —pa, po-pa, >

The symbolic result similar to Eq. 3-38 is very tedious, only the random instance

and its joint distribution would be listed

| \ |
(=l

| ==
BB

Fig. 3-7 Simulation result of example 2

30



AD = -0.5419X, —1.2991X, +1.0187X, —3.1138.X,, +0.9024 X,

3-42
AS =1.2769.X, —1.4422X, —0.1041X, —0.0600X, —0.7245X, (3-42)
Its joint probability is:
Danas (AD, AS) — 0.0514 x e—0.0372AD2+0.0107ADAS—0.1186AS2 (3_43)

Running the simulation with fifteen million Monte Carlo samples, Fig. 3-7 is found.

Example 3: As Fig. 3-8, now the two gates are concatenated.

— Gatel Gate2 —

Fig. 3-8 Concatenated Gates

By given that:

AD, =, X, +a,X, +a,X, _
ADZ = ﬂle +ﬂzXz "’ﬂsXs _ _ (3'44)
AAT = AD, + AD, : '

I
=
_—"

The delta AT is the variance affected by.thg-yéfiance sources. Letting every other
assumption the same as the first eXampIe, calculate the distribution of delta AT.
Sol:
From 3-44, it directly follows:
3 3
AAT zz(ai +4)X, = Zini
i=1 i=1
(3-45)

According to Theorem 1, we can find

AAT?

P(AT) = Ke 20i+rE+r) (3-46)

K is a scalar which could be resolved with the law of the total probability that:
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1 Y
p(AAT) = 2 2 2 e 2012 +75+73) (3-47)
\/271'(71 +7, +73)

. There’s another viewpoint from Eq. 3-45. Since every X is mutually independent

Gaussian, the delta AT is consequently another Gaussian, where:

3
Haar = 27,',“){,. =0
=

2 S 2 __2 S 2 (3-48)
O pur :z%‘ Oy, 227/1'
i=1 i=1
From 3-48, by the definition of normal distribution:
1 Y
P(AAT) = ——e 201 +x3478) - (3-49)
\/271'(71 +7, +73) !

The consistency of the Eq. 3-47-and Eg:3;49 is nothing-wonder.
Example 4: As the previous example'3, ho@ver, _the model is then given as:
AD, = a, X, + o, X, + a4, X, | |
ASl = ﬂle +ﬂ2X2 +/63X3 (3-50)
AD, =y, X, +7,X, + 7, X5 +7,AS,
AAT = AD, + AD,
Repeat example 3.
Sol:

Similarly, from 3-50:

3 3
AT =) (o, +7,+7.8)X, =D 7. X, (3-51)
i=1 i=1
Thus, from Theorem 1,
o omr?

P(AAT) = Ke 27+ (3-52)
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Determine K by the law of the total probability,

AAT?

1 N r2+12+r§
p(AAT) = ¢ M (3-53)
\/271'(2'1 +7, +75)

And similarly, it can be verified by direct computation with Gaussian random variables:

3
Haar = zruux, =0
=

3 3 (3-54)
2 2 __2 2
Opar = Zfi Oy, = zTi
i=1 i=1
The distribution from direct computation with Gaussian random variables is:
1 _ aar?
p(AAT) = o 21 g (3-55)
\/271'(2'12 +75+72) ]
Example 5: As Fig. 3-9, considering thegate with more-than single input.
s Gate [+ .
Fig: 3:9 A gate with two inputs
Given the model as:
AT =D, + max{AT,,AT,}
Sa
Dg =agX+cg{S :|+,UDg
b
AT, =a, X + 1,y (3-56)
AT, = o, X + gt 47,
Sa = ﬂaX + /USa
Sy =B, X + Hs,

The Dy is the gate delay. AT, is the arrival time of one input, and ATy, is another one.
The X is a vector representing the all possible X; as in previous examples. ¢ is the

mean value. Try calculating the distribution of AT.
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Sol:

From the system 3-56,

B.
AT:(ag +cg{ﬂ +aa)X+(,uDg + My FCys M, +cgsb,usb)
b

AT, = a, X + ymax{AT,, AT, } = AT,
AT, = o, X + iy,

B.
AT = (ag +Cg{ﬂ +ab)X+(,uDg + My F Cps M, +cgsh,ush)
b
AT, =, X + pi,; \max{AT,, AT,}= AT,

AT, = a, X + p,q,

In order to relate this system‘with translational mean value to the previous ones

centered at zero, rearrange the mean and redefine the'variable such as:

p—

V; _.T"q
AT'= AT — p g = (a, +cg{ a}‘%')iX 1

B, | .
AT, = AT, —pyy =a, X o0 UL max{AT,, AT} = 4T,
AT, = AT, = pt,;, = a, X ' :
p (3-57)
AT'= AT — iy, = (a, +c{ﬂ”}+ab)X
b
ATa' :ATa _/'lATa :aaX ’ma‘X{ATa’ATb}:ATb
AT, = AT, = pt,;, = a, X
Further, it can be simplified by define a difference variable:
Ad = AT, — AT, (3-58)

We can rewrite 3-57 with 3-58 as:

34



AT, = AT — p = (e, +c{?’}+aa)X
b

Ad'=Ad - (/uATa _/JAT,,) =(a, —a,)X

Ad'2 _(IUATH - ﬂATh)
(3-59)

,Ad'< _(IUATH - :uATh)

b

Ad'=Ad —(p g — pig) =(a, —a,)X

AT, = AT -, =(a, +c{?}+ab)X

System 3-59 suggests that AT’ has two different functions controlled by Ad"'. We can use
lemma 2 to calculate the joint distribution. And then by the condition of mutually

exclusive, by the additive principle:

) *(IIATH ~Hury, )
p(AT) = [p(AT,,Ad)dAd + [ p(AT,,Ad)dAd

_(/UATa —,UAT,,)
(3-60)

Validate Eq. 3-60 with random instances siseh-s;

a [ 1.7286 —0.2249 —57929 —-6.1382 1.5832 —10.3104 ]
a —-1.1533 1.3209 2.2992 7.53687 3.1228 1.4017
a, |=|-1.0996 7.6782 —4.8447 2:6592 —2.5813 -5.3724 |, (3-61)
B, 1.1005 -3.2224 1.6291 —-3.1907 3.4132 3.6074
B, ] | 1.6450 -2.3941 0.6852 -—-2.9263 -0.5577 0.8148 |

u, | [2.3608]
iy | 19679
ll’lATb = 00001 y
us | 103937
| Hs, | |1.4846 |
(3-62)
C, | [35797
|- (3-63)
| |1.2131
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Fig=3-10;Simulation.result of example 5

The simulation result is as Fig;3-10. In Flg 3-10, the upper subplot of LHS contains
both the distributions: from Eq. éléo-énd from Monte Carlo method. The lower subplot
of LHS illustrates the difference, betweenu+o. The RHS is the Q-Q plot which
identifies the regularity of the two distributions.

In the last example, it’s noted that we can separate the system in 3-59 to two types of
functions: one is to relate the properties to the parametric variables, and the other is to
relate the parametric variables to the variables controlling previous functions. It must be
noted clearly that although the generalized function form looks simple in our method,

its practical use might be tedious in the integration. Such as in the last example, the
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definition of property function may not be invariant. This not only affects the

integration where the joint distribution is extracted, but the final property distribution

would be affected as well when integration is used to find the marginal probability.
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Chapter 4

Discussion

The first question we would be intéré%éd In is the“validation of our method. The
examples in the section 3.5 provide some -c;onfidence. We shall compare those results
with Monte Carlo especially changing the numbers of the samples. Four sets of subplots
are listed in Fig. 4-1. Two of them are the same as what has been shown in section 3.5.
The others are based on Monte Carlo with half million and one-tenth million samples
respectively.

Similar listing would be found in Fig. 4-2, where originally fifteen million samples
are used. The comparative simulations are based on five million and one million

samples. An obvious trend is that the required samples significantly increasing with the
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(c) MC with 500,000 pts (d) MC with 100,000 pts

Fig. 4-1 More simulation results of example 1
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(a) Proposed Methhd'ﬁﬁ:-—\ . (B)"MC with 15,000,000 pts

(c) MC with 1,000,000 pts (d) MC with 5,000,000 pts

Fig. 4-2 More simulations of example 2
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Fig. 4-3 More simulations of example 5
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number of the variance variables taken into consideration.

Fig. 4-3 is the result of the example 5 originally with thirty million samples. And the
comparative case uses one million samples. It’s very important to find that for the
Monte Carlo method, the improvement rate with the increasing samples might be much
worse than linear.

From our method, we can look back to the path-based and block-based SSTA. For
the path-based SSTA, it’s not hard to find similar track within the example 2. Similar to
example 2, all paths could be enumgrated in aur method. But it’s very important that the

path-based would take all paths-into consideration. As Fig. 4-4 we give an example.

p—

i -
]
i |

X]_ '.N(qul’o-fl) 1

AFp=Max{S, + X, + AT, S, + X, + AT}

S =X;+X, 7 .
AT, = X, . o | Xq Nw,,.02) —
> . 2
N, ,
XoN(t,,.0%,) pi "N
S, = X, S, = Max{S, + X,, S, + X,}
AT, = X, AT, = Max{S, + Xy + AT, S, + X, + AT}

Fig. 4-4 A netlist for example

If only the red paths are taken, comparing the result to the result with all paths, from

Monte Carlo method, we get Fig. 4-5.

It’s important to know the trend that the tail of the distribution would not be caught.

This observation could be found with theorem 1 and theorem 2 since the probability

based on the additive parts in the proof might be partially truncated if not all paths are
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Fig. 4-5 Q-Q Plot for all paths MC v.s..M.C. with critical paths

taken into consideration. It may suggest a weiéhted summation or weighted average is
required as a correction based on the eff'eC\t}j;_,f'.]‘_r_c_)m the non-critical paths.

As for the block-based SSTA; from ek;mple 7 wé know that the function would
split because the nonlinear max opefation makes the function translation diverge. This
would be far more complicated if the mapping function take more physical effects into
consideration. Traditional block-based SSTA doesn’t elegantly solve this problem and
leave it a main error source as claimed in [14]. The curve-fitting method in [14] in some
sense is the effort finding a mean function p(ﬁ, Ad) instead of the p(AT,,Ad) and
p(AT,,Ad) in Eq. 3-60. The continuous result may suggest the existence of this mean

function. However, it’s out of the scope of our current work.
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Chapter 5

Conclusion

Statistical analysis is a growing topifé' in| recent 1C industry. In this work, an
analytical analysis is provided to- give an;)ther yiewpoint of the statistical analysis.
Examples in SSTA are given to illustrate how" this method is applied, and random
instances are given as validation. By the theorems and lemma given in this work, we
provide the sufficient and necessity condition of the mathematical exactness. The might
engineering tractability is the goal of our future work. And finally it’s expected to be a

much more powerful statistical analysis framework with this method.
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