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ABSTRACT

“Generalized Reduced Gradient” method is a popular NLP method, but it often
incurs a zigzagging search path especially for the statistical multi-objective
optimization (SMOO) problem where the objective function is a quartic function. In
this study, we improve the “Trust Region (TR)” search method and develop the
“Generalized Reduced Trust Region” (GRT) search method which combines the GRG
method and the improved TR method. The GRT search transforms the constrained NLP
problem to an unconstrained NLP problem consisting of only the nonbasic variables
and searches the best improving direction in the reduced space. The proposed method is
shown to overcome the zigzagging problem of the GRG method. To verify the
performance of our methods, we study a well know test problem and three cases. The
test problem is called Rosenbrock’s function which has a quartic objective function
with two decision variables. The first case is a semiconductor design for manufacturing
(DFM) problem. The second case is the problem to configure a robust semiconductor
supply chain. The final case is the “Track System PEB CDU Optimization”. Compared
against the result of the commercial software “Lingo”, the same or better solutions are

obtained by our methods with comparable computation time.

Keywords: Nonlinear Programming, Statistical Multi-Objective Optimization,
Generalized Reduced Gradient Method, Generalized Reduced Trust

Region Method, Trust Region Method
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1 Introduction

1.1 Problem Definition and Formulation

Response surface methodology (RSM) is a powerful technique for quality and

productivity improvement.

Many processes such as chemical processes, manufacturing processes,

development processes, etc, are critical to productivity. These processes transform

inputs into outputs. In chemical processes, reaction time and reaction temperature are

inputs and the yield is output. Actually, engineers usually want to know how inputs

affect outputs. Response Surface Methodology (RSM) is a set of mathematical and

statistical techniques used by researchers and engineers to aid in the solution of

certain types of problems. In RSM, we call the inputs and the outputs “explanatory

(independent) variables” and “responses”. The response is normally measured on a

continuous scale and is a measure representing the most important function of the

system. The independent variables are the fade affecting the response and are usually

controllable.

Suppose the yield of a chemical process is affected by two factors. The first one

is reaction time and the second one is reaction temperature. At beginning we only

know the relationship between yield and these two factors is expressed as follows:

1



yeild = f (reaction tme, reaction temperature)+€ . (1.1)
In order to disinter the function f, engineers use RSM procedures involve
experimental strategy, mathematical methods, and statistical inference which, when
combined, enable them to make an efficient empirical exploration of the system in
which they are interested. First, they design a set of designs using experimental
strategy (design). The purpose of the experimental strategy (design) is to enable the
analyst to explore the response surface [12] with equal precision, in any direction.

Subsequently engineers collect a set of data by performing these designs.

After obtaining these data, a model can be built by using regression analysis.
Here we suppose the linear multiple regression is applied. The relationship between
response and factors is express as:
yield = B, + B, Xreaction time+ 3, Xreaction temperature+ & (1.2)
, where fand [, mean the effects to yield by changing one unit reaction time and
reaction temperature respectively. These two coefficients are useful information for
analyzing the chemical process. It is also convenient to view the response surface in

the two-dimensional time-temperature plane, as in Figure 1.1.
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Figure 1.1 Response surface of chemical process

Normally, there are two stages of performing RSM. The first stage is called
response surface design which is mentioned in last two paragraphs. The second stage
is called response surface optimization or response surface analysis. In the latter stage,
engineers use optimization techniques such as steepest descent/ascent method to
decide the search direction for obtaining the best value of independent variable i.e.

reaction time and reaction temperature in our example.

In most engineering problem, the linear response surface model is not
satisfactory. Indeed the relationship between response and predictor variable is
nonlinear relationship. So we need nonlinear functions help us to describe the
relationship well. Now we consider there are n predictor variables, and the i-th

expected response is denoted asp,. The nonlinear response surface model can be

expressed as a quadratic function as follows:

3
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are the linear and quadratic coefficients, respectively.

Most engineering requirements would specify a desired target 7; for each response j, .
That is, the difference between 3, and its target 7; should be as small as possible.
Here, the quadratic loss function [1] can be used to measure the total difference. That
18,

Min Y w,(3,=T,F =3 w(by +b,/x+x"Bx-T))". (14)
In (1.4), w; is a user-specified weight representing the relative importance for j. to

conform to the target. In this research, without loss of generality, all w; are assumed to



equal to 1. In addition to the target, the response p, should be located in a
specification widow with an upper specification limit U; and a lower specification
limit L;:

L < b,+b'x+x'Bx <U,. (1.5)

Moreover, each input variable x, usually has an experimental region with an upper
bound U, andalowerboundZ, :

L <x,sU, .

(1.6)

The purpose of the region is that if variable x, is out of the experimental region, the
estimated response may be incorrect. So the regional constraints are needed. There are
also some technical restrictions that can be expressed as linear equality constraints. In
our example, we sometime request the linear combination of reaction time and
reaction temperature hits the target T,.

a,+a, x=T, (1.7)

, where

are the linear coefficients for the p-th linear equality constraint.



Here we give a summary for our problem, let 7 represent the set of responses
with targets; S represent the set of responses with specification windows; and Z
represent the set of linear equality constraints. The optimization problem can be

formulated as:
Minimize  f(x)= (b, +b,/x+x'Bx-T) ieT. (1.8)

subjectto:L. < b,+b. x+x'Bx <U ; j=1....meS
J J Jjo J J J 1

+a x=T; p=1...meZ

This is a nonlinear minimization problem subject to linear equality constraints, and
nonlinear inequality constraints. In particular, the objective function is a quartic
programming problem with the objective function being a “quadratic” of “quadratic”
and nonlinear inequality constraints being quadratic inequalities. Actually there are
numerous non-linear programming (NLP) methods which can solve this problem, and
these methods will be introduced in next section.
1.2 Current NLP Methods Review

For engineers, optimization is really a practical procedure. There are numerous
NLP methods developed in recent half century. The most conventional class is
“Primal Method” also called “Methods of Feasible Direction” [2, 11]. The following
strategy 1is typical feasible direction algorithm. Given a feasible point x, a feasible

direction d is generated by main algorithm and the step size A is also determined.



Thus, these methods keep two properties (1) x+ Ad feasible, and (2) the objective

value of current iteration smaller than last iteration. These methods usually have the

following three advantages [2]:

1. Because these methods generate a feasible direction for minimizing the
objective. Consequently the sequence of these points generated by these
methods is feasible too.

2. If these methods generate a convergent sequence, the limit of the sequence
will often satisfy the convergence prosperity, i.e., these methods are usually
shown to converge to KKT solutions.

3. These methods are not limited to solve convex problem.

1.2.1 Generalized Reduced Gradient (GRG) Method

When dealing with linear constraint optimization, it is natural to add slack

variables and use the linear equality constraints to eliminate some of the variables

from the problem. Reduced Gradient method uses this idea and avoids the use of

penalty parameter to search optimal solution. After that Generalized Reduced

Gradient (GRG) method is developed for nonlinear constrained optimization problem.

Today GRG is already verified to be a precise and accurate method for solving NLP

problems. There are many commercial optimization software packages like LINGO,

Microsoft Excel, Lotus and MINOS are all developed base on GRG.



The reduced gradient method can be viewed as the logical extension of the gradient
method to constrained optimization problems. We start with linearly constrained

optimization problems and consider the following linear equality constraint problem.

Minimize : f(X)
Subjectto: Ax=Db (1.9)
x=0

, where A is m X n matrix of rank m; b is m-vector.

There are some assumptions of this problem [2]:

1. fis continuously differentiable;
2. Every subset of m columns of the m x n matrix A is linearly independent;
3. Each extreme point of the feasible set has at least m positive components

(non-degeneracy assumption).

Now let x be a feasible solution. The basic idea of reduced gradient method is
dividing all variables into two sets, the set of basic variables xz and nonbasic variables
xy. For simplicity of notation we assume that we can partition the matrix A as A = [B,
N] where B is an mXn invertible matrix. We partition x accordingly:

x" =[x,,x, | . Thus we can rewrite Ax = b as the follows.

Bxz + Nxy=Db
, where
xz=B'b — B"'Nxy. (1.10)

Now the basic variables xz can be eliminated by (1.10), and then the problem will be

8



Minimize: f,(Xy)

Subject to:B'b—B'Nx, >0. (1.11)
X, 20

, where fiy(xy) = f(B™'b — B"'Nxy, xy).

In (1.11), the variables we concerned are reduced to xy. If we have xy, we can obtain

xp by substituting xy into (1.10). Now let’s consider the choice of search direction.

Suppose d is a feasible direction, by the definition d should satisfy the condition

VF(x)"d<0. And then we also translate the condition into (1.9) by dividing V/(x)

and d into two sets.

V. fx)'d,+V f(x)"dy <0 (1.12)

,where V, f(x)is the gradient with respect to the basic variables.

If d is a feasible direction, and then d satisfies the condition Ad=0, i.e. Bdz + Ndy = 0.

This means dz = —B 'Nd,. (1.13)

And then substitute (1.13) into (1.12) to yield:

Vi(x)d=-Vf,(x)' B'N+Vf, (x)'d, <0 (1.14)

In (1.14), we call r=-Vf,(x)"B"'N+Vf,(x)"d, the reduced gradient of fat x for

the given basis B. In other words, the reduced gradient r plays the same role in the

reduced problem as the gradient V/f did in the original problem. In fact, the reduced

gradient is exactly the gradient of the function fy with respect to xy in the reduced

problem. Actually, the reduced gradient method can be generalized for solving



nonlinearly constrained optimization problems by linearizing the nonlinear constraints.
So we can solve the problem similarly to the linearly constrained case. The

nonlinearly constrained problem with bounded constraints is express as follows.

Minimize  f(X) for xeE"
subject to  g-(x)<0 for T=1,..,m (1.15)

I_J7 < X5 S(7J~. for j=1,...n

Given a nondegeneracy assumption, i.e., any columns of Vh(x) given by
linearization inequality constraints are linear independent, a summary of Generalized

Reduced Gradient method is given as follows [2]:

e Step I:

Add slack variables to inequality constraints g-(x)<0 and obtain equality

constraints /- (x) =0,i =1,...,m. Let x® be a feasible solution at the k-th search step.

Linearize the constraints and get Vh(x*))(x—x*’)=0. Decompose variables into
) ()

basic and nonbasic sets (x4 ,x{)). Furthermore, the Jacobian matrix Vh(x'") is

decomposed into Vh(x!Y)) and Vh(x{{), such that Vh(x!") is invertible.

e Step 2:
Let r' =V f(x*) -V, /x*)V,h(x*)"'V h(x*) . Compute the vector dy

whose /" component d is

10



o= (1.16)

0 if x(k’ 27 and r; >0, 0r x%k) = 177 and 7, <0
—7; otherwise

th

, where 7 is the ™ component of r.

If dy = 0, stop. x* is a KKT point; otherwise, go to step 3.

e Step3.1:
Find a solution to satisfy the nonlinear constraints by Newton-Raphson method.
Choose £ > 0 and a positive integer? . Let @ > 0 be such thatL, <X’ <U,,

where X" =x{’ +0d, . Let y" =x{" andr=1.

e Step3.2:
Compute y(t+1) :y(t) _VBh(y(t) N(k)) lh(y(t) N(k)) IfEB Sy(m) SﬁB , f(y(,+1) N(k))
< f(x x0y, andHh(y(Hl) ~(k))”<g let x* =y %) and go to step I;

otherwise, go to step 3.3.

e Step3.3:
If1=T,replace 6 by6/2.Let X¥ =x® +0d, andy® =x¥ . Replace ¢ by 1 and

repeat step 3.2. Otherwise, replace ¢ by ¢ + 1 and repeat step 3.2.

11



The contour in original space of the NLP problem is shown in Figure 1.2. In step
1, all inequality constraints are transformed into linearized equality constraints as
shown in Figure 1.3. The selected basic variables are x; and x, and the selected
nonbasic variables are x3 and xs4. In step 2, the original NLP problem is transformed
into a NLP problem without equality constraints in the reduced space of nonbasic
variables, x3 and x4. The improving direction of the nonbasic variables is the opposite
direction of the reduced gradient. However, the variables should not be negative. The
improving direction of the nonbasic variables is modified as shown in Figure 1.4. In
step 3, the improving direction after transformed into the original space is actually the
direction along the tangent of the binding constraint. The optimal solution is then

found through Newton-Raphson method as shown in Figure 1.5.

Example 1.1:
Minimize: f(x,,x,)=2x] +2x2 —2x,x, —4x, —6X, ,

subject to: x, +x, <2;
17
X, +—x; <2.8;

x;,x, 20.
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1.2.2 Ridge Analysis and Ridge Search Method

In RSM, ridge analysis is a method for exploring optimal factor levels of a

response surface. Ridge analysis helps us to find maximum or minimum a quadratic

response surface under a spheral constraint. The purpose of spheral constraint is to

fixed distances from the center of the experimental region. Due to the formulation

ridge analysis, it is a nonlinearly constrained optimization problem.

The concept of ridge analysis is finding an absolute minimum or maximum on

the spheral constraint of a certain radius you trusted. Additionally, we can adjust the

radius to increase the sphere size if the point on the spheral constraint is still inside the

experimental region. In other words we can find an optimum corresponding to a

distinct radius, all optimums with various radiuses construct a “ridge path” as shown

in Figure 1.6. In fact, control radius of the region is hard in ridge analysis. We discuss

the issue in the following subsection.
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Figure 1.6 Ridge path of all stationary points with various radiuses

Consider the following problem.

Minimize (Maximize) y = b, + B’ x +leGX
2 (1.17)

subjectto x'x = A’

, where X is an n-vector; G is the matrix contains quadratic coefficients; B is a vector
expressed first order coefficients.

Under the problem formulation, global constrained optima are typically obtained
using the Lagrangian multiplier approach. By introducing the Lagrangian multiplier 4,
the problem will be an unconstrained optimization problem.

Minimize (Maximize) L =+ u(x"x — A”) (1.18)
Differentiate (1.18) with respect to x, and then set the derivative equal to zero. The
equation which includes a stationary point %, will hold:

B+(G+uh)x, =0 (1.19)
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Given a fixed value of «, the stationary point X, on the sphere with radius A can be

estimated to be:

X, =—(G+)"'B (1.20)

Theoretically, there are totaling n+1 equation, namely, the spherical constraint in
(1.17) and (1.18) let us solve X, and u. Practically the radius A is also unknown, i.e.

there are n+2 unknown variables. That is we can’t solve X, directly. So ridge analysis

considers the following strategy to solve the problem.

1. Regard A as variable, but fix  instead.

2. Choose u as a fixed value and substitute ¢ with the fixed value into (1.19)

to obtainXx_ .

3. Evaluate y by (1.17)

Even if we have the above strategies, there is still a problem that is how to
choose . Providentially, there are some properties of ridge analysis help us choose

appropriately. These properties are described as follows [7]:
1. At gt=-oc0roe then A= 0 and A increases exponentially to infinity at u =
Ai.
2. If we wish to find the ridge path as A varies, we can substitute any value of
w larger than— A4, .

3. AsAincreases, ) passes through the ridge path toward a minimum.

17



The value  determines the radius A, i.e., A is a function of 4. Figure 1.7 shows the

relation between radius and Lagrangian multiplier. A,,..., 4 are the eigenvalues of the

G, and /1/(> /1/(_1 > L. >/11.

Locus of

absolute

/ minima

&~ A A #

Figure 1.7 The dependence of radius on Lagrangian multiplier

We consider the following example to show you the relationship between A and

Example 1.2:

Minimize y = 15+2x1+x2+%x12+2x1x2+%x22

subject to \x] +x; = A

Express in matrix notation.

X X
Minimize : y=15+BT{ 1}L%[x1 xz]G[ l}

X, X,

subject to : [x] X, ][xl} =A

18



2 1 2
, where =L};G 2[2 J; the eigenvalues of G are —1 and 3; the corresponding

eivenvectors [—1, l]T and[l, l]T.

Introduce Lagrangian multiplier & and then we have

1 M
_ o (a2 2] 32l
=G+ u) B_{ 2 l+ul 1] ] —3+u (12D
—3+2u+u’
We also have
A=1I~T~
24 V[ —2u
|l =342u+ —3+2u+ 1’
- “3+u || =3+u (122)
3 42u+ i —34+2u+u’
[ 9—6utsu?
(=3+2u+u)’

That is A is a function of g, figure 1.8 shows the relationship on a two dimension

space. A

10

T |u
10

I
-10 =5

Figure 1.8 The dependence radius against Lagrangian multiplier
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In (1.22), the denominator in the radical has two factors. We can factorize the

denominator as:

—342u+p’ =(u+3)u-1) (1.23)

(1.22) also implies that if & is equal to the subtractive eigenvalue of G, i.e. =3 or 1,
the denominator is close to 0. Therefore A goes to positive infinity. On the other hand,
if 1 goes to positive or negative infinity, thus the denominator is close to positive zero,

i.e., A goes to zero.

1.2.3 Zoutendijk Method

Zoutendijk’s method searches a feasible improving direction. Compared with the
GRG method, the direction may be less effective. To consider (1.15) (a minimization
problem), if the direction is an opposite direction to objective function’s gradient, it is
an improving direction. Moreover, if the direction is an opposite direction to binding
constraint’s gradient, it is a feasible direction. Zoutendijk’s method solves a linear
program to generate a direction satisfying the above two requirements; to improve and
to be feasible.

Zoutendijk’s method is described as follows:
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e Step I:
Let x* be a feasible solution at the k-th search step. Check the binding nonlinear
constraints. Let W = {w : gw(x(k)) =0 }. Compute the gradients of the objective

function and the binding constraints Vf' (x(k)) and Vg (x(l‘)) with respect to x®,

e Step 2:
Solve the following linear program with decision variables dz and z:
Minilgﬁze: z.
subject to:Vf(x*)'d, -z <0;
Ve . x)'d,—z<0 VweW;
—-1<d, <1 j=l..n

Let (z, dz) be the optimal solution. If z” = 0, stop; x* is an optimal point. Else, go to

the step 3.

e Step 3:

Do Line Search along d; . Let the feasible solution be x*"V. Return to step 1.

Here we also use the example 1.1 to introduce Zoutendijk’s method. Suppose

that we start from iteration with current solution (x;, x») = (0.5889, 0.8833) is also

21



binding on the second constraint in example 1.1. The gradients of objective function

and constraint are described as follows:
VF(x,x,)" =(~3.4110,-3.6442)

, and
Vg(l.ll) (xlaxz)T = (1,5).
Now we consider the following linear programming problem:

Minimize : z .
z,d

d
subject to : (—3.41 10,—3.6442)(011 j —z<0;

2
d
(1,5)(6{‘ J —2z<0;
2

-1<d, <]
-1<d, <1.

By performing simplex method, we can obtain the improving direction d is (di, d>) =
(1, -0.5102). We sketch the direction in Figure 1.9. We can see that the next solution
can leave the binding constraint by performing line search along Zoutendijk’s
direction. This will help us develop the main search algorithm of this thesis. It is

detailed in chapter 3.
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Figure 1.9 Zoutendijk’s direction of Example 1.1.

1.3 Shortcomings of Current NLP Methods

1.3.1 Shortcomings of Generalized Reduced Gradient Method

One motivation of this study is to overcome some unexpected phenomenon rose
by the GRG method, although the GRG method is applied intensively in practice. The
phenomenon is called “zigzagging” or “jamming”. Zigzagging usually appears at the
later phase of search and causes a poor convergence. As mentioned earlier, the GRG
method employs the first-order approximation: f(x* +Ad)= f(x*)+AVf(x")"d
+ e, where d is the search direction, e is the error of the linearization approximation.

When x* is close to the stationary point,

“”)H becomes very small so is the term
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AVF(x®)d. The error term, thus, becomes relatively significant. The error term

caused by the linearization approximation thus induces the search path to zigzag.

For example the response surface resembling an inclined trough, will cause the
GRG method to zigzag easily. That is, the search direction of the GRG method, i.e.,
the reduced gradient, moves toward the bottom of the trough, not to the inclined
direction. The number of moving steps will be enormous, and it becomes difficult to
reach the optimal point. The objective function of the SMOO problem in (1.8) could

certainly form an inclined trough and cause the zigzagging problem.

As described earlier, the quartic objective function in SMOO problem is the “the
quadratic of the quadratic”. If the response, expressed as a quadratic function of input
variables, isn’t absolutely positive or negative, the quartic objective function could
form a trough. For an example with two input variables, the quadratic function, z =
10x* + 10y* — 4, will exhibit a shape as shown in Figure 1.10. After squaring the
quadratic function, a trough ring will be created. Figure 1.11 shows the quartic
response surface. Because in a typical SMOO problem, the objective function is the
sum of multiple quartic functions, a trough will be easily formed and cause the

zigzagging problem.
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Figure 1.10 Quadratic response surface

Figure 1.11 Quartic response surface

Example 1.3 is a well known problem for testing optimization algorithm. The

objective function is called Rosenbrock’s Function or Rosenbrock’s valley. The

function is a summation of a square of quadratic function and a square of a linear

function. The value of this function thus must be greater or equal to zero. Because of

the global minimum f (x1, x2) =0 at (x1=1, x2=1) is inside a long, narrow and

inclined trough. To find the valley is trivial, however to converge to the global
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minimum is difficult. The function form is expressed in the following equation and

figure 1.12 shows the corresponding surface and contour plot.

Example 1.3:
Minimize: (1—x)+100%(x; —x,%)?,

Subject to: —2<x1<2;0<x,54.

Obj. Value

Figure 1.12 Surface plot and contour map of Example 1.3

Suppose the initial point is (x;, x2) = (2, 0.5) with the terminal criterion to be 10"°
and the maximal iteration number to be 3000. The objective value of the second
iteration is 0.0173683 with (x;, x2) = (1.1316, 1.2812). The objective value of the
latest iteration is 0.000657 with (x;, x2) = (1.0256, 1.0520). There are 2417 iterations
in total from the second iteration to the latest iteration. From the result, there are two

major drawbacks of GRG method. The search path of the GRG is sketched on the
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Figure 1.13. Figure 1.15 shows the zigzagging phenomenon of the GRG method. Due

to zigzagging phenomenon, the GRG method sometimes is unable to converge to the

global minimum (x;, x2) = (1, 1).

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
x1

Figure 1.14 Dash-line region in Figure 1.13
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Figure 1.15 Zigzagging path in dash-line region of Figure 1.14
1.3.2 Shortcomings of Ridge Search Method

Although the ridge analysis helps us to find the minimum without zigzagging
phenomenon, the required optimal Lagrangian multiplier is difficult to find or is
inefficiently found. What is known is that the optimal Lagrangian multiplier should be
smaller than the smallest eigenvalue of the quadratic coefficient matrix G if we want
to minimize the objective function. The RS search uses the following formula to
search for the optimal Lagrangian multiplier to calculate the stationary point and
obtain the corresponding objective value. The updating formula of Lagrangian
multiplier is:

U =u’ - Axa’ (1.24)
, where yis the search step index; A is the step size and is set to be proportional to the

smallest eigenvalue and « is the parameter to approximate the exponential
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relationship between the radius and g When we use (1.24) to search the optimal
Lagrangian multiplier, there exist three drawbacks. In (1.24) there are two
manipulatable parameters A and ¢, the search result of the GRR algorithm is in fact
quite sensitive to these two parameters. This is also an important reason motivating us

to develop a new algorithm with less parameter settings.

Considering Example 1.3, with an initial point (x,,x,)=(=2,0.5), we first setr
=10 and A=100 and then change the setting to a=100 and A=100. Figure 1.16, Figure
1.17 and Table 1.1 show the search processes and the comparisons including objective

value, iterations and computing time under the two different settings.

Table 1.1 Comparison of two different settings

. . Number of Y
Settings Obj. Value Iterations Computing time
Ist 3.368948E-07 181 0.06
2nd 1.100042E-10 976 0.30

29



X2

0.5

)
: \%@% R
0 \ “‘}‘\L&\X L
-2 -1.5 -1 -0.5 0

X1
Figure 1.16 Search process of 1* setting

\roa 80645

- o @ )k
M’\QQ?;ZL oéigj B S
2
S NN
| .. | } / / /\ m
-0.5 (0] 0.5 1
X1

1.5 2
Figure 1.17 Search process of 2" setting

30



Although the GRR search method can find the near-optimal objective value by

different setting, but the difference between the two settings is large, and the

computing time is also greatly depending to the setting. That is, the first drawback of

the GRR search is the difficulty of parameter selection. The second drawback is due

to some issues of numerical calculation. For a large SMOO problem, the quadratic

coefficient matrix G is easy to be singular or near singular with the smallest

eigenvalue near zero. Under the circumstances, the A, set to be proportional to the

smallest eigenvalue, in (1.24) is also near zero and cause the search to be extremely

slow. Finally, the GRR uses (1.24) to approximate the relationship between the radius

and the Lagrangian multiplier. This sometimes results in an over-large radius is large

sometimes. In fact, the objective function of the SMOO problem is a quartic function.

In order to perform the GRR search, the algorithm needs to approximate the objective

function to second-order function by the Taylor series expansion. If the radius is too

large, the solution solved by GRR may not in the region of trusted approximate. This

is the third drawback of the GRR algorithm.

1.4 Research Objectives

The formulation of the statistical multi-objective optimization (SMOO) problem

is exactly a nonlinear programming problem (NLP) with nonlinear inequality and

linear equality constraints. So this thesis will focus on developing a constrained
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optimization algorithm for solving the quadratic programming NLP problem.

Furthermore, the objective function of SMOO problem is a quartic function and is not

guaranteed to be a convex function. This is the first challenge we need to face. On the

other hand, there are three drawbacks of GRR we discussed in subsection 1.3.2. we

then attempt to develop a new algorithm that prevents the three drawbacks of the

GRR search.

There are some commercial optimization softwares, such as “Lingo”, adopts

“Generalized Reduced Gradient method” together with “Successive Linear

Programming method” in its algorithm. The two methods used by Lingo are actually

Feasible Direction Methods. These methods are also subject to the zigzagging. Since

one of our research objectives is to avoid zigzagging, our research results will be

compared to Lingo’s to validate the proposed algorithm. To Summary, our research

objectives are to develop a constrained optimization algorithm for solving the SMOO

problem and this algorithm must (1) overcome the three drawbacks of GRR and (2)

avoid the zigzagging phenomenon.
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In specific, there are four research objectives:

1.

Develop a nonlinear constrained optimization algorithm called Generalized
Reduced Trust-Region (GRT) search method based on trust-region method.
Develop a algorithm using the developed GRT method and the Zoutendijk’s
method.

Propose the convergence proof of GRT search algorithm

Test the proposed search algorithm with four cases: (1) A well-known test
problem for NLP algorithm called Rosenbrock’s function, (2) Geometric
Layout Design for Semiconductor Manufacturability, (3) Robust
Configuration of Semiconductor Supply Chain, (4) Track System PED

CDU Optimization.
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1.5 Thesis Organization

In this chapter, we describe the background, problem definition, current

methodology review, and drawbacks of these NLP algorithm and the research

objectives. Chapter 2 introduces the trust-region method and subproblem of the

trust-region method. Moreover, the hard case of the trust-region method will be also

mentioned in this chapter. Finally we do some modification of the traditional

trust-region algorithm is also be introduced here. In chapter 3, we describe the

algorithm of generalized reduced trust region method. The convergence proof of GRT

is also proposed in this chapter. In chapter 4, the test problem and result will be

presented. Every result will be compared against Lingo’s result. Finally, some

conclusions and suggestions are presented in Chapter 5.
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2 Trust Region Method

Due to the drawbacks of the GRG method and the GRR method, this research
develops an algorithm based on a method known in numerical optimization are “Trust
Region” (TR) method. In Section 2.1, the basic ideas and the problem formulation of
the TR method will be introduced. In Section 2.2, we study an algorithm to help us
solve the “Trust Region Subproblem” (TRS). Some numerical issues called “Hard
Case” of the TR method in the literature will be discussed in Section 2.3. Finally, we
make some modifications to the TR method to improve its numerical implementation
in Section 2.4.

2.1 Trust Region Method

The TR method and the Ridge Analysis (RA), in effect, share the same
mathematical formulation, i.e., minimizing or maximizing a quadratic function
subject to a spheral region constraint. The quadratic function can be an approximation
of any objective function. For example, we can approximate the quartic SMOO
problem to a quadratic function and solve it by the TR method or the RA method.
Though the problem formulation is the same, there are still fundamental differences
between two methods. First, the TR method finds a solution inside the spheral region,
while the RA method only considers the boundary solutions. Second, as we discussed

in Subsection 1.2.2, the RA method regards radius of the spheral region as a variable
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and makes guess on the value of the Lagrangian multiplier iteratively by (1.24). In
contrast, the TR method finds the optimal Lagrangian multiplier directly by solving a
sequence of Trust Region Subproblems (TRS). This method for TRS is discussed in
the next section. The TR method allows us to adjust the radius directly without

guessing on the value of the Lagrangian multiplier.

Determination of the trust region radius with TR method is critical. If the radius
of the region is too small, the algorithm misses the chance to move faster to a
minimum of the objective function. If it’s too large, the approximated model may
become a poor approximate of the objective function and the minimum found inside
the region may be far from the global minimum. Thus the TR algorithm gradually
shrinks the size of the region in its search steps. In every iteration, the algorithm uses
the approximate performance of the previous iterate to determine radius of the trust
region. If the approximation is good, we enlarge the size else we shrink the size of the
trust region. Such update of the trust region radius is introduced in next Chapter.
Figure 2.1 shows the TR approach for a function f of two variables on a contour plot.
The contour of quadratic model function ¢ (in dashed line) is constructed from the

derivative information at the current iterate X,
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Figure 2.1 Trust-Region and Trust-Region step

The TR method approximates any differentiable function to a quadratic function

by the Taylor series expansion. Consider the following TR problem

Minimize : f(x)+ gTX+%XTHX 2.1)
Subject to ||x|| <A,

where||~|| is the Euclidean norm; gT is the gradient vector, i.c., Vf (X); H is the

Hessian Matrix, i.e., V°f (X) ; and A is the radius of the trust region.

Now considering the SMOO problem, the objective function of (1.8) is a quartic
function. We approximate the objective function of the SMOO problem with respect

to a given point x¥ by the second-order approximation and apply the TR method as
follows:

Minimize : Fx* Y+ B(")T (x*D — x4 (x ) —x YT G0 (x e _x®)y /2 -
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subject to: H(x(k“) - x(k)]‘ < AW (2.2)

, where the superscript (k) denotes the k-th iteration index; the vector x*"! is the

minimizer of (2.2), i.e., xX*™" minimizes the (2.2) at a given point x"; the A >0

denotes the trust region radius at current iteration; the partial derivative matrix

B(k) =Vf (X(k)) and the Hessian matrix G =V> f (X(k)) are calculated with the

following formulas:

B=V/ (0
az (bio + b,.TX + XTBix -T )2
- ox

=3 (b, +b x+x"B,x =T )b, + 2B,x)]

and

G=V/(x)
82(b10+bTx+xTB X — T)

8X ox

33 [2(p,, +b/x+x"Bx~T)b, + 2B x)]

0x
_22[ +2Bx)b, +2Bx) +(b, +b’x+x'Bx—TPB,|.

The solution of (2.2) is derived in the next Section.
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2.2 Iterative Solution of Trust Region Subproblem (TRS)

To solve (2.2), a sequence of the “Trust Region Subproblems” (TRS) has to be
solved. The TRS is to find the minimum of (2.2) with a given trust region radius A.
Actually, (X(kH) —X(k)) in (2.2) is the improving direction d? to be found.

(k) _ (k) )

Therefore we replace (X by the improving direction d® . Without loss

generality, we drop the superscript (k) and consider the following direction-finding
problem.

Minimize : f (x)+ BTd+%dTGd (2.3)
subjectto: HdT d” <A

First, we characterize the exact solution of (2.3) by the theorem 2.1 which shows that

the improving direction d satisfies

(G+uhd=-P 24

Theorem 2.1 |9, 13]
The vector d is a global solution of the TR problem

Minimize : f +p"d + LarGa
d 2 (2.5)
Subject to : ||d|| <A

if and only if d is feasible with the Lagrange multiplier (=0 such that the following

conditions are satisfied.

(G+uhd=—P; (2.6)
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H(A~[df)=0; 2.7
(G+ ) is positive semidefinite. (2.8)

Any solutions of (2.5) lies either in the interior or on the boundary of the feasible
set (trust region), i.e. the set{d | ||d|| <A } Equation (2.5) has no solution on the

boundary if and only if G is positive define and HG_IBH < A . In this case, the solution

of (2.5)is d=G™'B with the Lagrangian multiplier & = 0.

In (2.4), the hessian matrix G and the gradient vector B are known. The
unknowns in (2.4) are the solution d and the Lagrangian multiplier & The solution of
d in (2.3) is shown to be:
d=—(G+uD)'B. (2.9)
According to (2.7), either A — ||d|| =0 or ¢=0 must hold. If = 0 then the solution d
is in the interior of the region else d is on the boundary. In the latter case A — ||d|| =0
hold and then the norm of the solution d,||d|| , equals to the trust region radius A, i.e.,
A =||d|| Due to the equality relationship between the radius and the norm of the
solution, (2.9) becomes
|d] = [~ (G + )| =4A. (2.10)
From (2.10), the solution d is a function of & To find d, we have to find u first.

Finding u is a typical root-finding problem of a nonlinear equation. We can apply
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Newton method to help us find the optimal ¢ with a given radius A. Now we define
the function @(u) as

o) =) = |- (G + ) 'p| = A. 2.11)
Equation (2.11) describes the equality relationship between the radius and the
Lagrangian multiplier, much like what we have discussed for (1.22) in Subsection
1.2.2 where we also have sketched the relationship on a two dimension space like
Figure 1.8. It shows that if the Newton’s method is applied to find the root of (2.11),
the root finding procedure is slow and inefficient due to the nonlinearity of the

function |@(x)| with 4 on the interval of (=4;,9).

Fortunately, the Newton’s method can perform quite efficiently with the
following transformation to (2.11). The attempt is to reformulate (2.11) to become
almost linear with g on the interval of (—4;,90). We define the reformulated equation

as follows:

L1 1 o
] A |-G+ |

1
(A(ﬂ)—X—| (2.12)

As shown in Figure 2.2, ¢1(,u) becomes a near-linear function of . Now the

Newton’s method can perform better to find the root.
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Figure 2.2 The relationship of 1/A and u in example 1.2

To apply the one-dimensional Newton's method:

H=u —% , where Q (,U) is the first derivative of ¢ () and @I denotes the next
|

Lagrangian multiplier found by the Newton’s iterates. In order to perform the

Newton’s method @ (u) and ¢1(/l) must be evaluated. That can be obtained by

solving a linear system involving (G + ) . Because in the range of interest, (G+ )

is definite positive, we may use its Cholesky factors (G + 1) =U(u) U(u), where

U(u) is an upper triangular matrix. To solve the problem, computation demanding

calculation of the eigen-system of G is thus avoided.
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However, to be able to use the Cholesky factorization, we have to ensure that
(G+ ) is positive definite. In other words, # has to be in the interval of (—A,,0).
A safeguard mechanism is therefore needed to ensure the success of the Newton’s
method. Here, we don’t discuss the Newton’s method and the safeguard mechanism in
detail. For a more detailed explanation, please see Section 2.4 and Appendix B.

2.3 The Hard Case

Although the Newton’s iterates can be used to find root of ¢, (1), there are some
computation difficulties. The numerical difficulty is called “Hard Case” in the TR
literature. The hard case occurs when the eigenvector corresponding to the smallest
eigenvalue is perpendicular to the gradient vector B, i.e., qlTB =0, where the
eigenvector with respect to the smallest eigenvalue is denoted as q;. When there are
multiple eigenvectors, i.e., an eigenspace corresponding to the smallest eigenvalue
provided that QlTb =0, where Q) is the matrix whose columns span the eigenspace

corresponding to the smallest eigenvalue. The hard case is caused by the failure of the

limit condition lirr/% ||d(,u)|| = oo, Therefore, there may not exist a value in (— A, oo) to
Ho4;
solve ||d(,u)|| = A. We use an example to illustrate the hard case condition followed by

a geometric interpretation.
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Consider the following example with a current point at (d;, &) = (0, 0).

Example 2.1

Minimize:15+d, + dﬁ% d12+2d1d2+%d22.

subjectto:\ld} +d; <A.

Express (2.14) in matrix notation:

(2.13)

Minimize 15+|3Td(ﬂ)+%d(ﬂ)fca(ﬂ);

subject to ||d(,u)|| <A,

1 1 2
where the gradient vector p = L} the hessian matrix G = liz J ; the eigenvalue of G

are —1 and 3; the corresponding eivenvectors are [— 13 I]T and [1, I]T. It can be seen
that the gradient vector B be perpendicular to the eigenvector corresponding to

smallest eigenvalue —1. The relationship among the radius, 4 and the solution d(z)

becomes:
. e
d(ﬂ)=—(G+/v‘1)_1":{1J;ﬂ 13;1} H: %
(a+3u-1)
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A=[a(u)
:J(wiﬁ&isﬂ e
ol (e e

~(G3)

We also sketch (2.14) in a two dimension space. Figure 2.2 shows that there is only

one pole corresponding to the second eigenvalue, that is, the pole with respect to the
first eigenvalue is vanished. This is because the denominator (u+3)(u—1) is
eliminated by its factor (#—1). However the pole which is corresponding to the second
smallest eigenspace is still existed but the solution e (=3,1) is only a local
minimum on the spheral constraint. Fortunately, More, J. J. and D. C. Sorensen (1983)

[13] propose a solution to solve the hard case which will be discussed latter.
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Figure 2.3 The vanished pole with respect to the smallest eigenspace

The hard case is a special situation in which the boundary solution of (2.3) is not
unique. It can be shown that the hard case can only occur when the hessian matrix G
is positive semidefinite, indefinite; the gradient vector B is perpendicular to the

b

eigenspace with respect to the smallest eigenvalue of G; and A>H— (G-A1)'P
where the superscript (') indicates the pseudo inverse. That is, if any of the above
three conditions is not met, the hard case cannot occur see also [17]. Let
P =N -¢*(4) and d=—(G-AI)'B. If 4 <0 and ||d||<A then the solution to
the hard case is defined as:

—(G-A1)B+m, =d+m, (2.15)

,where q,€ E_. (the eigenspace with respect to smallest eigenvalue) and”ql” =1;

min
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If d solves the (2.4) then d must satisfy the condition (2.7) to (2.9), see also Appendix

A.

Now we explain the geometric interpretation of the hard-case solution. Consider
the following example with a current point at xo=(x,,,) = (~3,0).

Minimize15+x, +x. —2x;.

subjectto: x; +x; <A,
, : 210 : -5
where the Hessian matrix G = 0k 4 and the gradient vector B = 0 at

current point (—3,0) and H— (G=A1)'B|=5/6.

With the indefinite Hessian matrix G, we firstly show the geometric interpretation for

the case with the gradient vector B orthogonal to Epi, but A < H— (G-AI1) BH Figure

2.4 shows a two-dimensional example where A is chosen to be 0.6. When the radius

is chosen to be A< H— (G—A,)"B|=5/6, there is still a unique solution because the

intersection of the sphere and the contour of the optimal y along the d direction is a

unique point.
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Figure 2.4 The Easy Case for an Indefinite Hessian

Suppose the trust-region radius A is chosen to be 1.5 and is greater than5/6, i.e.,

the gradient vector B is still orthogonal to En butA>H— (G—&IYBH. Figure 2.5
shows how the solution for this case becomes not unique. In Figure 2.5 the length
from the current point X, = (=3,0) to xo + d, (—2%,0} ,is 5/6 (the length of the
bold line in Figure 2.5) and less than 1.5. In this case, there are actually two solutions
by adding d with @y, and —@y, (dotted lines): d,, =—(G-AI)'p+n, and

d,,=—(G-A41)"B-mny,, i.e., two bold dashed lines in Figure 2.5.
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Figure 2.5 The Hard Case for an Indefinite Hessian

2.4 Modifications of Trust Region Algorithm

We do some modification to the TRS algorithm [9], the conventional TRS
algorithm is detailed in Appendix B. The first is that because we need to compute the
eigenvectors with respect to the smallest eigenvalue to solve the hard case, we use a
more numerical computation robust method, namely, Singular Value Decomposition
(SVD), to compute the eigen-system. Cholesky factorization is therefore replaced by

SVD.
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We first derive the all ingredients for the Trust Region algorithm. The
root-finding problem applied Newton’s method generates a sequence of iterate of [
by setting
fi=p—¢(u)/ ¢(u) (2.16)
, where k is the k-th search index; X is the next Lagrangian multiplier found in the

Newton’s iterates and

_—dlaqol”)
du

-7 (- sa) B[y (G —aa) ]

1

9'(u) = {—EBT(G +ﬂ1)_2l3} [-2p7 (G + ) p]

(2.17)

In trust region literature, the first order derivative can solve by solving linear system.
Due to the matrix (G + ) is positive definite with 4 on the interval (—;,%°) and
(G + ) is also a symmetric matrix so it can be factorized by Cholesky factorization
as (G+ul)=U"U (2.18)
, where U is a upper triangular matrix.

By substituting (2.18) into (2.4) yields

U'Ud=U"U d(u)=—B. (2.19)

Solve the linear system (2.19) we have the the solution d(«) becomes
d(z)=-U"'U"p (2.20)

,and d” (u)d(u)=p" U UTUUB=p" (G+ )P (2.21)
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Also, solve the linear system U'U y(1) = d(u), the solution y (L) 1s

y(u= U'U7Td(u)=—U"UTU U p==(G+ ). (2.22)
Besides we also have

A" (u)y(u)=B" (G +a)"p (2.23)

Substituting (2.21) and (2.23) into (2.17) yields

() = a7 a7 ()] =-Jacof 217 (y(u)] 020
= Jaca)|”la” (w)y(w))

Also, substitute (2.12) and (2.24) into (2.16), and we have the formula of Newton’s

iterates
S (A ||d(ﬂ)||J /( ol la” ()y()
_ (el -a) —[agaf
- [ Al J[ldT(ﬂ)Y(ﬂ)Jj (2.25)

_ o (lag]-aY e
“‘*( g ][ldT(ﬂ!;Y(ﬂ)JJ

Now we have derived the formula for performing Newton’s iteration. The detailed

algorithm is described in Appendix A.

Because (2.12) and (2.17) involve the term (G+ ,uI)_" where peR . By

applying the SVD method to (G + ,ul) we have

(G+u)=Q2Q" (2.26)
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, where X= = and A,.., 4, are the eigenvalues of

- Nex
(G + d); Q is the n by n matrix with columns consisting of orthonormal eigenvectors
of (G+ ).
Therefore, the inverse of (G + ﬂI) with any order p could be calculated by the

following formula.

(G+)” =(G+ul)" =Q="Q" =Q Q. (2.27)

To proceed with our algorithm, we also have to do the following transformation.
0=0Qp (2.28)
, where the components of 0 denotes as € which is the product of the eigenvectors

q, and the gradient vector P.

The second modification of the TRS algorithm is to find the lower-bound for the
Lagrangian multiplier 4 more efficiently. The purpose of the lower-bound is to
prevent the unsuccessful iterates of the Newton’s method. As presented in Section 2.2,
the safeguard mechanism of the TRS algorithm is designed to prevent this situation.
Figure 2.6 shows Newton’s method leads &« beyond the logical interval. Moreover, the

traditional TRS algorithm doesn’t compute the eigensystem, i.e., they do not use the

52



information of— A, to safeguard the possible failure of Newton’s method. Since the
S.V.D has been used to help us solve the problem, and the smallest eigenvalue of the
Hessian matrix is also obtained. We may establish a new lower-bound based on the
current Lagrangian multiplier. It will be shown that this new lower-bound will be
better than the lower bound ﬂl(fir)l proposed by Semple, J. (1997) [18]. To derive the

lower-bound, we first define

o(u)=Jau)" = a" (w)alu)
=B (G+u1)"p
=B"Q 7N A+)"(Q'Q 7 A+u)(Q'B) (2.29)
- (QTB)T (A +u)*(Q"p)

—Z

Differentiating (2.29) with respect to x# produces

/”t+,u

@' (1) =~2p(G + 1) " p = -2d" (u)y(w) (2.30)

The lower bound is estimated by the following inequality:

Mo | a
_5(%): ZZ’]‘:[L(; ﬁj}} 5 /Lzﬂ (2.31)

i=1

, whenever e (—A,).
Both elements in (2.29) and (2.30) are calculated in the Newton’s iterate, so it is easy

to identify the estimated lower bound becomes

PR ") S () I () 2.32)

o T 2 ()T (wy(w)
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Then the lower-bound proposed by Semple, J denotes as /Llr(rizl can be written as:

|a)

(8) —
Hin =H d" (wy(n)

Figure 2.6 The failure Newton’s iteration

On the other hand, by using SVD our lower-bound ,ur(il)l can be calculated by

the following formula:

o _,_ 9w
fon =8 ()
—y— ”d(“mlﬂ (2.33)
~(B(G+ )" B) 2 (B(G + 1))
_ s laGu)-aaGu)
BG+u1)"B)
Thus the lower bound of x can be then set to
o =max= 7)) (2:34)
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That is, the larger value between the negative smallest eigenvalue and the lower

bound in (2.33) is set to be . . We use Example 1.2 to show (2.34) is better than

min *

ltlr(rizl and their geometric meanings in three different situations, i.e., three different

positions of the current point.

Situation 1:
For being a positive definite matrix G + ul, let A=1 and consider f = 3 as the
current point. Calculate the two lower-bounds and the two lower-bounds are

illustrated in Figure 2.7.

204

(1.3644,1)

.,-'—ff/

0.0 1
( ). LA S S — Y /4
(S—A, Mo 3 10

Figure 2.7 Comf;arison of lower-bound for u in situation 1

—
-10
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Since ,Ur(ﬂl <-A, we set 4 to be —A according to (2.34). With the help of

— A, , we a obtain better g . than ,Ul(fu)l .

Situation 2:
In this situation, we consider 4 = 1.5 (at the right of the optimal ,u*) to be the
current point as shown in Figure 2.8. The two lower-bound are calculated and shown

in Figure 2.8.

o H17 : )
Figure 2.8 Comparison of lower-bound for x in situation 2

5 H

As shown in Figure 2.8, ﬂglr)l is set to be 1.31, which appears to be very close to the

optimal 4" and also lower than ,UI(HTH)1 .
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Situation 3:
In this situation, we consider , = 1.2 (at the left of the optimal ,u*) to be the current
point as shown in Figure 2.9. Again the two lower-bound are also calculated and

shown in Figure 2.9.

3_

1 (1.2, 1.78)

(1.3644, 1)

(s)
/'lmin
Figure 2.9 Comparison of lower-bound for x in situation 3
We find that ,ugh)l is still larger than ﬂl(fir)l even if the current point £ is on the left
hand side of 4 . We already demonstrate, without proof, that ,ugh)l better than ,ur(rir)l .
When we use the lower-bound to safeguard the Newton’s method from invalid

solutions, this new lower bound helps the Newton’s method to converge quickly.
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We summarize the algorithm to solve the Trust Region Subproblem as follows.

Algorithm 2.1 (Trust Region Subproblem Algorithm)
Begin

Perform S.V.D to (G + ,uI) by (2.27)

Calculate 0 by (2.28)

If G is positive definite then

Return 4 =0 and the solution d(O) =GB (2.35)

ElseIf B LE . then

Calculate 7* = A2—[(L)2+...+(L)2)} (2.36)
i+ A4 W+ A4
If >0 then
0 ] 1 A
6, 6,
o, 0 o,
| A +/11_ | A +/11_

Return a better solution d by evaluating the objective of original
objective function
Else
Go to Algorithm 2.2 (the problem is a good case)
End If
Else
Go to Algorithm 2.2 (the problem is a good case).
End If

End
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Notice that, when the hard case occurs the optimal solution must be chosen by

evaluating the objective value of original objective function. The algorithm for the TR

Hard Case is complete. For “Good Case” of TRS, the Newton’s iterates algorithm is

shown below:

Algorithm 2.2 (Algorithm for Good Case)
Input:
d : the tolerance for convergence of the solution d(,u)
£ : the tolerance for ensuring (ensure (G+ul) is P.D.)
G:the hessian matrix of (2.2)
B: the gradient vector of (2.2)
A: the given trust region radius
A1: the smallest eigenvalue
Begin
p——A+¢e (ensure (G+ul) is PD.). (2.38)

Repeat while H|d(,u)|| - A‘ >0

d(u)|-A)a

)
(set the lower-bound for £).
If |d(u)|<A (at the right of the root) then

Hina <= (2.40)
Else

Hoin € H (2.41)
End If
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1

A IId( |

U u+ 3 (2.42)
B (G + 1) *BJ2[B7 (G + ) B]

If 7Z<uy,. then
- +u,.
i FM_ (2.43)

2
End If
End Repeat

Return 4 =]

End

Example 1.2 is used again to demonstrate the TRS good case algorithm. With the
explanation of the geometric meanings, first let the given trust region radius to be 1;&

= 2; the procedure is detailed as follows.

Preparation:

The eigenvalue of the Hessian matrix are 3 and —1 respectively, that is, G is an

indefinite matrix. We first set ,u:—(—l)+2=3 according to (2.38), and then

proceed to the algorithm.
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Iteration 1:
-0.25
By (2.39), we have d(,u)zd(3)={ 0 }and ||d(,u)||=0.25 <1. Thus we enter the

TRS problem solving step. The g._. is first found to be max(l,-6)=1 according to

(2.39) and is shown in Figure 2.10. Because ||d(,u)|| =0.25<1, to obtain an valid x,

we can set,, =3. With £ known to be in the interval of (umin, max)=(1,3), the

max

first Newton’s iterate can be performed by (2.42), as shown in Figure 2.11 7 =0.75
Because / isnotin (1, 3) according to the safeguard mechanism (2.43), we take the

average of W and MU, to replace fI , i.e., ,L7=(l+3)/2=2. The two

bold-dashed line in Figure 2.11 indicate 4,

A
20+

and 4., inthe space of 1/A.

_/i'l :/’tmin :1

N ETARNE

Figure 2.10 £ .., U, ,uf,ir)l and 4 on two-dimensional space
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=075

Figure 2.11 Safeguard mechanism for Newton’s iterate in the l/A space

With [ =2, the remaining iteration is listed in the following table.

Table 2.1 The iterative results of example 1.2 solved by the TRS algorithm

Iteration my d( ﬂk) d(,uk
1 3 Safeguarded Safeguarded
2 2 (-0.4,0.1) 0.41231
3 1.2544 (-1.1588,0.8063) 1.41181
4 1.3623 (-08618,0.5179) 1.0055
5 1.3644 (-0.8577,0.5140) =1
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3 Generalized Reduced Trust Region (GRT) Search

In this Chapter, we develop an effective search algorithm based on the trust
region method. In Section 3.1, we introduce a conventional search algorithm based on
the trust region method. In Section 3.2, we propose our search algorithm by
considering the modified TRS algorithm in Chapter 2 and the generalized space
reduction method. In the final Section, we provide a convergence proof for the

proposed search algorithm.

3.1 Trust Region Search Method

In Chapter 2, the trust region method and the related algorithm are introduced.
Now we consider the use of the trust region method for optimization. The choice of
the trust region radius will be an important issue during optimization. The problem
will be approached by considering the approximation quality of the current iteration.
Given a step d from the current x*, the response improving ratio p(") is defined as

follows:

w_ S - " +d)
 m(0)—m(d)

P (3.1)

, where the numerator and the denominator are called the actual reduction and the
predicted reduction; the superscript (k) denotes the k-th iteration; f (0) is original
objective function and m(O) is the approximated objective function by the Taylor

expansion.
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Notice that because the trust region method finds the solution inside the entire trust
region so the denominator must be greater than or equal to zero, i.e., the predicted
solution of the current iteration must not be worse than the solution found by the
previous iteration. When we substitute the solution solved by the trust region method
into the original function f, the new objective value f (x(" )+ d) may be greater or less
than f (x(" )). That is, the numerator may be greater or less than zero and determine

the sign of p(k). It p(k)

< 0.25, then the actual reduction provided by d is smaller than
the predicted reduction, thus the step d must be rejected. On the other hand, if p(k) is
close to 1 that means the predicted reduction is quite close to the actual reduction;
namely, the function m(e) is a good approximate of the original objection function
f(e) and it is also safe to enlarge the trust-region radius for the next iteration. But if
p(k) <0and p(k) is significantly smaller than 1 then we shrink the trust region by
reducing the trust-region radius A for the next iteration. Such a trust-region radius

adjustment strategy is expected to remedy the approximation deficiency of the GRR

search.
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The following algorithm describes an iteration of the search process without

constraints.

Algorithm 3.1

Input:

A: an overall upper bound on the step lengths and A>0
x®: the current point

A®: initial trust region radius and A" e (0,A)
Q)

d®: an improving direction from current x

n: threshold above which p is considered to be a trusted improvement, where
ne0,0.25).
Begin
Fork=0,1,2,... do
Obtain d" by solving algorithm 2.1.

Evaluate p"* by (3.1).

1
If p* <=
Py

A %A(") (3.2)

Else If p* >% and Hd(k)u =A¥ (boundary solution)

A" min(24%,A) (3.3)
Else

Al A(k); (3.4)
End If
If p“>p

x) x4 g (3.5)
Else

65




xE ) x®) (3.6)
End if
End For

End

Equation (3.3) means that if we want to enlarge the trust region, the solution found
must be already as far away from the current point as possible, i.e., on the boundary

Hd(k)u =A% The purpose of the (3.5) and (3.6) is to determine if the improvement is

worth moving the current point to the next point.

Again, we consider the Rosenbrock’s function as our example for performing
Algorithm 3.1.
Example 3.1:

Minimize: (1 —x;)*+100x(xs—x;°)".

Settings: Tnitial Point: (x,,x,)=(-2,0.5); A=2; AV=1; n=0.25.

Iteration 1:

Solving the trust region subproblem yields d”) = (0.4351, 0.9003). Because p(l) =1.09
> 0.25 and the norm of d") is equal to 1.00000, i.e., dV is a boundary solution
according to (3.5), we have p'") > 0.25 and set x?= x4+ d® = (-1.5648, 1.4003).

According to (3.3), because p'"’=1.09 > 0.75, we enlarge the trust region radius A®
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to be 2A" for x®. Figure 3.1 shows the processes of Iteration 1 and the improving

direction.
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Figure 3.1 Positions of x” and x® at iteration1 with AV=0.5

Iteration 2:

Solve the TRS for x® with A? and yield d® =(0.0121,1.010). We find that p®
=1.002 > 0.25 and move x to x¥=x® + d? = (-1.5526, 2.4105) according to (3.5).
But the norm of d? =1.0102 <A® = 2, 1.e., not on the boundary. According to (3.4),
we do not need to enlarge the trust region for x* and A® remains to be 2. This is
because the Hessian matrix is already positive definite thus the optimal Lagrangian
multiplier is 0 and the solution is inside the trust region. Figure 3.2 shows the search

processes and the inside solution with trust region radius A® = 2.
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Figure 3.2 The inside solution of Iteration 2.

Iteration 3:

We continue to solve the TRS for x*) with the trust region radius A® =2 obtain
d® = (0.6147, -1.9031). Also evaluate o and we have o= —4.0421. Because p° is
smaller than 0, i.e., the objective value is worse than that of the last iteration. We have
to reject d* according to (3.6) and shrink the trust region radius A® to be 0.25A%) =

0.5 according to (3.2). Figure 3.3 shows the process of Iteration 3.
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Figure 3.3 The rejected direction of iteration 3.1

Iteration 4:

By solving the TRS for x = x® with A®= 0.5 then we have d¥) = (0.1553, —0.4752)
and p =0.96 > 0.75. According to (3.5), x¥=x* + d¥ = (~1.3973, 1.9353) and A®’
for x® is enlarged to 2A® = 1 because ,0(4) = 0.96 > 0.75 according to (3.3). Figure
3.4 the process of Iteration 4. The rest of the iterations are listed in Table 3.1 and

illustrated in Figure 3.5
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Figure 3.4 The accepted direction of iteration 3.2

Table 3.1 The all iterations of Example 3.1

Iteration Obj. Value X1 Xo A%
1 1234.000000 -2.000000 0.500000 1
2 116.476261 -1.564822 1.400344 2
3 6.516007 -1.552647 2.410563 2
4 6.516007 -1.552647 2410563 0.5
5 5.776516 -1.397305 1.935301 1
6 5.776516 -1.397305 1.935301 0.25
7 5.316688 -1.305694 1.702691 0.5
8 4.579766 -1.123898 1.236912 1
9 4.579766 -1.123898 1.236912 0.25

10 4.049016 -1.010759 1.013977 0.5
11 3.392050 -0.783780 0.568466 1
12 2.681523 -0.608367 0.339341 1
13 2.169678 -0.383544 0.096561 1
14 1.609145 -0.259002 0.051572 1
15 1.609145 -0.259002 0.051572 0.25
16 1.322277 -0.030596 -0.050069 0.25
17 0.888112 0.061413 -0.004694 0.25
18 0.888112 0.061413 -0.004694 0.0625
19 0.773370 0.122282 0.009493 0.125
20 0.599444 0.242763 0.042798 0.25
21 0.437176 0.421899 0.145909 0.25
22 0.253857 0.499832 0.243759 0.25
23 0.201670 0.673872 0.423231 0.25
24 0.079203 0.719329 0.515367 0.25
25 0.061329 0.861224 0.721197 0.25
26 0.012504 0.888424 0.788557 0.25
27 0.009131 0.985619 0.961998 0.25
28 0.000088 0.990596 0.981256 0.25
29 0.000001 0.999954 0.999820 0.25
30 0.000000 0.999999 0.999998 -
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Figure 3.5 The search process of Example 3.1

From Figure 3.5, we see that Algorithm 3.1 avoids the zigzagging phenomenon

significantly and the solution also converges to the global minimum (1, 1). But this

algorithm is only available for the unconstrained problem. In order to solve the

SMOO problem, we develop the Generalized Reduced Trust Region (GRT) method in

the next Section.

3.2 Generalized Reduced Trust Region Method

Although Algorithm 3.1 solves the Rosenbrock’s function effectively by

avoiding the zigzagging phenomenon, further development is still needed to solve the

SMOO problem, because there exist bounded constraints and inequality constraints in
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this problem. In order to consider these constraints, we first add “Line Search”

method into our algorithm to solve the constrained problem. The search direction d

is provided by TR method and the Line Search is then performed along this direction

to search for a better solution. Again, using the Rosenbrock’s function as an example,

the improving direction of iteration 4 in Table 3.1 is equal (-1.397305, 1.935301)

—(—1.552647, 2.410563) = (0.155342, —0.475262). The objective value of iteration 5

is equal to 5.776516. If we apply the Line Search here, we further move the solution

to (—1.303346, 1.647840) and the objective value becomes 5.564209 as shown in

Figure 3.6.
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Figure 3.6 The line search solution of iteration 3

The global minimum of the unconstrained optimization problem is changed

when we add the constraints into the problem because the solution has to satisfy the
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constraints, i.e., be inside the feasible region. When the global minimum is not inside

the feasible region, the Line Search usually leads to a solution on the constraints.

Figure 3.7 shows critical constraints imposed on the Rosenbrock’s problem and the

solutions generated by the Lien Search with various directions. It can be seen that the

Line Search solution all stay on the bounded constraint.
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Figure 3.7 Boundary solutions by performing line search

Therefore if we continue to perform the TR method to the boundary solution, we

usually get an infeasible direction even if the direction is an improving direction in the

unconstrained problem. Figure 3.8 shows the infeasible direction generated by the TR

method.
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Figure 3.8 The infeasible direction generated by the TR method

By this reason, this research uses the concept of the GRG to develop

“Generalized Reduced Trust Region” (GRT) method to generate a feasible direction

by considering the constraints. Similar to the GRG method, the GRT search

decomposes all variables into the basic and the nonbasic variables, then, finds the

improving direction in the “reduced” spaced, found by the nonbasic variables by

solving the TR method. After the improving direction of nonbasic variables is found,

the direction of the basic variables is in the reduced space then adjusted to meet the

linearized constraints. Since, the number of the variables considered by the TR

method is only the number of the nonbasic variables. Thus, the computation required
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is less than that needed by the TR method where all variables have to be accounted

for.

We now consider the objective function of (2.2) and add the inequality
constraints and the bounded constraints in to our problem. Rewrite the problem by
linearizing the constraints as follows.

Mi;z(zk'mize m(x)= f(x*)+ B(")T (x(k”) - x(k))Jr (x(k”) —x® )TG(k)(X(kH) —x® )/ 2. (3.7

subject to: VH(X(“)(X("”) - x(k)): 0;
L <x,sU, for q=l.. ,n

, where

(b, +2Bx")

VH(x") =

is the Jacobian matrix of the binding constraints of (1.5) and (1.7).
We also replace (X(k“) —X(k)) by the improving direction d as before. Then,

decompose d, B(k) and VH(X(k)) into the basic and the nonbasic variables:

d, W k k
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The method to decompose the variables will be introduced later. Different from the

GRG method, the GRT search should decompose the Hessian Matrix G into four

sets:
B N
G<k>=B[G£§;3 G;ﬂ.
N|G§) G

The nonlinear problem (3.7) can be then generalized to:

el T (k)
Minimize  f(x)+pV"d, +pV/d, + 3z Cards , ds Crvdy

. - - 2 2 (3.8)
+ dN GNBdB + dN GNNdN
2 2
subject to VBH(x(k))dB + VNH(x(k))dN =0
qu Sxf; SUXq for q=1,...,n.
In (3.8), the equality constraints could be rewritten as
d, =-V,Hx")"'V,Hx")d, (3.9)

(3.9) should hold for the constraints to be met. Substituting (3.9) into the objective
function of (3.8), the objective function is reduced to be the function of nonbasic

variables. The nonlinear programming (3.8) becomes:

Mi%mize F(x*y+p? (XS\',‘“) -~ x%‘))+ (X(Nk+l) - X(A’,‘))TBR (XS\’,‘“) -~ x(]\',‘))/Z (3.10)
subject to qu Sxflk) Squ for q=1,....n

, where

b, =p% -v,Hx®) vV, Hx®)] p¥ (3.11)
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B, =G +V, Hx") vV, BV GHV,HY 'V, H(x")
(3.12)
—2v, Hx“) v, Hx ) GY)

The TR method in Section 3.1 is then applied to (3.10) and generates the improving

direction with the nonbasic variables subject to a sphere constraint:
Minimize : F(x*")y+bld, +d,'B,d, /2.

subjectto : d,"d, < A*’; (3.13)
L, < xék) <U, for q=1,...n

, where d, = (X(Nk”) - X(Nk)) the improving direction in the reduced space.

Moreover, we need to consider the upper bound and the lower bound of the decision
variables. The improving direction of the nonbasic variable d, should be further
adjusted by:

xfM—x=d =0 ifx{"=L, andd, <0,0orx!'=U, andd, >0 (3.14)

(k)

q

)

, where d, is the g-th component of dy, and x,*’ 1is the g-th component of x®).

With the above adjustment, the improving direction of the basic variables can be then
is calculated by (3.9). That ensures that the improving direction is feasible and
effective.

At each iteration of the GRT search, x*' is partitioned into basic variables X(;)

and nonbasic variables x\"), and VH(X(k)) is also partitioned into VBH(X(k)) and

V ,H(x")). Here, the number of the basic variables is the number of the binding
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constraints, and the basic variables xg‘) should satisfy two requirements. First,

VBH(X(k)), the bases of VH(X(k)), should be nonsingular. It ensures that the (3.9)
holds. Second, Xg‘) should be larger than L, and smaller than U,s. Because once the
improving direction of the nonbasic variables is determined, the direction of the basic
variables is indirectly generated by (3.9). If some elements of Xg‘) are on the upper

bounds or the lower bounds, no feasible solutions after Line Search can be found

through the GRT direction and the solution will be stuck at the boundary.

To satisfy the above two requirements, we first rank all variables by their

distances to the bounds. The distances between variables and bounds are computed as

follows:
U, —x® if x"“) ¢ slack varables and I ®
o d ox, |x=x"<0
distance, =4 x) — if x)¢ slack varhbles and LAty ) (3.15)
‘ ox, [x=x">
0 if x) € slack varhbles

, where distance, is the distance of g-th variable to its bound.

We would like to choose the variables farther from the bounds as the basic variables.
To do this, we rearrange columns of VH(X(k)) by distance, and choose the bases
from the front columns. In addition, we want to ensure that the chosen bases are

independent. Choosing independent columns can be done by Gaussian elimination [3].
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Pivots obtained by Gaussian elimination will locate the independent columns. The
second method to choose independent columns is rather straightforward. Starting
from the first column of the rearranged VH(X(k)), every time a column is picked its
independence from the chosen columns will be checked with “Singular Value
Decomposition (SVD)” to prevent singularity. We observe that the results by the two

methods are similar.
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The biggest difference between the GRT search and the GRG search is that we

need to specify the trust region radius for the GRT search. Even the algorithm 3.1

provides a strategy for updating the trust-region radius, we still need to make some

modifications for constrained problems and to make the algorithm more intelligent. In

this research, the modified algorithm is proposed as follows:

Algorithm 3.2
Input:
x):a given current point

J: the iteration index of trust region radius adjustment algorithm which is set

tobe 0

). the response improvement ratio of k-th search iteration.

Yo

AP a given trust region radius for current point x®)

. : 1
n: a radio measures how we trust this step and 7€ {O,Z)

Output:

d : an improving direction to current point x

AV the trust region radius of next point X!

Procedure Trust Region Radius Adjustment Algorithm

Begin
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Repeat Until p(k) >7n
Perform the algorithm 2.1 to obtain improving directiond.

Evaluate response improvement ratio ,O(k) by (3.1).

If p,<0.25 then

AR A x (0.25 1077025 el075)) (3.16)

Elseif p* <0.75 then

AED  A®) (3.17)
Else If dis a boundary solution then

A min(a® x(2-1007*°7) A (3.18)
End If
k—k+1

End Repeat

End

In Algorithm 3.2, we establish a mechanism to decide trust region radius
dynamically. This algorithm is supposed to be more intelligent than the Algorithm 3.1.
First, we set A to be the largest distance from the current point x* to the constraints
boundary. Second, instead of shrinking the trust region radius to one-fourth, we

dynamically shrink the radius according to the degree of the improvement ratio p(k) by

(p")-025+10g(0.75))

multiplying 0.25+10 . Similarly, instead of enlarging the radius twice

as large we dynamically enlarge it by multiplying (2—10(’p “) ) To explain the radius
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adjustment mechanism, Figure 3.9 and Figure 3.10 show how the two multipliers
change as p decreases or increases. The multiplier in (3.16) maps
{p(k) |—<>o<p(k) <0.25} to a shrinking factor{ﬁ(k) |O.25<,5(k) <1}; ie., as pP is a
large negative value the radius for the next iteration will be approaching 0.25x A"
The multiplier in (3.18) maps Lo(k) |0.75< p(k) <o<>} to an enlarging factor
{ﬁ(k) 1< ﬁ(k) < 2}; i.e., when p is greater than 0.75 and becomes large the radius for
the next iteration will be approaching 2x A . Thus, with the help of the two

multipliers, we can adjust the trust region radius dynamically.

(k)

p

p(k) 0.25
-2.3 -1.8 -13 -0.8 -0.3 0.2 0.7

Figure 3.9 The mapping of the shrinking factor in (3.16)
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Figure 3.10 The mapping of the enlarging factor in (3.18)

Although our algorithm consider the constraints and find the improving direction
in the reduced space but there still exists another problem, that is, the linearization of
nonlinear constraints. GRG deals with the problem by Newton-Raphson method. As
we discuss in GRG algorithm, the Newton-Raphson maintain the feasibility of the
solution. However, there are two disadvantages in the Newton-Raphson method. First,
the Newton-Raphson method relaxes the feasibility by allowing solution deviating
slightly from the constraints. Determining the tolerance of feasibility & is an issue.
Similarly, determining the initial step length of nonbasic variables @ isn’t easy.
Second, the computation required by the Newton-Raphson method is intensive. In
particular, the term V h(y”,X\/) in step 3.2 may not be invertible. Based on the
above reasons, we replace Newton-Raphson method by the Line Search. By the Line

Search, each solution is feasible and acceptable in the actual problem.
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There is a strong assumption in the GRG method or the GRT search. Both

methods linearize the constraints. However, the feasible region of nonlinear problem

(1.8) may not be a polyhedron. Because we use the Line Search instead of

Newton-Raphson method, there may be no feasible solutions along the linearized

constraints. For example, Figure 3.11 shows an initial solution on the quadratic

constraint boundary. The linearized constraint is actually the tangent of the curve. The

direction derived by both the GRG and the GRT search are the direction along the

tangent, but the tangent is outside the feasible region except the point of contact. This

study uses the ideas of the GRR algorithm, that is, we combine the Zoutendijk’s

method into the algorithm for this issue.
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Figure 3.11 Example of Zoutendijk’s method
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As explained in Section 1.2.3, the Zoutendijk’s method generates an improving
direction such that the angle between this direction and the constraint tangent must be
greater than zero and within feasible region. However, the direction found by the
Zoutendijk’s method is less effective. When there are feasible solutions after the Line
Search along the direction found by the GRG method or the GRT search, the direction
should be preferred. Otherwise, the Zoutendijk’s method is applied only when the
Line Search fails to improve. The algorithm combining the Zoutendijk’s method will

be shown as follows.

Now we summarize the algorithm of Generalized Reduced Trust Region search

method as follows:

e Step I:

Let x* be a feasible solution at the k-th search step. Choose a thresholde >0.
Check the binding constraints and add slack variables (the slack variables are zeros)
to the binding inequality constraints. Set the number of basic variables equal to the
number of the binding constraints. Approximate the objective function as a quadratic

function and linearize the binding constraints as the formulation of (3.7).
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e Step 2:

Compute distance, by (3.15). Rearrange columns of VH(X(k)) in (3.7) by distance,
and choose the independent bases from the columns in the front as basic variables, the
other variables as nonbasic variables. Then, decompose all matrices and vectors into
the set of basic variables and the set of nonbasic variables. In particular, the Hessian

matrix G is decomposed intoGg‘B) , Gg‘; , G(Nk; , and G(Nk,z,

e Step 3:
Perform Algorithm 3.2 to get an improving direction dy by solving (3.13). Adjust dy
according to (3.14). Calculate ds by (3.9). Combine dy and dz as the improving

direction d.

e Step4.1:

k+1

Do Line Search from x*) along direction d to find x“V in the feasible region of

(1.8). If there are no improving solutions after performing the Line Search, go to step

4.2; else take the feasible solution to replace x“ . Go to step 5.
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e Step4.2
Calculate Zoutendijk’s steps dz according the Zoutendijk’s method in Subsection

1.2.3 to replace d. Do Line Search from x® along direction dz in the feasible region

of (1.8). Go to step 5.

e Step5:

1f f(x*)— f(x*) < e, stop andx” = x**"); otherwise, go to step 1.

Here we use two examples to show the process of the GRT search method and a
test problem to verify the GRT search algorithm. First we use the same example
(Example 1.2) of the GRG method to show the search direction in the reduced space.
Second we use the Rosenbrock’s function as the example to show the GRT direction
could be more effective than the GRR direction and the GRT algorithm could also

avoid the three drawbacks of the GRR search method.

Figure 3.12 shows the improving direction (dashed-line) in the reduced space
and modified improving direction (bolded-line). Figure 3.13 shows the improving
direction (dashed-line) in the original space is infeasible thus we have to replace this

direction by Zoutendijk’s direction (bolded-line).
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Example 3.2

Initial Setting: set trust region radius to be 0.5 at current point.

2x,x, —4x, —6x,,

=2x] +2x; —

Minimize : f(x,,x,)
subject to : x, +x, < 2;
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Figure 3.13 The improving direction in the original space

In the following example, we demonstrate that the GRT algorithm is more
effective than the GRR algorithm. The first purpose of the example is to show that the
advantage of GRT search algorithm consider the solution inside the trust region. The
second purpose is to show the GRT algorithm avoid two drawbacks, i.e., (1) the
hessian matrix is singular or near singular; (2) the approximation issue of the

quadratic model.

Example 3.3:
Initial point: (x,,x,)=(1.42135452.0252484)

Minimize : (1—x1)*+100x(x, —x°)%,
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Subject to : —2 < x152; 0 < xp< 4.

808.0994 —284.2709

The Hessian matrix G is equal to
—284.2709  100.0000

}; the eigenvalue of G is

908.09948
equ
0.000004

}. Because the smallest eigenvalue almost equals to zero, the
Hessian matrix G is almost a singular matrix. We roughly set the trust region radius to
be 1, and then perform the GRT search algorithm to find the next point. Table 3.2
shows the result by solving the TRS. With the response improving ratio p(') <0.25,

the approximation of first iteration is poor. Thus we shrink the trust region radius and

set it to be 1><(O.25+10(73'5423}0'2“0’5(0'75)))=0.250087. The response improving ratio

of the second iteration p® can be accepted and we also get an improving objective

value. By the way, the algorithm only needs a few number of iteration for solving

TRS.
Table 3.2 GRT search result of example 3.2
Interaion Lagrangian multiplier =~ Corresponding Obj. Value Pk Radius
1 —-1.3981900E-01 1.175425E+00 —-3.542328 1
2 —5.2386169E-01 1.155079E-01 0.849160 0.2500887

Now we use the GRR algorithm to search the optimal Lagrangian multiplier by

(1.24). The GRR algorithm wants to find a Lagrangian multiplier which minimizes

the original objective by adjusting the Lagrangian multiplier by (1.24). With ¢ and

o are set to be 10 and 100, Table 3.3 shows the iterative results of the GRR search

90



method. Compare the two result generated by two method, we find that the GRT uses

less iterations and also gets a better objective value.

Table 3.3 GRR search result of example 3.3

Interaion Lagrangian multiplier =~ Corresponding Obj. Value

1 4.6806226E-06 9.276490E+25
2 4.2078324E-06 6.335962E+21
3 —-5.2006918E-07 6.110703E+17
4 —4.7799085E-05 6.088703E+13
5 —-5.2058925E-04 6.086232E+09
6 —-5.2484909E-03 6.083651E+05
7 —-5.2527507E-02 6.055326E+01
8 —5.2531767E-01 1.156180E-01

Finally this thesis will solve the test problem and the cases by these methods:

“Generalized Reduced Gradient method and Zoutendijk method” [24], “Generalized

Reduced Ridge method and Zoutendijk method” [24], “Generalized Reduced Trust

Region method and Zoutendijk method”, and commercial software “Lingo”. Solutions

by three different methods will be also discussed. Table 3.2 shows the methods with

different settings are compared in our research. Moreover, we consider the same

method [24] to generate the initial points.
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Table 3.2 The methods compared in our research

Methods
GRG + Zoutendijk

GRR + Zoutendijk (A=100, o=10)
GRR + Zoutendijk (A=100, a=20)
GRR + Zoutendijk (A=100, a=30)

GRT + Zoutendijk with Conventional Radius Adjustment (CRA)
GRT + Zoutendijk with Dynamic Radius Adjustment (DRA)
Lingo (Steepest Edge)

Lingo (SLP Directions)

Lingo (Steepest + SLP)

In the Subsection 1.3.1, we use the Rosenbrock’s function to show the strong
zigzagging phenomena by using the GRG search. This study uses the same problem to
test the search methods listed in Table 3.2. We select four corner points in the feasible
region to be the initial point and suppose the terminal criterion is less than 107°
between two iterative objective values or more than seven hundred steps of search.
The initial points are listed in Table 3.3 and the local search results are listed in Table

3.4.

Table 3.3 The initial points of the Rosenbrock’s function

Index X1 X
1 -2 0
2 2 0
3 -2 4
4 2 4
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Table 3.4 The Results of Rosenbrock’s function (Local Search)

Average Number of ~ Average Computing

Methods Average Objective Value Best Objective Value lterations Time (seconds)
GRG + Zoutendijk 5.0039460E-01 2.924208E-04 352 0.12
GRR + Zoutendijk (A=100, &=10) 1.4376088E-07 2.863833E-08 117 0.07
GRR + Zoutendijk (A=100, =20) 7.2339749E-07 6.192558E-28 101.25 0.04
GRR + Zoutendijk (A=100, &=30) 1.6651505E-07 6.192558E-28 186.75 0.07
GRT + Zoutendijk with CRA 8.8623310E-18 1.467099E-19 13 0.03
GRT + Zoutendijk with DRA 9.9622481E-18 7.101449E-19 13 0.02
Lingo (Steepest Edge) 2.2556653E-08 2.254358E-08 159.75 <1
Lingo (SLP Directions) 2.2560715E-08 2.255993E-08 146 <1
Lingo (Steepest + SLP) 2.2556500E-08 2.254766E-08 147.75 <1

The “GRT + Zoutendijk” methods have better performance in objective value
and computing time against the “GRR + Zoutendijk” methods and the methods of
Lingo. Moreover, the “GRR + Zoutendijk” methods are very sensitive to the
parameters. This is one of the drawbacks of the algorithm with “GRR + Zoutendijk”
approach as we discussed before. In order to verify the “GRT + Zoutendijk” methods
avoid the zigzagging phenomena, we plot the search processes of all initial points by

using the “GRT + Zoutendijk” method with 7= 0.25.
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Figure 3.14 The search process of the “GRT + Zoutendijk” method

Figure 3.14 shows that the “GRT + Zoutendijk” methods avoid the zigzagging
phenomena successfully and the search path advance along the inclined trough of the
Rosenbrock’s function.
3.3 Convergence Proof of Generalized Reduced Trust Region Method

In this Section, we propose a convergence proof of the GRT search method
based on the Algorithm 3.1. The convergence combines two convergence theories.
The first theory is about trust region method. It shows that the sequence of gradient
{B(k)} generated by Algorithm 3.1 has an accumulation point at zero, and in fact
converges to zero when 77 is strictly positive. Under this condition, another theorem
about the convergence of GRG claims that the ﬁ(k) is equal to zero if and only if the
current point x® is a KKT point. We then start the convergence analysis by obtaining

an estimate of the decrease in the model function m in (3.7) two-dimensional subspace
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minimization algorithms and Steihaug’s algorithm produce approximation solution d

of the (3.7) that satisfy the following estimate of decrease in the model function [14]:

(k)
m<o>—m<a>zcluwwumm(&w,”z_(k)‘m 619

We assume throughout that the Hessian matrix G"Y in (3.7) is uniformly bounded in
norm, and that f'in (1.8) is bounded below on the level set

=< f(x,)}. (3.20)
We define an open neighborhood of this set by

S(R,) = {x||x—z| < R, for some ze S}, (3.21)

where Ry is a positive constant.

To allow our results to be applied more generally, we also allow the length of the
approximate solution d of (3.7) to exceed the trust-region bound, provided that it stays

within some fixed multiple of the bound; that is,

||d|| <y A for some constant y>1. (3.22)

The following result deals with the case 1 = 0.

Theorem 3.1 [14]

Let n = 0 in Algorithm 3.1. Suppose that HG(k)H < ¥ for some constant y, that f
is bounded below on the level set S defined by (3.21) and Lipschitz continuously

differentiable in the neighborhood S(Ry) for some Ry > 0, and that all approximate
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solutions of (3.13) satisfy the inequalities (3.20) and (3.22), for some positive

constants c; and y . We then have

lim inf 8] =o0. (3.23)
Proof:
See also Appendix C.

Theorem 3.2 2]

Consider the problem (3.7) without the bounded constraints to minimize m(x)
subject to VH(X(k))(X—X(k))ZO, x20. Let x be a feasible solution such that
x' = (Xg,xg) and xp > 0, where VH(X(k)) is decomposed into [V BH(X(k))
\% NH(X(k))] and V BH(X(k)) is an invertible matrix. Suppose that m is differentiable
at x, and letr” = p*) —Bg‘)TVBH(X(k))_IVH(x(k)). Let d" =(x—x®) =[a’,d%] be the
direction formed as follows. For each nonbasic component j, let d, =—rif 1, <0
and d;,=—xrx, if ¥r;>0, and letd, =—VBH(x(k))’IVNH(x(k))dN. If d#0, then d
is an improving feasible direction. Furthermore, d = 0 if and only if x is a KKT point.
Corollary 3.1
Consider problem (3.13). The Generalized Reduced Trust Region search algorithm

)

will reach a KKT point at x'"™ as k — .
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Proof: We will have liminf”b R||=0 for problem (3.13) based on Theorem 3.1.

Since d, =—(B,+4I)"'b, for problem (3.13), d, = —VBH(x(k))_lvNH(X(k))dN ,

and d=[dN dB] thus we have lirginf”d” =0. Therefore, by Theorem 3.2 x* is

the KKT pointas k — .
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4 Case Study

In this chapter, three cases about semiconductor are described. We formulate the
cases as the SMOO problems like Equation (1.8) and solve by the methods listed in
Table 3.2.

4.1 Geometric Layout Design for Semiconductor Manufacturability

The information about how different geometric styles of layouts impact the
circuit performance is important for fables design houses. Some slight changes of the
channel length and width often lead to unexpected variations in the electricity signals.
The rounding phenomenon will occur in the corners of poly-silicon after
photolithography. Generally speaking, the “Active-Area” is the main cause of the

variation. Examples with rounding phenomenon are shown in Figure 4.1.

= . ;;umling
rounding Q/:{; ﬂ
[] ] | L ] 1
I:l l:l I:I l:l W
- I:I l:l
rounding /] .. .-
= Lk=

Figure 4.1 Two SPICE models with the rounding phenomenon
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The rounding phenomenon would increase the channel drawn length, Len, and
the channel drawn width, Wid, in Figure 4.1. The change of Len and Wid directly
influences the width-to-length ration of a transistor: Wi%en‘ However, the major
observations in E-Tests, saturation current (/p,,) and the threshold voltage (V;), would
be proportional to Wi%en [21, 16]. Thus, the design house would like to obtain a
setting of the design layout which has less variation and close to the desired electrical

performances.

In this case study, the design factors on the device layout are shown in Figure 4.2
and the upper bound and lower bound of these factors are summarized as Table 4.1.
This design is a NMOS transistor and the rounding phenomenon occurs around the

fillister in the center of Active-Area.
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Figure 4.2 Design factors on geometric layout

It is a three-factor layout design problem. Ten ET parameters are measured in a

CCD experiment and ten response surface models are built as below:

Table 4.1 Upper bounds and lower bounds for 3 factors

Factor Factor Name Lower Bound Upper Bound
X Hl 0 0.4
X, E1l 0.05 0.15
X3 /4 0.1 0.3

Y,, =0.48+086H1-089E1-087W-0.1H1*+718E1*+3.43W *+1.19H1E1-2.57THIW-0.59 EIW
Y\, = 009+0.99H 14223 E1+1.63W-037TH1*-019E12-09 W *-23H1E1-195HIW-8 53 EIW
Y., =-0.26-0.48H1+036E1+0.03W+0H12-2.54E1*-0.2W *+1.71H1E1+116 HIW-1.03E1W
' =-026+0H1-0.48E1-013W-0.08 H1* +0.14E1°-0.13W*-0.6TH1E1-01 HIW+325EIW
Y5 =051+0.66 H1-2.06 E1+03 1W-036 H1>+9.6 E1> +0.08W *+035 H1 E1-1.54 HIW-0 34 EIW
¢ =-029-046 H1+0.5E1-0.3W+0.15H1>-312E1>+0.67W *+08 H1 E1+0.96 HIW+0.19E1W
Y\, = 0.01+148H1+2E1+1.94W-0.4H 1> +2.39E1>-2.54W *-57TH1E1-2 A9 H1W-5 29 EIW
s = -0.39-0.1 1H1+0.55E1+0.45W+0.26 H1* -3.46 E1*-0.79W *+0.4H1E1-0.7 1 HIW+033EIW
Yy, =032-017HI4+059E1+1L4TW-014H1?-235E1%-3.02W *+0.2 1H1 E1+0.68 HIW-1.77EIW-0.32

}A’Cl =1098.08+600.73H1-8716.68 E1-5754.12W+1716.24 H1* +28624.78 E1>+12017.57W
+373483H1E1-5760.43H1W+13181E1W

>

>

>
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Because the rounding phenomenon would be influenced by H1 and El, the
design rule would like the H1 to be as large as possible and the E£1 to be as small as
possible. Thus, the term, (H1-0.4)" +(E1-0.05)’, are added into our objective
function to ensure the design factors close to the targets. In addition, the designers are
asked to minimize the rounding effect caused by the design factors E1 and H1. That is,
they hope that changes in £1 and A1 should not have minimum influence on the

2
0ET
d —OJ ,q=L12, are added in the

responses. Therefore, additional terms of (

Xy

objective function. Each of the ten ET has a specification window and a desired target.
We generate the desired targets close to the responses corresponding to the setting of
(0.4, 0.05, 0.25). Furthermore, the specification limits are generated by £10% of these
responses. These requirements are summarized as in Table 4.2 and the details of

problem formulation are in Appendix D.
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Table 4.2 Desired targets and specification windows for DFM

Desired . . .
Response Specification window
Response name target
(7)) L; U;

A1 IdsatN-592 0.54 0.483975  0.591525
A2 IdsatN-593 0.54 0.486743  0.594908

A3 IdsatP-592 -0.31 -0.33883  -0.27722
44 IdsatP-593 -0.32 -0.35184  -0.28787
A5 IdsatN-104 0.57 0.511785  0.625515
A6 IdsatP-104 -0.35 -0.38671 -0.3164

A7 IdsatN-107 0.54 0.48573 0.59367
A8 IdsatP-107 -0.37 -0.40623  -0.33237
B1 ViIN 0.48 0.433845  0.530255
Cl IoffN 225 202.2143  247.1508

Here, we solve the SMOO problem by the three methods. The optimum design,

the corresponding responses, and the effects are summarized in Table 4.3, Table 4.4,

and Table 4.5, respectively.

Table 4.3 Optimum design of DFM case
Factor H1 i 1 W

Optimum
setting

0.155624 0.1341821 0.1184904

Table 4.4 Responses given the optimum design
Al A2 A3 A4 A5 A6 A7 A8 Bl Cl
IdsatN-592 IdsatN-593 IdsatP-592 IdsatP-593 IdsatN-104 IdsatP-104 IdsatN-107 IdsatP-107 VIN ToffN
0.5344 04917 -02907  -03052  0.5118  -03357 04857  -03466 04478  247.1508

Table 4.5 Sensitivity effects given the optimum design

Al A2 A3 A4 A5 A6 A7 A8 B1 Cl1
H1 0.684 0.335 -0.113 -0.127 0.412 -0.192 0.286 -0.595 -0.105 953.498
El 1.152 0.81 -0.178 -0.162 0.53 -0.19 1.117 -0.277 -0.218 1108.238
W -0.536 -0.034 0.025 0.26 0.044 0.034 0.241 0.197 0.623 -2033.993
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Here we allocate 2 initial solutions for the global search. Seven feasible initial
solutions could be found. We suppose the terminal criterion is less than 10 between
two iterative objective values or more than seven hundred steps of search. Table 4.6
describes the results of all local optimums with the seven feasible initial solutions by

the methods listed in Table 3.2.

Table 4.6 Results of DFM case (Local Search)

Average Number of Average Computing

Methods Average Objective Value Best Objective Value

Iterations Time (seconds)
GRG + Zoutendijk 2.0196656E+07 1.5592227E+07 434.00 1.20
GRR + Zoutendijk (A=100, or=10) 1.5592227E+07 1.5592227E+07 116.14 0.63
GRR + Zoutendijk (A=100, or=20) 1.5592227E+07 1.5592227E+07 332.14 1.40
GRR + Zoutendijk (A=100, or=30) 1.5870851E+07 1.5592227E+07 477.43 2.14
GRT + Zoutendijk with CRA 1.5592227E+07 1.5592227E+07 34.71 0.23
GRT + Zoutendijk with DRA 1.5592227E+07 1.5592227E+07 34.43 0.22
Lingo (Steepest Edge) 1.5592233E+07 1.5592220E+07 12.00 <1
Lingo (SLP Directions) 1.5592230E+07 1.5592230E+07 12.86 <1
Lingo (Steepest + SLP) 1.5592230E+07 1.5592230E+07 12.29 <1

In the above results, the algorithms with the “GRR + Zoutendijk” and “GRT +

Zoutendijk” approach and software “Lingo” have better performance. All initial

solutions could reach the global optimum. However, the algorithm with the “GRG +

Zoutendijk” approach can’t converge to the global solution no matter what initial

solution is used possibly due to the zigzagging phenomenon. Moreover, the steps and

the computing time of the algorithm with “GRR + Zoutendijk” are very sensitive to

the parameter.
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4.2 Robust Configuration of Semiconductor Supply Chain

Semiconductor fabrication is a very complicated manufacturing process. The

global, cross-company supply chain operations as shown in Figure 4.3 are even more

complicated and dynamic.

Demand
ASSY FT
FAB Process
P cp = ~ Process
rocess  Process— — Design Houses
— L IDM
\ A
/ | e
b / —
Supply 7 " 4

Supply > Supply

Figure 4.3 Semiconductor supply chain

For the complexity, a usual planning and scheduling solutions have become
impossible to employ. Thus, both statistical optimization and control techniques have
been proposed and applied to semiconductor manufacturing systems [6]. The
empirical supply chain model describes how the supply chain configuration affects
the chosen performance metrics and their variability. With such models, an optimal
supply chain configuration can be found for different types of products, priorities, and

routes.

There are several performance metrics of the semiconductor supply chain. From

the entire supply chain point of view, this case chooses “the mean of X-factor” and
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“the variability (standard deviation) of cycle time” as the metrics to evaluate the
supply chain performance in semiconductor manufacturing. In addition, lots of
allocation decision variables in semiconductor manufacturing may affect the supply
chain performance metrics. In this case, these allocation decision variables are defined

as follows: T the percentage of product k assigned to be produced at the priority
q , and Py » the percentage of product k assigned to be produced at the route 7 .
The relationship among these allocation decision variables is shown in Figure 4.4;
these metrics are defined as follows: E(X & factora), the mean of X-factor to all
products assigned to be produced at the priority ¢ , and SD(CT 5)> the standard
deviation of cycle time to all products assigned to be produced at the priority ¢ .
Besides, we assume that the priority mix is independent of the supply chain route mix

without loss of generality.

Priority

Super hot lot

010
00111

110001
110101010

Product 100001010110
Hot lot
—
010
00111
D 110001
~— 110101010
100001010110
Normal lot
. ) °
010
00111
o s °
100001010110
¢ [

Figure 4.4 Supply chain allocation decision variables
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By collecting the data from research papers and personal interviews, this case

build an empirical supply chain simulation model as shown in Figure 4.5. The

production environmental setting in our simulation is shown in Figure 4.5.

Maly Dt Supply CME.E- BDedacin H:' Bl
ey g Awinim  Qiine welyy Scehmot dmmi perfymance
- Rillr v auiy b = ity Spluim pedet
Allocalion ¥  eper  ww ar Prioad Sl ey -u: Ivletrics
" [ i )
e ETT 11
— Simulation Model B(X - jactory)
Roste mbx — usirng ERI Plarit
Par soler,)
¥ ¥ ¥
Conskraing Cossirais G streavs
Supply Chain Constrinks
Figure 4.5 Supply chain simulation model
Table 4.7 The Environment setting of model
Index Value
Number of facilities in each tier 3tiers; 6:2:2
Product Capabilities of each facilities See Table 3.9
Simulation Horizon Setting 90days
Total Demand Quantity 6465K wafers

Production C ity of each ti
roduction Capacity ot each tier 6465K wafers for each tier
(wafer per month)

Average bottleneck processing time of each facility of each tier (Capacity Constraint) Product A :B:C=2:17:1

Table 4.8 The capacity at each facility of each tier

FAB Capacity Assem. Capacity FT Capacity
FABI 1468K Asseml 3265K FT1 3200K
FAB2 1376K Assem?2 3200K FT2 3265K

FAB3 922K

FAB4 1133K

FABS 1202K

FAB6 689K

Total 6465K Total 6465K Total 6465K
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Besides, there are three priorities for each product, and the required delivery
durations are very different: the required delivery duration for super hot lot is 1.3
times the row process time of each product; 2.1 times for hot lot and 3 times for the
regular. We have total nine possible routes in this example including six routes, four

routes and two routes for three different products, respectively.

We also assume that the production cycle time is infinite if capacity utilization
rate approaches to 200% and the production cycle time is raw processing time if
capacity utilization rate is 0%. By following this assumption, the product cycle time
for each product at each plant in different priorities can be estimated based on
different utilization rate for each product at each plant in different priorities. The
general function of cycle time is an exponential curve. Our simulation model is based
on 80% capacity utilization rate. The expected cycle times and raw process time for
each product at each plant of different priorities in FAB, Assembly, and Final test are

listed in Appendix E.

Moreover, we design 5 levels for each factor, but total levels in this experimental

design have only 15 factors because the sum of decision variables T and Q.

must add up to 1. Next, a D-Optimal method is adopted such that 180 simulation runs
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are further developed. Finally, each run is performed 20 replicates. The corresponding

performance metrics for each run were collected. After that, a response surface model

is generated to indicate the interrelationships between E(X — factor; ), SD(CT (7)

and B> Py - Thus, an optimal configuration model in a semiconductor

manufacturing is ready to be developed.

Since this model must consider several performance metrics simultaneously, the
subjective weights of performance metrics for priority 1, 2 and 3 are supposed to 15, 5,

and 1, respectively:

Min iwq [E(X—factorg)—l]2 +23:wq [SD(CT(?)—O]2

g= g=1
where w, =15, w, =5, w; =1. The target of the X-factor and the standard
deviation are one and zero.
In addition to the target, there are the lower bounds of the X-factor and the standard
deviation:
E(X—factorq)ZI Vg,

SD(CT, )20 Vg .
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Moreover, there are several sets of constraints, which are explained as follows:
The proportion of a product assigned to be produced at different priority levels should

be added up to 1:

Zzzﬁzl vk .

q

The proportion of a product assigned to be produced at different routes should be added
up to 1:

Z pr=1  Vk.

The total proportion of demands to be produced at the priority level ¢ must locate
within a predetermined upper limit and lower limit:

équl;:]?,;'”;q =7, Vg,

where 77; is the maximum percentage of products produced at the priority q, 4:5
is the minimum percentage of products produced at the priority ¢ , and f?; is the
percentage of product k in product mix.

The total proportion of demands to be produced at the specific route must locate
within a predetermined upper limit and lower limit:

ErSkZlN’,:'p;,;S&r vr,

where @, is the maximum percentage of products produced at production route 7
and ﬁ; is the minimum percentage of products produced at production route 7 .

The capacity constraints of each facility in each supply chain tier:
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PT.-.
~ e ~
E; 2.2 PPy o7 <G VO,
7o

TgeF k

where E- is the utilization rate of tier 7 , C;: » 1s the capacity ratio at factory [
of tier 7 , PT;, is the average production cycle time of single product at factory [
of tier 7 ,and PT i is the average production cycle time of product k at factory
@ oftier 7 .

The upper bounds and the lower bounds of each decision variable:

U _>7.2L_ Vk,G,

U, 2p =L, Y7k,

where U . and L, are the upper bound and the lower bound of the percentage of

9

product k assigned to be produced at the priority ¢ . U P and L, are the upper
bound and the lower bound of the percentage of product k assigned to be produced
at the route 7 . The details of the supply chain problem formulation are in Appendix
F. Here, we solve the SMOO problem again by the three methods. The optimum
solution and the corresponding responses are summarized in and Table 4.10,

respectively.
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Table 4.9 Optimum design of supply chain case

Factor 7Ty, 7Ty, 7T, 7Ty 75 Tty 7Ty
Optimum 5 10 85 15 10 75 15

setting

Factor s, Tls3 P Pla Pis Py Pis
Optimum 10 75 10 10 20 17.1498  19.9088

setting

Factor Plo P P P P P P
Ospstltri‘;ugm 22.9414 30 233269 159212 307519 454128  54.5871

(Unit of all decision variables: %)

Table 4.10 Responses given the optimum design
E(X - factor)  E(X - factor,)  E(X — factor,) SD(CT,) sp(cT,) SD(CT,)
1.39722 1.63383 2.10121 0.24881 0.2734 1.58036

(Unit of the standard deviation: Month)

We generate 32 feasible initial points and perform the search algorithm listed in
Table 3.2. Table 4.11 shows the search results of each method. Although, the GRT +
Zoutendijk and the GRG + Zoutendijk method can find almost the same optimum but
the GRG + Zoutendijk consumes less computing time and uses less number of
iterations. Moreover, we use the local-search option to perform algorithm thus the

objective values of the Lingo’s method are worse than other methods.

Table 4.11 Results of supply chain case (Local Search)

Average Number of  Average Computing

Methods Average Objective Value ~ Best Objective Value Iterations Time (seconds)

GRG + Zoutendijk 1.1831251E+01 9.379897E+00 107.23 3.68

GRR + Zoutendijk (A=100, &z=10) 1.2398509E+01 9.379897E+00 442.67 38.72

GRT + Zoutendijk with CRA 1.2190163E+01 9.379897E+00 307.81 12.10

GRT + Zoutendijk with DRA 1.2048563E+01 9.379897E+00 285.48 10.63
Lingo (Steepest Edge) 1.6123810E+01 1.612381E+01 27.00 <1
Lingo (SLP Directions) 1.6126714E+01 1.613550E+01 27.54 <1
Lingo (Steepest + SLP) 1.6123701E+01 1.612673E+01 25.32 <1
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4.3 Track System PEB CDU Optimization

In semiconductor fabrication industry, the Critical Dimension Uniformity (CDU)

control is essential for today’s high performance IC device. The desired control of the

CDU is just under 2.6nm (3-sigma) for 65-nm technology. The across-wafer gate

critical dimension uniformity (CDU) strongly affects the final chip-to-chip

performance spread in terms of speed and power. Thus it motivates us to improve the

CDU for better yield. This study uses the methods including Design of Experiment

(DOE), Response Surface Methodology (RSM) and the GRT search to improve the

CDU. There is a paper, see also [23], discusses the improvement of the CDU by using

different approach can be compared with our result. Many semiconductor fabrication

technologies in our study are also can be found in this paper.

Within-wafer CD uniformity is mainly affected by the temperature

non-uniformity on the post-exposure-bake (PEB) hot plate. Therefore the temperature

control of the PEB step has an important impact of the final CDU. There are a lot of

source contributes to CD variation throughout the lithography and etch sequence.

Table 4.12 shows the possible source to CD variation [23]. The PEB step has become

very critical in controlling gate CD since the thermal dose diffuses acid and catalyzes

the chemical reaction of the chemically amplified resist after exposure. This study
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will focus on reducing the variation source of the PEB step. The simplest and most

straightforward approach to reduce across-wafer CD variation is to make each

processing step spatially uniform. Modern wafer track systems include a

multizone/multicontroller bake plate meant to be adjusted to deliver more spatially

uniform PEB temperature distribution. In this study, the distribution of the seven

zones is shown in Figure 4.6.

Table 4.12 Source and characteristic of several types of CD variation

Process step Tool Type of variation

Coat Track across wafer (AW), wafer-to-wafer (w2w)
Bake Track AW, w2w

Expose Scanner AW, intra die, w2w

Develop Track AW, w2w

Etch Etcher AW, w2w

Figure 4.6 The distribution of multizone PEB bake plate
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The manipulatable parameter of the PEB bake plate is the temperature of each
zone. In our modeling approach, we have the same assumptions as [23]. We also
assume that the actual steady-state PEB temperature on a wafer at a location over each
zone of the multizone/multicontroller bake plate is decided by the temperature
setpoint, the corresponding offset of the zone controller, and the effect of other zones,

due to the good conductivity of bake plate.

In practice, there are 577 sites in one wafer and the CDs of these sites are
affected by the temperature of the seven zones, i.e., the offsets of the seven zones. For
this reason, we can construct 577 “Linear Regression Models” for these 577 sites.
Each model can be written as the following equation:

CD,=b,,+ b." x Zone Offsets + £, ,

b,, Zone, Offset

Zone, Offset

b,
where i={l,...,577}, b,=| .7 |, ZoneOffses = and ¢ is the error

b, , Zone, Offset

term of the model.

But the only concern is the CDU of the wafer not the CDs thus we use the “Mean
Difference” approach to construct these models. The idea of the “Mean Difference” is

to construct a model describes the relationship between the differences (the CD of
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each site — the overall mean of the wafer) and offset of each zone. Because our
ultimate goal is to reduce the CDU of the wafer thus we will care about the difference
of the CD of each site to the overall mean. If the total differences become small, that
is, the CDU of the wafer becomes small simultaneously. Therefore, the set of optimal
offset found by the “Mean Difference” model can minimizes the difference of each
site to overall mean and also reduces the CDU of the wafer. For this reason, we
choose the “Mean Difference” approach to construct the models. Thus the “Mean

Difference” models can be rewritten as follows.
(CD,—M),, =b,,,+b], xZone Offsets +¢,,

where 7= {1,...,577} and M is an overall mean CD value of the wafer.

In this study, the data is obtained from 32 experiments. Actually, with the help of
“Design of Experiment” (DOE), we also can build the models by fewer experiments.
But we do not emphasize the importance of using the DOE in this study. The effects
of all sites on a wafer can be plot on the color grid charts. The different colors of the
color grid chart denote the degrees of the effects. The darker color means the stronger

effect of the site. Figure 4.7 shows the effect maps of the seven zones.
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Figure 4.7 The effect map of the seven zones.
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In practice, there are three different requirements need to be meet. The first
requirement is to find the set of optimal offset minimizes the CDU. The second
requirement is to find the set of optimal offset minimizes the CDU and the value of
overall mean CD of the wafer hit the specified target. The third requirement is to find
the set of optimal offset minimizes the CDU and the value of overall mean CD the
wafer satisfies the specified bounded constraints. To satisfy the second and third
requirements of the optimization, we also need to evaluate the model describes the
overall mean of the wafer and the offsets. The overall mean model can be written as

follows.

Overall Mean=b, ,, +b;, X Zone Offsets + £,

3

by Zone, Offset
hM Zone, Offset i
where b, = "7 |, ZoneOffses = ; and ¢&,, is the error term of the
b; \ Zone, Offset

overall mean model.

Sometimes, the offsets of the PEB plate have physical limitation, i.e., the optimization

model needs to consider the constraints for the offsets. We now summarize the three

optimization models as follows.
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Optimization Model for Requirement (1):

577

2
Minimize: )" [bi,D,O +b; , X Zone Offsets] ;
i=1

Zone; Offset
Subjectto: L, < Zone, Offset<U,,
where j=1{L...,7}, L, and U, denote the lower-bound and upper-bound of the

b, p. Zone, Offset
Zone, Offset

i,D,2

offset of Zonej, b,, = , Lone Offses =

b, v Zone, Offset

Optimization Model for Requirement (2):

577 5

Minimize: )" [bi,D,O +b; , X Zone Offsets] ?
i=1

Zone; Offset

Subject to: b, ,, +b,, x Zone Offsets =T, ;
L, <Zone, Offset<U,,,

where j={l,...,7}, Ty is the target of the overall mean and L, and U, denote the

lower-bound and upper-bound of the offset of Zone j respectively.

Optimization Model for Requirement (3):

577

2
Minimize: Y |b, ., + b, X Zone Offsets| ;
i=1

Zone; Offset

Subjectto: Ly, <b,, +b), xZoneOffsets <U,,;
L, < Zone, Offset <U,,
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, where j={L....,7}, Uy and Ly are the upper-bound and lower-bound of the overall

mean and L, and U, denote the lower-bound and upper-bound of the offset of

Zone j respectively.

We consider the third requirement to be the optimization model. We allocate 2°
initial solutions for the global search. We use the same terminal criterion, 107
between two iterative objective values or seven hundred steps as other cases. Table
4.13 lists the results of all local optimums starting with the eight feasible initial

solutions by the methods in Table 3.2.

Table 4.13 Results of CDU optimization case (Local Search)

Average Number of Average Computing

Methods Average Objective Value Best Objective Value Iterations Time (seconds)

GRG + Zoutendijk 3.0783512E+01 3.0109657E+01 700 70.48

GRR + Zoutendijk (A=100, a=10) 3.0092226E+01 3.0092226E+01 12.375 0.73

GRR + Zoutendijk (A=100, @=20) 3.0092226E+01 3.0092226E+01 63.125 3.13

GRR + Zoutendijk (A=100, =30) 3.0092226E+01 3.0092226E+01 154.75 6.95

GRT + Zoutendijk with CRA 3.0092226E+01 3.0092226E+01 5.5 0.45

GRT + Zoutendijk with DRA 3.0092226E+01 3.0092226E+01 2.625 0.37
Lingo (Steepest Edge) 3.0092230E+01 3.0092230E+01 39.75 =1
Lingo (SLP Directions) 3.0092230E+01 3.0092230E+01 44 =1
Lingo (Steepest + SLP) 3.0092230E+01 3.0092230E+01 38 =1

Due to the zigzagging phenomena, the method “GRG + Zoutendijk” methods also

cannot converge to the global minimum again. The search result including the steps

and the computing time of the “GRR + Zoutendijk” methods is sensitive to the

parameter again. If we compare the objective value, the consuming steps and the
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computing time, the “GRT + Zoutendijk” methods are all comparable to the methods

of “Lingo”.
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5 Conclusions

In this research, we solve the “Trust Region Subproblem (TRS)”, using SVD.

With the help of SVD, we enhance the TRS algorithm by proposing a better lower

bound for safeguarding the Newton’s iterates and also provide a new mechanism to

adjust the trust-region radius dynamically. To solve the SMOO problem, a nonlinear

constrained problem, we then develop the “Generalized Reduced Trust Region (GRT)”

search method with the above modifications. We have also proved the convergence of

the proposed GRT algorithm.

To verify our algorithm, a test problem and three SMOO problems were studied.

The following results were observed:

1. The GRT search method avoids the zigzagging phenomena often incurred
by the GRG method and gets a better solution.

2. The GRT search combined with the Zoutendijk search method can
effectively reach the optimal point in every case.

3.  The GRT search method with dynamic radius adjustment can reduce the
number of iterations and computing time by about 5% to 10% as compared
to the conventional radius adjustment in a large scale problem such as the
cases of the DFM problem and the robust semiconductor supply chain
optimizations.

4. Compared against Lingo’s solution, our search algorithm usually converges

at the same or better solution with comparable computation time.
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Although, the four cases lend support to this research, there are still much room to be

improved.

1. In order to deal with any kind of optimization problems, the Hessian matrix
can be calculated and updated more efficiently. Moreover, the Hessian
matrix indeed could be approximated for shorter computing time [4].

2. In late 1980s, many researchers try to solve the trust region problem more
efficiently like the dogleg method and indefinite dogleg method [5, 14, 22].
They are all approximate techniques of the trust region problem and also
lead to the same global and local convergence properties, i.e., these methods
can shorten the computing time without loss of optimality conditions.

3. In this research, the SVD replaces the Cholesky factorization to compute
and perform the Newton’s iterates. However the SVD is too costly for large
matrices, the method is applicable only for small problems. There have been
many researches on how to reduce the computational efforts of the
Cholesky factorization [10].

4. Although this research propose the convergence property of the GRT
algorithm but the Corollary 3.1 does not cover the Line Search method.
There have been some algorithms combine the Trust Region method and
Line Search method and also provider convergence properties [8, 15, 20]

5. In this research, we propose a dynamic strategy to update the trust-region
radius. In 2005, some researchers discussed about the trust region radius
update [19].

6. Zoutendijk’s method sometimes incurs the zigzagging phenomenon. It may

influence the search performance of the GRT search. There should be some
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enhancements when searching a feasibly improving direction at the
boundary of feasible set.

Multiple initial solutions could increase the probability to reach the global
optimum, but there exists a systematic method. In Lingo’s algorithm, the
“Branch and Bound” algorithm is adopted. It divides the nonlinear
programming problem into several approximate convex optimization

problems, then, searches the global optimum iteratively.
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Appendix A.  Proof of the solution to the Hard Case

To prove d satisfies the condition (2.7) [9], observe
(G-A1d=~G-A1(G- A1) B+, )=~(G - A1(G - A1) p-7(G - A1)q;.
,where (G—-AI)G-AI)" =1 thus we have
(G-Ald=—p-7(G-Al)q,
and since e N(G—-AI) we conclude
(G-AT)d=-
, which complete this proof.
For the condition (2.8) we have the squared Euclidean distance of d is decomposed as

follows

df =[G -a0 B+, =|-G-2D) ] +2x|a, (G- A1)'p
,where q' (G-A4I)p=

So we have

o = |- (G 1)

and then 7=+[(A* - (21) can be determined to meet ||d|| =A

For the condition (2.9), it can be seen that d is a KKT point that satisfies KKT first-

and second-order conditions for establishing only local optimality.
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Appendix B.  Trust Region Algorithm

Algorithm B.1 [9]

Input:
y7n =||G|| - (where ||0|| .~ 1s the Frobenius matrix norm) to ensure that (G+,UOI)

1s PD.

8, = tolerance for convergence of the solution d(z)
0, = tolerance for convergence of 4, to signal the hard case

€ = tolerance used in the method of iteration

M., = some large negative number (in our implementation, we use the minimum
value of double)

k = 0 (reset the iteration index)

Begin

Repeat while [|d(«)|- 4[> 5,

Factor (G + ,uI) = U"U (Cholesky Factorization) (B. 1)

If (G+ul) is P.D. then
Solve the two linear system:

U'Ud(u)=—$ and U'Uy(u)=d(u) (B.2)

HMinin < [ﬂmm»ﬂ - %} (B.3)

If ||d(,u )” <A (at the right of the root) then

ﬂmax <« luk (B 4)

Else
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Hoin < 1y (B. 5)

End If
O u- : _”Z('u L} ”dyzgﬁﬁy)”(;)” (Newton’s iterate) (B. 6)
If fi<u, then
e W (safeguarding) (B.7)
End If
Else
g max{y ut and fi w (safeguarding)
(B. 8)
End If
I |l — M| < 6, then

Compute the eigenvector q via the method of inversed iteration

applied to (G+(u+&)I) and then determine 7 (Problem is hard

case). Return (Solutions are d =d(u)+my; 4 =u~-A)

(B.9)

End If
End Repeat

End
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Appendix C.  Proof of Theorem 3.1 (Convergence to Stationary
Point)

By performing some technical manipulation with the ratio p(k) from Algorithm

(3.1), we obtain

(S = £+ d)) = (m(0) — m(@))
m(0)—m(d) |

m(d)— £ (x*) +d)|
m(0)—m(d)

-
(C. 1)

b

where f(x(k)): m(d).

Since from Taylor’s theorem we have that
FEH+dy= Fx)+ Vi) Td+ j;[Vf(x(k) +1d) - VF(x")]"ddt (C.2)
for somet € (0, 1), it follows from the definition (3.7) of m that

(om(d) - £ (x) +d) = ‘%dTG(")d ~ [V Y 1)~V (<) d

<& o +2la

where we have used y(; to denote the Lipschitz constant for V/f (X(k)) on the set S(Ry),

(C.3)

2
»

and assumed that ||d|| < R,to ensure that x® and x* + td both lie in the set S(Ry).

Suppose for contradiction that there is €> 0 and a positive index K such that
Bz &, forall k=K. (C. 4)

From (3.20), we have for £ > K that

(k)
) J > clgmin[A(k),ﬁJ | (C.5)

m(0)—m(d) = cluﬁ(k)u min[A("),

Using (C. 3), (C. 5), and the bound (3.22), we have
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" -1/< (C. 6)

c,€ min[A(k), EJ
4

We now derive a bound on the right-hand-side that holds for all sufficiently small

values of A, that is, for all A¥) <A, where A is defined as follows:

- 1 € ROJ

A=m L . (C.7)
“(2 vY(x/2)+x

The RO/ Y term in this definition ensures that the bound (C.3) is valid (because

||d|| <A, <JA<R,). Note that since ¢, <land y2>1, we have A < &/ y . The latter

condition implies that for all A¥) [0 A] we have mm( L&/ ;{) , so from (A. 6)

and (3.31), we have

72A“‘)2(I+;aj 72A( +zlj VZA[ +11L

2 1
cleA(k) € c,€ -

" —1< (C. 8)

1
Therefore, p(k) > 2 , and so by the workings of Algorithm 3.1, we have A > AW

whenever A* falls below the threshold A . It follows that reduction of A (by a

1 : : :
factor of 1 ) can occur in our algorithm only if

A > A
and therefore we conclude that

A¥ > min(A%) A/4) forall k2K . (C.9)

1
Suppose now that there is an infinite subsequence x such that p( )>= forke k. For

4;

ke k andk >k, we have from (C. 5) that
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SE =) = f ) = (X +d®)
Zi[m(O)—m(d)] (C. 10)

> lclgmin(Ak,g/;().

N

Since fis bounded below, it follows from this inequality that

lim A%

ke x,k—oo

0, (C.11)

contradicting (C. 9). Hence no such infinite subsequence k can exist, and we must have

1
p(/‘) < 2 for all & sufficiently large. In this case, A" will eventually be multiplied by

1 ) ) ) ) . )
— at every iteration, and we have limA* =0, which again contradicts (C. 9). Hence,
k—eo

our original assertion (C. 4) must be false, giving (3.23).

Complete the proof of Theorem 3.1.
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Appendix D.  Problem Formulation of DFM Case
Minimize:

(0.48+0.86x, - 0.89x, - 0.87x, - 0.1x,” + 7.18x,” +3.43x,” +1.19x X, - 2.57X,X, - 0.59x,X, - 0.54)>
+(0.09 +0.99x, +2.23x, +1.63x, -0.37x,” -0.19x,” - 0.91x,” - 2.3x X, -1.95x,X, - 8.53x,X, - 0.54)*
+(-0.26-0.48x, +0.36x, +0.03x, +0x,” - 2.54x,% - 0.2x,” +1.71x,x, +1.16x,x; - 1.03x,x; +0.31)°
+(-0.26+ 0x, - 0.48x, - 0.13x, - 0.08x,> +0.14x,” - 0.13x,” - 0.67x,x, +0.1x,x, +3.25x,x, +0.32)*
+(0.51+0.66x, - 2.06x, +0.31x, -0.36x,> +9.6x,” +0.08x,” +0.35x,x, - 1.54x X, - 0.34x,%, - 0.57)°
+(-0.29-0.46x, +0.5x, - 0.3x, +0.15x,” -3.12x,” +0.67x,” +0.8x,x, +0.96x,x, +0.19x,x; +0.35)>
+(0.01+1.48x, +2x, +1.94x, - 0.4x,” +2.39x,” - 2.54x,” - 5.77x X, - 2.49% X, - 5.29%,X, - 0.54)*
+(-0.39-0.11x, +0.55x, +0.45x, +0.26x,” -3.46x," - 0.79x,” +0.4x,x, - 0.71x,x, + 0.33x,%, +0.37)*
+(0.32-0.17x, +0.59x, +1.47x, - 0.14x,* - 2.35x,” -3.02x,* + 0.21x,x, +0.68x,x, - 1.77x,X, - 0.48)>
+(1098.08 + 600.73x, -8716.68x, - 5754.12x, +1716.24x,” +28624.78x,> +12017.57x,> +3734.83x X,
-5760.43x,x, +13181x,x, -225)°

+(x, -0.4)% +(x, - 0.05)>

+(0.86-0.2x, +1.19x, - 0.59x, - 0)> +(0.99 - 0.74x, - 2.3x, -8.53x, - 0)?

+(-0.48+ 0x, +1.71x, -1.03x; - 0)> +(0-0.16x, - 0.67x, - 0.1x, - 0)*

+(0.66 - 0.72x, +0.35x,, - 0.34x, - 0)> +(-0.46 + 0.3x, +0.8x, + 0.19x,, - 0)?

+(1.48-0.8x, -5.77x, - 5.29x, -0)* +(-0.11+ 0.52x, +0.4x, +0.33x, - 0)*

+(-0.17-0.28x, +0.21x, -1.77x, - 0)*> +(600.73 + 3432.48x, +3734.83x, +13181x, -0)*
+(-0.89+1.19x, +14.36x, - 0.59x, - 0)* +(2.23-2.3x, - 0.38x, - 8.53x, - 0)°

+(0.36 +1.71x, - 5.08x, - 1.03x, - 0)® +(-0.48 - 0.67x, + 0.28x, +3.25x, - 0)°

+(-2.06+0.35x, +19.2x, - 0.34x, -0)* +(0.5+ 0.8x, - 6.24x, +0.19x, - 0)°

+(2-5.77x, +4.78x, - 5.29x, - 0)* +(0.55+ 0.4x, - 6.92x, + 0.33x, - 0)*

+(0.59+0.21x, - 4.7x, -1.77%, - 0)* +(-8716.68 + 3734.83x, + 57249.56x , +13181x, - 0)°
+(-0.87-2.57x, - 0.59x, + 6.86x -0)> +(1.63 -1.95x, -8.53x, -1.82x, - 0)>

+(0.03+1.16x, -1.03x, - 0.4x, -0)* +(-0.13+ 0.1x, +3.25x, - 0.26x, - 0)*

+(0.31-1.54x, - 0.34x, +0.16x - 0)* +(-0.3+0.96x, +0.19x, +1.34x, - 0)°

+(1.94-2.49x, -5.29x, - 5.08x, - 0)% +(0.45-0.71x, +0.33x, -1.58x, - 0)°

+(1.47 +0.68%,1.77x, - 6.04x, - 0) +(-5754.12 - 5760.43x, +13181x, +24035.14x, - 0)*

subject to:

0.483975 < 0.48+0.86x, - 0.89x, - 0.87x, - 0.1x,” +7.18x,” +3.43x,” +1.19x,X, - 2.57x,X, - 0.59x,x - 0.54 < 0.591525
0.486743< 0.09+0.99x, +2.23x, +1.63x, - 0.37x,” - 0.19x,” - 0.91x,” - 2.3x,Xx, - 1.95x X, - 8.53%,X, - 0.54 < 0.594908
—0.33883 <-0.26- 0.48x, +0.36x, +0.03x, +0x,” - 2.54x,” -0.2x,” +1.71x,x, +1.16x,x, - 1.03x,x, +0.31<-0.27722
—0.35184 <-0.26+0x, - 0.48x, - 0.13x, -0.08x,” +0.14x,” - 0.13x,” - 0.67x,x, + 0.1x,X, +3.25x,X, +0.32 < -0.28787
0.511785<0.51+0.66x, - 2.06x, +0.31x, - 0.36x,” +9.6x,” +0.08x,” +0.35x X, - 1.54% X, - 0.34x,x -0.57 < 0.625515
—0.38671<-0.29-0.46x, +0.5x, - 0.3x, +0.15x,” -3.12x,” + 0.67x,” +0.8x,x, +0.96x x, +0.19x,x; +0.35 < -0.3164
0.48573 < 0.01+1.48x, +2x, +1.94x, -0.4x,” +2.39x,” - 2.54x," -5.77x X, - 2.49 X, - 5.29x X, -0.54 < 0.59367
—0.40623 <-0.39-0.11x, +0.55x, +0.45x, +0.26x,” -3.46x,” -0.79x,> +0.4x,x, - 0.71x,x, +0.33x,x +0.37 < —0.33237
0.433845<0.32-0.17x, +0.59x, +1.47x, -0.14x,” - 2.35x,” - 3.02x,” +0.21x,x, +0.68x,x; -1.77x,X, - 0.48 < 0.53025

202.2143 <1098.08 + 600.73x, -8716.68x, - 5754.12x,, +1716.24x, +28624.78x,” +12017.57x," +3734.83x X,
-5760.43x,x, +13181x,x, - 225 < 247.1508

0<x, <04

0.05<x, <0.15

0.1<x,<03
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Appendix E.  Expected Cycle Times and Raw Process Time of
Supply Chain

The estimated cycle time with raw process time for products, plants and priorities in

FAB:
Product Producl Produc2 Produc3
Row Row Row
E t
FAB Priority xpec- Process Expec't Process Expec.t Process
Cycle Time . Cycle Time . Cycle Time .
Time Time Time

FAB1 Priorityl 107786.3  43545.6 101322.4  55065.6 106238.2  65491.2

(Min) Priority2  138157.9  46425.6 143855.6  59745.6 154811.1  69393.6
Priority3 1981759  49305.6  200123.4  63705.6 191290.5 72720

FAB2 Priorityl  106754.1  46569.6 110731.8  55209.6 1122574  66974.4
Priority2  140035.7  49449.6 144816.8  56433.6 155978.6  70905.6
Priority3 203083.4  52329.6 196421.5  63849.6 193376.6  75643.2

FAB3 Priorityl 116164.1 45576 112373 57096 not not
Priority2  138316.2 48456 147136.1  59587.2 not not
Priority3  202811.6 51336 206241.8 62856 not not
FAB4 Priorityl  140333.1  29966.4  117665.1  55886.4 not not
Priority2 138654 472464 1462152  58348.8 not not
Priority3 1942744 501264 2112319  63086.4 not not
FABS Priorityl  112853.2  45748.8 not not not not
Priority2  139512.7  48628.8 not not not not
Priority3  198760.6  51508.8 not not not not
FAB6 Priorityl 136227 43027.2 not not not not
Priority2  137850.2 = 45907.2 not not not not
Priority3  206452.7 48787.2 not not not not

The estimated cycle time with raw process time for products, plants and priorities in

Assembly:
Product Productl Product2 Product3
R R R
.. Expect ow Expect ow Expect ow
Fab Priority . Process . Process . Process
Cycle Time . Cycle Time . Cycle Time .
Time Time Time

Assel Priority1 16819.8 8523.07 17240.97  9001.94 17598.24  9403.24

(Min) Priority2 212273 9963.07  21754.13  10585.94  22099.07 10987.24
Priority3 262589  12123.07 25022.45 1274594 28684.21 13147.24

Asse2 Priorityl 16852.1 8560.02 17368.85  9146.06 17727.48 9547.3
Priority2  19715.8 10000.02  20231.61 10586.06 20588.89  10987.3
Priority3 247324  12160.02  25239.6  12746.06 25590.77  13147.3
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The estimated cycle time with raw process time for products, plants and priorities in

Final test:
Product Productl Product2 Product3
R R R
.. Expect ow Expect ow Expect ow
Fab Priority . Process . Process . Process
Cycle Time . Cycle Time . Cycle Time .
Time Time Time

FT1 Priorityl  22869.36  15051.3  24142.48 16376.1 2426133  16499.34
(Min) Priority2  27098.66  16491.3  28347.25 17816.1 28463.96  17939.34
Priority3  33953.16 222513  35223.73  23576.1 35342.23  23699.34
FT2 Priorityl  22014.74 15170.94 23511 16713.24 233524  16550.16
Priority2 2721093 16610.94 28666.72  18153.24  28512.11  17990.16
Priority3 33093.73 2237094 34583.09 23913.24 3442529 23750.16

134



Appendix F.  Problem Formulation of Supply Chain Case
Minimize:

15(3.04028-0.76932p,, - 5.32407 17,0, -1.70306p,, +2.556277,,p,, - 3.21206p,, +2.06177,,p,, +3.35593p,,0,,
+6.45807p3, - 6.01907 0, + 2.641287,, 05 +2.43013 0,405 +3.95107p,, 0y +3.59718,, 055 + 6.27775 03
-2.08025p,,py; +0.95507 p3; - 0.89682p,,7,, - 2.73278,,7,, - 2.94563p,,7r,, + 4.339517,,7;, + 2.20954 p,,77;,
+2.26427 p, 7y, -3.90953py 7y, +3.886017, 775, - 0.69994 0,775, -3.9657 77,0, -1.57582p,,p,, -1.4345p;5
-6.018927,, 0,5 +4.19858p,,p,5 + 6.76398x3p,5 - 1)’

+5(6.82052-9.14259* 7z}, -12.10215p,, - 3.469787,,p,, + 20.72719p], -9.47746 p, +3.590127, ,p;; +4.71436,, 0,4
+17.3784p}, -1.04104p,, +1.069977,,p,, -1.52753p,,0,, +2.08932,, +3.134567, 0,, - 2.395020,,0,,

+0.98932p,, 0, +1.09759p,,0,, -1.16146 2, -10.02525p,, +2.97032p,, 0, - 2.4221p,, py, +0.817310,. s,
+8.446667; - 2.15257p,, 7, +3.915567,, - 4366917, 75,, +9.21784p,, 7r,, - 3.07236p,,77,, - 0.97223p;, 7,

-24.310087;, -3.782317,, + 4.32327,,70,, + 6.59604p,,70,, + 4.53952,477,, - 2.54099p,,77,, - 3.81107 p,, 7,
-4.19952p,7,, +2.13798pyy7r,, +3.9613 17, 71,, -1.442257,, + 2.772967, 705, + 9.04688 p,, 75, - 2.53356 p,, 705,
-2.78439p,,7t,, -1.32614p,, 7, +3.90157,, 73, +2.3744p 7y, +1.65015p5, 7, -1.936487, 7, + 2.02887,, 77,
-5.226847x3, -3.75599p,, +3.06233p,,p,, +1.88448p,,0,, +1.75657 p,, p,, +2.42335p,,p,, +2.633297,, 9,
+3.610777,,p,, +3.592517,, p,, -4.41291p,, +8.54303p;, p,, +8.54006p,50,, +2.04767 p,,p,, - 2.50920,.p,,
+4.823697,,p,, +1.480267,,p,, +2.179267,,p,, +1.679767,p,, +3.64868p,,p,, +6.19947 p,, p,5 +2.859050,, 0, 5
-0.9847p,, 0,5 +1.700620,, 0,5 +4.36643p;, 0,5 -3.351287,,p,5s +9.416757,,p,5 + 2.36581p,, 0,5 +2.76393p,, 0,5
-19.03243p], - 1)°

+(2.12136-5.26463p,,p,5 +1.23765p,,0,, +1.29732;, +3.45607 p,, p5, + 1.0604,0,, -1.508060,, 0,

+1.71873p,, 0,5 -1.44593p,, p,¢ - 2.52953p,,0,¢ - 0.61691p;, -1.39983 p,s p;; +1.00621p,,0,, +0.42542p,
-0.803217, 7, - 0.529387,, 7, +1.61145p,,7,, +1.08404p,. 77, +2.15541p,,p,, +1.59615p;,p,, - 2.369417,,p,,
-3.65990,,0,5 +3.596 119,05 +3.08604 0, o, +2.50117p,, ;5 - 0.747157,, 0,5 - 4.90862p7; — 1)
+15(10.76424-30.39664p,, +20.91593p,,p,, +44.38031p7; - 7.04376p,, +3.753277,,0,, -19.49143p,, p,, -14.41669p,,
-19.90259p,,p,, +17.13541p,,0,, +19.52764p;, -16.44176p,, -20.93092p,, 0, +15.80926p,, 0, +16.97536,, 05
+23.21307 p3 +5.01638p,,7,, - 6.094237,, +9.03262p,,77;, +9.70458p,, 7, +7.293457,, 7, -16.26179p,,
+18.03107p,,0,, +27.58228p,,p,, - 5.735557,,p,, +28.52365p,, 0., +29.47225p,4p,, - 5.43344p,,p,, +23.20821p,,p,,
-55.31215p], -17.66627p,5 +17.71866,, ;5 + 22.28432p,.p,s +11.24435p, ;5 - 5.389517,, p,5 +32.58414p,, 9,5
+25.65426p,,0,5 = 0)

+5(1.63076+12.347,, -23.40161p,, +20.847887,,p,, + 83.34814p}, - 37.43988p,, + 66.00568, -16.557267,,0,,
-19.97751p,,0,, -11.0329p,,p,, +17.01881p3, +15.22815p, - 6.40817p,, 0,5 -17.29442p,.p, +5.59763p,, Py
-7.18731p,, 05 - 26.26289p% - 6.38914p,, ps; + 5.69988,0;, - 17.485337, 7, +27.66893p,,77;, - 9.23598 77,
+4.73927 p,smr,, -12.08031p,,77,, +7.07731p,,7,, - 6.65594p, 7, +16.89891p,7,, - 20.362837,,7,, -10.46857 p,, 77,
+11.55669p,,7,, +7.36825m,,77,, +28.557847,, -10.71991p,, 75, - 26.40251p,7r;, +8.96146 0,77, +14.1193 77,774,
-31.240117,,7,, -14.067947,,7,, -106.564857;, - 28.06427, 70, +8.3371p,,7,, +16.97524p, 7, +10.80967 p,, 7,
+6.79337 p,, 77, -8.22914p, 70, +22.489277, 7, - 22.43527;, -13.69445p,, +30.29128p,,p,, +23.13033p,,0,,
+18.90353p,,p0,, - 7.51322m,,p,, +39.77696p,, - 27.577,,p,, +11.53332p,,p,, - 8.72286p,,p,, -11.28578p,,p,,
-23.513987,,0,, -11.834827,,p,, +14.908287,,p,, +13.264117,,p,, +18.3684p,,p,, -111.78177p], -11.657 p,5
+15.08398p,,0,5 +37.72783p,s 0,5 -10.90103p,, 0, -19.83233p,, 0,5 +24.32188p, ;5 +18.626927,,p,5 +16.554467,, ;5
-16.782311,,p,,14.60959p,, 0,5 — 0)

+(4.5013+5.93277,,p, - 15.36454p; - 7.60712p,, +5.69776p,s s, +3.95581p,,0,, +3.26237 3, -9.91956p,, +8.08492p,, 0,
+3.679090,, 0,5 +11.14849p3 - 6.140057,, 05 + 6.81903p,, 05, - 7.9766 05, 0, - 4.16798p,,7,, +5.638637, 70, + 5.875337,,p,,
-6.22671p,yp,, +7.59146p,,p,, - 5.044957,,p,, - 4.23574p,,p,, +6.20288p,,0,, - 8.91496p,; +13.54669p,, 0,5 +3.29294p,, 0,5
+16.43614p,,p,, +4.453p,,0,5 +3.025657,0,5)°

subject to:
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3.04028-0.76932p,, - 5.32407 17, -1.70306p,, +2.556277,,p,, - 3.21206,, +2.06177,,p,, +3.35593p,,0,,
+6.4580702, - 6.01907 p, + 2.641287,, 0, +2.43013p,,0, +3.95107p,, 056 +3.59718,,05¢ + 6.27775p3,
-2.08025p,, 05, +0.95507 0, - 0.89682p,,7,, - 2.73278p,,7,, - 2.94563p,,7,, + 4.339517, 7, + 2.20954p,, 7,
+2.26427p, 1, -3.90953p;, 7, +3.886017,, 75, -0.69994 0,7, - 3.96577m,,p,, -1.57582p,,p,, -1.4345p,,
-6.018927,, 0,5 +4.19858p,, 0,5 +6.76398x3p,5 = 1

6.82052-9.14259* 7 -12.10215p,, -3.469787,,p,, + 20.72719p7, - 9.47746p,, +3.590127,,p,s +4.71436p,, 0,4
+17.3784p; -1.04104p,, +1.069977,,p,, -1.52753p,,0,, +2.08932p,, +3.134567,,p,, - 2.39502,,0,,
+0.98932p,,0,, +1.097590,, 0, -1.16146p3 -10.02525p,; +2.97032p,,0,, - 2.4221p,,p,, + 0.81731p,, 0.,
+8.44666p;, - 2.15257 p, 70, +3.915567,, -4.3669 17,7, +9.21784p,,7,, -3.07236p,,7,, - 0.97223p,.7,,
-24.310087;, -3.782317,, + 4.32327, 70,, + 6.59604p,,7,, + 4.53952p, 7r,, - 2.54099p,,7,, -3.81107p,,7,,
-4.19952p,7,, +2.13798p,;7,, +3.96131x,,7,, -1.442257,, + 2.772967, 77, + 9.04688p,, 77, - 2.53356p,, 7,
-2.78439p,,m;, -1.32614p,,7,, +3.90157,,7,, + 2.3744p, 7, +1.650150;,7,, -1.936487, 77, +2.02887,,7;,
-5.2268473, -3.75599p,, +3.06233p,, 0, +1.88448p,,p,, +1.75657 p,,p,, +2.42335p,,p,, +2.633297,, 0,
+3.610777,,p,, +3.59251x,,p,, -4.41291p,, + 8.54303 p,, p,, + 8.54006 0,4 0,, +2.04767 p,, p,, - 2.50920,.p,,
+4.823697,,p,, +1.480267,,p,, +2.179267,,p,, +1.679767,,0,, +3.64868p,,p,, + 6.19947 p,; ;5 +2.859050,4 0,5
-0.9847p,,p,5 +1.700620,,p,5 +4.36643p,, 0,5 -3.351287,, 0,5 +9.416757,, 0,5 + 2.36581p,, 0,5 + 2.76393p,, 0,5
-19.03243p% > 11

2.12136-5.26463p,,p,5 +1.23765p,,p,, +1.29732p2, +3.45607 p,, p,, +1.0604 9, 0,, -1.50806p,,0,,

+1.71873p,, 05 -1.445930,, 0, - 2.52953p,, 0, - 0.61691p,, -1.39983 p, oy, +1.00621p,,0,, +0.42542p,, p;,
-0.803217,,7,, - 0.529387,,7,, +1.61145p . 7r;, +1.08404 0,7, + 2.15541p,,p,, +1.59615p,,p,, - 2.369417,,p,,
-3.6599p,,0,5 +3.59611p,0,5 +3.086040,, 0,5 +2.50117 p,, p, - 0.747157,, 0,5 - 4.90862p; > 1
10.76424-30.39664p,4 +20.91593p,, 0,5 +44.38031p; - 7.04376p,, +3.753277,,p,, -19.49143p,, p,, -14.41669p,,
-19.90259p,,0,, +17.13541p,,p,, +19.52764p3, -16.44176p, - 20.93092p,, 0, +15.80926,, 0, +16.97536,,0,,
+23.21307p +5.01638p,,7,, - 6.094237,, +9.03262p,,7,, +9.70458p,, 70, +7.293457,, 7, -16.26179p,,
+18.03107p,,0,, +27.58228p,,0,, - 5.73555m,, 0, +28.52365p,,p,, +29.47225p,sp,s - 5.43344p,, p,, +23.20821p,, p14
-55.31215p], -17.66627p,, +17.71866p,,p,5 +22.28432p,.p,s +11.24435p,,p,5 - 5.389517,, 0,5 +32.58414p,,p;5
+25.65426p,0,5 =0

1.63076+12.347,, -23.40161p,, + 20.847887,,p,, + 83.34814p}, - 37.43988p,, + 66.00568; -16.557267,,p,,
-19.97751p,,p,, -11.0329p,,p,, +17.0188103, +15.22815p,, -6.40817p,, p, -17.29442p,.p, +5.59763p,, Py
-7.18731p,, 0, - 26.262890% - 6.38914p,, py; +5.69988,. 0, - 17.485337,,7,, + 27.66893p,,7,, -9.23598 0, 7,,
+4.73927p,,7,, -12.08031p,,7,, + 7.07731p,, 7, - 6.65594 p,,7,, +16.89891p,, 7,  -20.362837,,7,, -10.46857 p,,71,,
+11.55669p,,7,, +7.368257,,77,, + 28.55784r;, -10.71991p,,7;, - 26.40251p,, 7, +8.96146 0,7, +14.11937 7,77,
-31.2401 1,7, -14.067947,, 75, -106.5648573, - 28.06427, 70, +8.3371p,, 75, +16.97524 p 77, +10.80967 p,, 7,
+6.79337 0,75, -8.22914p, 70, +22.48927 7, 7., - 22.43527;, -13.69445p,, +30.29128p,, p,, +23.13033p,.0,
+18.90353p,,p0,, - 7.513227,,p,, +39.77696p,, - 27.57m,,p,, +11.53332p,. p,, - 8.722860,,p,, -11.28578 p;; 0,4
-23.513987,,0,, -11.834827,,p,, +14.908287,,0,, +13.264117,,p,, +18.3684p,,p,, -111.78177p}, -11.657 p,;
+15.08398p,, 0,5 +37.72783p,, 0,5 -10.90103p,, 0,5 -19.83233p,, p,s +24.32188p,,p,5s +18.626927,, p,s +16.554467,, 0,
-16.782317,,p,514.609590,,p,s = 0

4.5013+5.93277,,p,5 -15.36454p5, - 7.60712p,, +5.69776p,.0,, +3.95581p,,0,, +3.26237ps, -9.91956p,; + 8.08492,, 0,
+3.67909p,, 0, +11.14849p3. - 6.140057,,p;, + 6.81903p,, s, - 7.97660,,0;, - 4.16798p,,7,, + 5.638637, 70,, + 5.875337,,p,,
-6.22671pyp,, +7.59146p,,p,, -5.044957,,p,, - 4.23574p,,p,, +6.20288p,,0,, -8.91496p,, +13.54669p,, 0,5 +3.29294p,, 0,
+16.43614p,,p,5 +4.453p33p,5 +3.025657,,0,5 2 0

T+, +r, =1

Ty + 7y + 7, =1

Ty + Ty + 7055 =1
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PutPutPis Py +P+ Py =1

Pt PutPytpPy =1

Pyt Py =1

5<— 2 T, +
4.7

<2

47
2
47

L7 1
47 21

L7 oL
47 7%

1.7 1
H”u +

4.7
2
gﬁpn
1.7

10

T, +

60

13 33

4.2553191 < 8.5106383

3.6170213

IN
N

10.8510638

8.5106383 12.7659574

16383 <

4.2553191

IN

8.5106383

3.6170213

IN

10.8510638

2 1.7
78723 < p, +——
a7 Pvt g

42553191 < > p,. < 8.5106383
47

2
0<— < 21.2765957
27 Pio
2 1.7
0.8 x| — x 0.831313 +—p,,
(4.7 P 4.7 Pn
2 1.7
0.8 x(ﬁpm x0.861823 + H'D“
2 157,
0.8 X(Fp” X 0.895949 szé
2 1.7
0.8 x(ﬁp” X 0.845686 Epy
2
0.8 x Fp,x < 17.7025
2
0.8 x Fp,g <10.14728
2 1.7
0.8 x(ﬁp,l x0.959422 + Hpn

+ %p,g x 0.959422 J <50
2 1.7
0.8 x (Hpu X0.953016 +-=-p.,

2
5o P X 0953016 j <50

25

85

o5 Pw £32.1277

P, < 33.8298

x1.051238 %pu % 1.250269 ) < 21.62003

x1.021716 +1 %pu x1.239437 ] < 20.2651

x1.122413 ] < 13.57879

x 1.181546 j < 16.6863

1 Y 1.7
XLO1332T + = puy X185 + 2=y X 0950422 - pog X1.013327

% 1.018262 %py X1.062922 + = py; X 0953016+ L7 P X1.018262

0.8 X(%p” X093226 +-=-p, X0.93226 + - p24 XLOM3IT 4 pyy 1111142+ 427 P X 0.93226

+ %p,g % 0.93226 J <50

1.7 1.7 2 1.7 2
0.8 X| — p,, x1.023555 + — x1.101756 + — x 0929101 + — x1.023555 +— % 0.929101
(4.7 Pxn 47 P 47 Pis 47 P 47 P

1.7
o P X1.023555 j <50
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5<rm, <15

10<7, <25
0<m, <100
5<rx, <15

107w, <25
0<rm, <100
5<my, <15

107y, <25
0< 7, <100
10<p,, 20
10< p, <20
10< p;s <20
10< p,, £20
10< pi <20
0< p, <100
10< p,, <30
10< p,, <30
10 < p, <30
0<p,, <100
40< p,; <60
0< p;, <100
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