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Abstract

The OP-FTIR measurement combining the RPM technique is able to reconstruct
the plume and thus localize the emission source. In this thesis, both the computational
simulation and the field experiment are implemented. Two major kinds of the
reconstruction algorithm used in RPM technique are evaluated. The first one is the
smooth basis function minimization (SBFM) algorithm and the second one is the
non-negative least square(NNLS) algorithm. The two algorithms are both
implemented by fitting the reconstructed path integrated concentration (PIC) to the
measured PIC. The differences are that the SBFM superimposes a basis function to
describe the plum while the NNLS directly estimate the concentration value in the
emission domain. In addition, two different kind of basis functions (symmetric and
skewed) are used to describe the plume in SBFEM reconstruction.

In the simulation analysis, 450 test distributions are generated to be localized by
the RPM technique with different reconstruction algorithms. The result shows that the
SBFM algorithm using the bivariate lognormal distribution as basis function gives the
best result in both the aspects of plume reconstruction and source localization.
Furthermore, when the plume is near the OP-FTIR, the SBFM reconstruction using
bivariate Gaussian distribution as basis function may yield better result in the aspect of
the source reconstruction comparingito the NNLS reconstruction. However, when the
plume is far from the OP-FTIR, the NNLS reconstruction is able to localize the
emission source more accurately thanghe SBFM uising bivariate Gaussian distribution
as basis function. ~ N N

In the field experiment, four experimé_g__tgfwi:th four pairs of different source
locations are conducted to be localize ﬂ)y‘ﬂ’l_?a"*RPM technique. The result shows that
the reconstructed source locations by tl tthﬁse methods are able to point out the correct
direction towards the real souree. - Kurthermore; iu_dging by the peripheral short
monitoring lines, the reconstructed squr'ce locatié)n-.;ghat is closest to the real source
location can be chosen and gives the best estimation of the emission source location.

Keywords: source localization, plume reconstruction, optical remote sensing, OP-FTIR,
air pollutant, RPM, CT

II



Contents

B SUFE e eevercennnnnnsnsssssnssssssssssssssssssssnssnsssssssnssssssssssssssssssssssssossssssssnssnssssssssssssssnsssssssssonsens I
ADSETACE  cccueireecrriceestinsancsenssncssissasssncssessssssecsstssssssesssesssssssssssssasssesssessssssssssesssessassssssassane II
Chapterl. INtrodUucCtion ....c....ccceeccsseccssnecsssnesssasesssssessssssssssssssssssssssssssssssssssssssssssssssssss 1
1.1 Fourier transformed infrared spectrometer (FTIR)......................ccccueeuu...... 1

1.2 Traditional methods for source localization .........................cccccccovvenueauene. 4
1.2.1 The area sampling array method .................cccccceeeeeeevieennceennieeniieenneenn 4

1.2.2 The computed tomographic (CT) method ................ccoeeecueeeecueenccueencnnan. 6

1.2.3 The application of the CT teChniqUe..................cocceeeveeeevceeeniieiniieenneenn 9

1.3 Radial plume mapping (RPM) technique .....................cccooeveeveeeenireannnan. 10
1.3.1 RPM with SBFM reconstruction algorithm ...............cccceeeueevvueenceennnne. 10

1.3.2 The RPM with “grid based” reconstruction algorithm......................... 12

1.4 Study design and 0BJectives ....................ccoccoevouieiieiiiiiiiiiieeiieee e 15
Chapter2. Materials and Methods ........ccceeceeecsercnscnrcsssnrcssnncsssnscssssscsssssssssssssssssssassses 23
2.1 Data cOlleCtion ......................coceeieieiiiiiiiiieee et 23

2.2 Dat@ QRALYSIS ............coccueeeeieeeiieeiieeee ettt ettt s 27
2.2.1 The computational SIMULALION ..............ccccveeeeeecuieeeeeiiieeeeiieeeeeeiieeeennns 27

2.2.2 The field eXperiment............ccccueeeeueeeeiuieeniiieeeiieeeieeeeieeesieeeieeeseaeeesaees 45

3.1 Computational sSimul@tion reSUlLs .....................cccoovvvevienieiiieniieiieeeenane. 53
3.1.1 The plume reconstruction........ e BB oo veeenrreeereeeenieeeeneeresraeessueessrane 53

3.1.2 The reliability of source [0calization «...c.......cc.cceevvecueseeseeceenreeeennnn, 60

3.1.3 The prior SCTeeNINgG PEOCESS ......outbu-eeeeeiiiseereeesreeesreeeireesesreessseeessees 63

3.1.4 The uncertaintyanalysis of SBFM reCONStrUCtiON................ccceevueueen. 66

3.2 Field experiment results .......| AT T O T 71
3.2.1 The spectrum quantificatioﬁ?f.' .............................................................. 71

3.2.2 The source localizalion ... be...\.b...tue. i Bl - e neeeneeneeeeeenseneeneeneeas 72

3.2.3 The reliability of the reconstruction reSult...................ccocooovevenienennnnnnn. 80
Chapter4. Conclusions and SU@gestiONS i ittt . ifisieessnnresssrcsssscssssscsssssssssssssssssssses 116
4.1 The simulation experiment................. e 116

4.2 The field Study ...............o...o. ittt 117

4.3 SUGZGESTIOMS ...ttt ettt et e s 117

4.4 LIMTEALIOMS ...ttt s 119
REFEIENCES ...uueiuiieiienreicriienstecsnnsnissecssnsnsssnsssessesssncssessasssesssessasssssssessasssessasssassssssseses 120

III



Figure contents

Figure 1.1 The example beam geometry described by Todd et al. ...........cceevevveennnennee. 17
Figure 1.2 The beam geometry proposed by Drescher et al. ........ccccoecveiiiiniiiinenennnen. 18
Figure 1.3 The experimental set up of the experiment on the waste lagoon. ................. 18
Figure 1.4 The beam geometry of 1-D RPM. ........ccociiiiiiiiiiccceeceen 19
Figure 1.5 The beam geometry of 2-D RPM. ......ccccooiiiiiiiiiiiiieceeeeeee e 20
Figure 1.6 The reconstruction result in the studies using NNLS reconstruction............ 21
Figure 2.1 The beam geometries used in the computational simulation......................... 48
Figure 2.2 The tracer gas releasing deviCe.........cocveviieiieriiineinieeieeneeeecnee e 49
Figure 2.3 The experimental setup of the field experiment.............cccccveevvveeniieennneennne. 50
Figure 2.4 The procedure of generating error map of single test distribution................. 51
Figure 2.5 The procedure of generating overall €rror map.........occcveeeeveereveencieeencneeennne 52
Figure 3.1 The reconstruction results for different reconstruction methods................... 83
Figure 3.2 The reconstruction results for different reconstruction methods................... 84
Figure 3.3 The reconstruction results for different reconstruction methods................... 85

Figure 3.4 The error map of Geometryexieng Using different size of test distributions .... 86
Figure 3.5 The error map of Geometry ener using different size of test distributions..... 87
Figure 3.6 The error map of Geometry.xesgising different size of test distributions .... 88
Figure 3.7 The error map of Geometry . using different size of test distributions..... 89
Figure 3.8 The error map of Geometty.xena Using different size of test distributions .... 90
Figure 3.9 The error map of Geometrycemer usmg different size of test distributions..... 91

Figure 3.10 The error map ...t o e e e e it 92
Figure 3.11 The time series plot of PIC in SF6 in four EXPEFHMENTS....oovveenreeireeieennene 93
Figure 3.12 The time series plot of PIC in NQO in|four experlments ............................. 94
Figure 3.13 The reconstruction result of] SRS LW, 95
Figure 3.14 The reconstruction result.of SF....... RGO ..o 96
Figure 3.15 The reconstruction resultof NoO . i, 97
Figure 3.16 The reconstruction result of NoO..... 0ol 98
Figure 3.17 The average result of SFe ... e 99
Figure 3.18 The average result of NoO ....ccc.oiiiiiiiiiiiiiiieciieceecceee e 100
Figure 3.19 The wind rose of the four field experiments ...........ccocceeveerviernienicenneene. 101

v



Table contents

Table 3.1 The overall statistics of the reconstruction qUality ..........cccccveereveeriieeriueenns 102
Table 3.2 The t-test result for peak error between different reconstruction methods ... 103
Table 3.3 The summary statistics of the reconsStruction...........c.ceeeveeevveeecieeniieencneeens 104
Table 3.4 The summary statistics of the reconstruction quality.........c..cceceeevverveennenne. 105
Table 3.5 Sensitivity analysis of the center beam ZEOMELrY .........ccceeevuveereiveercueeenineenns 106
Table 3.6 Sensitivity analysis of the extend beam geometry ...........cccceevieevieniceneenne. 107
Table 3.7 The overall statistics of reconstruction qUAality ..........cccccceeeeveercieeniieenineeens 108
Table 3.8 The regression analysis TESULL .......cooviiiiiriiriieniineceeeeeee e 109
Table 3.9 ANOVA analysis between different dPIC ............cccccoeiiiiiiiiiniiiiiieeees 110
Table 3.10 The detection limit of SFs and N,O in each monitoring line....................... 110
Table 3.11 The summary statistics of PIC data in each experiment ............c.ccceevuveennns 111
Table 3.12 The reconstruction result of field experiment of two tracer gases.............. 112
Table 3.13 The mean reconstruction result of field experiment of two tracer gases .... 113
Table 3.14 The chosen reconstructed result by the nearby beam paths........................ 114
Table 3.15 The wind data of the field eXperiment..........ccceeevveeirieeeiieeniieenieeeieeens 115

oo AT



Chapterl. Introduction

Air pollution is an important issue nowadays. ~Since the 18" century, the
industrial revolution has promoted the life quality of human however the pollution
caused by the manufacture and factory has also affected human’s health. Thus,
monitoring air pollutants plays an important role for preventing and controlling the air
pollution. Several devices have been developed to reach the goal described above.
Instruments such as time integrated samplers (i.e. charcoal tube, canister, impacter,
sampler bag), direct reading instruments (i.e. Pﬁotq 10nization detector) and optical

remote sensing instruments (i.e. Fourief transform infrared spectroscopy,

e :
-

UV-differential optical absorption spec'tllrosq'é)py) are ableto monitor the toxic gaseous in

the ambient.

In order to provide sufficient information for pollution control, the source
localization along with pollution mapping is also needed. Using the devices
previously mentioned, scientists have developed several techniques for both source
localization and pollution mapping. Besides, localizing the emission source in a

timely fashion is also important to provide the information for pollution control.

1.1 Fourier transformed infrared spectrometer (FTIR)



Fourier transformed infrared spectrometer (FTIR) is one of the optical remote
sensing instrument which is able to detect the ambient chemical substance both
qualitatively and quantitatively'. It woks based on the theory of infrared spectroscopy
which means the study of the interaction between the infrared and the matter. That is,
when the infrared radiation interacts with the chemical substance it can be absorbed,
causing the molecule bonds to vibrate furthermore, the functional groups in the
chemical tend to absorb the infrared radiation in the same wavelength. Thus, there is

an association between the structure of the chemical and the wavelength at which the

e L "-r’.’_.
i o

chemical absorb infrared radiation.:,-. Thlrs "pro%%:if the substance allows the structure
A I- - & \{ . -

_ NP\
oy the infrared spectrum.  Along with the
.-E-: ! "

- y ' E
tr@; can al§o provide the information for

of the unknown chemical to be idetifi

-

chemical identification, the infrazre@?ﬁ

L vy W Fio
Ty N - l Ay
fordhe I Fiﬁf{o Efﬁ"qntify substance is Beer’s law

ey oy, P ol

which describes the association between the absorbance of the infrared radiation and the

x

quantification. The basic theor

chemical’s concentration.

The open path FTIR (OP-FTIR) can only provide the concentration data in the
form of path integrated concentration (PIC) which means the integrated concentration
along the beam path. Thus it has a unit of “concentration” times “length” (e.g.
ppmxmeter). Once the beam path length is measured, the mean concentration along
the monitoring line can also be calculated by dividing the PIC by the beam path length.

As a result, the OP-FTIR can only provide the concentration information in the form of

2



mean concentration which represents the mean concentration where the ray passes

through.

The open path FTIR (OP-FTIR) is mainly composed of four parts which are
infrared source, interferometer, sample compartment and detector. The most important
part in the FTIR is the interferometer. In the interferometer, the infrared emitted from
the source is first split into two beams by the beamsplitter. The two beams are then
reflected by a fixed mirror and a moving mirror respectively. The constructive

interference, destructive interference, orthé ¢ombination between the both takes place

@ - A g
T

depending on the optical path dlffer d-.(2 timo 'dis_tance the moving mirror travels)

when the reflected beams are repombu(\'?& t of 1ght lnten51ty to the optical path

oy
L

difference is called an 1nterferogra:m~a 'ch 1s theﬁ Wdamgntal of the FTIR measurement.
N hwﬁ}'ﬁﬁ"}"’ '“",;

The interferogram is then Fourler transformed to a spectrurn The sample
compartment is used to contain samples however the OP-FTIR does not have one.
Instead of passing through the sample compartment, the infrared emitted from the
OP-FTIR passes through the ambient directly to measure the chemical substance. The
last part of the OP-FTIR is the detector. The detector is able to detect the beam
intensity of the entered infrared. To use the OP-FTIR to monitoring the ambient
pollutant, a background spectrum must first be collected. By transforming the sample
spectrum to the absorbance spectrum with the background spectrum, the chemical

substance can be identified and quantified. The time for the OP-FTIR to obtain a

3



single spectrum depends on the resolution of the spectrum. For the instrument used in
this study, it takes about 10 seconds for a single scan. Thus comparing to the time
integrated samplers for monitoring ambient pollutant, the optical remote sensing
instrument is able to provide real-time concentration data because the spectrum analysis

process is faster and can be done in situ.

The OP-FTIR has now been used in many fields such as pollution monitoringz‘s,
6-8 . 9,10 o
exposure assessment” , pollution flux measurement™ ™, source localization and

pollution mapping''™"®.  The usage of the OP-FTIR has also been verified by the US
EPA. In the Compendium of: M_etﬂ_ods for the "Déf_é:rm@_ﬁation of Toxic Organic
B v - i{’_‘\I r‘/ﬁ\l " :
Compounds in Ambient Air (Methods | O_Ei‘fi'“ le—FTIR 1§ one of the accepted
Wi A 1’1 |

) ) 3 = |
instrument for environmental mogi_terEIFg.zo ]I

1.2 Traditional methods for source localization
1.2.1 The area sampling array method

Traditionally, the “area sampling array”’ has been applied to localize the pollution
source. When applying the “area sampling array”, a set of samplers are located in the
emission site. After hours of sampling, the samples are then sent back to the lab for

analysis. In 2005, Chen et al. placed 25 stainless steel canisters at a petrochemical



plant in order to localize the pollution source’’. The sampling procedure lasted for 1
year. Each time after the sampling, the samples were sent back to be analyzed by the
LC-Mass spectrometer. The concentration data was then input to the Surfer software
to create the contour plot of the distribution of the chemicals. Although the result
showed that this sampling method is quite accurate when comparing to real source
location, there are still some limitations when applying this technology to localize the
emission source. First of all, most of these kinds of point samplers are time integrated

samplers, which can only provide concentration data with limited temporal resolution
e i 1T e

"cau%(f)llected the samples for
\i: . ;i .
= oy

t0'2:0 ) fﬁﬁ%""harving the temporal resolution

of 3 hours. This poor temporal?r%?l t onh@__gta 1§H}t ignore the short term emission
= | A Ee o b

. . . k I. r B
(canister in this case). In that study, eacl

k3

approximately 3 hours a day (1 106 a

"

8 B\ 3 ll.”.’ Q0 K

and thus limit the application on ms_k-.aSsesﬁi}n%?fpﬁeygposure assessment. Second, the

ey oy, P ol

spatial resolution of concentration might aléo be limited because the limited amount of
samplers. It is impossible for researchers to place a large amount of samplers among
all of the area in the emission domain. Therefore, the concentration data at the location
without samplers must be estimated by further interpolation or extrapolation. In that
study, 25 canisters are located at certain sites in a petrochemical plant and a statistical
method has been applied to estimate the concentration data at the un-sampled sites.
These estimated concentration data might not be accurate comparing to the real

concentration. Third, the sample transportation and sample analysis take time thus it is



not suitable for using this kind of technique in an emergency situation.

1.2.2 The computed tomographic (CT) method

Considering the problem met in applying the area sampling array method, the
computerized tomographic (CT) technology using optical remote sensing instrument has
been proposed to map the pollutants. The CT technology is widely used in the medical

field, which is a tool for imagine diagnoslisr, _II_; the aspect of mapping pollutants, the

| %
Tl i

CT technology means comblmng the 1%3516311 ré!ﬁ@te ‘sensmg measurement and

% .
.-__ _‘__..

ant. Thé‘ multiple monitoring lines

- __..-\ _I.

reconstruction algorithm to further map theé-pel
8 L :“.-I-"‘

111 4
are arranged to form a netwonk (cafled earﬁ"ge ]| etry) “ind the collected concentration
N Ny

data is input to the reconstructing algorlthm to furthlar map the pollutant. In 1979%,
Byer et al. first proposed using CT technolo g;/ to map the pollutant. The tunable-laser
source is located in the middle of a circle in the measuring site. Several sets of
cylindrical mirrors and detectors are equally located on the circumference of this circle
to form a beam network. The laser beam emitted from the source is then reflected by
the cylindrical mirror to the detector. By comparing the emitted and received beam
intensity, the pollution in the measuring site can be mapped and the pollution source can

be identified.”> However, in order to map the pollution with a radius of 10 meters,

more than 300 mirrors and detectors will be needed. Such huge amount of detectors



will be costly and the complicated beam geometry might limit the application of this
technology. Since then, additional studies about using CT to map the pollutant are

proposed and evaluated.'* **%°

In all of the CT technique described in the last paragragh, several monitoring lines
must be arranged to form a network that provides adequate concentration data for plume
reconstruction. Many kinds of beam geometries have been proposed and all of them
are composed of intersecting beam paths. To further investigate the impact of different

beam geometry, Todd has evaluated the performa,nce of different beam geometry by
LS -" ;I..- 1 i - b,
b "I e ! --1L Y = . . .
computational simulation”. A t_ota & dlff n beam geometries with different

Gl W e
& \

number of intersecting beam path (12 ?ﬁj s) and.different number of detectors

.

_— i ol

(1 to 4 detectors) are applied to. re190 struct ia“:éeri S /éff test\maps An example beam

wﬁﬂw’ &0
geometry is shown in Figure 1.1 The; result shows that as the number of detectors
increases, the performance of the reconstruction is improved despite the same number
of beam path. However, when extra beam paths are added, the number of artifacts

(reconstructed peaks that do not exist in the test map) and the peak location error

(distance between real and reconstructed source locations) is decreased.

Another important part of the CT technique is the reconstructing algorithm. The
most commonly used iterative algorithms in CT are Algebraic Reconstruction

Technique (ART)27, Maximum Likelihood with Expectation Maximization (MLEM)IO’



10, 29

% and Multiplicative Algebraic Reconstruction Technique (MART) In all these

three reconstructing methods, the area of interested is first divided into several small
grids and the concentration in each grid is assumed to be homogeneous and non
negative. The first step of the reconstruction is to make an initial guess for the
concentration in each grid. The second step is to calculate the reconstructed path
integrated concentration (PIC) data for each beam path by summing up the
concentration value of all the grids through which the ray passes. The third step is to

adjust the concentration value in each grid by comparing the reconstructed PIC and the

collected PIC data then go back to "s}ep 2:‘_.",::- Bi‘ijep _.ai:ing_ the second and third step, the

\

i‘-\.

Y y
ne, i -

concentration in each grid can be esti and.thus %Hé""jbbllutant can be mapped and
5 . A -El: -.;-: = Yy
the source location or the “hot s-poltgﬁ'é bq@en ifi Rl i B
% 2 | | : ‘ /;u oo P
3 h.'i‘_‘#:‘f.":"c a-"',f:'

Lok

In 1996, an approach using smooth E).a:sisa fun,ct10n minimization algorithm
combining Fourier transformed infrared spectrometer (FTIR) measurement has been
proposed to map the pollutant in the air.”®  Different from the “grid based” algorithm
discussed in the previous paragraph, the SBFM algorithm applies a smooth basis
function to describe the distribution of the plume. In that study, a series of
experiments are conducted to evaluate the performance of the ART algorithm and the
SBFM algorithm. In order to decrease the scanning time with limited amount of
remote sensing instrument, only one OP-FTIR is located in the middle of the

experimental domain to scan the flat mirrors and retroreflectors on the edge (Figure 1.2).

8



A total of 56 monitoring lines are conducted in that study. The result shows that the
SBFM algorithm is able to reconstruct better in the aspect of plume’s distribution and
the number of artifacts under this beam geometry. The parameter used to describe the
distributional difference between the real and reconstructed plume (the smaller the

better, O represents perfect fit) is 0.11 for SBFM and 0.41 for ART.

1.2.3 The application of the CT technique

,.flf'rr’,

Despite the source locahzatlon afip Wappmg, researchers have also

developed using the CT techmque. to flux of qhemcal emissions.'” The study

ﬁé ‘the flux of nitrogen. A

computed tomographic system is cenducted usfng two OP FTIR and total of 16

O T T

intersecting beam paths on the surface of the waste lagoon (Figure 1.3). Two tracer

gases, SF¢ and CHy are released simultaneously during the FTIR measurement to

provide the flux calculation information. Similar to the CT technique used to map the

pollutant, the MLEM and MART algorithms are used to reconstruct the concentration of

both the tracer gas and the target gas in each virtual grid. Although the flux

calculation process has encountered many difficulties, this study is the first field

implementation of this kind of CT system in the site of this scale.



1.3 Radial plume mapping (RPM) technique

In most of the previous CT techniques, the applied beam geometry is quite

. 10, 12, 13, 22-24, 26, 30
complicated

thus limits the field implementation. It can be seen that
most of these applied beam geometries are composed of intersecting monitoring lines

and multiple detectors or remote sensing instrument. Not only difficult to apply,

setting up this kind of system would be expensive due to the multiple detectors.

1.3.1 RPM with SBFM reconstruction algorithm

In 1999, Hashmonay et al proWﬁ %\ measurement combining wind

Lk
data to localize the pollutlon source lo Qn that study, a one-dimensional beam
4,",',_"; r

sing'tr ﬁ&s‘:{ Three to four monitoring
b > b o

, hwﬁ}'ﬁﬁ"}"’ .'“"; ;

lines are arranged along a line (Flgure 1:4). . Bach’ t1rne when the wind direction

ey oy, P ol

geometry is set up downwind to th{g?rei

changes the peak location on monitoring lines can be identified by the SBFM

. 1,32
I'CCOIlStI‘uCthIl3 -3 .

The line equation from the peak location reconstructed on the
monitoring line to the orientation of wind direction is then calculated. The intersection
of the line equations with different wind directions is the source location. Due to the
relatively simple beam geometry at the down wind site, it is possible to localize the

source location without setting the monitoring instruments or sampling device in the

measuring site and the relatively simple beam geometry make it possible to apply.

A two dimensional beam geometry has also been proposed in 1999'°.  Similar to
10



the study in 1996, the SBFM reconstruction uses bi-variate Gaussian distribution as
smooth basis function to describe the pollution’s plume. However the radial beam
geometry, instead of the complicate beam geometry, has been applied (Figure 1.5). In
that computational simulation study, the OP-FTIR is set in the corner of the
experimental domain to limit the rotation of the FTIR in 45°. The radial beam
geometry means to arrange the monitoring lines in a radial form which prevents the
intersection of the monitoring beam path. A validation experiment conducted in a

ventilation chamber has also been proposed to confirm the simulation result."®  The

oo o r.’_,.

result suggests that when there iS'-aa;e-.quai_té:seg'iﬁ;ent_.ii:lfor_mation, the SBFM algorithm is

Y y
ne, i -

able to localize the source location'(distance een the real and reconstructed source
| w—
= | - 1 . B

location = 0.3 meter). However Qﬁxé he‘”__}g ntii&'g information is limited, the
= J_\.':‘% ~k | 4 e \

ot : { .\, I .'_,u"‘".\ = ! .—""I Loy
reconstruction result may not be accurate (distance between the real and reconstructed

i
TR

source location = 1.2 meter). Another study using the non-overlapping geometry has
also been conducted.”®  Different from the study of the one previously mentioned, the
OP-FTIR is located in the middle of the experimental domain. Thirty random points
are generated as the endpoint of monitoring lines and the OP-FTIR instrument is
directed to scan the retrorerflectors in 360° rotation. ~Several experiments are
conducted with tracer gas released at different locations. The collected PIC data is
then reconstructed by the SBFM algorithm. The results show that the RPM technique

under current beam geometry is able to reconstruct the distribution of the plume (The

11



correlation R =0.8).  The relatively poor result may come from the inadequate PIC
information. In those results with poor performance, the tracer gas is located on the
edge of the experimental domain thus the monitoring line is not able to detect the

plume.

Other than pollution mapping, the RPM technique has also been applied to
measure the flux of the emission.™®  In this method, the monitoring lines are arranged
in order to form vertical radial beam geometry. In that simulation study, the

retroreflectors are placed on a tower _with d’ifferem elevations. Since the objective of
4 I* 2 : :
this technique is to measure the ﬂux @&mlssmn\; thé focus would be on the total

% \E

concentration that emits from the ¢ area thﬂa |the dlstrlb‘utlon of the plume. The

| 4
o LY =t

SBFM reconstruction algorithm 1s~a1§(l pphed 111\@15 techmque to estimate the total

emission of the chemical of interest. Tk}ls_technology, known as Vertical Radial Plume
Mapping (VRPM) is also described in the US EPA other test method 10: Optical
Remote Sensing for Emission Characterization from Non-Point Sources™ and is applied

and demonstrated at various sites for measuring emission flux. 6

1.3.2 The RPM with “grid based” reconstruction algorithm

The relatively simple beam geometry of radial beam geometry makes the

computed tomography for mapping pollutants possible in application. However the
12



performance between the conventional intersected beam geometry and the radial beam
geometry still remains unknown. Another study further investigate this issue'”. A
computational simulation and a series of field experiments are conducted. In the
computational simulation, two types of beam geometry are simulated with a
conventional reconstructing algorithm. The first approach is the radial beam geometry
(RCT) with 16 retroreflectors and the second is the conventional intersected beam
geometry (CCT) with 16 beam paths. Instead of the SBEM reconstruction algorithm,

the reconstructing algorithm used in both approaches is MART in which each

e L "-r’.’_.
% o :

. @ kB S .
measurement is compared to a predicted Valugeomputed from the current image
A - & a -
A ! %
{ T

estimate. Although the simulation result'sh
: — 4

than the CCT approach (the rﬁoc,lit%?i He@o 1%!3@11).94 respectively), the author
= o . | & b

thai.tf"t'l‘i'é" RCT approach performs better

"

o i
== .r . r, "«.__.' N

suggests that due to the distribution Offthhérﬁﬁ%ﬁizn%thereal world is complicated

ey oy, P ol

(weather, wind effect etc.), it can not be concluded that the RCT is better than the CCT
however the result from both reconstructing geometry is at least comparable. The
conclusion of the computational simulation suggests that the relatively simple beam
geometry of RCT is enough to map the plume. This is confirmed in the field
experiment. In the field study, several experiments are conducted with the RCT
technique at a 25mx35m domain. In each experiment, one tracer gas is released and
the FTIR is used to collect the PIC data with nine retroreflectors. The result shows

that the real and reconstructed source locations are in the same pixel of the experimental

13



domain (Figure 1.6(b)).

It can be seen that the “grid based” algorithm can also be applied in the radial
plume mapping technique in last paragraph. This has also been described in the U.S
EPA other test method (OTM10)*>.  In the OTM10, the radial plume mapping
technique used to map the pollutant or searching for the “hot zone” is called horizontal
radial plume mapping (HRPM). The non negative least square (NNLS) algorithm is
used as the reconstruction algorithm in this method. Same as the “grid based” method
described in the CT technique, the experrm‘en’tal domaln must first be divided into
several grids. The concentramon 111 grr% reconstructed However, the

"'.n‘

number of the grids d1V1ded must be a th number of monitoring lines to

prevent the under-determining : srtua '0. In the] IM},O an example of beam

geometry composed of 9 retroreﬂectors 1s presented The experimental domain is
divided into 3x3 grids. Thus the resolution of the reconstruction would be quite coarse.
The RPM using NNLS has also been implemented in a landfill by Hashrnonay3 7 In
that study, the RPM technology with NNLS reconstruction is practiced to locate the

“hot spot” of a landfill in which the emission source is not a point source. The result
has shown that the NNLS reconstruction is able to locate the “hot spot” of the emission
and is comparable to the reconstruction by the RPM using MART. However, the

reconstruction time is 100 times faster than the MART.
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Although previous studies have proved that the radial plume mapping technique is
able to localize the emission source location, there is still uncertainty in this technique.
For example, when the segmenting information is limited, the RPM technique using
SBFM reconstruction algorithm may not be able to map the pollutant accurately18
Furthermore, when applying SBFM, the bi-variate Gaussian distribution is used as basis

16, 18

function in most of previous studies However the plume may not be a symmetric

distribution when the wind presents. When wind presents the plume might be an

asymmetric distribution. Thus it might cause error when using a symmetric

F
,lri QT

distribution to describe an asymmetmc dus f}OIl As for the “grid based” method,
the resolution of the reconstructlon is dete by the number of the monitoring lines
If the available restroreflector is.li tion result may be a coarse

% | + \.
estimate. ‘%r_ﬁf%‘égmétruction might underestimate

o\

o

Sy Aoy ey e
. 24,2
the peak concentration.** %

1.4 Study design and objectives

Figure 1.7 has shown the flow chart of this thesis. The main objective of this

thesis is to further investigate the performance of the RPM technique. Not only the

SBFM algorithm (non grid based) but also the NNLS reconstruction algorithm (grid

based) is discussed in this thesis. A series of computational simulation study is

conducted to compare the performance for the “non grid based” algorithm (i.e. SBFM)

15



and the “grid based* algorithm (i.e. NNLS). Furthermore, the effect of using different
smooth basis function (Skewed distribution V.S. symmetric distribution) in the SBFM
algorithm is also investigated. A total of 450 artificially generated test distributions
are reconstructed by the two algorithms respectively. We have also investigated the
uncertainty when using the SBFM algorithm to reconstruct the plume in the
computation simulation.  After the simulation experiment, a series of field experiments
are then implemented to verify the results in the computational simulation. A total of

4 experiments are conducted with four pairs of artificially released source locations.

o i LT Sy e

| .

The RPM technique is applied to*l@h&T@n sources. There are several
& = U !
L 8

innovative aspects in this study that is different from the others.  First, two emission

| e
®

ey

-

sources are released and localized oL {egpn,d, the effect of two different
= - f - w
beam geometries is discussed in ﬂlc’éﬁmm%i{nufation. Third, the SBFM and
4 2z — 7t i
NNLS are both used to localize the emission source. Fourth, the uncertainty of the

SBFM reconstruction to localize the source location is discussed by the concept of error

map. The last, a skewed distribution (i.e. bivariate lognormal distribution) is used as

the basis function in the SBFM reconstruction.
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Figure 1.2 The beam geometry proposgd_;_by-llbrg_:s?her etal®® The optical remote
sensing instrument is located in tha_ﬁﬁddhl__”cr of .t_l'g: dérm_a_in. Four retroreflectors are in

the corner and several flat mirrgr\s"awh-ew %,
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Figure 1.3 The experimental set up of the experiment on the waste lagoon. Modified
from Todd et al.'
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Figure 1.5 The beam geomei%y of 2 X : ; IR is located in a corner of
the domain thus limits the sc‘%@a i Hach ray path ends at a
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Figure 1.6 The reconstruction result in the studies using NNLS reconstruction. (a) The
study “Theoretical Evaluation of a Method for Locating Gaseous Emission Hot Spots”37
and (b) the successful reconstructed examples in the study “Radial Computed
Tomography of Air Contaminants Using Optical Remote Sensing”19.
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Figure 1.7 The flow chart of the thesis.
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Chapter2. Materials and Methods

This thesis is composed of two parts. The first part is the computational
simulation. We proposed an “error map” concept to represent the uncertainty of
current SBFM reconstruction.  Also, the performance of different reconstruction
algorithms and different beam geometries is evaluated. The second part is the field
study. We release SFs and N,O as tracer gases and set up one of the beam geometry

discuss in the computational simulation to validate the simulation results.

e i LTS

"

ent mﬁuf&cﬁlred by MASTEK
| I.'.".: -

. F‘; . . "uT__.-" N . .
Technology, Inc (MASTEK Teeh‘_ilo_l_gg gu; Taiwan). It is a monostatic

iy

o\

design with a mercury cadmium telluride (MC’f‘).}de:tector. The resolution is tunable and
the highest resolution is 1 cm™ in wavenumber. The detection limit of this instrument
is down to ppb level depending on the length of the monitoring line and the resolution
of the spectrum. In order to direct the OP-FTIR telescope to scan multiple
retroreflectors, a scanner composed of two step motors is used to rotate and elevate the
OP-FTIR. The scanner is a custom built design which can direct the FTIR in 360°
rotation and +60° to -30° elevation. The wind data (wind speed, wind direction) is

collected by the meteorological station manufactured by R. M. Young (R.M. Young,
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Traverse, Michigan, USA).

We set up a radial beam geometry with 9 retroreflectors (Retro) in a 30mx30m
domain. Previous study'® suggests that the segmenting information is needed when
applying the SBEM reconstruction, thus the beam geometry must be composed of
several sets of long and short beam paths. To do so, the experimental domain is
divided into 3 x3 grids (10mx10m for each grid). The 9 retroreflectors are located in
the middle of these 9 squares (Figure 2.1 (a)) and are 170cm high from the ground.

The 9 retroreflectors are at the coord:inatq: of (4_.?.3,2%.7.) for Retrol, (4.8,14.9) for Retro2,

LS

(139.24.3) for Retro3, (11.5,16) for Refod. (2PU25) forRetros, (5.1.4.5) for Retrob,

“rr

=)

(24.3,14.7) for Retro7, ( 14.5:7.5) for 25,4:9).f01' Retro9. In order to avoid

- m\ .1 vl
the retro been arranged into a'lj_flg o tro I“I:; Pi ﬁ,ig;.shifted. The length of each

= .? -’ "'l".- ht‘?ﬁ‘{rz:%g} \
beam path is 25.2m for pathl, 15.6fr¥f9r}5ath2ii;2:$.0fﬁ for Path3, 19.7m for Path4 34.9m

for Path5, 6.8m for Paht6, 28.3m for Path7, 15.2m for Path8 and 25.5m for Path9. The
FTIR is located at the origin of the experimental domain and mounted on the scanner
previous mentioned which can direct the FTIR in a 360° rotation and +60° to -30°
elevation. The FTIR scans the retroreflectors from 1% to 9™ sequentially and

repeatedly.

Pure nitrous oxide (N,0O) and sulfur hexafluoride (SFe) are released from 3 plastic

tubes which are vertical to the ground and at the same height of the retroreflectors
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(Figure 2.2). The releasing flow rates for N,O and SF¢ are 10L/m and 0.5L/m
respectively and are controlled by the mass flow controllers (Model 5850E series,
Brooks, PA, USA). Four experiments are conducted with four different pairs of
releasing locations (Figure 2.3 (a) to (d)). In each experiment, the two tracer gases are
released simultaneously at different locations. This is to evaluate the ability of the
RPM technique to localize two different emission sources under the same
meteorological conditions. The Cartesian coordinate of SF6 and N20 are (22.7,11.8)

and (12.8,15.5) in Expl, (7.4,9.9) and (11.6,22.7) in Exp 2, (13.6,6.1) and (4.7,14.9) in

ll""-r”_.

Exp 3 and (9.6,7.6) and (21.0, 16 7) ?ﬁ?} Befor@ each experiment, we first begin

’*’%\

the spectrum collection with the GP B IR e sure'that there is no background
]

concentration for the two tracer-ga@s' i
v,

thd@xp \mtghta\l domain then we begin to

release the tracer gases. Each experiméilrf‘%ﬁfor approxmlately two hours for the

4 -
ey oy, P ol

FTIR to scan the retroreflectors for approximately 25 complete sweeps. The
concentration data which is collected after the tracer gas releasing rate is stable is used
to reconstruct the source location. Thus for each experiment, approximately 20 sets of
PIC are used for reconstruction. The spectra are collected with resolution of 1 cm™ in
wavenumber. The time for each spectrum acquisition takes 20 seconds and the time
for the FTIR move from one retroreflector to another is about 8 seconds. However it
takes about 25 seconds for the FTIR to move from retro 9 to retro 1 due to the longer

distance between these two retrorelfectors. Thus it takes approximately 5 minutes for
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a complete sweep.

Before the experiment, we follow the TO-16 method suggested by the EPA to
implement the quality assurance procedure. The purpose of the quality assurance
procedure suggested by the TO-16 is to determine how well the FTIR sensor is
operating. For measuring the method noise, two spectra are collected with the same
collection parameter (i.e. number of co-added scans, resolution). The absorbance
spectrum is then created using either of these two spectra as background spectrum.
The determination of method noise useg the §tati_stical quantity called the root mean

squared (RMS) deviation. The regions in the §péctrum for the RMS calculation are

f-"._ _-'\

968-1008, 2480-2520, and 4380—4420 @.}a' Besides the method noise, the return
I

beam intensity must remain proia_c;-r_ duir%ng the sl'?g;c_:trum...collection. To make sure that
the return beam intensity is not too st:rorig, the region near the wavelength of 650cm™ in
the collected spectrum is examined to make sure that there is no indication of saturation.
The detection limit is also considered in the TO-16. Following the Beer’s law, the
detection limit of the optical remote sensing instrument depends on the path length of
the monitoring line. Thus to calculate the detection limit of the tracer gases, 16 spectra
are collected continuously for each monitoring line. Using the previous collected
spectrum as the background spectrum, 15 absorbance spectra are then created from the
latter one(i.e. use the first spectrum as the background and create an absorbance

spectrum from the second then use the second one as the background and create an
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absorbance spectrum from the third one and so on). For these 15 absournbance spectra,
the concentration of the SFg and N,O is calculated. The detection limit is 3 times the

standard deviation of these 15 concentration values.
2.2 Data analysis
2.2.1 The computational simulation

In the computational simulation, a series of test distributions are generated using

bivariate lognormal distribution™® to mimic the skewed plume distribution when the

TPk -

T

\ _. |."'-. ....:"{:: - : i
wind presets. The SBFM and NNIZS ze€onstruetion-are both used to reconstruct the
i . s

L1

test map under the beam geometry des @e data collection section and an

1
<
example geometry described in 't'hq""-_(;)

= { T

| -lgl'!bvhi% 1sdeScr1bed in section 2.2.1.2.
Furthermore, we use two different ba51s functlons (%ivariate lognormal distribution and
bivariate Gaussian distribution) as the basis function when applying the SBFM
reconstruction. The purpose of this computational simulation is (1) to compare the
performance of the “grid based” reconstruction (i.e. NNLS) and the “non grid based”
reconstruction (i.e. SBFM). (2) To evaluate whether using skewd distribution as basis
function when applying SBFM reconstruction is able to better describe the plume. (3)
To evaluate the performance of different beam geometries. (4) Evaluating the

uncertainty of using the SBFM algorithm to localize the emission source by the concept

of “error map”” which is reported in the section 2.2.1.4: uncertainty analysis.
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2.2.1.1 Generating test maps and derived PIC

The bivariate lognormal distribution is generated as the underlying distribution in a
30x30 domain. The probability density function of the bi-variate lognormal

distribution is described by Aitchison and Brown in 1957 and has the following form™®:

Flx)= ! exp(—ij

27x,x,0, 0y, J1-p? 2

2 2
Inx, — Inx, — Inx, — Inx, —
Where q _ 1 . .X'] IuY| _2,0 xl Y, x2 IUYZ + .X'2 luYz (2_1)
I-p oy 20y & 9.0y, Oy,

i AT
| Ni=JO |
x>0, x,>0 -1<p<1 2 | i | |
=4
|

m ||
| |

where u, and o, are the popiﬂatipn'_mean and:standard deviation of Yi=InXj, i=1

represents the X direction and i=2 repfesents the Y direction. p 1is the population
product-moment correlation coefficient of Y; and Y,. In this study, the lognormal
distribution is multiplied by a scaling factor H which represents the peak height of the
distribution. Thus the bivariate lognormal distribution used in this study has the

following form:

A R Ry

27x,x,0, 0, J1-p?
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Oy, Oy, Oy,

1 2 2

2 2
Inx, — Inx, — 1 — 1 -
Where g= 1 1 . ( lel /’lYl J —ZP[ nX1 /’tY] }[ IlX2 lLlY2 J+{ nxz /’le j (2_2)

x>0, x>0 -lI<p<l

where x; and x, represent the location in Cartesian coordinate f, and u, represents
the mean, o, and o0, represents the standard deviation, p represents the

correlation coefficient and H represents peak height. Note that the bivariate

lognormal distribution can only skewed to the direction of positive X axis and Y axis.

Two thousands of lognormal distributions are first generated by Monte Carlo

Y

method which is a process that relying O?Ihe repeated random sampling to generate
&

results. A range of each parametérs-of the lognormal'distributions are given, which are

In(5) to In(45) with resolution of 1In(0.1) fof Hy oy 0.1 to 1 with resolution of 0.05
for o, o0, ,-0.9 to 0.9 with resolution of 0.05 for p and 1 to 500 with resolution of

0.5 for H. The test maps are generated by randomly sample from the given range of
these six parameters. That is, in each time of sampling, the six parameters are sampled
from the given range of the parameters and are used to generate the first test map.
Each time after the sampling, the sampled values are put back to the “parameter pool”
for the next sampling process until a total of 2000 test maps are generated. As

previously mentioned, the experimental domain is divided into 9 grids. Thus in each
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grid, there are several test distributions with their peak locations in it. In order to make
sure that the number of the test distributions is equal in each pixel, we randomly
selected 50 test distributions in each pixel. Thus, a total of 450 (9 gridsx50 test

distributions) test distributions are randomly selected as the test map.

After the test distributions are generated, the observed PIC derived from these test
distributions must be calculated for further reconstruction. To calculate the observed
PIC, the experimental domain is first divided in to m pixels. In each pixel, the

concentration value is assumed tq be homogﬁr}eous. The observed PIC is then

Ve ol "= =
i 5 e .
A - 4 -
calculated as follow': F: l t !
g | -—d | B
PICobserved,i = Z Kim X €m’ \_{_t,Jng\a. Gy \ (2'3)
- B

o\

where i 1s the number index of beam {pgth# V{/'hlclrl is 1 to 9 (9 monitoring lines) in our
study. m is the number index of pixel. K, is the Kernel matrix representing the i""
beam path length in the m™ pixel. C, is the concentration in the m™ pixel which is
derived from the bivariate lognormal distribution (Equation 2-2). In this study, the
concentration value in the middle of the m™ pixel is regarded to be the concentration in
that pixel. Although the finer the pixel may yield more accurate PIC, however for the
time consuming concern, we divided the domain into 60x60 pixels thus the size of each

pixel is 0.5x0.5. The error of using this “grid integration” method was verified to
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yield the error less than 2.5% (Appendix 2).
2.2.1.2 The beam geometry

As mentioned previously, there are two kinds of beam geometries used in this
study. The first one is the same described in the data collection section (Figure 2.2)
and the second one is an example geometry described in the OTM-10. In the OTM-10,
the “grid based” reconstruction algorithm, non-negative least square (NNLS), is used to

reconstruct the “hot spot” of the emission. Thus, as previously mentioned, the

ll""'-r”_.

experimental domain must first be dwided Jinto several smaller pixels. Once the

number of the pixels is detelrmii_iéd‘,f;ﬁ/T %gg&sts that there should be at least

one monitoring line that tefir_hi_naé@-

_ ithi the uﬁ}dary of each pixel to prevent the
&’ N

underdetermined situation. In the examp{@e@lmetry, the experimental domain is first
divided into 3x3 pixels. Thus a/tdtal of 9 retroreﬂectors are located within the
boundary of each pixel. To maximize the spread of the optical beams inside the area
of emissions, one optical beam is set to pass though the middle of each pixel and
terminates at the retroreflector on the boundary of each pixel. (Figure2.1 (b)) The
Cartesian coordinate of each retroreflector is (5.7,28.5) for Retrol, (5.6,17.1) for Retro2,
(16.0,27.9) for Retro3, (8.1,8.4) for Retro4, (19.6,19.6) for Retro5, (28.8,27.6) for

Retro6, (27.9,16.9) for Retro7, (16.7,5.1) for Retro8 and (28.8,5.6) for Retro9. The

difference between the geometry used in the field experiment (named Geometrygenter)
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(Figure 2.1 (a)) and that described in the OTM-10 (named Geometryexiend) (Figure 2.1
(b)) is the location of each retroreflector. In the Geometrycener, the retroreflector is
located in the middle of each pixel while in the Geometryexend, the retroreflector is

located near the boundary of each pixel.
2.2.1.3 The reconstruction algorithms
(1) Smooth basis function minimization (SBFM) algorithm

The SBFM reconstruction is first proposed by Drescher et al.’® Different from

1 -_ 3 |-.':' ---'.J:PZ. . 5
the traditional “grid based” reeonstruction al'g@rith'm, a known smooth basis function
/\I to descrlbe the plume of the pollutant

hosen|
|

Sinee tk&ei cphg_éhtrétion data obtained from the

N
=

with unknown parameters mus}tl:.ll)e. fir_|s
when applying the SBFM al.'gofitlrf?r;l. El |

N .~ - . \
OP-FTIR is in the form of path .in'te.gf:'r?:a.l.té&. concentratlon .(PIC), the PIC derived from the
chosen basis function (called the predicted PIC) can be regarded as the integration of the
basis function. Thus by fitting the predicted PIC to the measured PIC (observed PIC),

the unknown parameters of the basis function can be estimated. To do so, an error

function, the sum of squared errors (SSE), is conducted to be minimized.

SSE = Z (PIC observed i PIC predicted ,i)2 (2-4)

where i is the ray number index, PICpserveqi 1S the i™ observed PIC derived from the test

distribution and PIC)egicreai 18 the i predicted PIC derived from the chosen basis
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functions (bivariate lognormal distribution and bivariate Gaussian distribution). By
iteratively changing the parameters of the chosen basis function, the parameters that

make the predicted PIC best fit to the observed PIC (minimum SSE) can be evaluated.

The solution searching process described above is called optimization which
means finding the best solution for the given function. In one previous study, different
optimizations algorithm including simplex algorithm and simulated annealing have been
applied and evaluated in the RPM-SBFM technique.'® In our study, we applied the
built-in optimization function, lsqnonliny in .the optimization toolbox of MATLAB
software to minimize the SSE{  Wheil using thellsgnonlin optimization, the upper and

lower bound along with the first gues's"_ig;f.._’_'[-_he solutions' must first be given to the

il

algorithm. Once the observed PIC is;irilpuféo thé algorithm, the algorithm will begin to
search the solution iteratively from -the given 'fir.st guess within the given upper and
lower boundary. The searching procedure will stop when certain criteria are reached.
The first criterion is that the solution perfectly yields a SSE of zero. The second one is
that the change of the residual is less than the given tolerance. In this study, the
tolerance is set to 107'% (default=10°). The third one is the number of iteration has
reached to the given value which represents a possibility of reconstruction failure. The

maximum number of iteration is set to 240000 (default=400) in this study.

To evaluate whether the reconstruction algorithm has reconstructed a reasonable
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solution, the concordance correlation factor (CCF)39 between the observed and
predicted PIC is calculated (CCFpc). The CCF is similar to the Pearson correlation
coefficient however it is adjusted to account for the shifts in location and scale. The
CCF values are limited between -1 and 1 yet it does not exceed Pearson correlation
factor. The CCF equaling 1 represents a perfect match between the two sets of data.
Since the fundamental procedure of the SBFM reconstruction is to minimize the SSE
between the observed and predicted PIC, the CCFpc is expected to near 1. Thus a low
CCFpic may indicate a failure of the reconstruction. To evaluate the performance of
the reconstruction, the CCF between the test .'map and the reconstructed map is also

calculated (CCFgrpy). The CCFrpum eqi;ql:ing_"__l"represents a perfect match between the

e :
-

test map and the reconstructed-result. | gDeS—bite CCFErpy; another indicator, Nearness,23’

% is also calculated in this study te. represent_thé performance of the reconstruction.

The Nearness (refer to Nearnessgpym) describes the discrepancy between the test map

and the reconstructed map>*°.

Nearness gy, = |[— (2-5)

where m is the number index of the pixel, ¢, is the concentration value of the test map
in the m" pixel, ¢,,1s the concentration value of the reconstructed map in the m™ pixel

and cavg* is the average concentration of the test map. The smaller the Nearnessgpm
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represents the better the performance of the reconstruction thus the Nearnessgpy equals

0 represents the perfect match between the test map and the reconstructed map.

The performance of the source localization is evaluated by two indicators. The
first one is the distance between the real and reconstructed source location (peak error).
The second one is to measure whether the reconstructed peak location “hit” the same
pixel of the real source location. The number of the distribution out of 450
reconstructed distributions is calculated as the indicator “HIT”. Note that the pixel

here refers to the pixel described in the generating test map section which is 3 by 3.

In the computational Simulation;~we apply "both the bivariate Gaussian and

‘=
ma i
=

bivariate lognormal distributions as'the SB“L:TM fitting functions.

(1.a) The bivariate lognormal distribution

The bivariate lognormal distribution is the same distribution used to generate the
test distribution (Equation 2-2). Although the integration method described in section
2.2.1.3(1.b) may provide the actual PIC information, we are not able to apply it because
there is no analytical solution when using bivariate lognormal distribution as basis
function. Thus to calculate the predicted PIC from the bivariate normal distribution,
the method, same as the one used to calculate the observed PIC in Equation 2-3, is
applied. The experimental domain is first divided in to m pixels and the PIC)cdicred,i

derived from the bivariate lognormal distribution is:
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PICpreditcted,i(pj) - Zsz XL(Xm’Ym’pj) (2—6)

where j (1 to 6) is the parameter number index, i (from 1 to 9) is the number index of
beam path and m (3600=60x60) is the number index of pixel; p; is the 7" parameter of
the lognormal distribution; Kj,, is the Kernel matrix representing the path length for i"

beam path in the m™ pixel. L(X,.Y,,p;)is the bivariate lognormal distribution in

which X, and Y,, represent the Cartesian coordinate in the middle of the m™ pixel.

The peak location, mode, of the bivariate lggnormal distribution is associated with
all of the distribution’s parameters. Tq_ calculat_e the peak location, the concentration in
each pixel derived from the reconstruc?ed..%a.ifneters is first calculated. The Cartesian
coordinate in the middle of the pixel Wiéh the- ma);i.mum concentration is regarded as the
peak location.  Since the size of each pixel is O..5><0.5 , the error between the actual and
the calculated peak location will be less then 0.35 (i.e. the distance from the middle of

the pixel to the corner of the pixel). In the scale of 30mx30m, an error of 35cm is

acceptable.
(1.b) The bivariate Gaussian distributions

The bivariate Gaussian distribution, similar to the lognormal distribution, is also
described by six parameters: the peak location, two standard deviations, the peak height,

and the angle between the x-axis and the principal axis of the distribution and has the
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following form:

G(xpxz): = exp{— - 2}
2716,0,/1- p 2(1- p?)

o= ()C1 —,2U| )2 _ 2p(x1 —H )(xz —,Uz) + (x2 _lZUZ )2 (2-7)
(o 0,0, 0,

where X; and x; are the Cartesian coordinate of the location in the experimental domain,

M, ,ando,,0, are the peak location and the standard deviation for both X and Y axis,
p is the correlation of x; and x, which may beregarded as the angle between the x-axis

and the principal axis of the distribution and# is“the.peak height. To calculate the

",-n.-':

predicted PIC derived from the bivagiiaté’!Z}_rgu'séian distribution, Equation 2-7 is first

il

reformed by the following equation:,

x, =rcos@
. (2-8)
X, =rsin@
Thus the bivariate Gaussian is reformed and presented in polar coordinate:
G(r,0)= exp[— < }
2716,0,\1- p° 21-p°)
2 . . 2
.= (rcosH—,ul) B 2,0(rc059—,u1 )(rsin e—ﬂz) N (rsin 49—,112) (2-9)

2 2
O-l Gl 0-2 0-2
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and the PIC).gicreq; for the bivariate Gaussian distribution is'®:

L;
PIC predicted l(p]) = Z J.O G(r’ei’ pj)dr (2-10)

where j is the parameter number index (1 to 6) and i (1 to 9) is the number index of
beam path; L; is the i beam path length and pjis the 7" parameter of the bivariate
Gaussian distribution; G (1,0;p;) is the bivariate Gaussian distribution in polar

coordinates r and 0.

The peak location (mode) of the bivariate normal distribution is the same as the

mean of this distribution. Thus the reékprjggu'ctéd peak Tocation is (u;, u2) in Cartesian

e i
—

&

=

coordinate. : 1B
(2) The non-negative least square algorithm

The non-negative least square algorithm is described in the US EPA other test
method 10 (OTM10)* which is an iterative algebraic deconvolution algorithm“. The
NNLS algorithm is also a built-in algorithm for solving nonnegative least-squares
constraints problem. For example, if K is a k-by-m matrix and D is a vertical vector
with k elements. The NNLS algorithm is used to solve the vertical vector C where

K, x C=Dk.

Similar to the traditional “grid based” algorithm, when using the NNLS algorithm
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the experimental domain must first be divided into several pixels. For each pixel, the
concentration is assumed to be non-negative and homogeneous. By implementing the
reconstruction algorithm using collected PIC data, the concentration value of each pixel
can be estimated. In an example of OTM-10, the experimental domain is divided into
9 pixels. And to prevent the underdetermined situation, there must be more than 1
monitoring line terminates within the boundary of each pixel. Once the beam
geometry is determined, the measured PIC (observed PIC), as a function of the field of

concentration, is given by:

i

PICabserved,k ci Z Kkmcm (2_11)

where k is the number index of o'ptical:b_:ear‘;%m 1s the number index of pixel, Ky, is the
Kernel matrix representing the length of'the k" bea..r;n path in the m™ pixel and ¢, is the
average concentration in the m” pixel. In our study, the m=1 to 9 (9 pixels) and k=1 to
9 (9 optical beams). Thus the PICgpserveq for each beam path derived from the test

distribution (PICpgerveax) and the Kernel matrix (Kyy,) are input to the NNLS algorithm

and the mean concentration of each pixel (cy,) can be estimated as output.

The second stage of the NNLS reconstruction involves the interpolation among the
reconstructed pixel’s mean concentration, providing a peak location not limited in the
middle of each pixel. The interpolation method used in this study is Kriging method

which is a geostatistical technique to interpolate or extrapolate the value of a random
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field. The Krigin process is implemented by the free software “DACE”** which is a
MATLAB toolbox. For the comparison purpose, we interpolate and extrapolate the
mean concentration value of each pixel to the same scale of the test map which is 60x60
in the emission area. Thus the peak location of the reconstructed plume is assumed to
be the location in the middle of the interpolated pixels with highest concentration in

Cartesian coordinate.

The indicators used in the SBFM reconstruction to evaluate the performance of the
reconstruction are also calculated. Theiandicators are CCFpic, CCFrpm, Nearnessgpm,
DIST and HIT. Where CCFpicis thedindicator ofithe reconstruction’s reasonableness,

CCFrpm and Nearnessgpy are the indictdréﬁf. @_he performance of the reconstruction and

|

DIST and HIT are the indicators of. the aibili_tg/ for the reconstruction algorithm to

reconstruct the source location.
2.2.1.4 The uncertainty analysis of SBFM algorithm

We conduct an uncertainty analysis to construct the error map of the beam
geometry when applying the SBFM reconstruction. The two geometries
Geometrycener and Geometryexend are both investigated in this uncertainty analysis.
The main concept of this uncertainty analysis is to mimic the SBFM reconstructing
process yet without implementing the optimization algorithm. As mentioned in the

SBFM algorithm, the error function, SSE between the observed and predicted PIC is the
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fitting function for the algorithm to find the solution. By minimizing the SSE, the
parameters of the chosen basis function can be estimated. To mimic this solution
searching process, we deploy the bivariate Gaussian distribution as basis function. A
range for each of the bivariate Gaussian distribution’s parameter is then introduced as
the possible solution. The procedure of generating possible solution and their derived

PIC is as follow:

Step 1: Give a range of the parameters of bivariate distributions (six parameters) which
are: 0 to 30 with resolution of 2 forpeak'location x; and u, 1 to 6 with resolution
of 1 for standard deviation o; ahd 0>, 10 to 500 with resolution of 10 for peak

height H and -0.9 to 0.9 with resohitié_ﬁqu -0.3 for the angle p.

Step2: Calculate the derived PIC set (§ PICs for-each combination) from the
combination of the parameters in step 1 with Equation 2-10. Thus for each
combination of the u; and u, (256=16x16), there are a series of distributions

(12600=6x6x50x7) regarded as the predicted distributions with different shape (o;

and o), peak height (H) and different angle (p).

The next step of the uncertainty analysis is to calculate the SSE between the predicted
and observed PIC. There are two kinds of test distributions used in this uncertainty
analysis which are the single and multiple test distribution. The procedure for

generating single test distribution is as follow:
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Step 1: Divide the experimental domain into 3 by 3 pixels, generate a bivariate Gaussian

distribution with the peak location in the middle of Pixel 1.

Step 2: The PIC set (9 PICs) derived from the test distribution is calculated with

Equation 2-10 as observed PIC.

The error map of the single test distribution is able to visually demonstrate the possible
reconstructed source location when a test distribution presents. The error map is

generated as follow (Figure 2.4):

Step 3: Calculate the SSE between the ebservedyPIC and predicted PIC. For each

combination of x; and us (256) amoné_—;thg possible solutions, 12600 SSEs are

il

calculated.

Step 4: Calculate the smallest SSE in the 12600 SSES in each combination of x; and .
For example, a total of 12600 SSEs are calculated as the candidate SSE at (0,0) in
Cartesian coordinate (the first combination of x; and ;). The combination of the
parameters that yields the minimum SSE among these 12600 SSEs are regarded as

the best answer the algorithm can find at (0,0).

Step 5: For each of the 16x16 combinations of x; and u; (source location), there is a
minimum SSE representing the smallest SSE the SBFM algorithm can find at this

location.
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Step 6: Standardize these 16x16 SSEs by dividing them by the maximum value among
them. The location with smaller standardized SSE represents the possible

reconstructed source location.

Step 7: The contour plot of this SSE matrix is called error map. The area with SSE
less than 107 in the error map represents the possible reconstructed source

location.

Step 8: Generate the same test distribution with peak location in the middle of Pixel 2.

Repeat from Step 1 to Step 8 until 9 €rror maps are generated.

The other kind of error map derived from‘-iége ft_lultiple test distribution is called the

=

B =

overall error map. This is used to'show the‘incertainty'for the current beam geometry

to localize the emission source over the emission domain. The procedure to generate

the observed PIC derived from the multiple test distribution is as follow:

Step 1: Generate a series of the same test distributions in the aspect of peak height,
width and the size with peak locations shifting from (0,0) to (30,30) with resolution

equaling 2. Thus total of 256 test distributions are generated as observed PIC.

Step 2: Calculate the derived PIC sets (9 for each) of the observed distributions with

Equation 2-10 as observed PIC.

The procedure of generating the overall error map is as follow (Figure 2.5):
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Step 1: Calculate the SSE between the observed PIC with peak location at (0,0) and
predicted PIC. The predicted PIC is the same as described in generating the error

map of the single test distribution.

Step 2: For each combination of the u; and w1, (256=16x16) of the predicted
distributions, 12600 SSEs are calculated. Use the smallest SSE among these 12600
SSEs as the best answer the SBFM algorithm can find when the predicted distribution

is at this location.

Step3: For each combination of the y; and u», there 1s ene SSE representing the best

answer the SBFM algorithm ¢anfind-—, Standardiz¢ the SSE matrix by dividing them

% L
T

= ﬂ."_._'
il

by the maximum value among them. |

Step4: Calculate the area with standardize' SSE smaller than 107 which represents the
possible area where the reconstructed source location might appear when the real

source location is at (0,0).

StepS: Repeat Stepl to Step4 however the observed PIC with peak location at (0,2) is
used as test distribution. Repeat the process until peak location of the observed PIC

reaches (30,30).

Step6: For each test distribution, there is a value representing the area that the

reconstructed source location might appear. The larger the value represents the
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larger uncertainty for the SBFM to reconstruct the emission source at this location.

In order to further investigate the effect of the different plume (i.e. the size and the
shape of the plume), we use the test distribution with ratio of 6x and oy being 1:1, 1:2,
1:3, 2:1 and 3:1 respectively. This is to generate the test distribution with different
shape. And in each ratio of the ox and Gy, there are at least two distributions with

different size.
2.2.2 The field experiment

In the field study, four exper'in'fé:r_l'_[si .afe Céﬁdupgéd' to verify the performance of

RPM technique. In each ex_periment, It é@p]d NzO are released simultaneously as

|
tracer gases to be localized by the RP]\[’I techmqufi Both the reconstruction algorithms

of NNLS and SBFM are deployed fo reconstruét the source locations.
2.2.2.1 The spectrum quantification

For the spectrum quantification, the classical least square (CLS) method is applied
by the Ir-soft software (ITRI, Hsingchu, Taiwan). Each set of observed PIC is
consisted with 9 PIC data for which the path length are 25.2m, 15.6m, 28.0m, 19.7m,
34.9m, 6.8m, 28.3m, 15.2m and 25.5m respectively. For the N,0O, the spectral range
of 2120-2228 cm is used for the quantification with the reference spectrum at the PIC

of 142 ppm-m. Since the IR absorbance of this region is overlapped with CO, the
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reference spectrum of CO (462.4 ppm-m) is also included for the N,O quantification to
eliminate the influence of the substance. As for SFe, the spectral region from 935 to

955 cm! is used for quantification. The reference spectra are with PIC of 10.4 ppm-m.
2.2.2.2 The source location reconstruction

After the quantification of the PIC data, the observed PIC (i.e. measured PIC) is
then input to both the NNLS and SBFM reconstruction. A complete set of PIC (i.e.

PIC collected from Retrol to Retro9) may yield one reconstructed source location. In

o L LS ST e

the field experiment, we collected the sapple spectraffor about 2 hours in each

\i: -..u.
experiment. Thus there are appifoxﬁ/ ZK;;BI&:@P[C sets in each experiment.
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S afﬁ\re nﬁ&:qt_edhfor each tracer gas. We
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1 ;mobﬁ&-mean source location.
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The SBFM reconstruction is implemented as described in the computational
simulation. The difference is that the observed PIC is no longer calculated from the
test distribution but is from the direct measurement of the tracer gases. The bivariate
lognormal and bivariate Gaussian distributions are both deployed as the basis function.
The maximum iteration time is set to 240000 and the tolerance is set to 10™'°
described in the computational simulation. The time for a single reconstruction takes
about 80 seconds when using the bivariate lognormal distribution and 2.5 seconds when

using the bivariate Gaussian distribution. The difference in reconstruction time is
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because that we use the analytical method to generate the PIC when using the bivariate
Gaussian distribution while the “grid integrated” method is applied when using the
bivariate lognormal distribution as basis function. The distance between the real and
reconstructed source location along with “HIT” (whether the reconstructed source
location is at the correct pixel) are calculated as indicators of the ability for the source

localization.

The NNLS reconstruction is also implemented for source localization. The

experimental domain is first divided_liqtqr9ipixds{_ JThe reconstructed concentration is
||' -y :‘- _:l-:. SR,
e I ==

then projected in these 9 grids.{,\ T gmg 1 atlon is then applied to interpolate

B -_

these 9 reconstructed concen‘ﬁ-rati I Si @) Xel .A's described in the OTM-10,
n

'\

the peak location after the krlgng inte 01at10 t bg\hmlted in the middle of the 9

Py
o ':.-"

pixels. Same as the SBFM reconstpugt19n the dlfsbance between the reconstructed and
real source location along with “HIT” are calculated as the indicators of the

reconstruction performance.

47



8

il

G A [ox1d yoea Jo xopur roquinu ay3 syuasaidar
[oxid yoea ur roquunu Yy [, "PAnowoan (q) .E%w@%@o i

H_m:m euoneIndwod Jy) Ul Pasn SALNAWO0IT weaq Y], [ g 231

0e 0z 0l g
%

s

e 0z 0l 0

0

19

|

| 2 _

| 0 Ry, = 01
Sl Sl
— 02 — 0c
| 52 | 52

O IR I I SR R
(@ (®)



Figure 2.2 The tracer gas releasin device.
same height of the retroreflectors.
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(a) Experiment 1 (b) Experiment 2
o= 1 7] 0——— 17—

30
25
20
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10

0 10 20 .'30:. a0 10 20 30

Figure 2.3 The experimental setup of ?fhé'--ﬁe}d eiperiment (a) Experiment 1 (b)
Experiment 2 (c) Experiment 3 (d) Experiment 4. The black square represents the
source location

50



Predicted PIC sets

16

C\ S \J ®; O 12600 PIC sets

'
16 (]
C

DOOO(
DOOO(
DOOO(

4

D

Observed PIC set

L 1 PIC set

_
O

\Q aYaYaYi)
Total: 16x16x12600 PIC sets

Total: 1 PIC set

\

+ POOOD=

~

CASASASAY)
QOOOOD
OOOOO

SlaVYavavay
(Juu\

/

|

[OF:
@:

@)

L \

)OO@C
16 OO
QOO

(NTaYaVaYi)

14

1 2600 SSE

Find the'minimum among 12600 SSE

minimum SSE

SSE matrix (16x16)
l standardize

_— 16 __

e
POOOP

O0Q
DO
SO

16

O
oD

error map of single test distribution

Standardized SSE <0.01
Figure 2.4 The procedure of generating error map of single test distribution

observ

ed PIC set

©)

1 PIC set

el

Total:

51

1 PIC set



Predicted PIC sets
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l Calculate the area with standardized SSE<0.01

Area with standardized SSE <0.01 when a
plume with peak presents at this location

Figure 2.5 The procedure of generating overall error map
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Chapter3. Results and discussion

3.1 Computational simulation results
3.1.1 The plume reconstruction

Figure 3.1 shows one example of the reconstruction results using the
reconstruction methods described above under the same test map. The test map in this
example is from pixel 5, which is in the middle of the experimental domain and is a
wide plume. The best result is giv_en by.both '.;'_lle RPMC_log and RPM ., (Figure 3.1 (d)

(e)). The four indicators show:that the-reconstructed distributions by these two

g "',;.l_- ik |
...-l-' .'.;_‘

methods have perfectly matched the te$1’ map in IIb_oth the aspects of reconstruction

35 i ! | L y
quality and source localization ability., ~The werstresult is given by the RPMc Gauss

(Figure 3.1 (b)), although it yields a high CCFpic (CCFpic=0.92), it fails to reconstruct
the plume (CCFrppm=0.12 Nearnessgpm=2.30) but give a comparable source location
estimation to that by the RPM. nnis and RPM nnis (peak error=4.535, hit the right
pixel). As for the two reconstructions made by the NNLS algorithm under the two
different beam geometries, although the peak errors (5.38 for Geometry eneer and 5.40 for
Geometryexeend) are slightly worse than that by the RPM._gauss, they both fail to
reconstruct the source location that is at the right pixel. In general, for the

reconstruction of the plume, the SBFM using bivariate lognormal as basis function is
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able to give the best result while the worst result is given by the SBEM using bivariate
Gaussian as basis function.  As for the reconstruction of the source location, although
the SBFM using bivariate Gaussian gives the worst result, it can still reconstruct a

comparable or even better result to that of NNLS algorithm.

The summary statistics of the reconstruction result is shown in Table 3.1. The
first two rows indicate the reconstruction using SBFM algorithm with bivariate
Gaussian distribution as basis function under the extend beam geometry (RPMe_gayss)
and the center beam geometry (RPMC_Gaﬁsf) res_]?c_cti_yely. The 3™ and 4™ rows indicate

| —£§2

the reconstruction using SBFM algé‘r_ithf'ri with :ﬁiViifaite_ lognormal distribution as the

basis function under extend (RPMe 10g) djﬁﬂt t beam geometry respectively

=N h | :
(RPM¢ 1og). The last two rows 1ndlcaie! the recqr‘struetlon using NNLS algorithm also
under extend (RPM, nnis) and ce.nte.r beé_lrr.l__ geometry (RPM, nnis) respectively.  From
the column of ray fit, the CCFpic in all of the reconstruction method is higher than 0.90
which implies that the result has fulfilled the basic criteria of reconstruction that is
fitting the predicted PIC to the observed PIC. For the two indicators of the
reconstruction performance, CCFrpy (the larger represents the better quality) ranges
from 0.27 to 0.92 and Nearnessgpym (the smaller represents the better quality) ranges
from 0.27 to 17.23. The best result is from the RPM,_jo; (CCFgrpm = 0.92 and

Nearnessgpm=0.27) while the worst reconstruction result is from that by RPM;_gauss

(CCFgrpm = 0.27 and Nearnessgpm=17.23). Despite the different definition of the two
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indicators, the Nearness and CCFrpym shows conformity between each other. In
general, under the same beam geometry, the SBFM reconstruction using lognormal
distribution as basis function gives the best result followed by NNLS and SBFM using
bivariate Gaussian distribution as basis function. As for the beam geometry, under the
same reconstruction algorithm, the Geometryexeena gives the better result than that given
by Geometry ener. The difference of the CCFgrpy between either pair of the
reconstruction method has all reached statistical significant level at a=0.05 under paired

t-test. Similar result is observed in Nearnessgpym, although the difference of the

il I -’-r,.’,
l & S

e S B . o o .
Nearnessgpy between the RPMe jop and RPM.jg, does ot reach the significant level, it
oy wm< ¢

o ;
can still be seen that the RPMe_i'.(f;(’;ne earnes Rp-;'-*'"f).'i7) performs better than the

RPM, joe (mean Nearnessgpy=0-

il oy - ¥ W A

From the above observation, it eap I?,e aco!nFclufded tﬁat in the aspect of
reconstruction quality, the geometry from EPA (Geometryexienq) performs better than the
geometry from our original design (Geometryceneer) Using the same reconstruction
algorithm. Since the only difference between these two geometries is the ray length,
the result shows that the longer the ray length yields better performance. We will
discuss about the possible reasons in the latter paragraph. The other finding is that the
SBFM algorithm may perform better than the NNLS reconstruction by choosing the
suitable basis function. In the computational simulation, under the same beam

geometry, the ranking of the reconstruction performance is (1) SBFM using bivariate
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lognormal distribution as basis function (2) NNLS (3) SBEM using bivariate Gaussian
as basis function (Table 3.1). The result is reasonable because the test distribution
used in the simulation is the bivariate lognormal distribution which is a skewed
distribution. Thus it can be predicted that a symmetric distribution may not fit well
and as a consequence, the SBFM using bivariate Gaussian distribution gives the worst
result. The NNLS algorithm is able to reconstruct better because it is a “grid based”
reconstruction technique. Instead of superimposing a basis function, the NNLS
directly estimates the concentration in the experimental domain thus it is not affected by

the plume’s distribution. As for th;é beéf'_fesﬁﬁgrecgﬁstructed by the SBFM using
A, T— _.?;f._-- % _.-'1-:"{.: 5 b
& y y l'.h'_"'-,_h_. )
bivariate lognormal distribution as bas@ct@ﬁ} this,may because that the same basis
function is used to generate the -t,est_‘-'r;h th}!%th iec"qns_tructed plume is able to

{F IN\ I . ‘

perfectly fit the test distribution '(rh_eﬁﬁ' CCFp‘ICEI)and gives a nearly perfect result

T

(mean CCFRPM>0.89). Since the best result is given by the SBFM reconstruction
using the same basis distribution as the test map, it can only be concluded that using
SBFM with bivariate lognormal distribution as basis function is better when the plume

is skewed to the same direction as the bivariate lognormal distribution.

For the source localization accuracy, despite the high CCFpyc for each
reconstruction methods, the mean peak error varies from 1.53 to 8.02 (Table 3.1). The
best result is given by RPM, o, (mean peak error=1.53) while the worst result is given

by RPM. Gauss (mean peak error=8.02). Table 3.2 shows the paired t-test result of the
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peak location between each reconstruction method. The difference between

RPM. gauss and RPM. nnis does not reach the statistical significant level at 0=0.05. As
for the other indicator used to describe the accuracy of the source localization ability,
HIT, the best result is also given by RPM, o, (HIT=406 (90.2%)) while the worst is also

given by RPM¢ Gauss (140(31.1%)) (Table 3.1).

From the above observation, the reconstruction method using SBFM with bivariate
lognormal distribution gives superior result in the aspect of the source localization

accuracy under the same beam geometry: #However, there is no significant difference

| —£§2

between the NNLS reconstruction andthe SBFM ﬁ”s:\ingft'he bivariate Gaussian as basis

l_ .II,'\ |

function which implies that l_lsin;g 'SBFI @E&) \dariate.Galilssian as basis function may
A R
still reconstruct a comparable resgltcohpan;g tPlt?é.NNLS reconstruction. The
opposite result given by RPMe_NN.Lg.a;ld RPMe_Gauss i-n the two indicators of source
localization accuracy seems to be illogical. It is still reasonable because although the
reconstructed source location does not “hit” the correct pixel, it may still close to the
real source location at nearby pixel. Comparing to the reconstruction quality, although
the NNLS reconstruction performs better than the SBFM using bivaraite Gaussian as
the basis function, the SBFM using bivaraite Gaussian as basis function can still
reconstruct a comparable source location to the NNLS reconstruction. This indicates

that although failing to reconstruct the whole plume, the SBFM with bivariate Gaussian

as basis function can still reconstruct the source location. In the aspect of finding the
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emission source, SBFM using a symmetric basis function is able to give a comparable
result to the grid based method. In the aspect of plume reconstruction, SBFM using a
symmetric basis function might lead to an estimation bias. Again, although the SBFM
using bivariate lognormal as basis function gives the best result in both indicators, it can
not be concluded that this is the best reconstruction algorithm for source localization
because the test distribution is exactly the same as the basis function. It can only be
concluded that the SBFM using bivariate lognormal as basis function is better when the

plume is skewed to the same direction as the bivariate lognormal distribution in the real

Sy

world. Wy s

G L
", J f"‘ -
Figure 3.2 shows another nec'onst t@qu ofithe test map in pixel 1, which is

- rd \é} ]11 'l. B
close to the location of OP- FTIR '{ Iresult S}AWS l;hat the best performance is

oy

implemented by RPM j,, and RPMC log W whlle the v;(;rst result is given by RPM, nnis
and RPM. nnis in both the aspects of reconstruction quality and source localization
accuracy. This result is somehow different from the overall result suggested in Table
3.1.  Another example is shown in Figure 3.3, where the test map is in pixel 9 and is
far away from the OP-FTIR. The result shows that the best performance is
implemented by RPM, o, and RPM, o, while the worst is given by RPM,_gauss.  The
RPM._nnis and RPMc nnis both give comparable results to that given by the RPMe o,
and RPM_ o, (CCFrpm=0.97 and 0.91, Nearnessgpm=0.25 and 0.46, peak error=4 and

4.6 and hit the correct pixel) while the SBFM using Gaussian distribution not only fail
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to reconstruct the plume but also failed to localize the source location (CCFgrpy=0.002

and 0.003, Nearnessgpm=21.0 and 30.9, peak error=18.58 and 17.36)

The above result seems to suggest that there is an association between the
reconstruction quality and the real source location. Table 3.3 and Table 3.4
respectively, have shown the summary statistics of the reconstruction quality and source
localization accuracy of the reconstruction of RPM, gauss and RPM, nnis classified by
the pixel index. From Table 3.3, the mean CCFpjc ranges from 0.89 to 0.99 which

suggests that the reconstruction has rleqched thefc_ritﬁeria of fitting the predicted PIC to
@ vk B

R B L

observed PIC. However, the.meanﬁ};mm\?n N_earnesstM ranges from 0.05

ﬁ_;_-:'-'\. Vi b .'_-_', ==

to 0.57 and 44.95 to 1.31 respécti "ely. @1 of t % SBFM reconstruction using

\_1-"!-

bivariate Gaussian distributioﬁ;_és__fb_ 18 function, g‘best {esult is in pixel 1 where the
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mean CCFgrpy and mean Nearnesdsﬁfyo[:{ 0;57?1111 .1.31:h0wever the CCFrpy drops
dramatically to 0.05 in pixel 9 and the Nearnessgpym rises to 44.95 in pixel 9 which
indicates that the SBFM using bivariate Gaussian distribution is not able to reconstruct
the plume which is far away from the OP-FTIR. Despite the reconstruction quality,
the source localization accuracy has the almost same trend. The mean peak error rises
from 3.11 to 15.54 from pixel 1 to pixel 9 and no reconstructed source location has hit

the correct pixel in pixel 9.

A completely different result is reconstructed by the NNLS algorithm. From
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table 3.4, the test maps in pixel 9 can be best reconstructed (mean CCFrpy=0.80,
Nearnessgpm=0.55, mean peak error=4.58) by the NNLS algorithm while the test maps
in pixel 1 is not able to be reconstructed well (mean CCFgpy=0.22, Nearnessgpv=1.39,
mean peak error=15.35) by the NNLS algorithm. The result suggests that the NNLS
reconstruction is not able to reconstruct the plume which is near the OP-FTIR however
it is able to reconstruct well when the plume is far away from the OP-FTIR. This may
because that although the source location is near the FTIR, there still might be a few

monitoring lines (i.e. the monitoring lines on the edge) of the pixel that has detected the

iy | "'-r’.’_.

low PIC. All of the monitoring lﬁlﬁjiﬁgxye paﬁ%c“(f:i;xel 1, thus the high concentration

Ny
0

value in Pixel 1 would rise the réconstricted when'deploying the NNLS
& | L — J .
. - y -
reconstruction. Asa result,ihevNE!ﬁL alg&}th c'i@‘mqu*subjects a low concentration
B "%\.. £ /;J"-T-" i
data to Pixel 1 to satisfy the monitoring line thathas'detected less emission to yield low

ey oy, P ol

reconstructed PIC. However when the source is far away from the OP-FTIR, the
concentration in each pixel is correlated to certain monitoring line only. Thus the

NNLS is able to subject a high concentration value in that pixel.
3.1.2 The reliability of source localization

From section 3.1.1, it can be seen that the SBFM reconstruction using the
lognormal distribution has provided a perfect match between the real and reconstructed

plume. This may because that the test map is bivariate lognormal distribution. As for
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the SBFM reconstruction using bivariate Gaussian as basis function and NNLS
reconstruction, there are still certain unsolved problems. For example, the NNLS
reconstruction is not able to localize the emission source which is near the OP-FTIR
while the SBFM algorithm using bivariate Gaussian distribution as basis function is not
able to localize the emission source which is far away from the OP-FTIR. While in
application, it is important to know whether the reconstructed source location is reliable.
In the aspect of source localization, to investigate the reliability of the different

reconstruction methods, the sensitivity rate and specificity rate along with the false
gl FEnfien i

o . g ek B Ng . .
positive rate and false negative rate.in each pixel are calculated to provide the screening
i I' P \i: 3 -

. . o ulih f \ s
information after the reconstruction process. \ = &
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Table 3.5 shows the indié;z_l{(g;s_ fithe r‘étrﬁ.abv ty“fg# egf'ch reconstruction method

o
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under the center geometry. The sensm\ﬁltyrafe gnd""sﬁecificity rate are the indicators to
represent the goodness of the method. The higher the sensitivity rate represents the
better tool. The sensitivity rate of each pixel represents the ability of current
reconstruction method to localize the emission source in current pixel. Note that the
ability to localize the emission source is defined as the ability of this method to
reconstruct the source location that hit the correct pixel. For example, Table 3.5 (a)
shows the reliability of the RPM, gauss.  The sensitivity rate of pixel 1 752%”
represents that 52% of the plumes with peak location in pixel 1 can be localized

accurately (hit the correct pixel) by the RPM¢ gauss. The specificity rate represents the
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ability of the reconstruction method to distinguish the source location that is not in
current pixel. For example, Table 3.5 (a), the specificity rate of pixel 1 is 94.3% which
represents that 94.3% of the plumes with peak location outside of pixel 1 can be
distinguished. Associated with the specificity rate, the false positive rate is also
calculated. The false positive rate means the possibility that the reconstructed source
location is within the current pixel however the true source location is not. Along with
the false negative rate, they are the indicators for the user to distinguish whether the

reconstructed source location is reliable or not. For example, Table 3.5 (a), the false
gl FEnfien i

positive rate of pixel 1 1s 5.8% Whiéﬁ?&&%gﬁ% of the plumes outside pixel 1
i I' P \{ 3 -

are reconstructed as having source 100 tion in/pixel 1"- \“The last indicator is false
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negative rate which represents the

'-.' *
S e s

outside the current pixel however: the*tr dﬁ%ﬁ lqcatlon 1s within the current pixel.
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For example, Table 3.5 (a), the false negative rate of pixel 1 is 48% which represents
that 48% of the plumes within pixel 1 are reconstructed as having source location
outside pixel 1. A reliable method is considered to having both high sensitivity and
specificity. As a result, the higher the sensitivity and specificity rate yield lower false

negative and false positive rate.

Table 3.5 (a) to (c) are able to give the guideline of the reconstruction with
different methods while in application. For example, in pixel 1, the false positive rate

of each reconstruction method is 5.8%, 1.3% and 0 % for RPM._gauss, RPMc_o; and
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RPM. nnis respectively which suggests that once a reconstructed source location is in
pixel 1 it is highly possible that the real source location is in pixel 1. However from
the sensitivity rate (52%, 100%, 2% respectively), it can be seen that the NNLS
algorithm might not able to localize the plume with source location in pixel 1. The
best method that is able to localize the emission source is SBFM reconstruction using
bivariate lognormal distribution as basis function. From Table 3.5 (b), both the
sensitivity rate and specificity rate are high (> 62%). The worst method is SBFM
reconstruction using bivariate Gaussian distribution as basis function. From Table 3.5
(a), only pixel 1, 2, 4 and 5 yield both sénéitivﬁ? ra:tf: and specificity rate larger than

50% which suggest that this method méi_l WorKBest Wiiéh the source location of the

A=l
plume is in pixel 1, 2, 4 and 5. —The NIFLS'[:\S ca];{)able of localize the source location far
| I/ ¢

from the OP-FTIR where pixel 6,8 and 9. yicld sensitivity rate and specificity rate larger
than 70%. Table 3.6 (a) to (c) have also demonstrated the reliability analysis results
for Geometryexeeng. Similar to the results of Geometrygeneer Where the NNLS is able to
localize the source location far from the OP-FTIR (Table 3.6 (c)) while the SBFM using
bivariate Gaussian distribution as basis function is able to localize the source location

that is near the OP-FTIR (Table 3.6(a)). The SBFM using bivariate lognormal

distribution as basis function has given the best result in every pixel (Table 3.6(b)).

3.1.3 The prior screening process
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From table 3.1, 3.3 and 3.4, although the high CCFpc has suggested a good match
between the observed and predicted PIC however the reconstruction quality and the
source localization ability still varies. Furthermore, we attempted to find possible
indicators that provide information to predict the performance of the reconstruction

prior to the reconstruction process.

Section 1.2 suggested that the plume with peak location near the OP-FTIR may not
be localized accurately by the NNLS algorithm while the plume with peak location far
away from the OP-FTIR may not be localize aceurately by the SBFM algorithm using

bivariate Gaussian distribution as ba_si'-s:,functiori"f' To ta_kc advantage of this

Fal

. . i Y Fal —ia) . .
information when in field application, the'priog i\ﬂformatlon' about whether the emission
oA || ¥:

. M L | 5
source is near or far away from thf_O.P[' TIR mql beobtained. To do so, we try to
use whether the shortest monitoring is ali'_le to détect the plume (shortestD) as an
indicator representing the closeness of the emission source to the OP-FTIR. Table 3.7
shows the summary statistics for the performance of reconstruction and source
localization ability. It can be seen that there is significant difference in both the
reconstruction quality and source localization accuracy between the test map with
shortestD and that without shortestD in most of the cases (Table 3.7). Similar to the
previous analysis, the SBFM with shortestD performs better than that without shortestD

in both aspects of reconstruction quality and source localization accuracy.

Furthermore, the SBFM reconstruction using bivariate lognormal distribution has also
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shown the same trend. The NNLS reconstruction however shows an opposite trend to
the SBFM reconstruction where the test map without shortestD yields better
performance than that with shortestD. This also matches the observation from section
3.1.1 and 3.1.2. For example, Figure 3.2 is one example in which the test distribution
is in Pixel 1 and the shortest monitoring line for both the beam geometry is not able to
detect the plume. And the reconstruction result shows that the SBFM using bivariate
normal distribution as basis function is able to localize the source while the NNLS may
not. Another example is shown in Figure 3.3 where the source location is in Pixel 9
which is far away from the OP-FTIR and is no.:t.-'be :élble to be detected by the shortest

monitoring line. The reconstruction ré@t slrf):\;v,s that'the NNLS is able to localize the

(amzs]|
| | i I|
plume while the SBFM using bivariate ?aqg's__ian' distribution as basis function may not.
A\ '||i=..

In addition to the shortestD, we'try. fo find other prior information that is helpful to
screen out the unsuitable PIC data or to choose a proper reconstruction method. The
number of detected PIC (dPIC) and the number index of monitoring line which detects
the highest concentration of PIC (maxCON) are considered. These two factors are
strongly associated with the plume’s location. For example, most of the plumes in
pixel 1 are able to be detected by all of the monitoring line and most of the highest
concentration is detected by the 4 monitoring line. We use the multiple linear

regression models to analyze the fitness of possible factors which are dPIC, maxCON

and ShortestD. Table 3.8 shows the regression result using dPIC, maxCON and
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ShortestD as predictor variables. The R? ranges from 0.14 to 0.44 for CCFgppm, 0.05 to
0.42 for Nearnessgpm and 0.12 to 0.47 for peak error. The low R? value suggests that
the chosen factors may not explain the variation of the indicators used to describe the
performance of reconstruction. Thus we are not able to predict the performance of the

reconstruction with the three chosen factors.
3.1.4 The uncertainty analysis of SBFM reconstruction

Figure 3.4 shows the error map of the Geometryexienq using bivariate Gaussian

I f e
distribution with the ratio of ox and oy being 1.{1 (a 01rcle distributed distribution from

the top view) as test dlstrlbuuon % ATh ure _:l;e Téft (Flgure 3.4 (a) (¢) (e)) show
the error map with the peak locatlonzl mldd of each plxel with growing size
(ox=1,2 and 3 oy=1,2 and 3 respe\ctlve y~} ’]?he black color represents the area with
standardized SSE smaller than 0.0i \;VhiC:i’l r"c;pre:sents- the possible reconstructed source
location when applying SBEM reconstruction. The larger the area with black color
represents the larger uncertainty when applying SBFM reconstruction. The figures on
the right (Figure 3.4 (b) (d) (f)) represent the overall error map with test distributions
corresponding to the right figure. The white color represents the area with
standardized SSE smaller than 0.01 which represents the smaller uncertainty when

applying SBFM algorithm. That is, the test distribution with peak location in the white

area can be localized by the SBFM algorithm more accurately comparing to those with
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peak location in the black area.

From Figure 3.4, it can be seen that as the size of the test distribution grows the
uncertainty decreases. Although some of the black area increases (Figure 3.4 (a) (¢)
(e), the white area increases in Figure 3.4 (b) (d) (f). This indicates that although some
of the test distribution in the error map of the single test distribution has increasing
uncertainty, the overall uncertainty (Figure 3.4 (b) (d) (e)) still decreases. This may
because that the larger plume is able to be detected by multiple monitoring lines even
it’s far away from the OP-FTIR (Figure 3.4 (f)).. However the smaller plume can only
be detected by limited monitoring line§'thus inc.reaSCS the uncertainty. Similar result is
also observed in Figure 3.5, which is thé elfgr :n-lap of the same distribution to Figure

_ I M
3.4 however the beam geometry 1s diffie:rent_.:-

Figure 3.6 and Figure 3.7 shows the error map with the ratio of ox and oy of the
test distribution being 1:2 (The principle axis of the distribution is perpendicular to the
X axis). Similar results are observed where the larger the test distribution yields
smaller overall uncertainty. However it is worth noticed in Figure 3.6 (d), the white
area between monitoring line 7 and 9 extends towards the far end of the domain. The
white area between monitoring line 7 and 9 even extends further when the plume grows
larger (Figure 3.6 (f)). Since the test distribution in Figure 3.6 is parallel to the Y axis,

it is likely that the monitoring line 7 and 9 can still detect the plume because they are
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approximately perpendicular the Y axis. This can be confirmed by the white area
between monitoring line 1 and 3 where the white area does not extend like it does
between monitoring line 7 and 9. This may because monitoring line 1 and 3, same as
the test distribution, are approximately parallel to the Y axis. The monitoring lines are
not able to detect the plume when the plume is far away from the OP-FTIR. The same
result can be observed under the different beam geometry (Figure 3.7). The white area
between monitoring line 7 and 9 extends towards the far end of the domain in Figure 3.7

(d) and (f) while that between monitoring line 1 and 3 does not.

The above observation canbe fulgghier verificd by us_ihg the test distributions with
AN\
[~ .'I fal ]
different angle. Figure 3.8 and Higure .ﬁh;g\#/ithe error map using the test
! II Jr! I. lf. -
distribution with the ratio of ox.and 'cytbeing D 1'i| dfnder GEOMELrYexienq and
| P
Geometryener repectively.  The ratio of“'_c.sx and IGY being 2:1 represents that the
principle axis of the test distribution in Figure 3.8 and 3.7 are perpendicular to that in
Figure 3.6 and 3.7. As expected, the white area between monitoring line 1 and 3
extends towards the farther end of the domain but not that between monitoring line 7
and 9 (Figure 3.6 (d) (f) and Figure 3.7 (d) (f)). We further use the test distribution
with different ratio to generate the error map. Figure 3.10 (a) shows the error map
using test distribution with the ratio between ox and oy being 1:2 (ox=2 6y=4) and

Figure 3.10 (b) shows the error map using test distribution with the ratio between ox

and oy being 1:3 (ox=2 oy=6) which represents the longer test distribution. As
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expected, the white area between monitoring line 7 and 9 in Figure 3.10 (b) extends
more than that in Figure 3.10 (a). This is because that the longer test distribution
makes it possible to be detected by monitoring line 7 and 9 even it’s far away from the
OP-FTIR. Figure 3.10 (c) and (d) show the error map using test distribution that is
perpendicular to that in Figure 3.10 (a) and (b) respectively. Again, the white area
between monitoring line 1 and 3 in Figure 3.10 (d) extends more than that in Figure
3.10 (c). Same result is observed under the other beam geometry (Figure 3.10 (e) (f)

and Figure 3.10 (g) (h)).

The above analysis suggests thagthe SBFMieconstruction is able to localize the
plume that is close to the OP-FTIR. A§ tlﬁ,sgze of the plume grows, the SBFM
¥ Il m | :
reconstruction can also work even whe.n: the plume is far from the OP-FTIR. In
addition, the plume with peak location that is far from the OP-FTIR might still be
localized if it is large enough to be detected by at least two monitoring lines. This

finding might be helpful for further predict the performance of the SBFM reconstruction

when the plume is far from the OP-FTIR.

The same situation is not observed in the overall simulation reconstruction analysis
in section 3.1.1 (Table 3.1). This may because that the test distribution (bivariate
lognormal distribution) used in the reconstruction simulation is different form the basis

function (bivariate Gaussian distribution). Under this situation, a smaller plume of the
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basis function close the OP-FTIR might be more flexible to fit the predicted PIC to the
observed PIC. For example, in Figure 3.2 (b) and (c), the SBFM reconstruction fails to
reconstruct the plume in Pixel 9. The CCFpic (0.99 for both) indicates that the SSE

between the observed and reconstructed PIC is minimized.

As previously mention, we might be able to distinguish whether the plume is in the
proximity of the OP-FTIR by examining whether the shortest monitoring line has
detected the plume (ShortestD). Since the error map suggests that the plume far from
the OP-FTIR can still be localized if it,is detectgd by at least two monitoring line, the
test distributions without ShortestD inffie simulation experiment might still be localized.
We further implement the ANOVA analymg:rmsee whether there is a difference in peak
error between different dPIC (hdw _mali-l}:/ mérflitoring liné that detects the plume) for the
test distributions that is not able to be- detected by the shortest monitoring line in the
simulation experiment. Table 3.9 shows the results of the ANOVA analysis on peak
error with RPM, gauss and RPM, gauss. It can be seen that the RPM._Gauss
reconstruction method has shown significant difference between different dPIC and the
reconstruction has shown that the dPIC of 8 yields the best result. However if we
further analyze the test distributions of dPIC=6, it shows that the test distributions with
dPIC=6 and 8 has included some test distributions that are in the proximity of the

OP-FTIR. Thus dPIC=8 and 6 yields better result. The worst result is given by

dPIC=2 and 1 respectively and most of the test distributions with dPIC=2 and 1 are
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from the pixel of 9 which suggests that the test distribution far from the OP-FTIR may
not be localized when the dPIC is limited even it’s able to be detected by 2 monitoring
lines. This has also shown that the generated test distributions may not be
homogenous enough. The plume tends to grow widely when it is far from the origin
even when the given ox and oy are small. Thus there is only little plume with dPIC=1

which causes the error.
3.2 Field experiment results
3.2.1 The spectrum quantification

The detection limit for the two tracer g_ases in each monitoring line is shown in
“Ey

1 T . } .
Table 3.10. The measured PIC that is below detection Timit is subjects to 0 to prevent

possible influence on the source localization.procedure. All of the collected spectra
are confirmed to show no sign of saturation by visually examine the spectral range in

the proximity of 650 cm™. The maximum of the measured PIC for SFy is 4.0215.49
ppmxm for Retro 5 while the minimum is 0.281%0.84 ppmxm for Retro 6, The
maximum measured PIC for N,O is 27.30£52.41 ppmxm for retro 3 while the minimum
is 0.49%2.01 ppmxm for retro 6. Table 3.11 (a) and (b) have shown the summary

statistics of PIC data for SFs and N,O respectively. Figure 3.11 and Figure 3.12 have
further shown the time series plot of the PIC data. In all of the experiments, the PIC

data of the first few sweeps (1 to 3) for both the tracer gases is 0 which indicates that
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there is no background concentration increment for the two tracer gases in the
experimental domain. The concentration rises after the releasing of the tracer gases
which implies that the measured concentration is from the artificially released tracer
gases. The PIC data that is measured after the release of tracer gases is used to localize
the source. Thus for each experiment, there are at least 21 sets of PIC data that can be
used for source localizing. However, the N2O has run out during experiment 4 thus

there are only 17 sets of PIC information available.
3.2.2 The source localization

The emission source reconstructionresult4s shown:in Table 3.12.  The CCFpic

P i
©

indicates the fitness between the obseryed ;@d-pre_dicted PIC. The highest CCFpic 1s

given by the NNLS reconstructioﬁ of NZO in experiment 2 (CCFp;c=0.9910.01) and

SBFM reconstruction using bivariate lognormal distribution as basis function

(SBFMiggnormal) of N2O in Exp 4 (CCFpic=0.9910.02) while the lowest mean CCFpyc is
given by the NNLS reconstruction of N,O in Exp 3 (CCFpic=0.77%£0.26). The high

CCPFpyc value in each reconstruction method shows a good fit between observed and
predicted PIC however the source localization accuracy varies. The best result is given
by SBFMgaussian reconstruction for N,O in Exp 3 (mean peak error=5.26+3.78) while the
worst result is given by NNLS reconstruction for SF¢ in the Exp 4 (mean peak

error=19.93+4.41). This shows conformity to the simulation experiment where high
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CCPFpic does not promise an accurate source localization result.

The poor performance of NNLS reconstruction for SFe in Exp 4 may because that
the source is in pixel 1 which is close to the OP-FTIR. As shown in the simulation
experiment, the NNLS reconstruction is not able to localize the emission source that is
close to the OP-FTIR. This may because that the pixel close to the OP-FTIR is passed
by all of the monitoring lines and as a result, the concentration in pixel 1 is correlated to
the PIC data for all of the beam paths. In this case, a high concentration in pixel 1 may
increase the predicted PIC in all of the ray pathg. However, there lies a possibility that
the monitoring lines on the upwind sité may not be.able to detect the plume even when

the plume is with peak location.in the proxfmlty of OP-FTIR. The algorithm thus

il

subjects a low concentration Valﬁg n pii):cel _1?-t0 ax;oid high reconstructed PIC in the
monitoring lines on the upwind site. | And for the-monitoring lines with high PIC, the
NNLS algorithm tends to subject the high concentration in the pixel that is only passed
by that monitoring line. Figure 3.14 (f) shows the result using NNLS algorithm to
localize the source location of SFg in Exp 4 and Table 3.10 (d) shows the time series
plot of the PIC data of SFs in Exp 4. From table 3.10 (d), the PIC rises mostly in Path
3,4, 7 and 9 but not 1 and 2 and the highest concentration is detected by Path 7. Thus
it can be predicted that although the emission source is in Pixel 1, the reconstructed
source location by NNLS might still subject a low concentration value in Pixel 1 to fit

the low observed PIC in Path 1 and 2. Furthermore, the reconstructed source location
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can be predicted to be near Pixel 8 which is passed by Path 7 only (Figure 3.14 (f)).
Another example is shown in Exp 2 SF¢ in which the emission source is also in Pixel 1
(Figure 3.12 (f)). The NNLS still gives the worst result in all three kinds of
reconstruction methods (mean peak error=17.44+7.02). From the time series plot of
PIC data (Figure 3.11 (b)), the PIC data rises mostly in Path 4, 5 and 7 but not Path 1
and 2 and the highest concentration is detected by Path 5. As a result, most of the
reconstructed source locations are in Pixel 5 and 9 which correlate more to Path 5. As
stated in the simulation experiment, the NNLS reconstruction is able to localize the
source that is far from the OP-FTIR.  For exarﬁple, the NNLS reconstruction gives the

best result for SFs in Exp 1 (mean peak if-,r__r-:o1.r:$.88i5.41) in which the source location is

e i
—
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in pixel 8 (Figure 3.13 (c)). = From the §eri;§§ plot (Figure 3.11 (a)), the concentration
rises mostly in Path 7 and 9 and ti;é hig;;hest gon(;entration is detected by Path 7. Thus
most of the reconstructed source locations are in Pixel 8 which is only passed by Path 7
and some of the reconstructed source locations are in Pixel 7 which is passed only by

Path 9.

Regarding to the studies of Hashmonay et al. in 2002"° and 2008”7, the result found
in this study for using NNLS algorithm to locate the pollutant may indicate the
uncertainty of the result in the previous two. In the study of Hashmonay in 2008, the
RPM technique using NNLS is implemented in a landfill to locate the unknown “hot

spot” of the pollutant. The result shows that the reconstruction is almost identical to
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that reconstructed by MART algorithm. However, it can be seen that in this study, the
reconstructed “hot spot” of the pollutant is in the farther end of the experimental domain
(Figure 1.6 (a)). Comparing to the result in our study, there is a possibility that the real
“hot spot” of the pollutant may be close to the optical remote sensing instrument
however the NNLS reconstruction is not able to tell it apart. In the other study'’, a
total of 5 experiments are implemented using the RPM technique to localize the
artificially released source. In each experiment, the SF is released as tracer gas to be
localized. Figure 1.6 (b) has shown the successful reconstruction results to the
artificially released tracer gases. Also, i thesé success examples, the tracer gases are

located in the farther end of the emissidrj gi_omé}ih. And the results of the other two

e i
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examples are not discussed. ~ Thus the result.of having the emission source in the
proximity of the emission domain still remains unknown. Although in this case, the
reconstruction algorithm is MART instead of NNLS, the study in 2008 has proved that

the MART is able to reconstruct an identical result to that using NNLS algorithm.

The SBFM reconstruction using bivariate Gaussian distribution as basis function
gives the significantly better result than the other methods in Exp 2, 3 and 4 for SFs
(Table 3.12(a)). In all of these cases, the source locations are near the OP-FTIR (Pixel
1, Pixel 4 and Pixel 1 respectively). This has also been verified in the simulation
experiment where the source location that is near the OP-FTIR yields the shortest peak

error. In addition, the error map analysis has also supported this result where in Figure
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3.9, the white area covers the region that in the proximity of the OP-FTIR. This may
because that the closer the emission source to the OP-FTIR, the higher opportunity that
all of the monitoring line is able to detect the plume. Once the plume is detected by all
of the monitoring lines, the SBFM may not be able to tell apart whether the plume is a
narrow plume near the OP-FTIR or a wide plume far from the OP-FTIR. In this case,
the SBFM tends to reconstruct the source in the region that is close to the OP-FTIR
because the smaller plume may be more flexible to fit the predicted PIC to the observed
PIC. In Figure 3.13 (d) SFe in Exp 2, although the SBFMgayssian gives the significantly
better result than the others, most of the reconstfucted source locations are in Pixel 5
rather than Pixel 1. This can be explaii}qgﬂby__the measured PIC data. From Figure
3.11 (b), Path 6 does not detected any trace;:gas in most of the times thus giving the
segmenting information to avoid £he S(I)urce bein_g reconstructed in Pixel 1. The star
sign in Figure 3.13 (d) shows a result that is reconstructed in the correct pixel. From
Figure3.11 (b), it is able to be detected by all of the monitoring lines. For the cases
that the SBFMgaussian g1ves worse result, the source locations are all far from the
OP-FITR. In this case, the uncertainty analysis suggests that if the plume is able to be
detected by at least two monitoring line, it is still possible to be localized by the SBFM
reconstruction. An example is shown in Exp 1 SFg (Figure 3.13 (a)) in which, the

relatively poor result is given by SBFMgayssian (mean peak error=9.00+6.38). However,

several reconstruction results are still close to the real source location. For example,
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the 20™ set of input PIC has yields the result with peak error equaling 8 (Figure 3.13 (a)
star sign). In Figure 3.11 (a), the 20" set of input PIC is detected by path 5 and 7 only,
which confirms the uncertainty analysis in the computational simulation. Furthermore,
the reconstruction using the 21" set of input PIC is detected by path 5 and 7 (Figure
3.11 (a)) which are the longer monitoring lines in the beam geometry. The
reconstruction with this set of PIC has yielded the reconstruction result with peak error
equaling 8 (Figure 3.13 (a) triangle sign) which suggests that when the emission source
is far from the FTIR, the SBFM may still reconstruct the source location if there is

adequate segmenting information.

As described in section 2.2.2.2. Théf&:c_@nstructed source locations are averaged

il

to give a mean source location iﬁ_gach ;e;(pe}:imeni. Fiéure 3.17 and 3.18 show the
averaged source location for SF¢ and NZO re'speétively and Table 3.13 (a) and (b) show
the reconstruction performance of the averaged result of SF¢ and N,O. In table 3.13
(a), the best result of the SF¢ source reconstruction is given by NNLS reconstruction
(peak error=2.90) in Exp 1 while the worst result is given by NNLS reconstruction
(peak error=18.03) in the Exp 4. In table 3.13 (b), the best result of the N,O
reconstruction is given by SBFM reconstruction using bivariate lognormal distribution
as basis function (peak error=0.49) in Exp 1 while the worst result is given by NNLS
reconstruction in Exp 3 (peak error=10.59). Similar trend of the performance of the

different reconstruction methods to the overall reconstruction is observed. The NNLS
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is able to localize the plume that is far from the OP-FTIR while the SBFM is able to

localize the plume that is close to the OP-FTIR.

Carefully looking at the averaged reconstruction result, it can be seen that the
NNLS has reconstructed the source location mostly in pixel 6, 8 and 9 while the SBFM
using bivariate Gaussian distribution as basis function has reconstructed the source
location mostly in pixel 2,4 and 5. The SBFM using bivariate lognormal distribution
as basis function has reconstructed the source location between the other two methods.
In addition, the reconstructed source locations by the three methods are able to point out
the proximate location of the emissionfSource. For example, for the SF¢ in experiment

2 (Figure 3.17 (b)), although none of thd fé;&u_l_:_structed squrce location has hit the

il

correct pixel, the real source locé_tjon i§ 1n tﬂé pro:ximity. of the extension of the line
between the three reconstructed sourée locations.“Similar results can be seen in all
other experiments. With this finding, combining the measured PIC, we might be able
to choose which reconstruction result is the closest to the real source location. For
example, the SFg in Exp4 (Figure 3.17 (b)), the reconstructed source location by the 3
methods are between monitoring line 5 and 7.  From the measured PIC data (Figure
3.11(d)), it can be seen the bearby short beam paths have also detected the plume (Path4
and Path8). Thus we might be able to judge that the source location is in the proximity
of the SBFM reconstruction using bivariate Gaussian distribution as basis function.

Another example, Exp2 N,O (Figure 3.18 (b)), the reconstructed source locations are
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between monitoring line 3 and 4. Judging by the measured PIC (Figure 3.12 (b)), the
plume is not detected by bearby short paths (Path4 and Path6), thus we might be able to
choose the reconstructed location by NNLS as the real source location. From the above
example, we might be able to judge which reconstructed source location is the closest to
the real source location by looking at the peripheral short paths. Table 3.14 has further
shown the result by based on this rule. In all four experiments, the chosen results

based on this hypothesis are all the closest to the real source location.

Another possible solution is to apply the'1=D.radial plume mapping described in

15,31, 32,35

previous studies In Figufe 3.17 and 3.18; a virtual line can be created by

linking the reconstructed source locatioriséithe three methods. The distance between

il

the line and the real source location is less than 3 meters. | If the 1-D RPM is applied
by setting up the beam geometry on this line the result might be more accurate. In
previous studies, the SBFM reconstruction in a 1-D scenario using different input PIC

15,31, 32 .
d . Since the real

strategies and different basis functions have been propose
source location is close to the monitoring line, we might be able to simply localize the

peak concentration location along the monitoring line as the source location. Also, the

1-D RPM combining wind data can also be implemented to further localize the source.

Table 3.15 has shown the wind data of the four experiments. It can be seen that

the average wind speed ranges from 0.43 to 0.86 m/s which indicates that the
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experiment was conducted in the field with weak wind. The wind direction varies
rapidly in the four experiments. The standard deviation of the wind direction ranges
from 110 to 133 degrees. Figure 3.19 has further shown the wind rose plot of the four
experiments. It can be seen that the mode of the wind direction is O degree (due north)
which is approximately perpendicular to the monitoring lines. Comparing the
reconstruction result in each experiment, it can be seen that the RPM technique is able
to localize the source with different reconstruction algorithm. This suggests that under
the same meteorological condition, although the source location varies, the RPM
technique is still able to localize two sources siﬁlultaneously. Comparing the different

experiment, it can be seen that although';h‘c méteorological condition is significantly

e i
g

e

different (Table 3.15), the RPM teChniQIEle 1§st111 able to localize the source. Although
the above observation seems to 51.1.gge_s:t that Fhe meteorological condition cause no
effect for the RPM technique to localize the source, it still needs to be noticed that the
segmenting information is needed when applying the RPM technique. If the wind
direction is due to the location of OP-FTIR, the segmenting in formation is limited.
The reason that the experiment is less affected by the wind may because that in most of
the time, the wind direction is perpendicular to the monitoring lines. Thus the

segmenting information is adequate for the SBFM to localize the source.

3.2.3 The reliability of the reconstruction result
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As mentioned in the simulation experiment, the section of reliability of the
reconstruction result, table 3.5 is able to provide a guideline of the reconstruction. In
order to validate whether the reconstruction result is reliable, the mean source location
of each reconstruction method is first calculated as described in section 2.2.2.2. Figure
3.17 and 3.18 show the averaged result for SF¢ and N,O respectively. It is difficult to
tell whether the reconstructed source location is reliable or not by table 3.5. For
example, Figure 3.16 (a) shows the averaged result for SFs in experiment 1. The
SBFMaussian reconstructed the source location in pixel 4 and Table 3.5 (a) has shown
13.0% of false positive rate which shows the un.'certainty of the reconstructed source

location. Indeed, the real source locatikpg—lis r_1'__0_f in pixel 4 however the 13.0% of

e :
-

possibility makes it hard to judge Wheth{er tré’b:a convinced by the reconstruction result.
Table 3.5 (b) has shown the relialJility iof the.SBl.:l.\/I"iognorma] reconstruction. The high
sensitivity rate and low false positive rate has suggested that the reconstruction result
may be highly reliable. However, in the field experiment, the SBFMiognormal has only
reconstructed two out of eight source locations that are able to hit the correct pixel. As
mentioned previously, the high reliability of the reconstruction method from the
simulation experiment may come from the similarity between the test distribution and
the basis function which both are the bivariate lognormal distribution. As for the

NNLS reconstruction, similar to the SBFMgaussian, the high sensitivity and specificity

rate of pixel 8 suggests that the NNLS is able to reconstruct the source location in Pixel
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8. The 26.5% of false positive rate makes it difficult to rely on the reconstruction by
the NNLS algorithm. Again, the NNLS reconstruction tends to reconstruct the source
location far away from the OP-FTIR. Four out of eight of the emission sources are

reconstructed in Pixel 8 however none of them hit the correct pixel.

Despite the error caused by the RPM technique, the property of the pollution
might also influence the performance of the RPM technique to localize the source. For
example, the acid deposition of the chemical substances®, the turbulence causing the
distribution of the plume to change** and the Vgrtical dispersion of the pollutant®. In
our field experiment, the field domain§ 30x30 meter square. Although the relatively

small area might limit the chemical depdsiggq;process, the error might still exist.
Il A
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Figure 3.1 The reconstruction results for different reconstruction methods (a) The
original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian
distribution as basis function under Geometryceneer and Geometryexeena respectively. (d) (e)
The reconstruction by the SBFM using bivariate lognormal distribution as basis

function under Geometry eneer and Geometryexeend respectively. (f) (g) NNLS
reconstruction under Geometryeneer and Geometryexieng respectively.  The * sign after
the peak error indicates that the reconstructed peak location has “hit” the correct pixel.
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Figure 3.2 The reconstruction results for different reconstruction methods (a) The
original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian
distribution as basis function under Geometryceneer and Geometryexeena respectively. (d) (e)
The reconstruction by the SBFM using bivariate lognormal distribution as basis

function under Geometry eneer and Geometryexeend respectively. (f) (g) NNLS
reconstruction under Geometryeneer and Geometryexieng respectively.  The * sign after
the peak error indicates that the reconstructed peak location has “hit” the correct pixel.
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(a) Test map in Pixel 9
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Figure 3.3 The reconstruction results for different reconstruction methods (a) The
original test map. (b) (c) The reconstruction by the SBFM using bivariate Gaussian
distribution as basis function under Geometry eneer and Geometryexeena respectively. (d) (e)
The reconstruction by the SBFM using bivariate lognormal distribution as basis

function under Geometry eneer and Geometryexena respectively. (f) (g) NNLS
reconstruction under Geometryeneer and Geometryexiena respectively.  The * sign after
the peak error indicates that the reconstructed peak location has “hit” the correct pixel.
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Figure 3.4 The error map of Geometryexeng Using different size of test distributions with
the ratio of ox and oy being 1:1. The figures on the left are the error maps with only one
test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=1 oy=1 (¢)
(d) ox =2 oy=2 (e) (f) ox=3 oy=3
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Figure 3.5 The error map of Geometry enr using different size of test distributions with
the ratio of ox and oy being 1:1. The figures on the left are the error maps with only one
test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=1 oy=1 (¢)
(d) ox=2 ovy=2 (e) (f) ox =3 oy=3
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Figure 3.6 The error map of Geometry.xeend Using different size of test distributions with
the ratio of ox and oy being 1 to 2. The figures on the left are the error maps with only

one test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=1 oy=2 (¢)
(d) Ox =2 GY:4 (e) (f) Ox =3 GY:6
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Figure 3.7 The error map of Geometry ener using different size of test distributions with
the ratio of ox and oy being 1 to 2. The figures on the left are the error maps with only
one test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=1 oy=2 (¢)
(d) Ox =2 GY:4 (e) (f) Ox =3 GY:6
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Figure 3.8 The error map of Geometryexing Using different size of test distributions with
the ratio of ox and oy being 2 to 1. The figures on the left are the error maps with only
one test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=2 oy=1 (¢)
(d) ox =4 oy=2 (e) (f) ox =6 oy=3
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Figure 3.9 The error map of Geometry ener using different size of test distributions with
the ratio of ox and oy being 2 to 1. The figures on the left are the error maps with only
one test distribution in the middle of each pixel. The black color represents the
standardized SSE < 0.01. The figures on the right are the overall error map. The
white color representing the area with standardized SSE < 0.01. (a) (b) ox=2 oy=1 (¢)
(d) Ox =4 GY:2 (e) (f) Ox =6 GY:3
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(a) Exp1 SFs (b) Exp2 SFe

(c) Exp3 SFs (d) Exp4 SFe

Figure 3.17 The average result of SFgin (a) Experiment1 (b) Experiment2 (c)
Experiment3 (d) Experiment4. NNLS represents the average result using NNLS
reconstruction. SBFMgayssian represents the average result using SBFEM reconstruction
with bivariate Gaussian distribution as basis function. SBFMiggnormal represents the
average result using SBFM reconstruction with bivariate lognormal distribution as basis
function.
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(a) Expl N,O (b) Exp2 N,O

30— 7‘7 _—

NNLS

(c) Exp3 N,O (d) Exp4 N,O

Figure 3.18 The average result of N,O in'(a) Experimentl (b) Experiment2 (c)
Experiment3 (d) Experiment4. NNLS represents the average result using NNLS
reconstruction. SBFMgayssian represents the average result using SBFEM reconstruction
with bivariate Gaussian distribution as basis function. SBFMiggnormal represents the
average result using SBFM reconstruction with bivariate lognormal distribution as basis
function.
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(a) (b)

E = = =%

4 g T _L'i
Figure 3.19 The wind rose of the four fiefd Hexpériments. (a) Exp1 (b) Exp2 (¢) Exp3 and
(d) Exp4
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Table 3.5 Sensitivity analysis of the center beam geometry

(a) RPMC_Gauss

pixel Sensitivity rate  Specificity rate  False negative rate  False positive rate
1 52.0% 94.3% 48.0% 5.8%
2 64.0% 88.0% 36.0% 12.0%
3 8.0% 99.3% 92.0% 0.7%
4 62.0% 87.0% 38.0% 13.0%
5 86.0% 54.5% 14.0% 45.5%
6 4.0% 99.8% 96.0% 0.2%
7 2.0% 100.0% 98.0% 0.0%
8 2.0% 99.8% 98.0% 0.2%
9 0.0% 100.0% 100% 0.0%

(b) RPMc_log

pixel  Sensitivity rate  Specificity rate  False negative rate  False positive rate
1 100% 98.8% 0% 1.3%
2 94.0% 98.0%: 1 » 6.0% 2.0%
3 86.0% 973% = L= 4.0% 2.8%
4 86.0% 00 5% N 0% 0.7%
5 86.0% " 95.8% T 40% 4.3%
6 62.0% 978% N\ [.) 380% 2.3%
7 86.0% 98.5% (=5 || 14.0% 1.5%
8 74.0% oWs% | 4 || 926.0% 2.5%
9 80.0% 99.0% | == 20.0% 1.0%

(c) RPM¢ nnis

s -E_I =

i|'=f_ '

Specificity rate ~ False negative rate  False positive rate

pixel  Sensitivity rate
1 2.0% 100.0% 98.0% 0.0%
2 42.0% 98.0% 58.0% 2.0%
3 42.0% 99.0% 58.0% 1.0%
4 16.0% 97.8% 84.0% 2.3%
5 20.0% 93.5% 80.0% 6.5%
6 72.0% 81.8% 28.0% 18.3%
7 36.0% 98.8% 64.0% 1.3%
8 76.0% 73.5% 24.0% 26.5%
9 88.0% 94.5% 12.0% 5.5%
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Table 3.6 Sensitivity analysis of the extend beam geometry

(a) RPMe_Gauss

pixel  Sensitivity rate  Specificity rate  False negative rate  False positive rate
1 60.0% 92.3% 40.0% 7.8%
2 84.0% 84.3% 16.0% 15.8%
3 0.0% 98.5% 100% 1.5%
4 48.0% 89.3% 52.0% 10.8%
5 76.0% 69.8% 24% 30.3%
6 16.0% 99.0% 84.0% 1.0%
7 8.0% 98.5% 92.0% 1.5%
8 32.0% 97.0% 68.0% 3.0%
9 0.0% 99.5% 100% 0.5%

(b) RPMe_log

pixel  Sensitivity rate  Specificity rate  False negative rate  False positive rate
1 94.0% 99.0% 6.0% 1.0%
2 94.0% 98.3%11 » 6.0% 1.8%
3 86.0% 983% = I 14.0% 1.8%
4 90.0% 99:3%. g -10.0% 0.7%
5 98.0% 98.0% T, 2:0% 2.0%
6 72.0% 978% N\ (L) 180% 2.3%
7 92.0% 99.8% (=5 || 8.0% 0.2%
8 96.0% oN% | 4 || ¢4.0% 1.0%
9 90.0% 998% | == 10.0% 0.2%

(c) RPM; nnis

s -E_I =

i|'=f_ '

Specificity rate  False negative rate  False positive rate

pixel  Sensitivity rate
1 10.0% 100% 90.0% 0.0%
2 56.0% 97.8% 44.0% 2.3%
3 46.0% 99.3% 54.0% 0.7%
4 18.0% 97.3% 82.0% 2.8%
5 24.0% 94.5% 76.0% 5.5%
6 96.0% 81.8% 4.0% 18.3%
7 52.0% 98.5% 48.0% 1.5%
8 92.0% 78.8% 8.0% 21.3%
9 80.0% 99.0% 20.0% 1.0%
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Table 3.9 ANOVA analysis between different dPIC with test distributions without
ShortestD

Beam Geometry P-value Ranking of dPIC
GeometrYexiend 0.19 62524232722
Geometrycenter 0.01 8262>724>52>3->2->1

The ranking represents the result of Bonferroni t-test from the best performance
(shortest peak error) to the worst (longest peak error).

Table 3.10 The detection limit of SF¢ and N,O in each monitoring line

Pathl Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9

SFs 0.069 0.088 0.075 0.118 0.075 0.192 0.064 0.060 0.107
N,O  0.643 0.847 0.416 0.659 0.397 1.037 0.518 0.458 0.618

110



ITI

98 FFE T SI'OFSL'T 98°0IFES'S  10TFOV'0 88°0TFIS €Ly v#9:8F08' v IV’ TSFOCLT  LOSIFOL'Y  $0'€IFIS'S [e10)
PCTFL6D  €9TFILO0 0967709  LE0F800 +99IFST I “6CFFILO. STSFIOTY  8ETFS60  vheFpLl 14
0SOFVP'E€  LOOIFSIY  €LO0IFLTO  19°TFI80 oo.@.ﬂmw..ﬁ GFOTF89'8, #6'¥EF99°9C ILQTFIILL 99 ITFEC I ¢
0SOF8I'C  TT9F99'T  TYSIFEE'S  €6'1FLED E..S#N.w:_ _80°9F0SC 66'08FILIL  €ETIFSHO €L'6F06'C ¢
LVTF8L'0  TYIF6S0  9I'SFEOY  0ETFLYO Hm.c.ﬂ.ﬁo.% 90IF669 ~ 86'9F8LY  SI'EFF6'0  T9HFI0T I
(@SFuedy) (QSTuedlN) (QSTFURN) ((STFUBIN) AQWHSBSQ __ ﬁmovﬁ. (dSFued]y)  (SFued)  (QSFUBIN) yuowrodxg
oued guyred Lyred ouled cped | ed cyred cued [yped .
£} O°N (@)
6ICFYCT  ¥9IFEL0  TLEF66'T  ¥80F8CT0 6V SFCOP w STEFIST  ITTFOTT  660F8€0  ¥I'TFSSO [e30)
61'1FE€E’T  8I'IFC6'0  C€LTFEY'E  VOIFEP'0 OV’ €FOv  9S1F9CT  ISIF8TT  98°0FWP0  II'1F8L0 v
[I0CFST'T  LSIFII'T  CLIFIOT  STOFEI'0  ¥I'IF98°0  0S'0F9CT0  06°0FLVO  OCOFII'0  OF0FCTO €
SSIFPO'0  VI'TFLO0  LUSFLL'T  STIF8Y'0  ILLF06'8  €CSFEIY  0S€F9EC  LTIFISO  ¥SIFISO C
CTEFES T 90'TFOCO  9S°SFIOY  9T0OF60°0  CI'CFIIT  CI'IFISO  OI'IF89°0  SI'IFEF0  €I'TFITO !
(@sFuedN) (ASFULSN) (ASFUedN) (ASFUBAN)  (ASFUBSN)  (ASFUBIA)  (ASFUBSN)  (ASFUBRN)  (ASFUBIN)
6ured guyied Lyred ouyred cyred yured cyred cued [ed yuaurradxy
1S ()

ON (9) 94S (®) Juowradxa yora ul vlep DIJ JO SonsneIs Arewrwins oy, [1°€ 2[qeL



Table 3.12 The reconstruction result of field experiment of two tracer gases (a) SFe (b)

N,O
(a) SFe
) CCFpic Peak error
Valid PIC set (Mean+SD) (Mean+SD) HIT
Expl (pixel 8)
SBFM Gaussian 24 0.96+0.09 9.00+6.38 4(16.67%)
SBFMiognormal 24 0.89+0.27 10.55+7.35 6(25.00%)
NNLS 24 0.92+0.21 8.88+5.41 11(45.83%)
Exp2 (pixel 1)
SBFM Gaussian 22 0.96+0.07 9.15+4.51" 4(17.39%)
SBFMiognormal 22 0.94+0.11 9.48+5.40 3(13.04%)
NNLS 22 0.80+0.29 17.44+7.02" 1(4.35%)
Exp3 (pixel 4)
SBFM Gaussian 21 0.93+0.14 9.07+5.72" 7(33.33%)
SBFMiognormal 21 0.83+0.31 12.79+7.29 3(14.29%)
NNLS 21 0.83+0.26 13.94+6.80 4(19.05%)
Exp4 (pixel 1)
SBFM Gaussian 22 .0.87£0.16° 7.93+4.43" 3(13.64%)
SBFMiognormal 22 0:86£0.16 7« . 10.28+6.43 4(18.18%)
NNLS 22 0.87+025.  19.93+4.41" 1(4.55%)
:.f-!_\'\::- rl'f : \
(b) N;O ! =< |
) ; || G&Fpit) "“Peak error
Valid PIg, s_?t_ [ (MeaniS,Ib) ' (Mean£SD) HIT
Expl (pixel 5) % 3
SBFM Gaussian 25 0.95+0,10 6.44+3.12 12(50.00%)
SBFMiognormal 25 0.93+0.13 6.31+4.06 14(56.00%)
NNLS 25 0.82+0.26 13.46+4.83" 2(8.00%)
Exp2 (pixel 6)
SBFM Gaussian 21 0.97+0.07 8.08+4.46 1(4.35%)
SBFMiognormal 21 0.95+0.13 11.10+4.99 0(0.00%)
NNLS 21 0.99+0.01 6.93+4.18" 16(72.73%)
Exp3 (pixel 2)
SBFM Gaussian 21 0.93+0.11 5.26+3.78 12(57.14%)
SBFMiognormal 21 0.87+0.18 6.39+4.99 10(47.62%)
NNLS 21 0.77+0.26 13.61+6.43" 3(14.29%)
Exp4 (pixel 8)
SBFM Gaussian 17 0.99+0.02 8.82+4.43 1(0.06%)
SBFMiognormal 17 0.99+0.02 8.74+4.50 0(0.00%)
NNLS 17 0.98+0.04 9.70+2.59 3(17.65%)

The * represents significantly better than the other two methods.
The * represents significantly worse than the other two methods.
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Table 3.13 The mean reconstruction result of field experiment of two tracer gases (a)
SFe (b) N,O

(a) SFg
Valid PIC set Peak error HIT
Expl (pixel 8)
SBFMGaussian 24 6.81 No
SBFMlognormal 24 4.79 No
NNLS 24 2.90 Yes
Exp2 (pixel 1)
SBFMgaussian 22 6.84 No
SBFMlognormal 22 7.70 No
NNLS 22 15.61 No
Exp3 (pixel 4)
SBFMGaussian 21 3.09 Yes
SBFMlognormal 21 6.52 No
NNLS 21 10.34 No
Exp4 (pixel 1)
SBFlv[Gaussian 22 ] 474 No
SBFMlognormal 22 il 656 . No
NNLS 22 @ B @ No
T I«’_\I f.f“\l \
(b) N0 | 0=l |
Valid PIC sety, | [Peak erfor HIT
Expl (pixel 5) . l = || y™E
SBFMgaussian 25 ) } 1.38 ll i s Yes
SBI:"N[lognormal 25 e Y o 049 s Yes
NNLS 25 gy 9.7 No
Exp2 (pixel 6)
SBFMGaussian 21 6.81 No
SBFlv[lognormal 21 8.68 No
NNLS 21 5.14 Yes
Exp3 (pixel 2)
SBFMGaussian 21 3.33 Yes
SBFlv[lognormal 21 4.86 Yes
NNLS 21 10.59 No
Exp4 (pixel 8)
SBFMGaussian 17 8.03 No
SBFlv[lognormal 17 7.53 No
NNLS 17 7.74 No
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Table 3.14 The chosen reconstructed result by the nearby beam paths

Nearby paths ~ Nearby short result
paths
Expl
SFe 5,6,7 4,6,8 NNLS
N,O 4,5 4%, 6 SBFM Gaussian
Exp2
SFe 5,6,7 4*, 6, 8% SBFM Gaussian
N>O 3,4 2,4 NNLS
Exp3
SF6 5’ 7 4’ 67 8* SBFMGaussian
N,O 2,3,4 2% 4% SBFM Gaussian
Exp4
SFe 5,6,7 4%, 6, 8% SBFM Gaussian
N,O 4,5 4,6 NNLS

The * represents the monitoring line that detects the plume
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Table 3.15 The wind data of the field experiment

Wind speed Wind direction
Number of data sets Mean+SD Mean+SD Mode
Expl 7865 0.4310.41* 164.63%£118.72* 0
Exp2 7383 0.4610.38*  151.52%133.46%* 359.1
Exp3 6900 0.86£0.70*  175.82+110.59 0
Exp4 6960 0.8310.63*  175.02+125.62 356.3

The * sign represents significant difference comparing to other experiments under t-test.
There is no significant difference between the wind direction of Exp3 and Exp4.

115



Chapter4. Conclusions and suggestions

4.1 The simulation experiment

In the simulation study, a series of test distributions are generated and be
reconstructed by the three reconstruction algorithms used in the RPM technique. The
result shows that the SBFM using bivariate lognormal distribution gives the best result
than the other methods. From the overall results (Table 3.1), in the aspect of the plume
reconstruction, the SBFM using bivariate lognormal distribution as basis function may
give the best result followed by NNLS and SBFM reconstruction using bivariate

Gaussian distribution as basis function."f A slightly different result is observed in the

e i
—

&

aspect of the source localization.ability. Tﬁe SBFM using bivariate lognormal
distribution still gives the best resiﬂt v\;hile the SBEM reconstruction using bivariate
Gaussian distribution as basis function may gives a comparable result to that by the
NNLS reconstruction.  If we further look at the performance of each reconstruction
algorithms in each pixel the NNLS reconstruction is not able to localize the source in
the proximity of OP-FTIR while the SBFM using bivariate Gaussian as basis function is
not able to localize the source that is far from the OP-FTIR. The reasons are discussed

in Chapter 3.

Another simulation study is conducted to investigate the uncertainty for the source

localization ability for the SBFM algorithm. The larger the plume yields the smaller
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uncertainty when applying the SBFM reconstruction.  Furthermore, the source location
in the proximity of the OP-FTIR yields smaller uncertainty. The source location far
from the FTIR may still be localized if multiple monitoring lines are able to detect the

plume.
4.2 The field study

In the field study, four experiments are conducted with four pairs of artificially
released emission sources. The results shows that the NNLS reconstruction is able to
localize the source that is far from the OP-FTIR while the SBFM reconstruction using

bivariate Gaussian as basis function is able to localize the source that is in the proximity

Y e i
e :
-

e

of the OP-FTIR. With adequat_e segmeinti'tg ‘iqﬁf(_)nnati(_).n, the SBFM using bivariate
Gaussian distribution as basis funéﬁo_ng may still Ildcalize the emission source that is far
from the OP-FTIR. Furthermore, the reconstructed sources by the three methods are
able to point out the correct direction of the real source location. Judging by the
measured PIC data, one of the reconstructed source locations among the three methods
can be chosen as the real source location. If the peripheral short paths are able to
detect the plume, the real source location might be close to the reconstructed source by

the SBFM using Gaussian distribution as basis function.
4.3 Suggestions

In the OTM-10 by US EPA, this guideline suggests that when using the HRPM, the
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NNLS algorithm, rather than the SBFM algorithm, is used as the reconstruction
algorithm to localize the “Hot spot” of the plume. However in our study, we have
found out that the NNLS reconstruction may only reconstruct the plume that is far from
the OP-FTIR. Thus we may suggest that when using the HRPM described in the
OTM-10, not only the NNLS reconstruction should be implemented but also the SBFM
reconstruction is needed. The reconstructed source locations may be further screened
by the PIC that is detected by peripheral short paths. The 1-D RPM may also be
applied after the 2-D reconstruction is implemented. This is to further verify the

possible source location among the three reconstructed source locations.

When applying the 2-D REM technfi(i%._, the beam geometry must be set up by
previously considering the wind .c_ll_ir_ectéo:n. lin QI;I‘ stud}./, the segmenting information is
needed when using the SBFM reconsfructiori to localize the source. If the wind
direction is due the direction towards the OP-FTIR, all of the monitoring lines will be
able to detect the plume. Under this circumstance, the SBFM algorithm is likely not
able to localize the source. Thus before setting up the beam geometry, the wind

direction must be first considered to be perpendicular to the monitoring lines to prevent

the situation that described above.

When applying the SBFM reconstruction, a more flexible bivariate distribution

might be used as the basis function. Although the lognormal distribution used in our
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study is a skewed distribution, it may still not be flexible enough to characterize the
plume because it is only able to be skewed to certain directions. For example, the

bivariate skewed distribution*.
4.4 Limitations

The experiment is conducted on a lawn without obstacles. However with the
obstacles’ present, the shape of the plume may be affected. This will limit the
application of the SBFM reconstruction. For example, for the application in the

factory, the manufacturing machines might affect the plume’s distribution.

The time for the OP-FTIR toscan froig- ong retroreflector to the other may cause

-

&

I

error to the reconstruction. When the windfluctuates, the distribution of the plume
also fluctuates with time. Thus the limited.temporal resolution of the PIC data may
come from the different distributions. This will cause error when applying the

reconstruction algorithm.
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Appendix

Appendix 1. The standard operation procedure of the quality assurance.

A. The procedure of determining the method noise and result
1. Collect two spectra simultaneously in each beam path. Do not allow any time to
elapse between these two spectra.
2. Generate an absorbance spectrum with either of these two spectra as background.
3. Analyze this absorbance spectrum for the RMS deviation in the three wave number

regions 968—1008 cm™', 2480-2520 cm™', and 4380-4420 cm™.

Pathl Path2 Path3 Path4. ._PathS Path6 Path7 Path8 Path9

Region  0.000 0.000 0.000,70.000 0.000:. 0.000 0.000 0.000 0.000

1 5 7 4 x5 0N 5 5 5
Region 0.000 0.000 0.000 40000 00000 0000 0.000 0.000 0.000
2 3 6 W/ AN o \2 3 3 4
Region 0.000 0.001 0.001/ 0/008=:6001 0001 0001 0.000 0.000

3 9 3 1 8l =3 || 43 0 7 7

. _| = | |
| | 17
B. The procedure of remaining proper beam mtensity.
1. Display the single beam spectrum whenalignment. Visually examine the spectral
region of 650 cm™.
2. If there is a dip in this region, move the telescope of the OP-FTIR away slightly
from the current position until the dip disappears.
3. Once the dip disappears, record the current coordinate of the scanner and the

current beam intensity.

4. Move on to the next retroreflector.

C. The procedure for determine detection limit
1. Make sure there is no back ground concentration among the experimental domain.

2. Collect 16 single beam spectra continuously for each monitoring line.
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. Generate the absorbance spectrum from the secondly collected spectrum using the
first collected spectrum as background.

. Generate the absorbance spectrum from the thirdly collected spectrum using the
secondly collected spectrum as background.

. Continue the previous step until 15 absorbance spectra are generated.

. Quantify the target compound from the 15 absorbance spectra.

. Calculate the standard deviation of the target compound’s concentration among the
15 spectra.

. Three times the standard deviation is the detection limit of current beam path.
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Appendix 2. The scatter plot between real and Grid integrated PIC.

We generate a bivariate Gaussian distribution with peak location in the middle of
each pixel. For each distribution, both the grid integrated method (Equation 2.3) and
the analytical method (Equation 2-10) are applied to calculate the derived PIC. The
Figure and the corresponding Table shows the actual PIC (i.e. calculated by analytical
method) and the grid integrated PIC.

It can be seen that in all of the cases, the error

between the actual and grid integrated PIC is less than 3%.
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(a)

Pathl Path2 Path3 Path4 PathS Path6 Path7 Path8 Path9
Actual PIC  6.17 001 031 000 0.00 000 0.00 000 0.00
Grid PIC  6.17 001 031 000 000 000 000 0.00 0.00
Error(%)  -0.07 136  0.77 0 0 0 0 0 0
(b)
Pathl Path2 Path3 Path4 PathS Path6 Path7 Path8 Path9
Actual PIC 0.01 000 458 001 1.08 000 0.00 000 0.00
Grid PIC 0.0l 000 458 001 108 000 000 0.00 0.00
Error(%)  -0.10 0 -0.07 -278 0.17 0 0 0 0
(©)
Pathl Path2 Path3 Path4 PathS Path6 Path7 Path8 Path9
Actual PIC 0.00 000 0.00 000 583 000 0.0l 000 0.00
Grid PIC  0.00 000 0.00 000 583 000 001 000 0.00
Error(%)  0.10 0 0.09 0 -0.04 0 2.93 0 0
(d) Y. = W
Pathl Path2 Path3_ Path4.~ Path5 Path6 Path7 Path8 Path9
Actual PIC  10.68 635 + 7.734 366 1095 000 004 000 0.00
Grid PIC  10.68 635 773 /‘3\67 0 96.:20.00 0.04 0.00 0.00
Error(%) -0.06 -0.09 0.01 |f‘0§u|p72 163 127 195 250
©) ad m ~
Pathl  Path2 -Path3 HPath4 PathS Path6 Path7 Path8 Path9
Actual PIC  0.006 0.011 2388 2356 13244« 0  3.158 0.007 0.005
Grid PIC  0.006 0.011 2.394:.2.348 1323 0  3.165 0.007 0.005
Error(%) 170 239 027 031  0.10 0 020 222 141
)
Pathl Path2 Path3 Path4 PathS Path6 Path7 Path8 Path9
Actual PIC 0.00 000 0.00 000 0.61 000 522 000 0.0l
GridPIC  0.00 0.00 0.00 0.00 061 000 522 000 001
Error(%) 0 0 0 0 026 1.66 -0.04 0 0
(9]
Pathl Path2 Path3 Path4 PathS5 Path6 Path7 Path8 Path9
Actual PIC 550 7.35 10.87 1225 13.17 6.02 1122 7.10 5.44
Grid PIC 551 736 10.87 1224 13.16 6.01 1121 7.11 545
Error(%) 021 0.10 -0.04 -0.08 -0.10 -0.12 -0.05 0.09 0.23
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(b

Pathl Path2 Path3 Path4 Path5 Path6 Path7 Path8 Path9
Actual PIC 0.00 0.00 0.03 0.11 0.71 0.01 6.79 5.54 10.53
Grid PIC 000 000 003 0.11 0.72  0.01 6.79 553 10.51
Error(%) 235 2.19 1.33 1.00 0.82 1.60 004 -0.21 -0.11
(1)
Pathl Path2 Path3 Path4 PathS5 Path6 Path7 Path8 Path9
Actual PIC  0.00 000 0.00 0.00 000 000 019 000 6.59
Grid PIC 0.00 000 000 000 000 000 019 000 5.69
Error(%) 0 0 0 0 0 0 076 -098 -13.6
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