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Abstract 

    The OP-FTIR measurement combining the RPM technique is able to reconstruct 

the plume and thus localize the emission source.  In this thesis, both the computational 

simulation and the field experiment are implemented.  Two major kinds of the 

reconstruction algorithm used in RPM technique are evaluated.  The first one is the 

smooth basis function minimization (SBFM) algorithm and the second one is the 

non-negative least square(NNLS) algorithm.  The two algorithms are both 

implemented by fitting the reconstructed path integrated concentration (PIC) to the 

measured PIC.  The differences are that the SBFM superimposes a basis function to 

describe the plum while the NNLS directly estimate the concentration value in the 

emission domain.  In addition, two different kind of basis functions (symmetric and 

skewed) are used to describe the plume in SBFM reconstruction. 

In the simulation analysis, 450 test distributions are generated to be localized by 

the RPM technique with different reconstruction algorithms.  The result shows that the 

SBFM algorithm using the bivariate lognormal distribution as basis function gives the 

best result in both the aspects of plume reconstruction and source localization.  

Furthermore, when the plume is near the OP-FTIR, the SBFM reconstruction using 

bivariate Gaussian distribution as basis function may yield better result in the aspect of 

the source reconstruction comparing to the NNLS reconstruction.  However, when the 

plume is far from the OP-FTIR, the NNLS reconstruction is able to localize the 

emission source more accurately than the SBFM using bivariate Gaussian distribution 

as basis function. 

In the field experiment, four experiments with four pairs of different source 

locations are conducted to be localized by the RPM technique.  The result shows that 

the reconstructed source locations by the three methods are able to point out the correct 

direction towards the real source.  Furthermore, judging by the peripheral short 

monitoring lines, the reconstructed source location that is closest to the real source 

location can be chosen and gives the best estimation of the emission source location. 
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Chapter1. Introduction 

    Air pollution is an important issue nowadays.  Since the 18
th

 century, the 

industrial revolution has promoted the life quality of human however the pollution 

caused by the manufacture and factory has also affected human’s health.  Thus, 

monitoring air pollutants plays an important role for preventing and controlling the air 

pollution.  Several devices have been developed to reach the goal described above.  

Instruments such as time integrated samplers (i.e. charcoal tube, canister, impacter, 

sampler bag), direct reading instruments (i.e. Photo ionization detector) and optical 

remote sensing instruments (i.e. Fourier transform infrared spectroscopy, 

UV-differential optical absorption spectroscopy) are able to monitor the toxic gaseous in 

the ambient.   

In order to provide sufficient information for pollution control, the source 

localization along with pollution mapping is also needed.  Using the devices 

previously mentioned, scientists have developed several techniques for both source 

localization and pollution mapping.  Besides, localizing the emission source in a 

timely fashion is also important to provide the information for pollution control. 

 

1.1 Fourier transformed infrared spectrometer (FTIR) 
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    Fourier transformed infrared spectrometer (FTIR) is one of the optical remote 

sensing instrument which is able to detect the ambient chemical substance both 

qualitatively and quantitatively
1
.  It woks based on the theory of infrared spectroscopy 

which means the study of the interaction between the infrared and the matter. That is, 

when the infrared radiation interacts with the chemical substance it can be absorbed, 

causing the molecule bonds to vibrate furthermore, the functional groups in the 

chemical tend to absorb the infrared radiation in the same wavelength.  Thus, there is 

an association between the structure of the chemical and the wavelength at which the 

chemical absorb infrared radiation.  This property of the substance allows the structure 

of the unknown chemical to be identified from the infrared spectrum.  Along with the 

chemical identification, the infrared spectrum can also provide the information for 

quantification.  The basic theory for the FTIR to quantify substance is Beer’s law 

which describes the association between the absorbance of the infrared radiation and the 

chemical’s concentration. 

The open path FTIR (OP-FTIR) can only provide the concentration data in the 

form of path integrated concentration (PIC) which means the integrated concentration 

along the beam path.  Thus it has a unit of “concentration” times “length” (e.g. 

ppm×meter).  Once the beam path length is measured, the mean concentration along 

the monitoring line can also be calculated by dividing the PIC by the beam path length.  

As a result, the OP-FTIR can only provide the concentration information in the form of 
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mean concentration which represents the mean concentration where the ray passes 

through. 

    The open path FTIR (OP-FTIR) is mainly composed of four parts which are 

infrared source, interferometer, sample compartment and detector.  The most important 

part in the FTIR is the interferometer.  In the interferometer, the infrared emitted from 

the source is first split into two beams by the beamsplitter.  The two beams are then 

reflected by a fixed mirror and a moving mirror respectively.  The constructive 

interference, destructive interference, or the combination between the both takes place 

depending on the optical path difference (2 times the distance the moving mirror travels) 

when the reflected beams are recombined.  A plot of light intensity to the optical path 

difference is called an interferogram which is the fundamental of the FTIR measurement.  

The interferogram is then Fourier transformed to a spectrum.  The sample 

compartment is used to contain samples however the OP-FTIR does not have one.  

Instead of passing through the sample compartment, the infrared emitted from the 

OP-FTIR passes through the ambient directly to measure the chemical substance.  The 

last part of the OP-FTIR is the detector.  The detector is able to detect the beam 

intensity of the entered infrared.  To use the OP-FTIR to monitoring the ambient 

pollutant, a background spectrum must first be collected.  By transforming the sample 

spectrum to the absorbance spectrum with the background spectrum, the chemical 

substance can be identified and quantified.  The time for the OP-FTIR to obtain a 
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single spectrum depends on the resolution of the spectrum.  For the instrument used in 

this study, it takes about 10 seconds for a single scan.  Thus comparing to the time 

integrated samplers for monitoring ambient pollutant, the optical remote sensing 

instrument is able to provide real-time concentration data because the spectrum analysis 

process is faster and can be done in situ. 

    The OP-FTIR has now been used in many fields such as pollution monitoring
2-5

, 

exposure assessment
6-8

, pollution flux measurement
9, 10

, source localization and 

pollution mapping
11-19

.  The usage of the OP-FTIR has also been verified by the US 

EPA.  In the Compendium of Methods for the Determination of Toxic Organic 

Compounds in Ambient Air (Methods TO), the OP-FTIR is one of the accepted 

instrument for environmental monitroting.
20

   

 

1.2 Traditional methods for source localization 

1.2.1 The area sampling array method 

Traditionally, the “area sampling array”
7
 has been applied to localize the pollution 

source.  When applying the “area sampling array”, a set of samplers are located in the 

emission site.  After hours of sampling, the samples are then sent back to the lab for 

analysis.  In 2005, Chen et al. placed 25 stainless steel canisters at a petrochemical 
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plant in order to localize the pollution source
21

.  The sampling procedure lasted for 1 

year.  Each time after the sampling, the samples were sent back to be analyzed by the 

LC-Mass spectrometer.  The concentration data was then input to the Surfer software 

to create the contour plot of the distribution of the chemicals.  Although the result 

showed that this sampling method is quite accurate when comparing to real source 

location, there are still some limitations when applying this technology to localize the 

emission source.  First of all, most of these kinds of point samplers are time integrated 

samplers, which can only provide concentration data with limited temporal resolution 

(canister in this case).  In that study, each canister collected the samples for 

approximately 3 hours a day (11:00 am to 2:00 pm) thus having the temporal resolution 

of 3 hours.  This poor temporal resolution data might ignore the short term emission 

and thus limit the application on risk assessment or exposure assessment.  Second, the 

spatial resolution of concentration might also be limited because the limited amount of 

samplers.  It is impossible for researchers to place a large amount of samplers among 

all of the area in the emission domain. Therefore, the concentration data at the location 

without samplers must be estimated by further interpolation or extrapolation.  In that 

study, 25 canisters are located at certain sites in a petrochemical plant and a statistical 

method has been applied to estimate the concentration data at the un-sampled sites.  

These estimated concentration data might not be accurate comparing to the real 

concentration.  Third, the sample transportation and sample analysis take time thus it is 
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not suitable for using this kind of technique in an emergency situation.   

 

1.2.2 The computed tomographic (CT) method 

Considering the problem met in applying the area sampling array method, the 

computerized tomographic (CT) technology using optical remote sensing instrument has 

been proposed to map the pollutants.  The CT technology is widely used in the medical 

field, which is a tool for imagine diagnosis.  In the aspect of mapping pollutants, the 

CT technology means combining the optical remote sensing measurement and 

reconstruction algorithm to further map the pollutant.  The multiple monitoring lines 

are arranged to form a network (called beam geometry) and the collected concentration 

data is input to the reconstructing algorithm to further map the pollutant.  In 1979
22

, 

Byer et al. first proposed using CT technology to map the pollutant.  The tunable-laser 

source is located in the middle of a circle in the measuring site.  Several sets of 

cylindrical mirrors and detectors are equally located on the circumference of this circle 

to form a beam network.  The laser beam emitted from the source is then reflected by 

the cylindrical mirror to the detector.  By comparing the emitted and received beam 

intensity, the pollution in the measuring site can be mapped and the pollution source can 

be identified.
22

  However, in order to map the pollution with a radius of 10 meters, 

more than 300 mirrors and detectors will be needed.  Such huge amount of detectors 
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will be costly and the complicated beam geometry might limit the application of this 

technology.  Since then, additional studies about using CT to map the pollutant are 

proposed and evaluated.
10, 23-26

 

In all of the CT technique described in the last paragragh, several monitoring lines 

must be arranged to form a network that provides adequate concentration data for plume 

reconstruction.  Many kinds of beam geometries have been proposed and all of them 

are composed of intersecting beam paths.  To further investigate the impact of different 

beam geometry, Todd has evaluated the performance of different beam geometry by 

computational simulation
23

.  A total of 13 different beam geometries with different 

number of intersecting beam path (120 to 288 paths) and different number of detectors 

(1 to 4 detectors) are applied to reconstruct a series of test maps.  An example beam 

geometry is shown in Figure 1.1.  The result shows that as the number of detectors 

increases, the performance of the reconstruction is improved despite the same number 

of beam path.  However, when extra beam paths are added, the number of artifacts 

(reconstructed peaks that do not exist in the test map) and the peak location error 

(distance between real and reconstructed source locations) is decreased.   

Another important part of the CT technique is the reconstructing algorithm.  The 

most commonly used iterative algorithms in CT are Algebraic Reconstruction 

Technique (ART)
27

, Maximum Likelihood with Expectation Maximization (MLEM)
10, 
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28
 and Multiplicative Algebraic Reconstruction Technique (MART)

10, 29
.  In all these 

three reconstructing methods, the area of interested is first divided into several small 

grids and the concentration in each grid is assumed to be homogeneous and non 

negative.  The first step of the reconstruction is to make an initial guess for the 

concentration in each grid.  The second step is to calculate the reconstructed path 

integrated concentration (PIC) data for each beam path by summing up the 

concentration value of all the grids through which the ray passes.  The third step is to 

adjust the concentration value in each grid by comparing the reconstructed PIC and the 

collected PIC data then go back to step 2.  By repeating the second and third step, the 

concentration in each grid can be estimated and thus the pollutant can be mapped and 

the source location or the “hot spot” can be identified.   

In 1996, an approach using smooth basis function minimization algorithm 

combining Fourier transformed infrared spectrometer (FTIR) measurement has been 

proposed to map the pollutant in the air.
30

  Different from the “grid based” algorithm 

discussed in the previous paragraph, the SBFM algorithm applies a smooth basis 

function to describe the distribution of the plume.  In that study, a series of 

experiments are conducted to evaluate the performance of the ART algorithm and the 

SBFM algorithm.  In order to decrease the scanning time with limited amount of 

remote sensing instrument, only one OP-FTIR is located in the middle of the 

experimental domain to scan the flat mirrors and retroreflectors on the edge (Figure 1.2).  
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A total of 56 monitoring lines are conducted in that study.  The result shows that the 

SBFM algorithm is able to reconstruct better in the aspect of plume’s distribution and 

the number of artifacts under this beam geometry.  The parameter used to describe the 

distributional difference between the real and reconstructed plume (the smaller the 

better, 0 represents perfect fit) is 0.11 for SBFM and 0.41 for ART. 

 

1.2.3 The application of the CT technique 

  Despite the source localization and the pollution mapping, researchers have also 

developed using the CT technique to measure flux of chemical emissions.
10

  The study 

is conducted on a 255m×107m waste lagoon to measure the flux of nitrogen.  A 

computed tomographic system is conducted using two OP-FTIR and total of 16 

intersecting beam paths on the surface of the waste lagoon (Figure 1.3).  Two tracer 

gases, SF6 and CH4 are released simultaneously during the FTIR measurement to 

provide the flux calculation information.  Similar to the CT technique used to map the 

pollutant, the MLEM and MART algorithms are used to reconstruct the concentration of 

both the tracer gas and the target gas in each virtual grid.  Although the flux 

calculation process has encountered many difficulties, this study is the first field 

implementation of this kind of CT system in the site of this scale. 

 



 

 10 

1.3 Radial plume mapping (RPM) technique 

    In most of the previous CT techniques, the applied beam geometry is quite 

complicated
10, 12, 13, 22-24, 26, 30

 thus limits the field implementation.  It can be seen that 

most of these applied beam geometries are composed of intersecting monitoring lines 

and multiple detectors or remote sensing instrument.  Not only difficult to apply, 

setting up this kind of system would be expensive due to the multiple detectors. 

1.3.1 RPM with SBFM reconstruction algorithm 

In 1999, Hashmonay et al. proposed using FTIR measurement combining wind 

data to localize the pollution source location.
15

  In that study, a one-dimensional beam 

geometry is set up downwind to the releasing tracer gas.  Three to four monitoring 

lines are arranged along a line (Figure 1.4).  Each time when the wind direction 

changes the peak location on monitoring lines can be identified by the SBFM 

reconstruction
31, 32

.  The line equation from the peak location reconstructed on the 

monitoring line to the orientation of wind direction is then calculated.  The intersection 

of the line equations with different wind directions is the source location.  Due to the 

relatively simple beam geometry at the down wind site, it is possible to localize the 

source location without setting the monitoring instruments or sampling device in the 

measuring site and the relatively simple beam geometry make it possible to apply.  

A two dimensional beam geometry has also been proposed in 1999
16

.  Similar to 
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the study in 1996
30

, the SBFM reconstruction uses bi-variate Gaussian distribution as 

smooth basis function to describe the pollution’s plume.  However the radial beam 

geometry, instead of the complicate beam geometry, has been applied (Figure 1.5).  In 

that computational simulation study, the OP-FTIR is set in the corner of the 

experimental domain to limit the rotation of the FTIR in 45°.  The radial beam 

geometry means to arrange the monitoring lines in a radial form which prevents the 

intersection of the monitoring beam path.  A validation experiment conducted in a 

ventilation chamber has also been proposed to confirm the simulation result.
18

  The 

result suggests that when there is adequate segment information, the SBFM algorithm is 

able to localize the source location (distance between the real and reconstructed source 

location = 0.3 meter).  However when the segmenting information is limited, the 

reconstruction result may not be accurate (distance between the real and reconstructed 

source location = 1.2 meter).  Another study using the non-overlapping geometry has 

also been conducted.
33

  Different from the study of the one previously mentioned, the 

OP-FTIR is located in the middle of the experimental domain.  Thirty random points 

are generated as the endpoint of monitoring lines and the OP-FTIR instrument is 

directed to scan the retrorerflectors in 360° rotation.  Several experiments are 

conducted with tracer gas released at different locations.  The collected PIC data is 

then reconstructed by the SBFM algorithm.  The results show that the RPM technique 

under current beam geometry is able to reconstruct the distribution of the plume (The 
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correlation R =0.8).  The relatively poor result may come from the inadequate PIC 

information.  In those results with poor performance, the tracer gas is located on the 

edge of the experimental domain thus the monitoring line is not able to detect the 

plume. 

Other than pollution mapping, the RPM technique has also been applied to 

measure the flux of the emission.
34

  In this method, the monitoring lines are arranged 

in order to form vertical radial beam geometry.  In that simulation study, the 

retroreflectors are placed on a tower with different elevations.  Since the objective of 

this technique is to measure the flux of emission, the focus would be on the total 

concentration that emits from the area rather than the distribution of the plume.  The 

SBFM reconstruction algorithm is also applied in this technique to estimate the total 

emission of the chemical of interest.  This technology, known as Vertical Radial Plume 

Mapping (VRPM) is also described in the US EPA other test method 10: Optical 

Remote Sensing for Emission Characterization from Non-Point Sources
35

 and is applied 

and demonstrated at various sites for measuring emission flux.
36

 

 

1.3.2 The RPM with “grid based” reconstruction algorithm 

The relatively simple beam geometry of radial beam geometry makes the 

computed tomography for mapping pollutants possible in application.  However the 
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performance between the conventional intersected beam geometry and the radial beam 

geometry still remains unknown.  Another study further investigate this issue
19

.  A 

computational simulation and a series of field experiments are conducted.  In the 

computational simulation, two types of beam geometry are simulated with a 

conventional reconstructing algorithm.  The first approach is the radial beam geometry 

(RCT) with 16 retroreflectors and the second is the conventional intersected beam 

geometry (CCT) with 16 beam paths.  Instead of the SBFM reconstruction algorithm, 

the reconstructing algorithm used in both approaches is MART in which each 

measurement is compared to a predicted value computed from the current image 

estimate.  Although the simulation result shows that the RCT approach performs better 

than the CCT approach (the modified correlation =1 and 0.94 respectively), the author 

suggests that due to the distribution of the plume in the real world is complicated 

(weather, wind effect etc.), it can not be concluded that the RCT is better than the CCT 

however the result from both reconstructing geometry is at least comparable.  The 

conclusion of the computational simulation suggests that the relatively simple beam 

geometry of RCT is enough to map the plume.  This is confirmed in the field 

experiment.  In the field study, several experiments are conducted with the RCT 

technique at a 25m×35m domain.  In each experiment, one tracer gas is released and 

the FTIR is used to collect the PIC data with nine retroreflectors.  The result shows 

that the real and reconstructed source locations are in the same pixel of the experimental 
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domain (Figure 1.6(b)). 

It can be seen that the “grid based” algorithm can also be applied in the radial 

plume mapping technique in last paragraph.  This has also been described in the U.S 

EPA other test method (OTM10)
35

.  In the OTM10, the radial plume mapping 

technique used to map the pollutant or searching for the “hot zone” is called horizontal 

radial plume mapping (HRPM).  The non negative least square (NNLS) algorithm is 

used as the reconstruction algorithm in this method.  Same as the “grid based” method 

described in the CT technique, the experimental domain must first be divided into 

several grids.  The concentration in each grid is then reconstructed.  However, the 

number of the grids divided must be as the same as the number of monitoring lines to 

prevent the under-determining situation.  In the OTM10, an example of beam 

geometry composed of 9 retroreflectors is presented.  The experimental domain is 

divided into 3×3 grids.  Thus the resolution of the reconstruction would be quite coarse.  

The RPM using NNLS has also been implemented in a landfill by Hashmonay
37

.  In 

that study, the RPM technology with NNLS reconstruction is practiced to locate the 

“hot spot” of a landfill in which the emission source is not a point source.  The result 

has shown that the NNLS reconstruction is able to locate the “hot spot” of the emission 

and is comparable to the reconstruction by the RPM using MART.  However, the 

reconstruction time is 100 times faster than the MART. 
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Although previous studies have proved that the radial plume mapping technique is 

able to localize the emission source location, there is still uncertainty in this technique.  

For example, when the segmenting information is limited, the RPM technique using 

SBFM reconstruction algorithm may not be able to map the pollutant accurately
18

.  

Furthermore, when applying SBFM, the bi-variate Gaussian distribution is used as basis 

function in most of previous studies
16, 18

.  However the plume may not be a symmetric 

distribution when the wind presents.  When wind presents the plume might be an 

asymmetric distribution.  Thus it might cause error when using a symmetric 

distribution to describe an asymmetric distribution.  As for the “grid based” method, 

the resolution of the reconstruction is determined by the number of the monitoring lines.  

If the available restroreflector is limited, the reconstruction result may be a coarse 

estimate.  When a steep distribution presents, the reconstruction might underestimate 

the peak concentration.
24, 25

   

1.4 Study design and objectives 

      Figure 1.7 has shown the flow chart of this thesis.  The main objective of this 

thesis is to further investigate the performance of the RPM technique.  Not only the 

SBFM algorithm (non grid based) but also the NNLS reconstruction algorithm (grid 

based) is discussed in this thesis.  A series of computational simulation study is 

conducted to compare the performance for the “non grid based” algorithm (i.e. SBFM) 
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and the “grid based“ algorithm (i.e. NNLS).  Furthermore, the effect of using different 

smooth basis function (Skewed distribution V.S. symmetric distribution) in the SBFM 

algorithm is also investigated.  A total of 450 artificially generated test distributions 

are reconstructed by the two algorithms respectively.  We have also investigated the 

uncertainty when using the SBFM algorithm to reconstruct the plume in the 

computation simulation.  After the simulation experiment, a series of field experiments 

are then implemented to verify the results in the computational simulation.  A total of 

4 experiments are conducted with four pairs of artificially released source locations.  

The RPM technique is applied to localize these emission sources.  There are several 

innovative aspects in this study that is different from the others.  First, two emission 

sources are released and localized simultaneously.  Second, the effect of two different 

beam geometries is discussed in the computational simulation.  Third, the SBFM and 

NNLS are both used to localize the emission source.  Fourth, the uncertainty of the 

SBFM reconstruction to localize the source location is discussed by the concept of error 

map.  The last, a skewed distribution (i.e. bivariate lognormal distribution) is used as 

the basis function in the SBFM reconstruction. 
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Figure 1.1 The example beam geometry described by Todd et al.
23

  Two optical remote 

sensing instruments are located in the corner of the domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OP-FTIR 

Retroreflector 



 

 18 

                               
Figure 1.2 The beam geometry proposed by Drescher et al.

30
  The optical remote 

sensing instrument is located in the middle of the domain.  Four retroreflectors are in 

the corner and several flat mirrors are on the edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 The experimental set up of the experiment on the waste lagoon.  Modified 

from Todd et al.
10
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Figure 1.4 The beam geometry of 1-D RPM.  The multiple ray paths are able to 

localize the peak concentration along the beam path. 
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Figure 1.5 The beam geometry of 2-D RPM.  The OP-FTIR is located in a corner of 

the domain thus limits the scan range within 45°.  Each ray path ends at a 

retroreflector. 
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(a) 

 
 

 

 

 

 

(b) 

 
 

 

Figure 1.6 The reconstruction result in the studies using NNLS reconstruction. (a) The 

study “Theoretical Evaluation of a Method for Locating Gaseous Emission Hot Spots”
37

 

and (b) the successful reconstructed examples in the study “Radial Computed 

Tomography of Air Contaminants Using Optical Remote Sensing”
19

. 
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Figure 1.7 The flow chart of the thesis.
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Chapter2. Materials and Methods 

This thesis is composed of two parts.  The first part is the computational 

simulation.  We proposed an “error map” concept to represent the uncertainty of 

current SBFM reconstruction.  Also, the performance of different reconstruction 

algorithms and different beam geometries is evaluated.  The second part is the field 

study.  We release SF6 and N2O as tracer gases and set up one of the beam geometry 

discuss in the computational simulation to validate the simulation results. 

2.1 Data collection 

The OP-FTIR used in the field experiment is manufactured by MASTEK 

Technology, Inc (MASTEK Technology, Inc, Wugu, Taiwan).  It is a monostatic 

design with a mercury cadmium telluride (MCT) detector. The resolution is tunable and 

the highest resolution is 1 cm
-1

 in wavenumber.  The detection limit of this instrument 

is down to ppb level depending on the length of the monitoring line and the resolution 

of the spectrum.  In order to direct the OP-FTIR telescope to scan multiple 

retroreflectors, a scanner composed of two step motors is used to rotate and elevate the 

OP-FTIR.  The scanner is a custom built design which can direct the FTIR in 360° 

rotation and +60° to -30° elevation.  The wind data (wind speed, wind direction) is 

collected by the meteorological station manufactured by R. M. Young (R.M. Young, 
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Traverse, Michigan, USA). 

We set up a radial beam geometry with 9 retroreflectors (Retro) in a 30m×30m 

domain.  Previous study
18

 suggests that the segmenting information is needed when 

applying the SBFM reconstruction, thus the beam geometry must be composed of 

several sets of long and short beam paths.  To do so, the experimental domain is 

divided into 3 ×3 grids (10m×10m for each grid).  The 9 retroreflectors are located in 

the middle of these 9 squares (Figure 2.1 (a)) and are 170cm high from the ground.  

The 9 retroreflectors are at the coordinate of (4.9,24.7) for Retro1, (4.8,14.9) for Retro2, 

(13.9,24.3) for Retro3, (11.5,16) for Retro4, (24.4,25) for Retro5, (5.1,4.5) for Retro6, 

(24.3,14.7) for Retro7, (14.5,7.5) for Retro8 and (25,4.9) for Retro9.  In order to avoid 

the retro been arranged into a line, the retro in Pixel5 is shifted.  The length of each 

beam path is 25.2m for path1, 15.6m for path2, 28.0m for Path3, 19.7m for Path4 34.9m 

for Path5, 6.8m for Paht6, 28.3m for Path7, 15.2m for Path8 and 25.5m for Path9.  The 

FTIR is located at the origin of the experimental domain and mounted on the scanner 

previous mentioned which can direct the FTIR in a 360° rotation and +60° to -30° 

elevation.  The FTIR scans the retroreflectors from 1
st
 to 9

th
 sequentially and 

repeatedly. 

 Pure nitrous oxide (N2O) and sulfur hexafluoride (SF6) are released from 3 plastic 

tubes which are vertical to the ground and at the same height of the retroreflectors 
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(Figure 2.2).  The releasing flow rates for N2O and SF6 are 10L/m and 0.5L/m 

respectively and are controlled by the mass flow controllers (Model 5850E series, 

Brooks, PA, USA).  Four experiments are conducted with four different pairs of 

releasing locations (Figure 2.3 (a) to (d)).  In each experiment, the two tracer gases are 

released simultaneously at different locations.  This is to evaluate the ability of the 

RPM technique to localize two different emission sources under the same 

meteorological conditions.  The Cartesian coordinate of SF6 and N2O are (22.7,11.8) 

and (12.8,15.5) in Exp1, (7.4,9.9) and (11.6,22.7) in Exp 2, (13.6,6.1) and (4.7,14.9) in 

Exp 3 and (9.6,7.6) and (21.0,16.7) in Exp4.  Before each experiment, we first begin 

the spectrum collection with the OP-FTIR to make sure that there is no background 

concentration for the two tracer gases in the experimental domain then we begin to 

release the tracer gases.  Each experiment lasts for approximately two hours for the 

FTIR to scan the retroreflectors for approximately 25 complete sweeps.  The 

concentration data which is collected after the tracer gas releasing rate is stable is used 

to reconstruct the source location.  Thus for each experiment, approximately 20 sets of 

PIC are used for reconstruction.  The spectra are collected with resolution of 1 cm
-1 

in 

wavenumber.  The time for each spectrum acquisition takes 20 seconds and the time 

for the FTIR move from one retroreflector to another is about 8 seconds.  However it 

takes about 25 seconds for the FTIR to move from retro 9 to retro 1 due to the longer 

distance between these two retrorelfectors.  Thus it takes approximately 5 minutes for 
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a complete sweep. 

    Before the experiment, we follow the TO-16 method suggested by the EPA to 

implement the quality assurance procedure.  The purpose of the quality assurance 

procedure suggested by the TO-16 is to determine how well the FTIR sensor is 

operating.  For measuring the method noise, two spectra are collected with the same 

collection parameter (i.e. number of co-added scans, resolution).  The absorbance 

spectrum is then created using either of these two spectra as background spectrum.  

The determination of method noise uses the statistical quantity called the root mean 

squared (RMS) deviation.  The regions in the spectrum for the RMS calculation are 

968–1008, 2480–2520, and 4380–4420 cm
-1

.  Besides the method noise, the return 

beam intensity must remain proper during the spectrum collection.  To make sure that 

the return beam intensity is not too strong, the region near the wavelength of 650cm
-1

 in 

the collected spectrum is examined to make sure that there is no indication of saturation.  

The detection limit is also considered in the TO-16.  Following the Beer’s law, the 

detection limit of the optical remote sensing instrument depends on the path length of 

the monitoring line.  Thus to calculate the detection limit of the tracer gases, 16 spectra 

are collected continuously for each monitoring line.  Using the previous collected 

spectrum as the background spectrum, 15 absorbance spectra are then created from the 

latter one(i.e. use the first spectrum as the background and create an absorbance 

spectrum from the second then use the second one as the background and create an 
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absorbance spectrum from the third one and so on).  For these 15 absournbance spectra, 

the concentration of the SF6 and N2O is calculated.  The detection limit is 3 times the 

standard deviation of these 15 concentration values. 

2.2 Data analysis 

2.2.1 The computational simulation 

    In the computational simulation, a series of test distributions are generated using 

bivariate lognormal distribution
38

 to mimic the skewed plume distribution when the 

wind presets.  The SBFM and NNLS reconstruction are both used to reconstruct the 

test map under the beam geometry described in the data collection section and an 

example geometry described in the OTM-10 which is described in section 2.2.1.2.  

Furthermore, we use two different basis functions (bivariate lognormal distribution and 

bivariate Gaussian distribution) as the basis function when applying the SBFM 

reconstruction.  The purpose of this computational simulation is (1) to compare the 

performance of the “grid based” reconstruction (i.e. NNLS) and the “non grid based” 

reconstruction (i.e. SBFM).  (2) To evaluate whether using skewd distribution as basis 

function when applying SBFM reconstruction is able to better describe the plume.  (3) 

To evaluate the performance of different beam geometries.  (4) Evaluating the 

uncertainty of using the SBFM algorithm to localize the emission source by the concept 

of “error map” which is reported in the section 2.2.1.4: uncertainty analysis.   
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2.2.1.1 Generating test maps and derived PIC 

    The bivariate lognormal distribution is generated as the underlying distribution in a 

30×30 domain.  The probability density function of the bi-variate lognormal 

distribution is described by Aitchison and Brown in 1957 and has the following form
38

: 
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x1>0 , x2>0  -1< ρ <1 

where 
iYµ  and 

iYσ are the population mean and standard deviation of Yi=lnXi, i=1 

represents the X direction and i=2 represents the Y direction.  ρ  is the population 

product-moment correlation coefficient of Y1 and Y2.  In this study, the lognormal 

distribution is multiplied by a scaling factor H which represents the peak height of the 

distribution.  Thus the bivariate lognormal distribution used in this study has the 

following form: 
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x1>0 , x2>0  -1< ρ <1 

where x1 and x2 represent the location in Cartesian coordinate 
1Yµ  and 

2Yµ represents 

the mean, 
1Yσ  and 

2Yσ  represents the standard deviation, ρ  represents the 

correlation coefficient and H  represents peak height.  Note that the bivariate 

lognormal distribution can only skewed to the direction of positive X axis and Y axis. 

Two thousands of lognormal distributions are first generated by Monte Carlo 

method which is a process that relying on the repeated random sampling to generate 

results.  A range of each parameters of the lognormal distributions are given, which are 

ln(5) to ln(45) with resolution of ln(0.1) for 
1Yµ  

2Yµ , 0.1 to 1 with resolution of 0.05 

for 
1Yσ  

2Yσ , -0.9 to 0.9 with resolution of 0.05 for ρ  and 1 to 500 with resolution of 

0.5 for H .  The test maps are generated by randomly sample from the given range of 

these six parameters.  That is, in each time of sampling, the six parameters are sampled 

from the given range of the parameters and are used to generate the first test map.  

Each time after the sampling, the sampled values are put back to the “parameter pool” 

for the next sampling process until a total of 2000 test maps are generated.  As 

previously mentioned, the experimental domain is divided into 9 grids.  Thus in each 
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grid, there are several test distributions with their peak locations in it.  In order to make 

sure that the number of the test distributions is equal in each pixel, we randomly 

selected 50 test distributions in each pixel.  Thus, a total of 450 (9 grids×50 test 

distributions) test distributions are randomly selected as the test map. 

    After the test distributions are generated, the observed PIC derived from these test 

distributions must be calculated for further reconstruction.  To calculate the observed 

PIC, the experimental domain is first divided in to m pixels.  In each pixel, the 

concentration value is assumed to be homogeneous.  The observed PIC is then 

calculated as follow
19

: 

∑ ×=
m

mimiobserved CKPIC ,                                       (2-3) 

where i is the number index of beam path which is 1 to 9 (9 monitoring lines) in our 

study.  m is the number index of pixel.  Kim is the Kernel matrix representing the i
th

 

beam path length in the m
th

 pixel.  Cm is the concentration in the m
th 

pixel which is 

derived from the bivariate lognormal distribution (Equation 2-2).  In this study, the 

concentration value in the middle of the m
th

 pixel is regarded to be the concentration in 

that pixel.  Although the finer the pixel may yield more accurate PIC, however for the 

time consuming concern, we divided the domain into 60×60 pixels thus the size of each 

pixel is 0.5×0.5.  The error of using this “grid integration” method was verified to 
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yield the error less than 2.5% (Appendix 2). 

2.2.1.2 The beam geometry 

    As mentioned previously, there are two kinds of beam geometries used in this 

study.  The first one is the same described in the data collection section (Figure 2.2) 

and the second one is an example geometry described in the OTM-10.  In the OTM-10, 

the “grid based” reconstruction algorithm, non-negative least square (NNLS), is used to 

reconstruct the “hot spot” of the emission.  Thus, as previously mentioned, the 

experimental domain must first be divided into several smaller pixels.  Once the 

number of the pixels is determined, the OTM-10 suggests that there should be at least 

one monitoring line that terminates within the boundary of each pixel to prevent the 

underdetermined situation.  In the example geometry, the experimental domain is first 

divided into 3×3 pixels.  Thus a total of 9 retroreflectors are located within the 

boundary of each pixel.  To maximize the spread of the optical beams inside the area 

of emissions, one optical beam is set to pass though the middle of each pixel and 

terminates at the retroreflector on the boundary of each pixel. (Figure2.1 (b))  The 

Cartesian coordinate of each retroreflector is (5.7,28.5) for Retro1, (5.6,17.1) for Retro2, 

(16.0,27.9) for Retro3, (8.1,8.4) for Retro4, (19.6,19.6) for Retro5, (28.8,27.6) for 

Retro6, (27.9,16.9) for Retro7, (16.7,5.1) for Retro8 and (28.8,5.6) for Retro9.  The 

difference between the geometry used in the field experiment (named Geometrycenter) 
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(Figure 2.1 (a)) and that described in the OTM-10 (named Geometryextend) (Figure 2.1 

(b)) is the location of each retroreflector.  In the Geometrycenter, the retroreflector is 

located in the middle of each pixel while in the Geometryextend, the retroreflector is 

located near the boundary of each pixel. 

2.2.1.3 The reconstruction algorithms 

(1) Smooth basis function minimization (SBFM) algorithm 

The SBFM reconstruction is first proposed by Drescher et al.
30

  Different from 

the traditional “grid based” reconstruction algorithm, a known smooth basis function 

with unknown parameters must be first chosen to describe the plume of the pollutant 

when applying the SBFM algorithm.  Since the concentration data obtained from the 

OP-FTIR is in the form of path integrated concentration (PIC), the PIC derived from the 

chosen basis function (called the predicted PIC) can be regarded as the integration of the 

basis function.  Thus by fitting the predicted PIC to the measured PIC (observed PIC), 

the unknown parameters of the basis function can be estimated.  To do so, an error 

function, the sum of squared errors (SSE), is conducted to be minimized.   

2

,, )(∑ −=
i

ipredictediobserved PICPICSSE                                (2-4) 

where i is the ray number index, PICobserved,i is the i
th

 observed PIC derived from the test 

distribution and PICpredicted,i is the i
th

 predicted PIC derived from the chosen basis 
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functions (bivariate lognormal distribution and bivariate Gaussian distribution).  By 

iteratively changing the parameters of the chosen basis function, the parameters that 

make the predicted PIC best fit to the observed PIC (minimum SSE) can be evaluated.   

The solution searching process described above is called optimization which 

means finding the best solution for the given function.  In one previous study, different 

optimizations algorithm including simplex algorithm and simulated annealing have been 

applied and evaluated in the RPM-SBFM technique.
16

  In our study, we applied the 

built-in optimization function, lsqnonlin, in the optimization toolbox of MATLAB 

software to minimize the SSE.  When using the lsqnonlin optimization, the upper and 

lower bound along with the first guess of the solutions must first be given to the 

algorithm.  Once the observed PIC is input to the algorithm, the algorithm will begin to 

search the solution iteratively from the given first guess within the given upper and 

lower boundary.  The searching procedure will stop when certain criteria are reached.  

The first criterion is that the solution perfectly yields a SSE of zero. The second one is 

that the change of the residual is less than the given tolerance.  In this study, the 

tolerance is set to 10
-10

 (default=10
-6

).  The third one is the number of iteration has 

reached to the given value which represents a possibility of reconstruction failure.  The 

maximum number of iteration is set to 240000 (default=400) in this study. 

To evaluate whether the reconstruction algorithm has reconstructed a reasonable 
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solution, the concordance correlation factor (CCF)
39

 between the observed and 

predicted PIC is calculated (CCFPIC).  The CCF is similar to the Pearson correlation 

coefficient however it is adjusted to account for the shifts in location and scale.  The 

CCF values are limited between -1 and 1 yet it does not exceed Pearson correlation 

factor.  The CCF equaling 1 represents a perfect match between the two sets of data.  

Since the fundamental procedure of the SBFM reconstruction is to minimize the SSE 

between the observed and predicted PIC, the CCFPIC is expected to near 1.  Thus a low 

CCFPIC may indicate a failure of the reconstruction.  To evaluate the performance of 

the reconstruction, the CCF between the test map and the reconstructed map is also 

calculated (CCFRPM).  The CCFRPM equaling 1 represents a perfect match between the 

test map and the reconstructed result.  Despite CCFRPM, another indicator, Nearness,
23, 

40
 is also calculated in this study to represent the performance of the reconstruction.  

The Nearness (refer to NearnessRPM) describes the discrepancy between the test map 

and the reconstructed map
23, 40

.  
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where m is the number index of the pixel, 
∗

mc  is the concentration value of the test map 

in the m
th

 pixel, cm is the concentration value of the reconstructed map in the m
th

 pixel 

and 
∗

avgc  is the average concentration of the test map.  The smaller the NearnessRPM 
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represents the better the performance of the reconstruction thus the NearnessRPM equals 

0 represents the perfect match between the test map and the reconstructed map.   

The performance of the source localization is evaluated by two indicators.  The 

first one is the distance between the real and reconstructed source location (peak error).  

The second one is to measure whether the reconstructed peak location “hit” the same 

pixel of the real source location.  The number of the distribution out of 450 

reconstructed distributions is calculated as the indicator “HIT”.  Note that the pixel 

here refers to the pixel described in the generating test map section which is 3 by 3. 

In the computational simulation, we apply both the bivariate Gaussian and 

bivariate lognormal distributions as the SBFM fitting functions.   

(1.a) The bivariate lognormal distribution 

The bivariate lognormal distribution is the same distribution used to generate the 

test distribution (Equation 2-2).  Although the integration method described in section 

2.2.1.3(1.b) may provide the actual PIC information, we are not able to apply it because 

there is no analytical solution when using bivariate lognormal distribution as basis 

function.  Thus to calculate the predicted PIC from the bivariate normal distribution, 

the method, same as the one used to calculate the observed PIC in Equation 2-3, is 

applied.    The experimental domain is first divided in to m pixels and the PICpredicted,i 

derived from the bivariate lognormal distribution is:  
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∑ ×=
m

jmmimjipreditcted pYXLKpPIC ),,()(,                         (2-6) 

where j (1 to 6) is the parameter number index, i (from 1 to 9) is the number index of 

beam path and m (3600=60×60) is the number index of pixel; pj is the j
th

 parameter of 

the lognormal distribution; Kim is the Kernel matrix representing the path length for i
th

 

beam path in the m
th 

pixel.  ),,( jmm pYXL is the bivariate lognormal distribution in 

which Xm and Ym represent the Cartesian coordinate in the middle of the m
th

 pixel. 

    The peak location, mode, of the bivariate lognormal distribution is associated with 

all of the distribution’s parameters.  To calculate the peak location, the concentration in 

each pixel derived from the reconstructed parameters is first calculated.  The Cartesian 

coordinate in the middle of the pixel with the maximum concentration is regarded as the 

peak location.  Since the size of each pixel is 0.5×0.5, the error between the actual and 

the calculated peak location will be less then 0.35 (i.e. the distance from the middle of 

the pixel to the corner of the pixel).  In the scale of 30m×30m, an error of 35cm is 

acceptable. 

(1.b) The bivariate Gaussian distributions 

The bivariate Gaussian distribution, similar to the lognormal distribution, is also 

described by six parameters: the peak location, two standard deviations, the peak height, 

and the angle between the x-axis and the principal axis of the distribution and has the 



 

 37 

following form:  
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where x1 and x2 are the Cartesian coordinate of the location in the experimental domain, 

1µ , 2µ and 1σ , 2σ  are the peak location and the standard deviation for both X and Y axis, 

ρ is the correlation of x1 and x2 which may be regarded as the angle between the x-axis 

and the principal axis of the distribution and H is the peak height.  To calculate the 

predicted PIC derived from the bivariate Gaussian distribution, Equation 2-7 is first 

reformed by the following equation: 
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Thus the bivariate Gaussian is reformed and presented in polar coordinate: 
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and the PICpredicted,i for the bivariate Gaussian distribution is
16

: 

drprGpPIC ji

L

jipredicted

i

),,()(
0

, θ∑ ∫=        (2-10) 

where j is the parameter number index (1 to 6) and i (1 to 9) is the number index of 

beam path; Li is the i
th

 beam path length and pj is the j
th

 parameter of the bivariate 

Gaussian distribution; G (r,θi,pj) is the bivariate Gaussian distribution in polar 

coordinates r and θ��

    The peak location (mode) of the bivariate normal distribution is the same as the 

mean of this distribution.  Thus the reconstructed peak location is (µ1, µ2) in Cartesian 

coordinate. 

(2) The non-negative least square algorithm  

    The non-negative least square algorithm is described in the US EPA other test 

method 10 (OTM10)
35

 which is an iterative algebraic deconvolution algorithm
41

.  The 

NNLS algorithm is also a built-in algorithm for solving nonnegative least-squares 

constraints problem.  For example, if K is a k-by-m matrix and D is a vertical vector 

with k elements.  The NNLS algorithm is used to solve the vertical vector C where 

Kkm×C=Dk. 

Similar to the traditional “grid based” algorithm, when using the NNLS algorithm 
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the experimental domain must first be divided into several pixels.  For each pixel, the 

concentration is assumed to be non-negative and homogeneous.  By implementing the 

reconstruction algorithm using collected PIC data, the concentration value of each pixel 

can be estimated.  In an example of OTM-10, the experimental domain is divided into 

9 pixels.  And to prevent the underdetermined situation, there must be more than 1 

monitoring line terminates within the boundary of each pixel.  Once the beam 

geometry is determined, the measured PIC (observed PIC), as a function of the field of 

concentration, is given by: 

∑=
m

mkmkobserved cKPIC ,                       (2-11) 

where k is the number index of optical beam, m is the number index of pixel, Kkm is the 

Kernel matrix representing the length of the k
th

 beam path in the m
th

 pixel and cm is the 

average concentration in the m
th

 pixel.  In our study, the m=1 to 9 (9 pixels) and k=1 to 

9 (9 optical beams).  Thus the PICobserved for each beam path derived from the test 

distribution (PICobserved,k) and the Kernel matrix (Kkm) are input to the NNLS algorithm 

and the mean concentration of each pixel (cm) can be estimated as output. 

    The second stage of the NNLS reconstruction involves the interpolation among the 

reconstructed pixel’s mean concentration, providing a peak location not limited in the 

middle of each pixel.  The interpolation method used in this study is Kriging method 

which is a geostatistical technique to interpolate or extrapolate the value of a random 
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field.  The Krigin process is implemented by the free software “DACE”
42

 which is a 

MATLAB toolbox.  For the comparison purpose, we interpolate and extrapolate the 

mean concentration value of each pixel to the same scale of the test map which is 60×60 

in the emission area.  Thus the peak location of the reconstructed plume is assumed to 

be the location in the middle of the interpolated pixels with highest concentration in 

Cartesian coordinate. 

    The indicators used in the SBFM reconstruction to evaluate the performance of the 

reconstruction are also calculated.  The indicators are CCFPIC, CCFRPM, NearnessRPM, 

DIST and HIT.  Where CCFPIC is the indicator of the reconstruction’s reasonableness, 

CCFRPM and NearnessRPM are the indictors of the performance of the reconstruction and 

DIST and HIT are the indicators of the ability for the reconstruction algorithm to 

reconstruct the source location. 

2.2.1.4 The uncertainty analysis of SBFM algorithm 

    We conduct an uncertainty analysis to construct the error map of the beam 

geometry when applying the SBFM reconstruction.  The two geometries 

Geometrycenter and Geometryextend are both investigated in this uncertainty analysis.  

The main concept of this uncertainty analysis is to mimic the SBFM reconstructing 

process yet without implementing the optimization algorithm.  As mentioned in the 

SBFM algorithm, the error function, SSE between the observed and predicted PIC is the 
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fitting function for the algorithm to find the solution.  By minimizing the SSE, the 

parameters of the chosen basis function can be estimated.  To mimic this solution 

searching process, we deploy the bivariate Gaussian distribution as basis function.  A 

range for each of the bivariate Gaussian distribution’s parameter is then introduced as 

the possible solution.  The procedure of generating possible solution and their derived 

PIC is as follow: 

Step 1: Give a range of the parameters of bivariate distributions (six parameters) which 

are:�0 to 30 with resolution of 2 for peak location µ1 and µ2, 1 to 6 with resolution 

of 1 for standard deviation σ1 and σ2, 10 to 500 with resolution of 10 for peak 

height H and -0.9 to 0.9 with resolution of 0.3 for�the angle ρ.   

Step2: Calculate the derived PIC set (9 PICs for each combination) from the 

combination of the parameters in step 1 with Equation 2-10.  Thus for each 

combination of the µ1 and µ2 (256=16×16), there are a series of distributions 

(12600=6×6×50×7) regarded as the predicted distributions with different shape (σ1 

and σ2), peak height (H) and different angle (ρ).  

The next step of the uncertainty analysis is to calculate the SSE between the predicted 

and observed PIC.  There are two kinds of test distributions used in this uncertainty 

analysis which are the single and multiple test distribution.  The procedure for 

generating single test distribution is as follow: 
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Step 1: Divide the experimental domain into 3 by 3
 
pixels, generate a bivariate Gaussian 

distribution with the peak location in the middle of Pixel 1. 

Step 2: The PIC set (9 PICs) derived from the test distribution is calculated with 

Equation 2-10 as observed PIC. 

The error map of the single test distribution is able to visually demonstrate the possible 

reconstructed source location when a test distribution presents.  The error map is 

generated as follow (Figure 2.4): 

Step 3: Calculate the SSE between the observed PIC and predicted PIC.  For each 

combination of µ1 and µ2 (256) among the possible solutions, 12600 SSEs are 

calculated. 

Step 4: Calculate the smallest SSE in the 12600 SSEs in each combination of µ1 and µ2. 

For example, a total of 12600 SSEs are calculated as the candidate SSE at (0,0) in 

Cartesian coordinate (the first combination of µ1 and µ2).  The combination of the 

parameters that yields the minimum SSE among these 12600 SSEs are regarded as 

the best answer the algorithm can find at (0,0).   

Step 5: For each of the 16×16 combinations of µ1 and µ2 (source location), there is a 

minimum SSE representing the smallest SSE the SBFM algorithm can find at this 

location.   
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Step 6: Standardize these 16×16 SSEs by dividing them by the maximum value among 

them.  The location with smaller standardized SSE represents the possible 

reconstructed source location.   

Step 7: The contour plot of this SSE matrix is called error map.  The area with SSE 

less than 10
-2

 in the error map represents the possible reconstructed source 

location. 

Step 8: Generate the same test distribution with peak location in the middle of Pixel 2.  

Repeat from Step 1 to Step 8 until 9 error maps are generated. 

The other kind of error map derived from the multiple test distribution is called the 

overall error map.  This is used to show the uncertainty for the current beam geometry 

to localize the emission source over the emission domain.  The procedure to generate 

the observed PIC derived from the multiple test distribution is as follow: 

Step 1: Generate a series of the same test distributions in the aspect of peak height, 

width and the size with peak locations shifting from (0,0) to (30,30) with resolution 

equaling 2.  Thus total of 256 test distributions are generated as observed PIC. 

Step 2: Calculate the derived PIC sets (9 for each) of the observed distributions with 

Equation 2-10 as observed PIC. 

The procedure of generating the overall error map is as follow (Figure 2.5): 
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Step 1: Calculate the SSE between the observed PIC with peak location at (0,0) and 

predicted PIC.  The predicted PIC is the same as described in generating the error 

map of the single test distribution.   

Step 2: For each combination of the µ1 and µ2 (256=16×16) of the predicted 

distributions, 12600 SSEs are calculated.  Use the smallest SSE among these 12600 

SSEs as the best answer the SBFM algorithm can find when the predicted distribution 

is at this location. 

Step3: For each combination of the µ1 and µ2, there is one SSE representing the best 

answer the SBFM algorithm can find.  Standardize the SSE matrix by dividing them 

by the maximum value among them. 

Step4: Calculate the area with standardize SSE smaller than 10
-2

 which represents the 

possible area where the reconstructed source location might appear when the real 

source location is at (0,0). 

Step5: Repeat Step1 to Step4 however the observed PIC with peak location at (0,2) is 

used as test distribution.  Repeat the process until peak location of the observed PIC 

reaches (30,30). 

Step6: For each test distribution, there is a value representing the area that the 

reconstructed source location might appear.  The larger the value represents the 
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larger uncertainty for the SBFM to reconstruct the emission source at this location. 

    In order to further investigate the effect of the different plume (i.e. the size and the 

shape of the plume), we use the test distribution with ratio of σX and σY being 1:1, 1:2, 

1:3, 2:1 and 3:1 respectively.  This is to generate the test distribution with different 

shape.  And in each ratio of the σX and σY, there are at least two distributions with 

different size. 

2.2.2 The field experiment 

    In the field study, four experiments are conducted to verify the performance of 

RPM technique.  In each experiment, the SF6 and N2O are released simultaneously as 

tracer gases to be localized by the RPM technique.  Both the reconstruction algorithms 

of NNLS and SBFM are deployed to reconstruct the source locations. 

2.2.2.1 The spectrum quantification   

    For the spectrum quantification, the classical least square (CLS) method is applied 

by the Ir-soft software (ITRI, Hsingchu, Taiwan).  Each set of observed PIC is 

consisted with 9 PIC data for which the path length are 25.2m, 15.6m, 28.0m, 19.7m, 

34.9m, 6.8m, 28.3m, 15.2m and 25.5m respectively.  For the N2O, the spectral range 

of 2120-2228 cm
-1

 is used for the quantification with the reference spectrum at the PIC 

of 142 ppm-m.  Since the IR absorbance of this region is overlapped with CO, the 
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reference spectrum of CO (462.4 ppm-m) is also included for the N2O quantification to 

eliminate the influence of the substance.  As for SF6, the spectral region from 935 to 

955 cm
-1

 is used for quantification.  The reference spectra are with PIC of 10.4 ppm-m. 

2.2.2.2 The source location reconstruction 

    After the quantification of the PIC data, the observed PIC (i.e. measured PIC) is 

then input to both the NNLS and SBFM reconstruction.  A complete set of PIC (i.e. 

PIC collected from Retro1 to Retro9) may yield one reconstructed source location.  In 

the field experiment, we collected the sample spectra for about 2 hours in each 

experiment.  Thus there are approximately 20 complete PIC sets in each experiment.  

And as a result, about 20 source locations are reconstructed for each tracer gas.  We 

then average these 20 source locations to be the mean source location.   

    The SBFM reconstruction is implemented as described in the computational 

simulation.  The difference is that the observed PIC is no longer calculated from the 

test distribution but is from the direct measurement of the tracer gases.  The bivariate 

lognormal and bivariate Gaussian distributions are both deployed as the basis function.  

The maximum iteration time is set to 240000 and the tolerance is set to 10
-10

 as 

described in the computational simulation.  The time for a single reconstruction takes 

about 80 seconds when using the bivariate lognormal distribution and 2.5 seconds when 

using the bivariate Gaussian distribution.  The difference in reconstruction time is 
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because that we use the analytical method to generate the PIC when using the bivariate 

Gaussian distribution while the “grid integrated” method is applied when using the 

bivariate lognormal distribution as basis function.  The distance between the real and 

reconstructed source location along with “HIT” (whether the reconstructed source 

location is at the correct pixel) are calculated as indicators of the ability for the source 

localization. 

    The NNLS reconstruction is also implemented for source localization.  The 

experimental domain is first divided into 9 pixels.  The reconstructed concentration is 

then projected in these 9 grids.  The Kriging interpolation is then applied to interpolate 

these 9 reconstructed concentrations into 60×60 pixels.  As described in the OTM-10, 

the peak location after the kriging interpolation will not be limited in the middle of the 9 

pixels.  Same as the SBFM reconstruction, the distance between the reconstructed and 

real source location along with “HIT” are calculated as the indicators of the 

reconstruction performance.
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Figure 2.2 The tracer gas releasing device.  The three vertical plastic tubes are at the 

same height of the retroreflectors. 
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(a) Experiment 1                       (b) Experiment 2 
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     (d) Experiment 4 
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Figure 2.3 The experimental setup of the field experiment (a) Experiment 1 (b) 

Experiment 2 (c) Experiment 3 (d) Experiment 4. The black square represents the 

source location 

 

 

 

 

 

 

 

 

 

 

 

 



 

 51 

                
 

 

 

 

 
 

 

 
 

 

 
Figure 2.4 The procedure of generating error map of single test distribution 
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Figure 2.5 The procedure of generating overall error map
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Chapter3. Results and discussion 

3.1 Computational simulation results 

3.1.1 The plume reconstruction 

Figure 3.1 shows one example of the reconstruction results using the 

reconstruction methods described above under the same test map.  The test map in this 

example is from pixel 5, which is in the middle of the experimental domain and is a 

wide plume.  The best result is given by both the RPMc_log and RPMe_log (Figure 3.1 (d) 

(e)).  The four indicators show that the reconstructed distributions by these two 

methods have perfectly matched the test map in both the aspects of reconstruction 

quality and source localization ability.  The worst result is given by the RPMc_Gauss 

(Figure 3.1 (b)), although it yields a high CCFPIC (CCFPIC=0.92), it fails to reconstruct 

the plume (CCFRPM=0.12 NearnessRPM=2.30) but give a comparable source location 

estimation to that by the RPMe_NNLS and RPMc_NNLS (peak error=4.55, hit the right 

pixel).  As for the two reconstructions made by the NNLS algorithm under the two 

different beam geometries, although the peak errors (5.38 for Geometrycenter and 5.40 for 

Geometryextend) are slightly worse than that by the RPMc_Gauss, they both fail to 

reconstruct the source location that is at the right pixel.  In general, for the 

reconstruction of the plume, the SBFM using bivariate lognormal as basis function is 
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able to give the best result while the worst result is given by the SBFM using bivariate 

Gaussian as basis function.  As for the reconstruction of the source location, although 

the SBFM using bivariate Gaussian gives the worst result, it can still reconstruct a 

comparable or even better result to that of NNLS algorithm. 

The summary statistics of the reconstruction result is shown in Table 3.1.  The 

first two rows indicate the reconstruction using SBFM algorithm with bivariate 

Gaussian distribution as basis function under the extend beam geometry (RPMe_Gauss) 

and the center beam geometry (RPMc_Gauss) respectively.  The 3
rd

 and 4
th

 rows indicate 

the reconstruction using SBFM algorithm with bivaraite lognormal distribution as the 

basis function under extend (RPMe_log) and center beam geometry respectively 

(RPMc_log).  The last two rows indicate the reconstruction using NNLS algorithm also 

under extend (RPMe_NNLS) and center beam geometry (RPMc_NNLS) respectively.  From 

the column of ray fit, the CCFPIC in all of the reconstruction method is higher than 0.90 

which implies that the result has fulfilled the basic criteria of reconstruction that is 

fitting the predicted PIC to the observed PIC.  For the two indicators of the 

reconstruction performance, CCFRPM (the larger represents the better quality) ranges 

from 0.27 to 0.92 and NearnessRPM (the smaller represents the better quality) ranges 

from 0.27 to 17.23.  The best result is from the RPMe_log (CCFRPM = 0.92 and 

NearnessRPM=0.27) while the worst reconstruction result is from that by RPMc_Gauss 

(CCFRPM = 0.27 and NearnessRPM=17.23).  Despite the different definition of the two 
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indicators, the Nearness and CCFRPM shows conformity between each other.  In 

general, under the same beam geometry, the SBFM reconstruction using lognormal 

distribution as basis function gives the best result followed by NNLS and SBFM using 

bivariate Gaussian distribution as basis function.  As for the beam geometry, under the 

same reconstruction algorithm, the Geometryextend gives the better result than that given 

by Geometrycenter.  The difference of the CCFRPM between either pair of the 

reconstruction method has all reached statistical significant level at α=0.05 under paired 

t-test.  Similar result is observed in NearnessRPM, although the difference of the 

NearnessRPM between the RPMe_log and RPMc_log does not reach the significant level, it 

can still be seen that the RPMe_log (mean NearnessRPM = 0.27) performs better than the 

RPMc_log (mean NearnessRPM = 0.32). 

From the above observation, it can be concluded that in the aspect of 

reconstruction quality, the geometry from EPA (Geometryextend) performs better than the 

geometry from our original design (Geometrycenter) using the same reconstruction 

algorithm.  Since the only difference between these two geometries is the ray length, 

the result shows that the longer the ray length yields better performance.  We will 

discuss about the possible reasons in the latter paragraph.  The other finding is that the 

SBFM algorithm may perform better than the NNLS reconstruction by choosing the 

suitable basis function.  In the computational simulation, under the same beam 

geometry, the ranking of the reconstruction performance is (1) SBFM using bivariate 



 

56 

lognormal distribution as basis function (2) NNLS (3) SBFM using bivariate Gaussian 

as basis function (Table 3.1).  The result is reasonable because the test distribution 

used in the simulation is the bivariate lognormal distribution which is a skewed 

distribution.  Thus it can be predicted that a symmetric distribution may not fit well 

and as a consequence, the SBFM using bivariate Gaussian distribution gives the worst 

result.  The NNLS algorithm is able to reconstruct better because it is a “grid based” 

reconstruction technique.  Instead of superimposing a basis function, the NNLS 

directly estimates the concentration in the experimental domain thus it is not affected by 

the plume’s distribution.  As for the best result reconstructed by the SBFM using 

bivariate lognormal distribution as basis function, this may because that the same basis 

function is used to generate the test map thus the reconstructed plume is able to 

perfectly fit the test distribution (mean CCFPIC=1) and gives a nearly perfect result 

(mean CCFRPM>0.89).  Since the best result is given by the SBFM reconstruction 

using the same basis distribution as the test map, it can only be concluded that using 

SBFM with bivariate lognormal distribution as basis function is better when the plume 

is skewed to the same direction as the bivariate lognormal distribution. 

For the source localization accuracy, despite the high CCFPIC for each 

reconstruction methods, the mean peak error varies from 1.53 to 8.02 (Table 3.1).  The 

best result is given by RPMe_log (mean peak error=1.53) while the worst result is given 

by RPMc_Gauss (mean peak error=8.02).  Table 3.2 shows the paired t-test result of the 
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peak location between each reconstruction method.  The difference between 

RPMe_Gauss and RPMc_NNLS does not reach the statistical significant level at α=0.05.  As 

for the other indicator used to describe the accuracy of the source localization ability, 

HIT, the best result is also given by RPMe_log (HIT=406 (90.2%)) while the worst is also 

given by RPMc_Gauss (140(31.1%)) (Table 3.1).   

From the above observation, the reconstruction method using SBFM with bivariate 

lognormal distribution gives superior result in the aspect of the source localization 

accuracy under the same beam geometry.  However, there is no significant difference 

between the NNLS reconstruction and the SBFM using the bivariate Gaussian as basis 

function which implies that using SBFM with bivariate Gaussian as basis function may 

still reconstruct a comparable result comparing to the NNLS reconstruction.  The 

opposite result given by RPMe_NNLS and RPMe_Gauss in the two indicators of source 

localization accuracy seems to be illogical.  It is still reasonable because although the 

reconstructed source location does not “hit” the correct pixel, it may still close to the 

real source location at nearby pixel.  Comparing to the reconstruction quality, although 

the NNLS reconstruction performs better than the SBFM using bivaraite Gaussian as 

the basis function, the SBFM using bivaraite Gaussian as basis function can still 

reconstruct a comparable source location to the NNLS reconstruction.  This indicates 

that although failing to reconstruct the whole plume, the SBFM with bivariate Gaussian 

as basis function can still reconstruct the source location.  In the aspect of finding the 
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emission source, SBFM using a symmetric basis function is able to give a comparable 

result to the grid based method.  In the aspect of plume reconstruction, SBFM using a 

symmetric basis function might lead to an estimation bias.  Again, although the SBFM 

using bivariate lognormal as basis function gives the best result in both indicators, it can 

not be concluded that this is the best reconstruction algorithm for source localization 

because the test distribution is exactly the same as the basis function.  It can only be 

concluded that the SBFM using bivariate lognormal as basis function is better when the 

plume is skewed to the same direction as the bivariate lognormal distribution in the real 

world. 

Figure 3.2 shows another reconstruction result of the test map in pixel 1, which is 

close to the location of OP-FTIR.  The result shows that the best performance is 

implemented by RPMe_log and RPMc_log while the worst result is given by RPMe_NNLS 

and RPMc_NNLS in both the aspects of reconstruction quality and source localization 

accuracy.  This result is somehow different from the overall result suggested in Table 

3.1.  Another example is shown in Figure 3.3, where the test map is in pixel 9 and is 

far away from the OP-FTIR.  The result shows that the best performance is 

implemented by RPMe_log and RPMc_log while the worst is given by RPMe_Gauss.  The 

RPMe_NNLS and RPMc_NNLS both give comparable results to that given by the RPMe_log 

and RPMc_log (CCFRPM=0.97 and 0.91, NearnessRPM=0.25 and 0.46, peak error=4 and 

4.6 and hit the correct pixel) while the SBFM using Gaussian distribution not only fail 
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to reconstruct the plume but also failed to localize the source location (CCFRPM=0.002 

and 0.003, NearnessRPM=21.0 and 30.9, peak error=18.58 and 17.36) 

The above result seems to suggest that there is an association between the 

reconstruction quality and the real source location.  Table 3.3 and Table 3.4 

respectively, have shown the summary statistics of the reconstruction quality and source 

localization accuracy of the reconstruction of RPMc_Gauss and RPMc_NNLS classified by 

the pixel index.  From Table 3.3, the mean CCFPIC ranges from 0.89 to 0.99 which 

suggests that the reconstruction has reached the criteria of fitting the predicted PIC to 

observed PIC.  However, the mean CCFRPM and mean NearnessRPM ranges from 0.05 

to 0.57 and 44.95 to 1.31 respectively.  In terms of the SBFM reconstruction using 

bivariate Gaussian distribution as basis function, the best result is in pixel 1 where the 

mean CCFRPM and mean NearnessRPM= 0.57 and 1.31 however the CCFRPM drops 

dramatically to 0.05 in pixel 9 and the NearnessRPM rises to 44.95 in pixel 9 which 

indicates that the SBFM using bivariate Gaussian distribution is not able to reconstruct 

the plume which is far away from the OP-FTIR.  Despite the reconstruction quality, 

the source localization accuracy has the almost same trend.  The mean peak error rises 

from 3.11 to 15.54 from pixel 1 to pixel 9 and no reconstructed source location has hit 

the correct pixel in pixel 9.   

A completely different result is reconstructed by the NNLS algorithm.  From 
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table 3.4, the test maps in pixel 9 can be best reconstructed (mean CCFRPM=0.80, 

NearnessRPM=0.55, mean peak error=4.58) by the NNLS algorithm while the test maps 

in pixel 1 is not able to be reconstructed well (mean CCFRPM=0.22, NearnessRPM=1.39, 

mean peak error=15.35) by the NNLS algorithm.  The result suggests that the NNLS 

reconstruction is not able to reconstruct the plume which is near the OP-FTIR however 

it is able to reconstruct well when the plume is far away from the OP-FTIR.  This may 

because that although the source location is near the FTIR, there still might be a few 

monitoring lines (i.e. the monitoring lines on the edge) of the pixel that has detected the 

low PIC.  All of the monitoring lines have passed Pixel 1, thus the high concentration 

value in Pixel 1 would rise the reconstructed PIC when deploying the NNLS 

reconstruction.  As a result, the NNLS algorithm can only subjects a low concentration 

data to Pixel 1 to satisfy the monitoring line that has detected less emission to yield low 

reconstructed PIC.  However when the source is far away from the OP-FTIR, the 

concentration in each pixel is correlated to certain monitoring line only.  Thus the 

NNLS is able to subject a high concentration value in that pixel. 

3.1.2 The reliability of source localization 

    From section 3.1.1, it can be seen that the SBFM reconstruction using the 

lognormal distribution has provided a perfect match between the real and reconstructed 

plume.  This may because that the test map is bivariate lognormal distribution.  As for 
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the SBFM reconstruction using bivariate Gaussian as basis function and NNLS 

reconstruction, there are still certain unsolved problems.  For example, the NNLS 

reconstruction is not able to localize the emission source which is near the OP-FTIR 

while the SBFM algorithm using bivariate Gaussian distribution as basis function is not 

able to localize the emission source which is far away from the OP-FTIR.  While in 

application, it is important to know whether the reconstructed source location is reliable.  

In the aspect of source localization, to investigate the reliability of the different 

reconstruction methods, the sensitivity rate and specificity rate along with the false 

positive rate and false negative rate in each pixel are calculated to provide the screening 

information after the reconstruction process.   

    Table 3.5 shows the indicators of the reliability for each reconstruction method 

under the center geometry.  The sensitivity rate and specificity rate are the indicators to 

represent the goodness of the method.  The higher the sensitivity rate represents the 

better tool.  The sensitivity rate of each pixel represents the ability of current 

reconstruction method to localize the emission source in current pixel.  Note that the 

ability to localize the emission source is defined as the ability of this method to 

reconstruct the source location that hit the correct pixel.  For example, Table 3.5 (a) 

shows the reliability of the RPMc_Gauss.  The sensitivity rate of pixel 1 ”52%” 

represents that 52% of the plumes with peak location in pixel 1 can be localized 

accurately (hit the correct pixel) by the RPMc_Gauss.  The specificity rate represents the 
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ability of the reconstruction method to distinguish the source location that is not in 

current pixel.  For example, Table 3.5 (a), the specificity rate of pixel 1 is 94.3% which 

represents that 94.3% of the plumes with peak location outside of pixel 1 can be 

distinguished.  Associated with the specificity rate, the false positive rate is also 

calculated.  The false positive rate means the possibility that the reconstructed source 

location is within the current pixel however the true source location is not.  Along with 

the false negative rate, they are the indicators for the user to distinguish whether the 

reconstructed source location is reliable or not.  For example, Table 3.5 (a), the false 

positive rate of pixel 1 is 5.8% which represents that 5.8% of the plumes outside pixel 1 

are reconstructed as having source location in pixel 1.  The last indicator is false 

negative rate which represents the possibility that the reconstructed source location is 

outside the current pixel however the true source location is within the current pixel.  

For example, Table 3.5 (a), the false negative rate of pixel 1 is 48% which represents 

that 48% of the plumes within pixel 1 are reconstructed as having source location 

outside pixel 1.  A reliable method is considered to having both high sensitivity and 

specificity.  As a result, the higher the sensitivity and specificity rate yield lower false 

negative and false positive rate. 

    Table 3.5 (a) to (c) are able to give the guideline of the reconstruction with 

different methods while in application.  For example, in pixel 1, the false positive rate 

of each reconstruction method is 5.8%, 1.3% and 0 % for RPMc_Gauss, RPMc_log and 
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RPMc_NNLS respectively which suggests that once a reconstructed source location is in 

pixel 1 it is highly possible that the real source location is in pixel 1.  However from 

the sensitivity rate (52%, 100%, 2% respectively), it can be seen that the NNLS 

algorithm might not able to localize the plume with source location in pixel 1.  The 

best method that is able to localize the emission source is SBFM reconstruction using 

bivariate lognormal distribution as basis function.  From Table 3.5 (b), both the 

sensitivity rate and specificity rate are high (> 62%).  The worst method is SBFM 

reconstruction using bivariate Gaussian distribution as basis function.  From Table 3.5 

(a), only pixel 1, 2, 4 and 5 yield both sensitivity rate and specificity rate larger than 

50% which suggest that this method may work best when the source location of the 

plume is in pixel 1, 2, 4 and 5.  The NNLS is capable of localize the source location far 

from the OP-FTIR where pixel 6, 8 and 9 yield sensitivity rate and specificity rate larger 

than 70%.  Table 3.6 (a) to (c) have also demonstrated the reliability analysis results 

for Geometryextend.  Similar to the results of Geometrycenter where the NNLS is able to 

localize the source location far from the OP-FTIR (Table 3.6 (c)) while the SBFM using 

bivariate Gaussian distribution as basis function is able to localize the source location 

that is near the OP-FTIR (Table 3.6(a)).  The SBFM using bivariate lognormal 

distribution as basis function has given the best result in every pixel (Table 3.6(b)). 

3.1.3 The prior screening process 
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From table 3.1, 3.3 and 3.4, although the high CCFPIC has suggested a good match 

between the observed and predicted PIC however the reconstruction quality and the 

source localization ability still varies.  Furthermore, we attempted to find possible 

indicators that provide information to predict the performance of the reconstruction 

prior to the reconstruction process.   

Section 1.2 suggested that the plume with peak location near the OP-FTIR may not 

be localized accurately by the NNLS algorithm while the plume with peak location far 

away from the OP-FTIR may not be localize accurately by the SBFM algorithm using 

bivariate Gaussian distribution as basis function.  To take advantage of this 

information when in field application, the prior information about whether the emission 

source is near or far away from the OP-FTIR must be obtained.  To do so, we try to 

use whether the shortest monitoring is able to detect the plume (shortestD) as an 

indicator representing the closeness of the emission source to the OP-FTIR.  Table 3.7 

shows the summary statistics for the performance of reconstruction and source 

localization ability.  It can be seen that there is significant difference in both the 

reconstruction quality and source localization accuracy between the test map with 

shortestD and that without shortestD in most of the cases (Table 3.7).  Similar to the 

previous analysis, the SBFM with shortestD performs better than that without shortestD 

in both aspects of reconstruction quality and source localization accuracy.  

Furthermore, the SBFM reconstruction using bivariate lognormal distribution has also 
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shown the same trend.  The NNLS reconstruction however shows an opposite trend to 

the SBFM reconstruction where the test map without shortestD yields better 

performance than that with shortestD.  This also matches the observation from section 

3.1.1 and 3.1.2.  For example, Figure 3.2 is one example in which the test distribution 

is in Pixel 1 and the shortest monitoring line for both the beam geometry is not able to 

detect the plume.  And the reconstruction result shows that the SBFM using bivariate 

normal distribution as basis function is able to localize the source while the NNLS may 

not.  Another example is shown in Figure 3.3 where the source location is in Pixel 9 

which is far away from the OP-FTIR and is not be able to be detected by the shortest 

monitoring line.  The reconstruction result shows that the NNLS is able to localize the 

plume while the SBFM using bivariate Gaussian distribution as basis function may not. 

In addition to the shortestD, we try to find other prior information that is helpful to 

screen out the unsuitable PIC data or to choose a proper reconstruction method.  The 

number of detected PIC (dPIC) and the number index of monitoring line which detects 

the highest concentration of PIC (maxCON) are considered.  These two factors are 

strongly associated with the plume’s location.  For example, most of the plumes in 

pixel 1 are able to be detected by all of the monitoring line and most of the highest 

concentration is detected by the 4
th

 monitoring line.  We use the multiple linear 

regression models to analyze the fitness of possible factors which are dPIC, maxCON 

and ShortestD.  Table 3.8 shows the regression result using dPIC, maxCON and 
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ShortestD as predictor variables.  The R
2
 ranges from 0.14 to 0.44 for CCFRPM, 0.05 to 

0.42 for NearnessRPM and 0.12 to 0.47 for peak error.  The low R
2 

value suggests that 

the chosen factors may not explain the variation of the indicators used to describe the 

performance of reconstruction.  Thus we are not able to predict the performance of the 

reconstruction with the three chosen factors. 

3.1.4 The uncertainty analysis of SBFM reconstruction 

    Figure 3.4 shows the error map of the Geometryextend using bivariate Gaussian 

distribution with the ratio of σX and σY being 1:1 (a circle distributed distribution from 

the top view) as test distribution.  The figures on the left (Figure 3.4 (a) (c) (e)) show 

the error map with the peak location in the middle of each pixel with growing size 

(σX=1, 2 and 3 σY=1, 2 and 3 respectively).  The black color represents the area with 

standardized SSE smaller than 0.01 which represents the possible reconstructed source 

location when applying SBFM reconstruction.  The larger the area with black color 

represents the larger uncertainty when applying SBFM reconstruction.  The figures on 

the right (Figure 3.4 (b) (d) (f)) represent the overall error map with test distributions 

corresponding to the right figure.  The white color represents the area with 

standardized SSE smaller than 0.01 which represents the smaller uncertainty when 

applying SBFM algorithm.  That is, the test distribution with peak location in the white 

area can be localized by the SBFM algorithm more accurately comparing to those with 
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peak location in the black area.   

   From Figure 3.4, it can be seen that as the size of the test distribution grows the 

uncertainty decreases.  Although some of the black area increases (Figure 3.4 (a) (c) 

(e), the white area increases in Figure 3.4 (b) (d) (f).  This indicates that although some 

of the test distribution in the error map of the single test distribution has increasing 

uncertainty, the overall uncertainty (Figure 3.4 (b) (d) (e)) still decreases.  This may 

because that the larger plume is able to be detected by multiple monitoring lines even 

it’s far away from the OP-FTIR (Figure 3.4 (f)).  However the smaller plume can only 

be detected by limited monitoring lines thus increases the uncertainty.  Similar result is 

also observed in Figure 3.5, which is the error map of the same distribution to Figure 

3.4 however the beam geometry is different.   

Figure 3.6 and Figure 3.7 shows the error map with the ratio of σX and σY of the 

test distribution being 1:2 (The principle axis of the distribution is perpendicular to the 

X axis).  Similar results are observed where the larger the test distribution yields 

smaller overall uncertainty.  However it is worth noticed in Figure 3.6 (d), the white 

area between monitoring line 7 and 9 extends towards the far end of the domain.  The 

white area between monitoring line 7 and 9 even extends further when the plume grows 

larger (Figure 3.6 (f)).  Since the test distribution in Figure 3.6 is parallel to the Y axis, 

it is likely that the monitoring line 7 and 9 can still detect the plume because they are 
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approximately perpendicular the Y axis.  This can be confirmed by the white area 

between monitoring line 1 and 3 where the white area does not extend like it does 

between monitoring line 7 and 9.  This may because monitoring line 1 and 3, same as 

the test distribution, are approximately parallel to the Y axis.  The monitoring lines are 

not able to detect the plume when the plume is far away from the OP-FTIR.  The same 

result can be observed under the different beam geometry (Figure 3.7).  The white area 

between monitoring line 7 and 9 extends towards the far end of the domain in Figure 3.7 

(d) and (f) while that between monitoring line 1 and 3 does not. 

   The above observation can be further verified by using the test distributions with 

different angle.  Figure 3.8 and Figure 3.9 show the error map using the test 

distribution with the ratio of σX and σY being 2:1 under Geometryextend and 

Geometrycenter repectively.  The ratio of σX and σY being 2:1 represents that the 

principle axis of the test distribution in Figure 3.8 and 3.7 are perpendicular to that in 

Figure 3.6 and 3.7.  As expected, the white area between monitoring line 1 and 3 

extends towards the farther end of the domain but not that between monitoring line 7 

and 9 (Figure 3.6 (d) (f) and Figure 3.7 (d) (f)).  We further use the test distribution 

with different ratio to generate the error map.  Figure 3.10 (a) shows the error map 

using test distribution with the ratio between σX and σY being 1:2 (σX=2 σY=4) and 

Figure 3.10 (b) shows the error map using test distribution with the ratio between σX 

and σY being 1:3 (σX=2 σY=6) which represents the longer test distribution.  As 
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expected, the white area between monitoring line 7 and 9 in Figure 3.10 (b) extends 

more than that in Figure 3.10 (a).  This is because that the longer test distribution 

makes it possible to be detected by monitoring line 7 and 9 even it’s far away from the 

OP-FTIR.  Figure 3.10 (c) and (d) show the error map using test distribution that is 

perpendicular to that in Figure 3.10 (a) and (b) respectively.  Again, the white area 

between monitoring line 1 and 3 in Figure 3.10 (d) extends more than that in Figure 

3.10 (c).  Same result is observed under the other beam geometry (Figure 3.10 (e) (f) 

and Figure 3.10 (g) (h)). 

    The above analysis suggests that the SBFM reconstruction is able to localize the 

plume that is close to the OP-FTIR.  As the size of the plume grows, the SBFM 

reconstruction can also work even when the plume is far from the OP-FTIR.  In 

addition, the plume with peak location that is far from the OP-FTIR might still be 

localized if it is large enough to be detected by at least two monitoring lines.  This 

finding might be helpful for further predict the performance of the SBFM reconstruction 

when the plume is far from the OP-FTIR.   

The same situation is not observed in the overall simulation reconstruction analysis 

in section 3.1.1 (Table 3.1).  This may because that the test distribution (bivariate 

lognormal distribution) used in the reconstruction simulation is different form the basis 

function (bivariate Gaussian distribution).  Under this situation, a smaller plume of the 
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basis function close the OP-FTIR might be more flexible to fit the predicted PIC to the 

observed PIC.  For example, in Figure 3.2 (b) and (c), the SBFM reconstruction fails to 

reconstruct the plume in Pixel 9.  The CCFPIC (0.99 for both) indicates that the SSE 

between the observed and reconstructed PIC is minimized.     

As previously mention, we might be able to distinguish whether the plume is in the 

proximity of the OP-FTIR by examining whether the shortest monitoring line has 

detected the plume (ShortestD).  Since the error map suggests that the plume far from 

the OP-FTIR can still be localized if it is detected by at least two monitoring line, the 

test distributions without ShortestD in the simulation experiment might still be localized.  

We further implement the ANOVA analysis to see whether there is a difference in peak 

error between different dPIC (how many monitoring line that detects the plume) for the 

test distributions that is not able to be detected by the shortest monitoring line in the 

simulation experiment.  Table 3.9 shows the results of the ANOVA analysis on peak 

error with RPMe_Gauss and RPMc_Gauss.  It can be seen that the RPMc_Gauss 

reconstruction method has shown significant difference between different dPIC and the 

reconstruction has shown that the dPIC of 8 yields the best result.  However if we 

further analyze the test distributions of dPIC=6, it shows that the test distributions with 

dPIC=6 and 8 has included some test distributions that are in the proximity of the 

OP-FTIR.  Thus dPIC=8 and 6 yields better result.  The worst result is given by 

dPIC=2 and 1 respectively and most of the test distributions with dPIC=2 and 1 are 
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from the pixel of 9 which suggests that the test distribution far from the OP-FTIR may 

not be localized when the dPIC is limited even it’s able to be detected by 2 monitoring 

lines.  This has also shown that the generated test distributions may not be 

homogenous enough.  The plume tends to grow widely when it is far from the origin 

even when the given σX and σY are small.  Thus there is only little plume with dPIC=1 

which causes the error. 

3.2 Field experiment results 

3.2.1 The spectrum quantification 

    The detection limit for the two tracer gases in each monitoring line is shown in 

Table 3.10.  The measured PIC that is below detection limit is subjects to 0 to prevent 

possible influence on the source localization procedure.  All of the collected spectra 

are confirmed to show no sign of saturation by visually examine the spectral range in 

the proximity of 650 cm
-1

.  The maximum of the measured PIC for SF6 is 4.02�5.49 

ppm×m for Retro 5 while the minimum is 0.28�0.84 ppm×m for Retro 6,  The 

maximum measured PIC for N2O is 27.30�52.41 ppm×m for retro 3 while the minimum 

is 0.49�2.01 ppm×m for retro 6.  Table 3.11 (a) and (b) have shown the summary 

statistics of PIC data for SF6 and N2O respectively.  Figure 3.11 and Figure 3.12 have 

further shown the time series plot of the PIC data.  In all of the experiments, the PIC 

data of the first few sweeps (1 to 3) for both the tracer gases is 0 which indicates that 
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there is no background concentration increment for the two tracer gases in the 

experimental domain.  The concentration rises after the releasing of the tracer gases 

which implies that the measured concentration is from the artificially released tracer 

gases.  The PIC data that is measured after the release of tracer gases is used to localize 

the source.  Thus for each experiment, there are at least 21 sets of PIC data that can be 

used for source localizing.  However, the N2O has run out during experiment 4 thus 

there are only 17 sets of PIC information available. 

3.2.2 The source localization 

    The emission source reconstruction result is shown in Table 3.12.  The CCFPIC 

indicates the fitness between the observed and predicted PIC.  The highest CCFPIC is 

given by the NNLS reconstruction of N2O in experiment 2 (CCFPIC=0.99�0.01) and 

SBFM reconstruction using bivariate lognormal distribution as basis function 

(SBFMlognormal) of N2O in Exp 4 (CCFPIC=0.99�0.02) while the lowest mean CCFPIC is 

given by the NNLS reconstruction of N2O in Exp 3 (CCFPIC=0.77�0.26).  The high 

CCFPIC value in each reconstruction method shows a good fit between observed and 

predicted PIC however the source localization accuracy varies.  The best result is given 

by SBFMGaussian reconstruction for N2O in Exp 3 (mean peak error=5.26±3.78) while the 

worst result is given by NNLS reconstruction for SF6 in the Exp 4 (mean peak 

error=19.93±4.41).  This shows conformity to the simulation experiment where high 
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CCFPIC does not promise an accurate source localization result.   

The poor performance of NNLS reconstruction for SF6 in Exp 4 may because that 

the source is in pixel 1 which is close to the OP-FTIR.  As shown in the simulation 

experiment, the NNLS reconstruction is not able to localize the emission source that is 

close to the OP-FTIR.  This may because that the pixel close to the OP-FTIR is passed 

by all of the monitoring lines and as a result, the concentration in pixel 1 is correlated to 

the PIC data for all of the beam paths.  In this case, a high concentration in pixel 1 may 

increase the predicted PIC in all of the ray paths.  However, there lies a possibility that 

the monitoring lines on the upwind site may not be able to detect the plume even when 

the plume is with peak location in the proximity of OP-FTIR.  The algorithm thus 

subjects a low concentration value in pixel 1 to avoid high reconstructed PIC in the 

monitoring lines on the upwind site.  And for the monitoring lines with high PIC, the 

NNLS algorithm tends to subject the high concentration in the pixel that is only passed 

by that monitoring line.  Figure 3.14 (f) shows the result using NNLS algorithm to 

localize the source location of SF6 in Exp 4 and Table 3.10 (d) shows the time series 

plot of the PIC data of SF6 in Exp 4.  From table 3.10 (d), the PIC rises mostly in Path 

3, 4, 7 and 9 but not 1 and 2 and the highest concentration is detected by Path 7.  Thus 

it can be predicted that although the emission source is in Pixel 1, the reconstructed 

source location by NNLS might still subject a low concentration value in Pixel 1 to fit 

the low observed PIC in Path 1 and 2.  Furthermore, the reconstructed source location 
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can be predicted to be near Pixel 8 which is passed by Path 7 only (Figure 3.14 (f)).  

Another example is shown in Exp 2 SF6 in which the emission source is also in Pixel 1 

(Figure 3.12 (f)).  The NNLS still gives the worst result in all three kinds of 

reconstruction methods (mean peak error=17.44±7.02).  From the time series plot of 

PIC data (Figure 3.11 (b)), the PIC data rises mostly in Path 4, 5 and 7 but not Path 1 

and 2 and the highest concentration is detected by Path 5.  As a result, most of the 

reconstructed source locations are in Pixel 5 and 9 which correlate more to Path 5.  As 

stated in the simulation experiment, the NNLS reconstruction is able to localize the 

source that is far from the OP-FTIR.  For example, the NNLS reconstruction gives the 

best result for SF6 in Exp 1 (mean peak error=8.88±5.41) in which the source location is 

in pixel 8 (Figure 3.13 (c)).  From the series plot (Figure 3.11 (a)), the concentration 

rises mostly in Path 7 and 9 and the highest concentration is detected by Path 7.  Thus 

most of the reconstructed source locations are in Pixel 8 which is only passed by Path 7 

and some of the reconstructed source locations are in Pixel 7 which is passed only by 

Path 9. 

Regarding to the studies of Hashmonay et al. in 2002
19

 and 2008
37

, the result found 

in this study for using NNLS algorithm to locate the pollutant may indicate the 

uncertainty of the result in the previous two.  In the study of Hashmonay in 2008, the 

RPM technique using NNLS is implemented in a landfill to locate the unknown “hot 

spot” of the pollutant.  The result shows that the reconstruction is almost identical to 
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that reconstructed by MART algorithm.  However, it can be seen that in this study, the 

reconstructed “hot spot” of the pollutant is in the farther end of the experimental domain 

(Figure 1.6 (a)).  Comparing to the result in our study, there is a possibility that the real 

“hot spot” of the pollutant may be close to the optical remote sensing instrument 

however the NNLS reconstruction is not able to tell it apart.  In the other study
19

, a 

total of 5 experiments are implemented using the RPM technique to localize the 

artificially released source.  In each experiment, the SF6 is released as tracer gas to be 

localized.  Figure 1.6 (b) has shown the successful reconstruction results to the 

artificially released tracer gases.  Also, in these success examples, the tracer gases are 

located in the farther end of the emission domain.  And the results of the other two 

examples are not discussed.  Thus the result of having the emission source in the 

proximity of the emission domain still remains unknown.  Although in this case, the 

reconstruction algorithm is MART instead of NNLS, the study in 2008 has proved that 

the MART is able to reconstruct an identical result to that using NNLS algorithm. 

 The SBFM reconstruction using bivariate Gaussian distribution as basis function 

gives the significantly better result than the other methods in Exp 2, 3 and 4 for SF6 

(Table 3.12(a)).  In all of these cases, the source locations are near the OP-FTIR (Pixel 

1, Pixel 4 and Pixel 1 respectively).  This has also been verified in the simulation 

experiment where the source location that is near the OP-FTIR yields the shortest peak 

error.  In addition, the error map analysis has also supported this result where in Figure 
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3.9, the white area covers the region that in the proximity of the OP-FTIR.  This may 

because that the closer the emission source to the OP-FTIR, the higher opportunity that 

all of the monitoring line is able to detect the plume.  Once the plume is detected by all 

of the monitoring lines, the SBFM may not be able to tell apart whether the plume is a 

narrow plume near the OP-FTIR or a wide plume far from the OP-FTIR.  In this case, 

the SBFM tends to reconstruct the source in the region that is close to the OP-FTIR 

because the smaller plume may be more flexible to fit the predicted PIC to the observed 

PIC.  In Figure 3.13 (d) SF6 in Exp 2, although the SBFMGaussian gives the significantly 

better result than the others, most of the reconstructed source locations are in Pixel 5 

rather than Pixel 1.  This can be explained by the measured PIC data.  From Figure 

3.11 (b), Path 6 does not detected any tracer gas in most of the times thus giving the 

segmenting information to avoid the source being reconstructed in Pixel 1.  The star 

sign in Figure 3.13 (d) shows a result that is reconstructed in the correct pixel.  From 

Figure3.11 (b), it is able to be detected by all of the monitoring lines.  For the cases 

that the SBFMGaussian gives worse result, the source locations are all far from the 

OP-FITR.  In this case, the uncertainty analysis suggests that if the plume is able to be 

detected by at least two monitoring line, it is still possible to be localized by the SBFM 

reconstruction.  An example is shown in Exp 1 SF6 (Figure 3.13 (a)) in which, the 

relatively poor result is given by SBFMGaussian (mean peak error=9.00±6.38).  However, 

several reconstruction results are still close to the real source location.  For example, 
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the 20
th

 set of input PIC has yields the result with peak error equaling 8 (Figure 3.13 (a) 

star sign).  In Figure 3.11 (a), the 20
th

 set of input PIC is detected by path 5 and 7 only, 

which confirms the uncertainty analysis in the computational simulation.  Furthermore, 

the reconstruction using the 21
th

 set of input PIC is detected by path 5 and 7 (Figure 

3.11 (a)) which are the longer monitoring lines in the beam geometry.  The 

reconstruction with this set of PIC has yielded the reconstruction result with peak error 

equaling 8 (Figure 3.13 (a) triangle sign) which suggests that when the emission source 

is far from the FTIR, the SBFM may still reconstruct the source location if there is 

adequate segmenting information. 

As described in section 2.2.2.2.  The reconstructed source locations are averaged 

to give a mean source location in each experiment.  Figure 3.17 and 3.18 show the 

averaged source location for SF6 and N2O respectively and Table 3.13 (a) and (b) show 

the reconstruction performance of the averaged result of SF6 and N2O.  In table 3.13 

(a), the best result of the SF6 source reconstruction is given by NNLS reconstruction 

(peak error=2.90) in Exp 1 while the worst result is given by NNLS reconstruction 

(peak error=18.03) in the Exp 4.  In table 3.13 (b), the best result of the N2O 

reconstruction is given by SBFM reconstruction using bivariate lognormal distribution 

as basis function (peak error=0.49) in Exp 1 while the worst result is given by NNLS 

reconstruction in Exp 3 (peak error=10.59).  Similar trend of the performance of the 

different reconstruction methods to the overall reconstruction is observed.  The NNLS 



 

78 

is able to localize the plume that is far from the OP-FTIR while the SBFM is able to 

localize the plume that is close to the OP-FTIR. 

Carefully looking at the averaged reconstruction result, it can be seen that the 

NNLS has reconstructed the source location mostly in pixel 6, 8 and 9 while the SBFM 

using bivariate Gaussian distribution as basis function has reconstructed the source 

location mostly in pixel 2, 4 and 5.  The SBFM using bivariate lognormal distribution 

as basis function has reconstructed the source location between the other two methods.  

In addition, the reconstructed source locations by the three methods are able to point out 

the proximate location of the emission source.  For example, for the SF6 in experiment 

2 (Figure 3.17 (b)), although none of the reconstructed source location has hit the 

correct pixel, the real source location is in the proximity of the extension of the line 

between the three reconstructed source locations.  Similar results can be seen in all 

other experiments.  With this finding, combining the measured PIC, we might be able 

to choose which reconstruction result is the closest to the real source location.  For 

example, the SF6 in Exp4 (Figure 3.17 (b)), the reconstructed source location by the 3 

methods are between monitoring line 5 and 7.  From the measured PIC data (Figure 

3.11(d)), it can be seen the bearby short beam paths have also detected the plume (Path4 

and Path8).  Thus we might be able to judge that the source location is in the proximity 

of the SBFM reconstruction using bivariate Gaussian distribution as basis function.  

Another example, Exp2 N2O (Figure 3.18 (b)), the reconstructed source locations are 
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between monitoring line 3 and 4.  Judging by the measured PIC (Figure 3.12 (b)), the 

plume is not detected by bearby short paths (Path4 and Path6), thus we might be able to 

choose the reconstructed location by NNLS as the real source location. From the above 

example, we might be able to judge which reconstructed source location is the closest to 

the real source location by looking at the peripheral short paths.  Table 3.14 has further 

shown the result by based on this rule.  In all four experiments, the chosen results 

based on this hypothesis are all the closest to the real source location. 

Another possible solution is to apply the 1-D radial plume mapping described in 

previous studies
15, 31, 32, 35

.  In Figure 3.17 and 3.18, a virtual line can be created by 

linking the reconstructed source locations of the three methods.  The distance between 

the line and the real source location is less than 5 meters.  If the 1-D RPM is applied 

by setting up the beam geometry on this line the result might be more accurate.  In 

previous studies, the SBFM reconstruction in a 1-D scenario using different input PIC 

strategies and different basis functions have been proposed
15, 31, 32

.  Since the real 

source location is close to the monitoring line, we might be able to simply localize the 

peak concentration location along the monitoring line as the source location.  Also, the 

1-D RPM combining wind data can also be implemented to further localize the source. 

Table 3.15 has shown the wind data of the four experiments.  It can be seen that 

the average wind speed ranges from 0.43 to 0.86 m/s which indicates that the 
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experiment was conducted in the field with weak wind.  The wind direction varies 

rapidly in the four experiments.  The standard deviation of the wind direction ranges 

from 110 to 133 degrees.  Figure 3.19 has further shown the wind rose plot of the four 

experiments.  It can be seen that the mode of the wind direction is 0 degree (due north) 

which is approximately perpendicular to the monitoring lines.  Comparing the 

reconstruction result in each experiment, it can be seen that the RPM technique is able 

to localize the source with different reconstruction algorithm.  This suggests that under 

the same meteorological condition, although the source location varies, the RPM 

technique is still able to localize two sources simultaneously.  Comparing the different 

experiment, it can be seen that although the meteorological condition is significantly 

different (Table 3.15), the RPM technique is still able to localize the source.  Although 

the above observation seems to suggest that the meteorological condition cause no 

effect for the RPM technique to localize the source, it still needs to be noticed that the 

segmenting information is needed when applying the RPM technique.  If the wind 

direction is due to the location of OP-FTIR, the segmenting in formation is limited.  

The reason that the experiment is less affected by the wind may because that in most of 

the time, the wind direction is perpendicular to the monitoring lines.  Thus the 

segmenting information is adequate for the SBFM to localize the source. 

3.2.3 The reliability of the reconstruction result 
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    As mentioned in the simulation experiment, the section of reliability of the 

reconstruction result, table 3.5 is able to provide a guideline of the reconstruction.  In 

order to validate whether the reconstruction result is reliable, the mean source location 

of each reconstruction method is first calculated as described in section 2.2.2.2.  Figure 

3.17 and 3.18 show the averaged result for SF6 and N2O respectively.  It is difficult to 

tell whether the reconstructed source location is reliable or not by table 3.5.  For 

example, Figure 3.16 (a) shows the averaged result for SF6 in experiment 1.  The 

SBFMGaussian reconstructed the source location in pixel 4 and Table 3.5 (a) has shown 

13.0% of false positive rate which shows the uncertainty of the reconstructed source 

location.  Indeed, the real source location is not in pixel 4 however the 13.0% of 

possibility makes it hard to judge whether to be convinced by the reconstruction result.  

Table 3.5 (b) has shown the reliability of the SBFMlognormal reconstruction.  The high 

sensitivity rate and low false positive rate has suggested that the reconstruction result 

may be highly reliable.  However, in the field experiment, the SBFMlognormal has only 

reconstructed two out of eight source locations that are able to hit the correct pixel.  As 

mentioned previously, the high reliability of the reconstruction method from the 

simulation experiment may come from the similarity between the test distribution and 

the basis function which both are the bivariate lognormal distribution.  As for the 

NNLS reconstruction, similar to the SBFMGaussian, the high sensitivity and specificity 

rate of pixel 8 suggests that the NNLS is able to reconstruct the source location in Pixel 
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8.  The 26.5% of false positive rate makes it difficult to rely on the reconstruction by 

the NNLS algorithm.  Again, the NNLS reconstruction tends to reconstruct the source 

location far away from the OP-FTIR.  Four out of eight of the emission sources are 

reconstructed in Pixel 8 however none of them hit the correct pixel. 

        Despite the error caused by the RPM technique, the property of the pollution 

might also influence the performance of the RPM technique to localize the source.  For 

example, the acid deposition of the chemical substances
43

, the turbulence causing the 

distribution of the plume to change
44

 and the vertical dispersion of the pollutant
45

.  In 

our field experiment, the field domain is 30×30 meter square.  Although the relatively 

small area might limit the chemical deposition process, the error might still exist. 
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Figure 3.1 The reconstruction results for different reconstruction methods (a) The 

original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian 

distribution as basis function under Geometrycenter and Geometryextend respectively. (d) (e) 

The reconstruction by the SBFM using bivariate lognormal distribution as basis 

function under Geometrycenter and Geometryextend respectively. (f) (g) NNLS 

reconstruction under Geometrycenter and Geometryextend respectively.  The * sign after 

the peak error indicates that the reconstructed peak location has “hit” the correct pixel. 
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Figure 3.2 The reconstruction results for different reconstruction methods (a) The 

original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian 

distribution as basis function under Geometrycenter and Geometryextend respectively. (d) (e) 

The reconstruction by the SBFM using bivariate lognormal distribution as basis 

function under Geometrycenter and Geometryextend respectively. (f) (g) NNLS 

reconstruction under Geometrycenter and Geometryextend respectively.  The * sign after 

the peak error indicates that the reconstructed peak location has “hit” the correct pixel. 
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Figure 3.3 The reconstruction results for different reconstruction methods (a) The 

original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian 

distribution as basis function under Geometrycenter and Geometryextend respectively. (d) (e) 

The reconstruction by the SBFM using bivariate lognormal distribution as basis 

function under Geometrycenter and Geometryextend respectively. (f) (g) NNLS 

reconstruction under Geometrycenter and Geometryextend respectively.  The * sign after 

the peak error indicates that the reconstructed peak location has “hit” the correct pixel. 
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(a)                                   (b) The are of the white region=112 
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(c)                                    (d) The are of the white region=100 
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(e)                                    (f) The are of the white region=148 
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Figure 3.4 The error map of Geometryextend using different size of test distributions with 

the ratio of σX and σY being 1:1. The figures on the left are the error maps with only one 

test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =1 σY=1 (c) 

(d) σX =2 σY=2 (e) (f) σX =3 σY=3 
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(a)                                 (b) The are of the white region =120 
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(c)                                 (d) The are of the white region =128 
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(e)                                 (f) The are of the white region =140 
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Figure 3.5 The error map of Geometrycenter using different size of test distributions with 

the ratio of σX and σY being 1:1. The figures on the left are the error maps with only one 

test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =1 σY=1 (c) 

(d) σX =2 σY=2 (e) (f) σX =3 σY=3 
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(a)                                (b) The are of the white region =112 
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(c)                                (d) The are of the white region =132 
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(e)                                (f) The are of the white region =248 
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Figure 3.6 The error map of Geometryextend using different size of test distributions with 

the ratio of σX and σY being 1 to 2. The figures on the left are the error maps with only 

one test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =1 σY=2 (c) 

(d) σX =2 σY=4 (e) (f) σX =3 σY=6 
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(a)                               (b) The are of the white region =148 
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(c)                                (d) The are of the white region =156 
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(e)                                (f) The are of the white region =220 
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Figure 3.7 The error map of Geometrycenter using different size of test distributions with 

the ratio of σX and σY being 1 to 2. The figures on the left are the error maps with only 

one test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =1 σY=2 (c) 

(d) σX =2 σY=4 (e) (f) σX =3 σY=6 
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(a)                                (b) The are of the white region =104 
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(c)                                (d) The are of the white region =144 
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(e)                                (f) The are of the white region =232 
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Figure 3.8 The error map of Geometryextend using different size of test distributions with 

the ratio of σX and σY being 2 to 1. The figures on the left are the error maps with only 

one test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =2 σY=1 (c) 

(d) σX =4 σY=2 (e) (f) σX =6 σY=3 
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(a)                                (b) The are of the white region =136 
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(e)                                (f) The are of the white region =196 
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Figure 3.9 The error map of Geometrycenter using different size of test distributions with 

the ratio of σX and σY being 2 to 1. The figures on the left are the error maps with only 

one test distribution in the middle of each pixel.  The black color represents the 

standardized SSE < 0.01.  The figures on the right are the overall error map.  The 

white color representing the area with standardized SSE < 0.01.  (a) (b) σX =2 σY=1 (c) 

(d) σX =4 σY=2 (e) (f) σX =6 σY=3 
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(a)�σX=2 σY=4 Geometryextend              (b) σX=2 σY=6 Geometryextend 
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(c) σX=4 σY=2 Geometryextend              (d) σX=6 σY=2 Geometryextend 
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(e) σX=2 σY=4 Geometrycenter             (f) σX=2 σY=6 Geometrycenter      
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(g) σX=4 σY=2 Geometrycenter             (h) σX=6 σY=2 Geometrycenter      
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Figure 3.10 The error map using test distribution with the ratio of σX and σY being (a) 1 

to 2 (b) 1 to 3 (c) 2 to 1 and (d) 3 to 1 under Geometryextend (e) 1 to 2 (f) 1 to 3 (g) 2 to 1 

(h) 3 to 1 under Geometryextend 
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(a) Exp1 SF6                         (b) Exp2 SF6 
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(c) Exp3 SF6                         (d) Exp4 SF6 
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Figure 3.17 The average result of SF6 in (a) Experiment1 (b) Experiment2 (c) 

Experiment3 (d) Experiment4.  NNLS represents the average result using NNLS 

reconstruction. SBFMGaussian represents the average result using SBFM reconstruction 

with bivariate Gaussian distribution as basis function.  SBFMlognormal represents the 

average result using SBFM reconstruction with bivariate lognormal distribution as basis 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

100 

(a) Exp1 N2O                        (b) Exp2 N2O 
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(c) Exp3 N2O                        (d) Exp4 N2O 
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Figure 3.18 The average result of N2O in (a) Experiment1 (b) Experiment2 (c) 

Experiment3 (d) Experiment4.  NNLS represents the average result using NNLS 

reconstruction. SBFMGaussian represents the average result using SBFM reconstruction 

with bivariate Gaussian distribution as basis function.  SBFMlognormal represents the 

average result using SBFM reconstruction with bivariate lognormal distribution as basis 

function. 
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(a)                                      (b) 

 

(c) (d) 

 

Figure 3.19 The wind rose of the four field experiments. (a) Exp1 (b) Exp2 (c) Exp3 and 

(d) Exp4
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Table 3.5 Sensitivity analysis of the center beam geometry 

 

(a) RPMc_Gauss 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 52.0% 94.3%� 48.0% 5.8%�
2 64.0% 88.0%� 36.0% 12.0%�
3 8.0% 99.3%� 92.0% 0.7%�
4 62.0% 87.0%� 38.0% 13.0%�
5 86.0% 54.5%� 14.0% 45.5%�
6 4.0% 99.8%� 96.0% 0.2%�
7 2.0% 100.0%� 98.0% 0.0%�
8 2.0% 99.8%� 98.0% 0.2%�
9 0.0% 100.0%� 100% 0.0%�

 

 

(b) RPMc_log 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 100% 98.8% 0% 1.3% 

2 94.0% 98.0% 6.0% 2.0% 

3 86.0% 97.3% 4.0% 2.8% 

4 86.0% 99.3% 4.0% 0.7% 

5 86.0% 95.8% 4.0% 4.3% 

6 62.0% 97.8% 38.0% 2.3% 

7 86.0% 98.5% 14.0% 1.5% 

8 74.0% 97.5% 26.0% 2.5% 

9 80.0% 99.0% 20.0% 1.0% 

 

 

(c) RPMc_NNLS 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 2.0% 100.0% 98.0% 0.0% 

2 42.0% 98.0% 58.0% 2.0% 

3 42.0% 99.0% 58.0% 1.0% 

4 16.0% 97.8% 84.0% 2.3% 

5 20.0% 93.5% 80.0% 6.5% 

6 72.0% 81.8% 28.0% 18.3% 

7 36.0% 98.8% 64.0% 1.3% 

8 76.0% 73.5% 24.0% 26.5% 

9 88.0% 94.5% 12.0% 5.5% 
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Table 3.6 Sensitivity analysis of the extend beam geometry 

 

(a) RPMe_Gauss 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 60.0%� 92.3%� 40.0% 7.8%�
2 84.0%� 84.3%� 16.0% 15.8%�
3 0.0%� 98.5%� 100% 1.5%�
4 48.0%� 89.3%� 52.0% 10.8%�
5 76.0%� 69.8%� 24% 30.3%�
6 16.0%� 99.0%� 84.0% 1.0%�
7 8.0%� 98.5%� 92.0% 1.5%�
8 32.0%� 97.0%� 68.0% 3.0%�
9 0.0%� 99.5%� 100% 0.5%�

 

 

(b) RPMe_log 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 94.0% 99.0%� 6.0% 1.0%�
2 94.0% 98.3%� 6.0% 1.8%�
3 86.0% 98.3%� 14.0% 1.8%�
4 90.0% 99.3%� 10.0% 0.7%�
5 98.0% 98.0%� 2.0% 2.0%�
6 72.0% 97.8%� 18.0% 2.3%�
7 92.0% 99.8%� 8.0% 0.2%�
8 96.0% 99.0%� 4.0% 1.0%�
9 90.0% 99.8%� 10.0% 0.2%�

 

 

(c) RPMe_NNLS 

pixel Sensitivity rate Specificity rate False negative rate False positive rate 

1 10.0% 100%� 90.0% 0.0%�
2 56.0% 97.8%� 44.0% 2.3%�
3 46.0% 99.3%� 54.0% 0.7%�
4 18.0% 97.3%� 82.0% 2.8%�
5 24.0% 94.5%� 76.0% 5.5%�
6 96.0% 81.8%� 4.0% 18.3%�
7 52.0% 98.5%� 48.0% 1.5%�
8 92.0% 78.8%� 8.0% 21.3%�
9 80.0% 99.0%� 20.0% 1.0%�
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Table 3.9 ANOVA analysis between different dPIC with test distributions without 

ShortestD 

 

Beam Geometry P-value Ranking of dPIC 

Geometryextend 0.19 6�5�4�3�7�2 

Geometrycenter 0.01 8�6�7�4�5�3�2�1 

The ranking represents the result of Bonferroni t-test from the best performance 

(shortest peak error) to the worst (longest peak error). 

 

 

 

 

 

Table 3.10 The detection limit of SF6 and N2O in each monitoring line 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

SF6 0.069 0.088 0.075 0.118 0.075 0.192 0.064 0.060 0.107 

N2O 0.643 0.847 0.416 0.659 0.397 1.037 0.518 0.458 0.618 
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Table 3.12 The reconstruction result of field experiment of two tracer gases (a) SF6 (b) 

N2O 

 

(a) SF6 

 
Valid PIC set 

CCFPIC 

(Mean±SD) 

Peak error 

(Mean±SD) 
HIT 

Exp1 (pixel 8)     

SBFMGaussian 24 0.96±0.09 9.00±6.38 4(16.67%) 

SBFMlognormal 24 0.89±0.27 10.55±7.35 6(25.00%) 

NNLS 24 0.92±0.21 8.88±5.41 11(45.83%) 

Exp2 (pixel 1)     

SBFMGaussian 22 0.96±0.07 9.15±4.51
*
 4(17.39%) 

SBFMlognormal 22 0.94±0.11 9.48±5.40 3(13.04%) 

NNLS 22 0.80±0.29 17.44±7.02
#
 1(4.35%) 

Exp3 (pixel 4)     

SBFMGaussian 21 0.93±0.14 9.07±5.72
*
 7(33.33%) 

SBFMlognormal 21 0.83±0.31 12.79±7.29 3(14.29%) 

NNLS 21 0.83±0.26 13.94±6.80 4(19.05%) 

Exp4 (pixel 1)     

SBFMGaussian 22 0.87±0.16 7.93±4.43
*
 3(13.64%) 

SBFMlognormal 22 0.86±0.16 10.28±6.43 4(18.18%) 

NNLS 22 0.87±0.25 19.93±4.41
#
 1(4.55%) 

 

 

(b) N2O 

 
Valid PIC set 

CCFPIC 

(Mean±SD) 

Peak error 

(Mean±SD) 
HIT 

Exp1 (pixel 5)     

SBFMGaussian 25� 0.95±0.10� 6.44±3.12� 12(50.00%)�

SBFMlognormal 25� 0.93±0.13� 6.31±4.06� 14(56.00%)�

NNLS 25� 0.82±0.26� 13.46±4.83
#
� 2(8.00%)�

Exp2 (pixel 6)     

SBFMGaussian 21� 0.97±0.07� 8.08±4.46� 1(4.35%)�

SBFMlognormal 21� 0.95±0.13� 11.10±4.99� 0(0.00%)�

NNLS 21� 0.99±0.01� 6.93±4.18
*
� 16(72.73%)�

Exp3 (pixel 2)     

SBFMGaussian 21� 0.93±0.11� 5.26±3.78� 12(57.14%)�

SBFMlognormal 21� 0.87±0.18� 6.39±4.99� 10(47.62%)�

NNLS 21� 0.77±0.26� 13.61±6.43
#
� 3(14.29%)�

Exp4 (pixel 8)     

SBFMGaussian 17� 0.99±0.02� 8.82±4.43� 1(0.06%)�

SBFMlognormal 17� 0.99±0.02� 8.74±4.50� 0(0.00%)�

NNLS 17� 0.98±0.04� 9.70±2.59� 3(17.65%)�

The * represents significantly better than the other two methods. 

The 
# 

represents significantly worse than the other two methods. 
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Table 3.13 The mean reconstruction result of field experiment of two tracer gases (a) 

SF6 (b) N2O 

 

(a) SF6 

 Valid PIC set Peak error HIT 

Exp1 (pixel 8)    

SBFMGaussian 24 6.81 No 

SBFMlognormal 24 4.79 No 

NNLS 24 2.90 Yes 

Exp2 (pixel 1)    

SBFMGaussian 22 6.84 No 

SBFMlognormal 22 7.70 No 

NNLS 22 15.61 No 

Exp3 (pixel 4)    

SBFMGaussian 21 3.09 Yes 

SBFMlognormal 21 6.52 No 

NNLS 21 10.34 No 

Exp4 (pixel 1)    

SBFMGaussian 22 4.74 No 

SBFMlognormal 22 6.56 No 

NNLS 22 18.03 No 

 

 

(b) N2O 

 Valid PIC set Peak error HIT 

Exp1 (pixel 5)    

SBFMGaussian 25 1.38 Yes 

SBFMlognormal 25 0.49 Yes 

NNLS 25 9.70 No 

Exp2 (pixel 6)    

SBFMGaussian 21 6.81 No 

SBFMlognormal 21 8.68 No 

NNLS 21 5.14 Yes 

Exp3 (pixel 2)    

SBFMGaussian 21 3.33 Yes 

SBFMlognormal 21 4.86 Yes 

NNLS 21 10.59 No 

Exp4 (pixel 8)    

SBFMGaussian 17 8.03 No 

SBFMlognormal 17 7.53 No 

NNLS 17 7.74 No 
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Table 3.14 The chosen reconstructed result by the nearby beam paths 

 Nearby paths Nearby short 

paths 
result 

Exp1    

SF6 5, 6, 7 4, 6, 8 NNLS 

N2O 4, 5 4*, 6 SBFMGaussian 

Exp2    

SF6 5, 6, 7 4*, 6, 8* SBFMGaussian 

N2O 3, 4 2, 4 NNLS 

Exp3    

SF6 5, 7 4, 6, 8* SBFMGaussian 

N2O 2, 3, 4 2*, 4* SBFMGaussian 

Exp4    

SF6 5, 6, 7 4*, 6, 8* SBFMGaussian 

N2O 4, 5 4, 6 NNLS 

The * represents the monitoring line that detects the plume 
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Table 3.15 The wind data of the field experiment 

 Wind speed Wind direction 

 
Number of data sets 

Mean±SD Mean±SD Mode 

Exp1 7865� 0.43�0.41*� 164.63�118.72*� 0�

Exp2 7383� 0.46�0.38*� 151.52�133.46*� 359.1�

Exp3 6900� 0.86�0.70*� 175.82�110.59� 0�

Exp4 6960� 0.83�0.63*� 175.02�125.62� 356.3�

 

The * sign represents significant difference comparing to other experiments under t-test.  

There is no significant difference between the wind direction of Exp3 and Exp4.  
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Chapter4. Conclusions and suggestions 

4.1 The simulation experiment 

In the simulation study, a series of test distributions are generated and be 

reconstructed by the three reconstruction algorithms used in the RPM technique.  The 

result shows that the SBFM using bivariate lognormal distribution gives the best result 

than the other methods.  From the overall results (Table 3.1), in the aspect of the plume 

reconstruction, the SBFM using bivariate lognormal distribution as basis function may 

give the best result followed by NNLS and SBFM reconstruction using bivariate 

Gaussian distribution as basis function.  A slightly different result is observed in the 

aspect of the source localization ability.  The SBFM using bivariate lognormal 

distribution still gives the best result while the SBFM reconstruction using bivariate 

Gaussian distribution as basis function may gives a comparable result to that by the 

NNLS reconstruction.  If we further look at the performance of each reconstruction 

algorithms in each pixel the NNLS reconstruction is not able to localize the source in 

the proximity of OP-FTIR while the SBFM using bivariate Gaussian as basis function is 

not able to localize the source that is far from the OP-FTIR.  The reasons are discussed 

in Chapter 3. 

Another simulation study is conducted to investigate the uncertainty for the source 

localization ability for the SBFM algorithm.  The larger the plume yields the smaller 
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uncertainty when applying the SBFM reconstruction.  Furthermore, the source location 

in the proximity of the OP-FTIR yields smaller uncertainty.  The source location far 

from the FTIR may still be localized if multiple monitoring lines are able to detect the 

plume. 

4.2 The field study 

In the field study, four experiments are conducted with four pairs of artificially 

released emission sources.  The results shows that the NNLS reconstruction is able to 

localize the source that is far from the OP-FTIR while the SBFM reconstruction using 

bivariate Gaussian as basis function is able to localize the source that is in the proximity 

of the OP-FTIR.  With adequate segmenting information, the SBFM using bivariate 

Gaussian distribution as basis function may still localize the emission source that is far 

from the OP-FTIR.  Furthermore, the reconstructed sources by the three methods are 

able to point out the correct direction of the real source location.  Judging by the 

measured PIC data, one of the reconstructed source locations among the three methods 

can be chosen as the real source location.  If the peripheral short paths are able to 

detect the plume, the real source location might be close to the reconstructed source by 

the SBFM using Gaussian distribution as basis function. 

4.3 Suggestions 

    In the OTM-10 by US EPA, this guideline suggests that when using the HRPM, the 
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NNLS algorithm, rather than the SBFM algorithm, is used as the reconstruction 

algorithm to localize the “Hot spot” of the plume.  However in our study, we have 

found out that the NNLS reconstruction may only reconstruct the plume that is far from 

the OP-FTIR.  Thus we may suggest that when using the HRPM described in the 

OTM-10, not only the NNLS reconstruction should be implemented but also the SBFM 

reconstruction is needed.  The reconstructed source locations may be further screened 

by the PIC that is detected by peripheral short paths.  The 1-D RPM may also be 

applied after the 2-D reconstruction is implemented.  This is to further verify the 

possible source location among the three reconstructed source locations. 

    When applying the 2-D RPM technique, the beam geometry must be set up by 

previously considering the wind direction.  In our study, the segmenting information is 

needed when using the SBFM reconstruction to localize the source.  If the wind 

direction is due the direction towards the OP-FTIR, all of the monitoring lines will be 

able to detect the plume.  Under this circumstance, the SBFM algorithm is likely not 

able to localize the source.  Thus before setting up the beam geometry, the wind 

direction must be first considered to be perpendicular to the monitoring lines to prevent 

the situation that described above. 

    When applying the SBFM reconstruction, a more flexible bivariate distribution 

might be used as the basis function.  Although the lognormal distribution used in our 
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study is a skewed distribution, it may still not be flexible enough to characterize the 

plume because it is only able to be skewed to certain directions.  For example, the 

bivariate skewed distribution
46

. 

4.4 Limitations 

    The experiment is conducted on a lawn without obstacles.  However with the 

obstacles’ present, the shape of the plume may be affected.  This will limit the 

application of the SBFM reconstruction.  For example, for the application in the 

factory, the manufacturing machines might affect the plume’s distribution. 

    The time for the OP-FTIR to scan from one retroreflector to the other may cause 

error to the reconstruction.  When the wind fluctuates, the distribution of the plume 

also fluctuates with time.  Thus the limited temporal resolution of the PIC data may 

come from the different distributions.  This will cause error when applying the 

reconstruction algorithm. 
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Appendix 
 

Appendix 1.  The standard operation procedure of the quality assurance. 

 

A. The procedure of determining the method noise and result 

1. Collect two spectra simultaneously in each beam path.  Do not allow any time to 

elapse between these two spectra. 

2. Generate an absorbance spectrum with either of these two spectra as background. 

3. Analyze this absorbance spectrum for the RMS deviation in the three wave number 

regions 968–1008 cm
-1

, 2480–2520 cm
-1

, and 4380–4420 cm
-1

. 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Region

1 

0.000

5 

0.000

7 

0.000

4 

0.000

5 

0.000

6 

0.000

8 

0.000

5 

0.000

5 

0.000

5 

Region

2 

0.000

3 

0.000

6 

0.000

4 

0.000

4 

0.000

4 

0.000

7 

0.000

3 

0.000

3 

0.000

4 

Region

3 

0.000

9 

0.001

3 

0.001

1 

0.000

8 

0.001

3 

0.001

8 

0.001

0 

0.000

7 

0.000

7 

 

B. The procedure of remaining proper beam intensity. 

1. Display the single beam spectrum when alignment.  Visually examine the spectral 

region of 650 cm
-1

.   

2. If there is a dip in this region, move the telescope of the OP-FTIR away slightly 

from the current position until the dip disappears. 

3. Once the dip disappears, record the current coordinate of the scanner and the 

current beam intensity. 

4. Move on to the next retroreflector. 

 

C. The procedure for determine detection limit 

1. Make sure there is no back ground concentration among the experimental domain. 

2. Collect 16 single beam spectra continuously for each monitoring line. 
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3. Generate the absorbance spectrum from the secondly collected spectrum using the 

first collected spectrum as background. 

4. Generate the absorbance spectrum from the thirdly collected spectrum using the 

secondly collected spectrum as background. 

5. Continue the previous step until 15 absorbance spectra are generated. 

6. Quantify the target compound from the 15 absorbance spectra. 

7. Calculate the standard deviation of the target compound’s concentration among the 

15 spectra. 

8. Three times the standard deviation is the detection limit of current beam path. 
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Appendix 2.  The scatter plot between real and Grid integrated PIC. 

We generate a bivariate Gaussian distribution with peak location in the middle of 

each pixel.  For each distribution, both the grid integrated method (Equation 2.3) and 

the analytical method (Equation 2-10) are applied to calculate the derived PIC.  The 

Figure and the corresponding Table shows the actual PIC (i.e. calculated by analytical 

method) and the grid integrated PIC.  It can be seen that in all of the cases, the error 

between the actual and grid integrated PIC is less than 3%. 
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(a) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 6.17 0.01 0.31 0.00 0.00 0.00 0.00 0.00 0.00 

Grid PIC 6.17 0.01 0.31 0.00 0.00 0.00 0.00 0.00 0.00 

Error(%) -0.07 1.36 0.77 0 0 0 0 0 0 

 

(b) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.01 0.00 4.58 0.01 1.08 0.00 0.00 0.00 0.00 

Grid PIC 0.01 0.00 4.58 0.01 1.08 0.00 0.00 0.00 0.00 

Error(%) -0.10 0 -0.07 -2.78 0.17 0 0 0 0 

 

(c) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.00 0.00 0.00 0.00 5.83 0.00 0.01 0.00 0.00 

Grid PIC 0.00 0.00 0.00 0.00 5.83 0.00 0.01 0.00 0.00 

Error(%) 0.10 0 0.09 0 -0.04 0 2.93 0 0 

 

(d) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 10.68 6.35 7.73 3.66 0.95 0.00 0.04 0.00 0.00 

Grid PIC 10.68 6.35 7.73 3.67 0.96 0.00 0.04 0.00 0.00 

Error(%) -0.06 -0.09 0.01 0.26 0.72 -1.63 1.27 1.95 2.50 

 

(e) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.006 0.011 2.388 2.356 13.24 0 3.158 0.007 0.005 

Grid PIC 0.006 0.011 2.394 2.348 13.23 0 3.165 0.007 0.005 

Error(%) 1.70 2.39 0.27 0.31 0.10 0 0.20 2.22 1.41 

 

(f) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.00 0.00 0.00 0.00 0.61 0.00 5.22 0.00 0.01 

Grid PIC 0.00 0.00 0.00 0.00 0.61 0.00 5.22 0.00 0.01 

Error(%) 0 0 0 0 0.26 1.66 -0.04 0 0 

 

(g) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 5.50 7.35 10.87 12.25 13.17 6.02 11.22 7.10 5.44 

Grid PIC 5.51 7.36 10.87 12.24 13.16 6.01 11.21 7.11 5.45 

Error(%) 0.21 0.10 -0.04 -0.08 -0.10 -0.12 -0.05 0.09 0.23 
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(h) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.00 0.00 0.03 0.11 0.71 0.01 6.79 5.54 10.53 

Grid PIC 0.00 0.00 0.03 0.11 0.72 0.01 6.79 5.53 10.51 

Error(%) 2.35 2.19 1.33 1.00 0.82 1.60 0.04 -0.21 -0.11 

 

(i) 

 Path1 Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9 

Actual PIC 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 6.59 

Grid PIC 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 5.69 

Error(%) 0 0 0 0 0 0 0.76 -0.98 -13.6 

 


