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中文摘要 

 

動態對比增強磁共振影像(DCE-MRI)為一應用快速 MRI 掃瞄序列觀測身體內

注射的對比劑進入血液中微灌流(perfusion)的情形。此應用對於觀察服用抗血管新

增藥物病患的治療與評估有很顯著的成果。而對比劑進入人體血液循環系統到達

腫瘤部位到代謝出來的行為模式往往可由不同的數學模型來描述。 

目前有相當多的應用在於藉由量測這些數學模型的參數進而推得對比劑在循

環系統或腫瘤組織附近的流動情形。由這些流動的難易程度亦可以非侵入方式估

測腫瘤特性。 

本研究的病人以肺癌病患為主，並施以 Avastin 抗癌藥物作為抗血管新增治療

藥物。希望可以透過動態對比增強磁共振影像(DCE-MRI)的特性，早期預測並評估

此抗癌藥物的化療效果。而本研究所採用的分析軟體 Mistar 可供我們選擇不同的

數學模型來進一步評估治療的效果。 

不過此軟體受限於本身功能的限制，對於肺部切面影像在掃瞄中的呼吸等自

然位移與誤差未能進一步調整與修正。故本研究除了獲取動態對比增強磁共振影

像(DCE-MRI)的數學模型參數外，更進一步提出影像前處理的方式來修正因為移動

所造成的誤差影像。經過動態比對，修正後的影像有很明顯的改進。 

除了影像位移的改進，另外我們也發現透過對於位移的校正，對這些動態對

比增強磁共振影像(DCE-MRI)的數學模型參數之分佈曲線有很顯著且明顯的影響。 

因此位移效應之修正對於影像品質和參數之數值分佈有很重要的影響，我們希望

這些影響對於此抗癌藥物的化療效果有指標性的評估作用。 

 

 

 

 

 

 

關鍵詞：動態動比增強磁共振影像、藥物動力學數學模型、影像處理、位移校正。 

 



 

 iii

Abstract 
 

Dynamic-contrast-enhanced MRI (DCE-MRI) is the usage of fast pulse sequence 

MRI for monitoring the perfusion of contrast materials in the blood stream. This 

application is useful in evaluating patients taking angiogenesis inhibitors. The behavior 

of the contrast material in the blood stream can then be modeled using a variety of 

different mathematical models. 

 Currently, by measuring select data and employing the different mathematical 

models, it is possible to estimate the flow characteristics of the contrast materials in the 

blood stream as well as around the tumor.  Subsequently, by using the different flow 

characteristics, it is possible to evaluate the tumor in a non-invasive way. 

 The patients in this study were lung cancer patients, and had been given Avastin.  

By employing DCE-MRI, it may be possible to predict and evaluate the effect of the 

chemotherapy early in the treatment course. This study employs Mistar, which is the 

software that provides the multitude of mathematical models for the evaluation 

treatment response. 

Due to limitations of the software, however, inconsistencies resulting from image 

translation between tomography slices—due to spontaneous movements such as 

breathing—cannot be adjusted or corrected. Therefore, besides acquiring the DCE-MRI 

data for mathematical models, this study further employs image pre-processing for the 

correction of imaging errors due to subject movement. After dynamic comparison and 

correction, the image is vastly improved. 

Besides improvements in image quality, translational correction also drastically 

improves the data used in the mathematical models. The usage of translational 

correction, therefore, greatly affects the final image quality, as well as the statistical 
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distribution of the data being measured.  We hope these changes will have a landmark 

impact on the final evaluation of the effectiveness of the angiogenesis inhibitors as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords：Dynamic Contrast Enhancement Magnetic Resonance Imaging, Tofts Model, 
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Chapter 1  Introduction 

 

1.1   Dynamic Contrast-Enhanced Magnetic Resonance Imaging   

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a kind of 

MR images modality which over a period of time after the injection of contrast agent 

into vein. It’s about computer-enhanced modality that relies on a special algorithm and 

mathematic model to estimate blood flow. 

The DCE-MRI technique is based on the continuous acquisition of 2D or 3D MR 

images during the distribution of an paramagnetic contrast agent bolus. The contrast 

agent is a gadolinium-(Gd) based which is able to enter the extravascular extracellular 

space (EES) via the capillary bed. The pharmacokinetics of Gd distribution are modeled 

by a 2- or multi-compartment model and has been shown to be a useful predictor of the 

biological response of angiogenesis [1]. Many different methods for image acquisition 

and data analysis have been described for use in DCE-MRI. The analysis models are 

designed to derive the optimal relevant components from the dynamic MR signal 

changes and to relate these to the underlying physiological processes which are taking 

place in the tissue. 

In particular, the dynamic contrast enhanced MRI combined with physiological 

model-based analysis has been widely used in the study of tumor angiogenesis and in 
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the development and trial of anti-angiogenesis drugs. The derivation of physiological 

data from dynamic contrast MRI relies on the application of appropriate 

pharmacokinetic models to describe the distribution of contrast media following its 

systemic administration [2]. 
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1.2 Tumor Angiogenesis 

Angiogenesis is a physiological process involving the growth of new blood vessels 

from pre-existing vessels. It’s a normal process in growth and development, as well as 

in wound healing. However, this is also a fundamental step in the transition of tumors 

from a dormant state to a malignant state. 

 

 

                     Fig 1.1 The phenomenon about tumor angiogenesis [3] 

Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates 

into cancerous growths (Fig 1.1), supplying nutrients and oxygen and removing waste 

products. Tumor angiogenesis actually starts with cancerous tumor cells releasing 



 

 4

molecules that send signals to surrounding normal host tissue. This signaling activates 

certain genes in the host tissue that, in turn, make proteins to encourage growth of new 

blood vessels [3]. The development of new blood vessels, is required for tumors to grow 

larger than 2-3 mm in size, and provided both nutrients and access to the systemic 

circulation with possible subsequent metastasis. This angiogenic process is mediated by 

several potent peptides, which include fibroblast growth factors and vascular endothelial 

growth factors [4]. 

Due to the characteristic in tumor angiogenesis, we can use the protocol of dynamic 

magnetic resonance imaging to measuring the tumor response indirectly. 
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1.3 Theory in DCE-MRI 

Dynamic contrast-enhanced MRI is a method of physiological imaging, based on 

fast or ultra-fast imaging, with the possibility of following the early enhancement 

kinetics of a water-soluble contrast agent after intravenous bolus injection. This 

technique provides clinically useful information, by depicting tissue perfusion, capillary 

permeability, and composition of the interstitial space.  The most important advantages 

of this technique are its abilities to monitor response to preoperative chemotherapy, 

identify areas of viable tumor before biopsy, and provide physiological information for 

improved tissue characterization and detection recurrent tumor tissue after therapy [5]. 

The extracellular distribution of fluid MR contrast agents is among blood plasma 

and the interstitial spaces. When a contrast agent is administered intravenously by a 

rapid bolus injection, it is first diluted in the blood of the peripheral vein and the right 

heart, before it passes through the lungs and the left heart into the peripheral circulation 

(Fig. 1.2a).  

During first pass of the contrast agent through the capillaries, a fast diffusion occurs 

into the tissue, due to the high concentration gradient between the intravascular and the 

interstitial space: in normal tissues, approximately 50% of the circulating contrast agent 

diffuses from the blood into the extravascular compartment during the first pass.  
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Fig 1.2 (a) Signal intensity curve before bolus injection. (b) Contrast agent is diffusion to the interstitial 

space. (c) After the first pass of the bolus, the SI increases further until the concentration of the contrast 

agent in the blood and the interstitial space of the tissue are equal. (d) After this equilibrium phase, the 

contrast medium is progressively washed out from the interstitial space as the arterial concentration 

decreases. [5] 

This first-pass diffusion is essentially different from that during the second pass and 

later. At this initial moment, there is no contrast agent in the interstitial space, and the 

agent has its highest possible plasma concentration, because it is diluted in only a very 

small part of the total plasma volume, namely that volume that enters into the right side 

of the heart at the same time as the bolus (Fig. 1.2b).After the first pass, the diffusion 

rate immediately drops, because the concentration of the re-circulating contrast medium 

has decreased owing to further dilution in the blood and partial accumulation in the 
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interstitial space throughout the body. The length of the time interval between the end of 

the first pass and the equilibrium state, with equal concentrations of contrast medium in 

plasma and interstitial space, depends on the size of the interstitial space (Fig. 1.2c). 

After this equilibrium phase, the contrast medium is progressively washed out from the 

interstitial space as the arterial concentration decreases (Fig. 1.2d).  

Only in highly vascular lesions with a small interstitial space does early washout 

occur within the first minutes after bolus injection. The aim of dynamic contrast 

enhance MRI is detect and depict differences in early intravascular and interstitial 

distribution as this process is influenced by pathological changes in tissues [5]. 

Numerous studies using dynamic contrast enhanced MRI have demonstrated that 

malignant tumors generally show faster and higher levels of enhancement than is seen 

in normal tissue. This enhancement characteristic reflects the features of the tumor 

microvasculature which in general will tend to demonstrate increased proportional 

vascular and higher endothelial permeability to the contrast molecule than do normal or 

less aggressive malignant tissues. 

Cancer can develop in any tissue of the body that contains cells capable of division. 

The earliest detectable malignant lesions, referred to as cancer are often a few milli- 

meter or less in diameter and at an early stage.  In  vascular  tumors cellular nutrition 

depends on diffusion of nutrients and waste materials and places a severe limitation on 



 

 8

the size that such a tumor can achieve. 

Conversion of a dormant tumor to a more rapidly growing invasive neoplasm, may 

take several years and is associated with visualization of the tumor. The development of 

neovascularization within a tumor results from a process known as angiogenesis.  

These angiogenically competent cells have the ability to induce neovascularization 

through the release of angiogenic factors. There are positive and negative regulators of 

angiogenesis. Release of a promoter substance stimulates the endothelial cells of the 

existing vasculature close to the neoplasia to initiate the formation of solid endothelial 

sprouts that grow toward the solid tumor [2]. 

The following figure (Fig 1.3) illustrate the concept from tumor cell angiogenesis to 

the MRI signal intensity curve during the process of inject contrast agent. (a) Growth of 

a malignant tumor depends on its ability to stimulate neighboring vasculature to initiate 

formation of new blood vessels that can grow into the tumor and supply it with oxygen 

and nutrients. Angiogenesis starts with cancerous tumor cells releasing molecules, 

angiogenic promoter substances that send signals to surrounding normal host tissue. 

These signals activate certain genes in the host tissue that, in turn, make proteins to 

encourage growth of new vessels. A new blood capillary can form by sprouting of 

endothelial cells from the wall of an existing small vessel. The cells at first form a solid 

sprout, which then hollows out to form a tube. This process continues until the sprout 



 

 9

encounters another vessel, with which it connects, allowing blood to circulate. 

(b) The resolution of an MR image is determined by the field of view (FOV) and the 

matrix size. The pixel size and the thickness of the image slice give the volume of the 

voxel shown in the figure. One voxel contains many different cells even when using the 

smallest FOV and the largest matrix size possible. This means that the MR signal 

obtained from one voxel is the average of the proportion of tissue covered by the voxel. 

(c) The zoomed region shows a cross section through a blood vessel and the 

surrounding extravascular tissue consisting of tumor cells, extracellular components and 

normal cells. The vessel wall is mainly made up of endothelial cells. The small grey 

circles indicate contrast agent molecules. The contrast agent is administered as a single 

intravenous bolus injection at point 2. The contrast agent leaks into the extravascular- 

extracellular space (EES), also called the leakage space (line 2 to line 3). How fast the 

contrast agent extravasates is determined by the permeability of the microvessels, their 

surface area, and the blood flow.  

At first the contrast agent accumulates in the extravascular tissue before it diffuses 

back into the vasculature from which it is excreted. It usually by the kidneys, although 

some contrast media have significant hepatic excretion (line 3 to line 4). In an MR 

image the accumulation and wash-out of contrast agent is observed as changes in the 

MR signal intensity which is proportional to the concentration of contrast media.    
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Fig 1.3 Angiogenesis starts with cancerous tumour cells releasing molecules, angiogenic 

promoter substances that send signals to surrounding normal host tissue. The small gray circles 

indicate contrast agent molecules. The contrast agent is administered as a single intravenous 

bolus injection at point 2. The contrast agent leaks into the extravascular-extracellular space 

(EES), also called the leakage space, through VVOs and widened interendothelial junctions (line 

2 to line 3). At first the contrast agent accumulates in the extravascular tissue before it diffuses 

back into the vasculature from which it is excreted (line 3 to line 4). In an MR image the 

accumulation and wash-out of contrast agent is observed as changes in the MR signal intensity 

which is proportional to the concentration of contrast media. The time- intensity curve to the left 

in the fi gure shows the intensity of the MR signal from the zoomed region before (line 1 to line2) 

and after injection of contrast agent (line 2 to line 4). [2] 
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The time-intensity curve to the left in the figure shows the intensity of the MR 

signal from the zoomed region before (line 1 to 2) and after injection of contrast agent 

(line 2 to line 4) 

The mechanisms underlying the signal enhancement patterns seen on dynamic MRI 

include variations in regional blood flow, proportional blood vessel density, 

vascularization of existing blood vessels and variations in the surface area permeability 

of the endothelial membranes as well as the concentration difference which exists 

between plasma and the EES [2]. 

In many tumor types including breast, lung, prostate, and head and neck cancer, 

measurements of microvascular density made on histopathological samples correlate 

closely with clinical stage and act as an independent prognostic factor of considerable 

sensitivity. The rationale for this relationship appears to be that rapid tumor growth can 

be supported only in the presence of highly active angiogenesis and more aggressive 

tumor are therefore associated with increased evidence of angiogenesis-related 

microvasculature abnormalities. On the basis of this histopathological evidence it has 

been suggested that dynamic contrast enhanced MRI may also be able to provide 

independent indices of angiogenic activity and therefore act as a prognostic indicator in 

a broad range of tumour types [2]. 
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1.4 Pharmacokinetic Model 

When we want to attempt to quantify the observed contrast agent kinetics in terms 

of physiologically meaningful parameters we first need to define the elements of the 

tumor or tissue structure and the functional processes that affect the distribution of the 

tracer (the contrast agent). It is customary to represent tissue as comprising three or four 

compartments, each of which is a bulk tissue characteristic (we are unable to observe 

these compartments at their natural microscopic scale, but we can observe their 

aggregate effects at the image voxel scale or in a region of interest).  

These compartments are the vascular plasma space, the extracellular extravascular 

space (EES), and the intracellular space (Fig. 1.4).  

 

 

Fig 1.4  Three compartments in tracer kinetic model. [2] 
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All clinically utilized MRI contrast agents, and most experimental agents, are not 

pass into the intracellular space of the tissue due to their size, inertness, and non- 

lipophilicity, making the intracellular space un-probable using DCE-MRI; for this 

reason, the intracellular and other volumes are usually lumped together as a loosely 

defined intracellular space. According to fig 1.4 we can get the relationship between 

these compartments: 

        1e p iV V V+ + =                           (1.1) 

                             (1 )pV Hct bV= −                          (

where

1.2) 

 Ve is the fractional EES, Vp is the fraction occupied by blood plasma, Vi is the 

hanisms, that influence contrast agent 

dist

sses that accompany the faster growth rate of 

man

fraction occupied by the intracellular space, Vb is the fraction occupied by whole blood, 

and Hct is the haematocrit (typically about 0.4). 

The functional parameters, or delivery mec

ribution in the intravascular space and the EES are usually assumed to be restricted 

to blood flow F and the endothelial permeability surface area product PS, which 

describe how leaky a capillary wall is. 

There are two physiological proce

y tumors: an increased number of vessels and along with an increased permeability. 

Therefore, one could expect an increased overall signal enhancement in the vicinity of 

tumors due to increasing vascular volume, vessel permeability, and increased flow. 



 

 14

ould 

des

ed semi quantitatively using parameters 

der

models were developed from Nuclear Medicine quantitative 

studi

.4.1 General Kinetic Model 

el (GKM) is one approach to understanding the complex 

In the simplest model of tissue signal enhancement characteristics one c

cribe 3 parameters: maximum signal enhancement, the rate at which this initial 

enhancement occurs“wash-in”,  and the rate at which this increased signal decays 

“wash-out”. However, it is important to consider this contrast dynamic with respect to 

the concentration of contrast agent in the vascular system as it perfusion the tissues. In 

simple graphical wash-in wash-out, it is assumed that the contrast agent immediately 

reaches equilibrium in the vascular system [6]. 

The data obtained with DCE-MRI is report

ived from pharmacokinetic models. Quantitative techniques that are often combined 

with rapid temporal sampling have been used together with simple pharmacokinetic 

models of tissues, obtaining parameters such as the transfer constant (Ktrans), the rate 

constant (kep), and ve.  

Most MRI kinetic 

es but the limitations of MRI dictated specific modifications. A number of these 

MRI models are in current use, the primarily differentiated based on the way that they 

model the “arterial input function” (AIF). 

 

1

The General Kinetic Mod
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kinetics of contrast enhancement. The physiological processes of GKM are described in 

Figure 1.5, where the GKM simplifies the anatomy of the tumor into two functional 

components, the vascular space and the EES and one non-functional component, the 

intracellular space.  

 

Vascular Space Vascular 
input function Cp(t)

Extra-vascular extra-
cellular space (EES)

Ct(t)Ktrans Kep

Extra-vascular extra-
cellular space (EES)

Ct(t)

Vascular Space Vascular 
input function Cp(t) Ktrans Kep

 

Fig 1.5 Illustration of General Kinetic Model [6] 

A contrast agent, spec  weight agent which 

rem

ifically a highly diffusible low molecular

ains extracellular, when introduced into the vascular space will leak into the EES at 

a characteristic rate and then will leak back into the vessel at another rate. Thus the net 

change in concentration in the tumor can be described as: 

transt
p ep t

dC K C k C
dt

= −                       (1.3) 

where Ktrans is a factor related to “wash in” and kep is a factor related to “wash-out” and 

the relationship between these parameters was the volume of extravascular-extracellular 

space ve. Furthermore, we can numerically evaluate these parameters for a variable 

concentration input function. This expression is mathematically described as a 

convolution integral. 
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                            (1.4) 

 relationship of the rat  

at any g

 

.4.2 Patlak Model 

h to determining vessel permeability from time concentration 

cur

                  ( ) [ ( ) ]epk ttrans
t pC t K C t e= ⊗

This equation gives the e of change in tumor concentration

iven time after contrast administration to the plasma and tumor concentration at 

that time. A numerical solution for the GKM (Ktrans and kep) can be obtained by a

nonlinear fitting algorithm for this expression. Subsequent models are based on this 

general model, but use various assumptions to work around the convolution integral. 

 

1

Another approac

ves was proposed by Patlak [7]. It uses a graphical method to estimate permeability 

surfaces and fractional vascular space based on the slope and intercept of a derived line. 

Figure 1.6 describes the physiological processes of the Patlak model in a block format. 

 

Vascular Space Vascular 
input function Cp(t)

Extra-vascular extra-
cellular space (EES)

Ct(t)Ktrans

Vascular Space Vascular 
input function Cp(t)

Extra-vascular extra-
cellular space (EES)

Ct(t)Ktrans

 

Fig 1.6 Illustration of Patlak Model [7] 

In this method, flow from the tissue space to the vascular space is assumed 

negligible and flow is assumed to be unidirectional. In this model, the contrast agent in 
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( ) ( )
ttrans

p p pK C d v C tτ τ∫                 (1.5) 

wher lasma volume. The term is sim e. 

the tumor can be expressed as: 

                ( )tC t = +
0

e vp is the fractional p ilar in concept to the term v

Dividing both sides of the equation by Cp(t) yields: 

0
( )

t

ptranst
C dC K v

τ τ
= +∫  

p
p pC C

                    (1.6) 

The Patlak approach utilizes a simpler approach than the standard pharm

mod

.4.3 Brix Model 

 is also a two compartment model in which the arterial input curve is 

assume  

acokinetic 

el. A major advantage of the Patlak model is based in its incorporation of AIF. 

However one limiting assumption of this model is that the contrast agent flows only into 

the tissue of interest. If the slope of the “Patlak” graph is not linear, then the assumption 

of no back flow is violated and the parameters generated would no longer be valid. 

 

1

Brix model

d to be the result of a prolonged constant infusion that takes the shape of square

wave (i.e. the contrast agent instantly reaches a plateau, remains constant for awhile and 

then instantly is over) which mixes in the vascular space and is slowly eliminated by 

renal excretion [8]. The input function is of magnitude Kin, the elimination constant is 

kel, and the rate constants describing the transfer of contrast agent from plasma to the 

tumor space and back are k12 and k21. 
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Central Compartment

Peripheral Compartment

Kin Kel

K21K12

Central Compartment

Peripheral Compartment

Kin Kel

K21K12

 

Fig 1.7 Illustration of Brix Model. [8] 

The mathematical express t) / S0 is obtained: ion of the temporal response of SCM (

           { }21 21( ') ( ) ( ') ( )( ) 1 1 1el elk t k t k t k tCMS t A v e e u e e
S

⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦⎣ ⎦        (1.7
0

) 

W is the time–independent Gd-DTPA enhanced M s a 

fitti

here SCM (t) RI signals, A i

ng parameter depending on the properties of the tissue of the sequence used, and of 

the infusion rate (Kin). Brix put forth a mathematical description that incorporated a 

term that allowed the adjustment of an AIF parameter. 
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.5 Tofts Model 

es a different approach to the arterial input function (AIF), but 

reta

by diffusion transfer of contrast material between the 

vas

del to establish the time 

cou

 to model the concentration of tracer with time. It 

con

 

1

Tofts model tak

ins the fundamental assumptions of the GKM (General Kinetic Model) [9],[10]. In 

the Tofts model, the input function is assumed to be the result of a pulse bolus injected 

into a two compartment system.  

The arterial input is modified 

cular space and body extravascular space; this system of compartments modifies the 

pulse bolus into a biexponential arterial input function [11].  

This model consists of two parts: a compartmental mo

rse of the contrast agent (Gd-DTPA) tracer concentration in the tissue; and relate to 

observed MRI signal enhancement. 

A compartmental model is used

sists of a plasma volume, connected to a large extracellular space which is 

distributed throughout most of the body (e.g., muscle). The kidneys drain tracer from 

the plasma, and hence from the extracellular space. We have modified this model by 

adding a fourth compartment, the lesion, which is connected to the plasma through a 

leaky membrane (Fig 1.8).  
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Fig 1.8 Illustration of Tofts Model. 

Most methods of analyzin T1-weighted data have used 

a co

Three Standard Kinetic Parameters 

 

 

 

 

 

Lesion 
Extravascular 
Extracellular 
Space  ( Ve ) Kidneys 

Whole body 
Extracellular 

space 

Contrast 
Injection 

Plasma 
Compartment 

Ktrans

Kep

 

g dynamic contrast-enhanced 

mpartmental analysis to obtain some combination of the three principle parameters: 

the transfer constant (Ktrans), the extravascular extracellular space (EES) fractional 

volume (ve), and the rate constant (kep). 

 

Symbol Preferred s name hort name Full 

Ktrans Volume transfer constant between blood plasma 
and EES 

Transfer Constant 

kep Rate Constant Rate constant between EES and blood plasma 

ve r EES Volume of extravascular extracellular space pe
unit volume of tissue 

 
tandard Kinetic ParamTable 1.1 Three S eters. 
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Most methods of analyzing dynamic contrast-enhanced T1-weighted data have used 

a co

                 

mpartmental analysis to obtain some combination of the three principle parameters: 

the transfer constant (Ktrans), the extravascular extracellular space (EES) fractional 

volume(ve), and the rate constant (kep). The transferconstant and the EES relate to the 

fundamental physiology, whereas the rate constant is the ratio of the transfer constant to 

the EES [10]: 

            
trans

ep
e

KK
v

=                           (1.8) 

rom the sh  

data

h permeability, transfer constant is equal to the blood plasma flow per unit 

vol

The rate constant can be derived f ape of the tracer concentration vs time

, whereas the transfer constant and EES require access to absolute values of tracer 

concentration. The transfer constant Ktrans has several physiologic interpretations, 

depending on the balance between capillary permeability and blood flow in the tissue of 

interest. 

In hig

ume of tissue: 

(1 )transK F Hcρ= − t                   (1.9) 

Where F are Perfusion (or flow) of whole blood per unit mass o  

the 

racer flux is permeability 

(PS >> F)

f tissue, ρ means

density of tissue, Hct represent for Hematocrit, P means total permeability of 

capillary wall, S means surface area per unit mass of tissue.  

In the other limiting case of low permeability, where t
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limited, the transfer constant is equal to the permeability surface area product between 

blood plasma and the EES, per unit volume of tissue [12]: 

transK PSρ=            ( )PS F<<            (1.10) 

Tracer flows passively from the blood pl eable capillary into the EES, 

thro

ate constant kep is formally the flux rate constant between the EES and blood 

plas

low-Limited Model (High Permeability) 

con

d by setting the venous 

asma in a perm

ugh microscopic pores or defects in the capillary walls. It also called the interstitial 

space.  

The r

ma. It’s always greater than the transfer constant Ktrans. For a range of typical EES 

fractional volumes seen in tumors and multiple sclerosis (ve = 20% ~ 50%), kep is two to 

five times higher than Ktrans [10]. 

 

F

Its first assumption is that arterial and venous blood have well-defined 

centrations, supplying and draining the tissue under study. Second, because 

permeability is high, venous blood leaves the tissue with a tracer concentration that is at 

all times in equilibrium with the tissue. Thus, soon after injection of the tracer, the 

arterial concentration is high, the venous concentration is low, and most of the tracer is 

being removed from the blood as it passes through the tissue. 

For an extracellular tracer, the model can be extende
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concentration equal to that of the EES. The effect of intravascular tracer on the MR 

signal can be ignored (ie, the vascular signal is small compared with the tissue signal). 

In this case the following differential equation relating tissue concentration Ct to arterial 

plasma concentration Cp can be obtained: 

                     (1tdC F
dt

ρ= − )( )t
P

e

CHct C
v

−                   (1.11) 

 

S-Limited Model (Low Permeability) 

 considered as a single pool, with equal 

arte

bility surface area product of the 

cap

        

P

If flow is high, the blood plasma can be

rial and venous concentrations. The transport of tracer out of the vasculature is slow 

enough not to deplete the intravascular concentration.  

The rate of uptake is then determined by the permea

illary wall and the difference between the blood plasma concentration and the EES 

concentration. If the contribution of tracer in the intravascular space is ignored, the 

transport equation is 

               ( )t t
P

e

dC CPS C
dt v

ρ= −                     (1.12) 
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.6 Application in DCE-MRI 

netic resonance imaging (DCE-MRI) is being used 

in 

 be used as a biomarker, the method for quantifying the assay has 

to 

n illustration of parametric analysis of DCE-MRI images using an 

emp

ng SER at each 

pix

g antiangiogenic 

trea

1

Dynamic contrast-enhanced mag

oncology as a noninvasive method for measuring properties of the tumor 

microvasculature.  

For DCE-MRI to

be defined. There are several goals to be weighed in optimizing the biomarker 

definition. The biomarker needs to (1) maximize the sensitivity to biologic changes 

caused by treatment; (2) capture tumor heterogeneity, which is an important as a 

biomarker [13]. 

Fig 1.9 is a

irical parameter, the SER, for a patient with locally-advanced breast cancer treated 

with doxorubicin-cyclophosphamide (AC) chemotherapy. MRI was performed before 

chemotherapy, 2 weeks after the first cycle of chemotherapy, and at the end of AC 

treatment, before surgery, using a three–time point DCE-MRI method.  

Pharmacokinetic properties of the tumor were quantified by computi

el, defined as SER＝(S1-S0)/(S2-S0), where S0, S1 and S2 are the pre-contrast 

(baseline), early post-contrast and late post-contrast signal intensities. 

DCE-MRI is a promising biomarker candidate for assessin

tment. Correlative studies performed in combination with therapeutic trials have 
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demonstrated proof of concept for DCEMRI as a biomarker; however they have not 

been powered to adequately evaluate biomarker performance [13]. 

 

 
Fig 1.9 Contrast-enhanced magnetic resonance images (top row) and signal enhancement ratio (SER) 

parametric maps (bottom row), acquired before treatment (A), 2 weeks after the first cycle o

onstrates a single slice imaging technique. The image acquisition 

is p

f 

doxorubicin-cyclophosphamide (B), and at the end of chemotherapy, before surgery (C), for a patient with 

locally advanced breast cancer. Blue, green, and red color coding corresponds to low, moderate, and high 

values, respectively. [13] 

Another paper dem

erformed in less than 500 ms making it relatively insensitive to respiratory motion. 

Data from phantom studies and a reproducibility study in solid human tumor. The 

reproducibility study showed a coefficient of variation (CoV) of 19.1% for Ktrans and 

15.8% for the initial area under the contrast enhancement curve (IAUC). This was 
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or two commonly used parameters, Ktrans and IAUC 

(60

improved to 16 and 13.9% if tumor of diameter less than 3 cm were excluded. The 

individual repeatability was 30.6% for Ktrans and 26.5% for IAUC for tumor which are 

greater than 3 cm diameter [14]. 

The individual patient data f

), calculated from R1 values, are given in Table 1.2. Although no correlation was 

seen between T2 signal intensity and enhancement parameters, the second case in Table 

1.2 had very high T2 compared with the other cases, consistent with a cystic nature of 

the metastasis. Guidelines from a recent US national cancer institute workshop on 

DCE–MRI state that tumors in a fixed superficial location should be at least 2 cm in 

diameter and other tumors should be at 3 cm in diameter. This study shows a tendency 

for greater variability with reducing size, and excluding lesions less that 3 cm in 

diameter reduced CoV. 

 

 
Table 1.2 Individual patient data showing tumour size, mean difference, coefficient of variation (CoV)  

and repeatability for Ktrans and IAUC(60) for two scans.[14] 
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 and repeatability values 

(Ktra

benefits and show 

equ

g patients undergoing 

neo

al woman with a 

The colorectal liver metastases group also had lower CoV

ns 14.2 % and 26.5% and IAUC(60) 11 % and 21.3%, respectively), although this 

may be related to the fact that this group had relatively larger tumor. 

Another approach explore the randomized trials confirm these 

ivalent survival for adjuvant and neo-adjuvant chemotherapy in patients with 

primary operable breast cancer [16-17]. A further benefit of neo-adjuvant chemotherapy 

is the opportunity to assess the chemo-responsiveness of the tumor. The overall 

response rates reported vary between 60% and 100%, with complete clinical responses 

ranging from 10% to almost 50%, avoiding mastectomy in most cases. Clinical 

responders have a better prognosis than do non-responders [18].  

The prognostic importance of histo-pathologic response amon

-adjuvant chemotherapy for breast cancer is also recognized [19]. Patients who have 

complete pathologic response or pathologic minimal residual disease have a longer 

disease-free and overall survival compared with patients who have gross residual 

disease. The ability to identify non-responders early after the start of chemotherapy 

would be of major benefit because it would enable treatment to be adjusted or enable 

alternative and possibly more efficacious treatments, such as other types of 

chemotherapy or early surgery, to be offered as soon as possible [20]. 

Fig 1.10 shows the change in transfer constant in perimenopaus
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gra

(middle row), an increase in the transfer constant 

med

de 3 infiltrating ductal carcinoma of the left breast not responding to mitoxantrone 

and methotrexate chemotherapy.  

After one cycle of treatment 

ian and range is seen (57% and 34%, respectively), compared with a 10% decrease 

in tumor size. After two treatments (bottom row), a further increase in the transfer 

constant median and range is seen (186% and 181%, respectively) on the transfer 

constant histogram, compared with a 11% increase in tumor size [21]. 

 

 
Fig 1.10 Columns show anatomic subtraction images, corresponding  

Transfer constant maps, and histograms from pixel data. Row shows  

 

data before treatment and after one and two cycles of mitoxantrone  

and methotrexate chemotherapy, respectively. [21] 
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Chapter 2  Theory in Segmentation 

 

.1 Segmentation in normalized cuts method 

 a digital image into multiple 

reg

rpose algorithms and techniques have been developed for image 

seg

ed by Shi and Malik in 1997[23] . In 

this

2

Segmentation refers to the process of partitioning

ions. The goal of segmentation is to simplify or change the representation of an 

image into something that is more meaningful and easier to analyze [22]. Image 

segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in 

images. The result of image segmentation is a set of regions that collectively cover the 

entire image, or a set of contours extracted from the image. Each of the pixel in a region 

are similar with respect to some characteristic or computed property, such as color, 

intensity, or texture.  

Several general-pu

mentation. Since there is no general solution to the image segmentation problem, 

these techniques often have to be combined with domain knowledge in order to 

effectively solve an image segmentation problem. 

The “normalized cuts” method was first propos

 method, the image being segmented is modeled as a weighted undirected graph. 

Each pixel is a node in the graph, and an edge is formed between every pair of pixels. 

The weight of an edge is a measure of the similarity between the pixels. The image is 
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l dissimilarity between the 

diff

joint sets, A and B, by simply 

rem

w u v=

partitioned into disjoint sets by removing the edges connecting the segments. The 

optimal partitioning of the graph is the one that minimizes the weights of the edges that 

were removed (the “cut”). Shi’s algorithm seeks to minimize the “normalized cut”, 

which is the ratio of the “cut” to all of the edges in the set. 

The normalized cut criterion measures both the tota

erent groups as well as the total similarity within the groups. The grouping algorithm 

consists of the following steps:1. Given an image or image sequence, set up a weighted 

graph G = (V,E) and set the weight on the edge connecting two nodes to be a measure of 

the similarity between the two nodes. 2. Solve …(D-W)x = λDx for eigenvectors with 

the smallest eigenvalues. 3. Use the eigenvector with the second smallest eigenvalue to 

bipartition the graph. 4. Decide if the current partition should be subdivided and 

recursively repartition the segmented parts if necessary. 

A graph G = (V,E) can be partitioned into two dis

oving edges connecting the two parts. The degree of dissimilarity between these two 

pieces can be computed as total weight of the edges that have been removed. In graph 

theoretic language, it is called the cut : 

                       ( ,cut A B) ( , )∑                       (2.1) 

e one that minimizes this cut value. Although there are 

an 

The optimal of a graph is th

exponential number of such partitions, finding the minimum cut of a graph is a 
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d by recursively finding the minimum cuts that 

bise

 cut criteria 

favo

well-studied problem and there exist efficient algorithms for solving it. Wu and Leahy 

[24] proposed a clustering method based on this minimum cut criterion. In particular, 

they seek to partition a graph into k-subgraphs such that the maximum 

cut across the subgroups is minimized.  

This problem can be efficiently solve

ct the existing segments. As shown in Wu and Leahy's work, this globally optimal 

criterion can be used to produce good segmentation on some of the images. 

However, as Wu and Leahy also noticed in their work, the minimum

rs cutting small sets of isolated nodes in the graph. This is not surprising since the 

cut defined in (1) increases with the number of edges going across the two partitioned 

parts. Fig. 2.1 illustrates one such case.  

 

Assuming the ance between the 

two

Fig 2.1 A case where minimum cut gives a bad partition. [23] 

edge weights are inversely proportional to the dist

 nodes, we see the cut that partitions out node n1 or n2 will have a very small value. 
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aper 

pro

In fact, any cut that partitions out individual nodes on the right half will have smaller 

cut value than the cut that partitions the nodes into the left and right halves. 

To avoid this unnatural bias for partitioning out small sets of points, the p

pose a new measure of disassociation between two groups. Instead of looking at the 

value of total edge weight connecting the two partitions, our measure computes the cut 

cost as a fraction of the total edge connections to all the nodes in the graph. It’s call the 

normalized cut (Ncut): 

           ( . ) ( , )( , )
( , ) ( , )

cut A B cut A BNcut A B
assoc A V assoc B V

= +                (2.2) 

Where assoc(A,V) is the total connection from nodes in A  

and

r total normalized association within 

gro

 to all nodes in the graph

 assoc(B,V) is similarly defined. With this definition of the disassociation between 

the groups, the cut that partitions out small isolated points will no longer have small 

Ncut value, since the cut value will almost certainly be a large percentage of the total 

connection from that small set to all other nodes. 

In the same way, it can define a measure fo

ups for a given partition: 

                ( , ) ( , )( , )
( , ) ( , )

assoc A A assoc B BNassoc A B
assoc A V assoc B V

= +               (2.3) 

 and assoc(B,B) are total weights of  

wit

Where assoc(A,A) edges connecting nodes

hin A and B, respectively. We see again this is an unbiased measure, which reflects 

how tightly on average nodes within the group are connected to each other. Another 
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important property of this definition of association and disassociation of a partition is 

that they are naturally related: 

( , ) ( . )( , )
( , )

cut A B cutNcut A B
assoc A V assoc

= +
( , )
A B
B V

 

         ( , ) ( , ) ( , ) ( , )
( , ) ( , )

assoc A V assoc A A assoc B V assoc B B
assoc A V assoc B V

− −
= +  

( , ) ( , )2
( , ) ( , )

assoc A A assoc B B
assoc A V assoc B V

= − +  

2 ( , )                                            (2.4) 

Hence, the two partition  

the 

Nassoc A B= −

 criteria that we seek in our grouping algorithm, minimizing

disassociation between the groups and maximizing the association within the 

groups , are in fact identical and can be satisfied simultaneously. In our algorithm, we 

will use this normalized cut as the partition criterion. 
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.2 Gradient Vector Flow 

rs, are curves defined within an image domain that can 

mo

ugh the spatial domain of an image to 

min

2

Snakes [25], or active contou

ve under the influence of internal forces coming from within the curve itself and 

external forces computed from the image data. The internal and external forces are 

defined so that the snake will conform to an object boundary or other desired features 

within an image. Snakes are widely used in many applications, including edge detection 

, shape modeling [26-27], segmentation [28-29]. 

A traditional snake is a curve, that moves thro

imize the energy functional: 

( )( )1 '

0

1 (
2

2 2'') ( ) extE x sα x s E x s dsβ⎡ ⎤+ +⎥⎦
               (2.5) 

The external energy function Eext is derived from the  its 

sma

= ⎢⎣∫

image so that it takes on

ller values at the features of interest, such as boundaries. Given a gray-level image 

I(x,y) , viewed as a function of continuous position variables (x,y), typical external 

energies designed to lead an active contour toward step edges are: 

           
[ ]

2(1) ( , ) ( , )extE x y I x y= − ∇          
2(2) ( , ) ( , ) ( , )extE x y G x y I x yσ= − ∇ ∗

           (2.6) 

where Gσ(x,y)is a two-dimensional Gaussian function with standard deviation and 

gradient operator. If the image is a line drawing (black on white), then appropriate 

external energies include 
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ext

                                         (2.7) 
(3)

(4)

( , ) ( , )

( , ) ( , ) ( , )
ext

ext

E x y I x y

E x y G x y I x yσ

=

= ∗

A snake that minimizes E must satisfy the Euler equation : 

                     '' '''( ) ( ) 0x s x s Eα β− −∇ =                       (2.8) 

This can be viewed as a force balance equation 

                         ( ) 0pF Fint ext+ =                           (2.9) 

The internal force discourages stretching and bending while the external potential 

force pulls the snake toward the desired image edges. The gradient vector flow snake 

approach is to use the force balance condition as a starting point for designing a snake. 

It define below a new static external force field, which we call the gradient vector flow 

(GVF) field. To obtain the corresponding dynamic snake equation, we replace the 

potential force, yielding : 

                     '' ''''( , ) ( , ) ( , )tx s t x s t x s t vα β= − +              (2.10) 

We call the parametric curve solving the above dynamic equation a GVF snake. It is 

solved numerically by discretization and iteration, in identical fashion to the traditional 

snake. Although the final configuration of a GVF snake will satisfy the force-balance 

equation, this equation does not, in general, represent the Euler equations of the energy 

minimization problem. This is because v(x,y) will not, in general, be an irrotational 

field . The loss of this optimality property, however, is well-compensated by the 

significantly improved performance of the GVF snake. 
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We define the gradient vector flow field V(x,y) = [u(x,y) , v(x,y)] to be the vector 

field that minimizes the energy functional 

                     
( )( )
( )( )

2 22

2 22

0

0

x x y

y x y

u u f f f

v v f f f

μ

μ

∇ − − + =

∇ − − + =
                 (2.11) 

This variational formulation follows a standard principle, that of making the result 

smooth when there is no data. In particular, we see that when f∇  is small, the energy 

is dominated by sum of the squares of the partial derivatives of the vector field, yielding 

a slowly varying field. On the other hand, when f∇  is large, the second term 

dominates the integrand, and is minimized by setting v = f∇ . This produces the 

desired effect of keeping v nearly equal to the gradient of the edge map when it is large, 

but forcing the field to be slowly-varying in homogeneous regions.  

The parameter μ  is a regularization parameter governing the tradeoff between the 

first term and the second term in the integrand. This parameter should be set according 

to the amount of noise present in the image. 

We note that the smoothing term —the first term within the integrand by Horn and 

Schunck in their classical formulation of optical flow [30]. It has recently been shown 

that this term corresponds to an equal penalty on the divergence and curl of the vector 

field [31]. Therefore, the vector field resulting from this minimization can be expected 

to be neither entirely irrotational nor entirely solenoidal. 

Using the calculus of variations [32], it can be shown that the GVF field can be 
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found by solving the following Euler equations : 

                     
( )( )
( )( )

2 22

2 22

0

0

x x y

y x y

u u f f f

v v f f f

μ

μ

∇ − − + =

∇ − − + =
                 (2.12) 

These equations provide further intuition behind the GVF formulation. We note that 

in a homogeneous region, the second term in each equation is zero because the gradient 

of f(x,y) is zero. Therefore, within such a region, and are each determined by Laplace’s 

equation, and the resulting GVF field is interpolated from the region’s boundary, 

reflecting a kind of competition among the boundary vectors [33]. 
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Chapter 3  Method 

 

3.1 Clinical Experiment 

The image raw data is gathered by Dr.Chang in National Taiwan University Hospital. 

This clinical experiment is performance in 1.5T Siemens MRI system. We use 

gadolinium as contrast agent and Avastin as the chemotherapy drugs. 

After inject the contrast agent, we scan the patient’s lung 100 frames in about 100 

seconds, each frame will have four sagittal view images and one axial view image. 

 

t = 1      2       3                             98     99     100 

 

 

           

+ 

   4 Sagittal lung images                            1 axial lung image 

Fig 3.1 Image sequence in the clinical experiment. 
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3.2 Pre-processing in DICOM images 

After DCE-MRI experiments, the console will output DICOM format images. If we 

want avoid motion effect in Mistar software, we should do motion correct operation 

before the DICOM input to the Mistar software. 

Suppose we have two images like figure 3.2. Left side is the reference image (we 

suppose the tumor position is correct ), and right side is temporal image ( the tumor 

position will have shift effect because of the motion during scan process ) which we 

want to correct it. 

 

            Reference Image                   Temporal Image 

Figure 3.2 Reference image and temporal image. 

The red circle indicate the tumor ( to simplify the motion problem, we assume 

the tumor volume in each image is the same with each other ), and we can clearly 

identify the tumor position (red circle) in reference image and temporal image is quite 

different. If we input the sequence DICOM image data to the Mistar software, we 

supposed it will have incorrect calculated information like figure 3.3. 
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Reference image 

Temporal image 1 

Temporal image 2 

Temporal image 3 

Temporal image 100 

Figure 3.3 Registration problem in sequential images. 

To solve this problem, we using correlation method in image registration. For 

example, if we have two images like figure 3.2. The goal is that we want to put tumor in 

both images in the same position (fig 3.4). 

 

Figure 3.4 Adjust motion problem by moving temporal image to reference image. 

In fact, we select reference image in first time. Then we will find out the proper ROI 

in reference image (Fig 3.5) making the correlation with temporal images. 
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Proper ROI 

Fig 3.5 Select proper ROI in reference image. 

We will get the proper ROI from the reference image to compare with the similar 

area in the temporal images (Fig 3.6)   

Similar 

 Area 

ROI (Reference Image)  
 Temporal Image 

       

Fig 3.6 Get proper ROI from the reference image to compare with the similar area in the temporal images. 

 

To increase the specification in tumor property, we can select the tumor position by 

user defined or by automatic segmentation method. 
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contour by user (dot line) in Fig 3.7 

By User defined 

Step 1: Select the 

 

 

Fig 3.7 Contour which decided by user. 

 

tep 2: We set gray level in the area outside the contour be zero (black) in Fig 3.8 S

 

 

Fig 3.8 Make outside gray level be zero. 
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By automatic segmentatio

 cut will do operation in Fig 3.9 

n method 

Step 1: Select the area which normalize

 

Fig 3.9 Prepare proper ROI for normalize cut. 

Step 2: After running norma  and its lize cut program, we get a binary image

corresponding gray level image in Fig 3.10. 

  

Fig 3.10 Results which determined by the normalize cut operation. 
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Step 3:  Run the gradient vector flow (GVF) program to determined the contour in  

Fig 3.11 ~ Fig 3.13 

 
Fig 3.11 Four maps (test image, edge map, edge map gradient, normalized  

GVF field) for determined gradient vector flow. 

 

  

Fig 3.12 Running gradient vector flow program to determined the contour 
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Fig 3.13 Final image which decided by normalize cut and gradient vector flow. 

The similar area should be the possible area which tumor position is inside in the 

temporal images. Although the tumor position in temporal images is differ with each 

other, the tumor position in reference image will provide a standard to deal with the 

problem. Since we already get the ROI in both reference image and temporal image, the 

maximum correlation will determined the correct position. 

 

emporal image Fig 3.14  Correlation between reference and t
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After we do the correlation with the reference and temporal image, there exist many 

correlation coefficients. What we want is the maximum correlation coefficient. 

The maximum correlation coefficient represent the most proper tumor position in 

the temporal images. Once we find the proper position, the next step is to shift the 

temporal images to the new position (fig3.8). 

Fig 3.15 Shift temporal images to the arbitrarily position which correlation value is maximum. 

Since we suppose the tumor is rigid, the reference image will change to get the most 

similarity in tumor shape. That is, the image which was corrected will be the next 

reference image. Under the assumption, we suppose to correct total temporal images in 

the whole image sequences. 
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software Mistar to accomplish the DCE-MRI study and 

entify the difference between image data with motion correct or not. 

After we lunch the DICOM data from MRI console, it shows the lung image in both 

gittal and axial view in the upper right during the software window. In order to find 

e arterial input function (AIF), we select the axial view and set the ROI ( yellow 

uare ) in the aorta to get the AIF. The upper right shows the 100 time frames signal 

. 

3.3 Mistar software processing 

We use the commercial 

id

sa

th

sq

intensity in aorta which used to be the AIF

 

 

Fig 3.16  Interface in operating Mistar software.  
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Besides select the AIF, we also decided the area which need to be calculated in the 

software. The selection of the area should be include the tumor and not exceed to much 

to waste the processing time (fig 3.17). 

 

 

Fig 3.17 Select processing area to in Mistar software. If we select large area, it will spend more time to 

finish the calculation. 

 

When we decided the curve of AIF and the region which needed to be execute, then 

we can push the processing button to run the entire calculation like fig 3.18. 
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Fig 3.18 Processing the calculation (blue image is the area which selected to calculate). 

 

After Processing, we can get the DCE-MRI parameter maps . For example: The 

Upper left is kep; the upper right is Ve; the lower left is Ktrans; the lower right is Vp. 

 

Fig 3.19 DCE-MRI parameter maps (upper right is ve, upper left is kep, lower right is vp,  

and lower left is ktrans). 
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Chapter 4  Results 

 

4.1 Results from Mistar software 

After we finish the processing in Mistar software, the parameter maps will show us 

the information about the DCE-MRI. 

First, we should select the most proper tumor contour in the maps. We can console 

the T1-contrast image for reference to adjust the correct contour (fig 4.1). 

 

      

   T1-Contrast enhance Image              T1-Weighted Image 

Fig 4.1 Select tumor contour by doctor to make sure the area is exactly in tumor position. 

 

When we se aps 

can be also determinate like the fig 4.2. 

lect the proper contour about the tumor, the DEC-MEI parameter m
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           Ktrans Map                              Kep Map 

 

     

             Ve Map                              Vp Maps 

Fig 4.2 Four parameters maps results which calculated by Mistar software, the yellow line in the pictures 

e tumor position and shape decided by doctor. 

The Mistar software allows us to output the detail values in each pixel which is in 

the range of tumor contour. Because we want to know the information in entire tumor, 

are th
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we should calculate the values in all slices. Here we have four slices in the sagittal view, 

and there should be four different parameter maps ex: Ktrans.  

The following table shows the data which we collect in this experiment. There are 

eleven patients in it. Some of them having twice or three times cases, even four times is 

include.  
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Chart No. Age Gender  date of MRI Ktrans (mean) Ktrans (SD) Kep (mean) Kep (SD) Ve (mean) Ve (S Vp an) Vp (S Volume D)  (me D) Pixel Np. 

      
F779 52 F before 20080110 172.8782 86.5904 1263 511.1793 146.4887 40 92 26.24 69.9464 38.0 6 22.3202 37

      after   156.4238 119.044 1355 1439 273.98 421.8603 21    46.7 3 35.2522  
      before 20080131 127.1347 77.6199 1299 669.2082 110.8461 84.0982 77 35 25.87 31.8 4 31.1185 37
      after   114.408 86.1253 1268 871.3224 123.993 136.2469 29    35.5 3 31.9941  
      before 20080220 110.3947 48.4889 969.2542 502.518 164.1305 126.0281 48 85 14.44 24.6 4 16.2942 20
      after   122.5904 51.9391 996.4077 492.7662 166.7213 120.7124 14    24. 2 16.7437  
                              

M329 62 M before 20070526 98.0442 95.8564 1164 1004 101.6869 118.3307 01 41 76.69 23.3 4 23.8693 102
      after   90.019 92.0413 1024 949.2185 116.109 150.226 81    23.5 6 23.6555  
      before 20070801 44.4853 55.767 710.7123 1003 122.2082 199.0388 40 31 38.2 29.1 1 29.3651 47
      after   34.1365 60.8422 457.9362 936.201 165.4887 284.2617 33    24.7 9 29.3889  
      before 20071003 57.8705 73.7613 850.1242 1062 83.4321 121.6247 14 26 28.18 21.1 6 25.1096 28
      after   45.9646 86.4798 742.3719 1526 74.1359 163.2148 40 33.    25.9 9 4157  
      before 20071121 45.1077 54.8354 822.802 922.8821 56.2496 75.8963 38 25 43.64 21.0 4 21.8096 50
      after   47.6603 59.579 721.9954 923.8309 85.7731 139.319 38 27.2716    22.7 9  
       

M871 49 M before 20080118 96.9632 57.9461 1636 879.2621 83.6799 92.9254 94 20.1439 55 36.09 31.7 2 41
      after   93.7745 67.0807 1544 1006 98.8046 113.8152 87 22.6192    33.3 5  
      before 20080212 52.9786 43.0451 1014 813.8075 92.4277 113.5992 99 21.2353 29 21.09 23.4 4 24
      after   59.7205 61.7942 1128 888.0041 77.1618 83.8275 06 19.161    21.4 3  
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Chart No. Age Gender  date of MRI Ktrans (mean) Ktrans (SD) Kep (mean) Kep (SD) Ve (mean) Ve (SD) Vp (mean) Vp (SD) Pixel Np. Volume 

      
M141 68 M before 20070529 100.9661 60.5172 781 1.2155 519.3872 214.7719 97.9482 17.6092 14.2926 3424 23.71 

      after   97.9588 57.7668 787 567 22.2339 .8119 9.6203 209.1 20.4229 16.4177     
      before 20070815 87.1577 70.3808 1225 858.1167 89.4633 92.6278 20.2625 17.9677 2042 14.13 
      after   81.0984 70.6965 1037 825.8859 122.3457 144.6699 20.1102 18.1868     
      before 20071031 99.6389 85.1381 1175 869.0652 119.4608 104.4188 21.06 18.8583 983 7.94 
      after   74.6541 65.4323 870.0458 794.2426 167.2279 234.8201 23.5371 28.6724     

      
M740 60 M before 20080325 111.5457 86.375 1948 1276 93.0266 123.4674 34.8995 23.8812 1840 15.97 

      after   8 1 28.8685 86.7014 1623 1569 98.7152 87.2727 41.1228 28.7461     
      before 20080421 1 5 76207.3975 6.2021 1639 .2981 80.0312 66.3173 20.6098 15.1292 961 9.58 
      after   93.5109 52.6339 1620 1038 72.6608 77.4495 23.7804 19.9829     
      before 20080509 76.3165 48.3744 1164 779 1.1787 08.6878 120.3225 16.566 11.9694 1166 11.63 
      after   72.7015 67.1446 1089 1382 171.6475 299.9304 16.8148 17.546     
                              

M826 58 M e 20080402 1 10 1 befor 21.7588 5.2475 1279 862.7111 22.5373 104.345 31.1425 28.5017 10228 70.82 
    after  120.7957 119.5485 1206 979.0496 148.0378 184.8912 33.3206 32.2619        

  2 2 1 1    before 20080429 33.9865 17.0597 1574 983.4117 60.6663 06.3205 49.0664 38.8932 7993 55.34 
      after   2 2 332.8203 41.7068 1453 1143 06.2463 460.7253 56.6718 56.2376     
      before 20080520 67.4415 63.5726 66 10.581 545.4191 86.8765 159.4787 23.2834 22.3548 4704 32.56 
      after   95.6312 1 958 2 2 221.7479 .7119 985.875 22.0485 66.6306 27.6603 6.8991     
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Chart No. Age Gender  date of MRI Ktrans (mean) Ktrans (SD) Kep (mean) Kep (SD) Ve (mean) Ve (SD) Vp (mean) Vp (SD) Pixel Np. Volume 

      
M469 77 M before 20061030 219.3056 167.3221 1625 934.4481 128.5896 90.6103 58.9645 40.7381 5275 52.6 

      after   1 1 20394.4157 70.0952 1393 1150 164.4108 .3105 60.8883 47.0387     
      before 20061205 40.5627 44.0976 680 1.6431 781.0105 85.153 36.4305 33.1725 31.6663 3444 34.34 
      after   45.6771 58.8942 645.5044 835.5118 76.261 118.7002 27.6519 29.4886     
      before 20070111 89.1366 1 794 45 5591 38.62 00.7679 .7162 801.439 146.5321 202.2965 .5301 43.4019
      after   80.3615 112.4534 722.1975 922.8178 136.6053 208.5487 48.299 50.8263     

      
F928 58 F before 20080119 238.59 12 8633.8953 2185 .2497 115.288 49.7335 55.4066 29.0878 7765 53.75 

      after   2 126.4178 38.2651 1881 1122 217.97 305.2919 66.1131 39.5759     
      before 20080214 89.6262 61.2078 1545 809.7152 76.6474 70.779 44.6246 21.4567 6817 47.19 
      after   51.7822 45.7289 1079 1003 88.0855 127.0202 53.5089 29.2859     

  1 3 before 20080306 06.0227 48.1355 1542 633.4481 79.243 41.985 5.8371 16.0028 749 5.18 
   after   1 69009.0774 57.4687 1311 .5937 134.7704 136.7922 37.5701 18.058     
               

M372 41 M before 20070602 205.999 98.3014 2052 978.0806 116.5311 75.6308 37.5079 23.2589 3099 21.46 
      after   180.6705 104.3126 1672 1016 153.9742 148.2009 40.5608 32.3914     
      before 20070816 81.0472 42.49 1073 634.5683 106.9744 90.8074 21.0072 14.3647 1249 8.65 
      after   80.5124 42.4462 1002 683.3029 131.9744 128.8156 22.1954 15.6253     
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Chart No. Age Gender  date of MRI Ktrans (mean) Ktrans (SD) Kep (mean) Kep (SD) Ve (mean) Ve (SD) Vp (mean) Vp (SD) Pixel Np. Volume 

      
M664 47 M before 20070801 69.9793 44.6357 1133 754.1266 113.6001 1 125.8711 26.2577 19.9017 1688 1.68 

      after   53.2725 41.0073 853 795.5101 .0104 145.8181 195.008 30.8104 23.3339     
      before 20071003 35.2455 43.9684 700.7417 796.9888 60.7749 83.7166 32.3862 22.407 1173 8.11 
      after   28.7025 39.6834 424.3495 632.6747 91.1705 154.0047 35.1117 25.7059     
                              

M807 44 M e 20070725 1 9 1521 13.21  befor 78.2295 145.7388 1810 1176 130.5924 123.2023 2.6686 45.5533
    after   142.2906 146.8902 1538 1629 123.5095 134.204 98.4313 56.2298       

  8 1 1    before 20071011 1.6464 54.1193 1231 795.6572 12.3391 09.3154 31.6754 15.0083 345 3.45 
      after   70.7594 56.9641 1028 917 16.3103 2.9246 233.9392 36.3101 22.3327     
               
 

e 4.1 ter ch patie u and de

 

Tabl Four parame values in ea nt incl de the mean standard viation. 
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4 ata aly

e c  ab otherapy treatment can be divided into 

three terms: Before (Baseline) treatment, ent (after the first 

co  of  an  (the final study before stopping chemo- 

therapy). 

e divided the patient into two groups. Group A: The treatment include only 

before treatm  B: the tment include before treatment, 

im diat t an t. We can plot the histogram about the four 

DCE-MRI param ent.  

e follo  shows these parameters which the patient in group A. The 

v al a no number of pixels in the area which we 

consider is tumor, while the horizontal axis means the normalized histograms of 

am tude R ,Kep, p).  

 

.2 D  an sis 

Th ommon catalog out the cancer chem

Immediate after treatm

urse  chemotherapy) d final treatment

W

ent and final treatment; Group trea

Ve,V

me e after treatmen d final treatmen

eters to comment the response of treatm

g fiTh win gure

ertic xis shows the rmalize of the 

pli

 

 in each DCE-M I parameters (Ktrans
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Group A (M372) 
 

  
        Ktrans                             Kep

  
V                                Ve p 

 
Group A (M807) 
 

   
        Ktrans                             Kep

 
Ve                               Vp 
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Group A (M664) 
 

  
        Ktrans                             Kep

    
Ve                               Vp 

 
Group A (M871) 
 

   
        Ktrans                             Kep

  
Ve                               Vp 
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Group B (F779) 
 

 
        Ktrans                             Kep

 
Ve                               Vp 

 
Group B (M469) 
 

 
        Ktrans                             Kep

  
Ve                               Vp 
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Group B (M826) 
 

 
        Ktrans                             Kep

  
Ve                               Vp 

 
Group B (M141) 
 

 
        Ktrans                             Kep

 
Ve                               Vp 
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Group B (F928) 
 

  
        Ktrans                             Kep

  
Ve                               Vp 

 
Group B (M740) 
 

 
        Ktrans                             Kep

  
Ve                               Vp 
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Chapter 5  Discussion 

 

5.1 Problems in Data Analysis 

According to the results present in 4.2, we find almost every patient in group A 

shows the reasonable results in the figure about eter. The curve after 

motion correction process will lower and have trend through the vertical axis. 

In group B, it also exist the same phenomenon in the distribution curve. But in some 

patient, the baseline curve (red curve) is in the right side, some final curve (blue curve) 

is in the middle, and the imm

need to be analysis more detail or analysis in another way to explain it. 

Besides the curve position will differ (red, green, blue) in each chemotherapy 

process (Baseline, Immediate, Final), the height in each curve is also different. That’s 

because the area under distribution curve have been normalized to be one. And we can 

find that in most patients, the baseline curve is the lowest while the final curve is the 

most height in the diagram. 

 

 

 

 

 four different param

ediate curve (g een curve)is in the left. These kind of data r
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5.2 Inaccuracy Pro

There may exist some reason to explain the results (from parameter maps) which is 

irst, in our assumption, the tumor shape is solid 

and

ords, the tumor 

cha

 

 

blems 

not totally satisfy with the situation. F

 stable (not change with time). But in fact, many tumor’s shape do have some 

different. Even in the scan processing, the slice will not so exact to cut, so the image in 

the same position will differ with each other. 

Second, the motion in the lung is in 3 dimensions. It’s reasonable to find out the 

tumor movement in the lung is 3 dimensions, too. Third possible reason is when we 

select the ROI (Region of Interest), besides the contrast agent area (usually with colorful 

in parameters map), there also exit a part of the dark side. In other w

racteristic is not homogeneous in the ROI. 

After the motion correction, if the portion of the dark side is increase, although the 

region we select is more accuracy but the parameters values will change in a worst way. 

Due to the above possible thing, we should check the motion in tumor itself and the 

homogeneous problems. 
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ter 6  Conclusion 

 

is slower than the case without doing the 

mo

d in the distribution curve. The curve will 

clos

To sum up, motion correction not only fixing the registration problems in sequential 

dynamic images, we also find that it affect the parameters in pharmacokinetics 

athematical model. For example: the histogram distribution curve. Due to the 

omplexity in chemotherapy treatment, the DCE-MRI provides us another direction to 

Chap

6.1 Conclusion 

From the figure results in data analysis, we can clear identify the distribution 

difference in histogram between the motion correct process or not. Most of the cases 

show that after the motion correct, the peak 

tion correct. Another phenomenon shows after motion correct, the distribution is 

more smooth than without doing it. 

That is, the motion correct processing not only improve the accuracy in the dynamic 

image sequences, it change the distribution curve in these four parameters (Ktrans,Kep, 

Ve,Vp). We can easy identify the treatment tren

e to the left side (the vertical axis) when the patient taking the chemotherapy. 

Although some figure shows the immediate after treatment process is more close to the 

left side, the patient before treatment must in the rigt side far away from the vertical 

axis. 

m

c
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evaluate how the influe

The standard in tumor treatment is by the RECIST (Response Evaluation Criteria in 

ria. We should take our results to compare with the RECIST criteria 

to a

 

 

nce that the drugs take effect.  

Solid Tumors) crite

djust its correlation to improve the accuracy. 
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otion Correction. 

The application in DCE-MRI works very widely in other organ. For example: Tumor 

 Human Brain, Breast Cancer. It’s reasonable to state the DCE-MRI will do well if 

ere have very little motion artifact. Inevitably, the lung cancer still have more sever 

otion problem. It’s worth to do more research in solving the problem. 

6.2 Future Work 

Since the current motion artifact correction need to be modified, we should do: 1. 

Using non-rigid body registration method to fit the tumor position. 2. Model the motion 

due to the breathing movement to 3 dimensions m

in

th

m
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