
國立臺灣大學工學院工業工程學研究所

碩士論文

Graduate Institute of Industrial Engineering

College of Engineering

National Taiwan University

Master Thesis

一般化縮減信賴域搜尋及其在多目標統計模型最佳化

之應用

Generalized Reduced Trust-region Search and Its

Applications to Statistical Multi-Objective Optimization

陳彥廷

 Yen-Ting Chen

指導教授：陳正剛 博士

Advisor: Argon Chen, Ph.D.

 中華民國 97 年 8 月

August, 2008

謝誌

 看著電腦中一個又一個的論文備份檔，與碩士學位論文及格證明，一次又一

次的 Group Meeting，經歷了四個寒暑，無數個看日出的清晨，令人難忘的畢業

旅行，這其中最令人感到欣慰的一件事，莫過於論文的順利完成！在我的研究生

涯中，首要感謝的當然是我的指導教授陳正剛老師，老師對於學術研究的熱誠，

與對事物的嚴謹，與那融會貫通的教學方式，都是我一生當中值得學習的對象，

也要感謝老師在論文階段，對本論文內容做到滴水不露、逐字斧正的程度，實令

我深為感佩!另外，感謝口試委員的不吝指導，包括兩位從新竹不辭路途遙遠趕

來的柯志明與蔡雅蓉經理、與元智大學的范書愷老師，您的著作是本論文相當重

要的基石、所上的兩位老師，張時中老師與吳政鴻老師，承蒙五位口試委員在論

文口試上的指正與建議，使得本論文更加完備，在此也深表感激。感謝所辦最熱

心助理們，Monica、淑云、相怡，給與我許多生活與行政工作上的協助，與常常

提醒我要工讀的琍文，幫老師傳話的助理宇珊。感謝兩位學識淵博的博班學長，

Amos 在修課上的幫助與小藍在本論文的相關理論的討論與指導。也要感謝患難

與共的戰友們，回家與吃飯的好伙伴小耀、同為台南人全身名牌的靖淵、一起住

半年才了解他在想什麼的政緯、躺著也中槍但脾氣超好的建名、研究室守護者所

辦愛將凌誠、垂直正交化之神育維，講話無理頭的宅宅青杉、還有其他好同學們，

勝傑、于珈、哲欣、俊男、皙杰、俊儒、尚樺、建宏、韋銓，同為阿剛 Group

的學弟妹們，小薛薛、博尉、惟婷、士晉、信融。最後要感謝我最摯愛的家人們，

特別是無怨無悔對我的栽培與付出我的爸媽，常常關心我的爺爺與奶奶，相當支

持我的叔叔嬸嬸，還有大、小姑姑與大、小姑丈，還有一起長大的兄弟姐妹們，

沒有你們 24 年來的支持也不會有今天的我。最後也要感謝這最後半年來，常常

聽我抱怨，但又為我鼓勵與打氣的采琳，願未來的路能與你共同努力。

彥廷 謹誌於台大工工所

民國九十七年八月二十七日

I

論文摘要

一般化縮減梯度(Generalized Reduced Gradient)法是一個廣受喜愛的非線性

規劃問題解法，但於具有四次目標式之多目標統計最佳化 (Statistical

Multi-objective Optimization)問題中，一般化縮減梯度法容易出現搜尋路徑曲折

(Zigzagging)的現象。於本研究中，我們改善了信賴域(Trust Region)搜尋法，並

發展了一般化縮減信賴域(Generalized Reduced Trust Region)搜尋法。此方法結合

了一般化縮減梯度與信賴域搜尋法，將具有限制式的非線性規劃問題，轉化成由

非基礎變數(Nonbasic variable)所構成的不具現制式的非線性規劃問題，並且在縮

減空間(Reduced Space)中獲得最佳改善的方向，且於案例中克服了一般化縮減梯

度法的缺點，此外，我們也結合了一般化縮減信賴域搜尋法與 Zoutendijk’s 搜尋

法以改善搜尋效果。最後，為了驗證該演算法的成效，我們利用一個眾所皆知且

具四次目標式的測試問題：Rosenbrock’s function 與三個案例來測試，第一個案

例是關於半導體可製造性設計(DFM)之問題，而第二個案例是半導體供應鏈穩健

配置之案例，最後一個案例為半導體製造過程中，臨界尺寸均勻度(CDU)在軌道

系統之曝光後烘烤(PEB)步驟下之最佳化。經由與商業套裝軟體 Lingo 的結果比

較，我們可以在相似的計算時間內獲得同樣甚至更好的最佳解。

關鍵字：非線性規劃，多目標統計最佳化，一般化縮減梯度法，一般化縮減信賴

域法，信賴域法

II

ABSTRACT

“Generalized Reduced Gradient” method is a popular NLP method, but it often

incurs a zigzagging search path especially for the statistical multi-objective

optimization (SMOO) problem where the objective function is a quartic function. In

this study, we improve the “Trust Region (TR)” search method and develop the

“Generalized Reduced Trust Region” (GRT) search method which combines the GRG

method and the improved TR method. The GRT search transforms the constrained NLP

problem to an unconstrained NLP problem consisting of only the nonbasic variables

and searches the best improving direction in the reduced space. The proposed method is

shown to overcome the zigzagging problem of the GRG method. To verify the

performance of our methods, we study a well know test problem and three cases. The

test problem is called Rosenbrock’s function which has a quartic objective function

with two decision variables. The first case is a semiconductor design for manufacturing

(DFM) problem. The second case is the problem to configure a robust semiconductor

supply chain. The final case is the “Track System PEB CDU Optimization”. Compared

against the result of the commercial software “Lingo”, the same or better solutions are

obtained by our methods with comparable computation time.

Keywords: Nonlinear Programming, Statistical Multi-Objective Optimization,

Generalized Reduced Gradient Method, Generalized Reduced Trust

Region Method, Trust Region Method

III

TABLE OF CONTENTS

TABLE OF CONTENTS ... III

LIST OF FIGURES .. V

LIST OF TABLES ... VII

1 Introduction .. 1

1.1 Problem Definition and Formulation ... 1

1.2 Current NLP Methods Review ... 6

1.2.1 Generalized Reduced Gradient (GRG) Method ... 7

1.2.2 Ridge Analysis and Ridge Search Method ... 15

1.2.3 Zoutendijk Method... 20

1.3 Shortcomings of Current NLP Methods .. 23

1.3.1 Shortcomings of Generalized Reduced Gradient Method 23

1.3.2 Shortcomings of Ridge Search Method ... 28

1.4 Research Objectives ... 31

1.5 Thesis Organization ... 34

2 Trust Region Method ... 35

2.1 Trust Region Method ... 35

2.2 Iterative Solution of Trust Region Subproblem (TRS) 39

2.3 The Hard Case .. 43

2.4 Modifications of Trust Region Algorithm.. 49

3 Generalized Reduced Trust Region (GRT) Search .. 63

3.1 Trust Region Search Method ... 63

IV

3.2 Generalized Reduced Trust Region Method .. 71

3.3 Convergence Proof of Generalized Reduced Trust Region Method 94

4 Case Study ... 98

4.1 Geometric Layout Design for Semiconductor Manufacturability 98

4.2 Robust Configuration of Semiconductor Supply Chain 104

4.3 Track System PEB CDU Optimization .. 112

5 Conclusions .. 121

REFERENCE ... 124

Appendix A. Proof of the solution to the Hard Case ... 126

Appendix B. Trust Region Algorithm ... 127

Appendix C. Proof of Theorem 3.1 (Convergence to Stationary Point) 129

Appendix D. Problem Formulation of DFM Case .. 132

Appendix E. Expected Cycle Times and Raw Process Time of Supply Chain 133

Appendix F. Problem Formulation of Supply Chain Case 135

V

LIST OF FIGURES

FIGURE 1.1 RESPONSE SURFACE OF CHEMICAL PROCESS ... 3

FIGURE 1.2 FEASIBLE REGION OF EXAMPLE 1.1 WITH THE NONLINEAR CONSTRAINTS .. 13

FIGURE 1.3 FEASIBLE REGION OF EXAMPLE 1.1 WITH THE LINEARIZED CONSTRAINTS . 13

FIGURE 1.4 THE EXAMPLE 1.1 IN REDUCED SPACE OF NONBASIC VARIABLES 14

FIGURE 1.5 NEWTON-RAPHSON METHOD IN THE ORIGINAL SPACE 14

FIGURE 1.6 RIDGE PATH OF ALL STATIONARY POINTS WITH VARIOUS RADIUSES 16

FIGURE 1.7 THE DEPENDENCE OF RADIUS ON LAGRANGIAN MULTIPLIER 18

FIGURE 1.8 THE DEPENDENCE RADIUS AGAINST LAGRANGIAN MULTIPLIER 19

FIGURE 1.9 ZOUTENDIJK’S DIRECTION OF EXAMPLE 1.1. .. 23

FIGURE 1.10 QUADRATIC RESPONSE SURFACE ... 25

FIGURE 1.11 QUARTIC RESPONSE SURFACE ... 25

FIGURE 1.12 SURFACE PLOT AND CONTOUR MAP OF EXAMPLE 1.3 26

FIGURE 1.13 SEARCH PATH OF GRG IN EXAMPLE 1.3 ... 27

FIGURE 1.14 DASH-LINE REGION IN FIGURE 1.13 .. 27

FIGURE 1.15 ZIGZAGGING PATH IN DASH-LINE REGION OF FIGURE 1.14 28

FIGURE 1.16 SEARCH PROCESS OF 1ST SETTING ... 30

FIGURE 1.17 SEARCH PROCESS OF 2ND SETTING ... 30

FIGURE 2.1 TRUST-REGION AND TRUST-REGION STEP ... 37

FIGURE 2.2 THE RELATIONSHIP OF Δ1 AND μ IN EXAMPLE 1.2 42

FIGURE 2.3 THE VANISHED POLE WITH RESPECT TO THE SMALLEST EIGENSPACE 46

FIGURE 2.4 THE EASY CASE FOR AN INDEFINITE HESSIAN .. 48

FIGURE 2.5 THE HARD CASE FOR AN INDEFINITE HESSIAN ... 49

FIGURE 2.6 THE FAILURE NEWTON’S ITERATION ... 54

FIGURE 2.7 COMPARISON OF LOWER-BOUND FOR μ IN SITUATION 1 55

FIGURE 2.8 COMPARISON OF LOWER-BOUND FOR μ IN SITUATION 2 56

VI

FIGURE 2.9 COMPARISON OF LOWER-BOUND FOR μ IN SITUATION 3 57

FIGURE 2.10 maxμ , minμ , ()T
minμ AND 1μ ON TWO-DIMENSIONAL SPACE 61

FIGURE 2.11 SAFEGUARD MECHANISM FOR NEWTON’S ITERATE IN THE Δ1 SPACE 62

FIGURE 3.1 POSITIONS OF X(1) AND X(2) AT ITERATION1 WITH ()1Δ = 0.5 67

FIGURE 3.2 THE INSIDE SOLUTION OF ITERATION 2. .. 68

FIGURE 3.3 THE REJECTED DIRECTION OF ITERATION 3.1 .. 69

FIGURE 3.4 THE ACCEPTED DIRECTION OF ITERATION 3.2 .. 70

FIGURE 3.5 THE SEARCH PROCESS OF EXAMPLE 3.1 .. 71

FIGURE 3.6 THE LINE SEARCH SOLUTION OF ITERATION 3 .. 72

FIGURE 3.7 BOUNDARY SOLUTIONS BY PERFORMING LINE SEARCH 73

FIGURE 3.8 THE INFEASIBLE DIRECTION GENERATED BY THE TR METHOD 74

FIGURE 3.9 THE MAPPING OF THE SHRINKING FACTOR IN (3.16) 82

FIGURE 3.10 THE MAPPING OF THE ENLARGING FACTOR IN (3.18) 83

FIGURE 3.11 EXAMPLE OF ZOUTENDIJK’S METHOD ... 84

FIGURE 3.12 THE IMPROVING DIRECTION IN THE REDUCED SPACE 88

FIGURE 3.13 THE IMPROVING DIRECTION IN THE ORIGINAL SPACE 89

FIGURE 3.14 THE SEARCH PROCESS OF THE “GRT + ZOUTENDIJK” METHOD 94

FIGURE 4.1 TWO SPICE MODELS WITH THE ROUNDING PHENOMENON 98

FIGURE 4.2 DESIGN FACTORS ON GEOMETRIC LAYOUT .. 100

FIGURE 4.3 SEMICONDUCTOR SUPPLY CHAIN .. 104

FIGURE 4.4 SUPPLY CHAIN ALLOCATION DECISION VARIABLES 105

FIGURE 4.5 SUPPLY CHAIN SIMULATION MODEL .. 106

FIGURE 4.6 THE DISTRIBUTION OF MULTIZONE PEB BAKE PLATE 113

FIGURE 4.7 THE EFFECT MAP OF THE SEVEN ZONES. .. 116

VII

LIST OF TABLES

TABLE 1.1 COMPARISON OF TWO DIFFERENT SETTINGS ... 29

TABLE 3.1 THE ALL ITERATIONS OF EXAMPLE 3.1 ... 70

TABLE 3.2 THE METHODS COMPARED IN OUR RESEARCH ... 92

TABLE 3.3 THE INITIAL POINTS OF THE ROSENBROCK’S FUNCTION 92

TABLE 3.4 THE RESULTS OF ROSENBROCK’S FUNCTION (LOCAL SEARCH) 93

TABLE 4.1 UPPER BOUNDS AND LOWER BOUNDS FOR 3 FACTORS 100

TABLE 4.2 DESIRED TARGETS AND SPECIFICATION WINDOWS FOR DFM 102

TABLE 4.3 OPTIMUM DESIGN OF DFM CASE ... 102

TABLE 4.4 RESPONSES GIVEN THE OPTIMUM DESIGN ... 102

TABLE 4.5 SENSITIVITY EFFECTS GIVEN THE OPTIMUM DESIGN 102

TABLE 4.6 RESULTS OF DFM CASE (LOCAL SEARCH) ... 103

TABLE 4.7 THE ENVIRONMENT SETTING OF MODEL ... 106

TABLE 4.8 THE CAPACITY AT EACH FACILITY OF EACH TIER ... 106

TABLE 4.9 OPTIMUM DESIGN OF SUPPLY CHAIN CASE .. 111

TABLE 4.10 RESPONSES GIVEN THE OPTIMUM DESIGN ... 111

TABLE 4.11 RESULTS OF SUPPLY CHAIN CASE (LOCAL SEARCH) 111

TABLE 4.12 SOURCE AND CHARACTERISTIC OF SEVERAL TYPES OF CD VARIATION 113

TABLE 4.13 RESULTS OF CDU OPTIMIZATION CASE (LOCAL SEARCH) 119

1

1 Introduction

1.1 Problem Definition and Formulation

Response surface methodology (RSM) is a powerful technique for quality and

productivity improvement.

Many processes such as chemical processes, manufacturing processes,

development processes, etc, are critical to productivity. These processes transform

inputs into outputs. In chemical processes, reaction time and reaction temperature are

inputs and the yield is output. Actually, engineers usually want to know how inputs

affect outputs. Response Surface Methodology (RSM) is a set of mathematical and

statistical techniques used by researchers and engineers to aid in the solution of

certain types of problems. In RSM, we call the inputs and the outputs “explanatory

(independent) variables” and “responses”. The response is normally measured on a

continuous scale and is a measure representing the most important function of the

system. The independent variables are the fade affecting the response and are usually

controllable.

Suppose the yield of a chemical process is affected by two factors. The first one

is reaction time and the second one is reaction temperature. At beginning we only

know the relationship between yield and these two factors is expressed as follows:

2

() ε+= etemperaturreactiontmereactionfyeild , . (1.1)

In order to disinter the function f, engineers use RSM procedures involve

experimental strategy, mathematical methods, and statistical inference which, when

combined, enable them to make an efficient empirical exploration of the system in

which they are interested. First, they design a set of designs using experimental

strategy (design). The purpose of the experimental strategy (design) is to enable the

analyst to explore the response surface [12] with equal precision, in any direction.

Subsequently engineers collect a set of data by performing these designs.

After obtaining these data, a model can be built by using regression analysis.

Here we suppose the linear multiple regression is applied. The relationship between

response and factors is express as:

εβββ +×+×+= etemperaturreactiontimereactionyield 210 (1.2)

, where 1β and 2β mean the effects to yield by changing one unit reaction time and

reaction temperature respectively. These two coefficients are useful information for

analyzing the chemical process. It is also convenient to view the response surface in

the two-dimensional time-temperature plane, as in Figure 1.1.

3

Figure 1.1 Response surface of chemical process

Normally, there are two stages of performing RSM. The first stage is called

response surface design which is mentioned in last two paragraphs. The second stage

is called response surface optimization or response surface analysis. In the latter stage,

engineers use optimization techniques such as steepest descent/ascent method to

decide the search direction for obtaining the best value of independent variable i.e.

reaction time and reaction temperature in our example.

In most engineering problem, the linear response surface model is not

satisfactory. Indeed the relationship between response and predictor variable is

nonlinear relationship. So we need nonlinear functions help us to describe the

relationship well. Now we consider there are n predictor variables, and the i-th

expected response is denoted as iŷ . The nonlinear response surface model can be

expressed as a quadratic function as follows:

0
10

20
30

40
50

-50

0

50
-400

-200

0

200

400

600

800

Y
ie

ld

Reaction Time (second)
Reaction Temperature (oC)

4

xBxxb i
TT

ii

nnnniii

ninnininiii

nii

b

xxxxxx

xxxbxbxbb

xxfy

++=

++=+

+++++++=

=

−−

0

1,1,31132112

22
11122110

1

ˆ

ˆˆ

)(ˆ

βββ

ββ
)

L
)

LL

L

 (1.3)

, where

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nx

x
x

M
2

1

x denotes n variables;

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

in

i

i

i

b

b
b

M
2

1

b

, and

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

inn

nii

niii

i

sym β

ββ
βββ

ˆ

2ˆˆ
2ˆ2ˆˆ

222

11211

MO

L

L

B

are the linear and quadratic coefficients, respectively.

Most engineering requirements would specify a desired target Ti for each response iŷ .

That is, the difference between iŷ and its target Ti should be as small as possible.

Here, the quadratic loss function [1] can be used to measure the total difference. That

is,

() 2

0
2)(ˆ ∑∑ −++=−

i
ii

TT
iii

i
iii TbwTywMin xBxxb . (1.4)

In (1.4), wi is a user-specified weight representing the relative importance for iŷ to

conform to the target. In this research, without loss of generality, all wi are assumed to

5

equal to 1. In addition to the target, the response iŷ should be located in a

specification widow with an upper specification limit Ui and a lower specification

limit Li:

ii
TT

iii UbL ≤++≤ xBxxb0 . (1.5)

Moreover, each input variable xn usually has an experimental region with an upper

bound
nxU and a lower bound

nxL :

nn xnx UxL ≤≤ .

(1.6)

The purpose of the region is that if variable xn is out of the experimental region, the

estimated response may be incorrect. So the regional constraints are needed. There are

also some technical restrictions that can be expressed as linear equality constraints. In

our example, we sometime request the linear combination of reaction time and

reaction temperature hits the target Tp.

ppp Ta =+ xa T
0 (1.7)

, where

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

pn

p

p

p

a

a

a

M

2

1

a

are the linear coefficients for the p-th linear equality constraint.

6

Here we give a summary for our problem, let T represent the set of responses

with targets; S represent the set of responses with specification windows; and Z

represent the set of linear equality constraints. The optimization problem can be

formulated as:

TiTbfMinimize
i

ii
TT

ii ∈−++=∑
2

0)()(xBxxbx
x

. (1.8)

nqUxL

ZmpTa

SmjUbLsubject to

qq xqx

ppp

jj
TT

jjj

,,1 .

,,1 ;

,,1 ;:

20

10

K

K

K

=≤≤

∈==+

∈=≤++≤

xa

xBxxb
T

This is a nonlinear minimization problem subject to linear equality constraints, and

nonlinear inequality constraints. In particular, the objective function is a quartic

programming problem with the objective function being a “quadratic” of “quadratic”

and nonlinear inequality constraints being quadratic inequalities. Actually there are

numerous non-linear programming (NLP) methods which can solve this problem, and

these methods will be introduced in next section.

1.2 Current NLP Methods Review

For engineers, optimization is really a practical procedure. There are numerous

NLP methods developed in recent half century. The most conventional class is

“Primal Method” also called “Methods of Feasible Direction” [2, 11]. The following

strategy is typical feasible direction algorithm. Given a feasible point x, a feasible

direction d is generated by main algorithm and the step size λ is also determined.

7

Thus, these methods keep two properties (1) dx λ+ feasible, and (2) the objective

value of current iteration smaller than last iteration. These methods usually have the

following three advantages [2]:

1. Because these methods generate a feasible direction for minimizing the

objective. Consequently the sequence of these points generated by these

methods is feasible too.

2. If these methods generate a convergent sequence, the limit of the sequence

will often satisfy the convergence prosperity, i.e., these methods are usually

shown to converge to KKT solutions.

3. These methods are not limited to solve convex problem.

1.2.1 Generalized Reduced Gradient (GRG) Method

When dealing with linear constraint optimization, it is natural to add slack

variables and use the linear equality constraints to eliminate some of the variables

from the problem. Reduced Gradient method uses this idea and avoids the use of

penalty parameter to search optimal solution. After that Generalized Reduced

Gradient (GRG) method is developed for nonlinear constrained optimization problem.

Today GRG is already verified to be a precise and accurate method for solving NLP

problems. There are many commercial optimization software packages like LINGO,

Microsoft Excel, Lotus and MINOS are all developed base on GRG.

8

The reduced gradient method can be viewed as the logical extension of the gradient

method to constrained optimization problems. We start with linearly constrained

optimization problems and consider the following linear equality constraint problem.

0
:

)(:

≥
=

x
bAx

x
 toSubject
fMinimize

 (1.9)

, where A is m × n matrix of rank m; b is m-vector.

There are some assumptions of this problem [2]:

1. f is continuously differentiable;

2. Every subset of m columns of the m × n matrix A is linearly independent;

3. Each extreme point of the feasible set has at least m positive components

(non-degeneracy assumption).

Now let x be a feasible solution. The basic idea of reduced gradient method is

dividing all variables into two sets, the set of basic variables xB and nonbasic variables

xN. For simplicity of notation we assume that we can partition the matrix A as A = [B,

N] where B is an nm× invertible matrix. We partition x accordingly:

[]TNB
T xxx ,= . Thus we can rewrite Ax = b as the follows.

BxB + NxN = b

, where

xB = B−1b − Β−1NxN. (1.10)

Now the basic variables xB can be eliminated by (1.10), and then the problem will be

9

0
0

)(:
1-1-

≥
≥−

N

N

NN

:Subject to

 fMinimize

x
NxBbB

x
. (1.11)

, where fN (xN) = f (B−1b − Β−1NxN, xN).

In (1.11), the variables we concerned are reduced to xN. If we have xN, we can obtain

xB by substituting xN into (1.10). Now let’s consider the choice of search direction.

Suppose d is a feasible direction, by the definition d should satisfy the condition

0)(<∇ dx Tf . And then we also translate the condition into (1.9) by dividing)(xf∇

and d into two sets.

0)()(NNBB <∇+∇ dxdx TT ff (1.12)

,where)(B xf∇ is the gradient with respect to the basic variables.

If d is a feasible direction, and then d satisfies the condition Ad=0, i.e. BdB + NdN = 0.

This means dB = −B−1NdN. (1.13)

And then substitute (1.13) into (1.12) to yield:

0)()()(1 <∇+−∇=∇ −
N

T
N

T
B fff dxNBxdx (1.14)

In (1.14), we call N
T

N
T

B ff dxNBxr)()(1 ∇+−∇= − the reduced gradient of f at x for

the given basis B. In other words, the reduced gradient r plays the same role in the

reduced problem as the gradient f∇ did in the original problem. In fact, the reduced

gradient is exactly the gradient of the function fN with respect to xN in the reduced

problem. Actually, the reduced gradient method can be generalized for solving

10

nonlinearly constrained optimization problems by linearizing the nonlinear constraints.

So we can solve the problem similarly to the linearly constrained case. The

nonlinearly constrained problem with bounded constraints is express as follows.

njforUxL

miforgtosubject

EforfMinimize

jjj

i

n

,,1~
,,1~0)(

)(

~~~

~

K

K

=≤≤

=≤

∈

x

xx
x

       (1.15) 

Given a nondegeneracy assumption, i.e., any columns of ( )xh∇  given by 

linearization inequality constraints are linear independent, a summary of Generalized 

Reduced Gradient method is given as follows [2]: 

 

 Step 1: 

Add slack variables to inequality constraints 0)(~ ≤xig  and obtain equality 

constraints ( ) mihi ,,1~,0~ K==x . Let x(k) be a feasible solution at the k-th search step. 

Linearize the constraints and get 0))(( )()( =−∇ kk xxxh . Decompose variables into 

basic and nonbasic sets ( )(
B
kx , )(

N
kx ). Furthermore, the Jacobian matrix )( )(kxh∇  is 

decomposed into )( )(
B
kxh∇ and )( )(

N
kxh∇ , such that )( )(

B
kxh∇  is invertible. 

 

 Step 2: 

Let )()()()( )(
N

1)(
B

)(
B

)(
N

kkTkTkT ff xhxhxxr ∇∇∇−∇= − . Compute the vector dN 

whose thj~  component jd~  is 



11 

⎪⎩

⎪
⎨
⎧

−
<=>=

=
otherwise

0 and or  ,0 and  if0
~

~~
)(

~~~
)(

~
~

j

jj
k

jjj
k

j
j r

rUxrLx
d (1.16)

, where jr~ is the thj~ component of r.

If dN = 0, stop. x(k) is a KKT point; otherwise, go to step 3.

 Step 3.1:

Find a solution to satisfy the nonlinear constraints by Newton-Raphson method.

Choose ε > 0 and a positive integerT . Let θ > 0 be such that N
)(

NN
~ UxL ≤≤ k ,

where N
)(

N
)(

N
~ dxx θ+= kk . Let)(

B
)1(kxy = and t = 1.

 Step 3.2:

Compute)~,()~,()(
N

)(1)(
N

)(
B

)()1(ktkttt xyhxyhyy −+ ∇−= . If B
)1(

B UyL ≤≤ +t ,)~,()(
N

)1(ktf xy +

),()(
N

)(
B

kkf xx< , and ε<+)~,()(
N

)1(kt xyh , let)~,()(
N

)1()1(ktk xyx ++ = and go to step 1;

otherwise, go to step 3.3.

 Step 3.3:

If t =T , replace θ by 2/θ . Let N
)(

N
)(

N
~ dxx θ+= kk and)(

B
)1(kxy = . Replace t by 1 and

repeat step 3.2. Otherwise, replace t by t + 1 and repeat step 3.2.

12

The contour in original space of the NLP problem is shown in Figure 1.2. In step

1, all inequality constraints are transformed into linearized equality constraints as

shown in Figure 1.3. The selected basic variables are x1 and x2 and the selected

nonbasic variables are x3 and x4. In step 2, the original NLP problem is transformed

into a NLP problem without equality constraints in the reduced space of nonbasic

variables, x3 and x4. The improving direction of the nonbasic variables is the opposite

direction of the reduced gradient. However, the variables should not be negative. The

improving direction of the nonbasic variables is modified as shown in Figure 1.4. In

step 3, the improving direction after transformed into the original space is actually the

direction along the tangent of the binding constraint. The optimal solution is then

found through Newton-Raphson method as shown in Figure 1.5.

Example 1.1:

() 2121
2
2

2
121 64222,: xxxxxxxxfMinimize −−−+=

x
,

.0,

;8.2
6

17

;2:

21

2
21

21

≥

≤+

≤+

xx

xx

xxtosubject

13

Figure 1.2 Feasible Region of Example 1.1 with the nonlinear constraints

Figure 1.3 Feasible Region of Example 1.1 with the linearized constraints

-8.8074
-8.8074

-8.178

-8.178

-7.5486

-7.5486

-6.9192

-6.9192

-6.9192

-6.2898

-6.2898
-6.2898

-5.6604

-5.6604 -5.6604

-5.031

-5.031

-5.031

-5.031

-4.4016

-4.4016

-4.4016

-4.4016

-3.7723

-3.7723

-3.7723

-3.7723

-3.1429

-3.1429

-3.1429

-3.1429

-2.5135

-2.5135

-2.5135

-2.5135

-1.8841

-1.8841
-1.8841

-1.8841

-1.2547

-1.2547 -1.2547

-1.2547

-0.62528

-0.62528

0.0041123
0.0041123

0.63351

?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

X2

X1

-8.8074 -8.8074

-8.178
-8.178

-7.5486

-7.5486

-6.9192

-6.9192

-6.9192

-6.2898

-6.2898
-6.2898

-5.6604

-5.6604

-5.6604

-5.031

-5.031

-5.031

-5.031

-4.4016

-4.4016

-4.4016
-4.4016

-3.7723

-3.7723

-3.7723 -3.7723

-3.1429

-3.1429

-3.1429
-3.1429

-2.5135

-2.5135
-2.5135

-2.5135

-1.8841

-1.8841
-1.8841

-1.8841

-1.2547

-1.2547 -1.2547

-1.2547

-0.62528 -0.62528

0.0041123 0.0041123

0.63351

?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

55 421 =++ xxx

2321 =++ xxx

5
6

17
21 ≤+ xx

221 ≤+ xx

x1

x2

Figure

Fi

-4.4016-3.7723
-3.1429

-2.5135
-1.8841

-1.2547

-0.62520.0041123

0

0

0.2

0.4

0.6

0.8

1

X2

 1.4 The Ex

igure 1.5 N

-5.6604

-5.031

4
4016

-4.
-3.7723

-3.14

-2

528

23

0.2 0.4

Redu

5 21 ++ xx

xample 1.1

Newton-Rap

-7.5486

-6.9192

-6.2898

-5.0314.4016

3

429

2.5135

-1.8841

-1.2547

?

0.6 0.8

dN

uced Grad

d

54 =+ x

14

in reduced

phson meth

-6.2898

-5.6604

-4.4

-3.7723

-3.14

-

8 1

ient

N

d

21 ++ xx

d space of n

hod in the o

-8.8074

-8.178

-7.5486

-6.9192

-5.031

4016

429

-2.5135

-1.8841

-1.2547

-0.62528

1.2 1.4

Optima

Newton-Ra

23 =+ x

nonbasic va

original spa

-6.2898

-5.6604

-4.4

-3.7723

-3.14

-2

1.6 1.8

al Solution

aphson M

ariables

ace

-8.8074

-8.178

-6.9192

-5.031

4016

429

2.5135

-1.8841

-1.2547

0.0041123

0.63351

2 X1

n

ethod

15

1.2.2 Ridge Analysis and Ridge Search Method

In RSM, ridge analysis is a method for exploring optimal factor levels of a

response surface. Ridge analysis helps us to find maximum or minimum a quadratic

response surface under a spheral constraint. The purpose of spheral constraint is to

fixed distances from the center of the experimental region. Due to the formulation

ridge analysis, it is a nonlinearly constrained optimization problem.

The concept of ridge analysis is finding an absolute minimum or maximum on

the spheral constraint of a certain radius you trusted. Additionally, we can adjust the

radius to increase the sphere size if the point on the spheral constraint is still inside the

experimental region. In other words we can find an optimum corresponding to a

distinct radius, all optimums with various radiuses construct a “ridge path” as shown

in Figure 1.6. In fact, control radius of the region is hard in ridge analysis. We discuss

the issue in the following subsection.

16

Figure 1.6 Ridge path of all stationary points with various radiuses

Consider the following problem.

2

0

2
1ˆ)(

Δ=

++=

 subject to

by MaximizeMinimize

T

TT

xx

Gxxxβ

 (1.17)

, where x is an n-vector; G is the matrix contains quadratic coefficients; β is a vector

expressed first order coefficients.

Under the problem formulation, global constrained optima are typically obtained

using the Lagrangian multiplier approach. By introducing the Lagrangian multiplier μ,

the problem will be an unconstrained optimization problem.

)(ˆ)(2Δ−+= xxTy LMaximizeMinimize μ (1.18)

Differentiate (1.18) with respect to x, and then set the derivative equal to zero. The

equation which includes a stationary point sx̂ will hold:

0ˆ)(=++ sxIGβ μ (1.19)

x1

x2

Ridge Path

17

Given a fixed value of μ, the stationary point sx̂ on the sphere with radius Δ can be

estimated to be:

βIGx 1)(ˆ −+−= μs (1.20)

Theoretically, there are totaling n+1 equation, namely, the spherical constraint in

(1.17) and (1.18) let us solve sx̂ and μ. Practically the radius Δ is also unknown, i.e.

there are n+2 unknown variables. That is we can’t solve sx̂ directly. So ridge analysis

considers the following strategy to solve the problem.

1. Regard Δ as variable, but fix μ instead.

2. Choose μ as a fixed value and substitute μ with the fixed value into (1.19)

to obtain sx̂ .

3. Evaluate y) by (1.17)

Even if we have the above strategies, there is still a problem that is how to

choose μ. Providentially, there are some properties of ridge analysis help us choose μ

appropriately. These properties are described as follows [7]:

1. At ∞−∞= or μ then Δ = 0 and Δ increases exponentially to infinity at μ =

λi.

2. If we wish to find the ridge path as Δ varies, we can substitute any value of

μ larger than 1λ− .

3. As Δ increases, y) passes through the ridge path toward a minimum.

18

The value μ determines the radius Δ, i.e., Δ is a function of μ. Figure 1.7 shows the

relation between radius and Lagrangian multiplier. λ1,…, λk are the eigenvalues of the

G, and λk > λk-1 > … >λ1.

Figure 1.7 The dependence of radius on Lagrangian multiplier

We consider the following example to show you the relationship between Δ and

μ.

Example 1.2:

Δ=+

=

2
2

2
1

2
221

2
121

2
12

2
1215

xxtosubject

x+xx+x++xx+Minimize y

Express in matrix notation.

[]

[] Δ=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

2

1
21

2

1
21

2

1

 :

2
115:

x
x

xxtosubject

x
x

xx+
x
x

+ yMinimize T Gβ

Locus of
absolute
minima

μ
1λ−1−− kλ 2λ−kλ−

Δ

19

, where ⎥
⎦

⎤
⎢
⎣

⎡
=

1
2

β ; ⎥
⎦

⎤
⎢
⎣

⎡
=

12
21

G ; the eigenvalues of G are −1 and 3; the corresponding

eivenvectors

[]T1 ,1− and []T1 ,1 .

Introduce Lagrangian multiplier μ and then we have

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
−=+−=

−
−

2

21
1

23
3

23
2

1
2

12
21~

μμ
μ
μμ

μ

μ
μ

μ βIGxs (1.21)

We also have

22

2

2

2

2

2

)+23(
5+69

23
3

23
2

23
3

23
2

~~

μμ
μμ

μμ
μ
μμ

μ

μμ
μ
μμ

μ

+−
−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−−

++−
−

=

=Δ
T

s
T
s xx

 (1.22)

That is Δ is a function of μ, figure 1.8 shows the relationship on a two dimension
space.

Figure 1.8 The dependence radius against Lagrangian multiplier

−λ1

Δ

μ

20

In (1.22), the denominator in the radical has two factors. We can factorize the
denominator as:

()()13+23 2 −+=+− μμμμ (1.23)

(1.22) also implies that if μ is equal to the subtractive eigenvalue of G, i.e. −3 or 1,

the denominator is close to 0. Therefore Δ goes to positive infinity. On the other hand,

if μ goes to positive or negative infinity, thus the denominator is close to positive zero,

i.e., Δ goes to zero.

1.2.3 Zoutendijk Method

Zoutendijk’s method searches a feasible improving direction. Compared with the

GRG method, the direction may be less effective. To consider (1.15) (a minimization

problem), if the direction is an opposite direction to objective function’s gradient, it is

an improving direction. Moreover, if the direction is an opposite direction to binding

constraint’s gradient, it is a feasible direction. Zoutendijk’s method solves a linear

program to generate a direction satisfying the above two requirements; to improve and

to be feasible.

Zoutendijk’s method is described as follows:

21

 Step 1:

Let x(k) be a feasible solution at the k-th search step. Check the binding nonlinear

constraints. Let W~ = { w~ : () 0)(~ =k
wg x }. Compute the gradients of the objective

function and the binding constraints ())(kf x∇ and ())(~
k

wg x∇ with respect to x(k).

 Step 2:

Solve the following linear program with decision variables dZ and z:

zMinimize
z

:
, d

.

....1 11
;~~0)(

;0)(:

Z
)(

~

Z
)(

njd
Wwzg

zftosubject

j

Tk
w

Tk

=≤≤−
∈∀≤−∇

≤−∇

dx

dx

Let (z*, dZ
) be the optimal solution. If z = 0, stop; x(k) is an optimal point. Else, go to

the step 3.

 Step 3:

Do Line Search along dZ
*. Let the feasible solution be x(k+1). Return to step 1.

Here we also use the example 1.1 to introduce Zoutendijk’s method. Suppose

that we start from iteration with current solution (x1, x2) = (0.5889, 0.8833) is also

22

binding on the second constraint in example 1.1. The gradients of objective function

and constraint are described as follows:

()3.6442,3.4110),(T
21 −−=∇ xxf

, and

()5,1),(T
21)11.1(=∇ xxg .

Now we consider the following linear programming problem:

zMinimize
z

:
, d

.

()

()

.11
 ;11

;05,1

;03.6442,3.4110:

2

1

2

1

2

1

≤≤−
≤≤−

≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

d
d

z
d
d

z
d
d

tosubject

By performing simplex method, we can obtain the improving direction d is (d1, d2) =

(1, −0.5102). We sketch the direction in Figure 1.9. We can see that the next solution

can leave the binding constraint by performing line search along Zoutendijk’s

direction. This will help us develop the main search algorithm of this thesis. It is

detailed in chapter 3.

23

Figure 1.9 Zoutendijk’s direction of Example 1.1.

1.3 Shortcomings of Current NLP Methods

1.3.1 Shortcomings of Generalized Reduced Gradient Method

One motivation of this study is to overcome some unexpected phenomenon rose

by the GRG method, although the GRG method is applied intensively in practice. The

phenomenon is called “zigzagging” or “jamming”. Zigzagging usually appears at the

later phase of search and causes a poor convergence. As mentioned earlier, the GRG

method employs the first-order approximation: dxxdx Tkkk fff)()()()()()(∇+=+ λλ

e+ , where d is the search direction, e is the error of the linearization approximation.

When x(k) is close to the stationary point,)()(kf x∇ becomes very small so is the term

-8.9419
-8.4438

-8.4438

-7.9457

-7.9457

-7.4476

-7.4476

-6.9495

-6.9495 -6.9495

-6.4514

-6.4514 -6.4514

-5.9533

-5.9533
-5.9533

-5.4552

-5.4552

-5.4552

-4.9571

-4.9571

-4.9571

-4.9571

-4.459

-4.459

-4.459
-4.459

-3.961

-3.961

-3.961
-3.961

-3.4629

-3.4629

-3.4629 -3.4629

-2.9648

-2.9648
-2.9648

-2.9648

-2.4667

-2.4667
-2.4667

-2.4667

-1.9686

-1.9686
-1.9686

-1.9686

-1.4705

-1.4705 -1.4705

-1.4705
-0.97238

-0.97238-0.47429
-0.47429

0.02381

x1

x2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1
Zoutendijk’s direction

55 421 =++ xxx

2321 =++ xxx

24

dx Tkf)()(∇λ . The error term, thus, becomes relatively significant. The error term

caused by the linearization approximation thus induces the search path to zigzag.

For example the response surface resembling an inclined trough, will cause the

GRG method to zigzag easily. That is, the search direction of the GRG method, i.e.,

the reduced gradient, moves toward the bottom of the trough, not to the inclined

direction. The number of moving steps will be enormous, and it becomes difficult to

reach the optimal point. The objective function of the SMOO problem in (1.8) could

certainly form an inclined trough and cause the zigzagging problem.

As described earlier, the quartic objective function in SMOO problem is the “the

quadratic of the quadratic”. If the response, expressed as a quadratic function of input

variables, isn’t absolutely positive or negative, the quartic objective function could

form a trough. For an example with two input variables, the quadratic function, z =

10x2 + 10y2 – 4, will exhibit a shape as shown in Figure 1.10. After squaring the

quadratic function, a trough ring will be created. Figure 1.11 shows the quartic

response surface. Because in a typical SMOO problem, the objective function is the

sum of multiple quartic functions, a trough will be easily formed and cause the

zigzagging problem.

25

Figure 1.10 Quadratic response surface

Figure 1.11 Quartic response surface

Example 1.3 is a well known problem for testing optimization algorithm. The

objective function is called Rosenbrock’s Function or Rosenbrock’s valley. The

function is a summation of a square of quadratic function and a square of a linear

function. The value of this function thus must be greater or equal to zero. Because of

the global minimum f (x1, x2) =0 at (x1=1, x2=1) is inside a long, narrow and

inclined trough. To find the valley is trivial, however to converge to the global

26

minimum is difficult. The function form is expressed in the following equation and

figure 1.12 shows the corresponding surface and contour plot.

Example 1.3:

Minimize: (1－x1)2+100×(x2－x1
2)2,

Subject to: －2 ≤ x1≤ 2; 0 ≤ x2≤ 4.

Figure 1.12 Surface plot and contour map of Example 1.3

Suppose the initial point is (x1, x2) = (−2, 0.5) with the terminal criterion to be 10-10

and the maximal iteration number to be 3000. The objective value of the second

iteration is 0.0173683 with (x1, x2) = (1.1316, 1.2812). The objective value of the

latest iteration is 0.000657 with (x1, x2) = (1.0256, 1.0520). There are 2417 iterations

in total from the second iteration to the latest iteration. From the result, there are two

major drawbacks of GRG method. The search path of the GRG is sketched on the

-2
-1

0
1

2

0.5
1

1.5
2

2.5

0

200

400

600

800

1000

1200

x1
x2

O
bj

. V
al

ue

40.193548

40.193548
40.193548

40.193548

40.193548 40
.19

35
48

40
.1

93
54

8
40

.1
93

54
8

40
.1

93
54

8

40
.1

93
54

879.987097

79.987097
79.987097

79.987097

79.987097
79

.9
87

09
7

79
.9

87
09

7
79

.9
87

09
7

79
.9

87
09

7

119.78065

119.78065

119.78065

119.78065
11

9.
78

06
5

11
9.

78
06

5
11

9.
78

06
5

11
9.

78
06

5

159.57419

159.57419
15

9.5
74

19

15
9.

57
41

9

159.57419

159.57419

15
9.

57
41

9
15

9.
57

41
9

199.36774

199.36774

19
9.3

67
74

19
9.

36
77

4

199.36774

199.36774

19
9.

36
77

4
19

9.
36

77
4

239.16129

239.16129

239.16129

23
9.1

61
29

23
9.

16
12

9

23
9.

16
12

9
23

9.
16

12
9

278.95484

278.95484

278.95484

278.95484

27
8.9

54
84

27
8.

95
48

4
27

8.
95

48
4

318.74839

318.74839

318.74839

318.74839

31
8.

74
83

9

31
8.

74
83

9
31

8.
74

83
9

358.54194

358.54194

358.54194

358.54194

35
8.

54
19

4

35
8.

54
19

4
35

8.
54

19
4

398.33548

398.33548

39
8.3

35
48

39
8.

33
54

8
39

8.
33

54
8

438.12903

438.12903

43
8.1

29
03

43
8.

12
90

3477.92258

477.92258

47
7.9

22
58

47
7.

92
25

8

517.71613

517.71613

51
7.7

16
13

51
7.

71
61

3

557.50968

557.50968

55
7.5

09
68

55
7.

50
96

8

597.30323

59
7.3

03
23

59
7.

30
32

3637.09677

637.09677

63
7.

09
67

7676.89032

676.89032

67
6.

89
03

2

716.68387

716.68387

71
6.

68
38

7

756.47742

756.47742

75
6.

47
74

2796.27097 79
6.

27
09

7836.06452

83
6.

06
45

2875.85806

x1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

27

Figure 1.13. Figure 1.15 shows the zigzagging phenomenon of the GRG method. Due

to zigzagging phenomenon, the GRG method sometimes is unable to converge to the

global minimum (x1, x2) = (1, 1).

Figure 1.13 Search path of GRG in Example 1.3

Figure 1.14 Dash-line region in Figure 1.13

24.196078

24.196078
24.196078

24.196078

24.196078 24
.19

60
78

24
.1

96
07

8

24
.1

96
07

8

24
.1

96
07

8

24
.1

96
07

8
48.392157

48.392157
48.392157

48.392157

48.392157

48
.3

92
15

7

48
.3

92
15

7

48
.3

92
15

7

48
.3

92
15

7
72.588235

72.588235
72.588235

72.588235

72.588235
72

.5
88

23
5

72
.5

88
23

5
72

.5
88

23
5

72
.5

88
23

5
96.784314

96.784314

96.784314

96.784314

96.784314
96

.7
84

31
4

96
.7

84
31

4
96

.7
84

31
4

96
.7

84
31

4

120.98039

120.98039 12
0.9

80
39

12
0.

98
03

9

120.98039

120.98039

12
0.

98
03

9

12
0.

98
03

9

145.17647

145.17647
14

5.1
76

47

14
5.

17
64

7

145.17647

145.17647

14
5.

17
64

7

14
5.

17
64

7

169.37255

169.37255

16
9.3

72
55

16
9.

37
25

5
169.37255

169.37255
16

9.
37

25
5

16
9.

37
25

5

193.56863

193.56863

193.56863

193.56863

19
3.5

68
63

19
3.

56
86

3

19
3.

56
86

3

19
3.

56
86

3

217.76471

217.76471

217.76471

217.76471
21

7.7
64

71

21
7.

76
47

1

21
7.

76
47

1
21

7.
76

47
1

241.96078

241.96078

241.96078

241.96078 24
1.9

60
78

24
1.

96
07

8

24
1.

96
07

8

24
1.

96
07

8

266.15686

266.15686

266.15686

266.15686

26
6.

15
68

6

26
6.

15
68

6

26
6.

15
68

6

290.35294

290.35294

290.35294

290.35294

29
0.

35
29

4

29
0.

35
29

4

29
0.

35
29

4

314.54902

314.54902

314.54902

314.54902

31
4.

54
90

2

31
4.

54
90

2

31
4.

54
90

2

338.7451

338.7451

338.7451

338.7451

33
8.

74
51

33
8.

74
51

33
8.

74
51

362.94118

362.94118

362.94118

36
2.

94
11

8

36
2.

94
11

8
36

2.
94

11
8

387.13725

387.13725

387.13725

387.13725

38
7.

13
72

5

38
7.

13
72

5
38

7.
13

72
5

411.33333

411.33333

411.33333

41
1.

33
33

3435.52941

435.52941
43

5.5
29

41

43
5.

52
94

1
459.72549

459.72549

45
9.

72
54

9

45
9.

72
54

9

483.92157

483.92157

483.92157

48
3.

92
15

7
508.11765

508.11765 50
8.1

17
65

50
8.

11
76

5
532.31373

532.31373

53
2.3

13
73

53
2.

31
37

3
556.5098

556.5098 55
6.5

09
8

55
6.

50
98

580.70588

580.70588

58
0.7

05
88

58
0.

70
58

8
604.90196

604.90196
60

4.9
01

96

60
4.

90
19

6
629.09804

629.09804

62
9.

09
80

4
653.29412

653.29412

65
3.

29
41

2
677.4902

677.4902

67
7.

49
02

701.68627

701.68627

70
1.

68
62

7725.88235

725.88235

72
5.

88
23

5
750.07843

750.07843

75
0.

07
84

3

774.27451

774.27451

77
4.

27
45

1798.47059

798.47059

79
8.

47
05

9822.66667

822.66667

82
2.

66
66

7

x1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

0.29032

0.29032

0.2
90

320.29032

0.29032

0.29032

0.58065

0.58065

0.58065

0.58065

0.58065

0.58065

0.87097

0.87097

0.87097

0.87097

0.87097

0.87097

1.1613

1.1613

1.1
61

3

1.1613

1.1613

1.1613

1.4516

1.4
51

6

1.4516

1.4516

1.7419

1.7419

1.7419

1.7419

2.0323

2.0323

2.0323

2.0323

2.3226

2.3226

2.3226

2.3226

2.6129

2.6129

2.6
12

9

2.6129

2.9032

2.9032

2.9032

2.9
03

2

3.1935

3.1935

3.1935

3.1935

3.4839

3.4839

3.4839

3.4839

3.7742

3.7742

3.7742

3.7742

4.0645

4.0645

4.3548

4.3
54

8

4.6452

4.6
45

2

4.9355

4.9
35

5

5.2258

5.2258

5.5161

5.5161

5.8065

5.806
5

6.0968

6.0968

6.3871

6.3871

6.6774

6.6774

6.9677

6.9677

7.2581

7.2581

x1

x2

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
1

1.05

1.1

1.15

1.2

1.25

1.3

28

Figure 1.15 Zigzagging path in dash-line region of Figure 1.14

1.3.2 Shortcomings of Ridge Search Method

Although the ridge analysis helps us to find the minimum without zigzagging

phenomenon, the required optimal Lagrangian multiplier is difficult to find or is

inefficiently found. What is known is that the optimal Lagrangian multiplier should be

smaller than the smallest eigenvalue of the quadratic coefficient matrix G if we want

to minimize the objective function. The RS search uses the following formula to

search for the optimal Lagrangian multiplier to calculate the stationary point and

obtain the corresponding objective value. The updating formula of Lagrangian

multiplier is:

γγγ αμμ ×Δ−=+)1((1.24)

, where γ is the search step index; Δ is the step size and is set to be proportional to the

smallest eigenvalue and α is the parameter to approximate the exponential

0.00065825
0.0

00
67

10
5

0.00067105

0.00067105

0.0
00

68
38

4

0.
00

06
83

84

0.00068384

0.00068384

0.0
00

69
66

3

0.0
00

69
66

3

0.
00

06
96

63

0.00069663

0.00069663

0.0
00

70
94

2

0.0
00

70
94

2

0.0
00

70
94

2

0.00070942

0.00070942

0.00070942

0.0
00

72
22

2

0.0
00

72
22

2

0.0
00

72
22

2

0.00072222

0.00072222

0.00072222

0.0
00

73
50

1

0.0
00

73
50

1

0.0
00

73
50

1

0.00073501

0.00073501

0.00073501

0.0
00

74
78

0.0
00

74
78

0.0007478

0.0007478

0.0007478

0.0
00

76
05

9

0.0
00

76
05

9

0.00076059

0.00076059

0.0
00

77
33

9

0.0
00

77
33

9

0.00077339

0.00077339

0.0
00

78
61

8

0.0
00

78
61

8

0.00078618

0.00078618

0.00
079

89
7

0.0
00

79
89

7

0.00079897

0.00079897

0.0
00

811
76

0.0
00

81
17

6

0.00081176

0.00081176

0.0
00

824
56

0.0
00

824
56

0.00082456

0.00082456

0.00083735

0.00083735

0.0
00

837
35

0.0
00

837
35

0.00085014

0.00085014

0.0
00

85
01

4

0.0
00

85
01

4

0.00086293

0.00086293

0.0
00

86
29

3

0.0
00

86
29

3

0.00087573

0.00087573

0.0
00

87
57

3

0.0
00

87
57

3

0.00088852

0.00088852

0.0
00

88
85

2

0.00090131

0.0
00

901
31

0.0009141

0.00
091

41

0.0009269

0.00
092

69

0.00093969

0.0
00

939
69

0.00095248

0.00095248

0.00096527

0.00
096527

0.00097807

0.00097807

0.00099086

0.00099086

0.0010037

0.0010037

0.0010164

0.0
010164

0.0010292

0.0010292

0.001042

0.001042

0.0010548

0.0010548

0.0010676

0.0010676

0.0010804

0.0010804

0.0010932

0.0010932

0.001106

0.001106

0.0011188

0.0011188

x1

x2

1.0254 1.0256 1.0258 1.026 1.0262 1.0264 1.026
1.0515

1.052

1.0525

1.053

1.0535

1.054

29

relationship between the radius and μ. When we use (1.24) to search the optimal

Lagrangian multiplier, there exist three drawbacks. In (1.24) there are two

manipulatable parameters Δ and α, the search result of the GRR algorithm is in fact

quite sensitive to these two parameters. This is also an important reason motivating us

to develop a new algorithm with less parameter settings.

Considering Example 1.3, with an initial point () ()5.0 ,2, 21 −=xx , we first setα

=10 and Δ=100 and then change the setting to α=100 and Δ=100. Figure 1.16, Figure

1.17 and Table 1.1 show the search processes and the comparisons including objective

value, iterations and computing time under the two different settings.

Table 1.1 Comparison of two different settings

Settings Obj. Value Number of
Iterations Computing time

1st 3.368948E-07 181 0.06

2nd 1.100042E-10 976 0.30

30

Figure 1.16 Search process of 1st setting

Figure 1.17 Search process of 2nd setting

51.903226

51.903226

51.903226

51
.90

32
26

51
.9

03
22

6

51.903226

51.903226

51
.9

03
22

6

51
.9

03
22

6

103.80645

103.80645

103.80645

10
3.8

06
45

10
3.

80
64

5
103.80645

103.80645

10
3.

80
64

5

10
3.

80
64

5155.70968

155.70968

15
5.7

09
68

15
5.

70
96

8

155.70968

155.70968

15
5.

70
96

8

15
5.

70
96

8

207.6129

207.6129

207.6129

20
7.

61
29

207.6129

207.6129

20
7.

61
29

20
7.

61
29

259.51613

259.51613

259.51613

25
9.

51
61

3
259.51613

259.51613

25
9.

51
61

3

25
9.

51
61

3

311.41935

311.41935 31
1.4

19
35

31
1.

41
93

5

311.41935
31

1.
41

93
5

363.32258

363.32258
36

3.3
22

58

363.32258 36
3.

32
25

8
415.22581

415.22581
415.22581

41
5.

22
58

1

41
5.

22
58

1
467.12903

467.12903

467.12903

46
7.1

29
03

46
7.

12
90

3

519.03226

519.03226

519.03226

51
9.0

32
26

51
9.

03
22

6
570.93548

570.93548

570.93548

57
0.

93
54

8

57
0.

93
54

8
622.83871

622.83871

622.83871

62
2.8

38
71

62
2.

83
87

1
674.74194

674.74194

674.74194

67
4.

74
19

4
726.64516

726.64516

72
6.6

45
16

72
6.

64
51

6778.54839

778.54839

77
8.5

48
39

77
8.

54
83

9
830.45161

830.45161

83
0.4

51
61

83
0.

45
16

1
882.35484

882.35484

882.35484

88
2.

35
48

4
934.25806

934.25806

93
4.2

58
06

986.16129

98
6.1

61
291038.0645 10

38
.06

45
1089.9677 10

89
.96

771141.871
1193.77421245.6774

1297.5806
1349.4839
1401.38711453.29031505.1935

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

51.903226

51.903226

51.903226

51
.9

03
22

6

51
.9

03
22

6

51.903226

51.903226

51
.9

03
22

6

51
.9

03
22

6

103.80645

103.80645

103.80645

10
3.8

06
45

10
3.

80
64

5

103.80645

103.80645

10
3.

80
64

5

10
3.

80
64

5155.70968

155.70968

15
5.7

09
68

15
5.

70
96

8
155.70968

155.70968

15
5.

70
96

8

15
5.

70
96

8

207.6129

207.6129

207.6129

20
7.6

12
9

207.6129

207.6129

20
7.

61
29

20
7.

61
29

259.51613

259.51613 25
9.5

16
13

25
9.

51
61

3
259.51613 25

9.
51

61
3

311.41935

311.41935

311.41935

31
1.

41
93

5
311.41935 31

1.
41

93
5

363.32258

363.32258 36
3.3

22
58

363.32258 36
3.

32
25

8415.22581

415.22581

415.22581

41
5.

22
58

1

41
5.

22
58

1467.12903

467.12903

467.12903

46
7.1

29
03

46
7.

12
90

3519.03226

519.03226

519.03226

51
9.0

32
26

51
9.

03
22

6
570.93548

570.93548

570.93548

57
0.9

35
48

57
0.

93
54

8
622.83871

622.83871

622.83871

62
2.8

38
71

62
2.

83
87

1

674.74194

674.74194

674.74194

67
4.7

41
94

67
4.

74
19

4

726.64516

726.64516

72
6.6

45
16

72
6.

64
51

6
778.54839

778.54839

778.54839

77
8.

54
83

9830.45161

830.45161
83

0.4
51

61

83
0.

45
16

1
882.35484

882.35484

882.35484

88
2.

35
48

4934.25806

934.25806

93
4.2

58
06

93
4.

25
80

6
986.16129 98

6.1
61

29
1038.0645

1038.0
645

1089.9677 10
89

.96
77

1141.871 11
41

.87
1

1193.7742

1245.67741297.58061349.48391401.38711453.2903
1505.1935

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x2

x1

x2

31

Although the GRR search method can find the near-optimal objective value by

different setting, but the difference between the two settings is large, and the

computing time is also greatly depending to the setting. That is, the first drawback of

the GRR search is the difficulty of parameter selection. The second drawback is due

to some issues of numerical calculation. For a large SMOO problem, the quadratic

coefficient matrix G is easy to be singular or near singular with the smallest

eigenvalue near zero. Under the circumstances, the Δ , set to be proportional to the

smallest eigenvalue, in (1.24) is also near zero and cause the search to be extremely

slow. Finally, the GRR uses (1.24) to approximate the relationship between the radius

and the Lagrangian multiplier. This sometimes results in an over-large radius is large

sometimes. In fact, the objective function of the SMOO problem is a quartic function.

In order to perform the GRR search, the algorithm needs to approximate the objective

function to second-order function by the Taylor series expansion. If the radius is too

large, the solution solved by GRR may not in the region of trusted approximate. This

is the third drawback of the GRR algorithm.

1.4 Research Objectives

The formulation of the statistical multi-objective optimization (SMOO) problem

is exactly a nonlinear programming problem (NLP) with nonlinear inequality and

linear equality constraints. So this thesis will focus on developing a constrained

32

optimization algorithm for solving the quadratic programming NLP problem.

Furthermore, the objective function of SMOO problem is a quartic function and is not

guaranteed to be a convex function. This is the first challenge we need to face. On the

other hand, there are three drawbacks of GRR we discussed in subsection 1.3.2. we

then attempt to develop a new algorithm that prevents the three drawbacks of the

GRR search.

There are some commercial optimization softwares, such as “Lingo”, adopts

“Generalized Reduced Gradient method” together with “Successive Linear

Programming method” in its algorithm. The two methods used by Lingo are actually

Feasible Direction Methods. These methods are also subject to the zigzagging. Since

one of our research objectives is to avoid zigzagging, our research results will be

compared to Lingo’s to validate the proposed algorithm. To Summary, our research

objectives are to develop a constrained optimization algorithm for solving the SMOO

problem and this algorithm must (1) overcome the three drawbacks of GRR and (2)

avoid the zigzagging phenomenon.

33

In specific, there are four research objectives:

1. Develop a nonlinear constrained optimization algorithm called Generalized

Reduced Trust-Region (GRT) search method based on trust-region method.

2. Develop a algorithm using the developed GRT method and the Zoutendijk’s

method.

3. Propose the convergence proof of GRT search algorithm

4. Test the proposed search algorithm with four cases: (1) A well-known test

problem for NLP algorithm called Rosenbrock’s function, (2) Geometric

Layout Design for Semiconductor Manufacturability, (3) Robust

Configuration of Semiconductor Supply Chain, (4) Track System PED

CDU Optimization.

34

1.5 Thesis Organization

In this chapter, we describe the background, problem definition, current

methodology review, and drawbacks of these NLP algorithm and the research

objectives. Chapter 2 introduces the trust-region method and subproblem of the

trust-region method. Moreover, the hard case of the trust-region method will be also

mentioned in this chapter. Finally we do some modification of the traditional

trust-region algorithm is also be introduced here. In chapter 3, we describe the

algorithm of generalized reduced trust region method. The convergence proof of GRT

is also proposed in this chapter. In chapter 4, the test problem and result will be

presented. Every result will be compared against Lingo’s result. Finally, some

conclusions and suggestions are presented in Chapter 5.

35

2 Trust Region Method

Due to the drawbacks of the GRG method and the GRR method, this research

develops an algorithm based on a method known in numerical optimization are “Trust

Region” (TR) method. In Section 2.1, the basic ideas and the problem formulation of

the TR method will be introduced. In Section 2.2, we study an algorithm to help us

solve the “Trust Region Subproblem” (TRS). Some numerical issues called “Hard

Case” of the TR method in the literature will be discussed in Section 2.3. Finally, we

make some modifications to the TR method to improve its numerical implementation

in Section 2.4.

2.1 Trust Region Method

The TR method and the Ridge Analysis (RA), in effect, share the same

mathematical formulation, i.e., minimizing or maximizing a quadratic function

subject to a spheral region constraint. The quadratic function can be an approximation

of any objective function. For example, we can approximate the quartic SMOO

problem to a quadratic function and solve it by the TR method or the RA method.

Though the problem formulation is the same, there are still fundamental differences

between two methods. First, the TR method finds a solution inside the spheral region,

while the RA method only considers the boundary solutions. Second, as we discussed

in Subsection 1.2.2, the RA method regards radius of the spheral region as a variable

36

and makes guess on the value of the Lagrangian multiplier iteratively by (1.24). In

contrast, the TR method finds the optimal Lagrangian multiplier directly by solving a

sequence of Trust Region Subproblems (TRS). This method for TRS is discussed in

the next section. The TR method allows us to adjust the radius directly without

guessing on the value of the Lagrangian multiplier.

Determination of the trust region radius with TR method is critical. If the radius

of the region is too small, the algorithm misses the chance to move faster to a

minimum of the objective function. If it’s too large, the approximated model may

become a poor approximate of the objective function and the minimum found inside

the region may be far from the global minimum. Thus the TR algorithm gradually

shrinks the size of the region in its search steps. In every iteration, the algorithm uses

the approximate performance of the previous iterate to determine radius of the trust

region. If the approximation is good, we enlarge the size else we shrink the size of the

trust region. Such update of the trust region radius is introduced in next Chapter.

Figure 2.1 shows the TR approach for a function f of two variables on a contour plot.

The contour of quadratic model function φ (in dashed line) is constructed from the

derivative information at the current iterate 0
~x

37

Figure 2.1 Trust-Region and Trust-Region step

The TR method approximates any differentiable function to a quadratic function

by the Taylor series expansion. Consider the following TR problem

()
,:

2
1:

Δ≤

++

x

Hxxxgx

toSubject

fMinimize TT

 (2.1)

where ⋅ is the Euclidean norm; Tg is the gradient vector, i.e., ()xf∇ ; H is the

Hessian Matrix, i.e., ()xf2∇ ; and Δ is the radius of the trust region.

Now considering the SMOO problem, the objective function of (1.8) is a quartic

function. We approximate the objective function of the SMOO problem with respect

to a given point ()kx by the second-order approximation and apply the TR method as

follows:

()
() () () () () () () () () 2/)()()()(: 111

1

kkkTkkkkTkkfMinimize
k

xxGxxxxβx
x

−−+−+ +++
+

;

0
~x

Contour of f

Contour of φ

Trust Region

Trust Region Step

38

() ()() ()kkktosubject Δ≤−+ xx 1: (2.2)

, where the superscript ()k denotes the k-th iteration index; the vector x(k+1) is the

minimizer of (2.2), i.e., x(k+1) minimizes the (2.2) at a given point ()kx ; the () 0>Δk

denotes the trust region radius at current iteration; the partial derivative matrix

() ()()kk f xβ ∇= and the Hessian matrix () ()()kk f xG 2∇= are calculated with the

following formulas:

()

() ()

()()[] 22

2

)(

0

0
0

2
0

∑

∑

∑

+−++=

⎥
⎦

⎤
⎢
⎣

⎡
∂

−++∂−++=

∂

−++∂
=

∇=

i
iiii

TT
ii

i

ii
TT

ii
ii

TT
ii

i
ii

TT
ii

Tb

TbTb

Tb

f

xBbxBxxb

x
xBxxbxBxxb

x

xBxxb

xβ

and

()

()()[]

()() ()[]. 2222

22

)(

0

0

2
0

2

∑

∑

∑

−+++++=
∂

+−++∂
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂

−++∂

∂
∂=

∇=

i
ii

TT
ii

T
iiii

i
iii

TT
ii

i
ii

TT
ii

Tb

Tb

Tb

f

BxBxxbxBbxBb
x

xBbxBxxb

x

xBxxb

x

xG

The solution of (2.2) is derived in the next Section.

39

2.2 Iterative Solution of Trust Region Subproblem (TRS)

To solve (2.2), a sequence of the “Trust Region Subproblems” (TRS) has to be

solved. The TRS is to find the minimum of (2.2) with a given trust region radius Δ.

Actually, () ()()kk xx −+1 in (2.2) is the improving direction ()kd to be found.

Therefore we replace () ()()kk xx −+1 by the improving direction ()kd . Without loss

generality, we drop the superscript ()k and consider the following direction-finding

problem.

Gdddβx
d

TTfMinimize
2
1)(: ++ (2.3)

Δ≤ddTtosubject :

First, we characterize the exact solution of (2.3) by the theorem 2.1 which shows that

the improving direction d satisfies

βdIG −=+)(μ (2.4)

Theorem 2.1 [9, 13]

The vector d is a global solution of the TR problem

Δ≤

++

d

Gdddβ
d

:
2
1:

toSubject

fMinimize TT

 (2.5)

if and only if d is feasible with the Lagrange multiplier 0≥μ such that the following

conditions are satisfied:

βdIG −=+)(μ ; (2.6)

40

0)(=−Δ dμ ; (2.7)

)(IG μ+ is positive semidefinite. (2.8)

Any solutions of (2.5) lies either in the interior or on the boundary of the feasible

set (trust region), i.e. the set{ } | Δ≤dd . Equation (2.5) has no solution on the

boundary if and only if G is positive define and Δ<− βG 1 . In this case, the solution

of (2.5) is βGd 1−= with the Lagrangian multiplier μ* = 0.

In (2.4), the hessian matrix G and the gradient vector β are known. The

unknowns in (2.4) are the solution d and the Lagrangian multiplier μ. Τhe solution of

d in (2.3) is shown to be:

βIGd 1)(−+−= μ . (2.9)

According to (2.7), either 0=−Δ d or μ = 0 must hold. If μ = 0 then the solution d

is in the interior of the region else d is on the boundary. In the latter case 0=−Δ d

hold and then the norm of the solution d, d , equals to the trust region radius Δ, i.e.,

d=Δ . Due to the equality relationship between the radius and the norm of the

solution, (2.9) becomes

Δ=+−= − βIGd 1)(μ . (2.10)

From (2.10), the solution d is a function of μ. To find d, we have to find μ first.

Finding μ is a typical root-finding problem of a nonlinear equation. We can apply

41

Newton method to help us find the optimal μ with a given radius Δ. Now we define

the function ()μφ as

() Δ=+−== − βIGd 1)()(μμμφ . (2.11)

Equation (2.11) describes the equality relationship between the radius and the

Lagrangian multiplier, much like what we have discussed for (1.22) in Subsection

1.2.2 where we also have sketched the relationship on a two dimension space like

Figure 1.8. It shows that if the Newton’s method is applied to find the root of (2.11),

the root finding procedure is slow and inefficient due to the nonlinearity of the

function)(μφ with μ on the interval of (−λ1,∞).

Fortunately, the Newton’s method can perform quite efficiently with the

following transformation to (2.11). The attempt is to reformulate (2.11) to become

almost linear with μ on the interval of (−λ1,∞). We define the reformulated equation

as follows:

0
)(

11
)(

11)(
11 =

+−
−

Δ
=−

Δ
=

− βIGd μμ
μφ (2.12)

As shown in Figure 2.2, ()μφ1 becomes a near-linear function of μ. Now the

Newton’s method can perform better to find the root.

42

Figure 2.2 The relationship of Δ1 and μ in example 1.2

To apply the one-dimensional Newton's method:

()
()μφ
μφμμ '

1

1~ −= , where ()μφ '
1 is the first derivative of ()μφ1 and μ~ denotes the next

Lagrangian multiplier found by the Newton’s iterates. In order to perform the

Newton’s method ()μφ1 and ()μφ '
1 must be evaluated. That can be obtained by

solving a linear system involving)(IG μ+ . Because in the range of interest,)(IG μ+

is definite positive, we may use its Cholesky factors () ()μμμ UUIG T=+)(, where

()μU is an upper triangular matrix. To solve the problem, computation demanding

calculation of the eigen-system of G is thus avoided.

−λ1
μ

Δ

43

However, to be able to use the Cholesky factorization, we have to ensure that

)(IG μ+ is positive definite. In other words, μ has to be in the interval of ()∞− ,1λ .

A safeguard mechanism is therefore needed to ensure the success of the Newton’s

method. Here, we don’t discuss the Newton’s method and the safeguard mechanism in

detail. For a more detailed explanation, please see Section 2.4 and Appendix B.

2.3 The Hard Case

Although the Newton’s iterates can be used to find root of ()μφ1 , there are some

computation difficulties. The numerical difficulty is called “Hard Case” in the TR

literature. The hard case occurs when the eigenvector corresponding to the smallest

eigenvalue is perpendicular to the gradient vector β , i.e., 01 =βq T , where the

eigenvector with respect to the smallest eigenvalue is denoted as q1. When there are

multiple eigenvectors, i.e., an eigenspace corresponding to the smallest eigenvalue

provided that 01 =bQ T , where Q1 is the matrix whose columns span the eigenspace

corresponding to the smallest eigenvalue. The hard case is caused by the failure of the

limit condition () ∞=
→

μ
λμ

d
i

lim . Therefore, there may not exist a value in ()∞− ,1λ to

solve () Δ=μd . We use an example to illustrate the hard case condition followed by

a geometric interpretation.

44

Consider the following example with a current point at (d1, d2) = (0, 0).

Example 2.1

.:

.
2
12

2
115 :

2
2

2
1

2
221

2
121

Δ≤+

+

ddtosubject

d+dd+d+d+dMinimize
 (2.13)

Express (2.14) in matrix notation:

() () ()
() , :

;
2
115:

Δ<μ

μμμ

d

Gdddβ

tosubject

++ Minimize TT

where the gradient vector ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

β ; the hessian matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

12
21

G ; the eigenvalue of G

are −1 and 3; the corresponding eivenvectors are []T1 ,1− and []T1 ,1 . It can be seen

that the gradient vector β be perpendicular to the eigenvector corresponding to

smallest eigenvalue −1. The relationship among the radius, μ and the solution ()μd

becomes:

() ()
()

()()
()

()()⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+
−−

−+
−−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
−=+−=

−
−

13
1

13
1

1
1

12
21 1

1

μμ
μ

μμ
μ

μ
μ

μμ βIGd

45

()

()() ()()

()()

()

3
12

31
12

31
1

31
1

2

2

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+−=

=Δ

μ

μμ
μ

μμ
μ

μμ
μ

μd

 (2.14)

We also sketch (2.14) in a two dimension space. Figure 2.2 shows that there is only

one pole corresponding to the second eigenvalue, that is, the pole with respect to the

first eigenvalue is vanished. This is because the denominator ()()13 −+ μμ is

eliminated by its factor ()1−μ . However the pole which is corresponding to the second

smallest eigenspace is still existed but the solution ()1,3−∈μ is only a local

minimum on the spheral constraint. Fortunately, More, J. J. and D. C. Sorensen (1983)

[13] propose a solution to solve the hard case which will be discussed latter.

46

Figure 2.3 The vanished pole with respect to the smallest eigenspace

The hard case is a special situation in which the boundary solution of (2.3) is not

unique. It can be shown that the hard case can only occur when the hessian matrix G

is positive semidefinite, indefinite; the gradient vector β is perpendicular to the

eigenspace with respect to the smallest eigenvalue of G; and () βIG +−−>Δ 1λ ,

where the superscript (+) indicates the pseudo inverse. That is, if any of the above

three conditions is not met, the hard case cannot occur see also [17]. Let

()1
222 λφτ −Δ= and () βIGd +−−= 1λ . If 01 ≤λ and Δ<d then the solution to

the hard case is defined as:

() 111 qdqβIG ττλ +=+−− + (2.15)

, where min1 Eq ∈ (the eigenspace with respect to smallest eigenvalue) and 11 =q ;

−3 1
μ

Δ

47

If d solves the (2.4) then d must satisfy the condition (2.7) to (2.9), see also Appendix

A.

Now we explain the geometric interpretation of the hard-case solution. Consider

the following example with a current point at x0 = () ()0,3, 21 −=xx .

,:

.215 :
2
2

2
1

2
2

2
11

Δ≤+

−+

xxtosubject

xx+xMinimize

where the Hessian matrix ⎥
⎦

⎤
⎢
⎣

⎡
−

=
40

02
G and the gradient vector ⎥

⎦

⎤
⎢
⎣

⎡−
=

0
5

β at

current point ()0,3− and () 6/51 =−− +βIG λ .

With the indefinite Hessian matrix G, we firstly show the geometric interpretation for

the case with the gradient vector β orthogonal to Emin but () βIG +−−<Δ 1λ . Figure

2.4 shows a two-dimensional example where Δ is chosen to be 0.6. When the radius

is chosen to be () 651 =−−<Δ +βG λ , there is still a unique solution because the

intersection of the sphere and the contour of the optimal y along the d direction is a

unique point.

48

Figure 2.4 The Easy Case for an Indefinite Hessian

Suppose the trust-region radius Δ is chosen to be 1.5 and is greater than 6/5 , i.e.,

the gradient vector β is still orthogonal to Emin but () βIG +−−>Δ 1λ . Figure 2.5

shows how the solution for this case becomes not unique. In Figure 2.5 the length

from the current point ()0,30 −=x to x0 + d, ⎟
⎠
⎞

⎜
⎝
⎛− 0,

6
12 , is 6/5 (the length of the

bold line in Figure 2.5) and less than 1.5. In this case, there are actually two solutions

by adding d with 1qτ and 1qτ− (dotted lines): () 111 qβIGd τλ +−−= +
H and

() 112 qβIGd τλ −−−= +
H , i.e., two bold dashed lines in Figure 2.5.

-17.2742

-17.2742

-16.2984

-16.2984

-15.3226 -15.3226

-15.3226 -15.3226

-14.3468 -14.3468

-14.3468 -14.3468

-13.371
-13.371

-13.371
-13.371

-12.3952
-12.3952

-12.3952

-12.3952
-12.3952

-11.4194
-11.4194

-11.4194

-11.4194
-11.4194

-11.4194

-10.4435

-10.4435
-10.4435

-10.4435

-10.4435
-10.4435

-9.46774
-9.46774

-9.46774

-9.46774

-9.46774 -9.46774

-8.49194

-8.49194 -8.49194

-8.49194

-8.49194
-8.49194

-7.51613

-7.51613 -7.51613

-7.51613

-7.51613
-7.51613

-6.54032

-6.54032 -6.54032

-6.54032

-6.54032
-6.54032

-5.56452

-5.56452
-5.56452

-5.56452

-5.56452
-5.56452

-4.58871

-4.58871 -4.58871

-4.58871

-4.58871 -4.58871

-3.6129

-3.6129

-3.6129

-3.6129

-3.6129 -3.6129

-2.6371

-2.6371
-2.6371

-2.6371

-2.6371
-2.6371

-1.66129

-1.66129
-1.66129

-1.66129

-1.66129
-1.66129

-0.685484

-0.685484

-0.685484

-0.685484

-0.685484
-0.685484

0.290323

0.290323

0.290323

0.290323

0.290323

0.290323

1.26613

1.
26

61
3

1.26613

1.26613

1.26613

2.24194

2.24194

2.24194

2.24
194

2.24194

3.21774

3.21774

3.21774

3.
21

77
4

4.19355

4.1
93

55

4.
19

35
5

5.16935

5.
16

93
5

5.
16

93
5

6.14516

6.1
45

16

7.12097

7.1
20

978.
09

67
7

9.07258

10.0484
11.0242

-4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

d

up up

down

down

49

Figure 2.5 The Hard Case for an Indefinite Hessian

2.4 Modifications of Trust Region Algorithm

We do some modification to the TRS algorithm [9], the conventional TRS

algorithm is detailed in Appendix B. The first is that because we need to compute the

eigenvectors with respect to the smallest eigenvalue to solve the hard case, we use a

more numerical computation robust method, namely, Singular Value Decomposition

(SVD), to compute the eigen-system. Cholesky factorization is therefore replaced by

SVD.

-17.0865

-17.0865

-15.9231 -15.9231

-15.9231 -15.9231

-14.7596 -14.7596

-14.7596 -14.7596

-13.5962
-13.5962

-13.5962
-13.5962

-12.4327
-12.4327

-12.4327

-12.4327
-12.4327

-11.2692

-11.2692
-11.2692

-11.2692
-11.2692

-11.2692

-10.1058

-10.1058
-10.1058

-10.1058

-10.1058
-10.1058

-8.94231

-8.94231
-8.94231

-8.94231

-8.94231

-8.94231

-7.77885

-7.77885
-7.77885

-7.77885

-7.77885

-7.77885

-6.61538

-6.61538

-6.61538

-6.61538

-6.61538 -6.61538

-5.45192

-5.45192

-5.45192

-5.45192

-5.45192
-5.45192

-4.28846

-4.28846

-4.28846

-4.28846

-4.28846
-4.28846

-3.125

-3.125 -3.125

-3.125

-3.125
-3.125

-1.96154

-1.96154

-1.96154

-1.96154

-1.96154
-1.96154

-0.798077

-0.798077

-0.798077

-0.798077

-0.798077
-0.798077

0.365385

0.365385

0.365385

0.365385

0.365385

1.52885

1.5
28

85

1.52885

1.5
28

85

1.52885

2.69231

2.
69

23
1

2.69231

2.69231

3.85577

3.
85

57
7

3.855 77

5.01923

5.0
19

23

5.
01

92
3

6.18269

6.1
82

69

7.34615

7.3
46

15

8.
50

96
2

9.
67

30
8

10.8365

-4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

1qτ

d

d+τq1

1qτ−
up

down

up

down

50

We first derive the all ingredients for the Trust Region algorithm. The

root-finding problem applied Newton’s method generates a sequence of iterate of μ~

 by setting

() ()μφμφμμ '
11 /~ −= (2.16)

, where k is the k-th search index; μ~ is the next Lagrangian multiplier found in the

Newton’s iterates and

() () ()[]

()[] ()[].

2
2
1)(

)('

32
3

2

32
3

2
1

1

βIGββIGβ

βIGββIGβ
d

−−−

−
−

−
−

−−−=

+−⎥⎦
⎤

⎢⎣
⎡ +−−=

−
=

μμ

μμ
μ
μ

μφ

TT

TT

d
d

 (2.17)

In trust region literature, the first order derivative can solve by solving linear system.

Due to the matrix ()IG μ+ is positive definite with μ on the interval (−λ1,∞) and

()IG μ+ is also a symmetric matrix so it can be factorized by Cholesky factorization

as () UUIG T=+ μ (2.18)

, where U is a upper triangular matrix.

By substituting (2.18) into (2.4) yields

UTU d= UTU d(μ)=－β. (2.19)

Solve the linear system (2.19) we have the the solution d(μ) becomes

βUUd T−−−= 1)(μ (2.20)

, and () βIGββUUUUβdd 211)()(−−−−− +== μμμ TTTTT . (2.21)

51

Also, solve the linear system UTU y(μ) = d(μ), the solution y (μ) is

y (μ)= () () βIGβUUUUdUU 2111 −−−−−−− +−=−= μμ TTT . (2.22)

Besides we also have

() () () βIGβyd 3−+= μμμ TT (2.23)

Substituting (2.21) and (2.23) into (2.17) yields

[] () ()[] [] () ()[]
() ()[]μμμ

μμμμμμμμφ

ydd

yddyddd
T

TTT

3

2
3

2
2
3

1

)(

)()()()('
−

−−

−=

−=−=

 (2.24)

Also, substitute (2.12) and (2.24) into (2.16), and we have the formula of Newton’s

iterates

() ()[]()

() ()[]

() ()[]⎟⎟⎠
⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ−
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
Δ−

−=

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Δ
−= −

μμ
μμ

μ

μμ
μ

μ
μ

μ

μμμ
μ

μμ

yd
dd

yd
d

d
d

ydd
d

T

T

T

2

3

3

)()(

)(
)(

)(

)(
)(

11~

 (2.25)

Now we have derived the formula for performing Newton’s iteration. The detailed

algorithm is described in Appendix A.

Because (2.12) and (2.17) involve the term () p−+ IG μ where ℜ∈p . By

applying the SVD method to ()IG μ+ we have

() TQQIG Σ=+ μ (2.26)

52

, where
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

nn λ

λ

σ

σ
OO

11

 and nλλ ,...,1 are the eigenvalues of

()IG μ+ ; Q is the n by n matrix with columns consisting of orthonormal eigenvectors

of ()IG μ+ .

Therefore, the inverse of ()IG μ+ with any order p could be calculated by the

following formula.

() () T

P
n

p

Tppp QQQQIGIG

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Σ=+=+ ++−

σ

σ
μμ

1

1

1
O . (2.27)

To proceed with our algorithm, we also have to do the following transformation.

Qβθ= (2.28)

, where the components of θ denotes as iθ which is the product of the eigenvectors

iq and the gradient vector β .

 The second modification of the TRS algorithm is to find the lower-bound for the

Lagrangian multiplier μ more efficiently. The purpose of the lower-bound is to

prevent the unsuccessful iterates of the Newton’s method. As presented in Section 2.2,

the safeguard mechanism of the TRS algorithm is designed to prevent this situation.

Figure 2.6 shows Newton’s method leads μ beyond the logical interval. Moreover, the

traditional TRS algorithm doesn’t compute the eigensystem, i.e., they do not use the

53

information of 1λ− to safeguard the possible failure of Newton’s method. Since the

S.V.D has been used to help us solve the problem, and the smallest eigenvalue of the

Hessian matrix is also obtained. We may establish a new lower-bound based on the

current Lagrangian multiplier. It will be shown that this new lower-bound will be

better than the lower bound ()S
minμ proposed by Semple, J. (1997) [18]. To derive the

lower-bound, we first define

() () () ()
()

()() ()() ()
() () ()

()∑
=

−

−−−−−−

−

+
=

+=

++=

+=

==Φ

n

i i

i

TTT

TTT

T

T

r
1

2

2

2

1111

2

2

μλ

μ

μμ
μ

μμμμ

βQIΛβQ

βQIΛQQIΛQβ

βIGβ

ddd

 (2.29)

Differentiating (2.29) with respect to μ produces

() () () ()μμμμ ydβIGβ T22' 3 −=+−=Φ −
 (2.30)

The lower bound is estimated by the following inequality:

()
()

()

()
2

2
'

1

1
3

2

1
2

2

μλ

μλ
γ

μλ
γ

μ
μ +≥

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

Φ
Φ−

∑

∑

=

=

k

i i

i

k

i i

i

(2.31)

, whenever ()∞−∈ ,1λμ .

Both elements in (2.29) and (2.30) are calculated in the Newton’s iterate, so it is easy

to identify the estimated lower bound becomes

()
() () () ()μμ

μ
μ

μμ
μ

μ
μ
μμλ

yd
d

yd
d

TT

22

1

)(
2

)(2
)('

2 −=
−

+=
Φ
Φ+≥− . (2.32)

54

Then the lower-bound proposed by Semple, J denotes as ()S
minμ can be written as:

()
() ()μμ

μ
μμ

yd
d

T
S

2

min

)(
−= .

Figure 2.6 The failure Newton’s iteration

On the other hand, by using SVD our lower-bound ()T
minμ can be calculated by

the following formula:

() ()
()

()
()() ()()

()() ()
()() ,

'

3

32
1

2

min

βIGβ
dd

βIGββIGβ

d

−

−−−

+
Δ−

+=

++−

Δ−
−=

−=

μ
μμ

μ

μμ

μ
μ

μφ
μφμTμ

 (2.33)

Thus the lower bound of μ can be then set to

()()T,μλμ min1min max−= . (2.34)

55

That is, the larger value between the negative smallest eigenvalue and the lower

bound in (2.33) is set to be minμ . We use Example 1.2 to show (2.34) is better than

()S
minμ and their geometric meanings in three different situations, i.e., three different

positions of the current point.

Situation 1:

For being a positive definite matrix G + μI, let 1=Δ and consider μ0 = 3 as the

current point. Calculate the two lower-bounds and the two lower-bounds are

illustrated in Figure 2.7.

Figure 2.7 Comparison of lower-bound for μ in situation 1

(0, 0)

(-6,1)

(3, 0.25)

(1, 1)

()S
minμ()T

minμ
μ0

μ

Δ

1λ−

*μ

(1.3644,1)

56

Since ()
1min λμ −<T , we set minμ to be 1λ− according to (2.34). With the help of

1λ− , we a obtain better minμ than ()S
minμ .

Situation 2:

In this situation, we consider μ0 = 1.5 (at the right of the optimal *μ) to be the

current point as shown in Figure 2.8. The two lower-bound are calculated and shown

in Figure 2.8.

Figure 2.8 Comparison of lower-bound for μ in situation 2

As shown in Figure 2.8, ()T
minμ is set to be 1.31, which appears to be very close to the

optimal μ* and also lower than ()T
minμ .

()S
minμ

1λ− (1.5, 0.74)

(1.31, 1)

μ

Δ

μ1

*μ

(0.95, 0)

(1.3644, 1)

()T
minμ

(1, 1)

57

Situation 3:

In this situation, we consider μ0 = 1.2 (at the left of the optimal *μ) to be the current

point as shown in Figure 2.9. Again the two lower-bound are also calculated and

shown in Figure 2.9.

Figure 2.9 Comparison of lower-bound for μ in situation 3

We find that ()T
minμ is still larger than ()S

minμ even if the current point μ0 is on the left

hand side of *μ . We already demonstrate, without proof, that ()T
minμ better than ()S

minμ .

When we use the lower-bound to safeguard the Newton’s method from invalid

solutions, this new lower bound helps the Newton’s method to converge quickly.

μ0
−λ1

(1.2, 1.78)

(1, 1)

(1.289, 1)

(0.996, 0) μ

Δ

()S
minμ

()T
minμ

μ∗

(1.3644, 1)

58

Algorithm 2.1 (Trust Region Subproblem Algorithm)

Begin

Perform S.V.D to ()IG μ+ by (2.27)

Calculate θ by (2.28)

If G is positive definite then

 Return 0* =μ and the solution () βGd 10 −−= (2.35)

Else If minEβ ⊥ then

 Calculate))()(2

1

2

12

222

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

++
+

−Δ=
λμ

θ
λμ

θτ
k

kK (2.36)

 If 02 >τ then

0

0
1

0

1

12

2

1

12

2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

±

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

±

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+←

λμ
θ

λμ
θ

τ

τ

λμ
θ

λμ
θ

k

k

k

k

MMM
D (2.37)

Return a better solution d by evaluating the objective of original

objective function

Else

 Go to Algorithm 2.2 (the problem is a good case)

End If

Else

 Go to Algorithm 2.2 (the problem is a good case).

End If

End

We summarize the algorithm to solve the Trust Region Subproblem as follows.

59

Algorithm 2.2 (Algorithm for Good Case)

Input:

δ : the tolerance for convergence of the solution ()μd

ε : the tolerance for ensuring (ensure (G+μI) is P.D.)

G:the hessian matrix of (2.2)

β: the gradient vector of (2.2)

Δ: the given trust region radius

λ1: the smallest eigenvalue

Begin

 ελ +−← 1μ (ensure ()IG μ+ is P.D.). (2.38)

Repeat while () δμ >−Δd

()() ()
()() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
Δ−

+−← − βIGβ
dd

31min max
μ

μμ
μ,λμ (2.39)

(set the lower-bound for μ).

 If () Δ<μd (at the right of the root) then

 μμ ←max (2.40)

 Else

μμ ←min (2.41)

End If

Notice that, when the hard case occurs the optimal solution must be chosen by

evaluating the objective value of original objective function. The algorithm for the TR

Hard Case is complete. For “Good Case” of TRS, the Newton’s iterates algorithm is

shown below:

60

()

()[] ()[]βIGββIGβ

d
32

3
2

1
Δ
1

~
−−− ++

−
+←

μμ

μ
μμ

TT
 (2.42)

If min
~ μμ < then

2
~ minmax μμμ +← . (2.43)

 End If

End Repeat

Return μμ ~* =

End

 Example 1.2 is used again to demonstrate the TRS good case algorithm. With the

explanation of the geometric meanings, first let the given trust region radius to be 1;ε

= 2; the procedure is detailed as follows.

Preparation:

The eigenvalue of the Hessian matrix are 3 and −1 respectively, that is, G is an

indefinite matrix. We first set () 321 =+−−=μ according to (2.38), and then

proceed to the algorithm.

61

Iteration 1:

By (2.39), we have () () ⎥
⎦

⎤
⎢
⎣

⎡−
==

0
25.0

3dd μ and () 125.0 <=μd . Thus we enter the

TRS problem solving step. The minμ is first found to be () 16,1max =− according to

(2.39) and is shown in Figure 2.10. Because () 125.0 <=μd , to obtain an valid μ ,

we can set 3max =μ . With *μ known to be in the interval of () ()3,1, maxmin =μμ , the

first Newton’s iterate can be performed by (2.42), as shown in Figure 2.11 0.75=μ(

Because μ(is not in (1, 3) according to the safeguard mechanism (2.43), we take the

average of minμ and maxμ to replace μ(, i.e., () 22/31~ =+=μ . The two

bold-dashed line in Figure 2.11 indicate minμ and maxμ in the space of Δ/1 .

Figure 2.10 maxμ , minμ , ()T
minμ and 1μ on two-dimensional space

3max == μμ
μ

Δ

1min1 ==− μλ

() 6min −=Tμ
*μ

62

Figure 2.11 Safeguard mechanism for Newton’s iterate in the Δ1 space

With 2~ =μ , the remaining iteration is listed in the following table.

Table 2.1 The iterative results of example 1.2 solved by the TRS algorithm

Iteration m k

1 3 Safeguarded Safeguarded
2 2 (-0.4,0.1) 0.41231
3 1.2544 (-1.1588,0.8063) 1.41181
4 1.3623 (-08618,0.5179) 1.0055
5 1.3644 (-0.8577,0.5140) 1

()kμd()kμd

≈

3max1 == μμ

75.0=μ(

2~ =μ

1min =μ

μ

Δ
1

63

3 Generalized Reduced Trust Region (GRT) Search

In this Chapter, we develop an effective search algorithm based on the trust

region method. In Section 3.1, we introduce a conventional search algorithm based on

the trust region method. In Section 3.2, we propose our search algorithm by

considering the modified TRS algorithm in Chapter 2 and the generalized space

reduction method. In the final Section, we provide a convergence proof for the

proposed search algorithm.

3.1 Trust Region Search Method

In Chapter 2, the trust region method and the related algorithm are introduced.

Now we consider the use of the trust region method for optimization. The choice of

the trust region radius will be an important issue during optimization. The problem

will be approached by considering the approximation quality of the current iteration.

Given a step d from the current x(k), the response improving ratio ()kρ is defined as

follows:

()
() ()

)()0(
)()(

d
dxx

mm
ff kk

k

−
+−=ρ (3.1)

, where the numerator and the denominator are called the actual reduction and the

predicted reduction; the superscript (k) denotes the k-th iteration; ()•f is original

objective function and ()•m is the approximated objective function by the Taylor

expansion.

64

Notice that because the trust region method finds the solution inside the entire trust

region so the denominator must be greater than or equal to zero, i.e., the predicted

solution of the current iteration must not be worse than the solution found by the

previous iteration. When we substitute the solution solved by the trust region method

into the original function f, the new objective value ()()dx +kf may be greater or less

than ()()kf x . That is, the numerator may be greater or less than zero and determine

the sign of ρ(k). If ρ(k) < 0.25, then the actual reduction provided by d is smaller than

the predicted reduction, thus the step d must be rejected. On the other hand, if ρ(k) is

close to 1 that means the predicted reduction is quite close to the actual reduction;

namely, the function ()•m is a good approximate of the original objection function

()•f and it is also safe to enlarge the trust-region radius for the next iteration. But if

ρ(k) < 0 and ρ(k) is significantly smaller than 1 then we shrink the trust region by

reducing the trust-region radius Δ for the next iteration. Such a trust-region radius

adjustment strategy is expected to remedy the approximation deficiency of the GRR

search.

65

Algorithm 3.1

Input:

Δ̂: an overall upper bound on the step lengths and 0ˆ >Δ

x(k): the current point

Δ(k): initial trust region radius and () ()Δ∈Δ ,01

d(k): an improving direction from current x(k)

η: threshold above which ρ is considered to be a trusted improvement, where

)[25.0,0∈η .

Begin

For k = 0, 1, 2,… do

 Obtain ()kd by solving algorithm 2.1.

 Evaluate ()kρ by (3.1).

 If ()
4
1<kρ

 () ()kk Δ←Δ +

4
11 (3.2)

 Else If ()
4
3>kρ and () ()kk Δ=d (boundary solution)

 () ()()ΔΔ←Δ +)
,2min1 kk (3.3)

 Else

 () ()kk Δ←Δ +1 ; (3.4)

 End If

 If () ηρ >k

 () () ()kkk dxx +←+1 (3.5)

Else

The following algorithm describes an iteration of the search process without

constraints.

66

 () ()kk xx ←+1 ; (3.6)

End if

End For

End

Equation (3.3) means that if we want to enlarge the trust region, the solution found

must be already as far away from the current point as possible, i.e., on the boundary

() ()kk Δ=d . The purpose of the (3.5) and (3.6) is to determine if the improvement is

worth moving the current point to the next point.

Again, we consider the Rosenbrock’s function as our example for performing

Algorithm 3.1.

Example 3.1:

Minimize: (1－x1)2+100×(x2－x1
2)2.

Settings: Initial Point: () ()5.0,2, 21 −=xx ; 2ˆ =Δ ; () 11 =Δ ; 25.0=η .

Iteration 1:

Solving the trust region subproblem yields d(1) = (0.4351, 0.9003). Because ρ(1) = 1.09

> 0.25 and the norm of ()1d is equal to 1.00000, i.e., ()1d is a boundary solution

according to (3.5), we have ρ(1) > 0.25 and set x(2) = x(1) + d(1) = (−1.5648, 1.4003).

According to (3.3), because ρ(1) = 1.09 > 0.75, we enlarge the trust region radius Δ(2)

67

to be 2Δ(1) for x(2). Figure 3.1 shows the processes of Iteration 1 and the improving

direction.

Figure 3.1 Positions of x(1) and x(2) at iteration1 with ()1Δ = 0.5

Iteration 2:

Solve the TRS for x(2) with Δ(2) and yield () ()1.010 0.0121,2 =d . We find that ρ(2)

= 1.002 > 0.25 and move x(2) to x(3) = x(2) + d(2) = (−1.5526, 2.4105) according to (3.5).

But the norm of ()2d = 1.0102 < Δ(2) = 2, i.e., not on the boundary. According to (3.4),

we do not need to enlarge the trust region for x(3) and Δ(3) remains to be 2. This is

because the Hessian matrix is already positive definite thus the optimal Lagrangian

multiplier is 0 and the solution is inside the trust region. Figure 3.2 shows the search

processes and the inside solution with trust region radius Δ(2) = 2.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

686.47619

686.47619

686.47619

68
6.

47
61

9

68
6.

47
61

9

686.47619

1372.95238

1372.95238

13
72

.9
52

38

13
72

.9
52

38

2059.42857

2059.42857

20
59

.4
28

57

20
59

.4
28

57

20
59

.4
28

57
2745.90476

2745.90476
27

45
.9

04
76

27
45

.9
04

76

3432.38095

3432.38095
34

32
.3

80
95

34
32

.3
80

95

4118.85714

4118.85714

41
18

.8
57

14

41
18

.8
57

14

4805.33333

4805.33333

48
05

.3
33

33

48
05

.3
33

33

5491.80952

5491.80952

54
91

.8
09

52

54
91

.8
09

52

6178.28571

6178.28571

61
78

.2
85

71

61
78

.2
85

71

6864.7619

6864.7619

68
64

.7
61

9

7551.2381 75
51

.2
38

1

8237.71429 82
37

.7
14

29
8924.19048 89

24
.1

90
489610.66667

96
10

.6
66

6710297.1429
10

29
7.

14
2910983.619 10

98
3.

61
9

d(1)

68

Figure 3.2 The inside solution of Iteration 2.

Iteration 3:

We continue to solve the TRS for x(3) with the trust region radius () 23 =Δ , obtain

d(3) = (0.6147, −1.9031). Also evaluate ρ(3) and we have ρ(3) = −4.0421. Because ρ(3) is

smaller than 0, i.e., the objective value is worse than that of the last iteration. We have

to reject d(3) according to (3.6) and shrink the trust region radius Δ(4) to be 0.25Δ(3) =

0.5 according to (3.2). Figure 3.3 shows the process of Iteration 3.

686.47619

686.47619

686.47619

68
6.4

76
19

68
6.

47
61

9

686.476191372.95238

1372.95238

13
72

.9
52

38

13
72

.9
52

38

2059.42857

2059.42857

20
59

.4
28

57

20
59

.4
28

57

2745.90476

2745.90476 27
45

.9
04

76

27
45

.9
04

763432.38095
3432.38095

34
32

.3
80

95
34

32
.3

80
95

4118.85714

4118.85714
41

18
.8

57
14

41
18

.8
57

14

4805.33333

4805.33333

48
05

.3
33

33
48

05
.3

33
33

5491.80952

5491.80952

54
91

.8
09

52
54

91
.8

09
52

6178.28571

6178.28571

61
78

.2
85

716864.7619 68
64

.7
61

9

7551.2381

75
51

.2
38

1
8237.71429

82
37

.7
14

298924.19048 89
24

.1
90

489610.66667 96
10

.6
66

67
10297.1429 10

29
7.

14
2910983.619 10

98
3.

61
9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

d(1)

d(2)

69

Figure 3.3 The rejected direction of iteration 3.1

Iteration 4:

By solving the TRS for x(4) = x(3) with Δ(4)= 0.5 then we have d(4) = (0.1553, −0.4752)

and ρ(4) = 0.96 > 0.75. According to (3.5), x(5) = x(4) + d(4) = (−1.3973, 1.9353) and Δ(5)

for x(5) is enlarged to 2Δ(4) = 1 because ρ(4) = 0.96 > 0.75 according to (3.3). Figure

3.4 the process of Iteration 4. The rest of the iterations are listed in Table 3.1 and

illustrated in Figure 3.5

686.47619

686.47619
686.47619

68
6.

47
61

9

68
6.

47
61

9

686.476191372.95238
1372.95238

13
72

.9
52

38

13
72

.9
52

38

2059.42857
2059.42857

20
59

.4
28

57

20
59

.4
28

57
2745.90476

2745.90476
27

45
.9

04
76

27
45

.9
04

76
3432.38095

3432.38095
34

32
.3

80
95

34
32

.3
80

95

4118.85714

4118.85714

41
18

.8
57

14
41

18
.8

57
14

4805.33333

4805.33333
48

05
.3

33
33

48
05

.3
33

33

5491.80952

5491.80952
54

91
.8

09
52

54
91

.8
09

52

6178.28571

6178.28571
61

78
.2

85
71

61
78

.2
85

71

6864.7619

6864.7619
68

64
.7

61
9

7551.2381
75

51
.2

38
18237.71429

82
37

.7
14

298924.19048
89

24
.1

90
489610.66667 96

10
.6

66
6710297.1429 10

29
7.

14
2910983.619 10

98
3.

61
9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

d(3)
d(2)

d(1)

70

Figure 3.4 The accepted direction of iteration 3.2

Table 3.1 The all iterations of Example 3.1

686.47619

686.47619

686.47619
68

6.4
76

19

68
6.

47
61

9

686.476191372.95238

1372.95238

13
72

.9
52

38

13
72

.9
52

38

2059.42857

2059.42857

20
59

.4
28

57

20
59

.4
28

57
2745.90476

2745.90476

27
45

.9
04

76

27
45

.9
04

76

3432.38095

3432.38095
34

32
.3

80
95

34
32

.3
80

95

4118.85714

4118.85714

41
18

.8
57

14

41
18

.8
57

14

4805.33333

4805.33333

48
05

.3
33

33
48

05
.3

33
33

5491.80952

5491.80952

54
91

.8
09

52

54
91

.8
09

52

6178.28571

6178.28571

61
78

.2
85

71

61
78

.2
85

71

6864.7619 68
64

.7
61

9
7551.2381 75

51
.2

38
1

8237.71429
82

37
.7

14
298924.19048

89
24

.1
90

489610.66667 96
10

.6
66

6710297.1429 10
29

7.
14

2910983.619 10
98

3.
61

9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Iteration Obj. Value x1 x2 Δ(k)

1 1234.000000 -2.000000 0.500000 1
2 116.476261 -1.564822 1.400344 2
3 6.516007 -1.552647 2.410563 2
4 6.516007 -1.552647 2.410563 0.5
5 5.776516 -1.397305 1.935301 1
6 5.776516 -1.397305 1.935301 0.25
7 5.316688 -1.305694 1.702691 0.5
8 4.579766 -1.123898 1.236912 1
9 4.579766 -1.123898 1.236912 0.25

10 4.049016 -1.010759 1.013977 0.5
11 3.392050 -0.783780 0.568466 1
12 2.681523 -0.608367 0.339341 1
13 2.169678 -0.383544 0.096561 1
14 1.609145 -0.259002 0.051572 1
15 1.609145 -0.259002 0.051572 0.25
16 1.322277 -0.030596 -0.050069 0.25
17 0.888112 0.061413 -0.004694 0.25
18 0.888112 0.061413 -0.004694 0.0625
19 0.773370 0.122282 0.009493 0.125
20 0.599444 0.242763 0.042798 0.25
21 0.437176 0.421899 0.145909 0.25
22 0.253857 0.499832 0.243759 0.25
23 0.201670 0.673872 0.423231 0.25
24 0.079203 0.719329 0.515367 0.25
25 0.061329 0.861224 0.721197 0.25
26 0.012504 0.888424 0.788557 0.25
27 0.009131 0.985619 0.961998 0.25
28 0.000088 0.990596 0.981256 0.25
29 0.000001 0.999954 0.999820 0.25
30 0.000000 0.999999 0.999998 -

d(4)
d(2)

d(1)

71

Figure 3.5 The search process of Example 3.1

From Figure 3.5, we see that Algorithm 3.1 avoids the zigzagging phenomenon

significantly and the solution also converges to the global minimum (1, 1). But this

algorithm is only available for the unconstrained problem. In order to solve the

SMOO problem, we develop the Generalized Reduced Trust Region (GRT) method in

the next Section.

3.2 Generalized Reduced Trust Region Method

Although Algorithm 3.1 solves the Rosenbrock’s function effectively by

avoiding the zigzagging phenomenon, further development is still needed to solve the

SMOO problem, because there exist bounded constraints and inequality constraints in

282.666667

282.666667

282.666667

28
2.

66
66

67

282.666667 28
2.6

66
66

7

565.333333
565.333333

565.333333

56
5.

33
33

33
56

5.
33

33
33

565.333333

848

848

848
84

8

84
8

84
8

848

1130.66667
1130.66667

11
30

.6
66

67

11
30

.6
66

67
11

30
.6

66
67

1413.33333
1413.33333

14
13

.3
33

33
14

13
.3

33
33

1696

1696

1696
16

96

16
96

16
961978.66667

1978.66667

19
78

.6
66

67
19

78
.6

66
67

2261.33333
2261.33333

22
61

.3
33

33
22

61
.3

33
33

2544

2544

2544
25

44

25
44

25
442826.66667

2826.66667
28

26
.6

66
67

28
26

.6
66

67
3109.33333

3109.33333 31
09

.3
33

33
31

09
.3

33
33

3392

3392

3392 33
92

33
92

33
92

3674.66667

3674.66667

36
74

.6
66

67
36

74
.6

66
67

3957.33333

3957.33333

39
57

.3
33

33
39

57
.3

33
33

4240

4240

4240

42
40

42
40

42
40

4522.66667

4522.66667

45
22

.6
66

67
45

22
.6

66
67

4805.33333

4805.33333
48

05
.3

33
33

48
05

.3
33

33

5088

5088

50
88

50
88

5370.66667

5370.66667

53
70

.6
66

67
53

70
.6

66
67

5653.33333

5653.33333

56
53

.3
33

33
56

53
.3

33
33

5936

5936

59
36

59
36

6218.66667

6218.66667

62
18

.6
66

67
62

18
.6

66
67

6501.33333 65
01

.3
33

33
6784

6784

67
84

67
84

7066.66667
70

66
.6

66
67

7349.33333
73

49
.3

33
33

7632

7632

76
32

76
32

7914.66667
79

14
.6

66
678197.33333

81
97

.3
33

33
8480

84
80

8762.66667
87

62
.6

66
67

9045.33333
90

45
.3

33
33

9328
93

28
9610.66667 96

10
.6

66
679893.33333 98

93
.3

33
33

10176
10

17
6

10458.6667
10

45
8.

66
67

11024
11

02
411872

11
87

2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

72

this problem. In order to consider these constraints, we first add “Line Search”

method into our algorithm to solve the constrained problem. The search direction d

is provided by TR method and the Line Search is then performed along this direction

to search for a better solution. Again, using the Rosenbrock’s function as an example,

the improving direction of iteration 4 in Table 3.1 is equal (−1.397305, 1.935301)

− (−1.552647, 2.410563) = (0.155342, −0.475262). The objective value of iteration 5

is equal to 5.776516. If we apply the Line Search here, we further move the solution

to (−1.303346, 1.647840) and the objective value becomes 5.564209 as shown in

Figure 3.6.

Figure 3.6 The line search solution of iteration 3

The global minimum of the unconstrained optimization problem is changed

when we add the constraints into the problem because the solution has to satisfy the

282.666667

282.666667

282.666667

28
2.

66
66

67

282.666667

565.333333

565.333333

565.333333

56
5.

33
33

33

56
5.

33
33

33

565.333333848

848

848

84
8

84
8

84
8

8481130.66667
1130.66667

1130.66667 11
30

.6
66

67

11
30

.6
66

67

1413.33333
1413.33333

1413.33333 14
13

.3
33

33

14
13

.3
33

33
14

13
.3

33
33

1696

1696

1696

16
96

16
96

16
96

1978.66667
1978.66667

19
78

.6
66

67

19
78

.6
66

67

2261.33333
2261.33333

22
61

.3
33

33

22
61

.3
33

33

2544

2544

2544

25
44

25
44

25
44

2826.66667
2826.66667

28
26

.6
66

67

28
26

.6
66

67

3109.33333
3109.33333

31
09

.3
33

33
31

09
.3

33
33

3392

3392

3392

33
92

33
92

33
92

3674.66667

3674.66667

36
74

.6
66

67
36

74
.6

66
67

3957.33333

3957.33333

39
57

.3
33

33
39

57
.3

33
33

4240

4240

4240

42
40

42
40

42
40

4522.66667

4522.66667

45
22

.6
66

67
45

22
.6

66
67

4805.33333

4805.33333

48
05

.3
33

33
48

05
.3

33
33

5088

5088

50
88

50
88

5370.66667

5370.66667

53
70

.6
66

67
53

70
.6

66
67

5653.33333

5653.33333

56
53

.3
33

33
56

53
.3

33
33

5936

5936

59
36

59
36

6218.66667

6218.66667

62
18

.6
66

67
62

18
.6

66
67

6501.33333 65
01

.3
33

33

6784

6784

67
84

67
84

7066.66667

70
66

.6
66

677349.33333

73
49

.3
33

33

7632

7632

76
32

76
32

7914.66667

79
14

.6
66

67

8197.33333

81
97

.3
33

338480

84
80

8762.66667

87
62

.6
66

67

9045.33333

90
45

.3
33

339328

93
28

9610.66667

96
10

.6
66

67

9893.33333

98
93

.3
33

33

10176

10
17

6

10458.6667 10
45

8.
66

6710741.3333
11024

11
02

4

11306.6667
11872

11
87

2

x1

x2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

9.242581

9.242581

9.242581
9.242581

9.242581

9.242581

13.64516

13.64516

13.64516

13.64516

13.64516

13.64516

18.04774

18.04774

18.04774

18.04774

18.04774

18.04774

22.45032

22.45032

22.45032

22.45032

22.45032

26.8529

26.8529

26.8529

26.8529

26.8529

31.25548

31.25548

31.25548

31.25548

35.65806

35.65806

35.65806

35.65806

40.06065

40.06065

40.06065

40.06065

44.46323

44.46323

44.46323

44.46323

48.86581

48.86581

48.86581

48.86581

53.26839

3.26839

53.26839

53.26839

57.67097

57.67097

57.67097

62.07355

62.07355

66.47613

66.47613

70.87871

70.87871

75.28129

75.28129

79.68387

79.68387

84.08645

84.08645

88.48903

88.48903

92.89161

92.89161

97.29419

97.2941

101.6968

101.6968

x1

x2

-1.6 -1.5 -1.4 -1.3 -1.2
1.4

1.6

1.8

2

2.2

2.4

Line Search

Line Search

solution

73

constraints, i.e., be inside the feasible region. When the global minimum is not inside

the feasible region, the Line Search usually leads to a solution on the constraints.

Figure 3.7 shows critical constraints imposed on the Rosenbrock’s problem and the

solutions generated by the Lien Search with various directions. It can be seen that the

Line Search solution all stay on the bounded constraint.

Figure 3.7 Boundary solutions by performing line search

Therefore if we continue to perform the TR method to the boundary solution, we

usually get an infeasible direction even if the direction is an improving direction in the

unconstrained problem. Figure 3.8 shows the infeasible direction generated by the TR

method.

116.41935

116.41935

116.41935

11
6.4

19
35

232.83871

232.83871

232.83871
23

2.8
387

1

349.25806

349.25806

349.25806

349.25806

465.67742

465.67742

465.67742

46
5.6

77
42

582.09677

582.09677

582.09677

698.51613

698.51613

698.51613

814.93548

814.93548

814.93548

931.35484

931.354841047.7742

1047.7742

1164.1935

1164.1935

1280.6129

1280.6129
1397.0323

1397.0323

1513.4516

1513.4516

1629.871

1629.871

1746.2903

1746.2903
1862.7097

1979.129
2095.5484

2211.9677
2328.3871

2444.8065
2561.2258

2677.6452
2794.0645

-2 -1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

Boundary solution
Boundary solution Boundary solution

74

Figure 3.8 The infeasible direction generated by the TR method

By this reason, this research uses the concept of the GRG to develop

“Generalized Reduced Trust Region” (GRT) method to generate a feasible direction

by considering the constraints. Similar to the GRG method, the GRT search

decomposes all variables into the basic and the nonbasic variables, then, finds the

improving direction in the “reduced” spaced, found by the nonbasic variables by

solving the TR method. After the improving direction of nonbasic variables is found,

the direction of the basic variables is in the reduced space then adjusted to meet the

linearized constraints. Since, the number of the variables considered by the TR

method is only the number of the nonbasic variables. Thus, the computation required

116.41935

116.41935

116.41935

11
6.4

19
35

11
6.

41
93

5

116.41935 11
6.4

19
35232.83871

232.83871

232.83871

23
2.8

38
71

23
2.

83
87

1

232.83871

349.25806

349.25806

349.25806
34

9.2
58

06

34
9.

25
80

6

34
9.

25
80

6

465.67742

465.67742

465.67742

46
5.6

77
42

46
5.

67
74

2

46
5.

67
74

2

582.09677

582.09677

58
2.

09
67

7

58
2.

09
67

7

698.51613

698.51613
69

8.
51

61
3

69
8.

51
61

3

814.93548

814.93548
81

4.
93

54
8

81
4.

93
54

8

931.35484

931.35484
93

1.
35

48
4

93
1.

35
48

4

1047.7742

1047.7742
10

47
.7

74
2

10
47

.7
74

2

1164.1935

1164.1935
11

64
.1

93
5

11
64

.1
93

5

1280.6129

1280.6129
12

80
.6

12
9

1397.0323 13
97

.0
32

3

1513.4516 15
13

.4
51

61629.871

16
29

.8
711746.2903

17
46

.2
90

31862.7097

18
62

.7
09

71979.129

19
79

.1
292095.5484

20
95

.5
48

4

2211.9677 22
11

.9
67

72328.3871 23
28

.3
87

1

2444.8065

24
44

.8
06

52561.2258

x1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Infeasible Direction

Feasible Region

75

is less than that needed by the TR method where all variables have to be accounted

for.

We now consider the objective function of (2.2) and add the inequality

constraints and the bounded constraints in to our problem. Rewrite the problem by

linearizing the constraints as follows.

()
() () () () ()() () ()() () () ()() 2/)(: 111

1

kkkTkkkkTkkfmMinimize
k

xxGxxxxβxx
x

−−+−+= +++
+

. (3.7)

() () ()()
nqforUxL

tosubject

qq xqx

kkk

,,1
;0)(: 1

K=≤≤
=−∇ + xxxH

, where

()()
()()

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

=∇

T
m

T

Tk
mm

Tk

k

a

a

2

11

1

11

)(2

2

)(

M

M

xBb

xBb

xH

is the Jacobian matrix of the binding constraints of (1.5) and (1.7).

We also replace () ()()kk xx −+1 by the improving direction d as before. Then,

decompose d, ()kβ and ())(kxH∇ into the basic and the nonbasic variables:

⎥
⎦

⎤
⎢
⎣

⎡
=

N

B

d
d

d ,
()

()⎥
⎦

⎤
⎢
⎣

⎡
= k

N

k
B

k β
β

β , () ()() ()()[]k
N

k
Bk xHxHxH ∇∇=∇ .

76

The method to decompose the variables will be introduced later. Different from the

GRG method, the GRT search should decompose the Hessian Matrix ()kG into four

sets:

() () ()

() () ⎥
⎦

⎤
⎢
⎣

⎡=
k

NN
k

NB

k
BN

k
BB

k

N
B

NB

GG
GGG .

The nonlinear problem (3.7) can be then generalized to:

() ()
() ()

() ()

22

22
)(

,

N
k

NN
T

NB
k

NB
T

N

N
k

BN
T

BB
k

BB
T

B
N

Tk
NB

Tk
BkfMinimize

NB

dGddGd

dGddGddβdβx
dd

++

++++
 (3.8)

() ()

.,,1

0)()(

nqforUxL

tosubject

qq x
k
qx

N
k

NB
k

B

K=≤≤

=∇+∇ dxHdxH

In (3.8), the equality constraints could be rewritten as

() ()
N

k
N

k
BB dxHxHd)()(1∇−∇= − (3.9)

(3.9) should hold for the constraints to be met. Substituting (3.9) into the objective

function of (3.8), the objective function is reduced to be the function of nonbasic

variables. The nonlinear programming (3.8) becomes:

()
() () ()() () ()() () ()() 2/)(111

1

k
N

k
NR

Tk
N

k
N

k
N

k
N

T
R

kfMinimize
k

N

xxBxxxxbx
x

−−+−+ +++
+

 (3.10)

() nqforUxLtosubject
qq x

k
qx ,,1K=≤≤

, where

() ()() ()() ()k
B

k
B

Tk
N

k
NR βxHxHβb 1−∇∇−= (3.11)

77

() ()() ()() () ()() ()()

()() ()() ()k
BN

k
B

Tk
N

k
N

k
B

k
BB

k
B

Tk
N

k
NNR

GxHxH

xHxHGxHxHGB

1

11

2

−

−−

∇∇−

∇∇∇∇+=
 (3.12)

The TR method in Section 3.1 is then applied to (3.10) and generates the improving

direction with the nonbasic variables subject to a sphere constraint:

()

()

() nqforUxL

tosubject

fMinimize

qq

N

x
k

qx

k
N

T
N

NR
T

NN
T
R

k

,,1

; :

.2/)(:

2

K=≤≤

Δ≤

++

dd

dBddbx
d

 (3.13)

, where () ()()k
N

k
NN xxd −= +1

 the improving direction in the reduced space.

Moreover, we need to consider the upper bound and the lower bound of the decision

variables. The improving direction of the nonbasic variable Nd should be further

adjusted by:

() () () () 0 and or ,0 and if01 >=<===−+
qx

k
qqx

k
qq

k
q

k
q dUxdLxdxx

qq
 (3.14)

, where dq is the q-th component of dN, and ()k
qx is the q-th component of ()kx .

With the above adjustment, the improving direction of the basic variables can be then

is calculated by (3.9). That ensures that the improving direction is feasible and

effective.

At each iteration of the GRT search, ()kx is partitioned into basic variables ()k
Bx

and nonbasic variables ()k
Nx , and ())(kxH∇ is also partitioned into ())(k

B xH∇ and

())(k
N xH∇ . Here, the number of the basic variables is the number of the binding

78

constraints, and the basic variables ()k
Bx should satisfy two requirements. First,

())(k
B xH∇ , the bases of ())(kxH∇ , should be nonsingular. It ensures that the (3.9)

holds. Second, ()k
Bx should be larger than LxB and smaller than UxB. Because once the

improving direction of the nonbasic variables is determined, the direction of the basic

variables is indirectly generated by (3.9). If some elements of ()k
Bx are on the upper

bounds or the lower bounds, no feasible solutions after Line Search can be found

through the GRT direction and the solution will be stuck at the boundary.

To satisfy the above two requirements, we first rank all variables by their

distances to the bounds. The distances between variables and bounds are computed as

follows:

() ()
()

() ()
()

()⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈

>=∂
∂∉−

<=∂
∂∉−

=

 ablesslack vari if 0

0

)(and ablesslack vari if

0
)(and ablesslack vari if

k
q

k
q

k
qx

k
q

k
q

k
q

k
qx

q

x

x
fxLx

x
fxxU

distance
q

q

xx
x

xx
x

 (3.15)

, where distanceq is the distance of q-th variable to its bound.

We would like to choose the variables farther from the bounds as the basic variables.

To do this, we rearrange columns of ())(kxH∇ by distanceq and choose the bases

from the front columns. In addition, we want to ensure that the chosen bases are

independent. Choosing independent columns can be done by Gaussian elimination [3].

79

Pivots obtained by Gaussian elimination will locate the independent columns. The

second method to choose independent columns is rather straightforward. Starting

from the first column of the rearranged ())(kxH∇ , every time a column is picked its

independence from the chosen columns will be checked with “Singular Value

Decomposition (SVD)” to prevent singularity. We observe that the results by the two

methods are similar.

80

Algorithm 3.2

Input:

()kx : a given current point

j: the iteration index of trust region radius adjustment algorithm which is set

to be 0

()kρ : the response improvement ratio of k-th search iteration.

()kΔ : a given trust region radius for current point ()kx

η: a radio measures how we trust this step and ⎢
⎣

⎡
⎟
⎠
⎞∈

4
1,0η

Output:

 d : an improving direction to current point ()kx

 ()1+Δ k : the trust region radius of next point ()1+kx

Procedure Trust Region Radius Adjustment Algorithm

Begin

The biggest difference between the GRT search and the GRG search is that we

need to specify the trust region radius for the GRT search. Even the algorithm 3.1

provides a strategy for updating the trust-region radius, we still need to make some

modifications for constrained problems and to make the algorithm more intelligent. In

this research, the modified algorithm is proposed as follows:

81

 Repeat Until () ηρ >k

Perform the algorithm 2.1 to obtain improving directiond .

Evaluate response improvement ratio ()kρ by (3.1).

If 25.0<jρ then

 () () ()()()75.0log25.01 1025.0 +−+ +×Δ←Δ jkk ρ
 (3.16)

 Else if () 75.0<kρ then

 () ()kk Δ←Δ +1 (3.17)

Else If d is a boundary solution then

 () () ()()()Δ−×Δ←Δ +−+ ˆ,102min 75.01 jkk ρ (3.18)

 End If

 1+← kk

End Repeat

End

In Algorithm 3.2, we establish a mechanism to decide trust region radius

dynamically. This algorithm is supposed to be more intelligent than the Algorithm 3.1.

First, we set Δ
)

 to be the largest distance from the current point x(k) to the constraints

boundary. Second, instead of shrinking the trust region radius to one-fourth, we

dynamically shrink the radius according to the degree of the improvement ratio ρ(k) by

multiplying
() ()()75.0log25.01025.0 +−+
kρ . Similarly, instead of enlarging the radius twice

as large we dynamically enlarge it by multiplying
()()()kρ−−102 . To explain the radius

82

adjustment mechanism, Figure 3.9 and Figure 3.10 show how the two multipliers

change as ρ decreases or increases. The multiplier in (3.16) maps

() (){ }25.0| <<−∞ kk ρρ to a shrinking factor () (){ }1~25.0|~ << kk ρρ ; i.e., as ρ(k) is a

large negative value the radius for the next iteration will be approaching ()kΔ×25.0 .

The multiplier in (3.18) maps () (){ }∞<< kk ρρ 75.0| to an enlarging factor

() (){ }2~1|~ << kk ρρ ; i.e., when ρ is greater than 0.75 and becomes large the radius for

the next iteration will be approaching ()kΔ×2 . Thus, with the help of the two

multipliers, we can adjust the trust region radius dynamically.

Figure 3.9 The mapping of the shrinking factor in (3.16)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

-2.3 -1.8 -1.3 -0.8 -0.3 0.2 0.7

()kρ

()kρ~

0.25

83

Figure 3.10 The mapping of the enlarging factor in (3.18)

Although our algorithm consider the constraints and find the improving direction

in the reduced space but there still exists another problem, that is, the linearization of

nonlinear constraints. GRG deals with the problem by Newton-Raphson method. As

we discuss in GRG algorithm, the Newton-Raphson maintain the feasibility of the

solution. However, there are two disadvantages in the Newton-Raphson method. First,

the Newton-Raphson method relaxes the feasibility by allowing solution deviating

slightly from the constraints. Determining the tolerance of feasibility ε is an issue.

Similarly, determining the initial step length of nonbasic variables θ isn’t easy.

Second, the computation required by the Newton-Raphson method is intensive. In

particular, the term)~,()()(k
N

t
B xyh∇ in step 3.2 may not be invertible. Based on the

above reasons, we replace Newton-Raphson method by the Line Search. By the Line

Search, each solution is feasible and acceptable in the actual problem.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.6 1.1 1.6 2.1 2.6

()kρ

()kρ~

0.75

84

There is a strong assumption in the GRG method or the GRT search. Both

methods linearize the constraints. However, the feasible region of nonlinear problem

(1.8) may not be a polyhedron. Because we use the Line Search instead of

Newton-Raphson method, there may be no feasible solutions along the linearized

constraints. For example, Figure 3.11 shows an initial solution on the quadratic

constraint boundary. The linearized constraint is actually the tangent of the curve. The

direction derived by both the GRG and the GRT search are the direction along the

tangent, but the tangent is outside the feasible region except the point of contact. This

study uses the ideas of the GRR algorithm, that is, we combine the Zoutendijk’s

method into the algorithm for this issue.

Figure 3.11 Example of Zoutendijk’s method

GRG/GRR/GRT Direction

Zoutendijk Direction

Linearized Constraint

85

As explained in Section 1.2.3, the Zoutendijk’s method generates an improving

direction such that the angle between this direction and the constraint tangent must be

greater than zero and within feasible region. However, the direction found by the

Zoutendijk’s method is less effective. When there are feasible solutions after the Line

Search along the direction found by the GRG method or the GRT search, the direction

should be preferred. Otherwise, the Zoutendijk’s method is applied only when the

Line Search fails to improve. The algorithm combining the Zoutendijk’s method will

be shown as follows.

Now we summarize the algorithm of Generalized Reduced Trust Region search

method as follows:

 Step 1:

Let ()kx be a feasible solution at the k-th search step. Choose a threshold 0>e .

Check the binding constraints and add slack variables (the slack variables are zeros)

to the binding inequality constraints. Set the number of basic variables equal to the

number of the binding constraints. Approximate the objective function as a quadratic

function and linearize the binding constraints as the formulation of (3.7).

86

 Step 2:

Compute distanceq by (3.15). Rearrange columns of ())(kxH∇ in (3.7) by distanceq

and choose the independent bases from the columns in the front as basic variables, the

other variables as nonbasic variables. Then, decompose all matrices and vectors into

the set of basic variables and the set of nonbasic variables. In particular, the Hessian

matrix G(k) is decomposed into ()k
BBG , ()k

BNG , ()k
NBG , and ()k

NNG .

 Step 3:

Perform Algorithm 3.2 to get an improving direction dN by solving (3.13). Adjust dN

according to (3.14). Calculate dB by (3.9). Combine dN and dB as the improving

direction d.

 Step 4.1:

Do Line Search from ()kx along direction d to find ()1+kx in the feasible region of

(1.8). If there are no improving solutions after performing the Line Search, go to step

4.2; else take the feasible solution to replace ()1+kx . Go to step 5.

87

 Step 4.2

Calculate Zoutendijk’s steps dZ according the Zoutendijk’s method in Subsection

1.2.3 to replace d. Do Line Search from ()kx along direction dZ in the feasible region

of (1.8). Go to step 5.

 Step 5:

If () () eff kk <− +)()(1xx , stop and ()1* += kxx ; otherwise, go to step 1.

Here we use two examples to show the process of the GRT search method and a

test problem to verify the GRT search algorithm. First we use the same example

(Example 1.2) of the GRG method to show the search direction in the reduced space.

Second we use the Rosenbrock’s function as the example to show the GRT direction

could be more effective than the GRR direction and the GRT algorithm could also

avoid the three drawbacks of the GRR search method.

Figure 3.12 shows the improving direction (dashed-line) in the reduced space

and modified improving direction (bolded-line). Figure 3.13 shows the improving

direction (dashed-line) in the original space is infeasible thus we have to replace this

direction by Zoutendijk’s direction (bolded-line).

88

Example 3.2

Initial Setting: set trust region radius to be 0.5 at current point.

() 2121
2
2

2
121 64222,: xxxxxxxxfMinimize −−−+= ,

.0,

;8.2
6

17

;2:

21

2
21

21

≥

≤+

≤+

xx

xx

xxtosubject

Figure 3.12 The improving direction in the reduced space

-6
.7

07
9

-6.7079

-6
.7

07
9

-6
.2

08
5

-6
.20

85

-6.2085

-6
.2

08
5

-6
.2

08
5

-5
.7

09
1

-5
.7

09
1

-5
.70

91

-5
.7

09
1

-5
.7

09
1

-5
.7

09
1

-5
.2

09
7

-5
.2

09
7

-5
.2

09
7

-5
.2

09
7

-5
.2

09
7

-5
.2

09
7

-4
.7

10
2

-4
.7

10
2

-4
.7

10
2

-4
.7

10
2

-4
.7

10
2

-4
.7

10
2

-4
.2

10
8

-4
.2

10
8

-4
.2

10
8

-4
.2

10
8

-4
.2

10
8

-4
.2

10
8

-3
.7

11
4

-3
.7

11
4

-3
.7

11
4

-3
.7

11
4

-3
.7

11
4

-3
.2

11
9

-3
.2

11
9

-3
.2

11
9

-3
.2

11
9

-2
.7

12
5

-2
.7

12
5

-2
.7

12
5

-2
.7

12
5

-2
.2

13
1

-2
.2

13
1

-2
.2

13
1

-1
.7

13
7

-1
.7

13
7

-1
.7

13
7

-1
.2

14
2

-1
.2

14
2

-0
.7

14
81

-0
.7

14
81

-0
.2

15
38

-0
.2

15
38

0.
28

40
5

0.
78

34
81.

28
29

1.
78

23

?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x4

x3

dN

89

Figure 3.13 The improving direction in the original space

In the following example, we demonstrate that the GRT algorithm is more

effective than the GRR algorithm. The first purpose of the example is to show that the

advantage of GRT search algorithm consider the solution inside the trust region. The

second purpose is to show the GRT algorithm avoid two drawbacks, i.e., (1) the

hessian matrix is singular or near singular; (2) the approximation issue of the

quadratic model.

Example 3.3:

Initial point: () ()2.02524841.4213545,, 21 =xx

Minimize : (1－x1)2+100×(x2－x1
2)2,

-8.8074
-8.8074

-8.178

-8.178

-7.5486

-7.5486

-6.9192

-6.9192

-6.9192

-6.2898

-6.2898
-6.2898

-5.6604

-5.6604 -5.6604

-5.031

-5.031

-5.031

-5.031

-4.4016

-4.4016

-4.4016

-4.4016

-3.7723

-3.7723

-3.7723

-3.7723

-3.1429

-3.1429

-3.1429

-3.1429

-2.5135

-2.5135

-2.5135

-2.5135

-1.8841

-1.8841
-1.8841

-1.8841

-1.2547

-1.2547 -1.2547

-1.2547

-0.62528

-0.62528

0.0041123
0.0041123

0.63351

?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

X2

X1

Zoutendijk’s direction

90

Subject to :－2 ≤ x1≤2; 0 ≤ x2≤ 4.

The Hessian matrix G is equal to ⎥
⎦

⎤
⎢
⎣

⎡
−

−
100.0000284.2709
284.2709808.0994

; the eigenvalue of G is

equal ⎥
⎦

⎤
⎢
⎣

⎡
0.000004
908.09948

. Because the smallest eigenvalue almost equals to zero, the

Hessian matrix G is almost a singular matrix. We roughly set the trust region radius to

be 1, and then perform the GRT search algorithm to find the next point. Table 3.2

shows the result by solving the TRS. With the response improving ratio () 25.01 <ρ ,

the approximation of first iteration is poor. Thus we shrink the trust region radius and

set it to be ()() 0.2500871025.01)75.0log(25.03.54233 =+× +−− . The response improving ratio

of the second iteration ()2ρ can be accepted and we also get an improving objective

value. By the way, the algorithm only needs a few number of iteration for solving

TRS.

Table 3.2 GRT search result of example 3.2

Now we use the GRR algorithm to search the optimal Lagrangian multiplier by

(1.24). The GRR algorithm wants to find a Lagrangian multiplier which minimizes

the original objective by adjusting the Lagrangian multiplier by (1.24). With δ and

α are set to be 10 and 100, Table 3.3 shows the iterative results of the GRR search

Interaion Lagrangian multiplier Corresponding Obj. Value ρ k Radius
1 −1.3981900Ε−01 1.175425E+00 −3.542328 1
2 −5.2386169Ε−01 1.155079E-01 0.849160 0.2500887

91

method. Compare the two result generated by two method, we find that the GRT uses

less iterations and also gets a better objective value.

Table 3.3 GRR search result of example 3.3

Finally this thesis will solve the test problem and the cases by these methods:

“Generalized Reduced Gradient method and Zoutendijk method” [24], “Generalized

Reduced Ridge method and Zoutendijk method” [24], “Generalized Reduced Trust

Region method and Zoutendijk method”, and commercial software “Lingo”. Solutions

by three different methods will be also discussed. Table 3.2 shows the methods with

different settings are compared in our research. Moreover, we consider the same

method [24] to generate the initial points.

Interaion Lagrangian multiplier Corresponding Obj. Value
1 4.6806226Ε−06 9.276490E+25
2 4.2078324Ε−06 6.335962E+21
3 −5.2006918Ε−07 6.110703E+17
4 −4.7799085Ε−05 6.088703E+13
5 −5.2058925Ε−04 6.086232E+09
6 −5.2484909Ε−03 6.083651E+05
7 −5.2527507Ε−02 6.055326E+01
8 −5.2531767Ε−01 1.156180E-01

92

Table 3.2 The methods compared in our research

In the Subsection 1.3.1, we use the Rosenbrock’s function to show the strong

zigzagging phenomena by using the GRG search. This study uses the same problem to

test the search methods listed in Table 3.2. We select four corner points in the feasible

region to be the initial point and suppose the terminal criterion is less than 10−6

between two iterative objective values or more than seven hundred steps of search.

The initial points are listed in Table 3.3 and the local search results are listed in Table

3.4.

Table 3.3 The initial points of the Rosenbrock’s function

Methods

GRG + Zoutendijk

GRR + Zoutendijk (Δ=100, α =10)

GRR + Zoutendijk (Δ=100, α =20)

GRR + Zoutendijk (Δ=100, α =30)

GRT + Zoutendijk with Conventional Radius Adjustment (CRA)

GRT + Zoutendijk with Dynamic Radius Adjustment (DRA)

Lingo (Steepest Edge)

Lingo (SLP Directions)

Lingo (Steepest + SLP)

Index x 1 x 2

1 −2 0
2 2 0
3 −2 4
4 2 4

93

Table 3.4 The Results of Rosenbrock’s function (Local Search)

The “GRT + Zoutendijk” methods have better performance in objective value

and computing time against the “GRR + Zoutendijk” methods and the methods of

Lingo. Moreover, the “GRR + Zoutendijk” methods are very sensitive to the

parameters. This is one of the drawbacks of the algorithm with “GRR + Zoutendijk”

approach as we discussed before. In order to verify the “GRT + Zoutendijk” methods

avoid the zigzagging phenomena, we plot the search processes of all initial points by

using the “GRT + Zoutendijk” method with η = 0.25.

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 5.0039460E-01 2.924208E-04 352 0.12
GRR + Zoutendijk (Δ=100, α =10) 1.4376088E-07 2.863833E-08 117 0.07
GRR + Zoutendijk (Δ=100, α =20) 7.2339749E-07 6.192558E-28 101.25 0.04
GRR + Zoutendijk (Δ=100, α =30) 1.6651505E-07 6.192558E-28 186.75 0.07

GRT + Zoutendijk with CRA 8.8623310E-18 1.467099E-19 13 0.03
GRT + Zoutendijk with DRA 9.9622481E-18 7.101449E-19 13 0.02

Lingo (Steepest Edge) 2.2556653E-08 2.254358E-08 159.75 < 1

Lingo (SLP Directions) 2.2560715E-08 2.255993E-08 146 < 1

Lingo (Steepest + SLP) 2.2556500E-08 2.254766E-08 147.75 < 1

76.619048

76.619048

76.619048

76
.61

90
48

76
.6

19
04

8

76.619048

76.619048

76
.6

19
04

8

76
.6

19
04

8

153.2381

153.2381

153.2381

15
3.2

38
1

153.2381

153.2381

15
3.

23
81

15
3.

23
81

229.85714

229.85714

229.85714

22
9.

85
71

4

229.85714

229.85714

22
9.

85
71

4

22
9.

85
71

4

306.47619

306.47619

306.47619

30
6.

47
61

9

306.47619 30
6.

47
61

9

383.09524
383.09524

38
3.

09
52

4

383.09524

38
3.

09
52

4459.71429

459.71429

459.71429

45
9.7

14
29

45
9.

71
42

9

536.33333

536.33333

536.33333

53
6.3

33
33

53
6.

33
33

3612.95238

612.95238

612.95238

61
2.9

52
38

61
2.

95
23

8

689.57143

689.57143

689.57143

68
9.5

71
43

68
9.

57
14

3

766.19048

766.19048
766.19048

76
6.

19
04

8

842.80952

842.80952 84
2.8

09
52

84
2.

80
95

2

919.42857

91
9.4

28
57

91
9.

42
85

7

996.04762
99

6.0476
2

1072.6667 10
72

.66
671149.2857

1225.9048

1302.52381379.1429
1455.7619

Initial Point 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

76.619048

76.619048

76.619048

76
.61

90
48

76
.6

19
04

8

76.619048

76.619048

76
.6

19
04

8

76
.6

19
04

8

153.2381

153.2381

153.2381

15
3.2

38
1

153.2381

153.2381

15
3.

23
81

15
3.

23
81

229.85714

229.85714 22
9.8

57
14

22
9.

85
71

4

229.85714

229.85714

22
9.

85
71

4

22
9.

85
71

4

306.47619

306.47619

30
6.4

76
19

30
6.

47
61

9

306.47619 30
6.

47
61

9

383.09524

383.09524

38
3.

09
52

4

383.09524 38
3.

09
52

4

459.71429

459.71429

459.71429

45
9.

71
42

9

45
9.

71
42

9536.33333

536.33333

536.33333

53
6.3

33
33

53
6.

33
33

3612.95238

612.95238

612.95238

61
2.9

52
38

61
2.

95
23

8

689.57143

689.57143

689.57143

68
9.5

71
43

68
9.

57
14

3766.19048

766.19048

766.19048

76
6.

19
04

8

842.80952

842.80952

84
2.8

09
52

84
2.

80
95

2919.42857

919.42857

91
9.4

28
57

91
9.

42
85

7

996.04762
996.04762

1072.6667 10
72

.66
67

1149.2857
1225.90481302.52381379.1429

1455.7619

Initial Point 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

94

Figure 3.14 The search process of the “GRT + Zoutendijk” method

Figure 3.14 shows that the “GRT + Zoutendijk” methods avoid the zigzagging

phenomena successfully and the search path advance along the inclined trough of the

Rosenbrock’s function.

3.3 Convergence Proof of Generalized Reduced Trust Region Method

In this Section, we propose a convergence proof of the GRT search method

based on the Algorithm 3.1. The convergence combines two convergence theories.

The first theory is about trust region method. It shows that the sequence of gradient

(){ }kβ generated by Algorithm 3.1 has an accumulation point at zero, and in fact

converges to zero when η is strictly positive. Under this condition, another theorem

about the convergence of GRG claims that the ()kβ is equal to zero if and only if the

current point x(k) is a KKT point. We then start the convergence analysis by obtaining

an estimate of the decrease in the model function m in (3.7) two-dimensional subspace

76.619048

76.619048

76.619048

76
.61

90
48

76
.6

19
04

8

76.619048

76.619048

76
.6

19
04

8

76
.6

19
04

8

153.2381

153.2381

153.2381

15
3.2

38
1

153.2381

153.2381

15
3.

23
81

15
3.

23
81

229.85714

229.85714

22
9.8

57
14

22
9.

85
71

4

229.85714

229.85714

22
9.

85
71

4

22
9.

85
71

4

306.47619

306.47619

30
6.4

76
19

30
6.

47
61

9

306.47619 30
6.

47
61

9

383.09524

383.09524

38
3.0

95
24

383.09524

38
3.

09
52

4459.71429

459.71429

459.71429

45
9.

71
42

9

45
9.

71
42

9

536.33333

536.33333

536.33333

53
6.3

33
33

53
6.

33
33

3612.95238

612.95238

612.95238

61
2.9

52
38

61
2.

95
23

8

689.57143

689.57143

689.57143

68
9.5

71
43

68
9.

57
14

3

766.19048

766.19048 766.190
48

76
6.

19
04

8842.80952

842.80952 84
2.8

09
52

84
2.

80
95

2

919.42857

91
9.4

28
57

91
9.

42
85

7

996.04762

99
6.0

47
62

99
6.

04
76

2

1072.6667 10
72

.66
67

1149.2857
1225.90481302.5238

1379.1429
1455.7619

1532.381

Initial Point 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

76.619048

76.619048

76.619048

76
.61

90
48

76
.6

19
04

8

76.619048

76.619048

76
.6

19
04

8

76
.6

19
04

8

153.2381

153.2381

153.2381

15
3.2

38
1

153.2381

153.2381

15
3.

23
81

15
3.

23
81

229.85714

229.85714 22
9.8

57
14

22
9.

85
71

4

229.85714

229.85714

22
9.

85
71

4

306.47619

306.47619

30
6.4

76
19

30
6.

47
61

9

306.47619 30
6.

47
61

9

383.09524

383.09524

38
3.0

95
24

383.09524

38
3.

09
52

4

459.71429

459.71429

459.71429

45
9.

71
42

9

45
9.

71
42

9536.33333

536.33333

536.33333

53
6.3

33
33

53
6.

33
33

3612.95238

612.95238

612.95238

61
2.9

52
38

61
2.

95
23

8

689.57143

689.57143

689.57143

68
9.

57
14

3766.19048

766.19048

766.19048

76
6.

19
04

8842.80952

842.80952

84
2.8

09
52

84
2.

80
95

2

919.42857

919.42857 91
9.4

28
57

91
9.

42
85

7996.04762

996.04762

99
6.0

47
621072.6667 10

72
.666

7

1149.2857
1225.9048

1302.5238 1379.14291455.7619

Initial Point 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

95

minimization algorithms and Steihaug’s algorithm produce approximation solution d

of the (3.7) that satisfy the following estimate of decrease in the model function [14]:

() () () ()
()

() ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ≥−

k

k
kkcmm

G

β
βd ,min0 1 (3.19)

We assume throughout that the Hessian matrix ()kG in (3.7) is uniformly bounded in

norm, and that f in (1.8) is bounded below on the level set

)}.()(|{: 0xx ffsS ≤= (3.20)

We define an open neighborhood of this set by

},somefor |{:)(00 S RRS ∈<−= zzxx (3.21)

where R0 is a positive constant.

To allow our results to be applied more generally, we also allow the length of the

approximate solution d of (3.7) to exceed the trust-region bound, provided that it stays

within some fixed multiple of the bound; that is,

()kΔ≤ γd for some constant 1≥γ . (3.22)

The following result deals with the case η = 0.

Theorem 3.1 [14]

Let η = 0 in Algorithm 3.1. Suppose that () χ≤kG for some constant χ, that f

is bounded below on the level set S defined by (3.21) and Lipschitz continuously

differentiable in the neighborhood S(R0) for some R0 > 0, and that all approximate

96

solutions of (3.13) satisfy the inequalities (3.20) and (3.22), for some positive

constants c1 and γ . We then have

() 0 inf lim =
→∞

k

k
β . (3.23)

Proof:

See also Appendix C.

Theorem 3.2 [2]

Consider the problem (3.7) without the bounded constraints to minimize ()xm

subject to () ()() 0)(=−∇ kk xxxH , 0≥x . Let x be a feasible solution such that

()T
N

T
B

T xxx ,= and xB > 0, where ())(kxH∇ is decomposed into ()()k
B xH∇[

()()]k
N xH∇ and ()()k

B xH∇ is an invertible matrix. Suppose that m is differentiable

at x, and let () () ()() ()()kk
B

Tk
B

kT xHxHββr ∇∇−=
−1 . Let ()() []T

N
T
B

TkT ddxxd ,=−= be the

direction formed as follows. For each nonbasic component j, let jj rd −= if 0≤jr

and jjj rxd −= if 0>jr , and let () ()
N

k
N

k
BB dxHxHd)()(1∇−∇= − . If 0≠d , then d

is an improving feasible direction. Furthermore, d = 0 if and only if x is a KKT point.

Corollary 3.1

Consider problem (3.13). The Generalized Reduced Trust Region search algorithm

will reach a KKT point at x(k) as ∞→k .

97

Proof: We will have 0inf lim =
→∞ Rk

b for problem (3.13) based on Theorem 3.1.

Since () RRN bIBd 1−+−= μ for problem (3.13), () ()
N

k
N

k
BB dxHxHd)()(1∇−∇= − ,

and []BN ddd = thus we have 0inf lim =
→∞

d
k

. Therefore, by Theorem 3.2 x(k) is

the KKT point as ∞→k .

98

4 Case Study

In this chapter, three cases about semiconductor are described. We formulate the

cases as the SMOO problems like Equation (1.8) and solve by the methods listed in

Table 3.2.

4.1 Geometric Layout Design for Semiconductor Manufacturability

The information about how different geometric styles of layouts impact the

circuit performance is important for fables design houses. Some slight changes of the

channel length and width often lead to unexpected variations in the electricity signals.

The rounding phenomenon will occur in the corners of poly-silicon after

photolithography. Generally speaking, the “Active-Area” is the main cause of the

variation. Examples with rounding phenomenon are shown in Figure 4.1.

Figure 4.1 Two SPICE models with the rounding phenomenon

99

The rounding phenomenon would increase the channel drawn length, Len, and

the channel drawn width, Wid, in Figure 4.1. The change of Len and Wid directly

influences the width-to-length ration of a transistor: Len
Wid . However, the major

observations in E-Tests, saturation current (IDsat) and the threshold voltage (Vt), would

be proportional to Len
Wid [21, 16]. Thus, the design house would like to obtain a

setting of the design layout which has less variation and close to the desired electrical

performances.

In this case study, the design factors on the device layout are shown in Figure 4.2

and the upper bound and lower bound of these factors are summarized as Table 4.1.

This design is a NMOS transistor and the rounding phenomenon occurs around the

fillister in the center of Active-Area.

100

Figure 4.2 Design factors on geometric layout

It is a three-factor layout design problem. Ten ET parameters are measured in a

CCD experiment and ten response surface models are built as below:

Table 4.1 Upper bounds and lower bounds for 3 factors

WE.W-H.-EH.+W.+E.+H.W-.-E.-H.+.Y 1590157211191433118711087018901860480ˆ 222
1A =

WE.W-H.-EH.-W.-E.-H.W-.+E.+H.+.Y 1538195111329101190137063112321990090ˆ 222
2A =

WE.W-H.+EH.+W.-E.-HW+.+E.+H.-.-Y 10311161117112015421003013601480260ˆ 222
3A =

WE.W+H.-EH.-W.-E.+H.W-.-E.-H+.-Y 12531101167013011401080130148010260ˆ 222
4A =

WE.W-H.-EH.+W.+E.+H.W-.+E.-H.+.Y 1340154111350080169136031010621660510ˆ 222
5A =

WE.W+H.+EH.+W.+E.-H.W+.-E.+H.-.Y 11901960118067011231150301501460290-ˆ 222
6A =

WE.W-H.-EH.-W.-E.+H.W-.+E+H.+.Y 12951492117755421392140941121481010ˆ 222
7A =

WE.W+H.-EH.+W.-E.-H.W+.+E.+H.-.-Y 1330171011407901463126045015501110390ˆ 222
8A =

32017711680112100231352114047115901170320ˆ 222
1B .W-E.W-H.+EH.+W.-E.-H.W-.+E.+H.-.Y =

WEW+H.-EH.+
W.+E.+H.W+.-E.-H.+.Y

113181143576011833734
57120171782862412417161257541688716173600081098ˆ 222

1C =

Factor Factor Name Lower Bound Upper Bound
x 1 H 1 0 0.4
x 2 E 1 0.05 0.15
x 3 W 0.1 0.3

Region of rounding

h

101

Because the rounding phenomenon would be influenced by H1 and E1, the

design rule would like the H1 to be as large as possible and the E1 to be as small as

possible. Thus, the term, () ()22 05.014.01 −+− EH , are added into our objective

function to ensure the design factors close to the targets. In addition, the designers are

asked to minimize the rounding effect caused by the design factors E1 and H1. That is,

they hope that changes in E1 and H1 should not have minimum influence on the

responses. Therefore, additional terms of 2,1,0
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

q
x

ET

q

i , are added in the

objective function. Each of the ten ET has a specification window and a desired target.

We generate the desired targets close to the responses corresponding to the setting of

(0.4, 0.05, 0.25). Furthermore, the specification limits are generated by ±10% of these

responses. These requirements are summarized as in Table 4.2 and the details of

problem formulation are in Appendix D.

102

Table 4.2 Desired targets and specification windows for DFM

Here, we solve the SMOO problem by the three methods. The optimum design,

the corresponding responses, and the effects are summarized in Table 4.3, Table 4.4,

and Table 4.5, respectively.

Table 4.3 Optimum design of DFM case

Table 4.4 Responses given the optimum design

Table 4.5 Sensitivity effects given the optimum design

Desired
target
(T i) L i U i

A 1 IdsatN-592 0.54 0.483975 0.591525
A 2 IdsatN-593 0.54 0.486743 0.594908
A 3 IdsatP-592 -0.31 -0.33883 -0.27722
A 4 IdsatP-593 -0.32 -0.35184 -0.28787
A5 IdsatN-104 0.57 0.511785 0.625515
A6 IdsatP-104 -0.35 -0.38671 -0.3164
A7 IdsatN-107 0.54 0.48573 0.59367
A8 IdsatP-107 -0.37 -0.40623 -0.33237
B 1 VtN 0.48 0.433845 0.530255
C 1 IoffN 225 202.2143 247.1508

Response Response
name

Specification window

Factor H1 E1 W
Optimum

setting 0.155624 0.1341821 0.1184904

A1 A2 A3 A4 A5 A6 A7 A8 B1 C1
IdsatN-592 IdsatN-593 IdsatP-592 IdsatP-593 IdsatN-104 IdsatP-104 IdsatN-107 IdsatP-107 VtN IoffN

0.5344 0.4917 -0.2907 -0.3052 0.5118 -0.3357 0.4857 -0.3466 0.4478 247.1508

A1 A2 A3 A4 A5 A6 A7 A8 B1 C1
H1 0.684 0.335 -0.113 -0.127 0.412 -0.192 0.286 -0.595 -0.105 953.498
E1 1.152 0.81 -0.178 -0.162 0.53 -0.19 1.117 -0.277 -0.218 1108.238
W -0.536 -0.034 0.025 0.26 0.044 0.034 0.241 0.197 0.623 -2033.993

103

Here we allocate 23 initial solutions for the global search. Seven feasible initial

solutions could be found. We suppose the terminal criterion is less than 10-6 between

two iterative objective values or more than seven hundred steps of search. Table 4.6

describes the results of all local optimums with the seven feasible initial solutions by

the methods listed in Table 3.2.

Table 4.6 Results of DFM case (Local Search)

In the above results, the algorithms with the “GRR + Zoutendijk” and “GRT +

Zoutendijk” approach and software “Lingo” have better performance. All initial

solutions could reach the global optimum. However, the algorithm with the “GRG +

Zoutendijk” approach can’t converge to the global solution no matter what initial

solution is used possibly due to the zigzagging phenomenon. Moreover, the steps and

the computing time of the algorithm with “GRR + Zoutendijk” are very sensitive to

the parameter.

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 2.0196656E+07 1.5592227E+07 434.00 1.20

GRR + Zoutendijk (Δ=100, α =10) 1.5592227E+07 1.5592227E+07 116.14 0.63

GRR + Zoutendijk (Δ=100, α =20) 1.5592227E+07 1.5592227E+07 332.14 1.40

GRR + Zoutendijk (Δ=100, α =30) 1.5870851E+07 1.5592227E+07 477.43 2.14

GRT + Zoutendijk with CRA 1.5592227E+07 1.5592227E+07 34.71 0.23

GRT + Zoutendijk with DRA 1.5592227E+07 1.5592227E+07 34.43 0.22

Lingo (Steepest Edge) 1.5592233E+07 1.5592220E+07 12.00 < 1

Lingo (SLP Directions) 1.5592230E+07 1.5592230E+07 12.86 < 1

Lingo (Steepest + SLP) 1.5592230E+07 1.5592230E+07 12.29 < 1

104

4.2 Robust Configuration of Semiconductor Supply Chain

Semiconductor fabrication is a very complicated manufacturing process. The

global, cross-company supply chain operations as shown in Figure 4.3 are even more

complicated and dynamic.

FAB
Process

CP
Process

ASSY
Process FT

Process

Demand

Supply

Supply

Supply Supply

Design Houses
IDM

Supply

Figure 4.3 Semiconductor supply chain

For the complexity, a usual planning and scheduling solutions have become

impossible to employ. Thus, both statistical optimization and control techniques have

been proposed and applied to semiconductor manufacturing systems [6]. The

empirical supply chain model describes how the supply chain configuration affects

the chosen performance metrics and their variability. With such models, an optimal

supply chain configuration can be found for different types of products, priorities, and

routes.

There are several performance metrics of the semiconductor supply chain. From

the entire supply chain point of view, this case chooses “the mean of X-factor” and

105

“the variability (standard deviation) of cycle time” as the metrics to evaluate the

supply chain performance in semiconductor manufacturing. In addition, lots of

allocation decision variables in semiconductor manufacturing may affect the supply

chain performance metrics. In this case, these allocation decision variables are defined

as follows: qk ~~π , the percentage of product k~ assigned to be produced at the priority

q~ , and rk~~ρ , the percentage of product k~ assigned to be produced at the route r~ .

The relationship among these allocation decision variables is shown in Figure 4.4;

these metrics are defined as follows: ()qfactorXE ~− , the mean of X-factor to all

products assigned to be produced at the priority q~ , and ()qCTSD ~ , the standard

deviation of cycle time to all products assigned to be produced at the priority q~ .

Besides, we assume that the priority mix is independent of the supply chain route mix

without loss of generality.

Figure 4.4 Supply chain allocation decision variables

Route 1

Route 2
Product

Super hot lot

Hot lot

π

ρ

Normal lot

Priority

106

By collecting the data from research papers and personal interviews, this case

build an empirical supply chain simulation model as shown in Figure 4.5. The

production environmental setting in our simulation is shown in Figure 4.5.

Figure 4.5 Supply chain simulation model

Table 4.7 The Environment setting of model

Table 4.8 The capacity at each facility of each tier

Index Value
Number of facilities in each tier 3 tiers; 6 : 2 : 2

Product Capabilities of each facilities See Table 3.9
Simulation Horizon Setting 90days

Total Demand Quantity 6465K wafers
Production Capacity of each tier

(wafer per month)
Average bottleneck processing time of each facility of each tier (Capacity Constraint) Product A：B：C = 2：1.7：1

6465K wafers for each tier

FAB Capacity Assem. Capacity FT Capacity
FAB1 1468K Assem1 3265K FT1 3200K
FAB2 1376K Assem2 3200K FT2 3265K
FAB3 922K
FAB4 1133K
FAB5 1202K
FAB6 689K
Total 6465K Total 6465K Total 6465K

107

Besides, there are three priorities for each product, and the required delivery

durations are very different: the required delivery duration for super hot lot is 1.3

times the row process time of each product; 2.1 times for hot lot and 3 times for the

regular. We have total nine possible routes in this example including six routes, four

routes and two routes for three different products, respectively.

We also assume that the production cycle time is infinite if capacity utilization

rate approaches to 200% and the production cycle time is raw processing time if

capacity utilization rate is 0%. By following this assumption, the product cycle time

for each product at each plant in different priorities can be estimated based on

different utilization rate for each product at each plant in different priorities. The

general function of cycle time is an exponential curve. Our simulation model is based

on 80% capacity utilization rate. The expected cycle times and raw process time for

each product at each plant of different priorities in FAB, Assembly, and Final test are

listed in Appendix E.

Moreover, we design 5 levels for each factor, but total levels in this experimental

design have only 15 factors because the sum of decision variables qk ~~π and rk~~ρ

must add up to 1. Next, a D-Optimal method is adopted such that 180 simulation runs

108

are further developed. Finally, each run is performed 20 replicates. The corresponding

performance metrics for each run were collected. After that, a response surface model

is generated to indicate the interrelationships between ()qfactorXE ~− , ()qCTSD ~

and qk ~~π , rk~~ρ . Thus, an optimal configuration model in a semiconductor

manufacturing is ready to be developed.

Since this model must consider several performance metrics simultaneously, the

subjective weights of performance metrics for priority 1, 2 and 3 are supposed to 15, 5,

and 1, respectively:

()[] ()[]∑∑
==

−+−−
3

1~

2
~~

3

1~

2
~~ 01

q
qq

q
qq CTSDwfactorXEwMin

where 1,5,15 321 === www . The target of the X-factor and the standard

deviation are one and zero.

In addition to the target, there are the lower bounds of the X-factor and the standard

deviation:

() qfactorXE q
~1~ ∀≥− ,

() qCTSD q
~0~ ∀≥ .

109

Moreover, there are several sets of constraints, which are explained as follows:

The proportion of a product assigned to be produced at different priority levels should

be added up to 1:

k
q

qk

~1
~

~~ ∀=∑π .

The proportion of a product assigned to be produced at different routes should be added

up to 1:

k
r

kr

~1
~

~~ ∀=∑ ρ .

The total proportion of demands to be produced at the priority level q~ must locate

within a predetermined upper limit and lower limit:

qp q
k

qkkq
~~

~
~

~~~~ ∀≤⋅≤∑ ηπξ , 

where q~η  is the maximum percentage of products produced at the priority q~ , q~ξ  

is the minimum percentage of products produced at the priority q~ , and kp ~
~  is the 

percentage of product k~  in product mix. 

The total proportion of demands to be produced at the specific route must locate 

within a predetermined upper limit and lower limit: 

rp r
k

krkr
~~~~

~
~

~~~~ ∀≤⋅≤∑ αρβ , 

where r~
~α  is the maximum percentage of products produced at production route r~  

and r~
~β  is the minimum percentage of products produced at production route r~ . 

The capacity constraints of each facility in each supply chain tier: 



110 

φρ φ
φ φ

φ ,~~
~

~:~ ~ ~

~~
~~~~ tC

PT
PT

pE t
rr k t

tk
krkt ∀≤∑∑

∈
,

where tE~ is the utilization rate of tier t~ , φtC~ is the capacity ratio at factory φ

of tier t~ , φtPT~ is the average production cycle time of single product at factory φ

of tier t~ , and φtkPT ~~ is the average production cycle time of product k~ at factory

φ of tier t~ .

The upper bounds and the lower bounds of each decision variable:

qkLU
qkqk qk

~,~
~~~~ ~~ ∀≥≥ ππ π ,

 

krLU
krkr kr

~,~
~~~~

~~ ∀≥≥ ρρ ρ ,

where
qk

U
~~π and

qk
L

~~π are the upper bound and the lower bound of the percentage of

product k~ assigned to be produced at the priority q~ .
kr

U ~~ρ and
kr

L ~~ρ are the upper

bound and the lower bound of the percentage of product k~ assigned to be produced

at the route r~ . The details of the supply chain problem formulation are in Appendix

F. Here, we solve the SMOO problem again by the three methods. The optimum

solution and the corresponding responses are summarized in and Table 4.10,

respectively.

111

Table 4.9 Optimum design of supply chain case

(Unit of all decision variables: %)

Table 4.10 Responses given the optimum design

(Unit of the standard deviation: Month)

We generate 32 feasible initial points and perform the search algorithm listed in

Table 3.2. Table 4.11 shows the search results of each method. Although, the GRT +

Zoutendijk and the GRG + Zoutendijk method can find almost the same optimum but

the GRG + Zoutendijk consumes less computing time and uses less number of

iterations. Moreover, we use the local-search option to perform algorithm thus the

objective values of the Lingo’s method are worse than other methods.

Table 4.11 Results of supply chain case (Local Search)

Factor
Optimum

setting 5 10 85 15 10 75 15

Factor
Optimum

setting 10 75 10 10 20 17.1498 19.9088

Factor
Optimum

setting 22.9414 30 23.3269 15.9212 30.7519 45.4128 54.5871

11π 12π 13π 21π 22π 23π 31π

32π 33π 11ρ 14ρ 15ρ 17ρ 18ρ

19ρ 22ρ 24ρ 26ρ 27ρ 33ρ 34ρ

1.39722 1.63383 2.10121 0.24881 0.2734 1.58036
()1factorXE − ()2factorXE − ()3factorXE − ()1CTSD ()2CTSD ()3CTSD

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 1.1831251E+01 9.379897E+00 107.23 3.68
GRR + Zoutendijk (Δ=100, α =10) 1.2398509E+01 9.379897E+00 442.67 38.72

GRT + Zoutendijk with CRA 1.2190163E+01 9.379897E+00 307.81 12.10
GRT + Zoutendijk with DRA 1.2048563E+01 9.379897E+00 285.48 10.63

Lingo (Steepest Edge) 1.6123810E+01 1.612381E+01 27.00 < 1
Lingo (SLP Directions) 1.6126714E+01 1.613550E+01 27.54 < 1
Lingo (Steepest + SLP) 1.6123701E+01 1.612673E+01 25.32 < 1

112

4.3 Track System PEB CDU Optimization

In semiconductor fabrication industry, the Critical Dimension Uniformity (CDU)

control is essential for today’s high performance IC device. The desired control of the

CDU is just under 2.6nm (3-sigma) for 65-nm technology. The across-wafer gate

critical dimension uniformity (CDU) strongly affects the final chip-to-chip

performance spread in terms of speed and power. Thus it motivates us to improve the

CDU for better yield. This study uses the methods including Design of Experiment

(DOE), Response Surface Methodology (RSM) and the GRT search to improve the

CDU. There is a paper, see also [23], discusses the improvement of the CDU by using

different approach can be compared with our result. Many semiconductor fabrication

technologies in our study are also can be found in this paper.

Within-wafer CD uniformity is mainly affected by the temperature

non-uniformity on the post-exposure-bake (PEB) hot plate. Therefore the temperature

control of the PEB step has an important impact of the final CDU. There are a lot of

source contributes to CD variation throughout the lithography and etch sequence.

Table 4.12 shows the possible source to CD variation [23]. The PEB step has become

very critical in controlling gate CD since the thermal dose diffuses acid and catalyzes

the chemical reaction of the chemically amplified resist after exposure. This study

113

will focus on reducing the variation source of the PEB step. The simplest and most

straightforward approach to reduce across-wafer CD variation is to make each

processing step spatially uniform. Modern wafer track systems include a

multizone/multicontroller bake plate meant to be adjusted to deliver more spatially

uniform PEB temperature distribution. In this study, the distribution of the seven

zones is shown in Figure 4.6.

Table 4.12 Source and characteristic of several types of CD variation

Figure 4.6 The distribution of multizone PEB bake plate

1

3

5

6

7

2

4

114

The manipulatable parameter of the PEB bake plate is the temperature of each

zone. In our modeling approach, we have the same assumptions as [23]. We also

assume that the actual steady-state PEB temperature on a wafer at a location over each

zone of the multizone/multicontroller bake plate is decided by the temperature

setpoint, the corresponding offset of the zone controller, and the effect of other zones,

due to the good conductivity of bake plate.

In practice, there are 577 sites in one wafer and the CDs of these sites are

affected by the temperature of the seven zones, i.e., the offsets of the seven zones. For

this reason, we can construct 577 “Linear Regression Models” for these 577 sites.

Each model can be written as the following equation:

i
T

iii bCD ε+×+= Offsets Zoneb0, ,

where { }577,...,1=i ,
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7,

2,

1,

i

i

i

i

b

b
b

M
b ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

OffsetZone

OffsetZone
OffsetZone

7

2

1

M
Offses Zone and ε is the error

term of the model.

But the only concern is the CDU of the wafer not the CDs thus we use the “Mean

Difference” approach to construct these models. The idea of the “Mean Difference” is

to construct a model describes the relationship between the differences (the CD of

115

each site − the overall mean of the wafer) and offset of each zone. Because our

ultimate goal is to reduce the CDU of the wafer thus we will care about the difference

of the CD of each site to the overall mean. If the total differences become small, that

is, the CDU of the wafer becomes small simultaneously. Therefore, the set of optimal

offset found by the “Mean Difference” model can minimizes the difference of each

site to overall mean and also reduces the CDU of the wafer. For this reason, we

choose the “Mean Difference” approach to construct the models. Thus the “Mean

Difference” models can be rewritten as follows.

() i
T

DiDiDii bMCD ε+×+=− Offsets Zoneb ,,0,, ,

where { }577,...,1=i and M is an overall mean CD value of the wafer.

In this study, the data is obtained from 32 experiments. Actually, with the help of

“Design of Experiment” (DOE), we also can build the models by fewer experiments.

But we do not emphasize the importance of using the DOE in this study. The effects

of all sites on a wafer can be plot on the color grid charts. The different colors of the

color grid chart denote the degrees of the effects. The darker color means the stronger

effect of the site. Figure 4.7 shows the effect maps of the seven zones.

116

Figure 4.7 The effect map of the seven zones.

2.68
2.063
1.468
0.873
0.278

-0.317
-0.912

-1.5

Zone6 Offset
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

3230282624222018161412108642

117

In practice, there are three different requirements need to be meet. The first

requirement is to find the set of optimal offset minimizes the CDU. The second

requirement is to find the set of optimal offset minimizes the CDU and the value of

overall mean CD of the wafer hit the specified target. The third requirement is to find

the set of optimal offset minimizes the CDU and the value of overall mean CD the

wafer satisfies the specified bounded constraints. To satisfy the second and third

requirements of the optimization, we also need to evaluate the model describes the

overall mean of the wafer and the offsets. The overall mean model can be written as

follows.

M
T
MMbMeanOverall ε+×+= Offsets Zoneb,0 ,

where
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

M

M

M

M

b

b
b

,7

,2

,1

M

b ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

OffsetZone

OffsetZone
OffsetZone

7

2

1

M
Offses Zone and Mε is the error term of the

overall mean model.

Sometimes, the offsets of the PEB plate have physical limitation, i.e., the optimization

model needs to consider the constraints for the offsets. We now summarize the three

optimization models as follows.

118

Optimization Model for Requirement (1):

[]
2577

1
,0,,

:∑
=

×+
i

T
DiDiOffsetZone

bMinimize
i

Offsets Zoneb ;

jjj UOffsetZoneLtoSubject ≤≤ : ,

where }7,...,1{ =j , jL and jU denote the lower-bound and upper-bound of the

offset of Zone j,
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7,,

2,,

1,,

,

Di

Di

Di

Di

b

b
b

M
b ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

OffsetZone

OffsetZone
OffsetZone

7

2

1

M
Offses Zone .

Optimization Model for Requirement (2):

[]
2577

1
,0,,

:∑
=

×+
i

T
DiDiOffsetZone

bMinimize
i

Offsets Zoneb ;

,
;: ,0

jjj

M
T
MM

UOffsetZoneL
TbtoSubject

≤≤
=×+ Offsets Zoneb

where }7,...,1{ =j , TM is the target of the overall mean and jL and jU denote the

lower-bound and upper-bound of the offset of Zone j respectively.

Optimization Model for Requirement (3):

[]
2577

1
,0,,

:∑
=

×+
i

T
DiDiOffsetZone

bMinimize
i

Offsets Zoneb ;

jjj

M
T
MMM

UOffsetZoneL
UbLtoSubject

≤≤
≤×+≤

;: ,0 Offsets Zoneb

119

, where }7,...,1{ =j , UM and LM are the upper-bound and lower-bound of the overall

mean and jL and jU denote the lower-bound and upper-bound of the offset of

Zone j respectively.

We consider the third requirement to be the optimization model. We allocate 23

initial solutions for the global search. We use the same terminal criterion, 10-6

between two iterative objective values or seven hundred steps as other cases. Table

4.13 lists the results of all local optimums starting with the eight feasible initial

solutions by the methods in Table 3.2.

Table 4.13 Results of CDU optimization case (Local Search)

Due to the zigzagging phenomena, the method “GRG + Zoutendijk” methods also

cannot converge to the global minimum again. The search result including the steps

and the computing time of the “GRR + Zoutendijk” methods is sensitive to the

parameter again. If we compare the objective value, the consuming steps and the

Methods Average Objective Value Best Objective Value Average Number of
Iterations

Average Computing
Time (seconds)

GRG + Zoutendijk 3.0783512E+01 3.0109657E+01 700 70.48

GRR + Zoutendijk (Δ=100, α =10) 3.0092226E+01 3.0092226E+01 12.375 0.73

GRR + Zoutendijk (Δ=100, α =20) 3.0092226E+01 3.0092226E+01 63.125 3.13

GRR + Zoutendijk (Δ=100, α =30) 3.0092226E+01 3.0092226E+01 154.75 6.95
GRT + Zoutendijk with CRA 3.0092226E+01 3.0092226E+01 5.5 0.45
GRT + Zoutendijk with DRA 3.0092226E+01 3.0092226E+01 2.625 0.37

Lingo (Steepest Edge) 3.0092230E+01 3.0092230E+01 39.75 1
Lingo (SLP Directions) 3.0092230E+01 3.0092230E+01 44 1
Lingo (Steepest + SLP) 3.0092230E+01 3.0092230E+01 38 1

≈

≈

≈

120

computing time, the “GRT + Zoutendijk” methods are all comparable to the methods

of “Lingo”.

121

5 Conclusions

In this research, we solve the “Trust Region Subproblem (TRS)”, using SVD.

With the help of SVD, we enhance the TRS algorithm by proposing a better lower

bound for safeguarding the Newton’s iterates and also provide a new mechanism to

adjust the trust-region radius dynamically. To solve the SMOO problem, a nonlinear

constrained problem, we then develop the “Generalized Reduced Trust Region (GRT)”

search method with the above modifications. We have also proved the convergence of

the proposed GRT algorithm.

To verify our algorithm, a test problem and three SMOO problems were studied.

The following results were observed:

1. The GRT search method avoids the zigzagging phenomena often incurred

by the GRG method and gets a better solution.

2. The GRT search combined with the Zoutendijk search method can

effectively reach the optimal point in every case.

3. The GRT search method with dynamic radius adjustment can reduce the

number of iterations and computing time by about 5% to 10% as compared

to the conventional radius adjustment in a large scale problem such as the

cases of the DFM problem and the robust semiconductor supply chain

optimizations.

4. Compared against Lingo’s solution, our search algorithm usually converges

at the same or better solution with comparable computation time.

122

Although, the four cases lend support to this research, there are still much room to be

improved.

1. In order to deal with any kind of optimization problems, the Hessian matrix

can be calculated and updated more efficiently. Moreover, the Hessian

matrix indeed could be approximated for shorter computing time [4].

2. In late 1980s, many researchers try to solve the trust region problem more

efficiently like the dogleg method and indefinite dogleg method [5, 14, 22].

They are all approximate techniques of the trust region problem and also

lead to the same global and local convergence properties, i.e., these methods

can shorten the computing time without loss of optimality conditions.

3. In this research, the SVD replaces the Cholesky factorization to compute

and perform the Newton’s iterates. However the SVD is too costly for large

matrices, the method is applicable only for small problems. There have been

many researches on how to reduce the computational efforts of the

Cholesky factorization [10].

4. Although this research propose the convergence property of the GRT

algorithm but the Corollary 3.1 does not cover the Line Search method.

There have been some algorithms combine the Trust Region method and

Line Search method and also provider convergence properties [8, 15, 20]

5. In this research, we propose a dynamic strategy to update the trust-region

radius. In 2005, some researchers discussed about the trust region radius

update [19].

6. Zoutendijk’s method sometimes incurs the zigzagging phenomenon. It may

influence the search performance of the GRT search. There should be some

123

enhancements when searching a feasibly improving direction at the

boundary of feasible set.

7. Multiple initial solutions could increase the probability to reach the global

optimum, but there exists a systematic method. In Lingo’s algorithm, the

“Branch and Bound” algorithm is adopted. It divides the nonlinear

programming problem into several approximate convex optimization

problems, then, searches the global optimum iteratively.

124

REFERENCE

[1] M. Avriel, Nonlinear Programming: Analysis and Methods, Dover
Publications, 2003.

[2] M. S. Bazaraa, H. D. Sherali, C. M. Shetty and Wiley InterScience (Online
service), Nonlinear programming [electronic resource] : theory and
algorithms, Wiley-Interscience, Hoboken, N.J., 2006.

[3] A. D. Belegundu and T. R. Chandrupatla, Optimization concepts and
applications in engineering, Prentice Hall.

[4] R. H. Byrd, H. F. Khalfan and R. B. Schnabel, Analysis of a Symmetric
Rank-One Trust Region Method, SIAM, 1996, pp. 1025.

[5] R. H. Byrd, R. B. Schnabel and G. A. Shultz, Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional Subspaces,
Mathematical Programming, 40 (1988), pp. 247-263.

[6] A. Chen, P. S. Guo and P. Lin, Statistical analysis and design of
semiconductor manufacturingsystems, 2000, pp. 335-338.

[7] N. R. Draper, Ridge analysis of response surfaces, JSTOR, 1963, pp. 469-479.
[8] J. Y. Fan, W. B. Ai and Q. Y. Zhang, A line search and trust region algorithm

with trust region radius converging to zero, Journal of Computational
Mathematics, 22 (2004), pp. 865-872.

[9] S. K. S. Fan, A different view of ridge analysis from numerical optimization,
Engineering Optimization, 35 (2003), pp. 627-647.

[10] S. K. S. Fan, THE HOUSEHOLDER TRIDIAGONALIZATION STRATEGY
FOR SOLVING A CONSTRAINED QUADRATIC MINIMIZATION
PROBLEM, Taylor & Francis, 2001, pp. 261-277.

[11] D. G. Luenberger, Linear and Nonlinear Programming, Springer, 2003.
[12] D. C. Montgomery and D. C. Montgomery, Design and analysis of

experiments, Wiley New York, 1991.
[13] J. J. More and D. C. Sorensen, Computing a Trust Region Step, Siam Journal

on Scientific and Statistical Computing, 4 (1983), pp. 553-572.
[14] J. Nocedal, S. J. Wright and SpringerLink (Online service), Numerical

Optimization [electronic resource], Springer Science+Business Media LLC.,
New York, NY, 2006.

[15] J. Nocedal and Y. Yuan, Combining trust region and line search techniques,
Berlin: Kluwer, 1998, pp. 175.

[16] J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital integrated circuits,
Prentice Hall Upper Saddle River, NJ, 2002.

125

[17] M. Rojas and D. C. Sorensen, A Trust-Region Approach to the Regularization
of Large-Scale Discrete Forms of Ill-Posed Problems, 2002, pp. 1843-1861.

[18] J. Semple, Optimality conditions and solution procedures for nondegenerate
dual-response systems, Springer, 1997, pp. 743-752.

[19] J. M. B. Walmag and E. J. M. Delhez, A Note on Trust-Region Radius Update,
SIAM, 2005, pp. 548.

[20] R. A. Waltz, J. L. Morales, J. Nocedal and D. Orban, An interior algorithm for
nonlinear optimization that combines line search and trust region steps,
Mathematical Programming, 107 (2006), pp. 391-408.

[21] W. Wolf, Modern VLSI Design: Systems on Silicon, 2nd Editon Prentice Hall,
Inc, 1996.

[22] J. Zhang and C. Xu, A Class of Indefinite Dogleg Path Methods for
Unconstrained Minimization, SIAM, 1999, pp. 646.

[23] Q. Zhang, K. Poolla and C. J. Spanos, Across Wafer Critical Dimension
Uniformity Enhancement Through Lithography and Etch Process Sequence:
Concept, Approach, Modeling, and Experiment, 2007, pp. 488-505.

[24] 陳彥良, 使用一般化縮減脊線搜尋與 Zoutendijk 方法於多目標統計模型最

佳化, 工業工程學研究所, 臺灣大學, pp. 60.

126

Appendix A. Proof of the solution to the Hard Case

To prove d satisfies the condition (2.7) [9], observe

() () ()() ()() () 11111111 qIGβIGIGqβIGIGdIG λτλλτλλλ −−−−−=+−−−=− ++ .

, where ()() IIGIG =−− +
11 λλ thus we have

() () 111 qIGβdIG λτλ −−−=−

and since ()IGq 1λτ −∈ N we conclude

() βdIG −=− 1λ

, which complete this proof.

For the condition (2.8) we have the squared Euclidean distance of d is decomposed as

follows

() 2
11

T
1

2

1

2

11
2 2)()(qβIGqβIGqβIGd τλλτλ +−×+−−=+−−= +++

, where () 011 =− +βIGq λT .

So we have

() 22

1
2 λ qβIGd τ+−−= +

and then)]([(2
1

1
22 λφτ −Δ±= can be determined to meet Δ=d .

For the condition (2.9), it can be seen that d is a KKT point that satisfies KKT first-

and second-order conditions for establishing only local optimality.

127

Algorithm B.1 [9]

Input:

F
G=0μ (where

F
• is the Frobenius matrix norm) to ensure that ()IG 0μ+

 i s P.D.

δ1 = tolerance for convergence of the solution ()μd

δ2 = tolerance for convergence of kμ to signal the hard case

ε = tolerance used in the method of iteration

minμ = some large negative number (in our implementation, we use the minimum

value of double)

k = 0 (reset the iteration index)

Begin

Repeat while () 1δμ >Δ−d

 Factor () UUIG T=+ μ (Cholesky Factorization) (B. 1)

 If ()IG μ+ is P.D. then

 Solve the two linear system:

() βUdU −=μT and () ()μμ dUyU =T (B. 2)

() ()
() ()⎥⎦

⎤
⎢
⎣

⎡
−←

μμ
μμμμμ

yd
dd

T

T

,minmin (B. 3)

 If () Δ<μd (at the right of the root) then

kμμ ←max (B. 4)

Else

Appendix B. Trust Region Algorithm

128

kμμ ←min (B. 5)

End If

() ()

() ()μμ
μμ

μμ
yd

dd 21~ ⋅
Δ

−
−← (Newton’s iterate) (B. 6)

If min
~ μμ < then

()
2

~ minmax μμμ +← (safeguarding) (B. 7)

 End If

Else

{ }μμμ ,max minmin ← and
()

2
~ minmax μμμ +← (safeguarding)

(B. 8)

 End If

 If 2max δμμ <− miin then

Compute the eigenvector q via the method of inversed iteration

applied to ()()IG εμ ++ and then determine π (Problem is hard

case). Return (Solutions are () qdd πμ +=* ; 1
* λμμ −≈=)

 (B. 9)

 End If

End Repeat

End

129

Appendix C. Proof of Theorem 3.1 (Convergence to Stationary
Point)

By performing some technical manipulation with the ratio ()kρ from Algorithm

(3.1), we obtain

()
() ()

()
,

)()0(
)()(

)()0(
))()0(())()((1

d
dxd

d
ddxx

mm
fm

mm
mmff

k

kk
k

−
+−=

−
−−+−=−ρ

 (C. 1)

where ()() ()dx mf k = .

Since from Taylor’s theorem we have that

() () () () ()∫ ∇−+∇+∇+=+
1

0
)]()([)()()(dtftffff TkkTkkk dxdxdxxdx , (C. 2)

for some t ∈ (0, 1), it follows from the definition (3.7) of m that

() () () ()

,
2

)]()([
2
1)()((

2
1

2

1

0

dd

dxdxdGddxd

χχ +⎟
⎠
⎞

⎜
⎝
⎛≤

∇−+∇−=+− ∫ dtftffm TkkkTk

 (C. 3)

where we have used χ1 to denote the Lipschitz constant for ()()kf x∇ on the set S(R0),

and assumed that 0R≤d to ensure that x(k) and x(k) + td both lie in the set S(R0).

Suppose for contradiction that there is ε> 0 and a positive index K such that

() ,ε≥kβ for all Kk ≥ . (C. 4)

From (3.20), we have for k ≥ K that

() ()
()

()
()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ,Δ≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ≥−

χ
εε k

k

k
kk ccmm min,min)()0(11 G

β
βd . (C. 5)

Using (C. 3), (C. 5), and the bound (3.22), we have

130

()

()

()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Δ

⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤−

χ
εε

χχγ
ρ

,min

21

1

1
22

k

k

k

c
. (C. 6)

We now derive a bound on the right-hand-side that holds for all sufficiently small

values of ()kΔ , that is, for all () Δ≤Δ k , where Δ is defined as follows:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=Δ
γχχγ

ε 0

1
2

1 ,
22

1min Rc
. (C. 7)

The γ0R term in this definition ensures that the bound (C.3) is valid (because

0Rk ≤Δ≤Δ≤ γγd). Note that since 11 ≤c and 1≥γ , we have χε≤Δ . The latter

condition implies that for all () []Δ∈Δ ,0k , we have min ()() ()kk Δ=Δ χε, , so from (A. 6)

and (3.31), we have

()

()

()

()

2
12221

1

1
2

1

1
2

1

1
22

≤
⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤
⎟
⎠
⎞

⎜
⎝
⎛ +Δ

=
Δ

⎟
⎠
⎞

⎜
⎝
⎛ +Δ

≤−
ε

χχγ

ε

χχγ

ε

χχγ
ρ

ccc

k

k

k

k . (C. 8)

Therefore, ()
4
1>kρ , and so by the workings of Algorithm 3.1, we have () ()kk Δ≥Δ +1

whenever ()kΔ falls below the threshold Δ . It follows that reduction of Δ (by a

factor of
4
1

) can occur in our algorithm only if

() Δ≥Δ k ,

and therefore we conclude that

() ()()4,min ΔΔ≥Δ Kk for all Kk ≥ . (C. 9)

Suppose now that there is an infinite subsequence κ such that ()
4
1≥kρ for κ∈k . For

κ∈k and κ≥k , we have from (C. 5) that

131

() () () () ()

[]

(). ,min
4
1

)()0(
4
1

)()()()(

1

1

χεε k

kkkkk

c

mm

ffff

Δ≥

−≥

+−=− +

d

dxxxx

 (C. 10)

Since f is bounded below, it follows from this inequality that

() 0lim
,

=Δ
∞→∈

k

kk κ
, (C. 11)

contradicting (C. 9). Hence no such infinite subsequence κ can exist, and we must have

()
4
1<kρ for all k sufficiently large. In this case, ()kΔ will eventually be multiplied by

4
1

at every iteration, and we have () 0lim =Δ
→∞

k

k
, which again contradicts (C. 9). Hence,

our original assertion (C. 4) must be false, giving (3.23).

Complete the proof of Theorem 3.1.

132

Appendix D. Problem Formulation of DFM Case

Minimize:

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
321

2
2

2
1

2
3231

21
2

3
2

2
2

1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

2
323121

2
3

2
2

2
1321

0)-24035.14x+13181x5760.43x-(-5754.12 +0)-6.04x-1.77x0.68x+(1.47 +

0)-1.58x-0.33x+0.71x-(0.45 +0)-5.08x-5.29x-2.49x-(1.94 +

0)-1.34x+0.19x+0.96x+(-0.3 0)-0.16x+0.34x-1.54x-(0.31 +

0)-0.26x-3.25x+0.1x+(-0.13 +0)-0.4x-1.03x-1.16x+(0.03 +

0)-1.82x-8.53x-1.95x-(1.63 +0)-6.86x+0.59x-2.57x-(-0.87 +

0)-13181x+57249.56x+3734.83x+(-8716.68 +0)-1.77x-4.7x-0.21x+(0.59 +

0)-0.33x+6.92x-0.4x+(0.55 +0)-5.29x-4.78x+5.77x-(2 +

0)-0.19x+6.24x-0.8x+(0.5 +0)-0.34x-19.2x+0.35x+(-2.06 +

0)-3.25x+0.28x+0.67x-(-0.48 +0)-1.03x-5.08x-1.71x+(0.36 +

0)-8.53x-0.38x-2.3x-(2.23 +0)-0.59x-14.36x+1.19x+(-0.89 +

0)-13181x+3734.83x+3432.48x+(600.730)-1.77x-0.21x+0.28x-(-0.17 +

0)-0.33x+0.4x+0.52x+(-0.11 +0)-5.29x-5.77x-0.8x-(1.48 +

0)-0.19x+0.8x+0.3x+(-0.46 +0)-0.34x-0.35x+0.72x-(0.66 +

0)-0.1x-0.67x-0.16x-(0 +0)-1.03x-1.71x+0x+(-0.48 +

0)-8.53x-2.3x-0.74x-(0.99 +0)-0.59x-1.19x+0.2x-(0.86+

0.05)-(x +0.4)-(x+

225)-x13181x+x5760.43x-

x3734.83x+12017.57x+28624.78x+1716.24x+5754.12x-8716.68x-600.73x+(1098.08 +

0.48)-x1.77x-x0.68x+x0.21x+3.02x-2.35x-0.14x-1.47x+0.59x+0.17x-(0.32 +

0.37)+x0.33x+x0.71x-x0.4x+0.79x-3.46x-0.26x+0.45x+0.55x+0.11x-(-0.39 +

0.54)-x5.29x-x2.49x-x5.77x-2.54x-2.39x0.4x-1.94x+2x+1.48x(0.01 +

0.35)+x0.19x+x0.96x+x0.8x+0.67x+3.12x-0.15x+0.3x-0.5x+0.46x-(-0.29 +

0.57)-x0.34x-x1.54x-x0.35x+0.08x+9.6x+0.36x-0.31x+2.06x-0.66x+(0.51 +

0.32)x3.25x+x0.1x+x0.67x-0.13x-0.14x+0.08x-0.13x-0.48x-0x(-0.26 +

0.31)+x1.03x-x1.16x+x1.71x+0.2x-2.54x-0x+0.03x+0.36x+0.48x-(-0.26+

0.54)-x8.53x-x1.95x-x2.3x-0.91x-0.19x-0.37x-1.63x+2.23x+0.99x+(0.09+

0.54)-x0.59x-x2.57x-x1.19x+3.43x+7.18x+0.1x-0.87x-0.89x-0.86x+(0.48

+

+

+

++

++

subject to:

3.01.0
15.005.0

4.00
1508.247225-x13181x+x5760.43x-

x3734.83x+12017.57x+28624.78x+1716.24x+5754.12x-8716.68x-600.73x+1098.082143.202

53025.00.48-x1.77x-x0.68x+x0.21x+3.02x-2.35x-0.14x-1.47x+0.59x+0.17x-0.32433845.0

33237.00.37+x0.33x+x0.71x-x0.4x+0.79x-3.46x-0.26x+0.45x+0.55x+0.11x--0.3940623.0

59367.00.54-x5.29x-x2.49x-x5.77x-2.54x-2.39x0.4x-1.94x+2x+1.48x0.0148573.0

3164.00.35+x0.19x+x0.96x+x0.8x+0.67x+3.12x-0.15x+0.3x-0.5x+0.46x--0.2938671.0

625515.00.57-x0.34x-x1.54x-x0.35x+0.08x+9.6x+0.36x-0.31x+2.06x-0.66x+0.51511785.0

-0.287870.32x3.25x+x0.1x+x0.67x-0.13x-0.14x+0.08x-0.13x-0.48x-0x-0.2635184.0

-0.277220.31+x1.03x-x1.16x+x1.71x+0.2x-2.54x-0x+0.03x+0.36x+0.48x--0.2633883.0

0.5949080.54-x8.53x-x1.95x-x2.3x-0.91x-0.19x-0.37x-1.63x+2.23x+0.99x+0.09486743.0

0.5915250.54-x0.59x-x2.57x-x1.19x+3.43x+7.18x+0.1x-0.87x-0.89x-0.86x+0.480.483975

3

2

1

3231

21
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

323121
2

3
2

2
2

1321

≤≤
≤≤

≤≤
≤

≤

≤≤

−≤≤−

≤++≤

−≤≤−

≤≤

≤++≤−

≤≤−

≤≤

≤≤

x
x

x

133

Appendix E. Expected Cycle Times and Raw Process Time of
Supply Chain

The estimated cycle time with raw process time for products, plants and priorities in

FAB:

The estimated cycle time with raw process time for products, plants and priorities in

Assembly:

FAB Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
FAB1 Priority1 107786.3 43545.6 101322.4 55065.6 106238.2 65491.2
(Min) Priority2 138157.9 46425.6 143855.6 59745.6 154811.1 69393.6

Priority3 198175.9 49305.6 200123.4 63705.6 191290.5 72720
FAB2 Priority1 106754.1 46569.6 110731.8 55209.6 112257.4 66974.4

Priority2 140035.7 49449.6 144816.8 56433.6 155978.6 70905.6
Priority3 203083.4 52329.6 196421.5 63849.6 193376.6 75643.2

FAB3 Priority1 116164.1 45576 112373 57096 not not
Priority2 138316.2 48456 147136.1 59587.2 not not
Priority3 202811.6 51336 206241.8 62856 not not

FAB4 Priority1 140333.1 29966.4 117665.1 55886.4 not not
Priority2 138654 47246.4 146215.2 58348.8 not not
Priority3 194274.4 50126.4 211231.9 63086.4 not not

FAB5 Priority1 112853.2 45748.8 not not not not
Priority2 139512.7 48628.8 not not not not
Priority3 198760.6 51508.8 not not not not

FAB6 Priority1 136227 43027.2 not not not not
Priority2 137850.2 45907.2 not not not not
Priority3 206452.7 48787.2 not not not not

Product Produc1 Produc2 Produc3

Fab Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
Asse1 Priority1 16819.8 8523.07 17240.97 9001.94 17598.24 9403.24
(Min) Priority2 21227.3 9963.07 21754.13 10585.94 22099.07 10987.24

Priority3 26258.9 12123.07 25022.45 12745.94 28684.21 13147.24
Asse2 Priority1 16852.1 8560.02 17368.85 9146.06 17727.48 9547.3

Priority2 19715.8 10000.02 20231.61 10586.06 20588.89 10987.3
Priority3 24732.4 12160.02 25239.6 12746.06 25590.77 13147.3

Product Product1 Product2 Product3

134

The estimated cycle time with raw process time for products, plants and priorities in

Final test:

Fab Priority Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time

Expect
Cycle Time

Row
Process

Time
FT1 Priority1 22869.36 15051.3 24142.48 16376.1 24261.33 16499.34

(Min) Priority2 27098.66 16491.3 28347.25 17816.1 28463.96 17939.34
Priority3 33953.16 22251.3 35223.73 23576.1 35342.23 23699.34

FT2 Priority1 22014.74 15170.94 23511 16713.24 23352.4 16550.16
Priority2 27210.93 16610.94 28666.72 18153.24 28512.11 17990.16
Priority3 33093.73 22370.94 34583.09 23913.24 34425.29 23750.16

Product Product1 Product2 Product3

135

Appendix F. Problem Formulation of Supply Chain Case

Minimize:

2
151215331526

152215181514241422112211221118

111122111222332433223311
2
262624

262226
2
242422221822

2
181811

2
15141531

1522151215261524152215181517

15
2
1414111432143114221412

14331424141814111411121124

1118111711
2
32322132263224

3222321832173211
2
3131223121

31123133312631223122212218

2217211221262124212221171233

12261218121133183317
2
262624

26222618261726
2
2424182417

2211
2
1818

2
1717111711

2
1514

1511152215261518151715
2
14

1411142214181417111211181117

11311231243122312222
2
26

26242622261726
2
2424222417

242217221122
2
18181718

22
1515221533152615181517

1432143311223226321821121211

33263324331833262426222617

242224182417
2
2222171817

22
15

1514151115221521153315261522

1518151714111432143114221421

14261424141814171411311121

1112112611241122111711
2
32

3222322132333218312231333124

31223117311131222122332226

2224222222182217221122
2
21

2133212421172111211224
2
33

33263324332233
2
2626242622

24182411242217221122
2
18

1817181118
2
17171117

2
11

2
1515261511

15142211113233321131333126

31223111212421221222
2
333324

2
26262426222618261126

2
24

2422241124221122181118

)3.025654.453 16.43614

3.2929413.546698.91496-6.202884.23574-5.04495-7.591466.22671-
5.875335.638634.16798-7.9766-6.819036.14005-11.148493.67909

8.084929.91956-3.262373.955815.697767.60712-15.36454-5.93274.5013(

)014.6095916.78231-

16.5544618.6269224.3218819.83233-10.90103-37.7278315.08398
11.657-111.78177-18.368413.2641114.9082811.83482-23.51398-

11.28578-8.72286-11.5333227.57-39.776967.51322-18.90353
23.1303330.29128 13.69445-22.4352-22.489278.22914-6.79337

10.8096716.975248.337128.0642 -106.56485-14.06794-31.24011-

14.119378.9614626.40251-10.71991-28.557847.3682511.55669
10.46857-20.36283-16.898916.65594-7.0773112.08031-4.73927

9.23598-27.6689317.48533-5.699886.38914 -26.26289-7.18731-

5.5976317.29442-6.40817-15.2281517.0188111.0329-19.97751-

16.55726-66.0056837.43988-83.3481420.8478823.40161-12.341.63076(5

)025.65426

32.58414 5.38951-11.2443522.2843217.7186617.66627-55.31215-

23.208215.43344-29.4722528.523655.73555-27.5822818.03107
16.26179-7.293459.704589.032626.09423-5.0163823.21307

16.9753615.8092620.93092-16.44176-19.5276417.1354119.90259-

14.41669-19.49143-3.753277.04376-44.3803120.9159330.39664-10.76424(15

)14.90862-0.74715-2.501173.086043.596113.6599-

2.36941 -1.596152.155411.08404 1.611450.52938-0.80321-
0.425421.006211.39983-0.61691-2.52953-1.44593-1.71873

1.50806-1.06043.456071.297321.237655.26463 - 2.12136(

)119.03243-

2.763932.365819.416753.35128-4.366431.700620.9847-
2.859056.199473.648681.679762.179261.480264.82369

2.5092-2.047678.540068.543034.41291-3.592513.61077
2.633292.423351.756571.884483.062333.75599-5.22684-

2.02881.93648-1.650152.37443.90151.32614-2.78439-
2.53356-9.046882.772961.44225-3.961312.137984.19952-

3.81107-2.54099-4.539526.596044.32323.78231-24.31008-

0.97223-3.07236-9.217844.36691-3.91556 2.15257-8.44666

0.817312.4221-2.9703210.02525-1.16146-1.097590.98932

2.39502-3.134562.08932 1.52753-1.069971.04104-17.3784

4.714363.59012 9.47746-20.727193.46978-12.10215-*9.14259-6.82052(5

1)-6.76398x3 4.19858 6.01892-

1.4345-1.57582-3.96577-0.69994-3.886013.90953-2.26427
2.209544.33951 2.94563-2.73278-0.89682-0.95507 2.08025 -

6.27775 3.597183.951072.430132.641286.01907-6.45807

3.355932.06173.21206-2.556271.70306-5.324071-0.76932-15(3.04028

ρπρρρρ
ρρρρρρρρρρπρρρρ
ρππππρρρρρρπρρρ

ρρρρρρρρρρρπ
ρρρπ

ρπρπρρρρρρρρρρ
ρρρρρπρπρπρπ
ρρρρρρρπρρπρρ
ρρρρρππππρπρ

πρπρπρπππππππ
πππρπρπρππππρ
πρπππρπρπρπρπρ

πρπρππρρρρρρρ
ρρρρρρρρρρρρ

ρπρρρρπρπ
ρρ

ρρρπρρρρρρρρ
ρρρρρρρρρπρρρρ

ρπππρπρππρρ
ρρρρρρρρρρρρ

ρρρρπρρρρρ
ρρπρρρρρρρρ

ρπρρρρπρπρππππ
ρρρρρρρρρρρρρ

ρρρρρρρρρρρ
ρ

ρρρρρπρπρρρρρρ
ρρρρρρρπρπρπρπ

ρρρρρρρρρρπρπ
ρπρρρρρρρρρπ

πππππρπρπππρπρ
πρπρππππππρπρ

πρπρπρπρππππ
πρπρπρππππρρ

ρρρρρρρρρρρρ
ρρρπρρρρπρρ

ρρρπρρρπρπ
ρρρρπ

ρρρρππρπππρπρ
πρπππρπρπρρρρ

ρρρρρρρρπρρ
ρρρπρρπρρπρ

+++

++++
+++++

++++++

−

+++++
+++

+++
++++

+++

+++++
+++

++

+++

+++++

−+

++++

+++++
+++++

++++

++++

−+++

++++
+++

+++++

−

+++++
+++++++

+++++
+++++

++++
++++

+++

+++

++++

++++

++++

++

++
+++

++++++

+++

subject to:

136

1
1
1

03.025654.453 16.43614
3.2929413.546698.91496-6.202884.23574-5.04495-7.591466.22671-
5.875335.638634.16798-7.9766-6.819036.14005-11.148493.67909

8.084929.91956-3.262373.955815.697767.60712-15.36454-5.93274.5013

014.6095916.78231-
16.5544618.6269224.3218819.83233-10.90103-37.7278315.08398

11.657-111.78177-18.368413.2641114.9082811.83482-23.51398-

11.28578-8.72286-11.5333227.57-39.776967.51322-18.90353
23.1303330.29128 13.69445-22.4352-22.489278.22914-6.79337

10.8096716.975248.337128.0642 -106.56485-14.06794-31.24011-

14.119378.9614626.40251-10.71991-28.557847.3682511.55669
10.46857-20.36283-16.898916.65594-7.0773112.08031-4.73927

9.23598-27.6689317.48533-5.699886.38914 -26.26289-7.18731-

5.5976317.29442-6.40817-15.2281517.0188111.0329-19.97751-

16.55726-66.0056837.43988-83.3481420.8478823.40161-12.341.63076

025.65426
32.58414 5.38951-11.2443522.2843217.7186617.66627-55.31215-

23.208215.43344-29.4722528.523655.73555-27.5822818.03107
16.26179-7.293459.704589.032626.09423-5.0163823.21307

16.9753615.8092620.93092-16.44176-19.5276417.1354119.90259-

14.41669-19.49143-3.753277.04376-44.3803120.9159330.39664-10.76424

14.90862-0.74715-2.501173.086043.596113.6599-

2.36941 -1.596152.155411.08404 1.611450.52938-0.80321-
0.425421.006211.39983-0.61691-2.52953-1.44593-1.71873

1.50806-1.06043.456071.297321.237655.26463 - 2.12136

119.03243-

2.763932.365819.416753.35128-4.366431.700620.9847-
2.859056.199473.648681.679762.179261.480264.82369

2.5092-2.047678.540068.543034.41291-3.592513.61077
2.633292.423351.756571.884483.062333.75599-5.22684-

2.02881.93648-1.650152.37443.90151.32614-2.78439-
2.53356-9.046882.772961.44225-3.961312.137984.19952-

3.81107-2.54099-4.539526.596044.32323.78231-24.31008-

0.97223-3.07236-9.217844.36691-3.91556 2.15257-8.44666

0.817312.4221-2.9703210.02525-1.16146-1.097590.98932

2.39502-3.134562.08932 1.52753-1.069971.04104-17.3784

4.714363.59012 9.47746-20.727193.46978-12.10215-*9.14259-6.82052

16.76398x3 4.19858 6.01892-
1.4345-1.57582-3.96577-0.69994-3.886013.90953-2.26427
2.209544.33951 2.94563-2.73278-0.89682-0.95507 2.08025 -

6.27775 3.597183.951072.430132.641286.01907-6.45807

3.355932.06173.21206-2.556271.70306-5.324071-0.76932-3.04028

333231

232221

131211

151215331526

152215181514241422112211221118

111122111222332433223311
2
262624

262226
2
242422221822

2
181811

15141531

1522151215261524152215181517

15
2

1414111432143114221412

14331424141814111411121124

1118111711
2
32322132263224

3222321832173211
2
3131223121

31123133312631223122212218

2217211221262124212221171233

12261218121133183317
2
262624

26222618261726
2
2424182417

2211
2
1818

2
1717111711

1514

1511152215261518151715
2
14

1411142214181417111211181117

11311231243122312222
2
26

26242622261726
2
2424222417

242217221122
2
18181718

2
1515221533152615181517

1432143311223226321821121211

33263324331833262426222617

242224182417
2
2222171817

2
15

1514151115221521153315261522

1518151714111432143114221421

14261424141814171411311121

1112112611241122111711
2
32

3222322132333218312231333124

31223117311131222122332226

2224222222182217221122
2
21

2133212421172111211224
2
33

33263324332233
2
2626242622

24182411242217221122
2

18

1817181118
2

17171117
2
11

1515261511

15142211113233321131333126

31223111212421221222
2
333324

2
26262426222618261126

2
24

2422241124221122181118

=++
=++
=++

≥+++
++++
+++++

+++++

≥
+++++

+++

+++
++++

+++

+++++
+++

++

+++

++++

≥+
++++

+++++
+++++

++++

+++

≥+++

++++
+++

++++

≥

+++++
+++++++

+++++
+++++

++++
++++

+++

+++

++++

++++

+++

≥++
++

+++

++++++

+++

πππ
πππ
πππ

ρπρρρρ
ρρρρρρρρρρπρρρρ
ρππππρρρρρρπρρρ

ρρρρρρρρρρρπ
ρρρπ

ρπρπρρρρρρρρρρ
ρρρρρπρπρπρπ
ρρρρρρρπρρπρρ
ρρρρρππππρπρ

πρπρπρπππππππ
πππρπρπρππππρ
πρπππρπρπρπρπρ

πρπρππρρρρρρρ
ρρρρρρρρρρρρ

ρπρρρρπρπ
ρρ

ρρρπρρρρρρρρ
ρρρρρρρρρπρρρρ

ρπππρπρππρρ
ρρρρρρρρρρρρ
ρρρρπρρρρρ

ρρπρρρρρρρρ
ρπρρρρπρπρππππ

ρρρρρρρρρρρρρ
ρρρρρρρρρρρ

ρ
ρρρρρπρπρρρρρρ

ρρρρρρρπρπρπρπ
ρρρρρρρρρρπρπ

ρπρρρρρρρρρπ
πππππρπρπππρπρ
πρπρππππππρπρ

πρπρπρπρππππ
πρπρπρππππρρ

ρρρρρρρρρρρρ
ρρρπρρρρπρρ

ρρρπρρρπρπ
ρρρρπ

ρρρρππρπππρπρ
πρπππρπρπρρρρ

ρρρρρρρρπρρ
ρρρπρρπρρπρ

137

501.023555
4.7
1.7

0.929101
4.7
21.023555

4.7
1.70.929101

4.7
21.101756

4.7
1.71.023555

4.7
1.70.8

500.93226
4.7
2

0.93226
4.7
21.111142

4.7
11.014317

4.7
1.70.93226

4.7
20.93226

4.7
20.8

500.953016
4.7
2

1.018262
4.7
1.70.953016

4.7
21.062922

4.7
1.71.018262

4.7
1.70.953016

4.7
20.8

500.959422
4.7
2

1.013327
4.7
1.70.959422

4.7
21.0585

4.7
11.013327

4.7
1.7959422.0

4.7
20.8

10.14728
4.7
20.8

17.7025
4.7
20.8

16.68631.181546
4.7
1.70.845686

4.7
20.8

13.578791.122413
4.7
1.70.895949

4.7
20.8

20.26511.239437
4.7
111.021716

4.7
1.70.861823

4.7
20.8

21.620031.250269
4.7
11.051238

4.7
1.70.831313

4.7
20.8

21.2765957
4.7
20

8.5106383
4.7
24.2553191

33.8298
4.7
1.7

4.7
27.8723

10.8510638
4.7
1.73.6170213

8.5106383
4.7
24.2553191

32.1277
4.7
1

4.7
1.7

4.7
216.383

12.7659574
4.7
1.78.5106383

10.8510638
4.7
1.73.6170213

8.5106383
4.7
24.2553191

85
7.4

1
4.7
1.7

4.7
260

25
7.4

1
4.7
1.7

4.7
210

15
7.4

1
4.7
1.7

4.7
25

1
1

1

27

1726153322

19

1834241411

19

2717342414

18

2615332211

19

18

2717

2615

342414

342211

19

18

2717

26

15

342414

33

22

11

332313

322212

312111

3433

27262422

191817151411

≤⎟
⎠
⎞×+

×+×+×+×+⎜
⎝
⎛ ××

≤⎟
⎠
⎞×+

×+×+×+×+⎜
⎝
⎛ ××

≤⎟
⎠
⎞×+

×+×+×+×+⎜
⎝
⎛ ××

≤⎟
⎠
⎞×+

××+×+×+⎜
⎝
⎛ ××

≤⎟
⎠
⎞

⎜
⎝
⎛×

≤⎟
⎠
⎞

⎜
⎝
⎛×

≤⎟
⎠
⎞

⎜
⎝
⎛ ×+××

≤⎟
⎠
⎞

⎜
⎝
⎛ ×+××

≤⎟
⎠
⎞

⎜
⎝
⎛ ×+×+××

≤⎟
⎠
⎞

⎜
⎝
⎛ ×+×+××

≤≤

≤≤

≤+≤

≤≤

≤≤

≤++≤

≤≤

≤≤

≤≤

≤++≤

≤++≤

≤++≤

=+
=+++

=+++++

ρ

ρρρρρ

ρ

ρρρρρ

ρ

ρρρρρ

ρ

ρρρρρ

ρ

ρ

ρρ

ρρ

ρρρ

ρρρ

ρ

ρ

ρρ

ρ

ρ

ρρρ

ρ

ρ

ρ

πππ

πππ

πππ

ρρ
ρρρρ

ρρρρρρ

138

1000
6040

1000
3010
3010
3010

1000
2010
2010
2010
2010
2010

1000
2510

155
1000

2510
155
1000

2510
155

34

33

27

26

24

22

19

18

17

15

14

11

33

32

31

23

22

21

13

12

11

≤≤
≤≤

≤≤
≤≤
≤≤
≤≤

≤≤
≤≤
≤≤
≤≤
≤≤
≤≤

≤≤
≤≤

≤≤
≤≤
≤≤

≤≤
≤≤
≤≤

≤≤

ρ
ρ

ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ
ρ
ρ

π
π

π
π
π

π
π
π

π

