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I 

論文摘要 

一般化縮減梯度(Generalized Reduced Gradient)法是一個廣受喜愛的非線性

規劃問題解法，但於具有四次目標式之多目標統計最佳化 (Statistical 

Multi-objective Optimization)問題中，一般化縮減梯度法容易出現搜尋路徑曲折

(Zigzagging)的現象。於本研究中，我們改善了信賴域(Trust Region)搜尋法，並

發展了一般化縮減信賴域(Generalized Reduced Trust Region)搜尋法。此方法結合

了一般化縮減梯度與信賴域搜尋法，將具有限制式的非線性規劃問題，轉化成由

非基礎變數(Nonbasic variable)所構成的不具現制式的非線性規劃問題，並且在縮

減空間(Reduced Space)中獲得最佳改善的方向，且於案例中克服了一般化縮減梯

度法的缺點，此外，我們也結合了一般化縮減信賴域搜尋法與 Zoutendijk’s 搜尋

法以改善搜尋效果。最後，為了驗證該演算法的成效，我們利用一個眾所皆知且

具四次目標式的測試問題：Rosenbrock’s function 與三個案例來測試，第一個案

例是關於半導體可製造性設計(DFM)之問題，而第二個案例是半導體供應鏈穩健

配置之案例，最後一個案例為半導體製造過程中，臨界尺寸均勻度(CDU)在軌道

系統之曝光後烘烤(PEB)步驟下之最佳化。經由與商業套裝軟體 Lingo 的結果比

較，我們可以在相似的計算時間內獲得同樣甚至更好的最佳解。 

 

 

關鍵字：非線性規劃，多目標統計最佳化，一般化縮減梯度法，一般化縮減信賴

域法，信賴域法 
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ABSTRACT 

“Generalized Reduced Gradient” method is a popular NLP method, but it often 

incurs a zigzagging search path especially for the statistical multi-objective 

optimization (SMOO) problem where the objective function is a quartic function. In 

this study, we improve the “Trust Region (TR)” search method and develop the 

“Generalized Reduced Trust Region” (GRT) search method which combines the GRG 

method and the improved TR method. The GRT search transforms the constrained NLP 

problem to an unconstrained NLP problem consisting of only the nonbasic variables 

and searches the best improving direction in the reduced space. The proposed method is 

shown to overcome the zigzagging problem of the GRG method. To verify the 

performance of our methods, we study a well know test problem and three cases. The 

test problem is called Rosenbrock’s function which has a quartic objective function 

with two decision variables. The first case is a semiconductor design for manufacturing 

(DFM) problem. The second case is the problem to configure a robust semiconductor 

supply chain. The final case is the “Track System PEB CDU Optimization”. Compared 

against the result of the commercial software “Lingo”, the same or better solutions are 

obtained by our methods with comparable computation time. 

 

 

Keywords: Nonlinear Programming, Statistical Multi-Objective Optimization, 

Generalized Reduced Gradient Method, Generalized Reduced Trust 

Region Method, Trust Region Method 
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1 Introduction 

1.1 Problem Definition and Formulation 

Response surface methodology (RSM) is a powerful technique for quality and 

productivity improvement. 

Many processes such as chemical processes, manufacturing processes, 

development processes, etc, are critical to productivity. These processes transform 

inputs into outputs. In chemical processes, reaction time and reaction temperature are 

inputs and the yield is output. Actually, engineers usually want to know how inputs 

affect outputs. Response Surface Methodology (RSM) is a set of mathematical and 

statistical techniques used by researchers and engineers to aid in the solution of 

certain types of problems. In RSM, we call the inputs and the outputs “explanatory 

(independent) variables” and “responses”. The response is normally measured on a 

continuous scale and is a measure representing the most important function of the 

system. The independent variables are the fade affecting the response and are usually 

controllable. 

 

Suppose the yield of a chemical process is affected by two factors. The first one 

is reaction time and the second one is reaction temperature. At beginning we only 

know the relationship between yield and these two factors is expressed as follows: 
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( ) ε+= etemperaturreactiontmereactionfyeild   ,  .       (1.1) 

In order to disinter the function f, engineers use RSM procedures involve 

experimental strategy, mathematical methods, and statistical inference which, when 

combined, enable them to make an efficient empirical exploration of the system in 

which they are interested. First, they design a set of designs using experimental 

strategy (design). The purpose of the experimental strategy (design) is to enable the 

analyst to explore the response surface [12] with equal precision, in any direction. 

Subsequently engineers collect a set of data by performing these designs. 

 

After obtaining these data, a model can be built by using regression analysis. 

Here we suppose the linear multiple regression is applied. The relationship between 

response and factors is express as: 

εβββ +×+×+= etemperaturreactiontimereactionyield     210         (1.2) 

, where 1β and 2β mean the effects to yield by changing one unit reaction time and 

reaction temperature respectively. These two coefficients are useful information for 

analyzing the chemical process. It is also convenient to view the response surface in 

the two-dimensional time-temperature plane, as in Figure 1.1. 
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Figure 1.1 Response surface of chemical process 

 

Normally, there are two stages of performing RSM. The first stage is called 

response surface design which is mentioned in last two paragraphs. The second stage 

is called response surface optimization or response surface analysis. In the latter stage, 

engineers use optimization techniques such as steepest descent/ascent method to 

decide the search direction for obtaining the best value of independent variable i.e. 

reaction time and reaction temperature in our example. 

 

In most engineering problem, the linear response surface model is not 

satisfactory. Indeed the relationship between response and predictor variable is 

nonlinear relationship. So we need nonlinear functions help us to describe the 

relationship well. Now we consider there are n predictor variables, and the i-th 

expected response is denoted as iŷ . The nonlinear response surface model can be 

expressed as a quadratic function as follows:  
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are the linear and quadratic coefficients, respectively. 

Most engineering requirements would specify a desired target Ti for each response iŷ . 

That is, the difference between iŷ  and its target Ti should be as small as possible. 

Here, the quadratic loss function [1] can be used to measure the total difference. That 

is, 

( ) 2

0
2 )(ˆ ∑∑ −++=−

i
ii

TT
iii

i
iii TbwTywMin xBxxb .       (1.4) 

In (1.4), wi is a user-specified weight representing the relative importance for iŷ  to 

conform to the target. In this research, without loss of generality, all wi are assumed to 
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equal to 1. In addition to the target, the response iŷ  should be located in a 

specification widow with an upper specification limit Ui and a lower specification 

limit Li: 

ii
TT

iii UbL ≤++≤ xBxxb0 .           (1.5) 

Moreover, each input variable xn usually has an experimental region with an upper 

bound 
nxU  and a lower bound

nxL : 

nn xnx UxL ≤≤ .                   

(1.6) 

The purpose of the region is that if variable xn is out of the experimental region, the 

estimated response may be incorrect. So the regional constraints are needed. There are 

also some technical restrictions that can be expressed as linear equality constraints. In 

our example, we sometime request the linear combination of reaction time and 

reaction temperature hits the target Tp. 

ppp Ta =+ xa T
0                (1.7) 

, where 
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are the linear coefficients for the p-th linear equality constraint. 
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Here we give a summary for our problem, let T represent the set of responses 

with targets; S represent the set of responses with specification windows; and Z 

represent the set of linear equality constraints. The optimization problem can be 

formulated as: 

TiTbfMinimize
i

ii
TT

ii ∈−++=∑
2

0 )()( xBxxbx
x

.      (1.8) 

nqUxL

ZmpTa

SmjUbLsubject to

qq xqx
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jj
TT

jjj

,,1                                   .                  

,,1                                ;                  

,,1      ;:

20
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K

K

K

=≤≤

∈==+

∈=≤++≤

xa

xBxxb
T  

This is a nonlinear minimization problem subject to linear equality constraints, and 

nonlinear inequality constraints. In particular, the objective function is a quartic 

programming problem with the objective function being a “quadratic” of “quadratic” 

and nonlinear inequality constraints being quadratic inequalities. Actually there are 

numerous non-linear programming (NLP) methods which can solve this problem, and 

these methods will be introduced in next section. 

1.2 Current NLP Methods Review 

For engineers, optimization is really a practical procedure. There are numerous 

NLP methods developed in recent half century. The most conventional class is 

“Primal Method” also called “Methods of Feasible Direction” [2, 11]. The following 

strategy is typical feasible direction algorithm. Given a feasible point x, a feasible 

direction d is generated by main algorithm and the step size λ is also determined. 
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Thus, these methods keep two properties (1) dx λ+ feasible, and (2) the objective 

value of current iteration smaller than last iteration. These methods usually have the 

following three advantages [2]: 

1. Because these methods generate a feasible direction for minimizing the 

objective. Consequently the sequence of these points generated by these 

methods is feasible too. 

2. If these methods generate a convergent sequence, the limit of the sequence 

will often satisfy the convergence prosperity, i.e., these methods are usually 

shown to converge to KKT solutions. 

3. These methods are not limited to solve convex problem. 

1.2.1 Generalized Reduced Gradient (GRG) Method 

When dealing with linear constraint optimization, it is natural to add slack 

variables and use the linear equality constraints to eliminate some of the variables 

from the problem. Reduced Gradient method uses this idea and avoids the use of 

penalty parameter to search optimal solution. After that Generalized Reduced 

Gradient (GRG) method is developed for nonlinear constrained optimization problem. 

Today GRG is already verified to be a precise and accurate method for solving NLP 

problems. There are many commercial optimization software packages like LINGO, 

Microsoft Excel, Lotus and MINOS are all developed base on GRG. 
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The reduced gradient method can be viewed as the logical extension of the gradient 

method to constrained optimization problems. We start with linearly constrained 

optimization problems and consider the following linear equality constraint problem. 

0                   
: 

)(: 

≥
=

x
bAx

x
 toSubject
fMinimize 

              (1.9) 

, where A is m × n matrix of rank m; b is m-vector. 

There are some assumptions of this problem [2]: 

1. f is continuously differentiable; 

2. Every subset of m columns of the m × n matrix A is linearly independent; 

3. Each extreme point of the feasible set has at least m positive components 

(non-degeneracy assumption). 

 

Now let x be a feasible solution. The basic idea of reduced gradient method is 

dividing all variables into two sets, the set of basic variables xB and nonbasic variables 

xN. For simplicity of notation we assume that we can partition the matrix A as A = [B, 

N] where B is an nm×  invertible matrix. We partition x accordingly: 

[ ]TNB
T xxx ,= . Thus we can rewrite Ax = b as the follows. 

BxB + NxN = b 

, where 

xB = B−1b − Β−1NxN.            (1.10) 

Now the basic variables xB can be eliminated by (1.10), and then the problem will be 
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0                  
0 

)(:
1-1-

≥
≥−

N

N

NN

:Subject to

 fMinimize

x
NxBbB

x
.          (1.11) 

, where fN (xN) = f (B−1b − Β−1NxN, xN). 

In (1.11), the variables we concerned are reduced to xN. If we have xN, we can obtain 

xB by substituting xN into (1.10). Now let’s consider the choice of search direction. 

Suppose d is a feasible direction, by the definition d should satisfy the condition

0)( <∇ dx Tf . And then we also translate the condition into (1.9) by dividing )(xf∇

and d into two sets. 

0)()( NNBB <∇+∇ dxdx TT ff              (1.12) 

,where )(B xf∇ is the gradient with respect to the basic variables. 

If d is a feasible direction, and then d satisfies the condition Ad=0, i.e. BdB + NdN = 0. 

This means dB = −B−1NdN.           (1.13) 

And then substitute (1.13) into (1.12) to yield: 

0)()()( 1 <∇+−∇=∇ −
N

T
N

T
B fff dxNBxdx         (1.14) 

In (1.14), we call N
T

N
T

B ff dxNBxr )()( 1 ∇+−∇= −  the reduced gradient of f at x for 

the given basis B. In other words, the reduced gradient r plays the same role in the 

reduced problem as the gradient f∇  did in the original problem. In fact, the reduced 

gradient is exactly the gradient of the function fN with respect to xN in the reduced 

problem. Actually, the reduced gradient method can be generalized for solving 
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nonlinearly constrained optimization problems by linearizing the nonlinear constraints. 

So we can solve the problem similarly to the linearly constrained case. The 

nonlinearly constrained problem with bounded constraints is express as follows. 

njforUxL

miforgtosubject

EforfMinimize

jjj

i

n

,,1~
,,1~0)(

)(

~~~

~

K

K

=≤≤

=≤

∈

x

xx
x

       (1.15) 

Given a nondegeneracy assumption, i.e., any columns of ( )xh∇  given by 

linearization inequality constraints are linear independent, a summary of Generalized 

Reduced Gradient method is given as follows [2]: 

 

 Step 1: 

Add slack variables to inequality constraints 0)(~ ≤xig  and obtain equality 

constraints ( ) mihi ,,1~,0~ K==x . Let x(k) be a feasible solution at the k-th search step. 

Linearize the constraints and get 0))(( )()( =−∇ kk xxxh . Decompose variables into 

basic and nonbasic sets ( )(
B
kx , )(

N
kx ). Furthermore, the Jacobian matrix )( )(kxh∇  is 

decomposed into )( )(
B
kxh∇ and )( )(

N
kxh∇ , such that )( )(

B
kxh∇  is invertible. 

 

 Step 2: 

Let )()()()( )(
N

1)(
B

)(
B

)(
N

kkTkTkT ff xhxhxxr ∇∇∇−∇= − . Compute the vector dN 

whose thj~  component jd~  is 
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⎪⎩

⎪
⎨
⎧

−
<=>=

=
otherwise

0 and or  ,0 and  if0
~

~~
)(

~~~
)(

~
~

j

jj
k

jjj
k

j
j r

rUxrLx
d      (1.16) 

, where jr~  is the thj~  component of r. 

If dN = 0, stop. x(k) is a KKT point; otherwise, go to step 3. 

 

 Step 3.1: 

Find a solution to satisfy the nonlinear constraints by Newton-Raphson method. 

Choose ε  > 0 and a positive integerT . Let θ  > 0 be such that N
)(

NN
~ UxL ≤≤ k , 

where N
)(

N
)(

N
~ dxx θ+= kk . Let )(

B
)1( kxy =  and t = 1. 

 

 Step 3.2: 

Compute )~,()~,( )(
N

)(1)(
N

)(
B

)()1( ktkttt xyhxyhyy −+ ∇−= . If B
)1(

B UyL ≤≤ +t , )~,( )(
N

)1( ktf xy +

),( )(
N

)(
B

kkf xx< , and ε<+ )~,( )(
N

)1( kt xyh ,  let )~,( )(
N

)1()1( ktk xyx ++ =  and go to step 1; 

otherwise, go to step 3.3. 

 

 Step 3.3: 

If t =T , replace θ  by 2/θ . Let N
)(

N
)(

N
~ dxx θ+= kk  and )(

B
)1( kxy = . Replace t by 1 and 

repeat step 3.2. Otherwise, replace t by t + 1 and repeat step 3.2. 
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The contour in original space of the NLP problem is shown in Figure 1.2. In step 

1, all inequality constraints are transformed into linearized equality constraints as 

shown in Figure 1.3. The selected basic variables are x1 and x2 and the selected 

nonbasic variables are x3 and x4. In step 2, the original NLP problem is transformed 

into a NLP problem without equality constraints in the reduced space of nonbasic 

variables, x3 and x4. The improving direction of the nonbasic variables is the opposite 

direction of the reduced gradient. However, the variables should not be negative. The 

improving direction of the nonbasic variables is modified as shown in Figure 1.4. In 

step 3, the improving direction after transformed into the original space is actually the 

direction along the tangent of the binding constraint. The optimal solution is then 

found through Newton-Raphson method as shown in Figure 1.5. 

 

Example 1.1: 

( ) 2121
2
2

2
121 64222,: xxxxxxxxfMinimize −−−+=

x
, 

.0,                  

;8.2
6

17                  

;2: 

21

2
21

21

≥

≤+

≤+

xx

xx

xxtosubject
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Figure 1.2 Feasible Region of Example 1.1 with the nonlinear constraints 

 

  
Figure 1.3 Feasible Region of Example 1.1 with the linearized constraints 
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1.2.2 Ridge Analysis and Ridge Search Method 

In RSM, ridge analysis is a method for exploring optimal factor levels of a 

response surface. Ridge analysis helps us to find maximum or minimum a quadratic 

response surface under a spheral constraint. The purpose of spheral constraint is to 

fixed distances from the center of the experimental region. Due to the formulation 

ridge analysis, it is a nonlinearly constrained optimization problem. 

 

The concept of ridge analysis is finding an absolute minimum or maximum on 

the spheral constraint of a certain radius you trusted. Additionally, we can adjust the 

radius to increase the sphere size if the point on the spheral constraint is still inside the 

experimental region. In other words we can find an optimum corresponding to a 

distinct radius, all optimums with various radiuses construct a “ridge path” as shown 

in Figure 1.6. In fact, control radius of the region is hard in ridge analysis. We discuss 

the issue in the following subsection. 
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Figure 1.6 Ridge path of all stationary points with various radiuses 

 

Consider the following problem. 

2

0

                  
2
1ˆ)(

Δ=

++=

   subject to

by MaximizeMinimize 

T

TT

xx

Gxxxβ

     
   (1.17) 

, where x is an n-vector; G is the matrix contains quadratic coefficients; β is a vector 

expressed first order coefficients. 

Under the problem formulation, global constrained optima are typically obtained 

using the Lagrangian multiplier approach. By introducing the Lagrangian multiplier μ, 

the problem will be an unconstrained optimization problem. 

)(ˆ)( 2Δ−+= xxTy LMaximizeMinimize μ         (1.18) 

Differentiate (1.18) with respect to x, and then set the derivative equal to zero. The 

equation which includes a stationary point sx̂  will hold: 

0ˆ)( =++ sxIGβ μ              (1.19) 

x1

x2

Ridge Path 
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Given a fixed value of μ, the stationary point sx̂  on the sphere with radius Δ can be 

estimated to be: 

βIGx 1)(ˆ −+−= μs              (1.20) 

 

Theoretically, there are totaling n+1 equation, namely, the spherical constraint in 

(1.17) and (1.18) let us solve sx̂ and μ. Practically the radius Δ is also unknown, i.e. 

there are n+2 unknown variables. That is we can’t solve sx̂ directly. So ridge analysis 

considers the following strategy to solve the problem. 

1. Regard Δ as variable, but fix μ instead. 

2. Choose μ as a fixed value and substitute μ with the fixed value into (1.19) 

to obtain sx̂ . 

3. Evaluate y)  by (1.17) 

 

Even if we have the above strategies, there is still a problem that is how to 

choose μ. Providentially, there are some properties of ridge analysis help us choose μ 

appropriately. These properties are described as follows [7]: 

1. At ∞−∞= or  μ  then Δ = 0 and Δ increases exponentially to infinity at μ = 

λi. 

2. If we wish to find the ridge path as Δ varies, we can substitute any value of 

μ larger than 1λ− . 

3. As Δ increases, y) passes through the ridge path toward a minimum. 
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The value μ determines the radius Δ, i.e., Δ is a function of μ. Figure 1.7 shows the 

relation between radius and Lagrangian multiplier. λ1,…, λk are the eigenvalues of the 

G, and λk > λk-1 > … >λ1. 

 

Figure 1.7 The dependence of radius on Lagrangian multiplier 

 

We consider the following example to show you the relationship between Δ and 

μ. 

 

Example 1.2: 

Δ=+

=

2
2

2
1

2
221

2
121

  
2
12

2
1215

xxtosubject

x+xx+x++xx+Minimize y
 

Express in matrix notation. 

[ ]

[ ] Δ=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

2

1
21

2

1
21

2

1

 : 

2
115:

x
x

xxtosubject

x
x

xx+
x
x

+ yMinimize T Gβ

 

Locus of 
absolute 
minima 

μ
1λ−1−− kλ 2λ−kλ−

Δ 
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, where ⎥
⎦

⎤
⎢
⎣

⎡
=

1
2

β ; ⎥
⎦

⎤
⎢
⎣

⎡
=

12
21

G ; the eigenvalues of G are −1 and 3; the corresponding 

eivenvectors
 

[ ]T1 ,1−  and [ ]T1 ,1 . 

Introduce Lagrangian multiplier μ and then we have 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
−=+−=

−
−

2

21
1

23
3

23
2

1
2

12
21~

μμ
μ
μμ

μ

μ
μ

μ βIGxs     (1.21) 

We also have 

22

2

2

2

2

2

)+23(
5+69    

23
3

23
2

23
3

23
2

    

~~

μμ
μμ

μμ
μ
μμ

μ

μμ
μ
μμ

μ

+−
−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

=

=Δ
T

s
T
s xx

        (1.22) 

That is Δ is a function of μ, figure 1.8 shows the relationship on a two dimension 
space. 

 
Figure 1.8 The dependence radius against Lagrangian multiplier 

−λ1 

Δ 

μ 
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In (1.22), the denominator in the radical has two factors. We can factorize the 
denominator as: 

( )( )13+23 2 −+=+− μμμμ            (1.23) 

(1.22) also implies that if μ is equal to the subtractive eigenvalue of G, i.e. −3 or 1, 

the denominator is close to 0. Therefore Δ goes to positive infinity. On the other hand, 

if μ goes to positive or negative infinity, thus the denominator is close to positive zero, 

i.e., Δ goes to zero. 

1.2.3 Zoutendijk Method 

Zoutendijk’s method searches a feasible improving direction. Compared with the 

GRG method, the direction may be less effective. To consider (1.15) (a minimization 

problem), if the direction is an opposite direction to objective function’s gradient, it is 

an improving direction. Moreover, if the direction is an opposite direction to binding 

constraint’s gradient, it is a feasible direction. Zoutendijk’s method solves a linear 

program to generate a direction satisfying the above two requirements; to improve and 

to be feasible. 

Zoutendijk’s method is described as follows: 
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 Step 1: 

Let x(k) be a feasible solution at the k-th search step. Check the binding nonlinear 

constraints. Let W~  = { w~  : ( ) 0)(~ =k
wg x  }. Compute the gradients of the objective 

function and the binding constraints ( ))( kf x∇  and ( ))(~
k

wg x∇  with respect to x(k). 

 

 Step 2: 

Solve the following linear program with decision variables dZ and z: 

zMinimize
z

:
, d

. 

....1   11                  
;~~0)(                  

;0)(:

Z
)(

~

Z
)(

njd
Wwzg

zftosubject

j

Tk
w

Tk

=≤≤−
∈∀≤−∇

≤−∇

dx

dx

 

Let (z*, dZ
*) be the optimal solution. If z* = 0, stop; x(k) is an optimal point. Else, go to 

the step 3. 

 

 Step 3: 

Do Line Search along dZ
*. Let the feasible solution be x(k+1). Return to step 1. 

 

Here we also use the example 1.1 to introduce Zoutendijk’s method. Suppose 

that we start from iteration with current solution (x1, x2) = (0.5889, 0.8833) is also 



22 

binding on the second constraint in example 1.1. The gradients of objective function 

and constraint are described as follows: 

( )3.6442,3.4110),( T
21 −−=∇ xxf  

, and 

( )5,1),( T
21)11.1( =∇ xxg . 

Now we consider the following linear programming problem: 

zMinimize
z

:
, d

. 

( )

( )

.11                   
 ;11                   

;05,1                   

;03.6442,3.4110:

2

1

2

1

2

1

≤≤−
≤≤−

≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

d
d

z
d
d

z
d
d

tosubject

 

By performing simplex method, we can obtain the improving direction d is (d1, d2) = 

(1, −0.5102). We sketch the direction in Figure 1.9. We can see that the next solution 

can leave the binding constraint by performing line search along Zoutendijk’s 

direction. This will help us develop the main search algorithm of this thesis. It is 

detailed in chapter 3. 
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Figure 1.9 Zoutendijk’s direction of Example 1.1. 

 

1.3 Shortcomings of Current NLP Methods 

1.3.1 Shortcomings of Generalized Reduced Gradient Method 

One motivation of this study is to overcome some unexpected phenomenon rose 

by the GRG method, although the GRG method is applied intensively in practice. The 

phenomenon is called “zigzagging” or “jamming”. Zigzagging usually appears at the 

later phase of search and causes a poor convergence. As mentioned earlier, the GRG 

method employs the first-order approximation: dxxdx Tkkk fff )()()( )()()( ∇+=+ λλ  

e+ , where d is the search direction, e is the error of the linearization approximation. 

When x(k) is close to the stationary point, )( )(kf x∇ becomes very small so is the term 
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dx Tkf )( )(∇λ . The error term, thus, becomes relatively significant. The error term 

caused by the linearization approximation thus induces the search path to zigzag. 

 

For example the response surface resembling an inclined trough, will cause the 

GRG method to zigzag easily. That is, the search direction of the GRG method,   i.e., 

the reduced gradient, moves toward the bottom of the trough, not to the inclined 

direction. The number of moving steps will be enormous, and it becomes difficult to 

reach the optimal point. The objective function of the SMOO problem in (1.8) could 

certainly form an inclined trough and cause the zigzagging problem. 

 

As described earlier, the quartic objective function in SMOO problem is the “the 

quadratic of the quadratic”. If the response, expressed as a quadratic function of input 

variables, isn’t absolutely positive or negative, the quartic objective function could 

form a trough. For an example with two input variables, the quadratic function, z = 

10x2 + 10y2 – 4, will exhibit a shape as shown in Figure 1.10. After squaring the 

quadratic function, a trough ring will be created. Figure 1.11 shows the quartic 

response surface. Because in a typical SMOO problem, the objective function is the 

sum of multiple quartic functions, a trough will be easily formed and cause the 

zigzagging problem. 
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Figure 1.10 Quadratic response surface 

 

 
Figure 1.11 Quartic response surface 

 

Example 1.3 is a well known problem for testing optimization algorithm. The 

objective function is called Rosenbrock’s Function or Rosenbrock’s valley. The 

function is a summation of a square of quadratic function and a square of a linear 

function. The value of this function thus must be greater or equal to zero. Because of 

the global minimum f (x1, x2) =0 at (x1=1, x2=1) is inside a long, narrow and 

inclined trough. To find the valley is trivial, however to converge to the global 
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minimum is difficult. The function form is expressed in the following equation and 

figure 1.12 shows the corresponding surface and contour plot. 

 

Example 1.3:  

Minimize: (1－x1)2+100×(x2－x1
2)2, 

Subject to: －2 ≤ x1≤ 2; 0 ≤ x2≤ 4. 

 

 
Figure 1.12 Surface plot and contour map of Example 1.3 

 

Suppose the initial point is (x1, x2) = (−2, 0.5) with the terminal criterion to be 10-10 

and the maximal iteration number to be 3000. The objective value of the second 

iteration is 0.0173683 with (x1, x2) = (1.1316, 1.2812). The objective value of the 

latest iteration is 0.000657 with (x1, x2) = (1.0256, 1.0520). There are 2417 iterations 

in total from the second iteration to the latest iteration. From the result, there are two 

major drawbacks of GRG method. The search path of the GRG is sketched on the 
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Figure 1.13. Figure 1.15 shows the zigzagging phenomenon of the GRG method. Due 

to zigzagging phenomenon, the GRG method sometimes is unable to converge to the 

global minimum (x1, x2) = (1, 1). 

 
Figure 1.13 Search path of GRG in Example 1.3 

 

 
Figure 1.14 Dash-line region in Figure 1.13 
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Figure 1.15 Zigzagging path in dash-line region of Figure 1.14 

1.3.2 Shortcomings of Ridge Search Method 

Although the ridge analysis helps us to find the minimum without zigzagging 

phenomenon, the required optimal Lagrangian multiplier is difficult to find or is 

inefficiently found. What is known is that the optimal Lagrangian multiplier should be 

smaller than the smallest eigenvalue of the quadratic coefficient matrix G if we want 

to minimize the objective function. The RS search uses the following formula to 

search for the optimal Lagrangian multiplier to calculate the stationary point and 

obtain the corresponding objective value. The updating formula of Lagrangian 

multiplier is: 

γγγ αμμ ×Δ−=+ )1(              (1.24) 

, where γ is the search step index; Δ is the step size and is set to be proportional to the 

smallest eigenvalue and α is the parameter to approximate the exponential 
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relationship between the radius and μ. When we use (1.24) to search the optimal 

Lagrangian multiplier, there exist three drawbacks. In (1.24) there are two 

manipulatable parameters Δ and α, the search result of the GRR algorithm is in fact 

quite sensitive to these two parameters. This is also an important reason motivating us 

to develop a new algorithm with less parameter settings. 

 

Considering Example 1.3, with an initial point ( ) ( )5.0 ,2, 21 −=xx , we first setα 

=10 and Δ=100 and then change the setting to α=100 and Δ=100. Figure 1.16, Figure 

1.17 and Table 1.1 show the search processes and the comparisons including objective 

value, iterations and computing time under the two different settings. 

 

Table 1.1 Comparison of two different settings 

 

Settings Obj. Value Number of
Iterations Computing time

1st 3.368948E-07 181 0.06

2nd 1.100042E-10 976 0.30
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Figure 1.16 Search process of 1st setting 

 

  
Figure 1.17 Search process of 2nd setting 
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Although the GRR search method can find the near-optimal objective value by 

different setting, but the difference between the two settings is large, and the 

computing time is also greatly depending to the setting. That is, the first drawback of 

the GRR search is the difficulty of parameter selection. The second drawback is due 

to some issues of numerical calculation. For a large SMOO problem, the quadratic 

coefficient matrix G is easy to be singular or near singular with the smallest 

eigenvalue near zero. Under the circumstances, the Δ , set to be proportional to the 

smallest eigenvalue, in (1.24) is also near zero and cause the search to be extremely 

slow. Finally, the GRR uses (1.24) to approximate the relationship between the radius 

and the Lagrangian multiplier. This sometimes results in an over-large radius is large 

sometimes. In fact, the objective function of the SMOO problem is a quartic function. 

In order to perform the GRR search, the algorithm needs to approximate the objective 

function to second-order function by the Taylor series expansion. If the radius is too 

large, the solution solved by GRR may not in the region of trusted approximate. This 

is the third drawback of the GRR algorithm. 

1.4 Research Objectives 

The formulation of the statistical multi-objective optimization (SMOO) problem 

is exactly a nonlinear programming problem (NLP) with nonlinear inequality and 

linear equality constraints. So this thesis will focus on developing a constrained 
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optimization algorithm for solving the quadratic programming NLP problem. 

Furthermore, the objective function of SMOO problem is a quartic function and is not 

guaranteed to be a convex function. This is the first challenge we need to face. On the 

other hand, there are three drawbacks of GRR we discussed in subsection 1.3.2. we 

then attempt to develop a new algorithm that prevents the three drawbacks of the 

GRR search. 

 

There are some commercial optimization softwares, such as “Lingo”, adopts 

“Generalized Reduced Gradient method” together with “Successive Linear 

Programming method” in its algorithm. The two methods used by Lingo are actually 

Feasible Direction Methods. These methods are also subject to the zigzagging. Since 

one of our research objectives is to avoid zigzagging, our research results will be 

compared to Lingo’s to validate the proposed algorithm. To Summary, our research 

objectives are to develop a constrained optimization algorithm for solving the SMOO 

problem and this algorithm must (1) overcome the three drawbacks of GRR and (2) 

avoid the zigzagging phenomenon. 
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In specific, there are four research objectives: 

1. Develop a nonlinear constrained optimization algorithm called Generalized 

Reduced Trust-Region (GRT) search method based on trust-region method. 

2. Develop a algorithm using the developed GRT method and the Zoutendijk’s 

method. 

3. Propose the convergence proof of GRT search algorithm 

4. Test the proposed search algorithm with four cases: (1) A well-known test 

problem for NLP algorithm called Rosenbrock’s function, (2) Geometric 

Layout Design for Semiconductor Manufacturability, (3) Robust 

Configuration of Semiconductor Supply Chain, (4) Track System PED 

CDU Optimization. 
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1.5 Thesis Organization 

In this chapter, we describe the background, problem definition, current 

methodology review, and drawbacks of these NLP algorithm and the research 

objectives. Chapter 2 introduces the trust-region method and subproblem of the 

trust-region method. Moreover, the hard case of the trust-region method will be also 

mentioned in this chapter. Finally we do some modification of the traditional 

trust-region algorithm is also be introduced here. In chapter 3, we describe the 

algorithm of generalized reduced trust region method. The convergence proof of GRT 

is also proposed in this chapter. In chapter 4, the test problem and result will be 

presented. Every result will be compared against Lingo’s result. Finally, some 

conclusions and suggestions are presented in Chapter 5. 
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2 Trust Region Method 

Due to the drawbacks of the GRG method and the GRR method, this research 

develops an algorithm based on a method known in numerical optimization are “Trust 

Region” (TR) method. In Section 2.1, the basic ideas and the problem formulation of 

the TR method will be introduced. In Section 2.2, we study an algorithm to help us 

solve the “Trust Region Subproblem” (TRS). Some numerical issues called “Hard 

Case” of the TR method in the literature will be discussed in Section 2.3. Finally, we 

make some modifications to the TR method to improve its numerical implementation 

in Section 2.4. 

2.1 Trust Region Method 

The TR method and the Ridge Analysis (RA), in effect, share the same 

mathematical formulation, i.e., minimizing or maximizing a quadratic function 

subject to a spheral region constraint. The quadratic function can be an approximation 

of any objective function. For example, we can approximate the quartic SMOO 

problem to a quadratic function and solve it by the TR method or the RA method. 

Though the problem formulation is the same, there are still fundamental differences 

between two methods. First, the TR method finds a solution inside the spheral region, 

while the RA method only considers the boundary solutions. Second, as we discussed 

in Subsection 1.2.2, the RA method regards radius of the spheral region as a variable 
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and makes guess on the value of the Lagrangian multiplier iteratively by (1.24). In 

contrast, the TR method finds the optimal Lagrangian multiplier directly by solving a 

sequence of Trust Region Subproblems (TRS). This method for TRS is discussed in 

the next section. The TR method allows us to adjust the radius directly without 

guessing on the value of the Lagrangian multiplier. 

 

Determination of the trust region radius with TR method is critical. If the radius 

of the region is too small, the algorithm misses the chance to move faster to a 

minimum of the objective function. If it’s too large, the approximated model may 

become a poor approximate of the objective function and the minimum found inside 

the region may be far from the global minimum. Thus the TR algorithm gradually 

shrinks the size of the region in its search steps. In every iteration, the algorithm uses 

the approximate performance of the previous iterate to determine radius of the trust 

region. If the approximation is good, we enlarge the size else we shrink the size of the 

trust region. Such update of the trust region radius is introduced in next Chapter. 

Figure 2.1 shows the TR approach for a function f of two variables on a contour plot. 

The contour of quadratic model function φ (in dashed line) is constructed from the 

derivative information at the current iterate 0
~x  
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Figure 2.1 Trust-Region and Trust-Region step 

 

The TR method approximates any differentiable function to a quadratic function 

by the Taylor series expansion. Consider the following TR problem 

( )
,: 

2
1:

Δ≤

++

x

Hxxxgx

toSubject

fMinimize TT

           (2.1) 

where   ⋅  is the Euclidean norm; Tg  is the gradient vector, i.e., ( )xf∇ ; H is the 

Hessian Matrix, i.e., ( )xf2∇ ; and Δ is the radius of the trust region. 

 

Now considering the SMOO problem, the objective function of (1.8) is a quartic 

function. We approximate the objective function of the SMOO problem with respect 

to a given point ( )kx  by the second-order approximation and apply the TR method as 

follows: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2/)()()()(:  111

1

kkkTkkkkTkkfMinimize
k

xxGxxxxβx
x

−−+−+ +++
+

; 

0
~x

Contour of f 

Contour of φ 

Trust Region 

Trust Region Step 
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( ) ( )( ) ( )kkktosubject Δ≤−+ xx 1:               (2.2) 

, where the superscript ( )k  denotes the k-th iteration index; the vector x(k+1) is the 

minimizer of (2.2), i.e., x(k+1) minimizes the (2.2) at a given point ( )kx ; the ( ) 0>Δk
  

denotes the trust region radius at current iteration; the partial derivative matrix 

( ) ( )( )kk f xβ ∇=  and the Hessian matrix ( ) ( )( )kk f xG 2∇=  are calculated with the 

following formulas: 
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The solution of (2.2) is derived in the next Section. 
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2.2 Iterative Solution of Trust Region Subproblem (TRS) 

To solve (2.2), a sequence of the “Trust Region Subproblems” (TRS) has to be 

solved. The TRS is to find the minimum of (2.2) with a given trust region radius Δ. 

Actually, ( ) ( )( )kk xx −+1  in (2.2) is the improving direction ( )kd  to be found. 

Therefore we replace ( ) ( )( )kk xx −+1  by the improving direction ( )kd . Without loss 

generality, we drop the superscript ( )k  and consider the following direction-finding 

problem. 

Gdddβx
d

TTfMinimize
2
1)(: ++            (2.3) 

Δ≤ddTtosubject :  
 

First, we characterize the exact solution of (2.3) by the theorem 2.1 which shows that 

the improving direction d satisfies 

βdIG −=+ )( μ               (2.4) 

 

Theorem 2.1 [9, 13] 

The vector d  is a global solution of the TR problem 

Δ≤

++

d

Gdddβ
d

: 
2
1:  

toSubject

fMinimize TT

            (2.5) 

if and only if d is feasible with the Lagrange multiplier 0≥μ  such that the following 

conditions are satisfied: 

βdIG −=+ )( μ ;              (2.6) 
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0)( =−Δ dμ ;              (2.7) 

)( IG μ+  is positive semidefinite.           (2.8) 

Any solutions of (2.5) lies either in the interior or on the boundary of the feasible 

set (trust region), i.e. the set{ } | Δ≤dd . Equation (2.5) has no solution on the 

boundary if and only if G is positive define and Δ<− βG 1 . In this case, the solution 

of (2.5) is βGd 1−=  with the Lagrangian multiplier μ* = 0. 

 

In (2.4), the hessian matrix G and the gradient vector β are known. The 

unknowns in (2.4) are the solution d and the Lagrangian multiplier μ. Τhe solution of 

d in (2.3) is shown to be: 

βIGd 1)( −+−= μ .              (2.9) 

According to (2.7), either 0=−Δ d  or μ = 0 must hold. If μ = 0 then the solution d 

is in the interior of the region else d is on the boundary. In the latter case 0=−Δ d  

hold and then the norm of the solution d, d , equals to the trust region radius Δ, i.e., 

d=Δ . Due to the equality relationship between the radius and the norm of the 

solution, (2.9) becomes 

Δ=+−= − βIGd 1)( μ .           (2.10) 

From (2.10), the solution d is a function of μ. To find d, we have to find μ first. 

Finding μ is a typical root-finding problem of a nonlinear equation. We can apply 
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Newton method to help us find the optimal μ with a given radius Δ. Now we define 

the function ( )μφ  as 

( ) Δ=+−== − βIGd 1)()( μμμφ .         (2.11) 

Equation (2.11) describes the equality relationship between the radius and the 

Lagrangian multiplier, much like what we have discussed for (1.22) in Subsection 

1.2.2 where we also have sketched the relationship on a two dimension space like 

Figure 1.8. It shows that if the Newton’s method is applied to find the root of (2.11), 

the root finding procedure is slow and inefficient due to the nonlinearity of the 

function )(μφ  with μ on the interval of (−λ1,∞). 

 

Fortunately, the Newton’s method can perform quite efficiently with the 

following transformation to (2.11). The attempt is to reformulate (2.11) to become 

almost linear with μ on the interval of (−λ1,∞). We define the reformulated equation 

as follows: 

0
)(

11
)(

11)(
11 =

+−
−

Δ
=−

Δ
=

− βIGd μμ
μφ         (2.12) 

As shown in Figure 2.2, ( )μφ1  becomes a near-linear function of μ. Now the 

Newton’s method can perform better to find the root. 
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Figure 2.2 The relationship of Δ1  and μ  in example 1.2 

 

To apply the one-dimensional Newton's method: 

( )
( )μφ
μφμμ '

1

1~ −= , where ( )μφ '
1  is the first derivative of ( )μφ1  and μ~  denotes the next 

Lagrangian multiplier found by the Newton’s iterates. In order to perform the 

Newton’s method ( )μφ1  and ( )μφ '
1  must be evaluated. That can be obtained by 

solving a linear system involving )( IG μ+ . Because in the range of interest, )( IG μ+

is definite positive, we may use its Cholesky factors ( ) ( )μμμ UUIG T=+ )( , where 

( )μU  is an upper triangular matrix. To solve the problem, computation demanding 

calculation of the eigen-system of G is thus avoided. 

 

−λ1 
μ 

Δ 
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However, to be able to use the Cholesky factorization, we have to ensure that 

)( IG μ+  is positive definite. In other words, μ has to be in the interval of ( )∞− ,1λ . 

A safeguard mechanism is therefore needed to ensure the success of the Newton’s 

method. Here, we don’t discuss the Newton’s method and the safeguard mechanism in 

detail. For a more detailed explanation, please see Section 2.4 and Appendix B.  

2.3 The Hard Case 

Although the Newton’s iterates can be used to find root of ( )μφ1 , there are some 

computation difficulties. The numerical difficulty is called “Hard Case” in the TR 

literature. The hard case occurs when the eigenvector corresponding to the smallest 

eigenvalue is perpendicular to the gradient vector β , i.e., 01 =βq T , where the 

eigenvector with respect to the smallest eigenvalue is denoted as q1. When there are 

multiple eigenvectors, i.e., an eigenspace corresponding to the smallest eigenvalue 

provided that 01 =bQ T , where Q1 is the matrix whose columns span the eigenspace 

corresponding to the smallest eigenvalue. The hard case is caused by the failure of the 

limit condition ( ) ∞=
→

μ
λμ

d
i

lim . Therefore, there may not exist a value in ( )∞− ,1λ  to 

solve ( ) Δ=μd . We use an example to illustrate the hard case condition followed by 

a geometric interpretation. 
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Consider the following example with a current point at (d1, d2) = (0, 0). 

 

Example 2.1 

.:  

.
2
12

2
115 : 

2
2

2
1

2
221

2
121

Δ≤+

+

ddtosubject

d+dd+d+d+dMinimize
        (2.13) 

Express (2.14) in matrix notation: 

( ) ( ) ( )
( ) , : 

;
2
115:

Δ<μ

μμμ

d

Gdddβ

tosubject

++ Minimize TT

 

where the gradient vector ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

β ; the hessian matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

12
21

G ; the eigenvalue of G 

are −1 and 3; the corresponding eivenvectors are [ ]T1 ,1− and [ ]T1 ,1 . It can be seen 

that the gradient vector β be perpendicular to the eigenvector corresponding to 

smallest eigenvalue −1. The relationship among the radius, μ and the solution ( )μd  

becomes: 

( ) ( )
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( )
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⎝

⎛
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μμ
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μμ
μ

μd

        (2.14) 

We also sketch (2.14) in a two dimension space. Figure 2.2 shows that there is only 

one pole corresponding to the second eigenvalue, that is, the pole with respect to the 

first eigenvalue is vanished. This is because the denominator ( )( )13 −+ μμ  is 

eliminated by its factor ( )1−μ . However the pole which is corresponding to the second 

smallest eigenspace is still existed but the solution ( )1,3−∈μ  is only a local 

minimum on the spheral constraint. Fortunately, More, J. J. and D. C. Sorensen (1983) 

[13] propose a solution to solve the hard case which will be discussed latter. 
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Figure 2.3 The vanished pole with respect to the smallest eigenspace 

 

The hard case is a special situation in which the boundary solution of (2.3) is not 

unique. It can be shown that the hard case can only occur when the hessian matrix G 

is positive semidefinite, indefinite; the gradient vector β is perpendicular to the 

eigenspace with respect to the smallest eigenvalue of G; and ( ) βIG +−−>Δ 1λ , 

where the superscript (+) indicates the pseudo inverse. That is, if any of the above 

three conditions is not met, the hard case cannot occur see also [17]. Let 

( )1
222 λφτ −Δ=  and ( ) βIGd +−−= 1λ . If 01 ≤λ  and Δ<d  then the solution to 

the hard case is defined as: 

( ) 111 qdqβIG ττλ +=+−− +            (2.15) 

, where min1 Eq ∈  (the eigenspace with respect to smallest eigenvalue) and 11 =q ;  

−3 1 
μ 

Δ 
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If d solves the (2.4) then d must satisfy the condition (2.7) to (2.9), see also Appendix 

A. 

 

Now we explain the geometric interpretation of the hard-case solution. Consider 

the following example with a current point at x0 = ( ) ( )0,3, 21 −=xx . 

,:  

.215 : 
2
2

2
1

2
2

2
11

Δ≤+

−+

xxtosubject

xx+xMinimize
 

where the Hessian matrix ⎥
⎦

⎤
⎢
⎣

⎡
−

=
40

02
G  and the gradient vector ⎥

⎦

⎤
⎢
⎣

⎡−
=

0
5

β  at 

current point ( )0,3−  and ( ) 6/51 =−− +βIG λ . 

With the indefinite Hessian matrix G, we firstly show the geometric interpretation for 

the case with the gradient vector β orthogonal to Emin but ( ) βIG +−−<Δ 1λ . Figure 

2.4 shows a two-dimensional example where Δ is chosen to be 0.6. When the radius 

is chosen to be ( ) 651 =−−<Δ +βG λ , there is still a unique solution because the 

intersection of the sphere and the contour of the optimal y along the d direction is a 

unique point. 
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Figure 2.4 The Easy Case for an Indefinite Hessian 

 

Suppose the trust-region radius Δ is chosen to be 1.5 and is greater than 6/5 , i.e., 

the gradient vector β is still orthogonal to Emin but ( ) βIG +−−>Δ 1λ . Figure 2.5 

shows how the solution for this case becomes not unique. In Figure 2.5 the length 

from the current point ( )0,30 −=x  to x0 + d, ⎟
⎠
⎞

⎜
⎝
⎛− 0,

6
12 , is 6/5  (the length of the 

bold line in Figure 2.5) and less than 1.5. In this case, there are actually two solutions 

by adding d with 1qτ and 1qτ− (dotted lines): ( ) 111 qβIGd τλ +−−= +
H  and 

( ) 112 qβIGd τλ −−−= +
H , i.e., two bold dashed lines in Figure 2.5. 
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Figure 2.5 The Hard Case for an Indefinite Hessian 

 

2.4 Modifications of Trust Region Algorithm 

We do some modification to the TRS algorithm [9], the conventional TRS 

algorithm is detailed in Appendix B. The first is that because we need to compute the 

eigenvectors with respect to the smallest eigenvalue to solve the hard case, we use a 

more numerical computation robust method, namely, Singular Value Decomposition 

(SVD), to compute the eigen-system. Cholesky factorization is therefore replaced by 

SVD. 
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We first derive the all ingredients for the Trust Region algorithm. The 

root-finding problem applied Newton’s method generates a sequence of iterate of μ~

 by setting 

( ) ( )μφμφμμ '
11 /~ −=             (2.16) 

, where k is the k-th search index; μ~  is the next Lagrangian multiplier found in the 

Newton’s iterates and  

( ) ( ) ( )[ ]

( )[ ] ( )[ ].          

2
2
1)(

)('

32
3

2

32
3

2
1

1

βIGββIGβ

βIGββIGβ
d

−−−

−
−

−
−

−−−=

+−⎥⎦
⎤

⎢⎣
⎡ +−−=

−
=

μμ

μμ
μ
μ

μφ

TT

TT

d
d

   (2.17) 

In trust region literature, the first order derivative can solve by solving linear system. 

Due to the matrix ( )IG μ+  is positive definite with μ on the interval (−λ1,∞) and 

( )IG μ+  is also a symmetric matrix so it can be factorized by Cholesky factorization 

as ( ) UUIG T=+ μ              (2.18) 

, where U is a upper triangular matrix. 

By substituting (2.18) into (2.4) yields 

UTU d= UTU d(μ)=－β.            (2.19) 

Solve the linear system (2.19) we have the the solution d(μ) becomes 

βUUd T−−−= 1)(μ              (2.20) 

, and ( ) βIGββUUUUβdd 211)()( −−−−− +== μμμ TTTTT .     (2.21) 

 



51 

Also, solve the linear system UTU y(μ) = d(μ), the solution y (μ) is 

y (μ)= ( ) ( ) βIGβUUUUdUU 2111 −−−−−−− +−=−= μμ TTT .     (2.22) 

Besides we also have 

( ) ( ) ( ) βIGβyd 3−+= μμμ TT            (2.23) 

Substituting (2.21) and (2.23) into (2.17) yields 

[ ] ( ) ( )[ ] [ ] ( ) ( )[ ]
( ) ( )[ ]μμμ

μμμμμμμμφ

ydd

yddyddd
T

TTT

3

2
3

2
2
3

1

)(           

)()()()('
−

−−

−=

−=−=

  

  (2.24) 

Also, substitute (2.12) and (2.24) into (2.16), and we have the formula of Newton’s 

iterates 
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       (2.25) 

Now we have derived the formula for performing Newton’s iteration. The detailed 

algorithm is described in Appendix A. 

 

Because (2.12) and (2.17) involve the term ( ) p−+ IG μ  where ℜ∈p  . By 

applying the SVD method to ( )IG μ+  we have 

( ) TQQIG Σ=+ μ              (2.26) 
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, where 
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 and nλλ ,...,1 are the eigenvalues of

( )IG μ+ ; Q is the n by n matrix with columns consisting of orthonormal eigenvectors 

of ( )IG μ+ . 

Therefore, the inverse of ( )IG μ+  with any order p could be calculated by the 

following formula. 

( ) ( ) T

P
n

p

Tppp QQQQIGIG

⎥
⎥
⎥
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⎥

⎦

⎤

⎢
⎢
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⎡

=Σ=+=+ ++−

σ

σ
μμ

1

1

1
O .     (2.27) 

To proceed with our algorithm, we also have to do the following transformation. 

Qβθ=                   (2.28) 

, where the components of θ denotes as iθ  which is the product of the eigenvectors 

iq  and the gradient vector β . 

 

 The second modification of the TRS algorithm is to find the lower-bound for the 

Lagrangian multiplier μ  more efficiently. The purpose of the lower-bound is to 

prevent the unsuccessful iterates of the Newton’s method. As presented in Section 2.2, 

the safeguard mechanism of the TRS algorithm is designed to prevent this situation. 

Figure 2.6 shows Newton’s method leads μ beyond the logical interval. Moreover, the 

traditional TRS algorithm doesn’t compute the eigensystem, i.e., they do not use the 
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information of 1λ−  to safeguard the possible failure of Newton’s method. Since the 

S.V.D has been used to help us solve the problem, and the smallest eigenvalue of the 

Hessian matrix is also obtained. We may establish a new lower-bound based on the 

current Lagrangian multiplier. It will be shown that this new lower-bound will be 

better than the lower bound ( )S
minμ  proposed by Semple, J. (1997) [18]. To derive the 

lower-bound, we first define 

( ) ( ) ( ) ( )
( )

( )( ) ( )( ) ( )
( ) ( ) ( )
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      (2.29) 

Differentiating (2.29) with respect to μ produces 

( ) ( ) ( ) ( )μμμμ ydβIGβ T22' 3 −=+−=Φ −
         (2.30) 

The lower bound is estimated by the following inequality: 
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(2.31) 

, whenever ( )∞−∈ ,1λμ . 

Both elements in (2.29) and (2.30) are calculated in the Newton’s iterate, so it is easy 

to identify the estimated lower bound becomes 

( )
( ) ( ) ( ) ( )μμ

μ
μ

μμ
μ

μ
μ
μμλ

yd
d

yd
d

TT

22

1

)(
2

)(2
)('
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Φ
Φ+≥− .     (2.32) 
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Then the lower-bound proposed by Semple, J denotes as ( )S
minμ  can be written as: 

( )
( ) ( )μμ

μ
μμ

yd
d

T
S

2

min

)(
−= . 

 
Figure 2.6 The failure Newton’s iteration 

 

On the other hand, by using SVD our lower-bound ( )T
minμ  can be calculated by 

the following formula: 

( ) ( )
( )

( )
( )( ) ( )( )

( )( ) ( )
( )( ) ,        
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32
1

2
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dd
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+
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++−
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μ
μ

μφ
μφμTμ

        (2.33) 

Thus the lower bound of μ can be then set to 

( )( )T,μλμ min1min max−= .                 (2.34) 



55 

That is, the larger value between the negative smallest eigenvalue and the lower 

bound in (2.33) is set to be minμ . We use Example 1.2 to show (2.34) is better than 

( )S
minμ  and their geometric meanings in three different situations, i.e., three different 

positions of the current point. 

 

Situation 1: 

For being a positive definite matrix G + μI, let 1=Δ  and consider μ0 = 3 as the 

current point. Calculate the two lower-bounds and the two lower-bounds are 

illustrated in Figure 2.7. 

 
Figure 2.7 Comparison of lower-bound for μ  in situation 1 

 

(0, 0)

(-6,1) 

(3, 0.25)

(1, 1)

( )S
minμ( )T

minμ  
μ0 

μ 

Δ 

1λ−

*μ

(1.3644,1)
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Since ( )
1min λμ −<T , we set minμ  to be 1λ−  according to (2.34). With the help of 

1λ− , we a obtain better minμ  than ( )S
minμ . 

 

Situation 2: 

In this situation, we consider μ0 = 1.5 (at the right of the optimal *μ ) to be the 

current point as shown in Figure 2.8. The two lower-bound are calculated and shown 

in Figure 2.8. 

 
Figure 2.8 Comparison of lower-bound for μ  in situation 2 

 

As shown in Figure 2.8, ( )T
minμ is set to be 1.31, which appears to be very close to the 

optimal μ* and also lower than ( )T
minμ . 

 

( )S
minμ  

1λ− (1.5, 0.74)

(1.31, 1)

μ 

Δ 

μ1 

*μ

(0.95, 0) 

(1.3644, 1)

( )T
minμ  

(1, 1) 
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Situation 3: 

In this situation, we consider μ0 = 1.2 (at the left of the optimal *μ ) to be the current 

point as shown in Figure 2.9. Again the two lower-bound are also calculated and 

shown in Figure 2.9. 

 
Figure 2.9 Comparison of lower-bound for μ  in situation 3 

 

We find that ( )T
minμ  is still larger than ( )S

minμ  even if the current point μ0 is on the left 

hand side of *μ . We already demonstrate, without proof, that ( )T
minμ  better than ( )S

minμ . 

When we use the lower-bound to safeguard the Newton’s method from invalid 

solutions, this new lower bound helps the Newton’s method to converge quickly. 

μ0
−λ1 

(1.2, 1.78)

(1, 1) 

(1.289, 1) 

(0.996, 0) μ 

Δ 

( )S
minμ  

( )T
minμ

μ∗ 

(1.3644, 1)
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Algorithm 2.1 (Trust Region Subproblem Algorithm) 

Begin 

Perform S.V.D to ( )IG μ+  by (2.27) 

Calculate θ by (2.28) 

If G is positive definite then 

  Return 0* =μ  and the solution ( ) βGd 10 −−=         (2.35) 

Else If minEβ ⊥  then 

  Calculate  ))()( 2

1

2
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Return a better solution d by evaluating the objective of original 

objective function 

Else 

  Go to Algorithm 2.2 (the problem is a good case) 

End If 

Else 

  Go to Algorithm 2.2 (the problem is a good case). 

End If 

End 

We summarize the algorithm to solve the Trust Region Subproblem as follows. 
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Algorithm 2.2 (Algorithm for Good Case) 

Input: 

δ : the tolerance for convergence of the solution ( )μd  

ε : the tolerance for ensuring (ensure (G+μI) is P.D.) 

G:the hessian matrix of (2.2) 

β: the gradient vector of (2.2) 

Δ: the given trust region radius 

λ1: the smallest eigenvalue 

Begin 

 ελ +−← 1μ  (ensure ( )IG μ+  is P.D.).        (2.38) 

Repeat while ( ) δμ >−Δd  

  
( )( ) ( )
( )( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
Δ−

+−← − βIGβ
dd

31min max
μ

μμ
μ,λμ          (2.39)

(set the lower-bound for μ). 

  If ( ) Δ<μd  (at the right of the root) then 

   μμ ←max                (2.40)

  Else 

μμ ←min              (2.41)

End If 

Notice that, when the hard case occurs the optimal solution must be chosen by 

evaluating the objective value of original objective function. The algorithm for the TR 

Hard Case is complete. For “Good Case” of TRS, the Newton’s iterates algorithm is 

shown below:  
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( )

( )[ ] ( )[ ]βIGββIGβ

d
32

3
2

1
Δ
1

~
−−− ++

−
+←

μμ

μ
μμ

TT
       (2.42) 

If min
~ μμ <  then 

2
~ minmax μμμ +← .             (2.43) 

  End If 

End Repeat 

Return μμ ~* =  

End 

 

 Example 1.2 is used again to demonstrate the TRS good case algorithm. With the 

explanation of the geometric meanings, first let the given trust region radius to be 1;ε 

= 2; the procedure is detailed as follows. 

 

Preparation: 

The eigenvalue of the Hessian matrix are 3 and −1 respectively, that is, G is an 

indefinite matrix. We first set ( ) 321 =+−−=μ  according to (2.38), and then 

proceed to the algorithm. 
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Iteration 1: 

By (2.39), we have ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡−
==

0
25.0

3dd μ and ( ) 125.0 <=μd . Thus we enter the 

TRS problem solving step. The minμ is first found to be ( ) 16,1max =−  according to 

(2.39) and is shown in Figure 2.10. Because ( ) 125.0 <=μd , to obtain an valid μ , 

we can set 3max =μ . With *μ  known to be in the interval of ( ) ( )3,1, maxmin =μμ , the 

first Newton’s iterate can be performed by (2.42), as shown in Figure 2.11 0.75=μ(  

Because μ(  is not in (1, 3) according to the safeguard mechanism (2.43), we take the 

average of minμ  and maxμ  to replace μ( , i.e., ( ) 22/31~ =+=μ . The two 

bold-dashed line in Figure 2.11 indicate minμ  and maxμ  in the space of Δ/1 . 

 

Figure 2.10 maxμ , minμ , ( )T
minμ  and 1μ  on two-dimensional space 

 

3max == μμ
μ 

Δ 

1min1 ==− μλ  

( ) 6min −=Tμ
*μ
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Figure 2.11 Safeguard mechanism for Newton’s iterate in the Δ1  space 

 

With 2~ =μ , the remaining iteration is listed in the following table. 

 

Table 2.1 The iterative results of example 1.2 solved by the TRS algorithm 

 

 

 

 

Iteration m k

1 3 Safeguarded Safeguarded
2 2 (-0.4,0.1) 0.41231
3 1.2544 (-1.1588,0.8063) 1.41181
4 1.3623 (-08618,0.5179) 1.0055
5 1.3644 (-0.8577,0.5140) 1

( )kμd( )kμd

≈

3max1 == μμ  

75.0=μ(

2~ =μ

1min =μ  

μ 

Δ
1
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3 Generalized Reduced Trust Region (GRT) Search 

In this Chapter, we develop an effective search algorithm based on the trust 

region method. In Section 3.1, we introduce a conventional search algorithm based on 

the trust region method. In Section 3.2, we propose our search algorithm by 

considering the modified TRS algorithm in Chapter 2 and the generalized space 

reduction method. In the final Section, we provide a convergence proof for the 

proposed search algorithm. 

3.1 Trust Region Search Method 

In Chapter 2, the trust region method and the related algorithm are introduced. 

Now we consider the use of the trust region method for optimization. The choice of 

the trust region radius will be an important issue during optimization. The problem 

will be approached by considering the approximation quality of the current iteration. 

Given a step d from the current x(k), the response improving ratio ( )kρ  is defined as 

follows: 

( )
( ) ( )

)()0(
)()(

d
dxx

mm
ff kk

k

−
+−=ρ             (3.1) 

, where the numerator and the denominator are called the actual reduction and the 

predicted reduction; the superscript (k) denotes the k-th iteration; ( )•f  is original 

objective function and ( )•m  is the approximated objective function by the Taylor 

expansion. 
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Notice that because the trust region method finds the solution inside the entire trust 

region so the denominator must be greater than or equal to zero, i.e., the predicted 

solution of the current iteration must not be worse than the solution found by the 

previous iteration. When we substitute the solution solved by the trust region method 

into the original function f, the new objective value ( )( )dx +kf  may be greater or less 

than ( )( )kf x . That is, the numerator may be greater or less than zero and determine 

the sign of ρ(k). If ρ(k) < 0.25, then the actual reduction provided by d is smaller than 

the predicted reduction, thus the step d must be rejected. On the other hand, if ρ(k) is 

close to 1 that means the predicted reduction is quite close to the actual reduction; 

namely, the function ( )•m  is a good approximate of the original objection function 

( )•f  and it is also safe to enlarge the trust-region radius for the next iteration. But if 

ρ(k) < 0 and ρ(k) is significantly smaller than 1 then we shrink the trust region by 

reducing the trust-region radius Δ for the next iteration. Such a trust-region radius 

adjustment strategy is expected to remedy the approximation deficiency of the GRR 

search. 
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Algorithm 3.1 

Input: 

Δ̂: an overall upper bound on the step lengths and 0ˆ >Δ  

x(k): the current point 

Δ(k): initial trust region radius and ( ) ( )Δ∈Δ ,01
 

d(k): an improving direction from current x(k)
 

η: threshold above which ρ  is considered to be a trusted improvement, where

)[ 25.0,0∈η . 

Begin 

For k = 0, 1, 2,… do 

  Obtain ( )kd  by solving algorithm 2.1. 

  Evaluate ( )kρ  by (3.1). 

  If ( )
4
1<kρ  

   ( ) ( )kk Δ←Δ +

4
11             (3.2) 

  Else If ( )
4
3>kρ  and ( ) ( )kk Δ=d  (boundary solution) 

   ( ) ( )( )ΔΔ←Δ + )
,2min1 kk           (3.3) 

  Else 

   ( ) ( )kk Δ←Δ +1 ;            (3.4) 

  End If 

  If ( ) ηρ >k  

   ( ) ( ) ( )kkk dxx +←+1            (3.5) 

Else 

The following algorithm describes an iteration of the search process without 

constraints. 
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   ( ) ( )kk xx ←+1 ;            (3.6) 

End if 

End For 

End 

Equation (3.3) means that if we want to enlarge the trust region, the solution found 

must be already as far away from the current point as possible, i.e., on the boundary

( ) ( )kk Δ=d . The purpose of the (3.5) and (3.6) is to determine if the improvement is 

worth moving the current point to the next point. 

 

Again, we consider the Rosenbrock’s function as our example for performing 

Algorithm 3.1. 

Example 3.1: 

Minimize: (1－x1)2+100×(x2－x1
2)2. 

Settings: Initial Point: ( ) ( )5.0,2, 21 −=xx ; 2ˆ =Δ ; ( ) 11 =Δ ; 25.0=η . 

 

Iteration 1: 

Solving the trust region subproblem yields d(1) = (0.4351, 0.9003). Because ρ(1) = 1.09 

> 0.25 and the norm of ( )1d  is equal to 1.00000, i.e., ( )1d  is a boundary solution 

according to (3.5), we have ρ(1) > 0.25 and set x(2) = x(1) + d(1) = (−1.5648, 1.4003). 

According to (3.3), because ρ(1) = 1.09 > 0.75, we enlarge the trust region radius Δ(2) 
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to be 2Δ(1) for x(2). Figure 3.1 shows the processes of Iteration 1 and the improving 

direction. 

 
Figure 3.1 Positions of x(1) and x(2) at iteration1 with ( )1Δ = 0.5 

 

Iteration 2: 

Solve the TRS for x(2) with Δ(2) and yield ( ) ( )1.010 0.0121,2 =d . We find that ρ(2) 

= 1.002 > 0.25 and move x(2) to x(3) = x(2) + d(2) = (−1.5526, 2.4105) according to (3.5). 

But the norm of ( )2d  = 1.0102 < Δ(2) = 2, i.e., not on the boundary. According to (3.4), 

we do not need to enlarge the trust region for x(3) and Δ(3) remains to be 2. This is 

because the Hessian matrix is already positive definite thus the optimal Lagrangian 

multiplier is 0 and the solution is inside the trust region. Figure 3.2 shows the search 

processes and the inside solution with trust region radius Δ(2) = 2. 
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Figure 3.2 The inside solution of Iteration 2. 

 

Iteration 3: 

We continue to solve the TRS for x(3) with the trust region radius ( ) 23 =Δ , obtain 

d(3) = (0.6147, −1.9031). Also evaluate ρ(3) and we have ρ(3) = −4.0421. Because ρ(3) is 

smaller than 0, i.e., the objective value is worse than that of the last iteration. We have 

to reject d(3) according to (3.6) and shrink the trust region radius Δ(4) to be 0.25Δ(3) = 

0.5 according to (3.2). Figure 3.3 shows the process of Iteration 3. 
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Figure 3.3 The rejected direction of iteration 3.1 

 

Iteration 4: 

By solving the TRS for x(4) = x(3) with Δ(4)= 0.5 then we have d(4) = (0.1553, −0.4752) 

and ρ(4) = 0.96 > 0.75. According to (3.5), x(5) = x(4) + d(4) = (−1.3973, 1.9353) and Δ(5) 

for x(5) is enlarged to 2Δ(4) = 1 because ρ(4) = 0.96 > 0.75 according to (3.3). Figure 

3.4 the process of Iteration 4. The rest of the iterations are listed in Table 3.1 and 

illustrated in Figure 3.5 
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Figure 3.4 The accepted direction of iteration 3.2 

 

Table 3.1 The all iterations of Example 3.1 
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Figure 3.5 The search process of Example 3.1 

 

From Figure 3.5, we see that Algorithm 3.1 avoids the zigzagging phenomenon 

significantly and the solution also converges to the global minimum (1, 1). But this 

algorithm is only available for the unconstrained problem. In order to solve the 

SMOO problem, we develop the Generalized Reduced Trust Region (GRT) method in 

the next Section. 
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this problem. In order to consider these constraints, we first add “Line Search” 

method into our algorithm to solve the constrained problem. The search direction d  

is provided by TR method and the Line Search is then performed along this direction 

to search for a better solution. Again, using the Rosenbrock’s function as an example, 

the improving direction of iteration 4 in Table 3.1 is equal (−1.397305, 1.935301) 

− (−1.552647, 2.410563) = (0.155342, −0.475262). The objective value of iteration 5 

is equal to 5.776516. If we apply the Line Search here, we further move the solution 

to (−1.303346, 1.647840) and the objective value becomes 5.564209 as shown in 

Figure 3.6. 

  
Figure 3.6 The line search solution of iteration 3 
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constraints, i.e., be inside the feasible region. When the global minimum is not inside 

the feasible region, the Line Search usually leads to a solution on the constraints.  

Figure 3.7 shows critical constraints imposed on the Rosenbrock’s problem and the 

solutions generated by the Lien Search with various directions. It can be seen that the 

Line Search solution all stay on the bounded constraint. 

 
Figure 3.7 Boundary solutions by performing line search 

 

Therefore if we continue to perform the TR method to the boundary solution, we 

usually get an infeasible direction even if the direction is an improving direction in the 
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Figure 3.8 The infeasible direction generated by the TR method 
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is less than that needed by the TR method where all variables have to be accounted 

for. 

 

We now consider the objective function of (2.2) and add the inequality 

constraints and the bounded constraints in to our problem. Rewrite the problem by 

linearizing the constraints as follows.  
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is the Jacobian matrix of the binding constraints of (1.5) and (1.7). 

We also replace ( ) ( )( )kk xx −+1  by the improving direction d as before. Then, 

decompose d, ( )kβ  and ( ))( kxH∇  into the basic and the nonbasic variables: 
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The method to decompose the variables will be introduced later. Different from the 

GRG method, the GRT search should decompose the Hessian Matrix ( )kG  into four 

sets: 
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The nonlinear problem (3.7) can be then generalized to: 
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In (3.8), the equality constraints could be rewritten as 
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N
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(3.9) should hold for the constraints to be met. Substituting (3.9) into the objective 

function of (3.8), the objective function is reduced to be the function of nonbasic 

variables. The nonlinear programming (3.8) becomes: 

( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 2/)( 111

1

k
N

k
NR

Tk
N

k
N

k
N

k
N

T
R

kfMinimize
k

N

xxBxxxxbx
x

−−+−+ +++
+

   (3.10) 

( ) nqforUxLtosubject
qq x

k
qx ,,1K=≤≤  

, where 

( ) ( )( ) ( )( ) ( )k
B

k
B

Tk
N

k
NR βxHxHβb 1−∇∇−=          (3.11) 



77 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )k
BN

k
B

Tk
N

k
N

k
B

k
BB

k
B

Tk
N

k
NNR

GxHxH

xHxHGxHxHGB

1

11

2         

        
−

−−

∇∇−

∇∇∇∇+=
    (3.12) 

The TR method in Section 3.1 is then applied to (3.10) and generates the improving 

direction with the nonbasic variables subject to a sphere constraint: 
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, where ( ) ( )( )k
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 the improving direction in the reduced space. 

Moreover, we need to consider the upper bound and the lower bound of the decision 

variables. The improving direction of the nonbasic variable Nd  should be further 

adjusted by: 
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, where dq is the q-th component of dN, and ( )k
qx  is the q-th component of ( )kx . 

With the above adjustment, the improving direction of the basic variables can be then 

is calculated by (3.9). That ensures that the improving direction is feasible and 

effective. 

 

At each iteration of the GRT search, ( )kx  is partitioned into basic variables ( )k
Bx  

and nonbasic variables ( )k
Nx , and ( ))( kxH∇  is also partitioned into ( ))( k

B xH∇  and

( ))( k
N xH∇ . Here, the number of the basic variables is the number of the binding 
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constraints, and the basic variables ( )k
Bx  should satisfy two requirements. First, 

( ))( k
B xH∇ , the bases of ( ))( kxH∇ , should be nonsingular. It ensures that the (3.9)  

holds. Second, ( )k
Bx should be larger than LxB and smaller than UxB. Because once the 

improving direction of the nonbasic variables is determined, the direction of the basic 

variables is indirectly generated by (3.9). If some elements of ( )k
Bx  are on the upper 

bounds or the lower bounds, no feasible solutions after Line Search can be found 

through the GRT direction and the solution will be stuck at the boundary. 

 

To satisfy the above two requirements, we first rank all variables by their 

distances to the bounds. The distances between variables and bounds are computed as 

follows: 

( ) ( )
( )

( ) ( )
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q
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q

k
qx

q

x

x
fxLx

x
fxxU

distance
q

q

xx
x

xx
x

     (3.15) 

, where distanceq is the distance of q-th variable to its bound. 

We would like to choose the variables farther from the bounds as the basic variables. 

To do this, we rearrange columns of ( ))( kxH∇  by distanceq and choose the bases 

from the front columns. In addition, we want to ensure that the chosen bases are 

independent. Choosing independent columns can be done by Gaussian elimination [3]. 
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Pivots obtained by Gaussian elimination will locate the independent columns. The 

second method to choose independent columns is rather straightforward. Starting 

from the first column of the rearranged ( ))( kxH∇ , every time a column is picked its 

independence from the chosen columns will be checked with “Singular Value 

Decomposition (SVD)” to prevent singularity. We observe that the results by the two 

methods are similar. 
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Algorithm 3.2 

Input: 

( )kx : a given current point 

j: the iteration index of trust region radius adjustment algorithm which is set 

to be 0 

( )kρ : the response improvement ratio of k-th search iteration. 

( )kΔ : a given trust region radius for current point ( )kx  

η: a radio measures how we trust this step and ⎢
⎣

⎡
⎟
⎠
⎞∈

4
1,0η  

Output: 

 d : an improving direction to current point ( )kx  

 ( )1+Δ k : the trust region radius of next point ( )1+kx  

Procedure Trust Region Radius Adjustment Algorithm 

Begin 

The biggest difference between the GRT search and the GRG search is that we 

need to specify the trust region radius for the GRT search. Even the algorithm 3.1 

provides a strategy for updating the trust-region radius, we still need to make some 

modifications for constrained problems and to make the algorithm more intelligent. In 

this research, the modified algorithm is proposed as follows: 
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 Repeat Until ( ) ηρ >k  

Perform the algorithm 2.1 to obtain improving directiond . 

Evaluate response improvement ratio ( )kρ  by (3.1). 

If 25.0<jρ  then 

   ( ) ( ) ( )( )( )75.0log25.01 1025.0 +−+ +×Δ←Δ jkk ρ
          (3.16)

  Else if ( ) 75.0<kρ  then 

   ( ) ( )kk Δ←Δ +1             (3.17)

Else If d is a boundary solution then 

   ( ) ( ) ( )( )( )Δ−×Δ←Δ +−+ ˆ,102min 75.01 jkk ρ          (3.18)

  End If 

  1+← kk  

End Repeat 

End 

In Algorithm 3.2, we establish a mechanism to decide trust region radius 

dynamically. This algorithm is supposed to be more intelligent than the Algorithm 3.1. 

First, we set Δ
)

 to be the largest distance from the current point x(k) to the constraints 

boundary. Second, instead of shrinking the trust region radius to one-fourth, we 

dynamically shrink the radius according to the degree of the improvement ratio ρ(k) by 

multiplying 
( ) ( )( )75.0log25.01025.0 +−+
kρ . Similarly, instead of enlarging the radius twice 

as large we dynamically enlarge it by multiplying 
( )( )( )kρ−−102 . To explain the radius 
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adjustment mechanism, Figure 3.9 and Figure 3.10 show how the two multipliers 

change as ρ decreases or increases. The multiplier in (3.16) maps 

( ) ( ){ }25.0| <<−∞ kk ρρ  to a shrinking factor ( ) ( ){ }1~25.0|~ << kk ρρ ; i.e., as ρ(k) is a 

large negative value the radius for the next iteration will be approaching ( )kΔ×25.0 . 

The multiplier in (3.18) maps ( ) ( ){ }∞<< kk ρρ 75.0|  to an enlarging factor

( ) ( ){ }2~1|~ << kk ρρ ; i.e., when ρ is greater than 0.75 and becomes large the radius for 

the next iteration will be approaching ( )kΔ×2 . Thus, with the help of the two 

multipliers, we can adjust the trust region radius dynamically. 

 
Figure 3.9 The mapping of the shrinking factor in (3.16) 
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Figure 3.10 The mapping of the enlarging factor in (3.18) 

 

Although our algorithm consider the constraints and find the improving direction 

in the reduced space but there still exists another problem, that is, the linearization of 

nonlinear constraints. GRG deals with the problem by Newton-Raphson method. As 

we discuss in GRG algorithm, the Newton-Raphson maintain the feasibility of the 

solution. However, there are two disadvantages in the Newton-Raphson method. First, 

the Newton-Raphson method relaxes the feasibility by allowing solution deviating 

slightly from the constraints. Determining the tolerance of feasibility ε is an issue. 

Similarly, determining the initial step length of nonbasic variables θ  isn’t easy. 

Second, the computation required by the Newton-Raphson method is intensive. In 

particular, the term )~,( )()( k
N

t
B xyh∇  in step 3.2 may not be invertible. Based on the 

above reasons, we replace Newton-Raphson method by the Line Search. By the Line 

Search, each solution is feasible and acceptable in the actual problem. 
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There is a strong assumption in the GRG method or the GRT search. Both 

methods linearize the constraints. However, the feasible region of nonlinear problem 

(1.8) may not be a polyhedron. Because we use the Line Search instead of 

Newton-Raphson method, there may be no feasible solutions along the linearized 

constraints. For example, Figure 3.11 shows an initial solution on the quadratic 

constraint boundary. The linearized constraint is actually the tangent of the curve. The 

direction derived by both the GRG and the GRT search are the direction along the 

tangent, but the tangent is outside the feasible region except the point of contact. This 

study uses the ideas of the GRR algorithm, that is, we combine the Zoutendijk’s 

method into the algorithm for this issue. 

  

Figure 3.11 Example of Zoutendijk’s method 

 

 

GRG/GRR/GRT Direction 

Zoutendijk Direction

Linearized Constraint
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As explained in Section 1.2.3, the Zoutendijk’s method generates an improving 

direction such that the angle between this direction and the constraint tangent must be 

greater than zero and within feasible region. However, the direction found by the 

Zoutendijk’s method is less effective. When there are feasible solutions after the Line 

Search along the direction found by the GRG method or the GRT search, the direction 

should be preferred. Otherwise, the Zoutendijk’s method is applied only when the 

Line Search fails to improve. The algorithm combining the Zoutendijk’s method will 

be shown as follows. 

 

Now we summarize the algorithm of Generalized Reduced Trust Region search 

method as follows: 

 

 Step 1: 

Let ( )kx  be a feasible solution at the k-th search step. Choose a threshold 0>e . 

Check the binding constraints and add slack variables (the slack variables are zeros) 

to the binding inequality constraints. Set the number of basic variables equal to the 

number of the binding constraints. Approximate the objective function as a quadratic 

function and linearize the binding constraints as the formulation of (3.7). 
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 Step 2: 

Compute distanceq by (3.15). Rearrange columns of ( ))( kxH∇  in (3.7) by distanceq 

and choose the independent bases from the columns in the front as basic variables, the 

other variables as nonbasic variables. Then, decompose all matrices and vectors into 

the set of basic variables and the set of nonbasic variables. In particular, the Hessian 

matrix G(k) is decomposed into ( )k
BBG , ( )k

BNG , ( )k
NBG , and ( )k

NNG . 

 

 Step 3: 

Perform Algorithm 3.2 to get an improving direction dN by solving (3.13). Adjust dN 

according to (3.14). Calculate dB by (3.9). Combine dN and dB as the improving 

direction d. 

 

 Step 4.1: 

Do Line Search from ( )kx  along direction d to find ( )1+kx  in the feasible region of 

(1.8). If there are no improving solutions after performing the Line Search, go to step 

4.2; else take the feasible solution to replace ( )1+kx . Go to step 5. 
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 Step 4.2 

Calculate Zoutendijk’s steps dZ according the Zoutendijk’s method in Subsection 

1.2.3 to replace d. Do Line Search from ( )kx  along direction dZ in the feasible region 

of (1.8). Go to step 5. 

 

 Step 5: 

If ( ) ( ) eff kk <− + )()( 1xx , stop and ( )1* += kxx ; otherwise, go to step 1. 

 

Here we use two examples to show the process of the GRT search method and a 

test problem to verify the GRT search algorithm. First we use the same example 

(Example 1.2) of the GRG method to show the search direction in the reduced space. 

Second we use the Rosenbrock’s function as the example to show the GRT direction 

could be more effective than the GRR direction and the GRT algorithm could also 

avoid the three drawbacks of the GRR search method. 

 

Figure 3.12 shows the improving direction (dashed-line) in the reduced space 

and modified improving direction (bolded-line). Figure 3.13 shows the improving 

direction (dashed-line) in the original space is infeasible thus we have to replace this 

direction by Zoutendijk’s direction (bolded-line). 
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Example 3.2 

Initial Setting: set trust region radius to be 0.5 at current point. 

( ) 2121
2
2

2
121 64222,: xxxxxxxxfMinimize −−−+= , 

.0,                  

;8.2
6

17                  

;2: 

21

2
21

21

≥

≤+

≤+

xx

xx

xxtosubject

 

 

 
Figure 3.12 The improving direction in the reduced space 
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Figure 3.13 The improving direction in the original space 

 

In the following example, we demonstrate that the GRT algorithm is more 

effective than the GRR algorithm. The first purpose of the example is to show that the 

advantage of GRT search algorithm consider the solution inside the trust region. The 

second purpose is to show the GRT algorithm avoid two drawbacks, i.e., (1) the 

hessian matrix is singular or near singular; (2) the approximation issue of the 

quadratic model. 
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Subject to :－2 ≤ x1≤2; 0 ≤ x2≤ 4. 

The Hessian matrix G is equal to ⎥
⎦

⎤
⎢
⎣

⎡
−

−
100.0000284.2709
284.2709808.0994

; the eigenvalue of G is 

equal ⎥
⎦

⎤
⎢
⎣

⎡
0.000004
908.09948

. Because the smallest eigenvalue almost equals to zero, the 

Hessian matrix G is almost a singular matrix. We roughly set the trust region radius to 

be 1, and then perform the GRT search algorithm to find the next point. Table 3.2 

shows the result by solving the TRS. With the response improving ratio ( ) 25.01 <ρ , 

the approximation of first iteration is poor. Thus we shrink the trust region radius and 

set it to be ( )( ) 0.2500871025.01 )75.0log(25.03.54233 =+× +−− . The response improving ratio 

of the second iteration ( )2ρ  can be accepted and we also get an improving objective 

value. By the way, the algorithm only needs a few number of iteration for solving 

TRS. 

 

Table 3.2 GRT search result of example 3.2 

 

Now we use the GRR algorithm to search the optimal Lagrangian multiplier by 

(1.24). The GRR algorithm wants to find a Lagrangian multiplier which minimizes 

the original objective by adjusting the Lagrangian multiplier by (1.24). With δ  and 

α  are set to be 10 and 100, Table 3.3 shows the iterative results of the GRR search 

Interaion Lagrangian multiplier Corresponding Obj. Value ρ k Radius
1 −1.3981900Ε−01 1.175425E+00 −3.542328 1
2 −5.2386169Ε−01 1.155079E-01 0.849160 0.2500887
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method. Compare the two result generated by two method, we find that the GRT uses 

less iterations and also gets a better objective value. 

 

Table 3.3 GRR search result of example 3.3 

 

Finally this thesis will solve the test problem and the cases by these methods: 

“Generalized Reduced Gradient method and Zoutendijk method” [24], “Generalized 

Reduced Ridge method and Zoutendijk method” [24], “Generalized Reduced Trust 

Region method and Zoutendijk method”, and commercial software “Lingo”. Solutions 

by three different methods will be also discussed. Table 3.2 shows the methods with 

different settings are compared in our research. Moreover, we consider the same 

method [24] to generate the initial points. 

 

 

 

 

Interaion Lagrangian multiplier Corresponding Obj. Value
1 4.6806226Ε−06 9.276490E+25
2 4.2078324Ε−06 6.335962E+21
3 −5.2006918Ε−07 6.110703E+17
4 −4.7799085Ε−05 6.088703E+13
5 −5.2058925Ε−04 6.086232E+09
6 −5.2484909Ε−03 6.083651E+05
7 −5.2527507Ε−02 6.055326E+01
8 −5.2531767Ε−01 1.156180E-01
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Table 3.2 The methods compared in our research 

 

In the Subsection 1.3.1, we use the Rosenbrock’s function to show the strong 

zigzagging phenomena by using the GRG search. This study uses the same problem to 

test the search methods listed in Table 3.2. We select four corner points in the feasible 

region to be the initial point and suppose the terminal criterion is less than 10−6 

between two iterative objective values or more than seven hundred steps of search. 

The initial points are listed in Table 3.3 and the local search results are listed in Table 

3.4. 

 

Table 3.3 The initial points of the Rosenbrock’s function 

 

 

Methods

GRG + Zoutendijk

GRR + Zoutendijk (Δ=100, α =10)

GRR + Zoutendijk (Δ=100, α =20)

GRR + Zoutendijk (Δ=100, α =30)

GRT + Zoutendijk with Conventional Radius Adjustment (CRA)

GRT + Zoutendijk with Dynamic Radius Adjustment (DRA)

Lingo (Steepest Edge)

Lingo (SLP Directions)

Lingo (Steepest + SLP)

Index x 1 x 2

1 −2 0
2 2 0
3 −2 4
4 2 4
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Table 3.4 The Results of Rosenbrock’s function (Local Search) 

 

The “GRT + Zoutendijk” methods have better performance in objective value 

and computing time against the “GRR + Zoutendijk” methods and the methods of 

Lingo. Moreover, the “GRR + Zoutendijk” methods are very sensitive to the 

parameters. This is one of the drawbacks of the algorithm with “GRR + Zoutendijk” 

approach as we discussed before. In order to verify the “GRT + Zoutendijk” methods 

avoid the zigzagging phenomena, we plot the search processes of all initial points by 

using the “GRT + Zoutendijk” method with η = 0.25. 

    

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 5.0039460E-01 2.924208E-04 352 0.12
GRR + Zoutendijk (Δ=100, α =10) 1.4376088E-07 2.863833E-08 117 0.07
GRR + Zoutendijk (Δ=100, α =20) 7.2339749E-07 6.192558E-28 101.25 0.04
GRR + Zoutendijk (Δ=100, α =30) 1.6651505E-07 6.192558E-28 186.75 0.07

GRT + Zoutendijk with CRA 8.8623310E-18 1.467099E-19 13 0.03
GRT + Zoutendijk with DRA 9.9622481E-18 7.101449E-19 13 0.02

Lingo (Steepest Edge) 2.2556653E-08 2.254358E-08 159.75 < 1

Lingo (SLP Directions) 2.2560715E-08 2.255993E-08 146 < 1

Lingo (Steepest + SLP) 2.2556500E-08 2.254766E-08 147.75 < 1
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Figure 3.14 The search process of the “GRT + Zoutendijk” method 

 

Figure 3.14 shows that the “GRT + Zoutendijk” methods avoid the zigzagging 

phenomena successfully and the search path advance along the inclined trough of the 

Rosenbrock’s function. 

3.3 Convergence Proof of Generalized Reduced Trust Region Method 

In this Section, we propose a convergence proof of the GRT search method 

based on the Algorithm 3.1. The convergence combines two convergence theories. 

The first theory is about trust region method. It shows that the sequence of gradient 

( ){ }kβ  generated by Algorithm 3.1 has an accumulation point at zero, and in fact 

converges to zero when η is strictly positive. Under this condition, another theorem 

about the convergence of GRG claims that the ( )kβ  is equal to zero if and only if the 

current point x(k) is a KKT point. We then start the convergence analysis by obtaining 

an estimate of the decrease in the model function m in (3.7) two-dimensional subspace 
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minimization algorithms and Steihaug’s algorithm produce approximation solution d 

of the (3.7) that satisfy the following estimate of decrease in the model function [14]: 

( ) ( ) ( ) ( )
( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ≥−

k

k
kkcmm

G

β
βd ,min0 1          (3.19) 

We assume throughout that the Hessian matrix ( )kG  in (3.7) is uniformly bounded in 

norm, and that f in (1.8) is bounded below on the level set 

)}.()(|{: 0xx ffsS ≤=             (3.20) 

We define an open neighborhood of this set by 

},somefor  |{:)( 00 S RRS ∈<−= zzxx         (3.21) 

where R0 is a positive constant. 

To allow our results to be applied more generally, we also allow the length of the 

approximate solution d of (3.7) to exceed the trust-region bound, provided that it stays 

within some fixed multiple of the bound; that is, 

( )kΔ≤  γd for some constant 1≥γ .         (3.22) 

The following result deals with the case η = 0. 

 

Theorem 3.1 [14] 

Let η = 0 in Algorithm 3.1. Suppose that ( ) χ≤kG  for some constant χ, that f 

is bounded below on the level set S defined by (3.21) and Lipschitz continuously 

differentiable in the neighborhood S(R0) for some R0 > 0, and that all approximate 
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solutions of (3.13) satisfy the inequalities (3.20) and (3.22), for some positive 

constants c1 and γ . We then have 

( ) 0 inf lim =
→∞

k

k
β .             (3.23) 

 

Proof: 

See also Appendix C. 

 

Theorem 3.2 [2] 

Consider the problem (3.7) without the bounded constraints to minimize ( )xm  

subject to ( ) ( )( ) 0)( =−∇ kk xxxH , 0≥x . Let x be a feasible solution such that 

( )T
N

T
B

T xxx ,=  and xB > 0, where ( ))( kxH∇  is decomposed into ( )( )k
B xH∇[  

( )( )]k
N xH∇  and ( )( )k

B xH∇  is an invertible matrix. Suppose that m is differentiable 

at x, and let ( ) ( ) ( )( ) ( )( )kk
B

Tk
B

kT xHxHββr ∇∇−=
−1 . Let ( )( ) [ ]T

N
T
B

TkT ddxxd ,=−=  be the 

direction formed as follows. For each nonbasic component j, let jj rd −= if 0≤jr

and jjj rxd −=  if 0>jr , and let ( ) ( )
N

k
N

k
BB dxHxHd )()( 1∇−∇= − . If 0≠d , then d 

is an improving feasible direction. Furthermore, d = 0 if and only if x is a KKT point. 

Corollary 3.1 

Consider problem (3.13). The Generalized Reduced Trust Region search algorithm 

will reach a KKT point at x(k) as ∞→k . 
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Proof: We will have 0inf lim =
→∞ Rk

b  for problem (3.13) based on Theorem 3.1. 

Since ( ) RRN bIBd 1−+−= μ  for problem (3.13), ( ) ( )
N

k
N

k
BB dxHxHd )()( 1∇−∇= − , 

and [ ]BN ddd =  thus we have 0inf lim =
→∞

d
k

. Therefore, by Theorem 3.2 x(k) is 

the KKT point as ∞→k . 
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4 Case Study 

In this chapter, three cases about semiconductor are described. We formulate the 

cases as the SMOO problems like Equation (1.8) and solve by the methods listed in 

Table 3.2. 

4.1 Geometric Layout Design for Semiconductor Manufacturability 

The information about how different geometric styles of layouts impact the 

circuit performance is important for fables design houses. Some slight changes of the 

channel length and width often lead to unexpected variations in the electricity signals. 

The rounding phenomenon will occur in the corners of poly-silicon after 

photolithography. Generally speaking, the “Active-Area” is the main cause of the 

variation. Examples with rounding phenomenon are shown in Figure 4.1. 

 
Figure 4.1 Two SPICE models with the rounding phenomenon 
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The rounding phenomenon would increase the channel drawn length, Len, and 

the channel drawn width, Wid, in Figure 4.1. The change of Len and Wid directly 

influences the width-to-length ration of a transistor: Len
Wid . However, the major 

observations in E-Tests, saturation current (IDsat) and the threshold voltage (Vt), would 

be proportional to Len
Wid  [21, 16]. Thus, the design house would like to obtain a 

setting of the design layout which has less variation and close to the desired electrical 

performances. 

 

In this case study, the design factors on the device layout are shown in Figure 4.2 

and the upper bound and lower bound of these factors are summarized as Table 4.1. 

This design is a NMOS transistor and the rounding phenomenon occurs around the 

fillister in the center of Active-Area. 
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Figure 4.2 Design factors on geometric layout 

 

It is a three-factor layout design problem. Ten ET parameters are measured in a 

CCD experiment and ten response surface models are built as below: 

 

Table 4.1 Upper bounds and lower bounds for 3 factors 

 

WE.W-H.-EH.+W.+E.+H.W-.-E.-H.+.Y 1590157211191433118711087018901860480ˆ 222
1A =

WE.W-H.-EH.-W.-E.-H.W-.+E.+H.+.Y 1538195111329101190137063112321990090ˆ 222
2A =

WE.W-H.+EH.+W.-E.-HW+.+E.+H.-.-Y 10311161117112015421003013601480260ˆ 222
3A =

WE.W+H.-EH.-W.-E.+H.W-.-E.-H+.-Y 12531101167013011401080130148010260ˆ 222
4A =

WE.W-H.-EH.+W.+E.+H.W-.+E.-H.+.Y 1340154111350080169136031010621660510ˆ 222
5A =

WE.W+H.+EH.+W.+E.-H.W+.-E.+H.-.Y 11901960118067011231150301501460290-ˆ 222
6A =

WE.W-H.-EH.-W.-E.+H.W-.+E+H.+.Y 12951492117755421392140941121481010ˆ 222
7A =

WE.W+H.-EH.+W.-E.-H.W+.+E.+H.-.-Y 1330171011407901463126045015501110390ˆ 222
8A =

32017711680112100231352114047115901170320ˆ 222
1B .W-E.W-H.+EH.+W.-E.-H.W-.+E.+H.-.Y =

WEW+H.-EH.+
W.+E.+H.W+.-E.-H.+.Y

113181143576011833734
57120171782862412417161257541688716173600081098ˆ 222

1C =

 

Factor Factor Name Lower Bound Upper Bound
x 1 H 1 0 0.4
x 2 E 1 0.05 0.15
x 3 W 0.1 0.3

Region of rounding 

h
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Because the rounding phenomenon would be influenced by H1 and E1, the 

design rule would like the H1 to be as large as possible and the E1 to be as small as 

possible. Thus, the term, ( ) ( )22 05.014.01 −+− EH , are added into our objective 

function to ensure the design factors close to the targets. In addition, the designers are 

asked to minimize the rounding effect caused by the design factors E1 and H1. That is, 

they hope that changes in E1 and H1 should not have minimum influence on the 

responses. Therefore, additional terms of 2,1,0
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

q
x

ET

q

i , are added in the 

objective function. Each of the ten ET has a specification window and a desired target. 

We generate the desired targets close to the responses corresponding to the setting of 

(0.4, 0.05, 0.25). Furthermore, the specification limits are generated by ±10% of these 

responses. These requirements are summarized as in Table 4.2 and the details of 

problem formulation are in Appendix D. 
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Table 4.2 Desired targets and specification windows for DFM 

 

Here, we solve the SMOO problem by the three methods. The optimum design, 

the corresponding responses, and the effects are summarized in Table 4.3, Table 4.4, 

and Table 4.5, respectively. 

 

Table 4.3 Optimum design of DFM case 

 

 

Table 4.4 Responses given the optimum design 

 

 

Table 4.5 Sensitivity effects given the optimum design 

 

Desired
target
(T i ) L i U i

A 1 IdsatN-592 0.54 0.483975 0.591525
A 2 IdsatN-593 0.54 0.486743 0.594908
A 3 IdsatP-592 -0.31 -0.33883 -0.27722
A 4 IdsatP-593 -0.32 -0.35184 -0.28787
A5 IdsatN-104 0.57 0.511785 0.625515
A6 IdsatP-104 -0.35 -0.38671 -0.3164
A7 IdsatN-107 0.54 0.48573 0.59367
A8 IdsatP-107 -0.37 -0.40623 -0.33237
B 1 VtN 0.48 0.433845 0.530255
C 1 IoffN 225 202.2143 247.1508

Response Response
name

Specification window

Factor H1 E1 W
Optimum

setting 0.155624 0.1341821 0.1184904

A1 A2 A3 A4 A5 A6 A7 A8 B1 C1
IdsatN-592 IdsatN-593 IdsatP-592 IdsatP-593 IdsatN-104 IdsatP-104 IdsatN-107 IdsatP-107 VtN IoffN

0.5344 0.4917 -0.2907 -0.3052 0.5118 -0.3357 0.4857 -0.3466 0.4478 247.1508

A1 A2 A3 A4 A5 A6 A7 A8 B1 C1
H1 0.684 0.335 -0.113 -0.127 0.412 -0.192 0.286 -0.595 -0.105 953.498
E1 1.152 0.81 -0.178 -0.162 0.53 -0.19 1.117 -0.277 -0.218 1108.238
W -0.536 -0.034 0.025 0.26 0.044 0.034 0.241 0.197 0.623 -2033.993
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Here we allocate 23 initial solutions for the global search. Seven feasible initial 

solutions could be found. We suppose the terminal criterion is less than 10-6 between 

two iterative objective values or more than seven hundred steps of search. Table 4.6 

describes the results of all local optimums with the seven feasible initial solutions by 

the methods listed in Table 3.2. 

 

Table 4.6 Results of DFM case (Local Search) 

 

In the above results, the algorithms with the “GRR + Zoutendijk” and “GRT + 

Zoutendijk” approach and software “Lingo” have better performance. All initial 

solutions could reach the global optimum. However, the algorithm with the “GRG + 

Zoutendijk” approach can’t converge to the global solution no matter what initial 

solution is used possibly due to the zigzagging phenomenon. Moreover, the steps and 

the computing time of the algorithm with “GRR + Zoutendijk” are very sensitive to 

the parameter. 

 

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 2.0196656E+07 1.5592227E+07 434.00 1.20

GRR + Zoutendijk (Δ=100, α =10) 1.5592227E+07 1.5592227E+07 116.14 0.63

GRR + Zoutendijk (Δ=100, α =20) 1.5592227E+07 1.5592227E+07 332.14 1.40

GRR + Zoutendijk (Δ=100, α =30) 1.5870851E+07 1.5592227E+07 477.43 2.14

GRT + Zoutendijk with CRA 1.5592227E+07 1.5592227E+07 34.71 0.23

GRT + Zoutendijk with DRA 1.5592227E+07 1.5592227E+07 34.43 0.22

Lingo (Steepest Edge) 1.5592233E+07 1.5592220E+07 12.00 < 1

Lingo (SLP Directions) 1.5592230E+07 1.5592230E+07 12.86 < 1

Lingo (Steepest + SLP) 1.5592230E+07 1.5592230E+07 12.29 < 1
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4.2 Robust Configuration of Semiconductor Supply Chain 

Semiconductor fabrication is a very complicated manufacturing process. The 

global, cross-company supply chain operations as shown in Figure 4.3 are even more 

complicated and dynamic. 

FAB
Process

CP
Process

ASSY
Process FT

Process

Demand

Supply

Supply

Supply Supply

Design Houses
IDM

Supply

 
Figure 4.3 Semiconductor supply chain 

 

For the complexity, a usual planning and scheduling solutions have become 

impossible to employ. Thus, both statistical optimization and control techniques have 

been proposed and applied to semiconductor manufacturing systems [6]. The 

empirical supply chain model describes how the supply chain configuration affects 

the chosen performance metrics and their variability. With such models, an optimal 

supply chain configuration can be found for different types of products, priorities, and 

routes. 

 

There are several performance metrics of the semiconductor supply chain. From 

the entire supply chain point of view, this case chooses “the mean of X-factor” and 
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“the variability (standard deviation) of cycle time” as the metrics to evaluate the 

supply chain performance in semiconductor manufacturing. In addition, lots of 

allocation decision variables in semiconductor manufacturing may affect the supply 

chain performance metrics. In this case, these allocation decision variables are defined 

as follows: qk ~~π , the percentage of product k~  assigned to be produced at the priority 

q~ , and rk~~ρ , the percentage of product k~  assigned to be produced at the route r~ . 

The relationship among these allocation decision variables is shown in Figure 4.4; 

these metrics are defined as follows: ( )qfactorXE ~− , the mean of X-factor to all 

products assigned to be produced at the priority q~ , and ( )qCTSD ~ , the standard 

deviation of cycle time to all products assigned to be produced at the priority q~ . 

Besides, we assume that the priority mix is independent of the supply chain route mix 

without loss of generality. 

 
Figure 4.4 Supply chain allocation decision variables 

 

Route 1

Route 2
Product

Super hot lot

Hot lot

π

ρ

Normal lot

Priority 
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By collecting the data from research papers and personal interviews, this case 

build an empirical supply chain simulation model as shown in Figure 4.5. The 

production environmental setting in our simulation is shown in Figure 4.5. 

 

Figure 4.5 Supply chain simulation model 

 

Table 4.7 The Environment setting of model 

 

 

Table 4.8 The capacity at each facility of each tier 

 

Index Value
Number of facilities in each tier 3 tiers; 6 : 2 : 2

Product Capabilities of each facilities See Table 3.9
Simulation Horizon Setting 90days

Total Demand Quantity 6465K wafers
Production Capacity of each tier

(wafer per month)
Average bottleneck processing time of each facility of each tier (Capacity Constraint) Product A：B：C = 2：1.7：1

6465K wafers for each tier

FAB Capacity Assem. Capacity FT Capacity
FAB1 1468K Assem1 3265K FT1 3200K
FAB2 1376K Assem2 3200K FT2 3265K
FAB3 922K
FAB4 1133K
FAB5 1202K
FAB6 689K
Total 6465K Total 6465K Total 6465K
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Besides, there are three priorities for each product, and the required delivery 

durations are very different: the required delivery duration for super hot lot is 1.3 

times the row process time of each product; 2.1 times for hot lot and 3 times for the 

regular. We have total nine possible routes in this example including six routes, four 

routes and two routes for three different products, respectively. 

 

We also assume that the production cycle time is infinite if capacity utilization 

rate approaches to 200% and the production cycle time is raw processing time if 

capacity utilization rate is 0%. By following this assumption, the product cycle time 

for each product at each plant in different priorities can be estimated based on 

different utilization rate for each product at each plant in different priorities. The 

general function of cycle time is an exponential curve. Our simulation model is based 

on 80% capacity utilization rate. The expected cycle times and raw process time for 

each product at each plant of different priorities in FAB, Assembly, and Final test are 

listed in Appendix E. 

 

Moreover, we design 5 levels for each factor, but total levels in this experimental 

design have only 15 factors because the sum of decision variables qk ~~π  and rk~~ρ  

must add up to 1. Next, a D-Optimal method is adopted such that 180 simulation runs 
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are further developed. Finally, each run is performed 20 replicates. The corresponding 

performance metrics for each run were collected. After that, a response surface model 

is generated to indicate the interrelationships between ( )qfactorXE ~− , ( )qCTSD ~  

and qk ~~π , rk~~ρ . Thus, an optimal configuration model in a semiconductor 

manufacturing is ready to be developed. 

 

Since this model must consider several performance metrics simultaneously, the 

subjective weights of performance metrics for priority 1, 2 and 3 are supposed to 15, 5, 

and 1, respectively: 

( )[ ] ( )[ ]∑∑
==

−+−−
3

1~

2
~~

3

1~

2
~~ 01

q
qq

q
qq CTSDwfactorXEwMin

 

where 1,5,15 321 === www . The target of the X-factor and the standard 

deviation are one and zero. 

In addition to the target, there are the lower bounds of the X-factor and the standard 

deviation: 

( ) qfactorXE q
~1~ ∀≥− , 

( ) qCTSD q
~0~ ∀≥ . 
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Moreover, there are several sets of constraints, which are explained as follows: 

The proportion of a product assigned to be produced at different priority levels should 

be added up to 1: 

k
q

qk

~1
~

~~ ∀=∑π . 

 

The proportion of a product assigned to be produced at different routes should be added 

up to 1: 

k
r

kr

~1
~

~~ ∀=∑ ρ . 

The total proportion of demands to be produced at the priority level q~  must locate 

within a predetermined upper limit and lower limit: 

qp q
k

qkkq
~~

~
~

~~~~ ∀≤⋅≤∑ ηπξ , 

where q~η  is the maximum percentage of products produced at the priority q~ , q~ξ  

is the minimum percentage of products produced at the priority q~ , and kp ~
~  is the 

percentage of product k~  in product mix. 

The total proportion of demands to be produced at the specific route must locate 

within a predetermined upper limit and lower limit: 

rp r
k

krkr
~~~~

~
~

~~~~ ∀≤⋅≤∑ αρβ , 

where r~
~α  is the maximum percentage of products produced at production route r~  

and r~
~β  is the minimum percentage of products produced at production route r~ . 

The capacity constraints of each facility in each supply chain tier: 
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φρ φ
φ φ

φ ,~~
~

~:~ ~ ~

~~
~~~~ tC

PT
PT

pE t
rr k t

tk
krkt ∀≤∑∑

∈
, 

where tE~  is the utilization rate of tier t~ , φtC~  is the capacity ratio at factory φ  

of tier t~ , φtPT~  is the average production cycle time of single product at factory φ  

of tier t~ , and φtkPT ~~  is the average production cycle time of product k~  at factory 

φ  of tier t~ . 

The upper bounds and the lower bounds of each decision variable: 

qkLU
qkqk qk

~,~
~~~~ ~~ ∀≥≥ ππ π ,

 

krLU
krkr kr

~,~
~~~~

~~ ∀≥≥ ρρ ρ , 

where 
qk

U
~~π  and 

qk
L

~~π  are the upper bound and the lower bound of the percentage of 

product k~  assigned to be produced at the priority q~ . 
kr

U ~~ρ  and 
kr

L ~~ρ  are the upper 

bound and the lower bound of the percentage of product k~  assigned to be produced 

at the route r~ . The details of the supply chain problem formulation are in Appendix 

F. Here, we solve the SMOO problem again by the three methods. The optimum 

solution and the corresponding responses are summarized in and Table 4.10, 

respectively. 
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Table 4.9 Optimum design of supply chain case 

 

(Unit of all decision variables: %) 

 

Table 4.10 Responses given the optimum design 

 

(Unit of the standard deviation: Month) 

We generate 32 feasible initial points and perform the search algorithm listed in 

Table 3.2. Table 4.11 shows the search results of each method. Although, the GRT + 

Zoutendijk and the GRG + Zoutendijk method can find almost the same optimum but 

the GRG + Zoutendijk consumes less computing time and uses less number of 

iterations. Moreover, we use the local-search option to perform algorithm thus the 

objective values of the Lingo’s method are worse than other methods. 

 

Table 4.11 Results of supply chain case (Local Search) 

 

Factor
Optimum

setting 5 10 85 15 10 75 15

Factor
Optimum

setting 10 75 10 10 20 17.1498 19.9088

Factor
Optimum

setting 22.9414 30 23.3269 15.9212 30.7519 45.4128 54.5871

11π 12π 13π 21π 22π 23π 31π

32π 33π 11ρ 14ρ 15ρ 17ρ 18ρ

19ρ 22ρ 24ρ 26ρ 27ρ 33ρ 34ρ

1.39722 1.63383 2.10121 0.24881 0.2734 1.58036
( )1factorXE − ( )2factorXE − ( )3factorXE − ( )1CTSD ( )2CTSD ( )3CTSD

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 1.1831251E+01 9.379897E+00 107.23 3.68
GRR + Zoutendijk (Δ=100, α =10) 1.2398509E+01 9.379897E+00 442.67 38.72

GRT + Zoutendijk with CRA 1.2190163E+01 9.379897E+00 307.81 12.10
GRT + Zoutendijk with DRA 1.2048563E+01 9.379897E+00 285.48 10.63

Lingo (Steepest Edge) 1.6123810E+01 1.612381E+01 27.00 < 1
Lingo (SLP Directions) 1.6126714E+01 1.613550E+01 27.54 < 1
Lingo (Steepest + SLP) 1.6123701E+01 1.612673E+01 25.32 < 1
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4.3 Track System PEB CDU Optimization 

In semiconductor fabrication industry, the Critical Dimension Uniformity (CDU) 

control is essential for today’s high performance IC device. The desired control of the 

CDU is just under 2.6nm (3-sigma) for 65-nm technology. The across-wafer gate 

critical dimension uniformity (CDU) strongly affects the final chip-to-chip 

performance spread in terms of speed and power. Thus it motivates us to improve the 

CDU for better yield. This study uses the methods including Design of Experiment 

(DOE), Response Surface Methodology (RSM) and the GRT search to improve the 

CDU. There is a paper, see also [23], discusses the improvement of the CDU by using 

different approach can be compared with our result. Many semiconductor fabrication 

technologies in our study are also can be found in this paper. 

 

Within-wafer CD uniformity is mainly affected by the temperature 

non-uniformity on the post-exposure-bake (PEB) hot plate. Therefore the temperature 

control of the PEB step has an important impact of the final CDU. There are a lot of 

source contributes to CD variation throughout the lithography and etch sequence. 

Table 4.12 shows the possible source to CD variation [23]. The PEB step has become 

very critical in controlling gate CD since the thermal dose diffuses acid and catalyzes 

the chemical reaction of the chemically amplified resist after exposure. This study 
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will focus on reducing the variation source of the PEB step. The simplest and most 

straightforward approach to reduce across-wafer CD variation is to make each 

processing step spatially uniform. Modern wafer track systems include a 

multizone/multicontroller bake plate meant to be adjusted to deliver more spatially 

uniform PEB temperature distribution. In this study, the distribution of the seven 

zones is shown in Figure 4.6. 

 

Table 4.12 Source and characteristic of several types of CD variation 

 

 
Figure 4.6 The distribution of multizone PEB bake plate 
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The manipulatable parameter of the PEB bake plate is the temperature of each 

zone. In our modeling approach, we have the same assumptions as [23]. We also 

assume that the actual steady-state PEB temperature on a wafer at a location over each 

zone of the multizone/multicontroller bake plate is decided by the temperature 

setpoint, the corresponding offset of the zone controller, and the effect of other zones, 

due to the good conductivity of bake plate. 

 

In practice, there are 577 sites in one wafer and the CDs of these sites are 

affected by the temperature of the seven zones, i.e., the offsets of the seven zones. For 

this reason, we can construct 577 “Linear Regression Models” for these 577 sites. 

Each model can be written as the following equation: 

i
T

iii bCD ε+×+= Offsets Zoneb0, , 

where { }577,...,1=i , 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7,

2,

1,

 

i

i

i

i

b

b
b

M
b , 

⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

OffsetZone

OffsetZone
OffsetZone

 

 
 

7

2

1

M
Offses Zone  and ε  is the error 

term of the model. 

 

But the only concern is the CDU of the wafer not the CDs thus we use the “Mean 

Difference” approach to construct these models. The idea of the “Mean Difference” is 

to construct a model describes the relationship between the differences (the CD of 
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each site − the overall mean of the wafer) and offset of each zone. Because our 

ultimate goal is to reduce the CDU of the wafer thus we will care about the difference 

of the CD of each site to the overall mean. If the total differences become small, that 

is, the CDU of the wafer becomes small simultaneously. Therefore, the set of optimal 

offset found by the “Mean Difference” model can minimizes the difference of each 

site to overall mean and also reduces the CDU of the wafer. For this reason, we 

choose the “Mean Difference” approach to construct the models. Thus the “Mean 

Difference” models can be rewritten as follows.  

( ) i
T

DiDiDii bMCD ε+×+=− Offsets Zoneb ,,0,, , 

where { }577,...,1=i  and M is an overall mean CD value of the wafer. 

 

In this study, the data is obtained from 32 experiments. Actually, with the help of 

“Design of Experiment” (DOE), we also can build the models by fewer experiments. 

But we do not emphasize the importance of using the DOE in this study. The effects 

of all sites on a wafer can be plot on the color grid charts. The different colors of the 

color grid chart denote the degrees of the effects. The darker color means the stronger 

effect of the site. Figure 4.7 shows the effect maps of the seven zones. 



116 

 

 
Figure 4.7 The effect map of the seven zones. 
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In practice, there are three different requirements need to be meet. The first 

requirement is to find the set of optimal offset minimizes the CDU. The second 

requirement is to find the set of optimal offset minimizes the CDU and the value of 

overall mean CD of the wafer hit the specified target. The third requirement is to find 

the set of optimal offset minimizes the CDU and the value of overall mean CD the 

wafer satisfies the specified bounded constraints. To satisfy the second and third 

requirements of the optimization, we also need to evaluate the model describes the 

overall mean of the wafer and the offsets. The overall mean model can be written as 

follows. 

M
T
MMbMeanOverall ε+×+= Offsets Zoneb,0 , 

where
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢

⎣

⎡
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M

M

M

b

b
b

,7
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,1
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⎢

⎣

⎡

=

OffsetZone

OffsetZone
OffsetZone

 

 
 

7

2

1

M
Offses Zone  and Mε   is the error term of the 

overall mean model. 

Sometimes, the offsets of the PEB plate have physical limitation, i.e., the optimization 

model needs to consider the constraints for the offsets. We now summarize the three 

optimization models as follows. 
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Optimization Model for Requirement (1): 

[ ]
2577

1
,0,, 

:∑
=

×+
i

T
DiDiOffsetZone

bMinimize
i

Offsets Zoneb ; 

jjj UOffsetZoneLtoSubject ≤≤  : , 

where }7,...,1{ =j , jL  and jU  denote the lower-bound and upper-bound of the 

offset of Zone j, 
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Optimization Model for Requirement (2): 
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,                    
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where }7,...,1{ =j , TM is the target of the overall mean and jL  and jU  denote the 

lower-bound and upper-bound of the offset of Zone j respectively. 

 

Optimization Model for Requirement (3): 
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, where }7,...,1{ =j , UM and LM are the upper-bound and lower-bound of the overall 

mean and jL  and jU  denote the lower-bound and upper-bound of the offset of 

Zone j respectively. 

 

We consider the third requirement to be the optimization model. We allocate 23 

initial solutions for the global search. We use the same terminal criterion, 10-6 

between two iterative objective values or seven hundred steps as other cases. Table 

4.13 lists the results of all local optimums starting with the eight feasible initial 

solutions by the methods in Table 3.2. 

 

Table 4.13 Results of CDU optimization case (Local Search) 

 

Due to the zigzagging phenomena, the method “GRG + Zoutendijk” methods also 

cannot converge to the global minimum again. The search result including the steps 

and the computing time of the “GRR + Zoutendijk” methods is sensitive to the 

parameter again. If we compare the objective value, the consuming steps and the 

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 3.0783512E+01 3.0109657E+01 700 70.48

GRR + Zoutendijk (Δ=100, α =10) 3.0092226E+01 3.0092226E+01 12.375 0.73

GRR + Zoutendijk (Δ=100, α =20) 3.0092226E+01 3.0092226E+01 63.125 3.13

GRR + Zoutendijk (Δ=100, α =30) 3.0092226E+01 3.0092226E+01 154.75 6.95
GRT + Zoutendijk with CRA 3.0092226E+01 3.0092226E+01 5.5 0.45
GRT + Zoutendijk with DRA 3.0092226E+01 3.0092226E+01 2.625 0.37

Lingo (Steepest Edge) 3.0092230E+01 3.0092230E+01 39.75 1
Lingo (SLP Directions) 3.0092230E+01 3.0092230E+01 44 1
Lingo (Steepest + SLP) 3.0092230E+01 3.0092230E+01 38 1

≈

≈

≈
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computing time, the “GRT + Zoutendijk” methods are all comparable to the methods 

of “Lingo”. 
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5 Conclusions 

In this research, we solve the “Trust Region Subproblem (TRS)”, using SVD. 

With the help of SVD, we enhance the TRS algorithm by proposing a better lower 

bound for safeguarding the Newton’s iterates and also provide a new mechanism to 

adjust the trust-region radius dynamically. To solve the SMOO problem, a nonlinear 

constrained problem, we then develop the “Generalized Reduced Trust Region (GRT)” 

search method with the above modifications. We have also proved the convergence of 

the proposed GRT algorithm. 

 

To verify our algorithm, a test problem and three SMOO problems were studied. 

The following results were observed: 

1. The GRT search method avoids the zigzagging phenomena often incurred 

by the GRG method and gets a better solution. 

2. The GRT search combined with the Zoutendijk search method can 

effectively reach the optimal point in every case. 

3. The GRT search method with dynamic radius adjustment can reduce the 

number of iterations and computing time by about 5% to 10% as compared 

to the conventional radius adjustment in a large scale problem such as the 

cases of the DFM problem and the robust semiconductor supply chain 

optimizations. 

4. Compared against Lingo’s solution, our search algorithm usually converges 

at the same or better solution with comparable computation time. 
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Although, the four cases lend support to this research, there are still much room to be 

improved. 

1. In order to deal with any kind of optimization problems, the Hessian matrix 

can be calculated and updated more efficiently. Moreover, the Hessian 

matrix indeed could be approximated for shorter computing time [4]. 

2. In late 1980s, many researchers try to solve the trust region problem more 

efficiently like the dogleg method and indefinite dogleg method [5, 14, 22]. 

They are all approximate techniques of the trust region problem and also 

lead to the same global and local convergence properties, i.e., these methods 

can shorten the computing time without loss of optimality conditions. 

3. In this research, the SVD replaces the Cholesky factorization to compute 

and perform the Newton’s iterates. However the SVD is too costly for large 

matrices, the method is applicable only for small problems. There have been 

many researches on how to reduce the computational efforts of the 

Cholesky factorization [10]. 

4. Although this research propose the convergence property of the GRT 

algorithm but the Corollary 3.1 does not cover the Line Search method. 

There have been some algorithms combine the Trust Region method and 

Line Search method and also provider convergence properties [8, 15, 20] 

5. In this research, we propose a dynamic strategy to update the trust-region 

radius. In 2005, some researchers discussed about the trust region radius 

update [19]. 

6. Zoutendijk’s method sometimes incurs the zigzagging phenomenon. It may 

influence the search performance of the GRT search. There should be some 
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enhancements when searching a feasibly improving direction at the 

boundary of feasible set. 

7. Multiple initial solutions could increase the probability to reach the global 

optimum, but there exists a systematic method. In Lingo’s algorithm, the 

“Branch and Bound” algorithm is adopted. It divides the nonlinear 

programming problem into several approximate convex optimization 

problems, then, searches the global optimum iteratively. 
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Appendix A. Proof of the solution to the Hard Case 

To prove d satisfies the condition (2.7) [9], observe 

( ) ( ) ( )( ) ( )( ) ( ) 11111111 qIGβIGIGqβIGIGdIG λτλλτλλλ −−−−−=+−−−=− ++ . 

, where ( )( ) IIGIG =−− +
11 λλ  thus we have 

( ) ( ) 111 qIGβdIG λτλ −−−=−  

and since ( )IGq 1λτ −∈ N  we conclude 

( ) βdIG −=− 1λ  

, which complete this proof. 

For the condition (2.8) we have the squared Euclidean distance of d is decomposed as 

follows 

( ) 2
11

T
1

2

1

2

11
2 2)()( qβIGqβIGqβIGd τλλτλ +−×+−−=+−−= +++  

, where ( )  011 =− +βIGq λT .  

So we have 

( ) 22

1
2 λ qβIGd τ+−−= +  

and then  )]([( 2
1

1
22 λφτ −Δ±=  can be determined to meet Δ=d . 

For the condition (2.9), it can be seen that d is a KKT point that satisfies KKT first- 

and second-order conditions for establishing only local optimality. 
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Algorithm B.1 [9] 

Input: 

F
G=0μ  (where 

F
•  is the Frobenius matrix norm) to ensure that ( )IG 0μ+  

 i s P.D. 

δ1 = tolerance for convergence of the solution ( )μd  

δ2 = tolerance for convergence of kμ  to signal the hard case 

ε = tolerance used in the method of iteration 

minμ = some large negative number (in our implementation, we use the minimum 

value of double) 

k = 0 (reset the iteration index) 

Begin 

Repeat while ( ) 1δμ >Δ−d  

  Factor ( ) UUIG T=+ μ (Cholesky Factorization)         (B. 1)

  If ( )IG μ+  is P.D. then 

   Solve the two linear system:  

( ) βUdU −=μT  and ( ) ( )μμ dUyU =T        (B. 2)

   
( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−←

μμ
μμμμμ

yd
dd

T

T

,minmin         (B. 3)

   If ( ) Δ<μd  (at the right of the root) then 

kμμ ←max            (B. 4)

Else 

Appendix B. Trust Region Algorithm 
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kμμ ←min              (B. 5)

End If 

   
( ) ( )

( ) ( )μμ
μμ

μμ
yd

dd 21~ ⋅
Δ

−
−← (Newton’s iterate)     (B. 6)

If min
~ μμ <  then 

( )
2

~ minmax μμμ +←  (safeguarding)       (B. 7)

   End If 

Else 

{ }μμμ ,max minmin ←  and 
( )

2
~ minmax μμμ +← (safeguarding)    

(B. 8)

  End If 

  If 2max δμμ <− miin  then 

Compute the eigenvector q via the method of inversed iteration 

applied to ( )( )IG εμ ++  and then determine π  (Problem is hard 

case). Return (Solutions are ( ) qdd πμ +=* ; 1
* λμμ −≈= ) 

                    (B. 9)

  End If 

End Repeat 

End 
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Appendix C. Proof of Theorem 3.1 (Convergence to Stationary 
Point) 

By performing some technical manipulation with the ratio ( )kρ  from Algorithm 

(3.1), we obtain 

( )
( ) ( )

( )
,

)()0(
)()(             

)()0(
))()0(())()((1

d
dxd

d
ddxx

mm
fm

mm
mmff

k

kk
k

−
+−=

−
−−+−=−ρ

       (C. 1) 

where ( )( ) ( )dx mf k = . 

Since from Taylor’s theorem we have that 

( ) ( ) ( ) ( ) ( )∫ ∇−+∇+∇+=+
1

0
)]()([)()()( dtftffff TkkTkkk dxdxdxxdx ,   (C. 2) 

for some t ∈ (0, 1), it follows from the definition (3.7) of m that 

( ) ( ) ( ) ( )

,
2

                                

)]()([
2
1)()((

2
1

2

1

0

dd

dxdxdGddxd

χχ +⎟
⎠
⎞

⎜
⎝
⎛≤

∇−+∇−=+− ∫ dtftffm TkkkTk

   (C. 3) 

where we have used χ1 to denote the Lipschitz constant for ( )( )kf x∇  on the set S(R0), 

and assumed that 0R≤d to ensure that x(k) and x(k) + td both lie in the set S(R0). 

Suppose for contradiction that there is ε> 0 and a positive index K such that 

( ) ,ε≥kβ for all Kk ≥ .            (C. 4) 

From (3.20), we have for k ≥ K that 

( ) ( )
( )

( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ,Δ≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ≥−

χ
εε k

k

k
kk ccmm min,min)()0( 11 G

β
βd .     (C. 5) 

Using (C. 3), (C. 5), and the bound (3.22), we have 
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( )

( )

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Δ

⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤−

χ
εε

χχγ
ρ

,min

21

1

1
22

k

k

k

c
.           (C. 6) 

We now derive a bound on the right-hand-side that holds for all sufficiently small 

values of ( )kΔ , that is, for all ( ) Δ≤Δ k , where Δ  is defined as follows: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=Δ
γχχγ

ε 0

1
2

1 ,
22

1min Rc
.          (C. 7) 

The γ0R term in this definition ensures that the bound (C.3) is valid (because

0Rk ≤Δ≤Δ≤ γγd ). Note that since 11 ≤c and 1≥γ , we have χε≤Δ . The latter 

condition implies that for all ( ) [ ]Δ∈Δ ,0k , we have min ( )( ) ( )kk Δ=Δ χε, , so from (A. 6) 

and (3.31), we have 

( )

( )

( )

( )

2
12221

1

1
2

1

1
2

1

1
22

≤
⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤
⎟
⎠
⎞

⎜
⎝
⎛ +Δ

=
Δ

⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤−
ε

χχγ

ε

χχγ

ε

χχγ
ρ

ccc

k

k

k

k .   (C. 8) 

Therefore, ( )
4
1>kρ  , and so by the workings of Algorithm 3.1, we have ( ) ( )kk Δ≥Δ +1  

whenever ( )kΔ  falls below the threshold Δ . It follows that reduction of Δ  (by a 

factor of 
4
1

) can occur in our algorithm only if 

( ) Δ≥Δ k , 

and therefore we conclude that 

( ) ( )( )4,min ΔΔ≥Δ Kk  for all Kk ≥ .         (C. 9) 

Suppose now that there is an infinite subsequence κ such that ( )
4
1≥kρ  for κ∈k . For 

κ∈k  and κ≥k , we have from (C. 5) that 
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( ) ( ) ( ) ( ) ( )

[ ]

( ). ,min
4
1                             

)()0(
4
1                             

)()()()(

1

1

χεε k

kkkkk

c

mm

ffff

Δ≥

−≥

+−=− +

d

dxxxx

          (C. 10) 

Since f is bounded below, it follows from this inequality that 

( ) 0lim
,

=Δ
∞→∈

k

kk κ
,               (C. 11) 

contradicting (C. 9). Hence no such infinite subsequence κ can exist, and we must have

( )
4
1<kρ  for all k sufficiently large. In this case, ( )kΔ  will eventually be multiplied by 

4
1

at every iteration, and we have ( ) 0lim =Δ
→∞

k

k
, which again contradicts (C. 9). Hence, 

our original assertion (C. 4) must be false, giving (3.23). 

Complete the proof of Theorem 3.1. 
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Appendix D. Problem Formulation of DFM Case 

Minimize: 
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0)-24035.14x+13181x5760.43x-(-5754.12 +0)-6.04x-1.77x0.68x+(1.47 +

0)-1.58x-0.33x+0.71x-(0.45 +0)-5.08x-5.29x-2.49x-(1.94 +

0)-1.34x+0.19x+0.96x+(-0.3 0)-0.16x+0.34x-1.54x-(0.31 +

0)-0.26x-3.25x+0.1x+(-0.13 +0)-0.4x-1.03x-1.16x+(0.03 +

0)-1.82x-8.53x-1.95x-(1.63 +0)-6.86x+0.59x-2.57x-(-0.87 +

0)-13181x+57249.56x+3734.83x+(-8716.68 +0)-1.77x-4.7x-0.21x+(0.59 +

0)-0.33x+6.92x-0.4x+(0.55 +0)-5.29x-4.78x+5.77x-(2 +

0)-0.19x+6.24x-0.8x+(0.5 +0)-0.34x-19.2x+0.35x+(-2.06 +

0)-3.25x+0.28x+0.67x-(-0.48 +0)-1.03x-5.08x-1.71x+(0.36 +

0)-8.53x-0.38x-2.3x-(2.23 +0)-0.59x-14.36x+1.19x+(-0.89 +

0)-13181x+3734.83x+3432.48x+(600.730)-1.77x-0.21x+0.28x-(-0.17 +

0)-0.33x+0.4x+0.52x+(-0.11 +0)-5.29x-5.77x-0.8x-(1.48 +

0)-0.19x+0.8x+0.3x+(-0.46 +0)-0.34x-0.35x+0.72x-(0.66 +

0)-0.1x-0.67x-0.16x-(0 +0)-1.03x-1.71x+0x+(-0.48 +

0)-8.53x-2.3x-0.74x-(0.99 +0)-0.59x-1.19x+0.2x-(0.86+

0.05)-(x +0.4)-(x+

225)-x13181x+x5760.43x-

x3734.83x+12017.57x+28624.78x+1716.24x+5754.12x-8716.68x-600.73x+(1098.08 +

0.48)-x1.77x-x0.68x+x0.21x+3.02x-2.35x-0.14x-1.47x+0.59x+0.17x-(0.32 +

0.37)+x0.33x+x0.71x-x0.4x+0.79x-3.46x-0.26x+0.45x+0.55x+0.11x-(-0.39 +

0.54)-x5.29x-x2.49x-x5.77x-2.54x-2.39x0.4x-1.94x+2x+1.48x(0.01 +

0.35)+x0.19x+x0.96x+x0.8x+0.67x+3.12x-0.15x+0.3x-0.5x+0.46x-(-0.29 +

0.57)-x0.34x-x1.54x-x0.35x+0.08x+9.6x+0.36x-0.31x+2.06x-0.66x+(0.51 +

0.32)x3.25x+x0.1x+x0.67x-0.13x-0.14x+0.08x-0.13x-0.48x-0x(-0.26 +

0.31)+x1.03x-x1.16x+x1.71x+0.2x-2.54x-0x+0.03x+0.36x+0.48x-(-0.26+

0.54)-x8.53x-x1.95x-x2.3x-0.91x-0.19x-0.37x-1.63x+2.23x+0.99x+(0.09+

0.54)-x0.59x-x2.57x-x1.19x+3.43x+7.18x+0.1x-0.87x-0.89x-0.86x+(0.48

+

+

+

++

++

 

subject to: 

3.01.0
15.005.0

4.00
1508.247225-x13181x+x5760.43x-

x3734.83x+12017.57x+28624.78x+1716.24x+5754.12x-8716.68x-600.73x+1098.082143.202

53025.00.48-x1.77x-x0.68x+x0.21x+3.02x-2.35x-0.14x-1.47x+0.59x+0.17x-0.32433845.0

33237.00.37+x0.33x+x0.71x-x0.4x+0.79x-3.46x-0.26x+0.45x+0.55x+0.11x--0.3940623.0

59367.00.54-x5.29x-x2.49x-x5.77x-2.54x-2.39x0.4x-1.94x+2x+1.48x0.0148573.0

3164.00.35+x0.19x+x0.96x+x0.8x+0.67x+3.12x-0.15x+0.3x-0.5x+0.46x--0.2938671.0

625515.00.57-x0.34x-x1.54x-x0.35x+0.08x+9.6x+0.36x-0.31x+2.06x-0.66x+0.51511785.0

-0.287870.32x3.25x+x0.1x+x0.67x-0.13x-0.14x+0.08x-0.13x-0.48x-0x-0.2635184.0

-0.277220.31+x1.03x-x1.16x+x1.71x+0.2x-2.54x-0x+0.03x+0.36x+0.48x--0.2633883.0

0.5949080.54-x8.53x-x1.95x-x2.3x-0.91x-0.19x-0.37x-1.63x+2.23x+0.99x+0.09486743.0

0.5915250.54-x0.59x-x2.57x-x1.19x+3.43x+7.18x+0.1x-0.87x-0.89x-0.86x+0.480.483975
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Appendix E. Expected Cycle Times and Raw Process Time of 
Supply Chain 

The estimated cycle time with raw process time for products, plants and priorities in 

FAB: 

 

The estimated cycle time with raw process time for products, plants and priorities in 

Assembly: 

 

FAB Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
FAB1 Priority1 107786.3 43545.6 101322.4 55065.6 106238.2 65491.2
(Min) Priority2 138157.9 46425.6 143855.6 59745.6 154811.1 69393.6

Priority3 198175.9 49305.6 200123.4 63705.6 191290.5 72720
FAB2 Priority1 106754.1 46569.6 110731.8 55209.6 112257.4 66974.4

Priority2 140035.7 49449.6 144816.8 56433.6 155978.6 70905.6
Priority3 203083.4 52329.6 196421.5 63849.6 193376.6 75643.2

FAB3 Priority1 116164.1 45576 112373 57096 not not
Priority2 138316.2 48456 147136.1 59587.2 not not
Priority3 202811.6 51336 206241.8 62856 not not

FAB4 Priority1 140333.1 29966.4 117665.1 55886.4 not not
Priority2 138654 47246.4 146215.2 58348.8 not not
Priority3 194274.4 50126.4 211231.9 63086.4 not not

FAB5 Priority1 112853.2 45748.8 not not not not
Priority2 139512.7 48628.8 not not not not
Priority3 198760.6 51508.8 not not not not

FAB6 Priority1 136227 43027.2 not not not not
Priority2 137850.2 45907.2 not not not not
Priority3 206452.7 48787.2 not not not not

Product Produc1 Produc2 Produc3

Fab Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
Asse1 Priority1 16819.8 8523.07 17240.97 9001.94 17598.24 9403.24
(Min) Priority2 21227.3 9963.07 21754.13 10585.94 22099.07 10987.24

Priority3 26258.9 12123.07 25022.45 12745.94 28684.21 13147.24
Asse2 Priority1 16852.1 8560.02 17368.85 9146.06 17727.48 9547.3

Priority2 19715.8 10000.02 20231.61 10586.06 20588.89 10987.3
Priority3 24732.4 12160.02 25239.6 12746.06 25590.77 13147.3

Product Product1 Product2 Product3
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The estimated cycle time with raw process time for products, plants and priorities in 

Final test: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fab Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
FT1 Priority1 22869.36 15051.3 24142.48 16376.1 24261.33 16499.34

(Min) Priority2 27098.66 16491.3 28347.25 17816.1 28463.96 17939.34
Priority3 33953.16 22251.3 35223.73 23576.1 35342.23 23699.34

FT2 Priority1 22014.74 15170.94 23511 16713.24 23352.4 16550.16
Priority2 27210.93 16610.94 28666.72 18153.24 28512.11 17990.16
Priority3 33093.73 22370.94 34583.09 23913.24 34425.29 23750.16

Product Product1 Product2 Product3
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Appendix F. Problem Formulation of Supply Chain Case 

Minimize: 

2
151215331526

152215181514241422112211221118

111122111222332433223311
2
262624

262226
2
242422221822

2
181811

2
15141531

1522151215261524152215181517

15
2
1414111432143114221412

14331424141814111411121124

1118111711
2
32322132263224

3222321832173211
2
3131223121

31123133312631223122212218

2217211221262124212221171233

12261218121133183317
2
262624

26222618261726
2
2424182417

2211
2
1818

2
1717111711

2
1514

1511152215261518151715
2
14

1411142214181417111211181117

11311231243122312222
2
26

26242622261726
2
2424222417

242217221122
2
18181718

22
1515221533152615181517

1432143311223226321821121211

33263324331833262426222617

242224182417
2
2222171817

22
15

1514151115221521153315261522

1518151714111432143114221421

14261424141814171411311121

1112112611241122111711
2
32

3222322132333218312231333124

31223117311131222122332226

2224222222182217221122
2
21

2133212421172111211224
2
33

33263324332233
2
2626242622

24182411242217221122
2
18

1817181118
2
17171117

2
11

2
1515261511

15142211113233321131333126

31223111212421221222
2
333324

2
26262426222618261126

2
24

2422241124221122181118

)3.025654.453 16.43614

3.2929413.546698.91496-6.202884.23574-5.04495-7.591466.22671-
5.875335.638634.16798-7.9766-6.819036.14005-11.148493.67909

8.084929.91956-3.262373.955815.697767.60712-15.36454-5.93274.5013(

)014.6095916.78231-

16.5544618.6269224.3218819.83233-10.90103-37.7278315.08398
11.657-111.78177-18.368413.2641114.9082811.83482-23.51398-

11.28578-8.72286-11.5333227.57-39.776967.51322-18.90353
23.1303330.29128 13.69445-22.4352-22.489278.22914-6.79337

10.8096716.975248.337128.0642 -106.56485-14.06794-31.24011-

14.119378.9614626.40251-10.71991-28.557847.3682511.55669
10.46857-20.36283-16.898916.65594-7.0773112.08031-4.73927

9.23598-27.6689317.48533-5.699886.38914 -26.26289-7.18731-

5.5976317.29442-6.40817-15.2281517.0188111.0329-19.97751-

16.55726-66.0056837.43988-83.3481420.8478823.40161-12.341.63076(5

)025.65426

32.58414  5.38951-11.2443522.2843217.7186617.66627-55.31215-

23.208215.43344-29.4722528.523655.73555-27.5822818.03107
16.26179-7.293459.704589.032626.09423-5.0163823.21307

16.9753615.8092620.93092-16.44176-19.5276417.1354119.90259-

14.41669-19.49143-3.753277.04376-44.3803120.9159330.39664-10.76424(15

)14.90862-0.74715-2.501173.086043.596113.6599-

2.36941 -1.596152.155411.08404 1.611450.52938-0.80321-
0.425421.006211.39983-0.61691-2.52953-1.44593-1.71873

1.50806-1.06043.456071.297321.237655.26463 - 2.12136(

)119.03243-

2.763932.365819.416753.35128-4.366431.700620.9847-
2.859056.199473.648681.679762.179261.480264.82369

2.5092-2.047678.540068.543034.41291-3.592513.61077
2.633292.423351.756571.884483.062333.75599-5.22684-

2.02881.93648-1.650152.37443.90151.32614-2.78439-
2.53356-9.046882.772961.44225-3.961312.137984.19952-

3.81107-2.54099-4.539526.596044.32323.78231-24.31008-

0.97223-3.07236-9.217844.36691-3.91556 2.15257-8.44666

0.817312.4221-2.9703210.02525-1.16146-1.097590.98932

2.39502-3.134562.08932 1.52753-1.069971.04104-17.3784

4.714363.59012 9.47746-20.727193.46978-12.10215-*9.14259-6.82052(5

1)-6.76398x3 4.19858  6.01892-

1.4345-1.57582-3.96577-0.69994-3.886013.90953-2.26427 
2.209544.33951 2.94563-2.73278-0.89682-0.95507 2.08025 - 

6.27775  3.597183.951072.430132.641286.01907-6.45807

3.355932.06173.21206-2.556271.70306-5.324071-0.76932-15(3.04028
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subject to: 



136 

1
1
1

03.025654.453 16.43614
3.2929413.546698.91496-6.202884.23574-5.04495-7.591466.22671-
5.875335.638634.16798-7.9766-6.819036.14005-11.148493.67909

8.084929.91956-3.262373.955815.697767.60712-15.36454-5.93274.5013

014.6095916.78231-
16.5544618.6269224.3218819.83233-10.90103-37.7278315.08398

11.657-111.78177-18.368413.2641114.9082811.83482-23.51398-

11.28578-8.72286-11.5333227.57-39.776967.51322-18.90353
23.1303330.29128 13.69445-22.4352-22.489278.22914-6.79337

10.8096716.975248.337128.0642 -106.56485-14.06794-31.24011-

14.119378.9614626.40251-10.71991-28.557847.3682511.55669
10.46857-20.36283-16.898916.65594-7.0773112.08031-4.73927

9.23598-27.6689317.48533-5.699886.38914 -26.26289-7.18731-

5.5976317.29442-6.40817-15.2281517.0188111.0329-19.97751-

16.55726-66.0056837.43988-83.3481420.8478823.40161-12.341.63076

025.65426
32.58414  5.38951-11.2443522.2843217.7186617.66627-55.31215-

23.208215.43344-29.4722528.523655.73555-27.5822818.03107
16.26179-7.293459.704589.032626.09423-5.0163823.21307

16.9753615.8092620.93092-16.44176-19.5276417.1354119.90259-

14.41669-19.49143-3.753277.04376-44.3803120.9159330.39664-10.76424

14.90862-0.74715-2.501173.086043.596113.6599-

2.36941 -1.596152.155411.08404 1.611450.52938-0.80321-
0.425421.006211.39983-0.61691-2.52953-1.44593-1.71873

1.50806-1.06043.456071.297321.237655.26463 - 2.12136

119.03243-

2.763932.365819.416753.35128-4.366431.700620.9847-
2.859056.199473.648681.679762.179261.480264.82369

2.5092-2.047678.540068.543034.41291-3.592513.61077
2.633292.423351.756571.884483.062333.75599-5.22684-

2.02881.93648-1.650152.37443.90151.32614-2.78439-
2.53356-9.046882.772961.44225-3.961312.137984.19952-

3.81107-2.54099-4.539526.596044.32323.78231-24.31008-

0.97223-3.07236-9.217844.36691-3.91556 2.15257-8.44666

0.817312.4221-2.9703210.02525-1.16146-1.097590.98932

2.39502-3.134562.08932 1.52753-1.069971.04104-17.3784

4.714363.59012 9.47746-20.727193.46978-12.10215-*9.14259-6.82052

16.76398x3 4.19858  6.01892-
1.4345-1.57582-3.96577-0.69994-3.886013.90953-2.26427 
2.209544.33951 2.94563-2.73278-0.89682-0.95507 2.08025 - 

6.27775  3.597183.951072.430132.641286.01907-6.45807

3.355932.06173.21206-2.556271.70306-5.324071-0.76932-3.04028
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