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摘要 

 

由於手持設備的發展以及無線技術的普及，我們極有可能在未來的

計算環境中利用可存取的異質性網路來提供定位服務。因此，為了能夠

有效挖掘出隱藏於各種異質網路訊號中的位置資訊，我們提出了兩種合

作式定位演算法。第一種演算法，我們稱之為直接式多重訊號融合 

(Direct Multi-Radio Fusion)。在這個演算法中，我們利用空間轉換

的觀念將各種無線技術中所帶的位置資訊進行重整。在這種情形之下，

多餘並重複的資訊能夠最小化，使的重要資訊能夠去蕪存菁的被擷取出

來進而提升定位系統效能。資訊重整之後，每個新成分與空間位置之間

的關連性事實上並不相同。第二種演算法，稱之為合作式特徵訊號定位

(Cooperative Eigen-Radio Positioning)，便是更進一步利用此不同

的相關性提升定位正確性。我們首先利用一個近似熵函數將不同的相關

性進行量化，成為每一個新成分的鑑別度指標。在定位演算時，具有高

指標的成分便賦予較高的信心水準。因此，各成分能夠各司其職，依據

其所對應的鑑別度指標來評估其計算結果所應得到的權重。 

 在我們的合作式定位演算法，主成分分析技術被應用來選擇空間轉

換的基底以及量化每個新成分與位置的相關性。本論文中，我們在真實

的各種異質性網路包含手機網路(GSM)，數位電視(DVB)，類比廣播(FM)，

以及無線區域網路(WLAN)實踐我們的演算法。實驗中所有的無線訊號都

是來自於真正的場測。我們利用頻譜分析儀來記錄手機網路，數位電視

與類比廣播的訊號以及使用筆記型電腦來進行無線區域網路的量測。實

驗環境包含兩個大範圍的室外場測-台大校園與部分文山區(貓空)。室

內場測則包括台灣大學博理館 5F 的環境。實驗結果顯示我們所提出的

合作式定位演算法與傳統的訊號融合法比較，能夠降低 44.19%至

48.88%的 50%誤差圓徑(circular error probable)以及 48.25%至

67.17% 的 67%誤差圓徑。 



Abstract

Recent advances in mobile devices and ubiquity of wireless infrastruc-

tures create the opportunity to utilize heterogeneous wireless networks

(HWNs) for the localization. To efficiently exploit the spatial corre-

lation embedded in the RSS (received signal strength) measurements

from HWNs, we proposed two algorithms via a cooperative approach.

The first algorithm, called Direct Multi-Radio Fusion, tries to discover

the spatial correlation after the information of measurements is reor-

ganized in order to minimize the redundancy among different wireless

radio technologies. After the reorganization, each new component

contains different amounts of correlation with respect to the location

estimation. The other algorithm, called Cooperative Eigen-Radio Po-

sitioning, takes a step further to incorporate the spatial discrimination

property to efficiently estimate the location information.

In our location system, principal component analysis is utilized to

not only reorganize the information but also quantify the spatial dis-

crimination from an information theoretical perspective. We have im-

plemented our algorithms for different wireless technologies involving

the cellular GSM, DVB, FM and WLAN. All data are actual mea-

surements obtained by commercially available equipment and all ex-

periments are conducted in realistic outdoor/indoor environments in-



cluding the campus of National Taiwan University (NTU), Wen-Shan

rural area and BL building in NTU. The results show that the pro-

posed algorithm reduces 44.19-48.88% and 48.25-67.17% of the mean

error and 67% circular error probable, respectively, as compared to

the conventional approaches.
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Chapter 1

Introduction

The demand for location-based services (LBSs) has been driving the need for

the accurate positioning techniques in the past and is expected to remain the

same in the future [1–3]. Although Global Positioning System (GPS) has been

in service for many years, it still requires built-in GPS receiver and needs sup-

port in urban and indoor situations [4]. Thus, location estimation based on

existing wireless communication infrastructure has advanced rapidly in recent

years [5, 6]. For example, the localization mechanisms using cellular technolo-

gies such as Global System for Mobile communication (GSM) and Code-Division

Multiple Access (CDMA) standards are attractive options in terms of their popu-

larity [7–9]. Wireless LAN (WLAN, 802.11) also attracts much interest in indoor

positioning recently [10, 11].

Today’s mobile devices offer multiple wireless technologies such as the cellular

networks (GSM/2.5G/3G), WLAN and Bluetooth. More technologies, such as

DVB (digital video broadcasting) and WiMax (worldwide interoperability for

microwave access, IEEE 802.16) are expected to be equipped with the future

mobile devices. This will create the opportunity to utilize heterogeneous wireless

1



1. INTRODUCTION

networks (HWNs) to localize the user [12]. The practical benefit is that users

can be served with more accurate and fantastic LBSs. Once the multi-radio

from HWNs is available, a cooperative positioning mechanism can combine the

strength and compensate the limitations of various wireless technologies. For

instance, the number of GSM base stations is likely to be limited in a rural area.

At such conditions, the performance of an individual GSM-based system is limited

due to the finite information. On the contrary, the performance of combining

information from multiple network architecture can be easily improved to meet

the user’s requirement because the abundant information from HWNs can be

utilized.

This article focuses on the received signal strength (RSS) from heterogeneous

wireless networks instead of the different signal features in a homogeneous net-

work [13–15]. Such RSS-based approaches are economic and compatible for the

existing wireless networks because of the indispensable RSS sensing function [16].

However, the heterogeneity of RSS definitely exists due to the different standard-

izations and radio properties. This phenomenon makes the asymmetric contribu-

tion of each RSS and thus, increases the difficulties of a hybrid localization system

design. Traditional RSS-fusion algorithms try to combine the estimated results

from multiple technologies by an average [17] or a minimum mean square error

(MMSE) sense weighting, namely SELFLOC (selectively fuses location informa-

tion) algorithm in [18]. The performance can be improved under the assumption

that the random error can cancel each other out. However, such combined meth-

ods only consider the performance of each network independently. For example,

if GSM and DVB are available and GSM performs much better than DVB. Then

the weighted result is certainly dominated by GSM. This way, the hidden location

2



information of DVB that can compensate GSM is not exploited effectively due

to the much lower weights. Moreover, the information may be duplicated due to

the correlation of the measurements when more technologies are involved. Such

duplicated information may incur an biased location estimate [19]. In this con-

text, an important issue is how to jointly cooperate various information sources

from HWNs in an intelligent manner to achieve a higher accuracy. While many

studies have done on the wireless positioning, fusing multiple information from

HWNs for localization is still largely missing.

In this thesis, we propose a cooperative mechanism to efficiently exploit the

location information embedded in the RSSs from heterogeneous wireless radio

technologies. Measured information is first reorganized to make sure the repeated

information between each other is minimized. Therefore the location information

can be more easily exploited. Furthermore, each member contains different con-

tents of location information after the reorganization. We take a further step to

quantify the location discrimination with respect to each component to efficiently

utilize the available information to improve the accuracy performance. We have

designed and implemented our algorithms in different HWNs by using realistic

GSM, DVB, FM and WLAN RSS measurements in both outdoor and indoor en-

vironments. Significant improvement has been obtained in all of our experiments,

which demonstrates our contribution and the success of our algorithms.

The main contribution of this thesis is five folds: (a) We show that, by pro-

jecting the measured multi-radio into a decorrelated signal space, the positioning

accuracy is improved since the duplicated information between measurements

of HWNs is reduced after the reorganization. (b) Three classical decorrelated

transformation techniques including Discrete Cosine Transform (DCT), Princi-

3



1. INTRODUCTION

pal Component Analysis (PCA), and Independent Component Analysis (ICA) are

compared in a homogeneous wireless environment. We find that PCA achieves

the best performance on the location fingerprinting task. (c) We demonstrate

that our approach achieves a more efficient information compaction and provides

a better scheme to reduce various system cost such as the online computation,

data transmission, required storage and necessary training samples. (d) We define

the new variables, named discriminative gains, to represent the unequal impor-

tance of each member after the transformation. Experimental results in different

HWNs show that the accuracy can be greatly enhanced when each technology

is intelligently cooperated each other according to its discriminative gains. (e)

We provide not only a method to quantify the importance but also a quasi en-

tropy function to assign the appropriate discriminative gains from the estimated

importance.

In the following chapter, we illustrate the physical properties of the RSS mea-

surements and the location fingerprinting systems. We review the related works

including the RSS fusion approaches and the importance quantification methods

for information selection. We also indicate a gap in the previous research.

Chapter 3 studies several decorrelated transformation approaches for informa-

tion reorganization. We carry out comparisons with three classical decorrelated

spaces including DCT [20,21], PCA [22,23] and ICA [24,25]. Two traditional RSS

selection criteria: MaxMean [26] and InfoGain [27] are also compared. Initial re-

sults are presented in a homogeneous wireless network and several accomplished

advantages are discussed as well.

Chapter 4 proposes two cooperative positioning algorithms. The first is Direct

Multi-Radio Fusion (DMRF) where the information is reorganized in a trans-

4



formed space. The transformation cancels the duplicated information by combin-

ing each RSS such that the location information can be more effectively extracted.

The second is Cooperative Eigen-Radio Positioning (CERP) which further takes

the different importance into consideration. The contribution of the reorganized

information is considered discriminatingly and quantified for the positioning uti-

lization.

In Chapter 5, we implemented our algorithms in different HWNs of both out-

door and indoor environments. The former consists of GSM, DVB and FM while

the latter includes WLAN and GSM. All RSS data of HWNs are actual measure-

ments obtained by commercially available spectrum analyzer and wireless cards.

All experiments are conducted in realistic environments including the campus of

National Taiwan University (NTU), Wen-Shan rural area and the fifth floor of BL

building in NTU. The results show that the proposed algorithm outperforms each

single-network based approach and traditional RSS-fusion algorithms. The signif-

icant reduction of mean error and 67% CEP are 44.19-48.88% and 48.25-67.17%,

respectively, as compared to the existing algorithms.

Finally, the results obtained in those chapters are summarized and conclusion

are made in Chapter 6. Some future works are also given in the chapter.

5
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Chapter 2

Location Fingerprinting Systems

This chapter first presents an overview of various wireless positioning architec-

tures. Then, we focus on the location fingerprinting systems, which belong to a

RSS-mapping approach. Based on the pre-recorded RSS from different locations,

denoted as fingerprints or radio map, the user’s location is estimated by map-

ping the currently measurement with the pre-stored fingerprints. The physical

properties of RSS and various mapping algorithms are presented in this chapter.

Besides, some related works are further investigated. We study existing impor-

tance quantification methods for RSS selection and also indicate a gap of those

approaches. We point out that the repeated information should be considered

and the information lost should be also minimized while selecting the RSSs for

positioning.

2.1 Wireless Position Estimation

With accurate location knowledge, many useful applications such as personal

safety, content delivery and intelligent transport system can become feasible

[28–31]. Such LBS has been predicted to be a huge market in the coming future

7



2. LOCATION FINGERPRINTING SYSTEMS

RSS

TOA

AOA

TDOA

Estimation 

of Position 

Related 

Parameters

mapping

geometric

statistical

Position 

Estimation

Figure 2.1: The architecture of the wireless position estimation systems

.

and recognized by IEEE. Many standardizations such as 802.11v and 802.15.4a

are designed with the localization capabilities [32–34]. Besides, the Federal Com-

munications Commission (FCC) in the US has even ruled for all devices that

67 percent of position estimations should be less than 50 meters to facilitate

emergency services (Enhanced 911) [35].

Recently, positioning in wireless networks has drawn considerable concern to

enhance the positioning accuracy and to increase the service coverage [36]. For

example, cellular GSM [37–39], FM [40–42] and DVB technologies [43, 44] have

been performed for outdoor location while Radio Frequency Identification [45],

WLAN [46–48] and Bluetooth [49] have been widely studied in indoor positioning.

Sensor networks [50,51] and ultra-wideband (UWB) [3,52,53] technologies are also

considered of great importance.

In each wireless network, various signal parameters such as RSS, time of arrival

(TOA), angle of arrival (AOA) and time difference of arrival (TDOA) are esti-

mated and exchanging between the device and the reference transmitters [54,55].

Then, the estimated signal parameters are used to find location by different meth-

ods such as the mapping, geometric and statistic approaches [34,56,57]. The basic

8
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2.2 Physical Properties of RSS

architecture of the wireless positioning is shown in Fig. 2.1. In fact, each method

has its own limitations and advantages depending on the accuracy requirements,

system constraints and infrastructure coverage. For example, the angle and tim-

ing signal parameters are useful for positioning; however, the accurate measure-

ments are not easily available [33]. Although mapping-based approach requires a

previously stored database, this approach provides a high accuracy in challenging

wireless environments [56]. This thesis focuses on the RSS-mapping approach,

which is called the location fingerprinting. The fingerprinting approach usually

uses the most commonly signal, the power, commonly referred to as RSS, to

provide a distance and location information depending on a database (training

data). In the following sections, we will briefly describe the physical properties

of the RSS signals and the location fingerprinting systems.

2.2 Physical Properties of RSS

Based on the radio propagation model [58, 59], the free space loss of the signal

power can be calculated by Friis equation [60]

L =

(
4πd

λ

)2

(2.1)

where L is the free-space path loss, λ is the wavelength of an electromagnetic

wave, and d is the distance between the sender and the receiver. Such property

shows there exists a relationship between the receiving power and the distance,

and that explains why RSS can be utilized for the wireless positioning. However,

the relationship between RSS and distance in a real world is difficult to model.

For example, the most simple log-distance path loss model [58] is

9



2. LOCATION FINGERPRINTING SYSTEMS

(a) The collected WLAN RSS for a certain location.

(b) A 2D projection of Fig. 2.2(a)

Figure 2.2: A visual picture of the collected WLAN RSS at a fixed indoor location

based on temporal and access point diversity.
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2.2 Physical Properties of RSS

PL(d)[dB] = PL(d0)[dB] + 10nlog(d/d0) + N [dB]. (2.2)

where d0 is a reference distance, n is the path loss exponent, N is the noise,

and [dB] means the unit in decibels. From Eq. 2.2, the mean path loss PL is a

function of distance d to the n power, which indicates how fast power loss increases

with distance. However, estimating the real value of n is difficult because it is

depending on the physical surroundings. In some environments, such as buildings,

stadiums and other indoor environments, the path loss exponent can reach values

in the range of 4 to 6. On the other hand, a tunnel may act as a waveguide,

resulting in a path loss exponent less than 2. Moreover, RSS is commonly modeled

to include both path-loss and shadowing effect, which is represented by the term

N . This noisy effect, usually modeled as a Gaussian random variable, results

in the temporal variation of RSS even at a fixed location. Several approaches

such as the temporal filter or singular-value decomposition are utilized to remove

the noisy effect [61]. In a NLOS (nonline-of-sight) situation, the multipath effect

should be considered with an appropriate choice of channel parameters.

Theoretically, the observed RSS is composed of both a LOS component and

numerous delayed signals with different attenuations. That is, RSS includes a

significant contribution from numerous multipath components. All such signals

combine to an alias version, which may be enlarged or diminished depending on

the relative phases of the delayed reflections. Moreover, the observable reflec-

tion is affected not only by the propagation environment but also by the signal

bandwidth for a band-limited system. It is possible to observe more multipath

components when a larger bandwidth gives better time resolution [62]. In general,

the measured RSS in a multipath induced environment can be written as:

11
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x(t) =

N−1∑

τ=0

α(τ) · h(τ) · [s(t − τ)]ejφ(τ) + g(t) (2.3)

where x(t) means the RSS observation at time t and h(τ) and φ(τ), respectively,

represent the amplitude and relative phase of the delayed multipath components.

The total number of delayed paths is equal to N -1. α(τ) is a binary function

that controls the on-off activity of the corresponding multipath filter h(τ), s(t) is

the transmitted signal and τ is the time delay. g(t) is the communication noise,

and in general, this noise contains everything not included in the summation

term representing the multipath model. There are a number of factors causing

the multipath effect such as the material and number of walls, human mobil-

ity, temperature and humidity. Those factors are jointly reflected on the model

parameters h(τ), φ(τ) and α(τ).

Several works have investigated the estimating problem in a NLOS environ-

ment [63–66]. However, predicting an accurate RSS in a realistic world is still a

complex problem, especially for an indoor environment. A visual picture of such

radio data for a certain indoor location is plotted in Fig. 2.2. Fig. 2.2(a) shows

the radio fingerprints for a fixed location based on temporal and access point

(AP) diversity. As can be seen, the temporal variation of each AP is varying

due to the different multipath propagation environments. Fig. 2.2(b) shows a

2D projection with different colors, where the temporal variations of RSS can be

more clearly observed from its rows. The difficulty of predicting accurate RSS

from the distance motivates the technology of location fingerprinting, having the

advantage of providing a high accuracy in both LOS and NLOS scenarios. This

technology is then presented in the following section.

12
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Figure 2.3: Examples of current radio location fingerprinting systems

.

Location fingerprinting is a promising wireless positioning technology, having

the major advantage of providing a high accuracy in challenging wireless envi-

ronments. Based on a database of pre-recorded measurements of network charac-

teristics from different locations, denoted as fingerprints or radio map, the user’s

location is estimated by mapping the currently measurement with the pre-stored

fingerprints. Fig. 2.3 shows some examples of current radio location fingerprint-

ing systems. Most existing systems are aimed at the indoor buildings since the

database management is more easy. Currently, this approach is extended to a

city-wide area as proposed by the Place Lab. In general, two stages of the fin-

gerprinting are the offline modeling and the online positioning [56] and they are

presented as follows.

2.3.1 Offline Stage

During the offline stage, a site survey performed in the target environment is

required to collect the network characteristics. The characteristics are typically

RSS and are collected at sampling locations to build the radio map. A radio map
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Figure 2.4: The four dimensions in the radio map
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thus provides a model of RSS in a development area. In general, the radio map

contains at least four dimensions, as shown in Fig. 2.4. First, the base station

identifier means the source of the RSS signal. For example, the MAC address

is used for WLAN positioning while the used frequency is recorded for FM or

GSM location systems [67]. Second, the power level, usually reported in decibels,

indicates the numerical value of RSS. Note that the distribution of RSS tends

to a log-normal distribution, as indicated by Eq. 2.2. Third, the time index t

represents the order of the measurements of RSS. We usually collect a sequence

of RSSs, each sequence contains nr samples per location to observe its temporal

variation. Finally, the location index means where you collect RSS. The more

reference locations R means the higher density in the radio map at the expense

of more collecting effort. A visual picture of the collected fingerprints is reported

in Fig. 2.5. This figure shows a typical radio map includes 3 information sources,

5 locations and 50 samples RSS at each location. After constructing the radio

map, a wireless client’s is estimated by inspecting currently measured RSS. We

describe several location estimation methods in the next subsection.

2.3.2 Online Stage

During the online stage, the positioning techniques measure RSS in real-time

and estimate the location based on the measured RSS and the previously stored

radio map. The fundamental objective is seeking a mapping between the radio

measurements to a physical location. One of the most popular mapping function

is the probabilistic models [68, 69]. The main idea can be regarded as finding

p(lr|X), where X is an observed RSS vector, lr represents the r-th reference loca-

tion in the radio map and p(lr|X) indicates the posteriori probability of location

15
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lr given the observation X. By means of Bayes’ rule, p(lr|X) depends only on

the likelihood p(X|lr) when the prior probability p(lr) follows a uniform distri-

bution. Thus, the location can be regarded as a multivariate multiple regression

problem [19] and estimated as

l̂ =

R∑

r=1

lr · p(X|lr) (2.4)

where R is the number of reference locations and l̂ represents the estimated

result. Several methods can compute the likelihood function p(X|lr) from data

such as the Gaussian approximations [70], histogram methods [69] and kernel

functions [19, 71]. The Gaussian approximation methods estimate the mean ud

and variance σd first and then compute p(X|lr) as
D∏

d=1

1√
2πσd

exp
(

−(xd−ud)2

2σ2

d

)
under

the Gaussian assumptions. The histogram method requires that we fix a set of

bins, i.e., a set of non-overlapping intervals that cover the whole range of the

variable X. Then the probability is the value of the density function within each

of the bins. In the kernel method, the probability is assigned to a kernel function

around each of the observations in the training data.

p(X|lr) =
1

nr

nr∑

t=1

K̂(X,Xr(t))

=
1

nr

nr∑

t=1

k(X,Xr(t))√
k(X,X)k(Xr(t),Xr(t))

(2.5)

where nr is the number of collected RSS at the r-th location and Xr(t) is the

t-th collected RSS at the r-th location. The function k() and K̂(), respectively,

indicate a certain nonlinear kernel and its normalized form. The widely used

Gaussian Radial Basis Function (RBF) is defined as
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k(X,Xr(t)) = exp

(−1

2σ2
r

||X−Xr(t)||2
)

(2.6)

where σr is an adjustable width and the operation ‖(·)‖ represents the norm

function. The most commonly used L2 norm is adopted which represents the

Euclidean distance as (||X|| =
√

x2
1
+ · · · + x2

D).

In addition to the probabilistic method, several pattern matching algorithms

have also been applied to learn the relationship between RSS and the client’s po-

sition such as the nearest-neighbor [46], neural networks [16,72,73], and support

vector machine [74]. The nearest-neighbor method finds location by comparing

the distance between two vectors as l̂ = lr, r = argmin
r

D(X,Xr(t)), where D is

some specified distance measure function. Neural network is composed of a num-

ber of interconnected units (neurons) in parallel to nonlinearly map the output

from the input (RSS). The location is estimated based on the emitted output

of each unit, which is calculated by the chose activation function and adjustable

weightings. An adaptive neural network is proposed in [75], which incrementally

inserts the discriminative components and recursively updating the weightings in

the network until no further improvement is required. Support vector machine

maximums the margin between locations when modeling the radio map. This

technique also shows tolerance for the incompleteness of the RSS signals.

To improve accuracy, some additional signals are measured and combined

with RSS. For instance, Nerguizian et al. [16,76] further use a measured channel

impulse response and King et al. [77] additionally utilize the orientation of the user

by a digital compass. Recently, Intel [33] proposes a TOA-enhanced approach by

firmware and silicon modifications and Yin et al. [45] work out a location system

where the radio map is temporally update.

17
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Furthermore, many challenging issues in location fingerprinting are important

such as the scalability and the system cost [11,56,78]. For example, PlaceLab [79]

employs the cellular-based radio and investigates the fingerprinting in a metropoli-

tan scale environment. To reduce the labor cost of collecting fingerprints, Chai

et al. [80, 81] propose a learning-based approach utilizing unlabeled samples and

Moraes et al. [82] study a calibration-free location system. To minimize the

communication cost between a client and a server, a neural network approach

is proposed [73] and a zone-based reporting is utilized in [83]. A fingerprints-

selection approach is proposed [84] to avoid the time-consuming task of copying

all fingerprints.

In the next subsection, we focus the previous research of importance quantifi-

cation methods, which aim at selecting suitable RSSs for localization.

2.3.3 Importance Quantification for Information Selection

The importance quantification methods are originally designed for information

(RSSs) selection. In these methods, some importance evaluation function is used

to rank the sensed RSSs according to their estimated importance. Then, the

more important RSSs/information are selected for positioning. This way, several

advantages can be accomplished such as improving the speed of positioning, bet-

ter power efficiency, reducing the storage requirement and avoiding the problem

of overfitting. For example, Youssef et al. [26] utilized the strongest RSSs to de-

crease the computational complexity of the positioning algorithm. Chen et al. [27]

worked out a method for selecting the most discriminative RSSs with the advan-

tage of power efficiency. When the positioning algorithm is performed on the

handheld devices, extra care should be taken due to their constrained resource.

18



2.3 Location Fingerprinting

Clearly, choosing a subset of RSSs is an intuitive way to reduce the computational

burden and storage requirement on the resource-weak devices. Conserving power

is also an important benefit since recharging batteries is difficult in many cases.

More importantly, the results in [27, 45] showed that the best positioning

accuracy can be produced by using a subset of RSSs in a fingerprinting system.

This occurs because, as the number of RSSs increases, more information is added

whereas more noise is incurred [45]. Kushki et al. [19] pointed out that the distinct

transmitters may produce similar measurements, leading to biased estimates and

redundant computation. These works motivate the use of information selection

techniques from the view point of performance.

Now, we describe those importance quantification methods in more detail.

The works in [26, 85] directly utilized the value of RSSs for the estimated im-

portance. It is because, the stronger RSS may produce more reliable informa-

tion due to the less noise they encounter. In other words, the signals sent from

the far transmitter experience more influence of the environmental noises, and

more uncertainties are added in the signal strength. Those approaches, named

MaxMean, assign the higher importance to the stronger RSSs. On the other

hand, the InfoGain criterion reported in [27] assigns the more importance to the

more discriminative RSSs instead. A extreme case is considered in InfoGain, if

some RSS is uniformly large but differ a little over all the locations, the MaxMean

will rank this RSS near the front by priority although it does not contribute to

distinguishing the locations. Thus, InfoGain ranks APs in descending order of

their InfoGain values which are calculated as follows:

InfoGain(APd) = H(G) − H(G|APd) (2.7)
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where H(G) and H(G|APd), referred to [27], implies the “entropy of the refer-

ence locations when APd’s value is unknown”, and the “conditional entropy of

the reference locations given APd’s value”. Then, some variations of these ap-

proaches are studied in the recent works. For example, [86] considers both the

distinctiveness and variability of RSSs to rank the RSSs. The recent work of

Kushki et al. [19] offers a real-time RSS selection technique which minimizes the

correlation between selected RSSs based on different divergence measurements

such as Bhattacharyya distance and information potential. This approach carries

out the selection on the strongest 5 APs to reduce the complexity and ensure the

coverage.

However, all the mentioned information selection methods estimated the im-

portance of each RSS independently. Such methods suffer from two disadvan-

tages. First, the repeated information is not considered. The information may

be duplicated due to the correlation of the measurements. While quantifying the

importance, we should avoid selecting RSSs which contribute the same location

information. Second, those approaches discard all the information from unse-

lected RSSs. We should minimize the lost information (maximize the retained

information) while selecting important RSSs for localization. This motivates us

to explore the possibility to perform the location fingerprinting in a transformed

signal space in order to achieve the information reorganization and selection. The

system we propose locates the clients in a transformed space and the details will

be discussed in the next chapter.
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2.4 Summary

In this chapter, a taxonomy on wireless position estimation is presented. Then,

we focus on the location fingerprinting, which is a promising wireless positioning

technology, having the major advantage of providing a high accuracy in challeng-

ing wireless environments. The basic design of fingerprinting can be divided into

two stages: the offline and online stages. During the offline stage, RSS is collected

at sampling locations to build the radio map for the target environment. During

the online stage, the location of the client can be estimated by comparing the

measured RSS with the stored RSS values in the radio map. In this chapter,

various mapping algorithms such as the probabilistic approaches are presented.

Moreover, some related works are further investigated such as the importance

quantification methods for RSS selection. We point out that the repeated infor-

mation should be considered and the information lost should be also minimized

while selecting the RSSs for positioning. This motivates us to explore the possi-

bility to perform the location fingerprinting in a transformed signal space in order

to achieve the information reorganization, as discussed in the next chapter.
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Chapter 3

Fingerprinting in a Transformed

Space

This chapter presents a novel approach to building a location fingerprinting sys-

tem. Instead of information selection, the proposed technique reorganizes the

information so as to maximize the retained information while removing param-

eters as more as possible under the same accuracy constraint. Our algorithm

intelligently transforms RSS into a decorrelated space such that the information

of all RSSs is more efficiently utilized. We carry out comparisons between three

classical decorrelated techniques including DCT, PCA, ICA and two existing RSS

selection methods. Testing on a homogeneous wireless environment, we find that

PCA achieves the best performance on the location fingerprinting task. Moreover,

several benefits of our algorithm are demonstrated such as reducing computation

(better power efficiency) and requiring fewer training samples.
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3.1 Purpose

Previous chapter has illustrated several importance quantification methods for

RSSs selection so as to reduce the online computation, improve the speed of posi-

tioning, decrease the power consumption and the storage requirement. However,

such advantages usually come at the expensive of performance. In other words,

the traditional information selection techniques suffer from a critical disadvan-

tage: it discards all the information from unselected RSSs. Only the information

from selected RSSs is retained for the positioning whereas the information in

unselected RSSs is totally discarded.

The question is: is it possible to reduce the online computation while keeping

the whole RSS’s information? This motivates us to explore the possibility to per-

form the location fingerprinting in a transformed signal space in order to achieve

the information reorganization and dimension reduction. The goal of our work is

to minimize the lost information (maximize the retained information) while re-

moving parameters as more as possible under the same accuracy constraint. From

information-theoretical viewpoint, if the RSSs are statistically correlated, the re-

dundancy abounds among the related RSSs. If such redundancy is well exploited,

it could allow a substantial data reduction while minimizes the information lost.

In general, the idea of RSS selection can be expressed in a simple mathematical

form as follows:



y1
...

yD′




D′∗1

=




1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
...

...
...

0 · · · 1 · · · 0




D′∗D




x1
...

xD




D∗1

(3.1)

where the vector, X = [x1, x2, ...xD]T ∈ <D∗1, represents the measurement from

available D RSSs, the matrix, A ∈ <D′∗D, D′ ≤ D, contains the selective weight-
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ing describing which RSSs are chosen, and the vector, Y = [y1, ...yD′]T ∈ <D′∗1,

represents the measurement from the selected RSSs. In Eq.3.1, the first D′ RSSs

among {x1, ...xD} are chosen and thus {y1, ...yD′} = {x1, ...xD′}. Unlike the zero

one weighting (binary decision) in the selection of RSSs, our concept considered

here is combining RSSs in order to reduce required computation while ensuring

the performance of accuracy. As shown in Eq.3.2, the components [y1, ...yD′]T are

produced by a transformation with real numbers. With appropriate weightings,

the information transmitted into Y from X can be maximized.




y1
...

yD′




D′∗1

=




a11 a12 · · · a1D

a21 a22 · · · a2D

...
...

...
aD′1 aD′2 · · · aD′D




D′∗D




x1
...

xD




D∗1

(3.2)

The proposed method is based on the decorrelated transformation technique.

The technique can identify the redundancy behind multiple variables in order to

obtain a compact description of it. This is achieved by transforming RSSs to a new

set of variables, which are uncorrelated and ordered by its information quantity in

the transformed space. It has been proven in several applications that the same

algorithm may obtain better results in a decorrelated space. For instance, JPEG

compression [20] and color demosaicking [87] are operated in DCT and spectral

color difference space respectively. In face recognition, PCA has been a widely

used technique [22]. Our preliminary study has showed its efficiency in indoor

localization [88]. In speech analysis, ICA is utilized for separating mixed audio

signals into independent sources [24].

The first work utilizes the transformation technique for localization is pre-

sented in [89,90]. Kernel canonical correlation analysis (KCCA) is used to maxi-

mize the correlation between the physical location and signal space, thus a more
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accurate mapping function can be constructed. In contrast to that approach, our

work aims at minimizing the correlation between each component in the signal

space.

In this chapter, we show that, by projecting the measured signals into a

decorrelated signal space, the positioning accuracy is improved since the cross

correlation between each RSS is reduced. Besides, this novel approach achieves

a more efficient information compaction and provides a better scheme to reduce

the online computational complexity. The whole location information can be

utilized in our approach since each component in the decorrelated space is the

linear combination of all RSSs with different weights. In other words, we use the

concept of feature extraction instead of feature selection to reduce the dimension

required in the positioning algorithm.

In the following section, we illustrate three classical decorrelated techniques

including Discrete Cosine Transform (DCT) [20,21], Principal Component Anal-

ysis (PCA) [22, 23] and Independent component Analysis (ICA) [24, 25].

3.2 Decorrelated Transformations

Traditional approach builds the model and estimates location in RSS space whereas

our approach is constructed in a decorrelated signal space. Define a transforma-

tion matrix, A = {ad′d} ∈ <D′∗D, D′ = 1, 2, ...D, where D′ represents the retained

basis number. The basis for new signal space is each row vector of the transfor-

mation matrix A and the transformed output value can be obtained by projection

to each basis.

Now the problem is how to determine ad′d. Several techniques have been
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proposed to find a set of transformation coefficients in order to achieve information

reorganization and dimension reduction. For instance, the coefficients of A can be

used as a typical Discrete Cosine Transform (DCT), which is a popular approach

for color image compression as

ad′d = cos(
π

D
(d − 1

2
)(d′ − 1)) (3.3)

In DCT, each basis is a cosine wave uncorrelated to each other. Other approaches

design the transformation based on the measured data such as Principal Compo-

nent Analysis (PCA) and Independent Component Analysis (ICA). In PCA, ad′d

can be determined by finding the eigenvectors ed of SΣ.

SΣed = λded (3.4)

where ed is the d-th eigenvector, λd is the corresponding eigenvalue to ed and the

matrix SΣ is the covariance matrix of X computed as

SΣ =
1

R · nr

R∑

r=1

nr∑

t=1

(Xr(t)−X̄)(Xr(t) − X̄)′ (3.5)

This way, ad′d is in fact the components of ed′ . The method has been shown to be

the optimal linear transformation for keeping the subspace that has the largest

variance [22]. Compared to DCT transformation, PCA not only reduces the

cross correlation between each AP, but also reorganizes the information quantity

accordingly. The eigenvectors in Eq.3.4 rank in descending order of corresponding

eigenvalues as λ1 ≥ λ2 ≥ ...λD, where λd indicate the importance of the d-th basis

in a theoretical view of point.

While the goal in PCA is to maximize the variance in the projection space,

the goal of ICA is to find the representation of non-gaussian data as independent
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as possible. Unlike PCA, there is no closed form to find ald, but many iterative

algorithms based on different search criteria are instead. In this work, we adopt

the FastICA criterion, which is a popular ICA algorithm and the matlab package

is publicly available on the web site. The FastICA rule finds a direction that the

projection maximizes nongaussianity. Nongaussianity is here measured by the

negentropy function as

J(X) = H(Xgauss) − H(X) (3.6)

where Xgauss is a Gaussian random variable of the same covariance matrix as

X. In fact, the estimation of negentropy is difficult. Thus, some approximation

methods have to be used such as the kurtosis-based or the moment-based approx-

imation. For details on FastICA and the approximations of negentropy, please

refer to [24, 91].

3.3 Performance Evaluation in a Homogeneous

Wireless Network

This section conducts a series of experiments on the effects of the decorrelated

transformation techniques in a homogeneous wireless network. We compare 2

information selection methods and 3 information reorganization approaches which

are described in the previous sections. Then, the performance is evaluated in an

indoor location fingerprinting system in terms of the accuracy, complexity and

the size of training samples.
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Figure 3.1: Part of the fifth floor plane of electronic engineering department of

National Taiwan University, where we had performed the experiment. The dot line

represents the path of data collection, the stars indicate the test rooms and the

end of the test corridors, and the dots show the locations of the APs.

3.3.1 Experimental Setup

In order to evaluate the performance of the proposed technique, we collect realistic

RSS data in a WLAN environment, which is characterized by a number of access

points (APs) with CSMA/CA protocol. The WLAN-enabled device senses RF

signals over the specified frequency band in the physical layer, and then decodes

the address of APs in MAC layer such that all detectable APs are indexed [92,93].

The receiver will first attempt to decode the PHY header when the received power

is greater than the physical carrier sense threshold. If the PHY header can not

be decoded, the receiver will regard the medium as busy until the power level

falls below the threshold. If the PHY header and MAC payload can be decoded,

the receiver will operate in accordance to the 802.11 specification.

We perform the experiments in the electronic engineering department area of

National Taiwan University. The dimension of the corridor is 24.6 x 17.6 meters,
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as shown in Fig. 3.1. Every location in this environment is covered by four to nine

IEEE 802.11b APs and there are total 15 stable APs in the environment (D=15).

The system performance is probably improved with a better planning. However,

controlling the placement of APs is difficult because we do not have the right to

move either private or public APs. This scenario just reflects the randomness of

AP locations in a real 802.11 WLAN environment. We adopt an IBM ThinkPad

T40 laptop as the mobile node, with RedHat 7.1 Linux operating system. A

Lucent WaveLan/IEEE Wireless Card with Youssef’s driver is installed to gather

RSS from nearby APs. We collect 100 samples of signal strength at 86 (R=86)

locations separated by 1 meter, where 81 locations are measured along 4 different

corridors and 5 locations are inside the rooms. Then, we divide the collected data

into 2 independent groups, where we select 41 grids (4100 samples, including 500

samples in the rooms) for 2D testing and the other 45 grids (4500 samples) for

training. In that case, the grid distance is about 2 m and the test sample is never

seen in the radio map.

For the validity of experimental results, we run the experiments based on an

two positioning algorithm, Maximum Likelihood (ML) and Weighted K-Nearest-

Neighbor (WKNN), to evaluate the performance of the decorrelated projection

techniques. In ML, the probability is modified as:

p(X|lr) =
D′∏

d′=1

1√
2πΣ̃r(d′, d′)

· exp

{
−(x̃d′ − ũrd′)

2

2Σ̃r(d′, d′)

}
(3.7)

where X̃, ũr and Σ̃r respectively represent the transformed observation, mean

vector and covariance matrix for the r-th reference location. The d′-th component

of that can be formulated as follows:
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x̃d′ =

D∑

d=1

ad′d · od (3.8)

ũrd′ =
D∑

d=1

ad′d · urd (3.9)

Σ̃r(d
′, d′) =

D∑

i=1

D∑

j=1

Σr(i, j) · ad′i · ad′j (3.10)

Once the transformation matrix is available, the modified ML algorithm can be

applied. The parameters of Eq.3.7 could be calculated based on the projected

values by means of Eq.3.9 and Eq.3.10 during the offline stage. In WKNN, the

target environment is modeled as the centroids instead of the probability distri-

butions in ML. WKNN calculates Euclidean distances between the transformed

RSS and all the centroids in the model. Then the location is estimated by lin-

early combining the k nearest centroids with the weight of corresponding inverse

distances. The constant k is set 6 in our experiments.

3.3.2 Positioning Performance

The first experiment evaluates its performance versus different model dimensions

D′. Instead of the RSS number in the traditional approach, the basis number

in the projected signal space determines the model dimension in our approach.

Three decorrelated spaces are compared here: DCT, PCA and ICA. Additionally,

2 RSS selection criteria: MaxMean [26] and InfoGain [27] are also compared in

the decorrelated space.

Fig. 3.2(a) and Fig. 3.2(b) report the mean and variance of error with respect

to different signal spaces and dimension D′ respectively. Both results show that
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(a)

(b)

Figure 3.2: (a) Mean and (b) Variance of the estimated error versus number of

APs (dimension in the decorrelated space).
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(a)

(b)

Figure 3.3: (a) Mean and (b) Variance of the estimated error versus number of

APs (dimension in the decorrelated space) in the WKNN based system).
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mapping to decorrelated space performs much better than original RSS space,

in which the two AP selection approaches are similar. The figures report that

the improvement in PCA space is the most significant, especially in the lower

dimension. Under 3 APs, the error mean of PCA approach is 1.41 meters while

those of MaxMean, InfoGain, DCT, ICA are 3.27, 3.10, 1.97 and 1.91 meters

respectively. Compared to DCT and ICA, PCA has a natural property that the

basis is ranked based on the corresponding eigenvalue obtained in Eq.3.4. These

eigenvalues quantize the information contribution of each basis in the decorre-

lated space. The bigger the eigenvalue is, the more information the basis has.

Therefore PCA based decorrelation algorithm utilizes the maximal information

in the positioning system at the same dimension constraint. That’s the reason

why PCA achieves the best performance among the compared decorrelation tech-

niques. Furthermore, if the whole AP’s information is utilized, the performance

is still better and presented in the variance of error, which is 0.86 meters in PCA

space while those of RSS space is 2.09 meters.

WKNN-based model is also run with the same decorrelated projection tech-

niques in Fig. 3.3(a) and Fig. 3.3(b) for the validity of experimental results,

where the mean and variance of error are reported individually. Fig. 3.3(a) and

Fig. 3.3(b) clearly present a consistent result as compared to Fig. 3.2(a) and

Fig. 3.2(b). That is, positioning in a decorrelated space provides better accuracy

under the smaller number of dimensions, and PCA achieves the best performance

among the compared techniques. That means the PCA-based decorrelated pro-

jection is useful to different back-end positioning algorithms. Besides, the opti-

mum result obtained by WKNN is a little worse than that from ML, as shown in

Fig. 3.2(a) and Fig. 3.3(a). It can be attributed to that the ML-based modeling
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takes the temporal RSS variation into account while WKNN based modeling only

considers the centroids of RSS. When the dimension is reduced to the minimum

requirement for positioning (D′=3), 23.89% (1.8525 to 1.41 meters) reduction of

error mean is obtained by ML technique. In other words, we still recommend

the ML-based modeling for smaller dimensions, although the performance dif-

ference is minor when full APs are utilized. If the dimension can be reduced

while achieving a high accuracy, an important advantage of saving computation

is accomplished substantially. This issue is described in the next subsection.

3.3.3 Computational Complexity

Figure 3.4: Accuracy versus error distance under 3 AP numbers condition

In ML based positioning system, the most time consuming and complicated

part is the calculation of the exponential function e(·) in Eq.3.7. It requires 20

operations (10 addition and 10 multiplication) if a 10 order Taylor series is ap-

proximated. In that case, the likelihood calculation requires 25 operations (11
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addition and 14 multiplication) for each component and thus once positioning

request requires 25*15*86=32250 operations (14190 addition and 18060 multipli-

cation) in our system, where 15 represents the number of APs and 86 represents

the number of reference locations. It is intuitive to use as many APs as possible

to improve the system accuracy. However, the increased AP numbers increase

the online computational complexity and power demand in the client side.

To find the trade-off between the number of used APs and the accuracy can be

achieved, AP selection technique is proposed to reduce the online computation.

However, the disadvantage is that it may lost important information and thus

leads a worse performance as shown in Fig. 3.2(a). The mean of error is 0.5m

and 3.10m while 15 APs and the most discriminative 3 APs are used respectively.

That is, the 80% compuational saving is at the cost of system accuracy.

Our proposed technique overcomes this drawback since we reduce the dimen-

sionality by combining features. Fig. 3.2(a) reports that if we want to be below a

1.5m distance error, the AP selection technique requires at least 5 APs whereas

PCA space needs only 3 bases. Therefore our approach has the advantage that

using the fewest operations to achieve the same accuracy. It should be empha-

sized that the additional computation incurred by our approach is minor since

the linear combination is simple to compute. The extra computation is the decor-

related transformation for the online measured RSS in Eq.3.8, which requires 30

operations (15 addition and 15 multiplication) for each decorrelated projection.

Fig. 3.4 reports the accuracy between different spaces while 80% operations are

saved (D′=3). To be more specific, AP selection technique requires 25*3*86=6450

operations (2838 addition and 3612 multiplication) while our approach requires

6450+30*3=6540 operations (2883 addition and 3657 multiplication) under this

36



3.3 Performance Evaluation in a Homogeneous Wireless Network

Figure 3.5: Accuracy within 3.0 meters versus number of training samples

computation saving condition. As can be seen, at an error distance of 3.0 meters,

the accuracy increased from 65.46% to 85.81% in PCA space. At the same time,

the online computation complexity is still reduced and leads power efficient in

the client side.

From an implementation perspective, the calculation of the exponential func-

tion e(·) can be computed with a pre-stored table in the memory to speed the

positioning. In such a case, the power consumption of the positioning software

can be further reduced.

3.3.4 Reduction in Human Effort

The limitation of all location fingerprinting systems is that it requires site survey

to collect RSS data in order to build the radio map in the initialization and

training phase. Data collection can account for large part of the cost of developing

a location fingerprinting system. In this experiment, we use only the random
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subset of the training samples at each location. The number of training samples

at each location varies from 10 to 90, and we plot the accuracy at error distance

3.0m under 3 APs case. The results in Fig. 3.5 clearly show that the size of

training samples can be greatly reduced in the decorrelated space. By using only

10 samples at each location, decorrelated space can even outperform RSS space

that use full training samples. Therefore the cost of collecting data is accordingly

reduced since the time required for site survey is decreased. The reason is the

same as mentioned in the previous sections. That is, the PCA-based location

technique utilizes information more efficiently in the projected space. In this way,

the extracted features have provided sufficient information for the model learning,

and thus less training samples are required in the location system. Again, PCA

achieves the best performance, where the accuracy is 84.53% while the DCT

and ICA are 76.05% and 78.95% when 30 training samples are utilized. It is

also because of the rule provided by PCA, where the basis is ranked from an

information-theoretical viewpoint.

3.4 Analysis

In this section, an analytical analysis is provided to observe the effect of the

transformation. Fig. 3.6 shows a typical example, where the x-axis and y-axis

represent the measurements from two APs, denoted as x1 and x2. Each node

means the collected RSS at different locations, denoted as Li. When a new

observation comes, the distance between each node is calculated. As can be

seen, the nearest location to the observation is L4 in original RSS space whereas

that is L2 while projecting to φ1. This is our main motivation to purpose the
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x1
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L2 L3

L4

?

Figure 3.6: An analytic example for the transformation approach.
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Figure 3.7: Analytic geometry for the error probability from the view point of

φ1. The error occurs when the observation is decided to belong to L1.
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transformation technique because the direction of φ1 can more clearly reflect the

changing distance. Afterwards, we provide an analytic geometry for the error

probability from the view point of the signal to noise ratio.

Now, we consider the scenario of the transformed φ1, as shown in Fig. 3.7. We

assume that the measurements from L1 and L2 are S1 and S2, respectively. The

observation O is assumed S0 from the location near L2 because we set |S1−S0| ≥

|S2−S0|. Then, the problem can be formulated as a binary classification question:

whether the measurement O belongs to L1 or L2. In a noise-free case, it is easy

to decide since the geometric distance is perfectly estimated. The geometric

distance between the measurement O to S1 and S2 are denoted as DO1 and

D2O, respectively. In this case, we definitely choose L2 for 100% percentage

because DO1 = |S0 − S1| is always larger than D2O = |S2 − S0|. However,

there exists an error probability if we consider the noise. Now, the noise n1,

n2 and no representing the uncertainty are added to the measurements of L1,

L2 and O individually with the angles θ1, θ2 and θo. Then the error will occur

when D2O > D1O. Considering the case in Fig. 3.7, the three measurements

can be represented by (S1 +n1cos(θ1), n1sin(θ1)), (S0 +nocos(θo), nosin(θo)) and

(S2 + n2cos(θ2), n2sin(θ2)).

Defining the four variables α = nocos(θo) − n1cos(θ1), β = nosin(θo) −

n1sin(θ1), γ = n2cos(θ2) − nocos(θo) and δ = n2sin(θ2) − nosin(θo), the geo-

metric distance D1O and D2O can be represented by
√

(S0 − S1 + α)2 + β2 and
√

(S2 − S0 + γ)2 + δ2, respectively. Thus, one may derive the following error

probability as
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P (e) = P (D2O > D1O)

= P (D2
2O > D2

1O)

= P ((S2 − S0 + α)2 + β2 > (S0 − S1 + γ)2 + δ2)

=

∫

(S2−S0+α)2+β2>(S0−S1+γ)2+δ2

f(α, β, γ, δ)dαdβdγdδ (3.11)

However, computing the integration in Eq.3.11 is difficult. Therefore, we only

discuss some special cases in the following numerical results.

First, we assume that the noises are independent and identically-distributed

(i.i.d.) Gaussian random variables N(0,σ2) and the angles are an identical con-

stant θ, where σ2 represents the variance. This way, Eq.3.11 is reduced to

P (e) =

∫

(S2−S0+xcos(θ))2+(xsin(θ))2>(S0−S1+ycos(θ))2+(ysin(θ))2
f(x, y)dxdy (3.12)

where x = n2 − no and y = no − n1 are both N(0,
√

2σ2) with the correlation

coefficient ρxy=0.5. Thus, the pdf in Eq.3.12 can be written as

f(x, y) =
1√

3πσ2
exp(

−2

3σ2
[x2 − xy + y2]) (3.13)

Note that the joint pdf f(x, y) is a symmetrical sphere where the radius is deter-

mined by the variance σ2, as shown in Fig. 3.8. The impact of θ is showned in

Fig. 3.9 where the values of |S0−S1|, |S2−S0| and σ are fixed. This figure clearly

shows that P (e) is reduced to the minimum value when θ is close to π/2. That

means that the impact of the noise is minimized when the noise angle is verti-

cal to φ1. If we can perfectly separate the signal and noise into two orthogonal

directions, then the error probability on φ1 is minimized.
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Figure 3.8: The joint probability density function (pdf) of f(x, y) in Eq.3.13.

This figure is plotted under σ2=1.
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Figure 3.9: The impact of the noise angle θ on P (e). This figure is plotted under

|S0 − S1| = 2, |S2 − S0| = 1 and σ = 1.
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Consequently, we discuss the error probability under this optimized case (θ =

π/2) in a further step. When θ = π/2, Eq.3.12 is reduced to

P (e) =

∫

x2+y2>∆S2

01
−∆S2

20

f(x, y)dxdy (3.14)

where ∆S01 = |S0 − S1| and ∆S20 = |S2 − S0|. In this case, the integral range

is inside the hyperbolic functions, as shown in Fig. 3.10. From Fig. 3.10, the

radius of the circle is directly proportional to σ2 and the focus of the hyperbola

is proportional to ∆S2
01 − ∆S2

20. Hence, it is clear that P (e) increases as σ2

increases and decreases with increasing ∆S2
01 − ∆S2

20. In Fig. 3.11, P (e) versus

∆S2
01 −∆S2

20 is drawn for several different values of σ2 while that is depicted for

different θ in Fig. 3.12. Both Fig. 3.11 and Fig. 3.12 confirm the dependences

of P (e) vs. ∆S2
01 − ∆S2

20 and σ2. From the above analysis, one may deduce

that P (e) decreases with increasing
∆S2

01
−∆S2

20

σ2 . Thus, this value can be viewed

as a different form of signal-to-noise ratio (SNR). The denominator is in fact the

variance of the noise while the numerator indicates the difference of the measured

signal between L1 and L2. The larger difference indicates the more signal because

the greater variability is observed to tolerate the noise. That is why the above

metric can be used to characterize SNR in the location task.

It is important to note that this analysis has examined only one direction

and noise under two locations condition. Considering a multivariate multiple

regression case, one of the most appropriate parameter that can reflect the term

∆S2
01 − ∆S2

20 is the variance in probability theory and statistics. The variance

is one measure of statistical dispersion, which captures the RSS’s scale or degree

of being spread out among different locations in average. This way, the SNR

variance ratio can imply the term
∆S2

01
−∆S2

20

σ2 in some sense. Fortunately, the
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Figure 3.10: A visual picture of the solution in Eq.3.14, where the integral area

is inside the hyperbolic functions. This figure is plotted under θ = π/2, ∆S2
01 = 2,

∆S2
20 = 1 and σ = 1.
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Figure 3.11: The numerical result of P (e) versus ∆S2
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values of σ2, where θ = π/2.
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Figure 3.12: The numerical result of P (e) versus ∆S2
01 − ∆S2

20 for different θ,

where σ2 = 1.

direction φ1 obtained by PCA can guarantee that φ1 maximizes the SNR variance

ratio. In other words, our transformation can be viewed as different filters where

the output containing the highest SNR variance ratio is extracted. The advantage

of maximizing the SNR variance ratio can be briefly proved as follows.

Let X = S + N, where X is the measured RSS vector, and S and N are,

respectively, the vector of the clean RSS and additive noise. Assume S and N

are uncorrelated, the signal-to-noise variance ratio after the transformation is

SNR =
var(φ′

1S)

var(φ′
1N)

=
var(φ′

1X)) − var(φ′
1N)

var(φ′
1N)

=
var(φ′

1X))

var(φ′
1N)

− 1 (3.15)
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If the noise is assumed to have an uniform effect on each direction, that is, the

covariance of the noise vector N can be assumed as σ2I , where σ2 is the variance

for each component of N and I represents the identity matrix. The term in the

denominator of Eq.3.15 becomes

var(φ′
1N) = φ′

1 · cov(N) · φ1

= σ2 · φ′
1 · φ1

= σ2 (3.16)

Now we utilize two properties of PCA to analyze the ability of noise reduction.

First, the basis in the transformed space is orthonormal, (φ′
i · φi = 1). Thus, the

term var(φ′
1N) in Eq.3.15 is a fixed value, as indicated by Eq.3.16. Second, the

principal components optimize the algebraic property in a maximum variance

sense [94–96] as

φ1 = arg max
||φ1||=1

{var(φ′
1X)} (3.17)

In such a case, the numerator term var(φ′
1X) in Eq.3.15 is maximized by PCA

and thus the signal-to-noise variance ratio is also maximized accordingly.

Then, we can prove that the maximum value of var(φ′
1X) is in fact λ1 and is

attained when φ1 = e1. Recall that the covariance matrix of X is SΣ, and the

first principal component is Y1=φ′
1X, as shown in Eq.3.4 and Eq.3.2. Therefore,

the variance of the first principal component is given as:

var(φ′
1X) = φ′

1SΣφ1 (3.18)
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Since SΣ is a real-symmetric matrix, the eigenvectors is orthonormal, e′1 · e1 = 1.

Accordingly, one may derive the following results for var(φ′
1X).

arg max
||φ1||=1

φ′
1SΣφ1

φ′
1φ1

= λ1

= e′1SΣe1

= var(φ′
1X) (3.19)

Furthermore, the correlation coefficient between the i-th principal component Yi

and the k-th RSS Xk can be obtained by

ρYi,Xk
=

eik

√
λi√

σkk

, i, k = 1, 2, · · · , D (3.20)

where eik is the k-th component of the i-th eigenvector and σkk is the variance

of the k-th RSS Xk. This value indicates how much percentage of φi that Xk

contributes. The larger value imples that φi is more related to Xk. Eq.3.20

is proved as follows. Let a′
k = [0 . . . 010 . . . 0] so that Xk = a′

kXk. Then the

covariance of Xk and Yi can be written as:

Cov(Xk,Yi) = Cov(a′
kXk,Yi)

= a′
kSΣei

= λieik (3.21)

Now applying var(Yi) = λi and var(Xk) = σkk and using Eq.3.21, one finally

obtains ρYi,Xk
.

ρYi,Xk
=

Cov(Xk,Yi)√
var(Yi)

√
var(Xk)
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=
λieik√
λi

√
σkk

=
eik

√
λi√

σkk

, i, k = 1, 2, · · · , D (3.22)

To summarize, because the PCA based transformation finds the projection

with the maximum variance, the ratio of the signal-to-noise variance (which can

be viewed as a different form of SNR) can be maximized as well when we consider

a noisy environment. This can be attributed to the fact that the variance of signal

is maximized after projecting, and the variance of noise does not change due to

its directionless property. The maximized SNR variance indicates that the more

location information is available because the greater variability is observed to

tolerate the noise. For reasons mentioned above, one may state that the proposed

technique projects RSS to the direction which contains the higher SNR so as to

produce more reliable location estimation.

3.5 Summary

This chapter presents a novel approach to the problem of location fingerprinting

in wireless environments. The main contribution of this chapter is five folds:

(a) We show that, by projecting the measured signal into a decorrelated signal

space, the positioning accuracy is improved since the cross correlation between

each RSS is reduced.

(b) We demonstrate that this novel approach achieves a more efficient infor-

mation compaction and provides a better scheme to reduce online computation.

The drawback of RSS selection techniques is overcome since we reduce the dimen-

sionality by combing features. Each component in the decorrelated space is the
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linear combination of all RSSs. Therefore a more efficient mechanism is provided

to utilize information of all RSSs while reducing the computational complexity.

(c) Experimental results show that the size of training samples can be greatly

reduced in the decorrelated space. That is, fewer human efforts are required for

developing the system.

(d) We carry out comparisons between RSS and three classical decorrelated

techniques including DCT,PCA, ICA in this work. Two RSS selection criteria

proposed in literature, MaxMean and InfoGain are also compared. Testing on a

realistic WLAN environment, we find that PCA achieves the best performance

on the location fingerprinting task.

(e)We provide an analytical analysis to observe the effect of the PCA based

transformation from the view point of signal-to-noise ratio. From the analysis,

we show that the ratio of the signal-to-noise variance (which can be viewed as a

different form of SNR) can be maximized when we consider a noisy environment.

Such a property explains why PCA performs the best from the geometry of the

error probability.
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Chapter 4

Cooperative Eigen-Radio

Positioning in Heterogeneous

Wireless Networks

In this chapter, we investigate the localization in heterogeneous wireless networks.

We describe the problem encountered from homogeneous to heterogeneous and

report the traditional RSS-fusion methods at the begining. Then, we proposed

two algorithms via a cooperative approach. The first algorithm, called Direct

Multi-Radio Fusion, tries to discover the spatial correlation after the information

of measurements is reorganized in order to minimize the redundancy among dif-

ferent wireless radio technologies. After the reorganization, each new component

contains different amounts of correlation with respect to the location estimation.

The other algorithm, called Cooperative Eigen-Radio Positioning, takes a step

further to incorporate the spatial discrimination property to efficiently estimate

the location information.
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HETEROGENEOUS WIRELESS NETWORKS

4.1 From Homogeneous to Heterogeneous Wire-

less Networks

With the progress of wireless radio technology, various wireless specifications

form the heterogeneous wireless networks (HWNs) nowadays. Those wireless

standards are proposed to satisfy different needs of users. In the future, it is

important to integrate the heterogeneous networks to provide complete wireless

services. The wireless positioning is definitely one of the possibilities. In this

section, we focus on the problem of wireless positioning from homogeneous to

heterogeneous wireless networks. We also report some existing approaches which

try to combine the estimated results from different techologies.

Today’s mobile devices offer multiple wireless technologies such as the cellular

networks (GSM/2.5G/3G), WLAN and Bluetooth. More technologies, such as

DVB (digital video broadcasting) and WiMax (worldwide interoperability for

microwave access, IEEE 802.16) are expected to be equipped with the future

mobile devices. This will create the opportunity to utilize HWNs to localize the

user [12]. The practical benefit is that users can be served with more accurate

and fantastic LBSs. Once the multi-radio from HWNs is available, a cooperative

positioning mechanism can combine the strength and compensate the limitations

of various wireless technologies. For instance, the number of GSM base stations

is likely to be limited in a rural area. At such conditions, the performance of

an individual GSM-based system is limited due to the finite information. On

the contrary, the performance of combining information from multiple network

architecture can be easily improved to meet the user’s requirement because the

abundant information from HWNs can be utilized.
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4.1 From Homogeneous to Heterogeneous Wireless Networks

This thesis focuses on the received signal strength (RSS) from heterogeneous

wireless networks instead of the different signal features in a homogeneous net-

work [13–15]. Nowadays mobile devices are capable of sensing quantities of avail-

able RSS thanks to the high-density development of wireless infrastructures. In

other words, the dimension of X increases. Extracting the location knowledge

from such measurements of X poses a new kind of challenge for a multi-radio-

based localization system. For example, the information with respect to the

location prediction is duplicated due to the redundancy of the multi-dimensional

measurements and thus, leading to biased estimates. In addition, the heterogene-

ity of signal levels within X definitely exists due to various wireless technology

standards and physical radio properties. Some RSS measurements may possess

more relevance to the location estimation while the others may have less rele-

vance. For example, [26] and [85] reported that the stronger RSSs may produce

more reliable prediction due to the less noise they contain whereas [27] argued

that the discriminating RSSs are more useful. In HWNs, such different orders

of power strength further increases the difficulties of estimating accurate p(lr|X).

For those reasons, a cooperative positioning method should be established in an

intelligent manner to achieve a higher accuracy.

Traditional RSS-fusion algorithms try to combine the estimated results from

multiple technologies by an average [17] or a minimum mean square error (MMSE)

sense weighting, namely SELFLOC (selectively fuses location information) algo-

rithm in [18]. This approach can be formulated as:

l̂ = w1l1 + w2l2 + w3l3 (4.1)

where l̂ is the desired output, li is the estimated result from the i-th technology
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and wi is the weights determined in minimizing the mean square error from col-

lected data. The performance can be improved under the assumption that the

random error can cancel each other out. However, such combined methods only

consider the performance of each network independently. For example, if GSM

and DVB are available and GSM performs much better than DVB. Then the

weighted result is certainly dominated by GSM. This way, the hidden location

information of DVB that can compensate GSM is not exploited effectively due

to the much lower weights. While many studies have done on the wireless po-

sitioning, fusing multiple information from HWNs for localization is still largely

missing.

In this chapter, we propose a novel cooperative mechanism to efficiently ex-

ploit the location information embedded in the RSSs from heterogeneous wireless

radio technologies. Measured information is first reorganized to make sure the

repeated information between each other is minimized. Therefore the location

information can be more easily exploited. This approach is called Direct Multi-

Radio Fusion. Furthermore, each member contains different contents of location

information after the reorganization. We take a further step to quantify the lo-

cation discrimination with respect to each component to efficiently utilize the

available information to improve the accuracy performance. This approach is

called Cooperative Eigen-Radio Positioning and the two algorithms are described

in the following sections.
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4.2 Direct Multi-Radio Fusion

Let T be a decorrelated transformation constructed of the bases as

T = [φ1, φ2, · · · , φD]′ (4.2)

where φi indicates to the i-th orthonormal basis in T and the superscript ′ is the

transpose. Such a transformation cancels the duplicated information by combin-

ing each RSS in order to more effectively extract the location information.

For convenience, we assume that the device can sense three kinds of RSS

including GSM, FM and DVB. The measurements of each network are attached

together as

X = [o1 · · · od1︸ ︷︷ ︸
GSM

, o1 · · · od2︸ ︷︷ ︸
FM

, o1 · · · od3︸ ︷︷ ︸
DV B

]′ (4.3)

where d1, d2, and d3, respectively, represent the number of RSS signals from GSM,

FM and DVB and the dimension of the joint vector X is D=d1 + d2 + d3.

Our cooperative location system adopts the kernel-based approach to compute

p(X|lr) since it reports better result in the recent studies [19]. The probability is

assigend to a kernel funciton around each of the observations in the training data,

as indicated by Eq. 2.6. Unlike Eq. 2.6, DMRF estimates p(X|lr) shown in Eq.

2.4 by incorporating the transformation T. The measurements are reorganized

first in the transformed space in order to minimize the duplicate information

between different wireless technologies. After substituting Eq. 4.2 into Eq. 2.6,

it comes out the transformed-kernel

k(TX,TXr(t)) = exp

{
D∑

d=1

−1

2σ̃2
r,d

[φ′
dX − φ′

dXr(t)]
2

}
(4.4)
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where φ′
dX is the inner product of the d-th basis φd and the joint observation X

and σ̃2
r,d is the estimated variance of the r-th location and the d-th transformed

RSS. Eq. 4.4 illustrates the first contribution of our algorithm where the trans-

formation is integrated into the kernel. This way, the positioning in DMRF is

performed by k(TX,TXr(t)) instead of k(X,Xr(t)). Then, DMRF estimates the

probabilistic function p(X|lr) by non-linearly calculating the transformed kernel

distance between X and all the stored RSS patterns.

p(X|lr) =
1

nr

nr∑

t=1

K̂(TX,TXr(t)) (4.5)

After evaluating Eq. 4.5, one may obtain the estimated result by applying it to

Eq. 2.4.

If we carefully examine the reorganized information after the projection op-

eration, it will be discovered that the amount of correlation with respect to the

spatial prediction for each new member in the projected space T is different.

Some may possess more relevance to the location prediction while the others may

have less relevance. In fact, the importance issues among different sources of

information have been studied in the literature for the power-efficient WLAN

positioning where the more important APs are selected to reduce the compu-

tational overhead [26, 27]. In the following, we present another novel algorithm

which takes the discrimination property into account such that the likelihood

function p(X|lr) can be more accurately estimated.
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satelliteGSM

FM

WLAN

DVB

Heterogeneous

wireless networks

information

quantified

KL transform

T and G

data

collection

Eigen-Radio

Cooperation
estimated

position

Radio map

Multi-Radio

RSS

Figure 4.1: The system flow of the proposed cooperative positioning algorithm.

4.3 Cooperative Eigen-Radio Positioning

After the reorganization, the amount of information with respect to the spatial

estimation, of each projected direction φd is quantified in this section. Then, we

define the new variables, named discriminative gains through a quasi entropy

function in order to gracefully incorporate the physical property into the calcu-

lation of p(X|lr).

Let ηd denote the quantified information for the d-th basis φd. The more

information φd contains, the more important it is. The importance of φd should

be capable to show the character of distinguishing locations distinctly in the

signal space [86]. Therefore, the variance of the projected signals (φ′
dX) can be

a quantified metric to characterize the relevance of location prediction since it

explicitly shows the separation of projected RSS over the whole localization area.
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Thus, ηd can be defined as follows:

ηd =

R∑
r=1

nr∑
t=1

(φ
′

dXr(t) − X̄d)
2

R · nr

(4.6)

where X̄d, defined as 1
R·nr

R∑
r=1

nr∑
t=1

φ
′

dXr(t), is the global mean of the d-th trans-

formed RSS.

The intuitive reason why the above metric can be used to characterize the

amount of information (importance) in the location estimation can be illustrated

below. A general path loss model can be described as:

PL(d) ∝ (
d

d0
)n (4.7)

where d0 is a reference distance, d is the transmitter receiver separation distance

and n is the mean path loss exponent. From Eq. 4.7, the mean path loss PL is

a function of distance d to the power of n, which indicates how fast the power

loss increases with the distance. If n is very small and close to 0, RSS is hardly

used to extract the location information because the signal strength does not

change with varying distances. On the other hand, RSS changing at different

locations is evident with a large value of n. That explains why the separation

of projected RSS over the whole localization area can be used to indicate the

amount of information to estimate the location. The larger variance indicates

the more importance because the greater variability of the transformed signal is

observed over the target area.

One practical problem we discover during the experiments is that there ex-

ist large differences of ηd between different projected signals. That is, some ηd

may present several hundred times larger than the other. To provide a graceful
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quantitative metric in calculating the spatial likelihood of the measured signals,

we utilize a quasi entropy function f() to determine the discriminative gain gd as

follows:

gd = α + f(ηd)

= α +
−(1 − η∗

d) log(1 − η∗
d)

β
(4.8)

where η∗
d is the normalized value of ηd (η∗

d = ηd/
D∑

d=1

ηd) and β is the maximum

value of the numerator to make the value of f(ηd) smaller than 1 (β = max(−(1−

η∗
d) log(1− η∗

d)), d = 1, 2 · · ·D). Then, 1− η∗
d can be viewed as a numerical value

of probability and f() is similar with the definition of entropy function. It can be

observed that f(ηd) increases with ηd and ranges between 0 and 1 (0 ≤ f(ηd) ≤ 1).

That means that the changing scale of the discriminate gains is constrained in a

reasonable range. In Eq. 4.8, the parameter α is a constant which controls the

bias gain. This value is adjusted to make the minimum gain larger than α. This

way, the bigger importance ηd is, the larger f(ηd) is and the bigger gain gd is.

Moreover, we can control the gains as α ≤ gd ≤ α + 1 at the same time to avoid

an abrupt change on the gains.

Let G denote the discriminative-gain vector of each φd. While computing

the kernelized distance for the projected signal vector, important φd are assigned

with larger discriminative gains while the less important ones are assigned smaller

gains.

G = {g1, g2, · · · , gD} (4.9)

In other words, the more important φd dominates the computation in CERP

since they contain strong spatial correlation to produce a more accurate location

59



4. COOPERATIVE EIGEN-RADIO POSITIONING IN

HETEROGENEOUS WIRELESS NETWORKS

estimation. This is the way we devise the cooperation mechanism where each

technology is cooperated with its information contribution to estimate the user

location.

The location estimation of CERP can be formulated as:

l̂ =
R∑

r=1

lr

(
1

nr

nr∑

t=1

K̂(T̃X, T̃Xr(t))

)
(4.10)

where K̂ is the projected kernel function shown in Eq. 4.5 and T̃ represents

the joint effect of the discriminative gains G and the projected operation T. By

substituting Eq. 4.8 and T̃ in Eq. 4.4, the normalized kernel K̂ can be obtained

K̂(T̃X, T̃Xr(t)) = exp{
D∑

d=1

−g2
d

2σ̃2
r,d

· [φ′
dX − φ′

dXr(t)]
2} (4.11)

Eq. 4.10 and Eq. 4.11 illustrate the characteristics of the proposed algorithm.

As can be seen, the contribution from each distance member (φ′
dX− φ′

dXr(t)) is

fused with different discriminative gains gd to estimate the user location. The

higher the discriminative gain is, the bigger belief we give to this component

which dominates the computation. To our knowledge, such physical property has

not been exploited in designing a location system. When the gains are all equal

(gd=1, d = 1 · · ·D), CERP reduces to DMRF. For the case of T=I (an identity

matrix), DMRF can be regarded the traditional kernel positioning.

In the following experiments, discrete Karhunen-Loeve (KL) transform is used

to determine not only the basis φd but also the importance ηd from an information

theoretical perspective. The KL transform has excellent information packing

properties and offers us a tool for quantifying the information [96]. Furthermore,

most of the information is squeezed in a relatively lower dimensions to avoid
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information redundancies in unnecessary dimensions. That is why KL transform

is also known as principal component analysis [23, 95]. The previous chapter

has shown that it provides useful decorrelation properties for localization in a

homogeneous wireless network [11]. In the KL transformation, each basis φd

can be obtained by finding the eigenvectors ed of SΣ by Eq. 3.4. After getting

ed from eigen-decomposition of SΣ, RSS can be transformed into the KL space

with two advantages. First, the obtained eigenvectors are uncorrelated with each

other such that we can avoid measuring the duplicated information. Second,

the ei is designed to maximize the variance of e
′

dX subject to e
′

ded=1 and the

variance of e
′

dX is in fact the corresponding eigenvalue λd. For these reasons, we

choose φd=ed and ηd=λd in our cooperative positioning algorithms. Because the

discriminative gains are determined from the function of eigenvalues, the gained

signal is named eigen-radio in CERP. As the name indicates, the eigenradio is

cooperated each other for accurate localization in HWNs according to its content

of location information. The system flow of the proposed CERP architecture is

shown in Fig. 4.1.

4.4 Summary

Recent advances in mobile devices and ubiquity of wireless infrastructures create

the opportunity to utilize heterogeneous wireless networks for the localization.

To efficiently exploit the spatial correlation embedded in the measurements from

heterogeneous wireless networks, we proposed two algorithms via a cooperative

approach in this chapter. The first is Direct Multi-Radio Fusion (DMRF) where

the information is reorganized in a transformed space. The transformation cancels
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the duplicated information by combining each RSS such that the location infor-

mation can be more effectively extracted. The second is Cooperative Eigen-Radio

Positioning (CERP) which further takes the spatial discrimination property into

consideration. We define the new variables, named discriminative gains through

a quasi entropy function in order to gracefully incorporate the physical property

into the location estimation. At such a condition, the more important signal with

a higher gain dominates the computation in CERP since they contain strong spa-

tial correlation to produce a more accurate location estimation. This is the way

we devise the cooperation mechanism where each technology is cooperated with

its information contribution to estimate the user location.
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Chapter 5

On-Site Experimental Results

To evaluate the positioning performance of our algorithms, we develop a location

fingerprinting system based on heterogeneous wireless networks in this chapter.

The sensed radio includes GSM, DVB, FM and WLAN and the experiments

are conducted in two different metropolitan-scale environments and one indoor

environment including the campus of National Taiwan University (NTU), Wen-

Shan rural area and BL building in NTU. In three cases, all the results show

that the proposed algorithms outperform the single-network based approaches

and SELFLOC in various performance metrics.

5.1 Experimental Setup

We have implemented our algorithms in two metropolitan-scale outdoor environ-

ments including the campus of NTU and Wen-Shan District Area, as shown in

Fig. 5.1. NTU is located in the south Da-An District of Taipei city, which is the

most busiest commercial area in Taiwan. The main campus shown in Fig. 5.1(a)

has an area of 1.08 km2, and is located in the section between an urban and

a suburban area with streets, moderate green space and many four to six-story
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(a) National Taiwan University (NTU)

(b) Wen-Shan District Area (Wen-Shan)

Figure 5.1: Two different environments where we had performed the experiments

include (a) NTU campus and (b) Wen-Shan rural area. The tack indicates the

sampling location. Wen-Shan is located near Chi-nan Mountain in the south of

Taipei City and its picture is obtained from google-map.
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5.1 Experimental Setup

Figure 5.2: Anritsu MS2721B, the commercial available spectrum analyzer we

use to record the radio measurements.
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Figure 5.3: A visual picture of the collected GSM, FM and DVB RSS patterns

in the NTU campus.
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academic buildings. On the other hand, Wen-Shan is a rural area, located near

Chi-nan Mountain in the south of Taipei City, as shown in Fig. 5.1(b). There

are few high buildings and commercial activities in this area. We measure RSS

data at 20 reference locations respectively in these two areas (indicated by the

tacks in Fig. 5.1) and collect 100 samples of HWNs for every location. The

distance between two neighboring positions ranges from a minimum of 100 m to

a maximum of 150 m. We select 50 samples from 15 locations for training data.

The testing data is collected 50 samples per location, at 20 locations in different

days.

In our experiment, all RSS data are actual measurements obtained by com-

mercially available spectrum analyzer, Anritsu MS2721B, as shown in Fig. 5.2.

Three kinds of wireless radio power including GSM, FM and DVB are measured

in dBm, as shown in Fig. 5.3. This figure plots the training data of the strongest

3 channels of three technologies. Then, each technology is briefly described as

follows. First, GSM is the most popular standard for cellular phones in Taiwan

where the networks operate in the 900 MHz or 1800 MHz bands. We focus on

1.8GHz frequency band in this paper because more GSM1800 base stations are

provided by network-service providers. We select the 3 strongest RSS for localiza-

tion from 50 GSM channels range from 1.805 GHz to 1.815 GHz with an interval

of 200 kHz (d1=3). Second, FM is originally designed to listen for broadcasting

information such as traffic update. FM uses analog frequency modulation tech-

niques and operates at much lower frequency than GSM. In our test environments,

FM containing 36 audible channels distribute from 88 MHz to 108 MHz and the

4 strongest channels are selected (d2=4). Third, DVB is an open standard for

digital television services. In Taipei, the DVB signal contains 10 channels range
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from 533 MHz to 599 MHz with an interval of 6 MHz and the 5 strongest channels

are used in the experiment (d3=5). Currently, the DVB service is only provided

in an urban area and thus the DVB signal is undetectable in Wen-Shan area.

The GPS system is used as the ground truth and the latitude and longitude

are recorded for each reference location. The positioning mode of our device is

standard GPS alone and Cartesian coordinate is obtained by WGS84 transfor-

mations. The distance between locations is calculated by Great Circle Distance

Formula as r∆σ, where r is the great-circle radius of the sphere and ∆σ is the

(spherical) angular difference. Based on Vincenty formula, ∆σ = arctan(Φ) and

Φ is

√
(cosφ2sin∆λ)2 + (cosφ1sinφ2 − sinφ1cosφ2cos∆λ)2

sinφ1sinφ2 + cosφ1cosφ2cos∆λ
(5.1)

where (φ1, λ1) and (φ2, λ2) are the latitude and longitude of two reference loca-

tions, ∆λ is the longitude difference and ∆λ is the angular difference.

5.2 Performance Evaluation

Table 5.1: Five error measures (in meters) for different algorithms at NTU campus

Methods Mean±Standard deviation Median error 67% CEP 90% CEP

DVB 220.13±111.79 200.34 251.36 387.78

GSM 141.4±114.13 112.93 160.31 328.25

FM 150.89±143.12 108.65 196.41 371.11

SELFLOC 128.56±99.14 98.82 152.49 294.53

DMRF 88.63±100.69 48.30 93.13 282.07

CERP 71.75±102.09 33.82 56.09 259.78
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Table 5.2: Five error measures (in meters) for different algorithms at the Wen-

Shan rural area

Methods Mean±Standard deviation Median error 67% CEP 90% CEP

GSM 169.93±123.43 161.00 221.24 333.32

FM 166.86±144.6 132.14 211.79 408.21

SELFLOC 162.67±114.95 129.06 194.81 342.37

DMRF 104.68±118.44 55.63 123.40 289.85

CERP 95.61±117.51 43.84 100.81 288.89
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Figure 5.4: Cumulative percentage of error for different algorithms at the NTU

campus.
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Figure 5.5: Cumulative percentage of error for different algorithms at Wen-Shan

rural area.

The performance of our algorithms is evaluated by various error measures

in this section. First, the positioning error is defined as the Euclidean distance

between the estimated result and the true coordinate as εi = ||l̂i − li||, where l̂i

and li indicate the i-th estimate and its true location. Then, 6 error measures

are reported including standard deviation of error (standard error), mean error,

median error, 67% CEP (circular error probable) and 90% CEP. The first 3

measures are defined as standard error σε = E[(ε− ε̄)2], mean error ε̄ = E[(l̂− l)]

and median error ε̃ = median[(l̂ − l)]. The CEP is defined as the radius of the

circle that has its center at the true location and contains the location estimates

with probability Pin [97]. The last two measures report Pin=0.67 and Pin=0.90.

Then, each single-network location is estimated by traditional kernel positioning

algorithms and SELFLOC is implemented by combing the three estimated results

in MMSE sense.
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areas, where the consant gain α is 1 in both cases.
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Table 5.1 reports the five error measures for different algorithms at NTU cam-

pus. The table shows that GSM provides the best positioning performance among

the three networks. This phenomenon can be explained by Fig. 5.3, where GSM

shows the most separative RSS among different locations. The greater discrimi-

nation of GSM signal directly reflects on the system performance. The location

systems using multiple technologies perform better than the single-network tech-

nology. Compared to GSM, SELFLOC exhibits 9.08% and 30.73% reduction in

mean and standard error when the estimated results from three networks are

combined. Next, we observe that DMRF performs better than SELFLOC. It

is because that the information is reorganized to make sure the repeated in-

formation between each other is minimized. Therefore the spatial correlation

can be more easily exploited in DMRP. More importantly, CERP can further

improve DMRF. The significant improvements at mean, median and 67% CEP

reduction are 19.05%, 29.98% and 39.77%, respectively. This result can be at-

tributed to that each member after the information reorganization, contains dif-

ferent amounts of location information. CERP take a further step to quantify

the location discrimination with respect to each component in order to efficiently

utilize the available information to improve the accuracy performance.

To be more specific, Fig. 5.4 graphically depicts the cumulative percentage of

error. As can be seen, CERP clearly outperforms DMRF and SELFLOC in terms

of the estimated accuracy. Compared with SELFLOC, the discrimibative gains in

CERP are embedded on the probabilistic models of each RSS in HWNs instead of

the location estimations directly. That is, the contribution of each RSS is different

even in a single network while that is uniform in SELFLOC. Compared to DMRF,

CERP further takes the spatial discrimination property into consideration. The
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discrimibative gains estimated by the quasi entropy function are utilized in CERP

such that the location estimation is dominated by the more important eigenradio.

Those reasons explain why CERP performs the best theoretically.

The experimental results obtained in Wen-Shan area shown in Table 5.2 and

Fig. 5.5. Again, Fig. 5.5 shows that CERP performs the best among the com-

pared algorithms. The results confirm our previous conclusion that the posi-

tioning performance can be enhanced if multiple technologies carefully cooperate

depending on their discriminative gains. The ratio of the derived discriminative

gains in the two experimental areas are plotted in Fig. 5.6. This figure shows

that the amount of correlation with respect to the spatial prediction for each new

member in the projected space T is different. Some may possess more relevance

to the location prediction while the others may have less relevance. The larger

gain indicates the more importance because the greater variability of the trans-

formed signal is observed over the target area. It is obvious from Fig. 5.6 that

the largest gain g1 is nearly twice as great as the smallest gain (g12 in NTU and

g7 in the Wen-Shan area). It is because that the gains changing is constrained by

the quasi entropy function. From Fig. 5.6(a), the first eigen-basis φ1 is combined

by almost all RSSs while the same is true of the case in Fig. 5.6(b). On the

other hand, the last eigen-basis is usually combined by few RSSs with the lower

weights in each case. Those negative values represent the information extraction

by canceling the duplication.

Having the above results, one thus now turn to discuss the difference between

Wen-Shan and NTU result which lies in the comparison between GSM and FM.

From Table 5.1 and Table 5.2, GSM outperforms FM in NTU whereas they

present a similar performance in the Wen-Shan area. We discover that the GSM
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signal in the rural area is significantly decreasing because of the longer distance to

the base stations. Although the signal levels are still much higher than the GSM

specification, such signals does not contribute the same location information as

that in NTU. On the contrary, FM signal still maintains the same level due to

the wider radio coverage. That is why FM produces a comparable performance

to GSM in the Wen-Shan rural area.

5.3 Indoor Environments

Figure 5.7: Part of the fifth floor plane of the BL building, where we had per-

formed the experiment indoors.

In this subsection, the proposed algorithm is evaluated on indoor environ-

ments with an alternative wireless technology. The measurements are collected

on the fifth floor of BL building in NTU, as shown in Fig. 5.7. The dimensions

of this test-bed are 52 m times 18 m and 35 reference locations are selected with

a 3 m space. We follow the same procedure of Section 5.2 to collect 50 samples

per location at different time periods for training and testing data, respectively.

In addition to GSM, we collect WLAN data in this area by a laptop with Win-

dows XP operating system and NetStumbler network software. Currently, the
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Figure 5.8: A visual picture of the collected WLAN and GSM RSS patterns in

the BL building.
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Figure 5.9: Cumulative percentage of error for different algorithms in the BL

building.
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5.3 Indoor Environments

Table 5.3: Five error measures (in meters) for different algorithms at indoor BL

building

Methods Mean±Standard deviation Median error 67% CEP 90% CEP

GSM 8.43±8.11 6.32 10.97 20.42

WLAN 2.69±2.99 1.69 2.97 6.56

SELFLOC 2.68±2.83 1.77 2.65 6.65

DMRF 1.48±2.87 0.33 1.19 4.51

CERP 1.37±2.89 0.16 0.87 4.32

infrastructure of WLAN (known as WiFi) is widespread indoors and the function

is available in high-level devices such as smart phones and PDA. Our measure-

ments show that over 30 APs can be detected in this floor and the strongest 3

APs are selected to perform the experiment. Fig. 5.8 shows a visual picture of the

collected radio in the BL building. This figure clearly presents the asymmetric

contribution of GSM and WLAN. As can be seen, WLAN is more important than

GSM because WLAN presents better RSS discrimination for the changing dis-

tances in this indoor environment. Table 5.3 summaries the experimental results

and Fig. 5.9 depicts the accuracy comparisons. As expected, WLAN performs

much better than GSM due to its greater variability of RSS over the whole area,

as shown in Fig. 5.9. Moreover, the results again verify that our approaches

outperform WLAN and SELFLOC. Selecting an appropriate transformation and

varying the embedded discriminative gains can achieve the best result, as indi-

cated in Table 5.3. When the gains are estimated by Eq.4.8 in CERP, 51.52%

and 26.89% improvements in median error and 67% CEP reduction can be further

obtained, as compared to DMRF.
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5. ON-SITE EXPERIMENTAL RESULTS

5.4 Summary

In this chapter, we develop a location fingerprinting system based on hetero-

geneous wireless networks to evaluate the positioning performance of our algo-

rithms. In the first experiment, the sensed radio includes GSM, DVB, FM and

the experiments are conducted in two different metropolitan-scale environments

including the campus of National Taiwan University (NTU) and Wen-Shan ru-

ral area. Both results show that the positioning performance can be enhanced if

multiple technologies carefully cooperate depending on their discriminative gains.

This is because that the location estimation is dominated by the more important

eigenradio, which contains the higher spatial correlation. The significant improve-

ments at mean, median and 67% CEP reduction are 19.05%, 29.98% and 39.77%,

respectively.

Then, the proposed algorithm is evaluated on the indoor environments the

fifth floor of BL building in NTU, with an alternative wireless technology, WLAN.

The results again verify that our approaches outperform WLAN and SELFLOC.

Selecting an appropriate transformation and varying the embedded discriminative

gains can achieve the best result. When the gains are carefully adjusted by CERP,

51.52% and 26.89% improvements in median error and 67% CEP reduction can

be further obtained.
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Chapter 6

Conclusions

The demand for location-based services (LBSs) has been driving the need for the

accurate positioning techniques in the past and is expected to remain the same

in the future. Although Global Positioning System (GPS) has been in service

for many years, it is only available in GPS-enable devices and may encounter

problems in urban and indoor environments. Thus, the location estimation based

on existing wireless communication infrastructures has advanced rapidly in recent

years.

At present, one of the most popular RSS-based wireless localization is a two-

stage fingerprinting architecture. Location fingerprinting is a promising wireless

positioning technology, having the major advantage of providing a high accuracy

in challenging wireless environments. The client’s position is inferred online by

comparing the measured RSS with the offline-constructed fingerprinting model.

This approach can be viewed as an application of pattern recognition and thus

several statistical learning algorithms have been applied to this problem, as illus-

trated in chapter 2.

When the positioning algorithm is performed on the handheld devices, extra
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care should be taken due to their constrained resource. Therefore, we introduce

the concept of transformation in chapter 3. Instead of information selection,

the transformation reorganizes the information so as to maximize the retained

information while removing parameters as more as possible under the same accu-

racy constraint. Our algorithm intelligently transforms RSS into a decorrelated

space such that the information of all RSSs is more efficiently utilized. We show

that, by projecting the measured signal into a decorrelated signal space, the po-

sitioning accuracy is improved since the cross correlation between each RSS is

reduced. Moreover, we demonstrate that this novel approach achieves a more

efficient information compaction and provides a better scheme to reduce online

computation. Such a technique is evaluated in a homogeneous wireless network.

Afterwards, we investigate the localization from homogeneous to heteroge-

neous wireless networks in chapter 4. Due to the ubiquity of heterogeneous

wireless networks and the improvements in the device manufacturing, an inte-

grated positioning architecture is envisioned for future multiple-radio computing

environments. In chapter 4, we propose a mechanism to efficiently exploit the

location information embedded in RSSs from heterogeneous wireless radio tech-

nologies. We proposed two algorithms via a cooperative approach. The first

algorithm, called Direct Multi-Radio Fusion, tries to discover the spatial corre-

lation after the information of measurements is reorganized in order to minimize

the redundancy among different wireless radio technologies. After the reorganiza-

tion, each new component contains different amounts of correlation with respect

to the location estimation. The other algorithm, called Cooperative Eigen-Radio

Positioning, takes a step further to incorporate the spatial discrimination prop-

erty to efficiently estimate the location information. To sum up, we transform
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the multiradio first and then further exploit the discriminative gains to produce

a more reliable location estimation.

We have implemented our algorithms and evaluated them in chapter 5 by

realistic measurements, which are obtained by commercially available spectrum

analyzer and wireless cards. The sensed radio includes GSM, DVB, FM and

WLAN and the experiments are conducted in two metropolitan-scale and one

indoor environment. In three cases, all the results show that the proposed two al-

gorithms outperform the single-network based approaches and SELFLOC in var-

ious performance metrics. The results show that the proposed algorithm reduces

44.19-48.88% and 48.25-67.17% of the mean error and 67% CEP, respectively, as

compared to SELFLOC.
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