B d AT HEFH g g
L=
Graduate Institute of Biomedical Engineering
College of Medicine and College of Engineering

National Taiwan University
Master Thesis

SIS AL SR S B
IS 2/ (L S,

B AR U R SR B IRES T S gk R
Estimation of Dynamic..€oentrast Enhanced Magnetic

Resonance Imaging Parameters . Motion Artifact Correction

.’\} P
Vit

Hao-Hsiang Hsu
Hadsge ey WL Rhd FE

Advisor: Chung-Ming Chen, Ph.D.
Yeun-Chung Chang, M.D. Ph.D.

July,2008



B
:EA;:‘

FAOSRDHERIE S AFI 0 B PEFRAFHELERI - &P g
e p R g LY o ARE FaRIAEE ST > A ET AR B IRy
FETHEBIETE 2T P oA FLERE SR DA Y
Rl Bk g HA SRR e g BR O PESEE LS o

7ob o BSRBHEB BP0 A FlrAaRp K0 FhT o RFERE G AR Y
i BB o T ABE e FR s A v B S ESHH —
AR TR R B £ 3 AR e TRELORDES - B iZP B 7 4
Yoo S AR M o S R a4 rgg?%’% F ESe s o

hopr— o ISR g e e s iy h — Bdefidedid Lo e FFAHRS
oo AT 4 xlxﬁ»,xﬁﬂ#ﬁm - 3;@:& rgiwa]% lij" ;}i@ 2 3 en%E Kl fe &5 4k
PH R PR SRR e g L "rf':;j: r;%ﬁ o W4 B BB ,\,ipﬁ g RN
R B 4 e BRI R ﬁ?ﬂ S -

G R A %”$%L@%£aﬁié e ST LNy
ETE RS S CEC TS EWE (e

BE BB > A A GABPR CE I RS > XS Al g d
AH ESTU A D FF A o

AR BHHASRBENRA c CREA R AR RS T AR
T35 A A2 R DTSR o BRE Mk — B o o R A A e 0 H R AT R
BB amg S R o

Brg B2 B WRE S X R IR T o ITE E B e RGN Rl A €
WG Sk 2 Ay 0 RS E J Ae WA doenper o

Albert  2008.08



u —14’%_&

£ 454 saRA Y IR #(DCE-MRI) % — /& * 2 1d MRI 7By & 78 p] 4 8 p
3 e v R R HOE R (perfusion) et 25 o YR T HANER BPR T e B AP
HEP BB RE=0E REY S oo d Hr Ay A8e RERLIFFE
JERG R S R R B D RS AR A AT 7 b g A K gy i o

PaAARy ST AN RS E SRR St fle e A MR A
RAFS B e RCLOFERT] b QERBTEIPRADT UFRY FNE
R g 412 o

g e AU PR BB A 0 3380 Avastin d P A e »B»;)A«g,c%
B oA H v ugpids BV paat IR (DCE-MRI) et |2 - = 233 p] ¥ 2=
PR ES vk o @ 2RI IR #» i;\ B Mistar @ & 5 PiH3F 2 b
= 1 SRR ;'—'ém»@m;x%\ __

7 1 gl T g i rﬁ“kﬂwﬁzs/\}iff S S ol I il
<= |

Ny

PR AL TR A A i — ) RRET

a_%_ﬂm”;fb RAIRI s B R RE
% (DCE-MRI)erdc & 4 2 4 gzt Q |i'.i. ?E'L"f" 4 B ch X ORCET F] 425
”ﬁﬁﬁﬁi%%°§ﬁﬁﬁwﬁ’ﬁi%ﬁ%?’ﬁﬁﬁﬁﬁﬁo

WO R R A N > TS P F RGBSR T > Hiz ¥
W3 55 A2 BB B (DCE-MRI)S$c 8 405 4 42 A o b RE S 0 B B chdi 8o
FP e AR T AR R e S de g B A R RenEIE > A
BB EHAN AR VR R AR AR o

,é‘,

AN

N5g

Ay

[\p
Y

<~

\

3)

3

\r
B
£
ky

Baed 1 9 o s R R BB S RSRY kR e

N
&)
vy
BLS
>
pem
)
o



Abstract

Dynamic-contrast-enhanced MRI (DCE-MRI) is the usage of fast pulse sequence
MRI for monitoring the perfusion of contrast materials in the blood stream. This
application is useful in evaluating patients taking angiogenesis inhibitors. The behavior
of the contrast material in the blood stream can then be modeled using a variety of
different mathematical models.

Currently, by measuring select data and employing the different mathematical
models, it is possible to estimate the flow characteristics of the contrast materials in the
blood stream as well as around the tumor. Subsequently, by using the different flow
characteristics, it is possible to evaluate the tumor ina non-invasive way.

The patients in this study weré lung cancer patients, and had been given Avastin.
By employing DCE-MRI, it may. be pds’s‘}_’éi_le_fo predict and evaluate the effect of the
chemotherapy early in the treatment cour:"e'. This study employs Mistar, which is the
software that provides the mu;titu_de of _mathe'matical models for the evaluation
treatment response.

Due to limitations of the software, however, inconsistencies resulting from image
translation between tomography slices—due to spontaneous movements such as
breathing—cannot be adjusted or corrected. Therefore, besides acquiring the DCE-MRI
data for mathematical models, this study further employs image pre-processing for the
correction of imaging errors due to subject movement. After dynamic comparison and
correction, the image is vastly improved.

Besides improvements in image quality, translational correction also drastically
improves the data used in the mathematical models. The usage of translational

correction, therefore, greatly affects the final image quality, as well as the statistical



distribution of the data being measured. We hope these changes will have a landmark

impact on the final evaluation of the effectiveness of the angiogenesis inhibitors as well.

o NIT

Keywords: Dynamic Contrast Enhancement Magnetic Resonance Imaging, Tofts Model,

Imaging processing, Motion Correction
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Chapter 1 Introduction

1.1 Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a kind of
MR images modality which over a period of time after the injection of contrast agent
into vein. It’s about computer-enhanced modality that relies on a special algorithm and
mathematic model to estimate blood flow.

The DCE-MRI technique is based on.the.continuous acquisition of 2D or 3D MR
images during the distribution of ‘an paramagﬁetic contrast agent bolus. The contrast
agent is a gadolinium-(Gd) based which |s».gble to enter. the extravascular extracellular
space (EES) via the capillarybed.The pha;;acokineticé of Gd distribution are modeled
by a 2- or multi-compartment model .and has been shown to be a useful predictor of the
biological response of angiogenesis [1]. Many different methods for image acquisition
and data analysis have been described for use in DCE-MRI. The analysis models are
designed to derive the optimal relevant components from the dynamic MR signal
changes and to relate these to the underlying physiological processes which are taking
place in the tissue.

In particular, the dynamic contrast enhanced MRI combined with physiological

model-based analysis has been widely used in the study of tumor angiogenesis and in



the development and trial of anti-angiogenesis drugs. The derivation of physiological
data from dynamic contrast MRI relies on the application of appropriate
pharmacokinetic models to describe the distribution of contrast media following its

systemic administration [2].

o NIY



1.2 Tumor Angiogenesis

Angiogenesis is a physiological process involving the growth of new blood vessels
from pre-existing vessels. It’s a normal process in growth and development, as well as
in wound healing. However, this is also a fundamental step in the transition of tumors

from a dormant state to a malignant state.

What Is Tumor Angiogenesis?

Small localized tumor Tumor that can grow and spread

Angiogenesis

Signaling
molecule

Fig 1.1 The phenomenon about tumor angiogenesis [3]

Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates

into cancerous growths (Fig 1.1), supplying nutrients and oxygen and removing waste

products. Tumor angiogenesis actually starts with cancerous tumor cells releasing



molecules that send signals to surrounding normal host tissue. This signaling activates
certain genes in the host tissue that, in turn, make proteins to encourage growth of new
blood vessels [3]. The development of new blood vessels, is required for tumors to grow
larger than 2-3 mm in size, and provided both nutrients and access to the systemic
circulation with possible subsequent metastasis. This angiogenic process is mediated by
several potent peptides, which include fibroblast growth factors and vascular endothelial
growth factors [4].

Due to the characteristic in tumor angiogenesis, we can use the protocol of dynamic

magnetic resonance imaging to' measuring the tumor response indirectly.

4 = r;i.ls "'



1.3 Theory in DCE-MRI

Dynamic contrast-enhanced MRI is a method of physiological imaging, based on
fast or ultra-fast imaging, with the possibility of following the early enhancement
kinetics of a water-soluble contrast agent after intravenous bolus injection. This
technique provides clinically useful information, by depicting tissue perfusion, capillary
permeability, and composition of the interstitial space. The most important advantages
of this technique are its abilities to monitor response to preoperative chemotherapy,
identify areas of viable tumor before biopsy;.and provide physiological information for
improved tissue characterization and detection r.ecurrent tumor tissue after therapy [5].

The extracellular distribution of qu'idx'fi_{S'_Al_.?.'contrast agents is among blood plasma
and the interstitial spaces. \When-a contral;s;f. agent’is édministered intravenously by a
rapid bolus injection, it is first dilutéd in the blood of the peripheral vein and the right
heart, before it passes through the lungs and the left heart into the peripheral circulation
(Fig. 1.2a).

During first pass of the contrast agent through the capillaries, a fast diffusion occurs
into the tissue, due to the high concentration gradient between the intravascular and the

interstitial space: in normal tissues, approximately 50% of the circulating contrast agent

diffuses from the blood into the extravascular compartment during the first pass.
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Fig 1.2 (a) Signal intensity curve before b0|uf an i(l:P) Contrast agent is diffusion to the interstitial

15 11 o,
space. (c) After the first pass of the bolus, the lﬁl iﬁéreaseé furtheruntil the concentration of the contrast
agent in the blood and the interstitial space.of ithe tissue |a'ragf_ equal. (d) After this equilibrium phase, the
contrast medium is progressively washed out from the “interstitial space as the arterial concentration

decreases. [5]

This first-pass diffusion is essentially different from that during the second pass and
later. At this initial moment, there is no contrast agent in the interstitial space, and the
agent has its highest possible plasma concentration, because it is diluted in only a very
small part of the total plasma volume, namely that volume that enters into the right side
of the heart at the same time as the bolus (Fig. 1.2b).After the first pass, the diffusion
rate immediately drops, because the concentration of the re-circulating contrast medium

has decreased owing to further dilution in the blood and partial accumulation in the



interstitial space throughout the body. The length of the time interval between the end of
the first pass and the equilibrium state, with equal concentrations of contrast medium in
plasma and interstitial space, depends on the size of the interstitial space (Fig. 1.2c).
After this equilibrium phase, the contrast medium is progressively washed out from the
interstitial space as the arterial concentration decreases (Fig. 1.2d).

Only in highly vascular lesions with a small interstitial space does early washout
occur within the first minutes after bolus injection. The aim of dynamic contrast
enhance MRI is detect and depict differences in early intravascular and interstitial
distribution as this process is influenced by pathblogical changes in tissues [5].

Numerous studies using dynamic Coii;-'_e’gst.'enhanced MRI have demonstrated that

malignant tumors generally show:faster an-a:higher Ievéls of enhancement than is seen
in normal tissue. This enhancemenf characteristic reflects the features of the tumor
microvasculature which in general will tend to demonstrate increased proportional
vascular and higher endothelial permeability to the contrast molecule than do normal or
less aggressive malignant tissues.

Cancer can develop in any tissue of the body that contains cells capable of division.
The earliest detectable malignant lesions, referred to as cancer are often a few milli-
meter or less in diameter and at an early stage. In vascular tumors cellular nutrition

depends on diffusion of nutrients and waste materials and places a severe limitation on



the size that such a tumor can achieve.

Conversion of a dormant tumor to a more rapidly growing invasive neoplasm, may
take several years and is associated with visualization of the tumor. The development of
neovascularization within a tumor results from a process known as angiogenesis.

These angiogenically competent cells have the ability to induce neovascularization
through the release of angiogenic factors. There are positive and negative regulators of
angiogenesis. Release of a promoter substance stimulates the endothelial cells of the
existing vasculature close to the neoplasia.to.initiate the formation of solid endothelial
sprouts that grow toward the solid tumer [2].

The following figure (Fig 1,3) iIIust'ra'tfe:'n_.';he.'concept from tumor cell angiogenesis to

the MRI signal intensity curve during the p;(;cess of injéct contrast agent. (a) Growth of
a malignant tumor depends on its abi.lity to stimulate neighboring vasculature to initiate
formation of new blood vessels that can grow into the tumor and supply it with oxygen
and nutrients. Angiogenesis starts with cancerous tumor cells releasing molecules,
angiogenic promoter substances that send signals to surrounding normal host tissue.
These signals activate certain genes in the host tissue that, in turn, make proteins to
encourage growth of new vessels. A new blood capillary can form by sprouting of
endothelial cells from the wall of an existing small vessel. The cells at first form a solid

sprout, which then hollows out to form a tube. This process continues until the sprout



encounters another vessel, with which it connects, allowing blood to circulate.

(b) The resolution of an MR image is determined by the field of view (FOV) and the
matrix size. The pixel size and the thickness of the image slice give the volume of the
voxel shown in the figure. One voxel contains many different cells even when using the
smallest FOV and the largest matrix size possible. This means that the MR signal
obtained from one voxel is the average of the proportion of tissue covered by the voxel.

(c) The zoomed region shows a cross section through a blood vessel and the
surrounding extravascular tissue consisting.of tumor cells, extracellular components and
normal cells. The vessel wall is mainly made.up of endothelial cells. The small grey

circles indicate contrast agent molecule's.":l_:h_e contrast agent is administered as a single

intravenous bolus injection at point.2; The-:;:ontrast agént leaks into the extravascular-
extracellular space (EES), also called the leakage space (line 2 to line 3). How fast the
contrast agent extravasates is determined by the permeability of the microvessels, their
surface area, and the blood flow.

At first the contrast agent accumulates in the extravascular tissue before it diffuses
back into the vasculature from which it is excreted. It usually by the kidneys, although
some contrast media have significant hepatic excretion (line 3 to line 4). In an MR
image the accumulation and wash-out of contrast agent is observed as changes in the

MR signal intensity which is proportional to the concentration of contrast media.
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Fig 1.3 Angiogenesis starts with cancerous tumour cells releasing molecules, angiogenic
promoter substances that send signals to surrounding normal host tissue. The small gray circles
indicate contrast agent molecules. The contrast agent is administered as a single intravenous
bolus injection at point 2. The contrast agent leaks into the extravascular-extracellular space
(EES), also called the leakage space, through VVVOs and widened interendothelial junctions (line
2 to line 3). At first the contrast agent accumulates in the extravascular tissue before it diffuses
back into the vasculature from which it is excreted (line 3 to line 4). In an MR image the
accumulation and wash-out of contrast agent is observed as changes in the MR signal intensity
which is proportional to the concentration of contrast media. The time- intensity curve to the left
in the fi gure shows the intensity of the MR signal from the zoomed region before (line 1 to line2)

and after injection of contrast agent (line 2 to line 4). [2]
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The time-intensity curve to the left in the figure shows the intensity of the MR
signal from the zoomed region before (line 1 to 2) and after injection of contrast agent
(line 2 to line 4)

The mechanisms underlying the signal enhancement patterns seen on dynamic MRI
include variations in regional blood flow, proportional blood vessel density,
vascularization of existing blood vessels and variations in the surface area permeability
of the endothelial membranes as well as the concentration difference which exists
between plasma and the EES [2].

In many tumor types including breast, Iuﬁg, prostate, and head and neck cancer,
measurements of microvascular density m@de on histopathological samples correlate
closely with clinical stage and act.as an inﬁépendent p.rognostic factor of considerable
sensitivity. The rationale for this rela;[ionship appears to be that rapid tumor growth can
be supported only in the presence of highly active angiogenesis and more aggressive
tumor are therefore associated with increased evidence of angiogenesis-related
microvasculature abnormalities. On the basis of this histopathological evidence it has
been suggested that dynamic contrast enhanced MRI may also be able to provide

independent indices of angiogenic activity and therefore act as a prognostic indicator in

a broad range of tumour types [2].

11



1.4 Pharmacokinetic Model

When we want to attempt to quantify the observed contrast agent kinetics in terms

of physiologically meaningful parameters we first need to define the elements of the

tumor or tissue structure and the functional processes that affect the distribution of the
tracer (the contrast agent). It is customary to represent tissue as comprising three or four
compartments, each of which is a bulk tissue characteristic (we are unable to observe

these compartments at their natural microscopic scale, but we can observe their

aggregate effects at the image voxel sgﬁ:l:p__._q,p_jﬂﬁl ;egion of interest).

2, Ll o . o
B 6, e
These compartments are the vasculdr plas ace, the extracellular extravascular
& o N
-~

space (EES), and the intraceﬁ'hlgr ' pac
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Tracer Kinetic Modelling for T,-Weighted DCE-MRI

Capillary vascular plasma space,

Vp

Extravascular Extracellular Intracellular space, v;
Space (£ES), v,

Fig 1.4 Three compartments in tracer Kinetic model. [2]
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All clinically utilized MRI contrast agents, and most experimental agents, are not
pass into the intracellular space of the tissue due to their size, inertness, and non-
lipophilicity, making the intracellular space un-probable using DCE-MRI; for this
reason, the intracellular and other volumes are usually lumped together as a loosely
defined intracellular space. According to fig 1.4 we can get the relationship between
these compartments:

V. +V, +V, =1 (1.1)

V, = (1-Hct)V, (1.2)
where V. is the fractional EES, V, isdhe fracﬁon occupied by blood plasma, V; is the
fraction occupied by the intracellular spaééé.':\_(b'is the fraction occupied by whole blood,
and Hect is the haematocrit (typically'about 04)

The functional parameters, or délivery'mechanisms, that influence contrast agent
distribution in the intravascular space and the EES are usually assumed to be restricted
to blood flow F and the endothelial permeability surface area product PS, which
describe how leaky a capillary wall is.

There are two physiological processes that accompany the faster growth rate of
many tumors: an increased number of vessels and along with an increased permeability.

Therefore, one could expect an increased overall signal enhancement in the vicinity of

tumors due to increasing vascular volume, vessel permeability, and increased flow.

13



In the simplest model of tissue signal enhancement characteristics one could
describe 3 parameters: maximum signal enhancement, the rate at which this initial
enhancement occurs “wash-in”, and the rate at which this increased signal decays
“wash-out”. However, it is important to consider this contrast dynamic with respect to
the concentration of contrast agent in the vascular system as it perfusion the tissues. In
simple graphical wash-in wash-out, it is assumed that the contrast agent immediately
reaches equilibrium in the vascular system [6].

The data obtained with DCE-MRI is reported semi quantitatively using parameters
derived from pharmacokinetic:models: Quantitétive techniques that are often combined
with rapid temporal sampling have beéf;'%'_t;_s_ed together with simple pharmacokinetic
models of tissues, obtaining parameters such as| the trénsfer constant (K"™™), the rate
constant (Kep), and Ve.

Most MRI kinetic models were developed from Nuclear Medicine quantitative
studies but the limitations of MRI dictated specific modifications. A number of these

MRI models are in current use, the primarily differentiated based on the way that they

model the “arterial input function” (AIF).

1.4.1 General Kinetic Model

The General Kinetic Model (GKM) is one approach to understanding the complex

14



kinetics of contrast enhancement. The physiological processes of GKM are described in

Figure 1.5, where the GKM simplifies the anatomy of the tumor into two functional

components, the vascular space and the EES and one non-functional component, the

intracellular space.

Extra-vascular extra-
cellular space (EES) —b
Ktrans Ct(t) K

Vascular Space Vascular
input function C(t)

\ 4

ep

Fig 1.5 lllustration of Ger.wral Kinetic Model [6]

A contrast agent, specifically a high'lyx'}fii_ffusible low, molecular weight agent which
remains extracellular, when introduced into:‘:'the vascula.r space will leak into the EES at
a characteristic rate and then will Ieak back into-the vessel at another rate. Thus the net
change in concentration in the tumor can be described as:

% =K"™"C, —k,C, (1.3)
where K™ is a factor related to “wash in” and ke, is a factor related to “wash-out” and
the relationship between these parameters was the volume of extravascular-extracellular
space Ve. Furthermore, we can numerically evaluate these parameters for a variable

concentration input function. This expression is mathematically described as a

convolution integral.

15



C.(t) = K™ [C, (1) ®e*'] (1.4)

This equation gives the relationship of the rate of change in tumor concentration

at any given time after contrast administration to the plasma and tumor concentration at

that time. A numerical solution for the GKM (K™ and ke,) can be obtained by a

nonlinear fitting algorithm for this expression. Subsequent models are based on this

general model, but use various assumptions to work around the convolution integral.

1.4.2 Patlak Model

Another approach to determining vessel permeability from time concentration

curves was proposed by Patlak [7]. It u'sés}fﬁ_ graphical method to estimate permeability

surfaces and fractional vascular space _based”on the slope and intercept of a derived line.

Figure 1.6 describes the physiological processes.of the Patlak model in a block format.

Vascular Space Vascular
input function C(t)

Extra-vascular extra-

Ktrans

\ 4

cellular space (EES) —b
)

Fig 1.6 lllustration of Patlak Model [7]

In this method, flow from the tissue space to the vascular space is assumed

negligible and flow is assumed to be unidirectional. In this model, the contrast agent in

16



the tumor can be expressed as:
C,(t) = K™ I;Cp(f)dr +v,C, (1) (1.5)
where v, is the fractional plasma volume. The term is similar in concept to the term ve.

Dividing both sides of the equation by C,(t) yields:

t

C,(z)d
G _ o —'[0 () v (1.6)
c c ;

p p
The Patlak approach utilizes a simpler approach than the standard pharmacokinetic
model. A major advantage of the Patlak model is based in its incorporation of AIF.

However one limiting assumption of this.modelis that the contrast agent flows only into

the tissue of interest. If the slope of the*“Ratlak™graph: is not linear, then the assumption

-
e

of no back flow is violated and.the parametlé_r_s generated-would no longer be valid.

1.4.3 Brix Model

Brix model is also a two compartment model in which the arterial input curve is
assumed to be the result of a prolonged constant infusion that takes the shape of square
wave (i.e. the contrast agent instantly reaches a plateau, remains constant for awhile and
then instantly is over) which mixes in the vascular space and is slowly eliminated by
renal excretion [8]. The input function is of magnitude Kij,, the elimination constant is
Kel, and the rate constants describing the transfer of contrast agent from plasma to the

tumor space and back are ki, and k;.
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Fig 1.7 lllustration of Brix Model. [8]

The mathematical expression of the temporal.response of Scu (t) / So is obtained:

Sew® _q, A{v[e(ke.t) “1 e i et —1] e(kzlt)} L7)
0
Where Scwm (t) is the time—independe:l_q',t_._ Gd-DTPA enhanced MRI signals, A is a
fitting parameter depending on the propertiéé of the tissue of the sequence used, and of

the infusion rate (Kj,). Brix put forth-a mathematical description that incorporated a

term that allowed the adjustment of an AIF parameter.
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1.5 Tofts Model

Tofts model takes a different approach to the arterial input function (AIF), but
retains the fundamental assumptions of the GKM (General Kinetic Model) [9],[10]. In
the Tofts model, the input function is assumed to be the result of a pulse bolus injected
into a two compartment system.

The arterial input is modified by diffusion transfer of contrast material between the
vascular space and body extravascular space; this system of compartments modifies the
pulse bolus into a biexponential arterial input-function [11].

This model consists of two parts: a combartmental model to establish the time
course of the contrast agent (Gd-DTPA) t}??ggr'concentration in the tissue; and relate to
observed MRI signal enhancement. w

A compartmental model is used fo model the ‘concentration of tracer with time. It
consists of a plasma volume, connected to a large extracellular space which is
distributed throughout most of the body (e.g., muscle). The kidneys drain tracer from
the plasma, and hence from the extracellular space. We have modified this model by

adding a fourth compartment, the lesion, which is connected to the plasma through a

leaky membrane (Fig 1.8).
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Fig 1.8 Illustration of Tofts Model.
Most methods of analyzing dynamic,contrast-enhanced T1-weighted data have used
a compartmental analysis to obtain some combination of the three principle parameters:
the transfer constant (Kyans), the extré\"/é'ép_'g._i]ér extracellular space (EES) fractional

1 R
volume (Ve), and the rate constant (Kep). -:

Three Standard Kinetic Parameters
Symbol Preferred short name Full name
lrans Transfer Constant | Volume transfer constant between blood plasma
and EES
Kep Rate Constant Rate constant between EES and blood plasma
Ve EES \Volume of extravascular extracellular space per
unit volume of tissue

Table 1.1 Three Standard Kinetic Parameters.

20



Most methods of analyzing dynamic contrast-enhanced T1-weighted data have used
a compartmental analysis to obtain some combination of the three principle parameters:
the transfer constant (K™"), the extravascular extracellular space (EES) fractional
volume(ve), and the rate constant (Kep). The transferconstant and the EES relate to the
fundamental physiology, whereas the rate constant is the ratio of the transfer constant to

the EES [10]:

K trans
V

e

K

ep

(1.8)

The rate constant can be derived from,the shape of the tracer concentration vs time
data, whereas the transfer constant and EES reduire access to absolute values of tracer
concentration. The transfer constant Km-,mﬁ has several physiologic interpretations,
depending on the balance between _capillar;bermeability and blood flow in the tissue of
interest.

In high permeability, transfer constant is equal to the blood plasma flow per unit
volume of tissue:

K™ = F p(1- Hct) (PS >>F) (1.9)

Where F are Perfusion (or flow) of whole blood per unit mass of tissue, o means
the density of tissue, Hct represent for Hematocrit, P means total permeability of

capillary wall, S means surface area per unit mass of tissue.

In the other limiting case of low permeability, where tracer flux is permeability
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limited, the transfer constant is equal to the permeability surface area product between
blood plasma and the EES, per unit volume of tissue [12]:
K™ =PSp (PS << F) (1.10)

Tracer flows passively from the blood plasma in a permeable capillary into the EES,
through microscopic pores or defects in the capillary walls. It also called the interstitial
space.

The rate constant ke, is formally the flux rate constant between the EES and blood
plasma. It’s always greater than the transfer.constant K™, For a range of typical EES
fractional volumes seen in tumors andamultiple .sclerosis (Ve = 20% ~ 50%), kep is two to
five times higher than K™ [10]. ' -~.=
Flow-Limited Model (High Permeébility)'

Its first assumption is that arterial and venous blood have well-defined
concentrations, supplying and draining the tissue under study. Second, because
permeability is high, venous blood leaves the tissue with a tracer concentration that is at
all times in equilibrium with the tissue. Thus, soon after injection of the tracer, the
arterial concentration is high, the venous concentration is low, and most of the tracer is
being removed from the blood as it passes through the tissue.

For an extracellular tracer, the model can be extended by setting the venous
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concentration equal to that of the EES. The effect of intravascular tracer on the MR
signal can be ignored (ie, the vascular signal is small compared with the tissue signal).
In this case the following differential equation relating tissue concentration C; to arterial
plasma concentration C, can be obtained:

9 a-Heyc, -Sy (1.11)
dt v,

PS-Limited Model (Low Permeability)

If flow is high, the blood plasma can.be considered as a single pool, with equal
arterial and venous concentrations. The transpo.rt of-tracer out of the vasculature is slow
enough not to deplete the intravascular ddi;_@;_éfg_r__]tfation.

The rate of uptake is then'determined by i[he pérmeability surface area product of the
capillary wall and the difference betWeen the bleod plasma concentration and the EES

concentration. If the contribution of tracer in the intravascular space is ignored, the

transport equation is

dc,
dt

~PSp(C, ) (L12)
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1.6 Application in DCE-MRI

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is being used
in oncology as a noninvasive method for measuring properties of the tumor
microvasculature.

For DCE-MRI to be used as a biomarker, the method for quantifying the assay has
to be defined. There are several goals to be weighed in optimizing the biomarker
definition. The biomarker needs to (1) maximize the sensitivity to biologic changes
caused by treatment; (2) capture tumor heterogeneity, which is an important as a
biomarker [13].

Fig 1.9 is an illustration of paramé;fig__.énalysis of ' DCE-MRI images using an
empirical parameter, the SER, for-a patien'[:inith IocalIS/-advanced breast cancer treated
with doxorubicin-cyclophosphamide.(AC) chemotherapy. MRI was performed before
chemotherapy, 2 weeks after the first cycle of chemotherapy, and at the end of AC
treatment, before surgery, using a three-time point DCE-MRI method.

Pharmacokinetic properties of the tumor were quantified by computing SER at each
pixel, defined as SER=(S1-S0)/(S2-S0), where SO, S1 and S2 are the pre-contrast
(baseline), early post-contrast and late post-contrast signal intensities.

DCE-MRI is a promising biomarker candidate for assessing antiangiogenic

treatment. Correlative studies performed in combination with therapeutic trials have
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demonstrated proof of concept for DCEMRI as a biomarker; however they have not

been powered to adequately evaluate biomarker performance [13].

DCE-MRI Metric Baseline Past=1 Cycle Post—4 Cycles
Functional volume, mL 71 66 12
Hotspot SER 2.13 1.43 1.66
Fast washout volume, mL 26 1.2 14
Fast washout volume fraction, % 37 2 12

Fig 1.9 Contrast-enhanced magnetic resonance images (top row) and signal enhancement ratio (SER)
parametric maps (bottom row), acquired before treatment (A), 2 weeks after the first cycle of
doxorubicin-cyclophosphamide (B), and at the end of chemotherapy, before surgery (C), for a patient with
locally advanced breast cancer. Blue, green, and red color coding corresponds to low, moderate, and high

values, respectively. [13]

Another paper demonstrates a single slice imaging technique. The image acquisition

is performed in less than 500 ms making it relatively insensitive to respiratory motion.

Data from phantom studies and a reproducibility study in solid human tumor. The

reproducibility study showed a coefficient of variation (CoV) of 19.1% for Kgans and

15.8% for the initial area under the contrast enhancement curve (IAUC). This was
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improved to 16 and 13.9% if tumor of diameter less than 3 cm were excluded. The
individual repeatability was 30.6% for K™ and 26.5% for IAUC for tumor which are
greater than 3 cm diameter [14].

The individual patient data for two commonly used parameters, K™ and 1AUC
(60), calculated from R1 values, are given in Table 1.2. Although no correlation was
seen between T2 signal intensity and enhancement parameters, the second case in Table
1.2 had very high T2 compared with the other cases, consistent with a cystic nature of
the metastasis. Guidelines from a recent.JS. national cancer institute workshop on
DCE-MRI state that tumors in a fixed superfi.cial location should be at least 2 cm in

diameter and other tumors should be at'3"_§m__ ln diameter. This study shows a tendency

for greater variability with redugcing size-,'-and excluding lesions less that 3 cm in

diameter reduced CoV.

K™ (min~") IAUC(60)
Site Primary Size (cm) Scan | Scan 2 % change Scan | Scan 2 % change
Liver Colorectal 7 Olla (A1) 4.3 10 9.7 37
Liver Colorectal 2.8 0018 0.014 222 1.2 LI 152
Liver Colorectal 47 0llé 0.100 14.0 9.3 82 1.6
Liver Colorectal 6 0.186 0.192 32 6.6 15.1 91
Liver Colorectal 104 0037 0.044 18.9 36 42 156
Liver Colorectal 17 0085 0.081 47 67 6.7 05
Liver Lung 4.6 0039 0051 30.8 35 43 24
Lung Lung 25 0231 0.298 29.0 174 210 208
Lung Lung 7 0.152 0.171 125 126 145 150
Lymph node Melanoma 24 049 040 185 350 287 180
Kerans IAUC(60)

All cases Mean change (%) 3.1 1.7

CoV (%) 19.1 15.8

Repeatability (%) 36l 295
Size>3em Mean change (%) 6.1 43

CoV (%) 155 139

Repeatability (%) 306 265

Table 1.2 Individual patient data showing tumour size, mean difference, coefficient of variation (CoV)

and repeatability for K™ and IAUC(60) for two scans.[14]
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The colorectal liver metastases group also had lower CoV and repeatability values
(K™ 14.2 % and 26.5% and IAUC(60) 11 % and 21.3%, respectively), although this
may be related to the fact that this group had relatively larger tumor.

Another approach explore the randomized trials confirm these benefits and show
equivalent survival for adjuvant and neo-adjuvant chemotherapy in patients with
primary operable breast cancer [16-17]. A further benefit of neo-adjuvant chemotherapy
is the opportunity to assess the chemo-responsiveness of the tumor. The overall
response rates reported vary between 60% and.100%, with complete clinical responses
ranging from 10% to almost 50%, avoidiné mastectomy in most cases. Clinical
responders have a better prognasis tham d(')igfn;_onlﬁresponders [18].

The prognostic importance of;histo-patlfi(.)logic respénse among patients undergoing
neo-adjuvant chemotherapy for breasf eancer is.also recognized [19]. Patients who have
complete pathologic response or pathologic minimal residual disease have a longer
disease-free and overall survival compared with patients who have gross residual
disease. The ability to identify non-responders early after the start of chemotherapy
would be of major benefit because it would enable treatment to be adjusted or enable
alternative and possibly more efficacious treatments, such as other types of

chemotherapy or early surgery, to be offered as soon as possible [20].

Fig 1.10 shows the change in transfer constant in perimenopausal woman with a
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grade 3 infiltrating ductal carcinoma of the left breast not responding to mitoxantrone

and methotrexate chemotherapy.

After one cycle of treatment (middle row), an increase in the transfer constant

median and range is seen (57% and 34%, respectively), compared with a 10% decrease

in tumor size. After two treatments (bottom row), a further increase in the transfer

constant median and range is seen (186% and 181%, respectively) on the transfer

constant histogram, compared with a 11% increase in tumor size [21].

Subtraction Transfer Constant Transfer Constant
Image Map Histogram

Frequency

0.4 0.8 1.2 1.6 2z
Transfer constant (/min)

Frequency

o 04 08 12 16 2
Transfer constant (/min)

Frequency

0 04 0.8 12 16 2
Transfer constant (/min)

Fig 1.10 Columns show anatomic subtraction images, corresponding
Transfer constant maps, and histograms from pixel data. Row shows
data before treatment and after one and two cycles of mitoxantrone

and methotrexate chemotherapy, respectively. [21]
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Chapter 2 Theory in Segmentation

2.1 Segmentation in normalized cuts method

Segmentation refers to the process of partitioning a digital image into multiple
regions. The goal of segmentation is to simplify or change the representation of an
image into something that is more meaningful and easier to analyze [22]. Image
segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in
images. The result of image segmentation;is.a.set of regions that collectively cover the
entire image, or a set of contours extracted frorﬁ the<image. Each of the pixel in a region
are similar with respect to some charac't}g}ij_s_t.ic or computed property, such as color,
intensity, or texture.

Several general-purpose algorithrﬁs and techmiques have been developed for image
segmentation. Since there is no general solution to the image segmentation problem,
these techniques often have to be combined with domain knowledge in order to
effectively solve an image segmentation problem.

The “normalized cuts” method was first proposed by Shi and Malik in 1997[23] . In
this method, the image being segmented is modeled as a weighted undirected graph.
Each pixel is a node in the graph, and an edge is formed between every pair of pixels.

The weight of an edge is a measure of the similarity between the pixels. The image is
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partitioned into disjoint sets by removing the edges connecting the segments. The
optimal partitioning of the graph is the one that minimizes the weights of the edges that
were removed (the “cut”). Shi’s algorithm seeks to minimize the “normalized cut”,
which is the ratio of the “cut” to all of the edges in the set.

The normalized cut criterion measures both the total dissimilarity between the
different groups as well as the total similarity within the groups. The grouping algorithm
consists of the following steps:1. Given an image or image sequence, set up a weighted
graph G = (V,E) and set the weight on the edge.connecting two nodes to be a measure of
the similarity between the two nodes..2: Solve ....(D—W)x = A Dx for eigenvectors with
the smallest eigenvalues. 3. Usg the eig'ehx\ff'_e'_g_t.dr with the second smallest eigenvalue to
bipartition the graph. 4. Decide:If, the c:l;J:rrent partit.ion should be subdivided and
recursively repartition the segmented.parts if necessary.

A graph G = (V,E) can be partitioned into two disjoint sets, A and B, by simply
removing edges connecting the two parts. The degree of dissimilarity between these two
pieces can be computed as total weight of the edges that have been removed. In graph
theoretic language, it is called the cut :

cut(A,B) =Y w(u,v) (2.1)

The optimal of a graph is the one that minimizes this cut value. Although there are

an exponential number of such partitions, finding the minimum cut of a graph is a
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well-studied problem and there exist efficient algorithms for solving it. Wu and Leahy
[24] proposed a clustering method based on this minimum cut criterion. In particular,
they seek to partition a graph into k-subgraphs such that the maximum

cut across the subgroups is minimized.

This problem can be efficiently solved by recursively finding the minimum cuts that
bisect the existing segments. As shown in Wu and Leahy's work, this globally optimal
criterion can be used to produce good segmentation on some of the images.

However, as Wu and Leahy also noticed.in their work, the minimum cut criteria
favors cutting small sets of isolated nedes in tHe graph. This is not surprising since the
cut defined in (1) increases with the numbe_rof edges going across the two partitioned

parts. Fig. 2.1 illustrates one such gase:

better cut —

|
|
1 :
e ®¢o ! B .
® ® .. o | ® -® " Min-cut 2
® .
eg00 0 ®
[ ] |
. . 1 .
® .. .:
®© 0 g0 g © ® Min-cut 1
l :
!
1

Fig 2.1 A case where minimum cut gives a bad partition. [23]

Assuming the edge weights are inversely proportional to the distance between the

two nodes, we see the cut that partitions out node n; or n, will have a very small value.
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In fact, any cut that partitions out individual nodes on the right half will have smaller
cut value than the cut that partitions the nodes into the left and right halves.

To avoid this unnatural bias for partitioning out small sets of points, the paper
propose a new measure of disassociation between two groups. Instead of looking at the
value of total edge weight connecting the two partitions, our measure computes the cut
cost as a fraction of the total edge connections to all the nodes in the graph. It’s call the

normalized cut (Ncut):

cut(A.B) . cut(A,B)
assoc(A, V) =.assoc(B,V)

Ncut(A,B) = (2.2)

Where assoc(A,V) is the total connéction fram-nodes.in A to all nodes in the graph
and assoc(B,V) is similarly defined. WitF;'E:_;-ﬂ_:l_i_s'definition of the disassociation between
the groups, the cut that partitions. out smaII isalated pbints will no longer have small
Ncut value, since the cut value will élmost'certainly be a large percentage of the total
connection from that small set to all other nodes.

In the same way, it can define a measure for total normalized association within

groups for a given partition:

assoc(A, A) N assoc(B, B)

Nassoc(A, B) =
assoc(A,V) assoc(B,V)

(2.3)

Where assoc(A,A) and assoc(B,B) are total weights of edges connecting nodes

within A and B, respectively. We see again this is an unbiased measure, which reflects

how tightly on average nodes within the group are connected to each other. Another
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important property of this definition of association and disassociation of a partition is

that they are naturally related:

cut(A,B) N cut(A.B)
assoc(A,V) assoc(B,V)
_ assoc(A,V)—assoc(A, A) N assoc(B,V)—assoc(B, B)
assoc(A\V) assoc(B,V)
o assoc(A, A) N assoc(B, B)
assoc(A,V) assoc(B,V)

Ncut(A, B) =

=2—Nassoc(A, B) (2.4)
Hence, the two partition criteria that we seek in our grouping algorithm, minimizing
the disassociation between the groups.and. maximizing the association within the
groups , are in fact identical and can.oe satisfiéd simultaneously. In our algorithm, we

will use this normalized cut as thelpartition<eriterion.

a4
| |
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2.2 Gradient Vector Flow

Snakes [25], or active contours, are curves defined within an image domain that can
move under the influence of internal forces coming from within the curve itself and
external forces computed from the image data. The internal and external forces are
defined so that the snake will conform to an object boundary or other desired features
within an image. Snakes are widely used in many applications, including edge detection
, shape modeling [26-27], segmentation [28-29].

A traditional snake is a curve, that moves through the spatial domain of an image to
minimize the energy functional:

E= I:%[a‘x' (s)‘2 +ﬂ‘>&" (s}Q+ Eext (x(s))ds (2.5)

The external energy function Eex: Jis d(e:Eived from fhe image so that it takes on its
smaller values at the features of intefest, such asiboundaries. Given a gray-level image
I(x,y) , viewed as a function of continuous position variables (x,y), typical external
energies designed to lead an active contour toward step edges are:

Ee(it) (X, y) = _|VI (X, y)|2 (26)
EQ (% y)=-|V[G, (x ) x1(x Y]

where Go(X,y)is a two-dimensional Gaussian function with standard deviation and
gradient operator. If the image is a line drawing (black on white), then appropriate

external energies include
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Ee(ft)(xi y) =1 (X! y) (27)
ES (% Y) =G, (X, y)*1(X,y)

A snake that minimizes E must satisfy the Euler equation :
ax (s)— X (s)-VE,, =0 (2.8)
This can be viewed as a force balance equation
F,+F®=0 (2.9

The internal force discourages stretching and bending while the external potential
force pulls the snake toward the desired image edges. The gradient vector flow snake
approach is to use the force balance condition as a starting point for designing a snake.
It define below a new static external force field, which we call the gradient vector flow
(GVF) field. To obtain the correspondii;i.;é;_dynamic snake equation, we replace the
potential force, yielding : w

X (5. = aX (5,) =K (5, 1) +V (2.10)

We call the parametric curve solving the above dynamic equation a GVF snake. It is
solved numerically by discretization and iteration, in identical fashion to the traditional
snake. Although the final configuration of a GVF snake will satisfy the force-balance
equation, this equation does not, in general, represent the Euler equations of the energy
minimization problem. This is because v(x,y) will not, in general, be an irrotational
field . The loss of this optimality property, however, is well-compensated by the

significantly improved performance of the GVF snake.
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We define the gradient vector flow field V(X,y) = [u(x,y) , v(X,y)] to be the vector

field that minimizes the energy functional

wvu-(u-f)(17+17)=0
wv—(v=1)(12+17)=0

(2.11)
This variational formulation follows a standard principle, that of making the result
smooth when there is no data. In particular, we see that when |Vf| is small, the energy
is dominated by sum of the squares of the partial derivatives of the vector field, yielding
a slowly varying field. On the other hand, when |Vf| is large, the second term

dominates the integrand, and is«minimized by setting v = Vf . This produces the

desired effect of keeping v nearly equalte the.gradient of the edge map when it is large,

-
e

but forcing the field to be slowly-varying iFl_’z:hblmogeneo_us regions.

The parameter x4 isa reguléfri.zat.ion parameter governing the tradeoff between the
first term and the second term in the integrand. This parameter should be set according
to the amount of noise present in the image.

We note that the smoothing term —the first term within the integrand by Horn and
Schunck in their classical formulation of optical flow [30]. It has recently been shown
that this term corresponds to an equal penalty on the divergence and curl of the vector
field [31]. Therefore, the vector field resulting from this minimization can be expected
to be neither entirely irrotational nor entirely solenoidal.

Using the calculus of variations [32], it can be shown that the GVF field can be
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found by solving the following Euler equations :

wvru—(u=f)(f2+1,7)=0

HVAv—(v- fy)( 2+ fyz)

(2.12)
0

These equations provide further intuition behind the GVF formulation. We note that

in a homogeneous region, the second term in each equation is zero because the gradient

of f(x,y) is zero. Therefore, within such a region, and are each determined by Laplace’s

equation, and the resulting GVF field is interpolated from the region’s boundary,

reflecting a kind of competition among the boundary vectors [33].

< ";55 I
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Chapter 3 Method

3.1 Clinical Experiment

The image raw data is gathered by Dr.Chang in National Taiwan University Hospital.
This clinical experiment is performance in 1.5T Siemens MRI system. We use
gadolinium as contrast agent and Avastin as the chemotherapy drugs.

After inject the contrast agent, we scan the patient’s lung 100 frames in about 100
seconds, each frame will have four sagittal,view images and one axial view image.

98 99 100

4 Sagittal lung images 1 axial lung image

Fig 3.1 Image sequence in the clinical experiment.
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3.2 Pre-processing in DICOM images

After DCE-MRI experiments, the console will output DICOM format images. If we
want avoid motion effect in Mistar software, we should do motion correct operation
before the DICOM input to the Mistar software.

Suppose we have two images like figure 3.2. Left side is the reference image (we
suppose the tumor position is correct ), and right side is temporal image ( the tumor
position will have shift effect because of the motion during scan process ) which we

want to correct it.

9 ‘

Reference Image Temporal Image

Figure 3.2 Reference image and temporal image.

The red circle indicate the tumor ( to simplify the motion problem, we assume

the tumor volume in each image is the same with each other ), and we can clearly

identify the tumor position (red circle) in reference image and temporal image is quite

different. If we input the sequence DICOM image data to the Mistar software, we

supposed it will have incorrect calculated information like figure 3.3.
39



Reference image

- Temporal image 1

Temporal image 2

Q Temporal image 3

Temporal image 100

Figure 3.4 Adjust motion problem by moving temporal image to reference image.

In fact, we select reference image in first time. Then we will find out the proper ROI

in reference image (Fig 3.5) making the correlation with temporal images.
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Fig 3.5 S?!_ecf!"pr;)ﬁét ROLin reference image.
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We will get the proper I?:Orfr(
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T
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Area

ROI (Reference Image)

Temporal Image

Fig 3.6 Get proper ROI from the reference image to compare with the similar area in the temporal images.

To increase the specification in tumor property, we can select the tumor position by

user defined or by automatic segmentation method.
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By User defined

Step 1: Select the contour by user (dot line) in Fig 3.7

Fig 3.7 Contourwhich-decided by user.

[ s L |

Step 2: We set gray level in the area o_ut:side the (_:'(;n'tour be zero (black) in Fig 3.8

Fig 3.8 Make outside gray level be zero.
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By automatic segmentation method

Step 1: Select the area which normalize cut will do operation in Fig 3.9

Fig 3.9 Preparé 5r‘j{;’ge_r.ROI for normalize cut.

Step 2: After running normalize cut prograrr-l:,- we get a-binary image and its

corresponding gray level image:in Fig 3.10.

Fig 3.10 Results which determined by the normalize cut operation.
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Step 3:  Run the gradient vector flow (GVF) program to determined the contour in

Fig 3.11 ~ Fig 3.13

test image edge map

I fi ;
Fig 3.11 Four maps (test image,| edge-map, edge map gradient, normalized

GVF field) for determinéd grdldient vector'-ﬂc_)_w.

Fig 3.12 Running gradient vector flow program to determined the contour
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Fig 3.13 Final image which decided by normalize cut and gradient vector flow.
The similar area should be the possible.area which tumor position is inside in the
temporal images. Although the tumorspositiontin temporal images is differ with each

other, the tumor position in reference i'rﬁ'_fa_’gﬁe_ ))vill provide a standard to deal with the

problem. Since we already get the:ROI in both reference image and temporal image, the

maximum correlation will determined the correct position.

Fig 3.14 Correlation between reference and temporal image
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After we do the correlation with the reference and temporal image, there exist many

correlation coefficients. What we want is the maximum correlation coefficient.

The maximum correlation coefficient represent the most proper tumor position in

the temporal images. Once we find the proper position, the next step is to shift the

temporal images to the new position (fig3.8).

r ———————— -

i e g, s e, e —
F % Fy

Fig 3.15 Shift temporal images to the arbitﬁr‘&,bi)éit;ion which correlation value is maximum.
. 'R || @
Since we suppose the tumer is-rigid; the reference:image will change to get the most
similarity in tumor shape. That is, the .image which was corrected will be the next

reference image. Under the assumption, we suppose to correct total temporal images in

the whole image sequences.
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3.3 Mistar software processing

We use the commercial software Mistar to accomplish the DCE-MRI study and
identify the difference between image data with motion correct or not.

After we lunch the DICOM data from MRI console, it shows the lung image in both
sagittal and axial view in the upper right during the software window. In order to find
the arterial input function (AIF), we select the axial view and set the ROl ( yellow
square ) in the aorta to get the AIF. The upper right shows the 100 time frames signal

intensity in aorta which used to be the AlF.

&

o 2)

H

] e Ty Sl i - Ha
Processing Workflow | PlotProperty | Mowse Contiol Help |
Image Parameters

The detected dynamic frame interval (temporal resolution) is 1.000 (sec)

If not correct, chick the button to modify the Frame Interval values Edit Paxameters

To adjust baseline and work range on the curve, see "Mouse Control Help" panel

Baseline (magents) from |1 |13 Tazk (yellow) from| 1 o100

Help | iPlat Newt 5>
S5 | T WP T Mean  [Fome76 | | e[ MIP [ Mean T Sub i Ei= r r

|Cursar0.27 Pivel vaue:d |RD1: 10410 (Nmask=100) Median:94 Mean 3 +/-8 |Tirne (s2c); 76.025 v:71.8363 |

Fig 3.16 Interface in operating Mistar software.
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Besides select the AlF, we also decided the area which need to be calculated in the

software. The selection of the area should be include the tumor and not exceed to much

to waste the processing time (fig 3.17).

| 51\ ROT Tol - MIS i 2)2)8Tire-2) B 71 -m]
(7| ofe Bk
&> 5% @

ROI ]Image | Options |

ow[0 H@l?ﬂ M

ROLL # Pizcels 7954
Ares (emt2): 95153
Valume (em*3) 63081
Perimeter (mm) 391 .398
Mindmum: 1.000
Maximum: 63,000
Median: 10.000
Mean: 11941
St ew: 7280
Total. 9.4979E+004
MR

ROLL Antomatic ROT

X‘ §'ﬂ]] i E‘ :‘

1 ROI i
wonel size:8.685 mm*3 zoom:3.633x3.633 angle: 0 window: 72 level 30 Cursor: 192,255 w: 54 (Outside)

Fig 3.17 Select processing area to in Mistar software. If we select large area, it will spend more time to

finish the calculation.

When we decided the curve of AIF and the region which needed to be execute, then

we can push the processing button to run the entire calculation like fig 3.18.
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Fig 3.18 Processing the calculation (blue.image.is the area which selected to calculate).

After Processing, we can get the DCE-MRI parameter maps . For example: The

Upper left is kep; the upper right.is Ve; the 10wer!leftis K*™:; the lower right is V/,.

I PO I U AP e > L VI SN 3

-

[Cursr 200 P valin 0 RO T10 Pimaack 1001 Madiars 17 Hars 20-+/- 13 Cr]

Fig 3.19 DCE-MRI parameter maps (upper right is ve, upper left is ke, lower right is v,

and lower left is k™).
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Chapter 4 Results

4.1 Results from Mistar software

After we finish the processing in Mistar software, the parameter maps will show us
the information about the DCE-MRI.

First, we should select the most proper tumor contour in the maps. We can console

the T1-contrast image for reference to adjust the correct contour (fig 4.1).

T1-Contrast enhance Image T1-Weighted Image

Fig 4.1 Select tumor contour by doctor to make sure the area is exactly in tumor position.

When we select the proper contour about the tumor, the DEC-MEI parameter maps

can be also determinate like the fig 4.2.
50



Kep Map

V. Map V, Maps

Fig 4.2 Four parameters maps results which calculated by Mistar software, the yellow line in the pictures

are the tumor position and shape decided by doctor.

The Mistar software allows us to output the detail values in each pixel which is in

the range of tumor contour. Because we want to know the information in entire tumor,
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we should calculate the values in all slices. Here we have four slices in the sagittal view,
and there should be four different parameter maps ex: K",
The following table shows the data which we collect in this experiment. There are

eleven patients in it. Some of them having twice or three times cases, even four times is

include.

< ";55 I
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Chart No. |Age |Gender date of MRl [K"™" (mean) |K"™" (SD) [Ke, (mean) |Kep (SD) Ve (Mean) |Ve (SD) |V, (mean) |V, (SD) |Pixel Np. [Volume
F779| 52|F before 20080110 172.8782 86.5904 1263| 511.1793| 146.4887| 69.9464| 38.0406| 22.3202 3792 26.24
after 156.4238 119.044 1355 1439 273.98/421.8603| 46.7213| 35.2522

before 20080131 127.1347 77.6199 1299| 669.2082| 110.8461| 84.0982| 31.8774| 31.1185 3735 25.87
after 114.408 86.1253 1268| 871.3224| 123.993|136.2469| 35.5293| 31.9941
before 20080220 110.3947 48.4889| 969.2542| 502.518| 164.1305|126.0281| 24.6484| 16.2942 2085 14.44
after 122.5904 51.9391].996.4077|7492.7662| 166.7213/120.7124 24.142| 16.7437

M329| 62|M before 20070526 98.0442 95_.;85.64 /—‘\ 1164 721004| 101.6869|118.3307| 23.3014| 23.8693| 10241 76.69
after 90.019) 92.0413|| (= 1024| 940.2185| 116.109| 150.226| 235816 23.6555
before| 20070801  44.4853 | 55.%87||| 7187123 1003 122.2082[199.0388] 29.1401] 203651 4731 382
after 341365  60.8422|| |457.9362] /936,201 165.4887|284.2617| 24.7339] 29.3889
before 20071003 57.8705 73.j613 T_8_50.12,4_£ 1062| 83.4321|121.6247| 21.1146| 25.1096 2826 28.18
after 45.9646| 86.4798|. 742.3719 1526| 74.1359|163.2148| 25.9409| 33.4157
before 20071121 45.1077 54.8354 822.802| 922.8821| 56.2496| 75.8963| 21.0384| 21.8096 5025 43.64
after 47.6603 59.579| 721.9954| 923.8309| 85.7731| 139.319, 22.7389| 27.2716

M871| 49|M before 20080118 96.9632 57.9461 1636| 879.2621| 83.6799| 92.9254| 31.7942| 20.1439 4155 36.09
after 93.7745 67.0807 1544 1006| 98.8046(113.8152| 33.3875| 22.6192
before 20080212 52.9786 43.0451 1014| 813.8075| 92.4277|113.5992| 23.4994| 21.2353 2429 21.09
after 59.7205 61.7942 1128| 888.0041| 77.1618| 83.8275| 21.4063 19.161
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Chart No. |Age |Gender date of MRl [K"™" (mean) |K"™" (SD) [Ke, (mean) |Kep (SD) Ve (Mean) |Ve (SD) |V, (mean) |V, (SD) |Pixel Np. [Volume
M141| 68|M before 20070529 100.9661 60.5172| 781.2155| 519.3872| 214.7719|197.9482| 17.6092| 14.2926 3424 23.71
after 97.9588 57.7668| 787.2339| 567.8119| 229.6203 209.1| 20.4229| 16.4177

before 20070815 87.1577 70.3808 1225| 858.1167| 89.4633| 92.6278| 20.2625| 17.9677 2042 14.13
after 81.0984 70.6965 1037| 825.8859| 122.3457(144.6699| 20.1102| 18.1868
before 20071031 99.6389 85.1381 1175| 869.0652| 119.4608|104.4188 21.06| 18.8583 983 7.94
after 74.6541 65.4328| -.870.0458|7794.2426| 167.2279|234.8201| 23.5371| 28.6724

M740| 60|M |before 20080325  111.5457| AapR| ~ 1948 \1276| 93.0266[123.4674] 34.8995 23.8812| 1840| 15.97
after 88.8685 86.7014 | ﬂ;?;_{§1$ 1569| 198.7152|287.2727| 41.1228| 28.7461
before|  20080421]  107.3975] '6.20R4||| “Hi1639| @2.2981) 80.0312| 66.3173] 20.6098] 151292 961 958
after 935100| 52.6339||| 1620 /.. 1038 72.6608| 77.4495 23.7804| 19.9829
before 20080509 76.3165 483744 : 11,6_TA: w7 79:1787| 108.6878(120.3225 16.566| 11.9694 1166 11.63
after 727015/  67.1446 1089 1382| 171.6475/299.9304| 16.8148  17.546

M826| 58|M before 20080402 121.7588| 105.2475 1279| 862.7111| 122.5373| 104.345| 31.1425| 28.5017| 10228 70.82
after 120.7957| 119.5485 1206| 979.0496| 148.0378|184.8912| 33.3206| 32.2619
before 20080429 233.9865| 217.0597 1574| 983.4117| 160.6663|106.3205| 49.0664| 38.8932 7993 55.34
after 232.8203| 241.7068 1453 1143| 306.2463(460.7253| 56.6718| 56.2376
before 20080520 67.4415 63.5726 660.581| 545.4191| 186.8765|159.4787| 23.2834| 22.3548 4704 32.56
after 95.6312| 121.7479| 958.7119| 985.875| 222.0485|266.6306| 27.6603| 26.8991
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Chart No. |Age |Gender date of MRl [K"™" (mean) |K"™" (SD) [Ke, (mean) |Kep (SD) Ve (Mean) |Ve (SD) |V, (mean) |V, (SD) |Pixel Np. [Volume
M469| 77|M before 20061030 219.3056| 167.3221 1625 934.4481| 128.5896| 90.6103| 58.9645| 40.7381 5275 52.6
after 194.4157| 170.0952 1393 1150| 164.4108|203.3105| 60.8883| 47.0387

before 20061205 40.5627 44.0976| 680.6431| 781.0105 85.153(136.4305| 33.1725| 31.6663 3444 34.34
after 45.6771 58.8942| 645.5044| 835.5118 76.261|118.7002| 27.6519| 29.4886
before 20070111 89.1366| 100.7679] 794.7162| 801.439| 146.5321|202.2965| 45.5301| 43.4019 5591 38.62
after 80.3615| 112.4534| .722.1975/°922.8178| 136.6053|208.5487 48.299| 50.8263

F928| 58|F before 20080119 238.59 123_.28.95.3 F\ 2185 -86'3.'_2497 115.288| 49.7335| 55.4066| 29.0878 7765 53.75
after 226.4178| 138.2651|| (1:=1881] | 1122| 217.97305.2919] 66.1131] 39.5759
before 20080214 89.6262| 61.20%8 | iE?SJ}?? 809,7152| 76.6474| 70.779| 44.6246| 21.4567 6817 47.19
after 51.7822| 45.7280||| 1079 /.. 1003 88.0855/127.0202] 53.5089 29.2859
before 20080306 106.0227 48.]}355: T__ 154_T2F"'~c633.4481 79.243] 41.985| 35.8371] 16.0028 749 5.18
after 109.0774|  57.4687|» . 1311/7690.5937| 134.7704/136.7922| 37.5701| 18.058

M372| 41|M before 20070602 205.999 98.3014 2052| 978.0806| 116.5311| 75.6308| 37.5079| 23.2589 3099 21.46
after 180.6705| 104.3126 1672 1016| 153.9742|148.2009| 40.5608, 32.3914
before 20070816 81.0472 42.49 1073| 634.5683| 106.9744| 90.8074| 21.0072| 14.3647 1249 8.65
after 80.5124 42.4462 1002| 683.3029| 131.9744|128.8156| 22.1954| 15.6253
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Chart No. |Age |Gender date of MRl [K"™" (mean) |K"™" (SD) [Ke, (mean) |Kep (SD) Ve (Mean) |Ve (SD) |V, (mean) |V, (SD) |Pixel Np. [Volume
M664| 47\M before 20070801 69.9793 44.6357 1133| 754.1266| 113.6001(125.8711| 26.2577| 19.9017 1688 11.68
after 53.2725 41.0073| 853.5101| 795.0104| 145.8181| 195.008] 30.8104| 23.3339
before 20071003 35.2455 43.9684| 700.7417| 796.9888| 60.7749| 83.7166| 32.3862 22.407 1173 8.11
after 28.7025 39.6834| 424.3495| 632.6747| 91.1705|154.0047| 35.1117| 25.7059
M807| 44|M before 20070725 178.2295| 145.7388 18_10 : 1176| 130.5924|123.2023| 92.6686| 45.5533 1521 13.21
after 142.2906| 146.8902 1538 11629| 123.5095| 134.204| 98.4313| 56.2298
before 20071011 81.6464 544193 ~ 1Bl 9956672 112.3391|109.3154| 31.6754| 15.0083 345 3.45
after 70.7594 56.9641] | ﬂ;;;_f@}$ 917.3103| 162.9246|233.9392| 36.3101| 22.3327
| Iyl

Table 4.1 Four parameter values in‘e

l| s H

achpatientiinclud
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4.2 Data analysis

The common catalog about the cancer chemotherapy treatment can be divided into
three terms: Before (Baseline) treatment, Immediate after treatment (after the first
course of chemotherapy) and final treatment (the final study before stopping chemo-
therapy).

We divided the patient into two groups. Group A: The treatment include only
before treatment and final treatment; Group B: the treatment include before treatment,
immediate after treatment and final treatment:.\\We can plot the histogram about the four
DCE-MRI parameters to comment the response.of treatment.

The following figure shews these pa;*?'g]_é.t-ers which the patient in group A. The
vertical axis shows the normalize“of the:thumber of. pixels in the area which we

consider is tumor, while the horizontal axis.means the normalized histograms of

amplitude in each DCE-MRI parameters (K", Kep, Ve, Vp).
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Group A (M372)
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Group A (M664)
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Group B (F779)
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Group B (M826)

Group B (M141)
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Group B (F928)

Group B (M740)
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Chapter 5 Discussion

5.1 Problems in Data Analysis

According to the results present in 4.2, we find almost every patient in group A
shows the reasonable results in the figure about four different parameter. The curve after
motion correction process will lower and have trend through the vertical axis.

In group B, it also exist the same phenomenon in the distribution curve. But in some
patient, the baseline curve (red curve) is.in.the right side, some final curve (blue curve)
is in the middle, and the immediate/curve (gree.n curve)is in the left. These kind of data
need to be analysis more detail or analyéis'x'ij_-'_el_a.n-other way to explain it.

Besides the curve position will _diffe;'-(red, greeﬁ, blue) in each chemotherapy
process (Baseline, Immediate, Final)., the heightin each curve is also different. That’s
because the area under distribution curve have been normalized to be one. And we can

find that in most patients, the baseline curve is the lowest while the final curve is the

most height in the diagram.
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5.2 Inaccuracy Problems

There may exist some reason to explain the results (from parameter maps) which is
not totally satisfy with the situation. First, in our assumption, the tumor shape is solid
and stable (not change with time). But in fact, many tumor’s shape do have some
different. Even in the scan processing, the slice will not so exact to cut, so the image in
the same position will differ with each other.

Second, the motion in the lung is in 3 dimensions. It’s reasonable to find out the
tumor movement in the lung is 3 dimensions, too. Third possible reason is when we
select the ROI (Region of Interest), besides the (.:ontrast agent area (usually with colorful
in parameters map), there also, exit a part«gf .t-he dark side. In other words, the tumor
characteristic is not homogeneous:inithe R(Ijzl'-.

After the motion correction, if thé portion of the dark side is increase, although the
region we select is more accuracy but the parameters values will change in a worst way.

Due to the above possible thing, we should check the motion in tumor itself and the

homogeneous problems.
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Chapter 6 Conclusion

6.1 Conclusion

From the figure results in data analysis, we can clear identify the distribution
difference in histogram between the motion correct process or not. Most of the cases
show that after the motion correct, the peak is slower than the case without doing the
motion correct. Another phenomenon shows after motion correct, the distribution is
more smooth than without doing it.

That is, the motion correct processing not oﬁly improve the accuracy in the dynamic
image sequences, it change the distribUtiéﬁ_._g;jrve in/these four parameters (K"",Kep,
Ve,Vp). We can easy identify the treatment trend in the distribution curve. The curve will
close to the left side (the vertical éxis) whenthe patient taking the chemotherapy.
Although some figure shows the immediate after treatment process is more close to the
left side, the patient before treatment must in the rigt side far away from the vertical
axis.

To sum up, motion correction not only fixing the registration problems in sequential
dynamic images, we also find that it affect the parameters in pharmacokinetics

mathematical model. For example: the histogram distribution curve. Due to the

complexity in chemotherapy treatment, the DCE-MRI provides us another direction to
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evaluate how the influence that the drugs take effect.

The standard in tumor treatment is by the RECIST (Response Evaluation Criteria in

Solid Tumors) criteria. We should take our results to compare with the RECIST criteria

to adjust its correlation to improve the accuracy.

4= T
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6.2 Future Work
Since the current motion artifact correction need to be modified, we should do: 1.
Using non-rigid body registration method to fit the tumor position. 2. Model the motion
due to the breathing movement to 3 dimensions motion Correction.
The application in DCE-MRI works very widely in other organ. For example: Tumor
in Human Brain, Breast Cancer. It’s reasonable to state the DCE-MRI will do well if
there have very little motion artifact. Inevitably, the lung cancer still have more sever

motion problem. It’s worth to do more researeh.in solving the problem.

o} rlils I?
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