IR 3t N R BN E 9 e N -
1 2

Department of Computer Science and Information Engineering

College of Electrical Engineering & Computer Science
National Taiwan University

Doctoral Dissertation

i B R _LT% TE R Pt

Cache Conscious Object:Packing and Placement

& A
Chun-Chieh Lin

hrE Mg g4
Advisor: Chuen-Liang Chen, Ph.D.

PEARISE]

January, 2009

R 2EREHITLZMHXI
DREBCERLET
WRANRBCGLERBAHERTEMG T K

Cache Conscious Object Packing and Placement

WXAMBEAE (£35D93922020) AR L EE XL TN
F4% E&iﬁi"a‘ﬁz X HEE 98 £ 1 B 20 8ATHHRE
BELEBR ORI 45 ILEH

A RAE e

(8 H#42)

2 x = Zfi

99 EHEL EAFLEERE PG RED L EZE 09 ElGE > §F =
Fa|® e DEF MG L EEEFTE D T E R Lo Ry

AR e i R o AIRRR L ORFERY > I EFFRSOER

N
4y

FERRAEA - Shhv @ LRLAB AP 3% B2 ot LEfrr

E e A R FRE o $N R EFF R H B2 2R - R o

FEAz AL aeSERe s AW SEL AR - FRPALY S H
¥

2 ,{;gl);uj\,_tj_f%jiffP’\ﬁEﬁﬂﬁ@}éﬁafﬁhghﬁﬁgi B L ER B
{,—\._\ Ir"\ %
| Ni=s) .
| ==
5*3?%7#%&4E%#H]“Lﬁéﬁwkw%mxﬁ e
ﬁ%maﬂ;ﬁkm%%oﬁﬂﬁdé‘%%%%W’ﬁﬁtﬂﬁ”ﬂﬁw

2/1/2009, & A 52t

#* &

PeBoie iR s K SRR PR 3R ITE d o 2R A TR

@ﬁ@aﬁﬁﬂﬁﬁi%?%%%%$ﬁ€£EWM;—oiﬁwapi?%
H

™
-

AEHT RN - E 0 oL %’;—fl | p’% S o J, é_;_a.ﬁégg:‘ Prlen g ke L e
iy Iy If"'\

y%ﬁ@ﬁﬁ$oﬁ£4%égaﬁf&pﬁ*’ k= REE T IE Ko
= —4
BHA L L g Jfg,],,o%,;*;}ﬂ Wﬁﬂkmﬂ,‘z,‘l.j{”sﬁiﬁp, FL B AR 3N e

@,uagi#ﬁﬁﬁkﬁmmWoﬁﬁiv##Wﬁﬂ—%ﬁ“*@ﬁ%ﬁ(%
dokod BRI E) hiE £ 4L B B A R g ok g R 2R AR o

AHe e I FRA S G LRl 522 o HR LK
TRt R R GLRER PR AR GRCFRE S AR -
RIEF PPl gy B P02 > 2 RIS 2 R E RIe R ELR - A R
SEASEE E IR TS SR p A USSR (RS S K k]

T AR BB 2 RP B AL BTF R o RA e F M GT

H

o
L?
q
|>‘_
>

—
N

B LA EEE B R FP A L RDAFE R enggie s F U F S
T e B R R)R o R R (00 APk T AT B kR ST

Bk o RRAGFAL G RIRA T LA G ey ocld

Bt @ EPe il e B E RSB ALT R LR E

1

Abstract

The cache provides acceleration in access through the memory hierarchy. The
order of arranging code and data objects in the main memory is an important factor that
affects cache miss rates. Prior related researches focus on arranging objects interleaved
between cache sets for the direct mapped cache. Interleaving the address of each items
helps to resolve conflict misses. However, there are computer systems that a memory
block can be large to collect a number of code and.data objects, and the unit to be
loaded to the cache is a memory bloci<, not an objeét. Therefore, objects contend spaces

within cache blocks as well. M ;j_-;!-h-_ s
fi

This dissertation provides a m'?e'thogdé)logy forl‘ optirﬁizing cache memory utilization
of applications in various fields by arranging théir relocatable objects within the main
memory. The methodology includes the exploration of object space and generation of
object layouts for all kinds of cache organization. The object space exploration involves
techniques in inspecting the data and program integrant and acquiring the profile of
objects accesses. The exploration also contains a technique particular for the virtual

machine, e.g., the Java virtual machine, because of its unique program structure.

Generating object layout adapted for cache memory is the keystone in this
dissertation. The presumption is that objects are smaller than a memory block. That
means assigning addresses to objects must incorporate two movements into one. The
first is interleaving objects to cache sets. The second is gathering these objects to fit one

cache block. Our study suggests creating the object affinity model by profile

i1

information. This study analyzes the relationship between the object affinity model,
cache configurations, and cache misses. The packing and placement problem turns to be
hard to find an optimal solution. Thereafter, this study proposes practical techniques of
generating object layouts for different cache organizations. This dissertation also
includes experiments to evaluate the proposed techniques. The experiments provide

convincible results and support the effectiveness of the proposed approaches.

Keywords: cache memory; memory optimization; code layout; data layout; virtual

machine

= AVl 1}

v

Contents

CHAPTER 1 INTRODUCGTIONcoutiiierreieccrneiecssnesecsssnesssssnessssssnsasssssnsasssssnsasessansassssen 1
1.1 MOtIVALION ...iiiiiiieee et e ettt e e e e e ettt e e e e e e e e etttbareeeeeeeseeabrsbeeeeeeeaeesrrareeeas 1
1.2 U SEIUINESS ... et e e e e e et a e 4
1.3 Scope and OrgaNIZATIONuvvviieieiiiieeeeeeee e e et e e e eeeeere e e e e e e eeeaneereeeeeeeennnens 6

CHAPTER 2 BACKGROUND.tiicceeteccceeeeccsneeeecsaeeeeessssessssssesssssssssssssssssssssassasssnes 9
2.1 Memory Hierarchyibiii L e <~ OO 9

2.1.1 Cache Organizatlon: | i oo i e e 10
2.1.2 XIP and NAND Flash ... o i e 15
2.2 Graph and Combinatorial Algorith'r‘-;ln?,‘.—':'f .. 17
2.3 Related Worksieteeves b 1t | B SN SRR 21
2.3.1 Placements.................._..................._....'.:f .. 21
2.3.2 XIP and NAND Flash....... e e 26
2.3.3 LiOCALIEY .eveeeiiieeieeee e et as 27
2.3.4 Other Related TOPICS . ..uuuiiiiiiiiieeeeeeeee et eeeeree e e et ee e e 27

CHAPTER 3 PROBLEM MODELINGcuuttieerreeecerrneeeccssneescsssseesessssnesesssnsasssssasasssssns 31
3.1 ODbJECt ACCESS TTACE c..uvvvviieiieieeeceeeeee e e e e e s 31
3.2 One Page Cache MOEL..........oooooiireieeieieeeeeeeeee e 38
3.3 Direct Mapped Cachec.cccooooiiiiiiiiieeeeeee 42
3.4 Fully Associative CaChecoooiuvviiiiiiiiiieeee e 48

CHAPTER 4 PRACTICAL APPROACHES ... eeecenneeecerneeeessnnesscssnnessessaneesesnns 57
4.1 Hardness of Packing and Placement for Direct Mapped Cache............cc.uuo....... 57
4.2 Approaches for Direct Mapped Cache..........coooovvveeeiiiiiiiiiiiiiiieeeeeeecieeeeeeeeeees 63

4.2.1 Packing Followed by Placementccccoeeeiiiiiiiiiiiiiiiiiiiieeee e, 64

4.2.2 Placement Followed by Packingccocoooveivimrveeiiiiiiciiieeeeeeeeeeeeeeen 69

4.3 Approaches for Fully Associative Cacheccccvvveeieiiiiiiiiiiiiieecc e, 70
4.3.1 One-Page Cache Method.........ccceeieiiiiiiiiiiie et 70

4.3.2 Two-Pass Partitioning Method...........ccccooviviiiiiiiiiiiiiieeeeeeeeeeeeeeeee, 71

4.4 Approaches for Set Associative Cacheccccovveiviiiiiiiiiiiiiiiice e, 74
CHAPTER 5 EXPLORATIONS OF OBJECTS AND TRACES.......cccccevviruinrucnnen 75
5.1 Generic Data ODJECES ..uuvviiiiiiieeeieeeiee et e e e e e eee s 76
5.2 Generic Code ODJECES ..iiiiuiiiiiiiiiieeeiiieeeecitee e eritee e et e e e et e e e e reeeeeeraeeeesseeesenaseeas 77
5.2.1 MOBIVALIONL .ttt sttt ettt st st 77

5.2.2 Control Flow Analysis:and Basit_:_Blocks .. 80

5.2.3 Benchmark Ovetview- a0 U U RO 85

5.3 Partial Arrangement on 'i’erforr’r'{é_l:rglce Iféqftleneck.' .. 92
5.4 Virtual Machine Interpreters r,;: ': .. 94
5.4.1 KVM Internal..... oy || ‘ et .. 95

5.4.2 Analyzing Control Flow .I I .. 100
5.4.2.1 Indirect Control Flow Graph..........cccccccoiiiiiiiiieieieieeeeecceeeeeeee e 100

5.4.2.2 Tracing the Locality of the Interpretercccccceeveviiiiiiiiiiieieiinns 101

5.5 Discussion on Effectiveness and Impact of Profilingccccoovvviiiiiiiinninnnn.n. 105
CHAPTER 6 EVALUATIONS AND EXPERIMENTScccccovvinninnennennnccsnensessneees 107
6.1 Experimental SEtupcooueiiiiiiiiiiiiieiec e 107
6.2 Direct Mapped Cache: Experimental Analysis.......ccccceevvvieerciiieieniieeeenieee e, 109
6.3 Fully Associative Cache: Experimental Analysis......ccccccccveveeiiiiiiveeeeeeeeeeeeennnns 129
6.4 Set Associative Cache: Experimental Analysis.......ccccoecvvvieeriiieeeniiiieeeesiieeeenne, 139
6.5 Experiments on Partial Arrangementcccocevvvveeeeeieiiiiiiiiieeeeee e 148
6.5.1 Direct Mapped Cache Experimentooeevvveveviviviveieeeeeeeeeeeeeeeeeeeveennnns 148

6.5.2 Fully Associative Cache Experimentcccc.ccooovvvvinveeeeeeeeeiicinneeeeeeen. 153

6.6 Virtual Machine EXperiment.. ... e eseeeeeeeeeeens 158

vi

6.6.1 Evaluation Environment
6.6.2 Virtual Machine Modification Procedures

6.6.3 Experimental Result

CHAPTER 7 CONCLUSIONS AND FUTURE WORKS

BIBLIOGRAPHY

I,

4% cx e
Al |5‘5f? —%'- o O
=4 /f

@
*
5

L

ey
=1 F
=

=

2
Ry

?ﬁ_.'E"J_‘gJ‘ ol

. }-".'1.. iy BT
Cspepeea

=

vil

ooo

List of Figures

Figure 1.1. The framework of manipulating packing and placement for cache memory in
different problem dOmMAINS.cociuiiiiiiii e e e e eeeta e e e e e eeiaaes 6
Figure 2.1 The memory hierarchiy.ooooiiiiiiiiiiiiie e 9
Figure 2.2. Execute programs stored in a NAND flash memory by using a shadow RAM... 16
Figure 2.3. Execute programs stored in a NAND flash memory by using a cache................ 17
Figure 3.1. The conversion of object access trace to block access traces.cccoeeeeveuvvnnnen... 33
Figure 3.2. (a) An example of object access trace, block access trace, and compressed block
access trace in three rows. (b) A légal packing .mapping that injects six objects to three
memory blocks. ... SO L B 33

Figure 3.3 (a) The adjacent matrix® (b). The obj:’(_':'t‘ficcess graph. (c) Group the original object
| ,"; 1 ;

trace graph into partitions...... .. B 1 ot | . S 37
R .
Figure 3.4. Define the type of edges in the 86Cess Sraphi. e . oooeiieeeeeeeeeeeeeeeeeeeeeenn 40

Figure 3.5. (a) An example of object access trace, block access trace, block access sub-traces,

and compressed block access sub-traces. (b) A legal fpp injects eight objects to four

MEMOTY DLOCKS.....iiiiiiiiiiiie et eee e e e e e e eeetaaereeeeeeeeeasaaes 43
Figure 3.6. The components of an object access graph for the direct mapped cache............. 44
Figure 3.7. (a) An example of object access trace, block access trace, and compressed block

access trace in three rows. (b) A legal packing mapping that injects six objects to three

MEMOTY DIOCKS. ..uviiiiiiiiiiiiciiieee et e e e e et e e e e e e e attabeeeeaeeeesaatabaeeaaeaans 49
Figure 3.8. Choose the least used elements by the OPT replacement.c....cooveunnnnnen... 51
Figure 3.9. Compare the two locality sets along the object access trace............ccceeeeuvvvnnnnn... 52

Figure 3.10. The object locality set hold by the cache contributes lengths to the edges of the
0DJECES ACCESS GIAPN. ..vvvviiiiiiiiiiiiiiiiititt ettt e e e —a—a——a————————————————————————————————————— 52
Figure 3.11. Using Degree-2 and Degree-3 trace information to find the closest objects to

ODJECES G ATIA ..ttt e e e e e e e eeeaan 54

Figure 4.1. A partitioned graph satisfies MIN k-PARTITION. The symbols w; and p; denote

EAEE LEINIGEIIS. ..uvviiiiiiiiiiiitiii ettt ——- 62
Figure 4.2. A sample graph transformed from Figure 4.1.cccooviiiiiiiiiiiiiiiiiiee e, 63
Figure 4.3. The pseudo code of the partitioning algorithmccccoooovviiiiniiiiiiiiiiiinnn... 66
Figure 4.4. The pseudo code of distributing blocks to Sets........ccccvvvvviiiieeiiiciiiiiieeeeeeciiieeee. 69

Figure 4.5. The partition result after the first pass. The gray edges connect the access trace

graph before partitioning. The two shadowed blocks are the generated partitions. 73

Figure 4.6. The partition result after the second Pass.cccceeeeeeeviiiiiiiiiiieeiceeee e 73
Figure 5.1. A program fragment to be rearranged.cccccoeoeeevvveeeeieeiieeeieeee e 79
Figure 5.2. Two layouts of program statements: i oiiieeeeeeeeiiiiieeee e 79
Figure 5.3. The basic blocks involved in-a function.'éall. ... 81

Figure 5.4. The example illustrates_transfqrrr_{atioy between the ordinary and the variant
basic block. The left pseudo code is WhatﬁgQFG represents for..........ccocevveeenciiieenn, 84

I
Figure 5.5. Distribution of differentsizes of| basie blacks within each benchmark programs.

Figure 5.6. The contributions of (non-zero length) e(iges 1n object access graphs of
benchmark programs. The x-axis denotes number of edges arranged by the length in
descending order, from left to right. The y-axis represents the sum of edge length from
the left-most edge to the current position. The x-axis is cut-off at 30% since 30% of
edges contribute more than 90% of overall edge lengths.cocoevvviiiiiiiiiiiiiiiie . 90

Figure 5.7. The number of vertexes connected by the non-zero length edges in the object
access graphs. The meaning of the x-axis is identical to the previous chart. The y-axis
represents the sum of connected vertexes of the edges from the left-most end to the
(RN =y 01 Yo 1<) R o) s VAR 91

Figure 5.8. The chart shows the ratio between the sum of edge length and the number of
connected vertexes of benchmark programs. The meaning of x-axis is identical to the
y-axis of Figure 5.6, and the meaning of y-axis is identical to the y-axis of Figure 5.7.92

Figure 5.9 Pseudo code of KVM INterpreter.........ociiuiieeiiiiiieeeiiiieeeciieeeeeiieeeeeiveeeeeiveeeeeeveeas 97

X

Figure 5.10 Control flow graph of the Interpreter........ccoovveeiiiieeeiiieeeeee e 97

Figure 5.11. The organization of the interpreter at assembly levelcccccceeevveinrinennn... 98
Figure 5.12 Distribution of Bytecode Handler Size (compiled by gcc-3.4.83)eeeveeeeeennnnnen... 99
Figure 5.13 The CFG of the simplified INterpreter........cccveeiiveevveeeeeeeeeeeeeeeeeeeee e 101

Figure 5.14. An ICFG example. The number inside the circle represents the size of the
RANIALET. ..ttt et st e st e e nibe e 101

Figure 6.1. Block misses of bc by the four packing and placement implementation. The chart
juxtaposes the results from those working on different cache configurations; differ by
block size and nUMDber 0f SEtS (X-AXIS)....uvvviiieeiiiieiiireeeeeeeeeeeeireeeeeeeeeeeecrrreeeeeeeeeerenneens 118

Figure 6.2. Block misses of gawk by the four packing and placement implementation, from
experiments working on cacheg differ by blocks size and Sets. ..., 118

Figure 6.3. Block misses of grep by the four__packing_ and.placement implementations, from

experiments working on caches differ Ib§> g;)_ck$ size and Sets............coceeiiieiiiiinnn 118

Figure 6.4. Block misses of indent by the fltl)lilr pgekmgI and placement implementations, from
experiments working on caches;'vt.:l'iff(?ir ;by blocks!I gi_':z_e a.lnd SELS triiiiee e, 119
Figure 6.5. Block misses of the tcc by the.fou'r pa'ckir.l.g and placement implementations, from
experiments working on caches differ by blocks size and sets.........ccccceeeeveviiniiveneennnn. 119
Figure 6.6. Block misses of unzip by the four packing and placement implementation, from
experiments working on caches differ by blocks size and sets.........cocceeeevvveeeenciiineens 119
Figure 6.7. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of bc by the packing first and placement next
approach. The label aside the column indicates the total size of the cache of the given
experimental CONAITION.cvvviiiiiiiiiiiiiiee e e e e e e e e e e e e eeeeanrreeaaeeas 120
Figure 6.8. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of gawk by the packing first and placement next

21 0] o) KoYz 161 « NPT PURPPPPPPPPPRRPRRt 120

Figure 6.9. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of grep by the packing first and placement next
APPLOACK. ..ot e e e e e e et e e e e e e e et taraaaaeaeaans 121

Figure 6.10. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of indent by the packing first and placement next
2])) 40):¢) « NUUU R RO URTT 121

Figure 6.11. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of tcc by the packing first and placement next
21 0] o) KoYz [¢] « WU PP PPUPPRPPRRt 122

Figure 6.12. An overall observation, in both the respect of block size and cache set counts, of

the block misses caused by thelayout of unzib_ by the packing first and placement next

apProach.......cooevvievenveneenee o o, Lol TR 2 B, 122
Figure 6.13. Estimate the amount of data red(t;frpm ﬁlain memory by all cache misses (bc).
' | == | |
.. LP”“;A““¢;““"“”m““”““““““““““““““”””“u.123

Figure 6.16. Estimate the amount of data read from main memory by all cache misses
(ETUARILE). oottt et e et e e e e e e et e e e e e e et aaeeeeaas 124

Figure 6.17. Estimate the amount of data read from main memory by all cache misses (tcc).

.. 125
Figure 6.18. Estimate the amount of data read from main memory by all cache misses

(C722727 o) TR PP PUPPPPPPPPPRPPRRPRRt 125
Figure 6.19. Compare layouts of bc by packing and placement with other approaches. 126

Figure 6.20. Compare layouts of gawk by packing and placement with other approaches.126

Figure 6.21. Compare layouts of grep by packing and placement with other approaches.. 126

x1

Figure 6.22. Compare layouts of indent by packing and placement with other approaches.

Figure 6.23. Compare layouts of tcc by packing and placement with other approaches. ... 127

Figure 6.24. Compare layouts of unzip by packing and placement with other approaches.

Figure 6.25. Relative penalties of all benchmarks for the cases that block size are 64 and 128
Dy, 1ttt e e e e e e e — e e e e e e e tbta—aaaaaeeaaatrbraaaaeeeaattararaaees 128
Figure 6.26. Weighted relative penalties from benchmarks on a direct mapped cache...... 129
Figure 6.27. The miss counts caused by all kinds of layout of bc working on a fully
associative cache with FIFO replacement.ccccoevviiiiiiiiiiiiiiiiiiiiiee e 132
Figure 6.28. The miss counts caused by all kinds o'f-lay01_1t of bc working on a fully

associative cache with LRU replacement. 0o oo 133

Figure 6.29. The miss counts cause_zd by all F{_iiﬁ;_;é)_?lqyout of gawk working on a fully
associative cache with FIFO replacerlnirent.:.%.:_:\,.....:-. B 133
Figure 6.30. The miss counts caused”b'y _a_llh i{inds of lla.'y_c:)_ut. of gawk working on a fully
associative cache with LRU replaceﬁent. A 133
Figure 6.31. The miss counts caused by all kinds of layout of grep working on a fully
associative cache with FIFO replacement.ccc.cccoovvivvieiiiiiiiiiiiiieeeee e 134
Figure 6.32. The miss counts caused by all kinds of layout of grep working on a fully
associative cache with LRU replacement.ccc..coooviiiiiiiiiiiiiiiiiiieeeee e 134
Figure 6.33. The miss counts caused by all kinds of layout of indent working on a fully
associative cache with FIFO replacement.cccccccooeviiiiiiiiiiiiiiiiiiiiieee e 134
Figure 6.34. The miss counts caused by all kinds of layout of indent working on a fully
associative cache with LRU replacement.evvviveeiiiiiiieieeeiiiieeeeeeeeeeeeeeeeeeeeeeeeennnnns 135
Figure 6.35. The miss counts caused by all kinds of layout of ¢cc working on a fully
associative cache with FIFO replacement.oovvveviviiiiiiiiiriieeieieeeeeieeeeeeeereeeeeeennnnns 135

Figure 6.36. The miss counts caused by all kinds of layout of tcc working on a fully

associative cache with LRU replacement.cvvvvvvviviiiiiveeeririrereeereeeeeeeereeeeereeennnnnns 135

xii

Figure 6.37. The miss counts caused by all kinds of layout of unzip working on a fully
associative cache with FIFO replacement.oovvveviiiiiiiviiieiieiirieereeeeeeeeeeeeeeeeeennnnnns 136
Figure 6.38. The miss counts caused by all kinds of layout of unzip working on a fully
associative cache with LRU replacement.oevvvveviviiiiiveeerirerereeereeeeeeeeeeereereeenannnns 136
Figure 6.39. Relative penalties of all benchmarks for the cases that block size are 64 and 128
bytes on a fully associative cache with FIFO replacement.ccccccovvevevcriereennnennn. 136
Figure 6.40. Relative penalties of all benchmarks for the cases that block size are 64 and 128
bytes on a fully associative cache with LRU replacement...........ccccceevevvereecnvereennnennn. 137
Figure 6.41. Weighted relative penalties from benchmarks on a fully associative cache with
FIFO 1replacement.coouuviiiiiiiiiiecciiieieee e eeette e e e e e eetatae e e e e e e eeaaaaaeeaaaeeas 138
Figure 6.42. Weighted relative penalties from benéhmar_ks on a fully associative cache with

) IS O =Y 6 FoTeT=Y 0o T=Y o X R o S 0 0 139

Figure 6.43. Weighted relative penalties frq’rﬁ:&éﬁééﬁmarks on a set associative cache. 148
Figure 6.44. Perform packing and placeme!:rirt oﬁ!a SL;I:ilset of basic blocks. The percentage of
each column stands for the thré”s.hqlfi for screeﬂih__g_ b(;isic blocks by adjacent edges’
s (7 YOO AR A 151
Figure 6.45. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’
LENZENS (QALUR). et e e e et e e e e e e e et ar e e e e e e eeeaataaareaaaeeas 151
Figure 6.46. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’
1ENGERS (G7€D). oo e e e et 151
Figure 6.47. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’
1€NGENS (FRACILE). ettt 152
Figure 6.48. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’

|13 s Ve o YoIN (7] D 152

xiil

Figure 6.49. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’
18NGERS (LRZIP). oo e e e e e 153

Figure 6.50. Weighted relative penalties of all threshold levels for different cache
OTZANIZATIONIS. .uvvvviiiiieeeeeeeiitiiteeeeeeeeeeiitteeeeeeeeeeetreeeeeeeeeeeattaaeeaaeeeeaastaseesaeeesaaaasssseeeaeeeaans 153

Figure 6.51. Pack subsets of basic blocks for the fully associative cache, and calculate the
relative penalties of the packed layout and the original layout. (bc).........cccvvvvveeeen.nn. 155

Figure 6.52. Pack subsets of basic blocks for the fully associative cache, and calculate the
relative penalties of the packed layout and the original layout. (Sawk) 156

Figure 6.53. Pack subsets of basic blocks for the fully associative cache, and calculate the
relative penalties of the packed layout, and thé_ orig_inal layout. (grep) ...ccceeeeeeevecnnnne. 156

Figure 6.54. Pack subsets of basic blocks for the fully‘associative cache, and calculate the

relative penalties of the packed layouQ"E@Eél clzlriginal layout. (indent).................... 156

Figure 6.55. Pack subsets of basic-blocks fjb% th;g.__:_full.y:lassocia_tive cache, and calculate the
relative penalties of the packed'vl.ayqtiu'; andithe !o.lri_'gin.al layout. (£¢C)..cccvvvveeerrieeannnen. 157

Figure 6.56. Pack subsets of basic blocks.for'the'quSI associative cache, and calculate the
relative penalties of the packed layout and the original layout. (unzip)..................... 157

Figure 6.57. Weighted relative penalties of all threshold levels for different cache

OTZANIZATIONIS. .uvvvviiiieieeeeiiiiiiireeeeeeesettreeeeeeeeeeettrreeeeaeesassssrssssaaeessassssssassassessasssssssesaeesaans 157
Figure 6.58 Hierarchy of simulation environmentccccceeeveeeeeiiiieeeciieeeeeiieeeeeveee e 159
Figure 6.59. Entities in the refinement pProcess........coccveevuiieeeiciieeeeciiee e e e 160

Figure 6.60. The chart of the experimental relative penalty. Each line is an experiment
works on a given memory block size. The x-axis is the size of the cache memory
(number_of _bIoCks * DIOCR_SIZE).uuuveieeeeeecciiiiieee e ettt ree e e e e e eevaarae e 165

Figure 6.61. The chart of the experimental relative penalty. The x-axis is the number of

CACKE DIOCKS. .ottt eeaaaaaas 165

X1V

List of Tables

Table 2.1. Typical combinations of NAND flash blocks and pages.........cccccceeevveeeeeciveeeeennnenn. 16
Table 5.1. A briefing of benchmark programs..........cccccceeeeeiiiiiiieeeeeciiiieeee e e 87
Table 5.2. The basic block statistics of benchmark programs...........ccocevveeeiieeiiiiiineeeeeeeeeeeinn, 87
Table 5.3. The basic block statistics of object access tracesccoovvvveeeeeeeeiiiciiiieeeeeee e 87
Table 6.1. Cache misses caused by layouts of bc program and its relative penalties. 142
Table 6.2. Cache misses caused by layouts of gawk program and its relative penalties. ... 143
Table 6.3. Cache misses caused by layouts of grep program and its relative penalties...... 144
Table 6.4. Cache misses caused by:ayotuts.of indeﬂt- program-and its relative penalties. . 145
Table 6.5. Cache misses caused by l-éyouts-'otj tce p,rq'gram and its relative penalties......... 146
Table 6.6. Cache misses caused by'layoutsI (:;f ;%Lp Iiolijogram and its relative penalties.... 147
Table 6.7. Sub-graph size and compﬁt_atio?lcosfé}by Ifl:ilfferen’;'levels of threshold.............. 150
Table 6.8. Sub-graph size and compu.tationlcosts by. éifférent levels of threshold.............. 155
Table 6.9. Experimental cache miss counts. Data'of 21 to 32 pages are omitted due to being
1888 TEIEVANL. ..eouiiieie ettt et st st naae e 164

Table 6.10. Average accessed page of each bytecode handler and the bottom position of the

curves of relative PeNaAltY.......ccccccooiiiiiiiiiii e 166

XV

Xvi

Chapter 1

Introduction

1.1 Motivation

The memory hierarchy of a computer syé'tem breaks into levels by speed and
capacity. A higher-level memory-has shorter aceess time, but the unit cost of capacity is
higher. On the contrary, a lower-level mem;)%'y offersdarge capacity but suffers slower
access time. Cache memory is a (;Qmp_romi-s;i:ng a.pproach for accelerating access to a
large amount of data. A cache is a tem'porary-storag; arca resides in the faster memory.
It constantly holds frequent-accessed items duplicated from the slower memory or
secondary storage. Therefore, access operations to the slower memory can be replaced
with fast accesses to the cache memory once it holds desired data items. This is how
cache memory helps to increase the system performance. There are several ways to
improve the cache performance. One aspect is to increase the cache hits (or reduce the

cache misses, vice versa). If the cache memory can hold more active data items, one can

decrease the accesses to the slower memory.

There are several factors affect cache misses. One among those is the arrangement
of code/data items, or say object, in the memory space. The term “object” can be a

program variable in the main memory or basic blocks in programs. The activities of

accessing objects are actually manipulating contents in the cache memory. The activities
comprise a series of invalidating cache blocks and loading memory blocks, and cause

consecutive cache hits and misses.

The address number is the key parameter of the cache mapping function. It
determines the placeholder in the cache memory for an object associated with a given
address. The address translation consists of arithmetical steps. The activities of
accessing objects can be considered as manipulating contents in the cache memory. A
cache memory accesses main memory by blocks, and the address space is segmented
into blocks. As a result, the access.activities (.:-()mprise a series of invalidating cache
blocks and loading memory blocks, andxcau_s.e- consecutive cache hits and misses.
Besides, the objects belonging to the_sa;uf%:'s'ét contend for the same cache block.
Summarizing these factors, the a.ls_,s_ignnient-z(:)f address -numbers to objects indirectly

affects the activity of accesses to the cache memory and the occurrences of cache

misses. This is the origin of the object placement problem.

The problem is not a new topic in the study of compilers. At the code generation
stage of a compiler, it has to assign basic blocks in a control flow graph to the linear
address space. That is to render instructions following a certain arrangement. The
arrangement of instruction codes may incorporate with the optimization process for
memory hierarchy (as discussed in [1]). Furthermore, this problem can be applied to

arrange general data items in the memory or storages beyond the optimizing compilers.

Typical object placement methods consider that an object is roughly the same size

as one cache block and memory block, e.g., Gloy ef al. [2]. That implies a memory

block can hold one object. This is true in many real applications. However, there are
also real applications that a memory block is bigger than an object. Therefore, a
memory block can gather a number of objects. The nature of some architectures leads to
large memory blocks and cache blocks. This is significant to embedded systems, since a
processor or a program often manipulates memory devices with large storage blocks
directly. For example, a modern embedded processor may have built-in NAND flash
memory interface, and the program can interact the chips directly. The unit of a read
operation of a NAND flash memory is a page with 4096-byte in size. In this case, one
flash page can gather several data objects., Thesassignment of data objects to flash pages
can affect the number of the accesses-to.the ﬂ;d-éh memory by a program. This causes

one of the performance issues for embedded systems.

- -
=
i

Properly grouping objects to. mempfy b-fécks .can help to gather more information
being used into cache blocks, and reduce cache'm;sses eventually. Consider a simple
example that accesses objects (a, b, ¢) in the following order {a,c,a,c,b}. It is easy to
find that packing (a,b) into one memory block can cause more misses than packing (a,c)
together. The policy is to figure out closely appeared objects and packs them together
into a group. Eventually, this policy acts like a predictor that helps to load the objects
being used in advance. When object a is loaded into the cache for the first access
activity, object c is loaded spontaneously, because both of them are located in the same
memory block. Therefore, the next access activity can reach object ¢ immediately

without any miss.

These preconditions make assigning addresses to objects a complicated problem,

and it is not covered by other pioneers’ works. Our study suggests the address

assignment task must incorporate two movements into one. The first is interleaving
objects between cache sets. The second is gathering objects to fit one memory block.
We term the first movement “placement” and the second one “packing”. This
dissertation presents a systematic approach in dealing with this problem. Our approach
uses profile information as a guide to arrange objects in the memory spaces. The profile
information is used to create object access model. The relations between the object
access model, cache configurations, and the origin of cache misses are investigated.
Finally, our research proposes a technique to generate object layout that can be expected

to improve cache performance.

1.2 Usefulness

4= NIY

Our approach is good for the real application that needs to gather objects to one
block. Consider the scenario of interfacing to a file system. A file system segments a
file and save them to the storage units, or say blocks, clusters, or chunks in different
terms. For instance, the Ext2 file system, widely used in Linux ([3]), supports block size
of 1024, 2048, or 4096 bytes. That means a block can hold some records of the file. If
all the records are randomly arranged, it leads the possibilities of accessing each block
distribute uniformly. That means the process is apt to access blocks absent in the disk
cache, and the benefit of using the disk cache is reduced. However, if the record
arrangement follows our approach, the locality of accessing blocks would be improved.
Precisely speaking, the process is likely to access blocks reside in the disk cache within

a certain duration.

NAND flash memory plays multiple roles to a computer system. It can be used as a
secondary storage device, as well as a non-volatile memory that directly connected to a
CPU. Because of the hardware characteristics, demand paging is a common technique
used to interface NAND flash [4]. Therefore, there are challenges in using NAND flash
in an embedded system. Using NAND flash as code memory is called execute-in-place
(XIP), and we shall discuss about XIP in the next section. On the other hand, in either
the respect of NAND flash page or block, a storage unit is large enough to hold several
data objects together. Naturally, storing data objects in NAND flash also faces the

packing and placement problem.

L ALY

1.3 Scope and Organization

e [-=——=- I
. |
% IS Classify data objects Classify code objects Analysis the program : Java |
T 3 from the problem in programs using a structure of a Java | |
= Programs
wn g domain compiler virtual machine : 9 :
o8 e i
£ |
)
£ 8
R L
o\ Capture trace Use profiler to capture C‘?‘pture mfilrect e
fugp' . . . - - information of the
SN information of generic trace information of
Y - ; executed Java
o data objects code objects
50 programs
-~ K
$
& Usi king and pl hni bject 1
g S sing packing and placement techniques to generate object layout
53
2
5
‘B a For Fully Associative For Direct Mapped For Set Associative
53 Cache Cache Cache
v}
O ~
&3
3 %
Q X
[=l . |
ol

Generate a refined
program with give
code object layout

Generate a refined
Java virtual machine

Arrange data objects
in the memory

Post-Processing Stage
Object Class-dependent

Figure 1.1. The framework of manipulating packing and placement for cache memory in
different problem domains.

The main purpose of this dissertation focuses on modeling the object packing and
placement for the three major kinds of cache organization. In addition, the treatment to
different field of applications is also included in this research. Figure 1.1 illustrates the

entire framework associated with the object packing and placement process.

The top part in the framework prepares parameters that are used by the packing and
placement algorithms. The mission of the top part is to mark out the scope and

organization of the objects to be dealt with. Its mission also includes measuring runtime

usage of objects for profile information. The techniques used to collect the profile
information vary by the field of application. Dealing with generic data items can be
straightforward. Technique for program code arrangement may involve with the study
in compilers. The arrangement of a virtual machine, like Java Virtual Machine, can be a
unique class. Developing the technique requires insight into the design of a virtual
machine. Therefore, it deserves a detailed discussion in this dissertation. All these

relevant techniques are presented in Chapter 5.

The block in the middle of the framework can be regarded as a black box. The
inputs of the black box are parameters descﬁ-bes object characteristics and profile
information. The mission of the black box-is ge_ng:rating object layout for a specific type
of cache memory. The design of, the bl&%{box is the core of our research. To
characterizing the nature of the pfob_lem, this ;éisse.rtation-formulates the problem model
in Chapter 3. A thorough understanding of.the pgoblem model helps us to propose

solutions of packing and placement problems, in Chapter 4, that practical enough to be

utilized in real compilers or applications.

Chapter 6 has a series of experiment that utilize the proposed techniques to face
real application. The experiments demonstrate the proposed techniques should work

fine with program code arrangement on different cache organizations.

Before digging into the major article of this dissertation, Chapter 2 shall widely
survey topics related with our research and explain why the pioneers’ works did not

cover our research subject.

Chapter 2

Background

2.1 Memory Hierarchy

A computer system may require.a large mer-nory for storing program and data. Not
all of them are accessed by the computer-system simultaneously at any moment because
of the principle of locality ([5]). A compu;:%ional process typically accesses program
codes and data items in the memory‘in a cl-l;.stered manner. The locality behavior has
two extents. Temporal locality models the access a(.:tivties along time axis. A temporal
locality set of objects are likely to be referenced occasionally within a given period.
Spatial locality means that a process is likely to access objects in several geometric

neighborhoods in storage devices during the whole lifetime.

CPU

dryo oy urgum

Level-1 Cache

Level-2 Cache

Main Memory

Hard Drive / CDROM

Figure 2.1 The memory hierarchy.

The memory hierarchy is a compromised approach to manage massive code and
data objects in an efficient way. As shown in Figure 2.1, memory devices are stacked by
access speed. The fastest memory is attached to the CPU directly, such as an on-chip
static RAM. The slowest memory device is placed in the bottom layer, such as hard
drive or CDROM. Objects are loaded to the upper layer before being used. Because a
small portion of objects will be used, the capacity of the upper layer is usually smaller
than the lower layer. The concept can be applied to many places in a computer system,
such as the CPU cache in a processor, TLB to paged memory management, and virtual
memory in an operating system [6][7]. Technically speaking, the system design policy
can freely devise the scheme of exchanging.(-')bjects between the upper and lower

memories. However, cache memory plays an important role for this purpose.

1

4 2 Y

2.1.1 Cache Organization

Cache memory is a mechanism dedicated for using a piece of small and fast
memory to manipulated data contents stored in a large and slow main memory. In
respect of functionality, it is a set of protocol to manage buffers in the memory. A cache
memory consists of cache blocks (cache lines), thereby dividing the main memory into
blocks. When a processor is about to access raw data in the main memory, raw data are
transferred to cache block from main memory on block basis. The modified raw data are
written back to the main memory from a cache block on block basis as well. Selecting a
cache block for swapping a specific memory block is very important. That mapping is
the origin of cache misses. By the method of mapping memory blocks to cache blocks,

cache memories can be classified into three types as follows.

10

e Direct Mapped Cache

The cache blocks a separated into isolated sets. Conversely, each cache set has exactly
one cache block. For a direct mapped cache with K cache sets, there are K cache blocks
available. For a given memory address x, the formula (2.1) is used to calculate the

corresponding cache set k.

_L xmod K J (2.1

cache block _size
In other words, all the memory blocks are:divided into K sets, and each memory
block is mapped to a fixed cache set-Memory .b.locks belonging to the same cache set
have to contend for the only one cachebl__qgkr If a cache set holds unwanted memory
block, it will be invalidated, and loads !thg;j_‘é;r.na_nded memory block into that cache
block. This leads to a conflict miss. Di;ect- ;nap',lf.)e._d cache is popular because of the

simplicity in cache block management:: However, the conflict misses could be awesome

in the worst case, as discussed in Hill’s work [8].
e Fully Associative Cache

There is no restriction in mapping memory blocks to cache blocks. A memory block can
be swapped to any cache blocks in this configuration. If there is no cache block contains
wanted memory block, the cache system have to invalidate a victim cache block and
load the desired memory block into it. Choosing the victim cache block uses a sort of

replacement algorithm. Such kind of cache misses is called a capacity miss.

e Set Associative Cache

11

It can be regarded as a combination of the above two organization. The cache blocks are
grouped into K sets, as a direct mapped cache. Each cache sets has N cache blocks,
where N > 1. The term N-way describes the capacity of each cache set. When the
processor is about to access a memory block absent in the k-th cache set, the cache
memory uses the replacement algorithm to choose and invalidate a victim cache block
in this set. The reclaimed cache block is used to hold the wanted memory block. The

activity within a cache set is identical to a fully associative cache.

It is worth to briefly survey the replacement algorithms. Belady has made intensive
research in these algorithms ([9]).'Smith'[10] c.ategorizes the replacement algorithm to

three classes.

3-\i¥

e C(Class 1 — They are non-usag.e:b_ase:c} algérithfns. It -assumes all the blocks shares
equal usage frequency. The choice of ¥ictim pag:es has no concern with the activities
of accessed items. FIFO and random replacement (RAND) are the in this class.

e C(lass 2 — They are usage-based algorithms. They make decisions based on history
or other statistics, such as LRU.

e Class 3 — The algorithm knows everything, past and future. That is the optimal

algorithm, or denoted as OPT in the relevant literatures.

OPT algorithm is for analytic purpose. It is not used in real cache memory system.
LRU usually outperforms than FIFO and others, but it is too costly to implement LRU
in a real system. There are pseudo LRU algorithms ([6][11]) approximate LRU, such as
the one used in the Intel Pentium processor [12]. FIFO and RAND are the simplest in

implementation and widely used in many primitive computer systems.

12

The performance of the cache memory can be evaluated in terms of the average

access time, as the Equation (2.2), defined in [5].
Average memory access time = Hit time + Miss rate x Miss penalty (2.2)

The Equation tells that performance of the cache memory is dependent on cache
miss rate. The lower cache miss rate leads to higher performance. In the book by
Hennessy and Patterson [5], they enumerate the techniques in reducing cache misses.
Two of them are related to our research. The first is to enlarge the cache block size, and
the second is using the compiler to generated code_and data optimized for the cache
memory.

¥

The size of a cache block’ concéﬁns \Eiv'ith.'the furidamental assumption of our
proposed packing and placement. bro:blem,_ because darger block can gather more
objects. Smith [10] has discussed the pro and con of small and large cache block (and
also discussed in [13][14][15][16][17][18][19][20][21]). The advantages of the former
become the disadvantages of the later. Naturally, it takes less time in transferring data
from main memory to a small cache block, and it reduces miss penalty. Conversely, the
overall miss count is higher while transferring a fix amount of data in contrast to the
cache with large cache block. Large cache block has advantages in simpler hardware
circuit because of the smaller tag memory. Therefore, the search cost is reduced. It can
result to shorter access time for “hits”. On the contrary, one of the disadvantages for
typical applications is that a cache block may contain many unused data in respect of a

small locality. Nonetheless, this disadvantage can be suppressed by putting more

13

information being used in a cache block. Such that load them in one time can be more

efficient.

The choice of small or large cache block depends on several factors. The first is the
geometry of the main memory. The readable/writable unit of the main memory usually
bounds the minimal size of cache block. Besides, for high transfer latency (transmission
overhead) and high bandwidth main memory, the choice of the cache block is in favor
of large ones. That causes minor increasing in miss penalty in contrast to small cache
block. Since the increasing in bandwidth is a technology trend, it implies larger cache

block size can be a trend as well.

. -

Programmers and compilers can helf; tzﬁfﬁange code and data items in a program.
This is the origin of our researcl.l.? _The:r;: ar'é: sevéral aggressive ways to help skillful
programmers to increase the localities of their prog;rrams, such as rewriting the loops,
changing the directions of iterating arrays (such as [22][23]), or incorporating

cache-aware algorithms (for example, graph algorithms optimal for caches in the work

of Park, Penner, and Prasanna in [24]).

There is another kind of approach to refine the locality. By altering the code or data
placements in the memory or storage devices, it is possible to improve the spatial
locality [1]. The intuition is to gather frequently used objects into one area; therefore,
the spatial locality of the process is changed. The cache memory loads the concentrated
area and satisfies most of accesses. A further step is considering the cache organization
besides locality while creating the placement, such that the placement is more efficient

in increasing cache hits for the given application.

14

2.1.2 XIP and NAND Flash

In a regular computer system, RAM is the major addressable component in the
main memory space. The operating system loads a program from storage devices to
RAM before execution. The CPU fetches machine codes from RAM and carries out
instructions. Since a program should not modify itself, the RAM for placing program

codes (called code memory) is treated as ROM.

However, a low-level embedded system seldom has sufficient RAM as a desktop
PC does. In such circumstance, it becomes expansive to use RAM as code memory.

Using ROM to serve as code memory is, a‘;g_laésical appfoach, but it is not rewritable,

— -,
g

impossible to update programs. Therefore, I:EOR flash memory is a popular alternative
because its physical interface is ide’nticél: to ROM., A NOR flash chip can be connected
to processor’s host bus and it is good. for prbgréms to execute-in-place (XIP) without
extra hardware ([25][26]). Its programming interface (erasing and writing) is quite
straightforward, and designers do not have to worry about bad block management.
However, NOR flash memory is small in capacity, the trend is migrating the code

memory to NAND flash memory ([27]).

NAND flash memory has some important characteristics. The storage space
consists of blocks. An erase operation is performed on block-basis. Each block consists
of pages. The read operations are performed on page-basis. It does not allow random
byte access, and the CPU must read out the whole page at a time, which is a slow
operation compared with access to RAM. Table 2.1 lists typical combinations of blocks

and pages.

15

Table 2.1. Typical combinations of NAND flash blocks and pages

Block Size (bytes) | # Pages / Block | Page Size
16K 32 512
256K 64 4096
512K 128 4096
ROM, or
NOR Flash.
3 with
(28 o Bootloader
5 3 r
NAND 3 > ¢ CPU
Flash 3 =
=) > Address/Data Bus
T <
g
3

Figure 2.2. Execute programs stored. in'a NAND flash. memory by using a shadow RAM

These properties cause a processor haf:&ly .to execute programs stored in NAND
flash memory using the “execute—in-plaéé” (XTIP) -technique. Nowadays, most
implementations treat NAND ﬂash.memories as second storage devices like hard drives,
the system duplicate entire content including both program code and data from NAND
flash memory to a shadow RAM (as the configuration in Figure 2.2). Although this
implementation is straight forward, but there are several drawbacks. First, it requires
RAM large enough to hold everything regardless of useful content or not, sometimes up
to 1 GB. After system boot, NAND flash memory is useless. The run time performance
is definitely good because everything is already in RAM, but it is obviously uneconomic
for small-scale embedded system. Second, the system suffers from long boot delay due
to waste time in reading everything from NAND flash memory to RAM, it could take
15 seconds to download entire content from 512M NAND. Third, if the program code

grows beyond original design, both NAND flash memory and RAM must upgrade

together.

16

______________________ .
1
|

Optional :
i ROM, |
& NOR Flash > I
= o
< o |
o o |
NAND 3 | @ I
Flash Memory < ol | CPU |
5 2 |
g @ !
8 G !
Cache |
> RAM :
1

Figure 2.3. Execute programs stored in a NAND flash memory by using a cache.

Yet another approach is adopting a memory management unit (MMU) and a small
cache memory. Program codes always residentin NAND flash memory. CPU will fetch
instructions from cache memory. When CPU ié about.to run a code fragment absent in
cache memory, MMU will load''code 'fyggmenfs from~NAND flash pages to cache
memory. A system may implement, such E:nd of MMU by either hardware (as the
configuration in Figure 2.3), such.as Pafk e-t:-al. 'in_[28], or by the operating system’s
virtual memory mechanism. This is known' as “‘execute-in-place”, which efficiently
utilizes NAND flash memory without leaving it alone after boot, and retains precious

RAM resource to applications.
2.2 Graph and Combinatorial Algorithms

In this dissertation, we try to transform the modeled problems to well-known graph
problems. Since there are rich researches dealing with these well-know problems, which
implies our modeled problems can be handled by those pioneer researches. Two
well-known graph problems were adopted in our research. The first one is graph

partitioning problem, and the second is the MAX k-CUT problem.

17

Definition 2.1 GARPH-PARTITIONING. Graph G=(V,E) weights w(v)eZ" for each
veV and length l(e)eZ" for each ecE. Given K, Je Z', find a partition of ¥ into

disjoint sets {V;, V,,..,V, } such that 3, _,. w(v) < K. Such that if E’CE is the set of

edges that have two endpoints in two different set V;, then 3., _ - I(e) <J.

Graph partitioning problem is known to be NP-complete, as discussed in the book by
Garey and Johnson [29]. It is a widely surveyed in many researches, so we review only
key development in this topic. MIN-BISECTION is a simplified version of it. That
breaks a weighted graph into two parts and minimizes the sum of inter-partition edges.
Some graph partitioning heuristics’ are done by recursive invocation of
MIN-BISECTION until generating desi.red?;zrll}_l:pi.ber of I;artitions. These methods are
surveyed in Wang et al. [30]. Furthefn:lor;ag.; the {local-refinement technique partially
exchanges elements in given partiti;)hs_tfo get bettér results. Kernighan and Lin [31] first
propose local refinement method to refine thé bisection partitions, and there are many

improved heuristics based on their approach.

Alternatively, Hendrickson and Leland [32] propose a multi-level scheme to solve the
graph-partitioning problem. The whole process contains three major steps. The first step
constructs a coarse graph by using the maximal matching, which merges vertexes to
coarser vertexes and preserves the properties of the original graph. The second step uses
global partitioning algorithms to generate unrefined partitions, and then use
local-refinement algorithms (i.e., method by Kernighan and Lin) to generate desired
number of partitions. The third step uncoarsens each partition and restores the vertexes

within it.

18

Definition 2.2 MAX k-CUT. Given a weighted graph G=(V,E). Let Wi denotes weight

of edge e The aim is to partition V into K subsets, as partition P={P ,P,,..P,-}, where

K>2. Maximize the total weight of inter-partition edges, as maximize the following

equation.
wP)= 2 Wi 2:3)
I<r<s<KieP,,jeP,
MAX k-CUT is known to be a NP-complete problem, as discussed in [33][34]. It is
a generalization of the other two well-known problems. In the case of K=2, it becomes
the MAXCUT problem. It is a NP-hard problem as discussed in [29][35]. Applying

MAX k-CUT to an unweighted :graph, or say§w_l,J=1 for any i and j, it becomes the

k-COLORING problem. k&~-COLORING] ?far;‘-.?;g.‘;c".hsed for resolving resource confliction.
For example, it is used to assign fe_,gistqré to-i;aria?‘t..)les dufing the code generation stage
of compilers. Aho et al. have explained using a 'k-éOLORING heuristic algorithm for
register-allocation in their book [36]. It is no wonder that some prior researches in
code/data placements adopt <~-COLORING (shall be discussed in Section 2.3.1), since
they aim to resolve conflicts of assigning cache sets (colors) to code/data fragments

(vertexes).

Since MAX k-CUT is NP-hard, it is not possible to solve it in polynomial time
unless P=NP. Pioneers seek for approximation algorithms in polynomial time. A simple

random method that randomly distributes vertexes to partitions is a k-1 -approximation

k
algorithm ([33]). The technique of semidefinite programming (SDP) is widely used in
dealing with combinatorial optimization problems. Goemans and Williamson, in

[37][38], use SDP to provide an approximation algorithm for MAXCUT problem. The

19

techniques in solving MAXCUT inspire the development in solving MAX k-CUT.
Frieze and Jerrum [39] generalize the work of Goemans and Williamson and use SDP
and randomized algorithm ([40]) to provide an approximation algorithm for MAX
k-CUT problem. We briefly restate their approach here. The original problem can be

formulated as follows:

Given G=(V,E), |V|=n, and maximize % Z wii (1= X55),
i<j

such that X, . =1 and X. .=_—1, VijeV.
ii ij k—1

Using the technique of SDP relaxation,the constraintof Xl.j is changed as follows:

L ? b :
X;;2—= and =X =0", VijeV.
i =\ '. L

The next step solves XZ{XZ.].}, and find unit vectors {v], v2,...,vn}, such that

vl.T V= X ij - Meanwhile, it generates k£ random unit vectors {r 15 e .,rk}, and assign

cach vertex i to a partition P, as long as v, is close to r,.

There are successive researches that improve the work of Frieze and Jerrum,
including Klerk, Pasechnik, and Warners [41], Kann et al. [42][43], Coja-Oghlan,

Moore, and Sanwalani [44], and Ghaddar, Anjos, and Liers [45].

" Xmust be an 7xn symmetric, positive semidefinite matrix.

20

The above approaches using SDP can provide good approximation, but it could
take long time for solving SDP (as discussed in [46]) in real applications, such as using
it in VLSI layout. Therefore, Kahruman et al. [47] propose a greedy heuristic for
solving MAXCUT. Their algorithm iteratively separates endpoints from heavy edges
into two partitions. Our algorithm devised in this dissertation (Section 4.2) shares the
similar concept with their method. Cho, Raje, and Sarrafzadeh [48] propose a
linear-time heuristic for solving MAX k-CUT. Their approach uses a MAXCUT

heuristic and recursively breaks a graph into 2" partitions.

2.3 Related Works"

o ANV

2.3.1 Placements

Code placement is a topic closed to our research. Each of these researches usually
comprises two parts: the first part models the control flow. The second part places the
code fragments to the memory space using certain heuristic approaches. Some
placement heuristics try to avoid conflict miss for set-associative and direct-mapped

caches, and the others wholly ignore the characteristics of the cache memory.

Hwu and Chang incorporate basic block and function placements in their
IMPACT-I C compiler [49]. Profile information of the compiling program must be
provided upon compilation. The compiler constructs the weighted call graph of basic
blocks with profile information. Then, it selects popular execution traces and uses them

to arrange basic blocks and functions in the memory. The trace selection algorithm is

21

discussed in [50]. Its concept is to build the trace of executed basic blocks by calling
frequency. The generated program is expected to cause less cache misses while

execution.

McFarling [51] uses directed acyclic graph (DAG) to represent the program
structure, and use the DAG to evaluate the code placement in set-associative cache.
Then it uses a labeling procedure to arrange codes. The work of Pettis and Hansen [52]
is the classic in code placement. The approach creates the weighted procedure call graph
(WCQG) of the program, each vertex represent a procedure. It iteratively merges vertexes
connected with the heaviest edge until no mofé edge left. The steps of merging the

WCG determine the placement order'of procedure blocks.:

\ -

Gloy et al. [2][53] criticizé Fhe i:.nlsuff:'fé-ien_c.y of. tﬁe weighted call-graph. They
indicate that WCG provides neither. the imp_ortancé of conflicts between siblings nor
more distant temporal relationships. They proposed the construction of temporal
relationship graph (TRG) to capture temporal information. The vertexes of the TRG are
the sliced code trunks, and each trunk properly fits one cache block. Their approach
iteratively merges the TRG, similar to the merge procedure by Pettis and Hansen. It
determines the relative placement and distributes trunks into cache blocks to avoid
conflict misses. Calder et al. [54] apply the similar technique (TRG) to arrange data
items (local variables, heap) generated by a compiler. Furthermore, Sherwood, Calder,
and Emer, in [55], realize the TRG technique by hardware. Guillon et al., in [56],
improve the approach of Gloy et al. in [2][53]. Gloy’s approach slices procedures into

fractions and places them to align cache blocks, thereby expanding the code size.

22

Guillon et al. provide an enhanced version that reduces the useless gaps between

fractions.

Hashemi, Kaeli, and Calder propose a coloring-like approach that arranges the
procedures for direct mapped cache [57]. First, it breaks each procedure into pieces, and
each piece fits a cache block. A weighted call graph of procedures is created and used to

determine the order of applying a coloring heuristic.

To avoid conflict miss, it had better to map a pair of caller/callee procedures to
disjoint cache sets. For example, pr_ocedure A calls procedures B, and procedure B
returns to procedure A at last. If procedure A and B share.the same cache set, procedure
A will be discarded from cache* when itf ééﬁé..'ﬁrocedure B. At the time returns from

procedure B to procedure A, it causes a cache miss due to reloading procedure A back

to the cache.

The concept of the coloring heuristic is to interleave procedures to different cache
sets. If there is an edge connects two procedures in the call graph, they should be
painted with different color. This policy is equivalent to place them to different cache

sets.

Instead of WCG or TRG, Kalamatianos and Kaeli, in [58], propose to construct a
Conflict Miss Graph (CMG) to manipulate the placement of procedures. The vertexes of
the CMG correspond to procedures. The weight of an edge is the highest cache misses
possibly cause by two incident procedures. In another respect, higher cache misses

implies higher affinity between two incident procedures. Their approach divides a

23

procedure into pieces and uses a k-coloring algorithm to interleave procedure pieces to

cache sets. The edges of the CMG are used to determine the steps of coloring.

The approach of Janapsatya et al. [59] finds out the loop structure from the control
flow graph (CFG), and divides the CFG into pieces. The last stage is addressing code
block ordered by usage count. It considers cache blocks when assigning code blocks to
real addresses. The work of Tomiyama and Yasuura, in [60][61], breaks the WCG into
traces. The approach constructs traces that the sum of weights of edges in the traces is
maximized. The traces are used for the reference of distributing blocks into cache
blocks. They adopt an integer linear programiﬁing (TLP) algorithm to minimize the

cache conflict misses and assign addresses-to blocks.

=] li ﬂ-‘l -'.

Um and Kim propose a code plac,emen't::appr.oach [62] which uses the concept of
scheduling in real-time system. Their approach treats a code block as a task and cache
sets as processors. The goal is to schedule these tasks (code blocks) to processors (cache

sets) and complete the mission as early as possible.

Data placement deals with arranging and packing data objects. It is similar to “code
placement” problem in many ways, but not necessary to analysis the program structure.
The approach of Chilimbi et al. [63] has two strategies: clustering and coloring.
“Clustering” is dividing the hierarchy tree of the data objects into sub-trees. The size of
a sub-tree fits for a cache block. Because the data objects within the same sub-tree are
likely to be accessed simultaneously, packing them into the same cache block should
reduce cache misses as shown in the experiment. “Coloring” is distributing sub-trees

into cache blocks so that accessing should causes less conflict misses, and data objects

24

within the same sub-tree are arranged by access frequency. Similar researches in
restructing abstract data structures in a program include Panda, Semeria, and Micheli in
[64], Rabbah and Palem in [65], Palem ef al. in [66], Chilimbi, Davidson, and Larus in

[67].

What is the nature of the placement problem? The works of Petrank and Rawitz
[68][69] discover the principle of the placement problem. They conclude that finding
optimal placements for direct mapped and set associative caches is a NP-complete
problem. As a result, there is no efficient approach to find optimal placements, and one
can only use heuristics to generate placements..-' Furthermore, the comparison of such
heuristics is meaningless, and “th¢ measure .of such: algorithms should be their
improvement over existing non-cachefco;l:;s%i.bhs algorithms on given benchmarks.”
Nonetheless, their works excludé fully 'aSS(-)ziati.\;e cacl-le from discussion. Since the

addresses of arranged blocks in the memory makes no-difference to their activities in the

cache memory.

Panda, Dutt, and Nicolau (in [70], also in Panda et al. [71]) propose an approach to
pack variables to fit cache block and distribute the block of variables to cache sets. They
first create a “closeness graph” (CIG) of variables from the access sequences. The graph
is used to create “clusters” for grouping variables. The grouping algorithm iteratively
performs a knapsack heuristic to create clusters. Finally, the generated clusters are
distributed to cache sets using a coloring heuristic. Their research has involved with
both the packing and placement movements, but their approach can process unit length

variables only in contrast to our work.

25

Some placement researches focus at specific field of applications. There are
code/data arrangement techniques focused on reducing power consumption, as in the
work of Parameswaran and Henkel in [72], Choi and Kim in [73][74], and Hettiaratchi
and Cheung in [75]. Their common feature is to introduce parameters of DRAM, e.g.,
burst cycle, and power consumption, to characterize the placement problem. Kulkarni et
al., in [76], propose a cache-conscious technique to arrange multimedia data embedded

in C source programs.

2.3.2 XIP and NAND Flash

Park et al., in [28], propose a hardWéIél:dll)Q'dﬁle to allow direct code execution from

- -
=

NAND flash memory. In this approach, proéi‘;i_rﬁ codes stored in NAND flash pages will
be loaded into RAM cache on-demand linstead of moving entire contents into RAM.
Their work is a universal hardware-based ssolution and does not consider

application-specific characteristics.

Samsung Electronics offers a commercial product called “OneNAND” based on
the same concept ([77]). It is a single chip with a standard NOR flash interface.
Actually, it contains a NAND flash memory array for storage. The vendor intents to
provide a cost-effective alternative to NOR flash memory used in existing designs. The
internal structure of OneNAND comprises a NAND flash memory, control logic,
hardware ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three
buffers: 1KB for boot RAM, and a pair of 2KB buffers used for bi-directional data

buffers. Our approach is suitable for systems using this type of flash memories.

26

Park et al., in [78], propose a pure software approach to achieve execute-in-place
by using a customized compiler that properly inserts NAND flash reading operations
into program code. Their compiler determines insertion points by summing up sizes of
basic blocks along the calling tree. Special hardware is no longer required, but in

contrast to earlier work [28], there is still a need for tailor-made compiler.

2.3.3 Locality

The principle of locality is the foundation“te all researches in the related fields.
Peter Denning, in his early research [79], stated-that there are “localities” in the

execution trace of code blocks. Therefore, the gf_ohcept of "‘working set” is introduced to

— -,
g

observe the usage of memory pages of| a pchess Later, he began to use the “locality
set” to explain the memory demands of 2'1 program (as stated in [80] by Denning). The
memory block access trace of a prograﬁ is.a concatenation of a series of locality sets. In
[81], Denning defines the measure of “locality” as the distance from a processor to an
object x at time ¢, denoted as D(x,#). An object x is said to be in the locality set means
the distance is constraint by 7, that is, D(x,t) < T. Therefore, the phrase “better locality”
in our research always means the locality set has more elements under the same

constraint.

2.3.4 Other Related Topics

The work of Rubin, Bodik, and Chilimbi [82] focuses on a framework to evaluate

cache performance of a given data placement for the cache memory. Since it is difficult

27

to manipulate a large amount of trace data, their framework introduce a technique to
“compact the trace”. The approach finds out the “grammar” of the data access traces.
They use Nevill-Manning’s SEQUITUR algorithm [83] to represent the trace as a
context-free grammar (derived from the previous work [84]), and the grammar is used
to distribute data objects into pages. Chilimbi and Shaham, in [85], extend similar

approach to place data items over direct-mapped and set-associative caches.

The idea of packing programs to fit virtual memory pages is a classic topic. In
early 1970s, Ryder [86] proposes to pack small programs to fit one virtual memory page
so that it reduces paging. The approach’is apblied to early multi-program operating
systems like IBM OS/VS2. Hatfield and xGer_al.d, ' [87], discuss a similar problem

aimed for arranging relocatable Sectors (ﬂ?ﬁi"ch are smaller than pages) within a

program.

Nevertheless, modern processor architectures still face to similar challenges. As
stated, the placement problem involves not only the characteristic of the storage media
but also the processor architecture. Rong Xu and Zhiyuan Li discuss the cache mapping
problem for the processor with partitioned cache, e.g., Intel StrongARM SA-1110 and
the Intel XScale [88]. In a processor with partitioned cache, the software can control the
cache zone that a memory page maps to it. For example, a memory page can be mapped
to main-cache, mini-cache, or non-cacheable area. Since there are capacity limit,
choosing which and how to mapping data items is a combinatorial problem. Their
research proves the problem is NP-hard. Therefore, they propose a greedy algorithm to
fit the most accessed pages into caches. The algorithm enumerates every memory page

to evaluate the cache misses when the memory page is mapped to main-cache,

28

mini-cache, or none. The iteration order is controlled by conflict weights of memory
pages. The conflict weight is the number of interleaving access between the undecided
and decided memory pages. This approach offers 1% ~ 2% improvement in cache
misses, but the heuristic takes O(m’n) where m is the number of pages and # is the

number of memory accesses!

A program written in an object-oriented language may contain a large number of
data objects. The layout of contained data objects effects memory performance. One of
the issues is accessing to scattered objects. in the memory could causes higher cache
misses. Stamos [89] has surveyed the _relationshiﬁ of Smalltalk runtime environment and
the virtual memory. Because a vittual memory page can holds several Smalltalk objects,
grouping objects to fit virtual pages can réﬁuce page faults. The approach statically
traverses the object forest in a ceftgi_n order (DFS, .BFS, c->r by object type) and expands

the data layout in the memory. The. approach improves the spatial locality of data

objects in the virtual memory.

Modern object-oriented languages like Java support garbage collection. Garbage
collection systems still face to memory performance issue. For example, Hirzel, in [90],
demonstrates a garbage collector for Java that can incorporate several data layout
strategies. The approach is to sort objects in the memory by a selectable layout rule
while reclaiming and compacting objects. The layout rule is traversing the object forest
in DFS or BFS order, sorting by thread, and some other static rules. The experimental
results show the approach can help the Java application to reduces cache or TLB misses.
Similar techniques can be applied to heap memory management, such as works in

[91][92][93][94][95].

29

30

Chapter 3

Problem Modeling

3.1 Object Access Trace

We start to discuss the packing and placement preblem in a formal way. Consider a

set of objects, defined as O = {o /504, 0 3-,'...}. These elements are the relocatable units to

=
el
=

be placed in the memory. Since one of the ﬁ-'r_obiem presumptions is sizes of objects are

irregular, not necessary identical,sthe function size(o.) denotes the size of the given
object o.. Besides, the function addr(0)) denotes the beginning address in the memory of

the given object.

The problem assumes that one of the three cache organizations is configured to
mediate the processor/program and the main memory. Consider either the direct mapped
cache or the set associative cache, it is assumed to have K sets. A cache block has M
bytes in size. Because the cache memory exchanges raw data with the main memory by
cache blocks, the main memory space is segmented into memory blocks. The size of a
memory block is M bytes, identical to the size of a cache block, so that it can fit into a

cache block. The collection of memory blocks is defined as a set B = {b,, b, b,....}. In

a program’s respect, it can access (load/store) arbitrary objects in the main memory. The

31

bottom layer undertakes data access activities. When accessing object o,, the cache
system loads the memory block containing the o, from the main memory to a cache

block. The loaded memory block bj can be derived by (3.1).

.| addr(o;) 3.1
Y
After that, the program accesses the object in the cache block. Since a direct

mapped cache divides the memory spacejintorK: sets, the block bj is located in set B,

where £ is calculated by (3.2).

FSpmaaky || o 62

As the program constantly accesses objects in tﬁe main memory, the activities can
be recorded as a trace of the accessed objects, denoted as object access trace (OT). It is
used to represent the accessed objects arranged in temporal order. Figure 3.1 explains
the conversion flows of the object access trace. It contains three traces. The first object
access trace (OT) are composed of alphabets denote objects. Its entire trace can be
converted to an address trace (AT) by written down the address numbers of each object
with function addr(). Similarly, applying Equation (3.1) to elements in AT yields the
block access trace (BT). The horizontal line that divides an address number into two
parts denotes it. It is the sequence of blocks swapped into the cache. A cache conflict
miss arises upon mismatch, the system pays penalty for loading the missing block to the

cache.

32

Object Access Address Block Access

Trace (OT) TroMe (BT)

a 1094 100
a 1094 100
b 1045 106
e 1228 122 Q
o C 1176 117 (@)
3 a 10d4 100 &
S > "> b)) 11l =
§ b 1045 106 E
< e 1228 122 2
a 1094 100 =5
a 1094 100
C 1176 117
Programmatic Mapping objects Convert address Place to cache
access to fo address numbers to
objects numbers memory blocks

Figure 3.1. The conversion ofxobjéct' access trace to block access traces.

Consider an object access trace sho@y_ﬂla_s rtflea\'iﬁrst row of Figure 3.2(a). The object

i ||
3 = |

access trace is converted to a block a!fjfess;'tjracl,’éi (BT).under the mapping shown in
Figure 3.2(b). The second row of F-‘i'gu_r_ﬁl B.2(a) is .hl'*lgloc.:k access trace. When the system

is about to access b., it matches whether th_e céché block in the set B. holds b..
J j(mod k) J

OT | abefafbcdefecdbdaedaf

BT | XXZZXZXYYZZZYYXYXZYXZ

CBT | X Z XZXY Z Y XYXZYXZ

(a)
0; a b c d e £
bj X X Y Y 7 %

(b)
Figure 3.2. (@) An example of object access trace, block access trace, and compressed block
access trace in three rows. (b) A legal packing mapping that injects six objects to three

memory blocks.

33

The goal of this problem is to find a layout scheme that assigns objects to the
memory space. The layout scheme injects objects to blocks, as well as object access
trace to block access trace. After the new layout scheme is deployed, the new block
access trace working on the K-set direct mapped cache is expected to cause fewer cache

misses because of the layout scheme.

In the meanwhile, the problem has two preconditions. First, it restricts an object

must be smaller than a memory block, i.e., Vi, size(ol.) < M. Tt leads to a memory block

can hold several objects. Assigning address to an object is equivalent to determining
both the memory block and cache set-thesobject éhall attend. Meanwhile, as long as the
cache block gets larger (M increases), théh?ir_ljz.('_)n"tal line'moves to the left progressively
in Figure 3.1. The side effect is to injec!t £re objeets to the same memory block. In
other words, this problem considers -the?élczhetﬁe of.“_:pac.king” objects to memory blocks

and “placing” objects to cache sets simultaneo'usly. This is the major difference between

our study and related researches dealing with sole placement problem.

The second precondition disallows any object to be placed across memory blocks.
Since an object is assumed smaller than a memory block, the entire object is restricted
to lie within a memory block, not crossing two of them. The condition prevents extra
cache load. Make such a presumption is reasonable. For instance, real compilers have a
code/data alignment optimization pass [96]. The optimization pass aligns instruction
blocks or data items, prevents them to lie across the cache block boundary, and reduces

extra fetches (also suggest by Intel [11]).

34

The proposed approach employs the information from the object access trace to
construct the layout scheme by the packing and placement technique. The object access
trace can be obtained by capturing the activities in executing benchmark or real
programs. Our study itemizes scopes in measuring the trace information. The scopes
differ by the connectivity of objects in the trace. Distinguishing these scopes is
important because it affects the choice of methods for the packing and placement

problem. The scopes are listed as follows.
e Degree-1 trace information

This is to count the number ofio€currences of eachObject in the entire object access
trace. Telling the popularity of object; 15%u5eﬁ11 It s call “Degree-1” since the
measuring scope is limited to oﬁ?_obJ:e:ct, fégar_dless o-f before and after objects by
temporal order. For example, the profile informatién used in Path Flow Analyzer for
PA-RISC (mentioned in [52]), the researches of Steinke et al. [98], and Raman and

August [1] can be classified to this category.
e Degree-2 trace information

Degree-2 access trace information is to observe the pair-wise relation between two
objects in the trace. In other words, it counts the occurrences of object pairs in the

access trace. The symbol Wi denotes the occurrence of the segment (o, 0j> in the object
access trace. The relation is undirected, and (01., 0}.) i1s equivalent to (0]., ol.>. For

example, consider the object access trace shown in the first row of Figure 3.2(a). Its

access trace information is expressed as the adjacent matrix in Figure 3.3(a).

35

Degree-2 trace information is used in several related researches, such as
[54][57][58]. There are variations by incorporating different metrics to express the

affinity between two objects, such as Gloy et al. in [2].
e Degree-k trace information (£ >2)

By extending the idea of the Degree-2 trace information, Degree-k trace
information means concerning an object with the (k-7)-th after object. The entering and
leaving of an object is not merely decided by the preceding object. More than one object
together composes the complete cache activity'l-listory. Such as the analysis technique
showed in Section 3.4, both Degree-2 and Qegrge.—3 &ace information are used to reflect
the relations of objects entering and leaVinééﬁéﬁé importance is stressed by Petrank and
Rawitz in [68][69]. They suggest ﬂ}a_lt sql-sving-‘:iolac.ément ﬁroblem perfectly by pair-wise
information is insufficient. In fact; there is n(; Erior research using it to resolve
placement problems, because manipulating such deep levels of affinity is difficult. One
of the obvious issues is that & is a variable choice. It is an auxiliary analysis tool used in

our research. Incapable for forming the graph model, they could not be used for solving

the problem.

Degree-2 trace information is especially useful because it can be transformed to
graphs. An object access graph OG = (V, E) is constructed by the following

instructions:

(1) The vertex set V is equivalent to the object set O, that is Vi, v,=0,. The value s, =

size(0,) 1s given as the size of vertex v.. (ii) For any non-zero W, j» an undirected edge

36

e, - can be add to the graph OG to connect vertexes o; to 0 The value Wi is given as

’,

the length of the edge e Figure 3.3(b) is the object access graph of the sample trace

)

listed above. The edges are labeled with the Degree-2 trace information.

a b c d e f Q.@

k//k)
alo 1 0 2 1 3 J

™ e
bl1 o 1 2 1 1 (4) \G)
clo 1 » 2 1 0 /b___?;\

N AR RN
dl2 2 2 o 2 0

(b) (c)

ell 1 1 2 o 3
fI13 1 0 0 3 o

(@) VI el Y
Figure 3.3 (a) The adjacent matrix. (b) The (Ilbje_q;ii;c:qess graph. (c) Group the original object
trace gra'P in’Ec")"parltiltions. '
The sum of edge length of OG =¥, E) is obviously the length of the object access
trace as well as the length of the block access trace, that is —

D w; ;=0T |5 BT | (3.3)
Vi, j

This is no coincidence because summing up all Wi equals to count the occurrences

of all segments in the trace. The object access graph is useful in manipulating the

packing and placement problem in the following discussions.

37

3.2 One Page Cache Model

A K-set direct mapped cache divides the memory space into K separated memory
regions. The cache can hold one memory block from each region at a time. Therefore,
we begin to construct the problem model from the simplest case, the /-set direct
mapped cache, or name it one-page cache in this dissertation. In this simplified model,
the memory space is a monolithic region. The cache memory has only one cache block,
thereby holding one memory block at a time. Because of having one cache set,
considering the assignment of “placing” objects'to cache sets becomes unnecessary. The
only task is to consider packing objeets‘into memory blocks. The meaning of “packing”
can be considered as a mapping function \;v.i"i_‘;lj:';_cl_(.)_r.lditions.

i

Definition 3.1. A legal packing is én onto-mapping fb : O > B, such that for each bj’

ack’

Zsize(ol-) <M
Vo, prack (Oi)zbj

That means the total size of objects within a memory block must be less than or equal to

the cache block size.

For example, consider six objects of the object access trace in Figure 3.2(a). When
the size of every object is 1 unit, and the capacity of a memory block is 2 units, the

mapping shown in Figure 3.2(b) is a legal packing by definition.

38

Assume object size is the only factor needed for constructing a mapping function.
The goal is to find a mapping function that assigns objects to memory blocks efficiently
by filling memory blocks as full as possible, and produces memory blocks as few as
possible. Actually, this is exactly the purpose of the BIN PACKING problem [29].
The size of each object is inconsistent. A “bin” (container) is equivalent to a memory
block, whose capacity is a given constant. The goal is to minimize the number of bin

used, that matches the purpose of reducing memory usage.

However, if the temporal relations, among objects are introduced to the
construction of mapping functions, .the one-pég'e cache problem is no longer a BIN
PACKING problem.

i

A memory block may contai.n’s.evezralll ol;:j-ects.. The c-onsequence is that a block can
appear in the block access trace consecutively and f:e:petitively. For the example shown
in Figure 3.2, objects a and b are assigned to block X, and XX appears at the beginning
of the block access trace. A trace segment consisted of a block repeated many times in
the block access trace leads to cache hits. To deal with this situation, we define a
compressed block access trace (CBT) derived from the original block access trace. That
means deriving a shorter block access trace by merging repeated symbols in the block

access trace as shown in the third row of Figure 3.2(a).

Because adjacent blocks are always different in a compressed block access trace,
the one-page cache has to load each memory block of it. Consequently, for an object
access trace, the length of the corresponding compressed block access trace is the

number of cache misses happened in the one-page cache.

39

In the viewpoint of object access graph, the packing mapping equals to grouping
vertexes into partitions. A vertex denotes an object, and a partition equals to one
memory block that encloses several objects. The packing mapping equals to partitioning
all objects to disjoint subsets. By using the packing mapping in Figure 3.2(b), the

original graph is divided into three partitions, as shown in Figure 3.3(c).

This mapping is a utilization of BIN PACKING as mentioned above. Its purpose is
filling memory blocks with objects as full as possible. Next, we are going to analyze all
types of temporal relations and create a link between those types and cache misses. As

shown in Figure 3.4, there are two kinds of edgés’in the partitioned object access graph.

e Type-1 Edges — The Interior edges withinpartitions.
1 i)

e Type-B Edges — The edges across d_ifferéﬁt partitions (Blocks).

Figure 3.4. Define the type of edges in the access graph.

The sum of length of Type-B edges is the length of the compressed block access

trace. The reason can be found by the following equation.

ZwiJ.: |OT| = |BT)| = Length(Type-I Edges) + Length(Type-B Edges),

where Length(Type-1 Edges) means summing lengths of all Type-I edges, as well as for

Type-B edges. As defined above, two objects connected by a Type-I edge are assigned

40

to the same memory block, and they will be “compressed” in the compressed block
access trace. Therefore, the operation of generating a compressed block access trace is
to eliminate repeated symbols in the block access trace. The operation equals to
removing Type-I edges and keeping Type-B edges in the equation. Therefore, it results

to —
|CBT| = Length(Type-B Edges)

That proves the claim. The finding leads to the next claim that minimizing the
cache misses is equivalent to minimi;ing the sum of length of Type-B edges. All these
together define the following packing'problem for thé one-page cache model.

Definition 3.2. Construct a legal paclld_rng ']; ack’ Use that mapping to separate the
vertexes in the object access graph -OG = (V, E) tg disjoint partitions. Each partition

corresponds to a memory block b,. The goal is to find an optimal J; ek that minimizes

the sum of length of Type-B edges (defined as Equation (3.4)), thereby minimizing the

cache misses caused by reproducing the same object access trace.

Misses(BT) = Zéi,j Wi s (3.4)
Vi, j

),

where 9, =1 if ¢ is a Type-B edge, otherwise 0.

Proposition 1. The packing problem for the one-page cache is equivalent to the graph

partitioning problem.

41

Graph partitioning is a well-known NP-complete problem [29], as introduced in Section
2.2. That means looking for an optimal mapping for the one-page cache is NP-hard as

well.
3.3 Direct Mapped Cache

For arranging objects for a general K-set direct mapped cache (K>1), it involves
not only packing but also placement movements. Because the main memory is divided

into K regions, there are K memory block-sets. Each set B, =1{b,, b b

kr1xke Diraxgorod

contains more than one memory ‘blocks,where0°< k< K. The combination of the two

movements creates a two-dimensional mapﬁ‘f;?é that injects every object to a (set, block)

pair, defined as follows.

Definition 3.3.]; D O+ § x B, where O is the object set, S represents cache sets, and

B, represents blocks in the k-th cache set.

The mapping can transform an object access trace OT to a block access trace BT,
and each element in the BT is an ordinal pair of the set and block. According to the
mapped cache set index k, the BT can be decomposed into K disjoint block access

sub-traces, denoted as BT}, where 0 < k < K. In the meanwhile, the mapping of the

one-page cache can be regarded as a special case of a one-dimensional mapping

working on subspace]; D O I x B,. As aresult, the object access trace is no longer

decomposable.

42

OT | abhecfafgbhcgdefegfcdbhfdahegdat
BT | WWZYXYWYZWZXZXYYYZYXXWZYXWZYZXWY
BT, |lww X W W X X XXW XW XW
BT, ZY Y YZ 7 Z YYYZY zY ZYZ Y
CBT, | w X W X W XW XW
CBT, 7Y z Y 7Y ZY ZYZ Y
(a)

0;1 a b C d e f g h
b: | w W X X Y Y z
(0,00 (0,00 (0,1 (0,1) (1,00 (1,00 (1,1) (1,1)

(b)

Figure 3.5. (@) An example of object access trace, block access trace, block access sub-traces,
and compressed block access sub-traces:(b) A legal lfol; injects eight objects to four memory

blous/)

| _b,xo"'.-;' II
1l - m L
Consider accessing eight ebjects on Ia 2-set ditect mapped cache. The OT in Figure
AN ||/
3.5(a) 1s an object access trace which consists of ecight objects. Figure 3.5(b) is an j?) »

injects these objects to memory blocks. A memory block can be numbered as a (set,
block) pair. Figure 3.5(a) also shows the BT, which is converted from OT by the

mapping j; . and two decomposed sub-traces, BT}, and BT,.

Because memory blocks belonging to the same cache set contend for a single cache
block, it makes each block access sub-trace can be regarded as a standalone block
access trace working on a one-page cache. In this respect, the number of cache misses

caused by the block access trace BT can be calculated by the following formula:

43

Misses(BT) = ZMisses(BTk) (3.5)
0<k<K
Z Misses in individual one page cache

> | CBTy, |
0<k<K

Because the mapping];9 p Can decompose the original block access trace to K
disjoint block access sub-traces BT,, the first equation means that summing up the

misses of all sub-traces equals total misses. The subsequent equation implies that each
sub-trace works on a one-page cache. The'originalproblem becomes a joint of one-page
cache problems. According to the discussion ifmthe one-page model, the number of

misses caused by the original block accdss ._fgg_cgs’f. is equal to the length of the compressed

-
g
e

block access trace. It results to the last EQﬁati_on. The number of misses can be
calculated by summing up the lerigth of allathe '-co_:mpressed block access sub-traces,

denoted as CBT;. For example, in Figure 3.5(a), GBT o and CBT, are compresses block
access sub-traces of BT, and BTy, respectively. The cache misses caused by the OT

under the mapping J@ D is 21.

Figure 3.6. The components of an object access graph for the direct mapped cache.

44

The deriving of the formula explains the essentiality of defining the one-page
cache. Particularly, the deriving process implies that after distributing objects to sets,
the original problem becomes K sub-problems, and each of them can be a graph

partitioning problem.

We can extend the graph model of the one-page cache to express the object access

graph for the K-set direct mapped cache. After applying the mapping]; D to a given

object access graph, it generates a two-level partition graph OG”’ as illustrated in Figure

3.6. Since the purpose of the mapping j; . is'to-assign each object to a (set, block) pair.

The components of OG’ include objeets, partitions, and regions. The definition of

objects and partitions are the same as thbsél: gcﬁnéd for the one-page cache model. The

— -,
g

disjoint regions enclose partitions in the graﬁl{_@_OG’_. A region corresponds to a cache set
such that the graph OG’ has K regions for a Keset dir:ect mapped cache. The edges in the

graph OG’ can be classified into three types, descfibed as follows.

e Type-1 Edges — The Interior edges within partitions, as previous definition.
e Type-B Edges — The edges across different partitions (Blocks) but within the same
region.

e Type-S Edges — The edges across different regions (cache Sets).

These three types of edges can classify the origin of cache hits and misses to the

following items.

e Hit-I — An object pair (0, Oj) connected by a Type-I edge is located in the same

memory block. It implies both objects must exist in the cache block simultaneously.

45

Therefore, the transitions from o, to 0; in the object access trace always causes

cache hits.

e Miss-B — An object pair (o;, oj) connected by a Type-B edge is located in two

distinct memory blocks but belong to the same set. Because only one cache block is

available for swapping memory blocks from one set, either o; or 0, exclusively stays

in the cache block. A transition from one to the other in the trace leads to swap two
distinct blocks into the cache block, and this activity causes one cache conflict miss.

e Hit-S and Miss-S — Objects (o, Oj) connected by Type-S edges are located in

different sets. Since each cache set works iﬁdependently, a transition of a Type-S

edge may cause either cache hit or m_iss: Th_g reaéon of the errors is the graph model

is based on the pair-wise trace informgl‘c..i;}";:':i’etrank and Rawitz [68][69] have stated
[l & :

that it is insufficient for precis.efgstir:nhtin'é:caql.ie misses with pair-wise information.

In other words, all activities happened before the.::transition of the given Type-S edge

working together to determine whether it causes cache hit or miss.

Observing the classified origin of cache hit and miss sorts out the strategy of the
packing and placement technique. Decreasing the amount and length of Type-B edges
certainly helps to decrease Miss-B. In the respect of one-page cache, minimizing sum of
Type-B edge length is equal to generating shortest CBTs. Meanwhile, for a given object

access trace, |BT] is fixed among all object layouts, and the follow relation holds —

Sw, = |07 = BT (3.6)
=Length(Type-I-Edges)+Length(Type-B-Edges)+Length(Type-S-Edges)

By minimize the length of Type-B edges in Equation (3.6), the sum of the other two

46

items is maximized. That means, we are looking for maximizing Length(Type-I-Edges)
+ Length(Type-S-Edges). The next problem is to develop a method to find a layout
satisfying the goal. However, it is hardly to find an optimal answer. In the next Chapter,

we shall discuss about this issue and propose heuristics for this goal.

On the other hand, assuming all small objects have been packed to memory blocks,
the remaining job is to distribute these blocks to sets. It becomes considering the
placement problem for the K-set direct mapped cache. By the previous analysis on the
packing and placement problem, we can_propose another respect in modeling the
placement problem. In terms of the graph OG’,. 511 the Type-I edges are excluded from

the placement problem, because they were-handled by the packing stage. By that means,

-
e ,
—
0]

the placement problem is defined as follpws'-.f —

Definition 3.4. Consider the block “access. grapf; BG=(B.,E), where B={b,),,...}

represents vertexes corresponding to memory blocks, and E is the edge set constructed

from the compressed block access trace. Each edge € has a length W, i derived from

the trace information. The goal is to partition B into K subsets {B, B By ,} and

I
maximize the Equation (3.7). Actually, the edge set in BG is the union of Type-B edges
and Type-S edges. The objective function (goal) is to maximize the sum of the length of
Type-S edges.

z zwi,j (3.7)

0<r<s<Kb;eB, b;eB;

Proposition 2. The placement problem for the direct mapped cache is equivalent to the

MAX k-CUT problem.

47

Papadimitriou and Yannakakis [34] suggest that an unweighted version of this problem
is a MAX-SNP complete problem. Kann et al. [43] show MAX k-CUT problem, defined
in Section 2.2, and its dual, the MIN A-PARTITION problem, are NP-hard. That means

the placement problem is hard and cannot be solved in polynomial time.

Some related researches consider the placement problem as k-coloring problem
(such as Hashemi, Kaeli, and Calder in [57], Kalamatianos and Kaeli in [58]). The
coloring respect is to assign two different colors to two consecutive executed objects. In
other words, these two objects are distributed to different cache sets. However, the
k-coloring problem does not deal with edge léflgths. That means it could ignore the
weighted affinity information betweentwo ijects. On the contrary, modeling the

placement problem after MAX k—CUT'-%c"hiphasizes the influence of temporal

relationships. This is the difference_,b_etwe'en c->:1-1r placement approach and the others’.
3.4 Fully Associative Cache

The fully associative cache consists of a number of cache blocks. Each memory
block in the main memory can be bounded to any cache blocks. That means the
mapping from memory block to cache is a many-fo-many relation, in contrast to a
many-to-one relation (onto) of the mapping for the direct mapped cache. The addresses
of an object and of a memory block no longer determine their locations in the cache
memory. In other words, there is only one set in this organization. Therefore, generating
object layouts for the fully associative cache solely consists of the “packing” movement.

The “placement” movement is meaningless in this case. This property is similar to what

48

we have discussed about the one-page cache model. In fact, the one-page cache model
can be regarded as a special case of the fully associative cache as well. In other words, it

is a fully associative cache with only one cache block.

Can the optimal packing for the one-page cache apply to the n-page fully
associative cache? Consider the object access trace in Figure 3.2(a). The mapping in
Figure 3.2(b) is optimal that satisfies graph partitioning, thereby generating the shortest
compressed block access trace (CBT) with 15 elements. Apply the CBT to work on a
2-page fully associative cache, it causes 8 cache misses on the FIFO cache, 9 cache
misses on the LRU cache, and 6'cache misseé -'on _the OPT cache. However, there is
another packing mapping for this/2-page-eache, g-hown in:Figure 3.7. The length of the

CBT is 18, longer than the previous one; bua‘?‘éﬁuses 7 cache misses on a LRU cache, 9

cache misses on a FIFO cache, and\7 cache misses-on a OPT cache. This packing

mapping is a counter example negates the question. .

OT | abefafbcdefecdbdaedat

BT | XXZYXYXYZZYZYZXZXZZXY

CBT | X ZYXYXYZ YZYZXZXZ XY

(a)
0; a b c d e £
bj X XY 2 7 Y

(b)

Figure 3.7. (a) An example of object access trace, block access trace, and compressed block
access trace in three rows. (b) A legal packing mapping that injects six objects to three
memory blocks.

49

The counter example also shows that a 2-page cache optimal placement is not
optimal for one-page cache. It implies finding a universal optimal placement for all
sizes of fully associative cache is impossible. Once a placement is tailored for the
k-page cache, it cannot ensure being optimal for the r-page cache for which k # r. The
reason is the OG keeps only pair-wise information, and an OG can be constructed by
many different object access traces. In other words, the transformations from access
traces to OG are “onto” mappings. Conversely, OG cannot express the precise temporal
orders of all derivable object access traces. The following discussion shall demonstrate

exploring object relations by higher degrees ofitrace information.

There are intrinsic differences between thg-one-page cache and the n-page fully
associative cache (n>1). Since seyeral me%ory blocks can concurrently stay in the
cache, mapping objects to blocké must 'con-s‘:i:der.t.:he int-er-block relationship. In other
word, the inter-block relationship affects the way'of zloading the block access trace. The
n-page cache must employ a sort of the replacement algorithm, due to the limited cache
capacity. When the processor cannot reach the memory block about to be accessed in
the cache memory, the cache memory uses the replacement algorithm to choose a victim
cache block and reclaims the storage space. That is to commit the dirty cache block to
main memory and invalidate that entry. The reclaimed cache block is used to swap-in
the desired memory block. Belady [9], Smith and Goodman [97] have made intensive
researches in replacement algorithms. The goal of all replacement algorithms is making
a decision on the element to leave. Assume the replacement algorithm is optimal (OPT
or MIN in literatures), it should accurately pick the memory block that presents in the

cache now and again in the farthest future. Conversely, the memory blocks remaining in

the cache are those likely being used in the near future.

50

Figure 3.8 illustrates the concept of OPT algorithm. The string in the Figure is an
object access trace. Assume the capacity of the cache memory is four elements. The
processor has already accessed symbols in the string from the beginning to the dashed
line cut (left to right). Each arrow connects an accessed object and the next nearest
occurrence of it in the string. At the given moment, the cache memory contains four
symbols {a,b,ef}. Since the next symbol ¢ absents in the cache memory, a capacity
miss arises. By the OPT replacement, symbol a is chosen to be the victim since its next

occurrence is far behind the others.

quefgpdbda

abe

fa)

symbol'set in\the cache at
abef the givén moment

Figure 3.8. Choose the leastused elemerllts‘by the OPT replacement.

The goal of the “packing” method is opposite to which of replacement algorithms.
It resolves objects tend to be accessed together in the near future, and puts them into the
same memory block. Consider the same object access trace as in Figure 3.9. The set

{a,b,e.f} consists of objects existing in the cache memory at the moment 7,, and it is

termed /ived object set in this article. The next four symbols being accessed are {c,d,e.f}
that constitutes a neighbor lived object set. Apparently {a,b,e.f}"{c,d,ef}={ef} and

{c,deft\{ef}={a,b}. That means when the clock shifts to 7, {ef} will persist in the

cache memory, and {a,b} is no longer used. Therefore, if the memory block can hold 2

objects in total, and the capacity of the cache memory is 2 blocks, the best policy (only

51

valid at this moment) from the beginning to 7, is grouping {a,b} in one block, and {e f}

to the other one.

t

— i

abefafbgdes

abef symbol set in the cache at

the given moment

~

| s

PY YRS,

cdbda

Figure 3.9. Compare the two locality sets along the object access trace.

As discussed in Section 3.1, the Degtee-2:trace information is collected from the
pair-wise relations between two obje;:ts. _In other_.wdrds, the predictive scope is limited
to one successive object. However, the prf‘_;'glctlve scope should expand beyond one
object as our previous discussion. Thefgfforg,-" the |Degree-k trace information must be

used to grouping objects being accessed “in the near future”.

POST TRACE

PARTITION
THE CANDIDATE OF THE
VICTIM BLOCK

Figure 3.10. The object locality set hold by the cache contributes lengths to the edges of the
objects access graph.

52

Combining the discussion together, Figure 3.10 illustrates the relations between

objects in the lived object set during the moment 7, to ¢,. Assume that the first memory

block has objects {a,b}, the second one has {e,f}, and both of them are loaded in the
2-page cache memory. The Degree-2 and Degree-3 trace information extracted from the

duration #, to ¢, contribute edges to the object access graph OG in the Figure. The edges

are classified to the following types.

e Type-1 Edges — The Interior edges within partitions. They connect objects within a
block in the lived object set.
e Type-B Edges — The edges acrossddifferent paititions. (Blocks) in the lived object

Set. T LY |
-"""E.._ "

e Type-F Edges — The Interior.edges w1th"in ipartitions. One endpoint is an object in
the lived object set, and the other is :an object éor:ning after the lived object set in the
trace (in the post trace). After shifting in ti.me,.it becomes Type-I edges.

e Type-P Edges — The edges connect objects in two different partitions, one of which
is a partition in the lived object set and the other is not. After shifting in time, it
becomes Type-B edges.

e Type-R Edges — The definition is similar to Type-P and Type-F edges. However,
one endpoint connects to the partition (block) in the lived object set that will be

discarded later by the replacement algorithm.

A transition along a Type-P or Type-R edge implies the object and the belonging
block appear in the next lived object set. Since the victim block is away from the cache,

a Type-R transition causes a capacity miss. Therefore, a good packing mapping should

53

reduce the number of Type-R edges and increase the number of Type-B, Type-F and

Type-I edges to all lived object sets.

Meanwhile, the former model applies to in the one-page cache model as well.
There is no Type-B, Type-P edges in the one-page cache model because the cache
memory can hold only one memory block. As a result, the only goal is increasing the

number of Type-I edges.

abefafbcdefecdbda abé@lfbcdefecdbda

A

(a) ~ Vi : (b)

= |
Figure 3.11. Using Degree-2 and Degree-3 trage info_rmatioq to find the closest objects to

; _oquleéts aand e,

The example in Figure 3.11 is sé small’ such-that the mapping of objects can be
derived by observation. Figure 3.11(a) shows the Degree-2 and Degree-3 trace
information in terms of object a. It seems objects {b, e} are the closest ones by simple
counting. Figure 3.11(b) shows the trace information in terms of object e, and objects
{d, f} are the closest ones. Observing the trace information in such way can infer the

mapping in Figure 3.2(b).

The issue of the realization in generating layouts needs further discussion. Both
Type-R and Type-P edges are similar because they connect forward to objects. Since the
Type-R edges are given to those victim blocks by the OPT replacement algorithm, and
Length(Type-R Edges) < Length(Type-P Edges), the cache miss rate is minimized.

Nevertheless, OPT is only for analytic purpose. Realizing OPT is impossible. The other

54

classes of replacement algorithms, which can be realized, have no knowledge about
future accesses. Such as a RANDOM replacement algorithm invalidates arbitrary cache
blocks upon misses. They could spoil the scheme created by the Degree-k trace
information, because the associations by the Type-P and Type-R edges are in vain, the
effectiveness of the Degree-k trace information is suppressed neither. This is the reason
that the mapping in Figure 3.2(b) outperforms the mapping Figure 3.7(b) on a OPT
cache, but the winner exchanged when apply both on a LRU cache. Only Type-I (and
Type-F) edges preserve the effectiveness across different classes of replacement

algorithms. Based on these observations, wempropose the approaches in Section 4.3.

4= NIY

55

56

Chapter 4

Practical Approaches

4.1 Hardness of Packing and Placement for

Direct Mapped Cache

Section 3.3 analyzes the properties bfx'ft_I_,_i,_@_ packing and placement problem for the
k-set direct mapped cache. It proposes a metliod to transform the object access trace to a
graph by using the Degree-2 tra(;e;, iﬁformation. That graph expresses the relations
between objects, memory blocks, and sets. The temporal relations among entities
classify the edges in the graph into three types (Type-I, Type-B, and Type-S). The goal
of the packing and placement problem is creating a memory layout that minimizes
cache misses when reproduce the same object access trace. Due to the nature of the

pair-wise trace information, we derive the following formula to estimate cache misses —
|BT| - (Length(Type-I-Edges) + Length(Type-S-Edges)) 4.1

The length of the block access trace |B7]| is a constant in this formula, but the
lengths of Type-I edges and Type-S edges are derived by the object layout. In other

words, maximizing the sum of lengths can minimize cache misses. It is easy to show

57

that minimizing the sum of length of all Type-B edges is a dual problem to Equation

(4.1) by the following equation.

|BT\| - (Length(Type-I-Edges) + Length(Type-S-Edges)) 4.2)
=(Length(Type-1-Edges)+Length(Type-B-Edges)+Length(Type-S-Edges))
- Length(Type-1-Edges)+Length(Type-S-Edges))

= Length(Type-B-Edges)
Therefore, the packing and placement problem can be defined as follows.

Definition 4.1. Consider a K-set direet'mapped cache,and an object set allocating to the

memory, defined as O = {0,, 0,,03...}. "l:hé:fn:i@"mory space 18 partitioned into K disjoint
1] .-';‘.

sets of memory blocks. A set dfmote_:d as :-Si st

i by 5> b 3 ... } Tepresents a

collection of memory blocks, where each bz‘j denotes a memory block belonging the

i-th set s,. The size of each memory block bij is M. The purpose is to find a legal

mapping function j;) p(ol.) > b, that assigns each object to a memory block in a

specific set. Meanwhile, it must satisfy the condition that Zsize(ol-) < M . The goal is
0; Ebr,t

minimizing the following cost function —

Cost(fpp)= D D.6i,j-W0;,0;), (4.3)

s; €S

whered; ; =1 ifj;p(oi),j;p(oj)esi, and];p(ol.) #];p(oj).

58

In the last equation, w(o,, oj) is the value from the Degree-2 trace information, or

the length of Type-B edges, equivalently.

Subsequently, we are going to show that finding an optimal solution for this
problem is as hard as solving the MIN Ai-PARTITION problem. The MIN

k-PARTITION is a dual problem of the MAX k-CUT [43].

Consider a graph G,=(V,E) with K partitions, where [V(G)|=Q, and the each

vertex is associated with value K. Since the vertex:set /' is divided into K partitions, the

number of vertexes in each partition is.deénotedvas (7 ng), and the vertex set is

7Ms e

denoted as U Vi 1> Ve 2500 Ve > Wherew |} denotes a vertex is the /-th vertex in
r=1..K <= |

i

the r-th partition. In other words,. the V,eftex-:s-ubset { Vil Ve } contains vertexes
belonging to the r-th partition. Figure 4.1 shows anexample of G ;» and the dashed lines
divide the graph G, into partitions. We use different notations to distinguish edges
within and across partitions. p(vr’ e vr’s) denotes the length of an edge inside the r-th

partition, and w(v

i Vg () denotes the length of an edge across two distinct partitions.

Since the graph G, is assumed to satisfy the conditions of MIN k-PARTITION, it

implies the summing up length of edges within the same partitions > p(u,v) gets the

minimum comparing to other geometrics of the partitioned G,. In the meanwhile, the

condition) w(x,y) > p(u,v) is hold.

59

Next, we create a mapping F(v) to transform G,=(V,E) to G,=(V",E’), where
G,=(V",E’) is a restricted version for the packing and placement problem for the direct

mapped cache. The mapping F(v) works in the following way.

Vv, €V, F(vl.j)Z{v’ where v’ el”. (4.4)

iV i KD

The mapping means evenly splitting every vertex Vi into K fractional vertexes.
The value is evenly distributed to fractions as well, that is, the value of each fraction

vi,j, P 1S

>~

=1. As a result, we can: get a transformed vertex set, written as

V= U {F vy 1), F(vy2),e By p)3 These fractional vertexes {v’l.j
r=1..K -':: oS>

g
|

PV ij o

v’l.j g are connected to cach other eirid become a K complete graph. Therefore,

K(K-1)
2

edges are appended to the edge set £ ’(Gz).' Edge length 4 is given to all these
kind of edges, and its value is given as & = Y w(x,y)+) p(u,v), that equals to the summing

up lengths of all inter-partition edges. This ensures / is the greatest value among all

edge lengths in E(G,). The fractional vertex v’l.j ; replaces the role of Vi o and edges

connected to v, ; are re-attached to v’l.j ; correspondingly. Therefore, the edge set

E’(G,) is expressed as follows.

E'=FEuU Ue(v,"’j,s,v,"j,,), where 1<i<K, ISani, and s#t, 1 <s,t<K.

i, j,8.t (4.5)

60

For example, the graph G, in Figure 4.2 is constructed from the graph G, in Figure

4.1 using the discussed method. The vertexes and the sub-graph enclosed by a shadow

area in G, are expanded from a single vertex in G, .

Next, we are going to show that the optimal partition layout of G, that satisfies
MIN £-PARTITION can be transformed and becomes an optimal layout of G, for the
K-set packing and placement problem. That is, G, can be used to represent an object
access graph. Each vertex V,i,j, , Tepresents an object and its value corresponds to the

size of an object. The length of an edge'is marked by the Degree-2 trace information.

Besides, block size constraint is‘assumed-K. Since cach:vertex subset { v

\ -
e

r 1’ Vr,2’
Vr,n,} belongs to the same pgrtltlon!ln',,s'f}l, .the vertex subset { {v YR

b

VoK ruLLLUd v’r,n,,]’ V,r,n,,}f +o4ls group'ed_::into the same r-th partition in G .

Consider the sub-graph enclosed within the #-th partition. The length of edges connects

b

Voo which is p(u,v), both are smaller than A.

and Vv’ ,
roy, 1

Moreover, Z POy x1>Vr, y,1) < holds by our scheme. Therefore, every subset
1<x,y<n,,and x#y

b

(Vv ., V., 5V, g} can be consolidated to a memory block and that makes the

sum of objects in a memory block fulfills the problem requirement. Since the lengths of
all Type-B edges are exactly p(u,v), and z p(u,v) < Zw(x, y)+ w O holds.

Therefore, the layout satisfies the problem requirements.

Subsequently, the K-set packing and placement problem is as hard as MIN

k-PARTITION, as well as MAX k-CUT. Since there is no polynomial time algorithm to

61

find an optimal layout to satisfy MIN k-PARTITION, neither solves the K-set packing

and placement problem.

Figure 4.1. A partitioned graph satisfies MIN; k-PARTIT.IbN. The symbols wl.and p; denote edge

_lengths.

62

h 4
K sub-vertexes h e
h
I Vi 12 Visi
wy e w> @ q

Pi
h/b
D3 Vo i 3,
h Ws A
i -~
14 .2,

V331

550

V211

Wy

59

Vi1

Figure 4.2. A sample graph transformed from Figure 4.1.

5;@

4.2 Approaches for Direct Mapped Cache

The previous section has shown that it is hardly to find an optimal solution of
minimizing the sum of length of Type-B edges. That implies the K-set packing and
placement problem is hard to solve by its nature. The practice in finding a solution is to
decompose the main problem to smaller sub-problems after constructing the object

access graph, and find feasible solutions for each of them. By heuristic goal in Section

63

3.3, the objective function of the packing and placement problem is to maximize
(Length(Type-I-Edges) + Length(Type-S-Edges)). It implies a two-stage approach in
seeking feasible answers by dealing with each of the two items in the equation
individually. One method is to maximize Length(Type-I-Edges) first and
Length(Type-S-Edges) after. The reversed direction, that is to maximize
Length(Type-S-Edges) first and Length(Type-I-Edges) after, can be an alternative
method for comparision. The two directions stand for different aspects in solving the
same problem. According the finding in Section 3.3, maximizing Length(Type-I-Edges)
can surely increase cache hits. Therefore, wepredict the first method should be better
since longer edges are favor to.beceme Type-.I-' edges. It directly faffects cache miss
counts. Still, both approaches “are di‘sipg_ssed_'in the=-following sub-sections. The

-

experiment in Chapter 6 implements both aﬁfp?aéches for verifying our prediction.
4.2.1 Packing Followed by Placement

The first step of the approach is to maximize Length(Type-I-Edges) from object
access graph. We call this step the “packing” stage. This movement visits temporal
relations from the object access trace, and “packs” objects into numerous memory
blocks. The packing stage can be deemed as a utilization of the one-page cache
problem, stated in Definition 3.2. Both of them begin with the object access trace and
the corresponding graph OG. The purpose is assigning objects O to memory blocks B,

in conjunction with a condition that the capacity limitation for a memory block is M.

Maximizing the sum of weighted edges that lie in blocks (Type-I edges) is a dual

of minimizing the sum of length of edges that lie across blocks (Type-B edges). As

64

stated, constructing such a mapping function]; ack 18 equivalent to finding answers for a

graph partitioning problem. Therefore, we have to use a heuristic method to assign
objects to memory blocks in practice. Once this sub-problem is solved, the original

object access trace can be converted to a block access trace.

In terms of graph partitioning, many researches provide algorithms to solve the
problem. Most of them are based on the work of Kernighan and Lin [31]. However,
their method seems unsuitable for solving the packing problem because it is incapable

of separating a graph to arbitrary number of pattitions.

Therefore, our implementation ad(')pt§ the greedy” algorithm in Figure 4.3 to
perform the partitioning works (similgr I"tug?_"the approach in [99]). The algorithm
iteratively merges two vertexes (objeets) co-r;-nected by the heaviest edge into a larger
piece. The merged piece cannot be greatér than a.- memory block. The collection of
objects of a memory block grows larger while progressively merging vertexes. The
procedure continues until there are no qualified vertexes for merging. Given a random

graph, the average time complexity of the algorithm is O(|V]?). Meanwhile, applying the

algorithm to the OG of a typical program, the average complexity becomes O(|V]). The

T There are famous packages for graph partitioning, such as METIS [100]. In theory, we are not
necessary to propose a graph-partitioning solver because we did not define a variant of graph
partitioning problem. A package like METIS should be able to handle the problem well.
Unfortunately, the fact is that we did adopt METIS while developing the experiment in the
past, but it is insufficient for our application because of two reasons. First, the number of
generating partitions must be given as a parameter, but it is not a constant in our experiment.
Second, the errors of individual partition size are too big for our application. For example, if the
layout calls for 512-bytes partitions, METIS generates some partitions with 400 bytes. That
means the layout eventually occupies more memory space. Since the size of our partition can
be small, the errors can cause very different experimental result. In other words, it wastes
spaces because of internal fragmentation.

65

reason is the average vertex degree of those graphs is a small constants, inferred by

Figure 5.7.

Procedure GreedyPartitioning
Input G=(V,E) — Access graph.
M — The size bound of a memory block.
Output
G=(V,E) — A graph with merged vertexes.
do
Take an edge e(u,v) € E with the greatest length.
E=E\e(uv).
if (size(u) + size(v) <M)
Merge(G,u,v).
endif
while E # ¢
End Procedure

Procedure Merge
Input G=(V,E) — Access graph.
u, v— The vertex pair totbe merged

Create a new vertex w.
Let size(w) = size(u) + size(V).
for each vertex x in V
new_edge length = e(x,v) + e(x,u)
if new_edge length !=0
Add an edge e(w,x) with new_edge length to E.
end if
end for
V=V\{uv}+{w}
End Procedure

Figure 4.3. The pseudo code of the partitioning algorithm

The second step (the placement stage) continues the job to place these
near-identical-sized memory blocks to cache sets. Its goal is to maximize
Length(Type-S-Edges). The input of this step is the block access trace. The processing

flow includes discovering temporal relations between memory blocks from the trace,

66

and using that information to create a block access graph, whose vertexes correspond to
blocks. Next, partition the graph into K sets. Actually, the second step has been stated in
Definition 3.4, and the previous discussion indicates that this can be considered as a
MAX k-CUT problem. It is well known that a naive randomized heuristic can deal with
the MAX k-CUT problem. That is randomly assigning each vertex (or say object) to a
set. In the evaluation section, the implementation shall adopt the random heuristic for
reference. Besides, we propose a greedy algorithm to find a feasible solution to
distribute blocks to K sets. The algorithm is described in pseudo code DistributeObjects
in Figure 4.4. The time complexity of,thissalgorithm is O(|E]). Subsequently, the

time-complexity of the packing followed by placément method is O(|V*+E)).

Function DistributeObjects g —
Input G=(V,E) — Access graph F N
k — Number of sets
Output :
S={S(i)} — A collection of £ sets. Each'set contains some vertexes in G.

Let X = Edges of the graph G, sorted by edge length in descending order.

Let S(i) = {¢} represents the i-th set, i = 1...k.

Let {Value(i)} = 0 represents the sum of vertex values in the i-th set, i = 1.. ..
Let T(7) = 0 represents the sum of vertexes belonging to the i-th sets, i = 1...k.

while (X # ¢)
Pick an edge e(u,v) with the largest length from X,
where u and v denotes both ends in G.
X=X\ e(u,v).
if (both u and v belongtoasetin S)
bypass this iteration.
endif

if ((degree of (u) > degree of (v)) ||
(((degree_of (u) == degree of (v)) &&
(sum of adjacent edge lengths of (u) >
sum of adjacent edge lengths of (v))))

67

swap (u, v).
endif

if (vbelongstoasetinS)swap (u,v).

if (u does not belong any setin S)
t, =Place_Vertex_to_Minimimal_Distance_Set(G, k, S, Value, u, -1).

else
Find ¢, where u belongs to a set S(z).

endif

Place_Vertex_to_Minimimal_Distance_Set (G, k, S, Value, v, 7).

end while
End Procedure

Function Place Vertex to Minimimal Distance Set
Input G=(V,E) — Access graph :
k — Number of sets =
S={S(i)} — A collection of k scts. Bachset contains some vertexes in G.
{Value(i)} — Sum of vertex.values in the i-th'set, i = 1...k.
avoid_set — Avoid to place the vertex to the given sets.
u — The vertex to be placed.
Output
S={S(i)} — The vertex u can be add to one set S(¢) in S.

Return
The ordinal number of the set contains u.

Let min_distance = INT MAX.

while (visit every S(i) in S)
if (S(1) is the avoid_set) bypass this iteration.
Let d = Distance (u, S(p), G).
if (d <min_distance)
candidate set =1.
else if (d == min_distance)
if (Value(i) < Value(candidate set))
candidate set =1.
endif
endif

68

end while

Assign u—S(candidate set).
Value(candidate set) = Value(candidate set) + value of u.

return candidate set
End Function

Function Distance (u, S, G)
Input u— A vertex in G.
S — A set of vertexes in G.
G — The access graph.
Return distance

Let distance = 0.
while (visit every vertex v in S7)
if (3 edge e(u,v) € G)
distance = distance + length -L;wf: e@v).
endif e
end while
return distance.
End Function

Figure 4.4. The pseudo code of distributing blocks to sets.

4.2.2 Placement Followed by Packing

Yet another approach begins with maximizing Length(Type-S-Edges) with discrete
objects and Degree-2 trace information. Since Type-S edges refers to those lie across
cache sets, this movement distributes objects to K sets, and splits the original object
access trace into K sub-traces. In fact, it means decomposing the original packing and
placement problem to K smaller packing problems for one-page cache. This is the

aspect discussed in Chapter 3. Our implementation adopts the procedures in Figure 4.4

69

to distribute objects K sets, and therefore the original object access trace can be break

into K sub-traces.

The next step is to deal with k& object access traces for one-page cache. This is
equivalent to maximize Length(Type-I-Edges) and minimize Length(Type-B-Edges). As
discussed in Section 3.2, the packing problem for the one-page cache is equivalent to
graph partitioning. Again, our implementation adopts the procedures in Figure 4.3 to
gather objects into memory blocks. That is edges with the largest length are moved into
the memory blocks and maximizes Length(Iype-I-Edges). The time-complexity of the

placement followed by packing method is O(|V|2-+|E|).
4.3 Approaches for,Fully Associative Cache

Section 3.4 characterizes the activity of an object access trace in the fully
associative cache. Based on the discovery in the discussion, we proposed practical
heuristic methods for generating placements for the fully associative cache. In the
following paragraphs, the configuration of the n-page cache is defined as (M-block size,

N-cache blocks).

4.3.1 One-Page Cache Method

The major difference between the fully associative cache and one-page cache is the
former incorporates block replacement. Degree-2 trace information is enough for

analyzing one-page cache model but insufficient for modeling the fully associative

70

cache. However, higher degrees of trace information are hardly modeled as graphs, and
seeking the packing solution could fall back to one-page cache model. Since the graph
partitioning can be used to generate optimal placements for the one page cache, as long
as P=NP. Our research adopts this characteristic to develop a heuristic approach.
Consider the (M, N)-cache placement problem, this heuristic treats it as an equivalence

of the (M, I)-cache placement problem. The steps are —

e C(Create the object access graph OG from the given object set.

e Using a graph partitioning algorithm, such.as the one in Figure 4.3, to partition the
constructed object access graph..The constre-iint of a partition size should set to M
bytes. \

e The objects within the same partitiop 1r:=1ts output _should be packed to the same

memory block. Besides, this algorithm does not confine the relative order among

partitions.

The experiment in Section 6.3 shows the generated layouts offer significant
improvements than the original layout. This technique is effective because of the
following reason: the length of the compressed block access trace (CBT) is the shortest
among all combinations, thereby ensuring the layout generated by this method offers

moderate performance.

4.3.2 Two-Pass Partitioning Method

The proposed two-pass partitioning is an alternative technique for generating

layouts for the fully associative cache. The concept of analyzing by Degree-k trace

71

information in Section 3.4 is to find out objects tend to coexist in cache memory. As its

name suggests, this method partitions the object access graph in the following two steps.

First Pass — The principle is the find out objects tend to coexist in the cache memory. In
other words, these objects shall fill up the space of the entire n-pages cache. To this end,
the first pass divides the object access graph (OG) into a coarse block access graph
(CBG). The size of each coarse block is M x N bytes, as if partitioning for an enlarged
one-page cache. The first pass generates disjoint subsets by coarse blocks. Each has
objects frequently stay in the cache memory by extending the concept of the one-page

cache model.

Second Pass — The second pass iterati.\;"%sli--‘* deals swith coarse blocks (partitions)
generated in the first pass. This m.eyh_od ie;(tra-(;is is,(;lated (;bject access trace graphs from
every coarse block. Next, it partitions each graph ir.:l:to finer pieces, by using the graph
partitioning algorithm once again. Each of them fits one cache block, i.e., the partition

size is M. Finally, this method arranges objects belonging to the same partition into the

same memory block.

Combining both passes together can find that the mission of the first pass has
another purpose. It tries to simulate the effect of the Degree-k trace information.
Because higher degrees of relations (i.e., Type-F edges) are picked out from the others
in this pass. The second pass is actually performing partition based on these selected

trace information.

72

One of the advantages of this method is the ability to process extremely large data
sets because of the divide-and-conquer strategy. The first pass helps to break the large
and complex problem to several smaller problems, which ease the computation in the
second pass. Take the previous trace for the 2-page cache as an example. Figure 4.5
shows the partition result after the first pass, the graph is divided into two parts. The
maximal size of each part is 4 because of the overall cache size. Next, the second pass
divides the right sub-graph into two smaller parts, and Figure 4.6 is the partition result

after the second pass. This allocation is the same as the mentioned example.

Figure 4.5. The partition result after the first pass. The gray edges connect the access trace
graph before partitioning. The two shadowed blocks are the generated partitions.

) [N
N J
217\3
4 N
—_ J

Figure 4.6. The partition result after the second pass.

73

4.4 Approaches for Set Associative Cache

Just as a direct mapped cache is a joint of one-page caches, a set associative cache
can be regarded as a joint of fully associative cache. Utilizing the Degree-2 trace
information to generate object layouts is similar to doing the same task for a direct
mapped cache. The difference between these two cache organizations is that a set
associative cache applies replacement algorithms to individual cache sets for selecting
victim cache blocks. However, recall the discussion in Section 3.4, the on-the-fly
replacement activities can spoil the offline-generated inter-block relations, such as the
RAND replacement algorithm diseards aybitrar}_/ cache block upon a capacity miss. As a
result, maximizing Type-I edges (edges wrfhm .blocks) should be considered prior to

other types of edges. The problem of dis;ltribﬁﬁng bbjecté to cache sets also happens to

the set associative cache.

Put these factors together, the packing and placement approach should be able to
packing related objects to memory blocks, and distributing these memory blocks to
cache sets. That is the procedure of the packing followed by placement approach
described in Section 4.2.1. The latter experiment shall evaluate whether this approaches

can generate object layouts that can reduces cache misses on a set associative cache.

74

Chapter 5

Explorations of
Objects and Traces

The previous chapters focus on characterizing the packing and placement problems
for different cache organizations. The input of those packing and placement problems is
abstract objects and access traces constituted by. abstract objects. The abstract objects
can belong to any kind of classes, such..as‘.:p_ro'gr.am Variébles, class instance, program
codes, or records in files, as long as they-argf{;lécatable in the main memory or storage
media. The defined packing and placement problent is independent of classes of objects,

so that it can be regarded as a black box. Its'input 1s the object and trace information,

and the output is the object layout.

Nevertheless, the exploration of specific application domain may need distinct
technique in defining objects and constructing access traces. Defining the meaning of an
object is not merely itemizing elements in the application domain. In some cases, not all
elements in the application domain are worth to be handled by the packing and
placement techniques. The mission of defining objects also includes identifying whether
an element affects application performance or not. Dealing with critical portions of
objects is always a priority mission. Characterizing techniques for special application

domains is the purpose of this chapter.

75

5.1 Generic Data Objects

The exploration of generic data objects usually uses primitive methods. We itemize

the components need exploration.
e Identify the scope of an object

A data object should be a relocatable unit, but not necessary to be a minimal and
indecomposable unit. A typical case, is variables 1n aprogram. Such as Panda et al. [70]
deal with the layout for program variables. A data object can be an item on the storage
device as well, such as files and records 1r1 dgs;icdrlves or ﬁash memories.

i

o Identify the index and address:of an objecband the memory block geometry

The way of addressing an object affects the choice of cache organization, thereby the
layout approach. Most data objects in the main memory have their unique address
numbers, which are easy for manipulation. However, data objects (records) stored in the
file are usually indexed by their offsets or keys, which hide the physical property of the

storage media.
e Inspecting the object access trace

Once determine the scope of a data object, the object access trace can be acquired by

tracking the activities of data access in the experiment.

76

Here is an example to explain the concept of data object exploration. Consider a
primitive text-to-speech system. The recorded voice clips are stored in an external
storage media. The program prepares a linear buffer in RAM. The buffer is segmented
into blocks and served as a fully associative cache. The size of a cache block is large for
transmission efficiency and accommodates for the storage device. For example, it can
be a multiple of NAND flash pages, because an access to consecutive pages with the
bulk-transfer mode is more efficient than doing it one by one. Therefore, a cache block
can contain several voice clips. When the program reads an English word from a given

article, it finds the corresponding voice clip-from.the blocks in cache.

In this example, each voiceiclip is-identified as'a data object. The address of an
object is its offset in the storage media. -ﬁzlépecting the object access trace can be
acquired by training the TTS program with éiven articles. All these parameters can be

delivered to the black box of packing and:placement. The black box should generate an

object layout as the guide to place voice clips into the storage media.

5.2 Generic Code Objects

5.2.1 Motivation

Code generation is usually the final stage in a compiler. Its mission is generating
the target program, which is usually a sequence of machine codes in practice. The
arrangement of machine codes in the target program can be tuned for memory

hierarchy, such that the target program causes fewer cache misses and page faults while

77

execution. Consider a program fragment in Figure 5.1. Most compilers generate codes
in a top-down order, such that the layout of the sample program can be similar to the
order in Figure 5.2(a). The dashed line in the Figure represents the memory boundary,
such that the program codes of Statement-A, B, and C are placed in the same memory
block, but those of Statement-D are placed in the next block. Despite of Condition-A,
the program always runs across two memory blocks. Each execution potentially leads to
a cache miss because the second memory block may absent in the cache memory. In
other words, the expected value of the count of potential cache miss (worst-case) is

100% * 1 =1 times.

Assume that the profile informatron of-the program fragment indicates that

\ gl
e

Condition-A holds in 90% repetitive e)_(ecut};'éh’s. Properly change program layout can
helps to reduce cache misses. Fi.g_u_re §.'2(b)-:sh0.v.vs an éltemative layout to the same
source program. In this case, the program-codes of S;atement-C are moved to the second
memory block, since it is rarely used. Therefore, 90% repetitive executions involve only
the first memory block. The other 10% repetitive executions involve two of them. The
expected value of the count of potential cache miss is 10% * 2 = 0.2 times (use the
value 2 because the program jumps forward and backward), which is an 80%

improvement to the original layout.

78

Statement-A;
if (Condition-A)
{

Statement-B;

Statement-C;
}
Statement-D;
return;

Figure 5.1. A program fragment to be rearranged.

Statement-A Statement-A
then, else
else

then

o ANV

Statement-D

Statement-C

(a) (2]

Figure 5.2. Two layouts of program statements.

Pettis and Hansen [52] have discussed the relevant issue in their work. They

propose approaches applied to both procedures and basic blocks. Actually, the

algorithms for procedure arrangement and for basic block arrangement are similar.

Meanwhile, the approach of Gloy et al. [2] is focused on the arrangement of procedures.

Either arranges procedures or basic blocks, it is a matter of granularity after all.

79

The approach may look similar to the trace scheduling technique [101]. However,
its goal is different. Its goal is to eliminate or postpone branch instructions that could
hazards in the instruction pipelines of a process. Our goal is to packing and placing code
objects to memory blocks and cache sets. Ball and Larus [102] have discussed about

where and how to insert inspecting points in a program to capture the execution trace.

5.2.2 Control Flow Analysis and Basic Blocks

Code objects are program fractions to be: packed into memory blocks and
distributed to cache sets. The concept ofpackingrand placement technique is to finding

out the relationships, i.e., the execution 'o,r(_il_q_r_s.,"_bétween each pair of code objects. It is

— -,
g

the purpose for control flow analysis,;and alsn for profiling in which our approach asks
for. Before analyzing the inter-relationships betWe_:en code objects, it is necessary to

define the scope of a code object.
The scope of the code object used in control flow analysis is the basic block.
Definition 5.1. A basic block! conforms to the following rules ([36]) —

1. The only entry of the basic block is through the first instruction of it. In other words,

there is no other branch destination in the basic block exception the beginning.

¥ Referred as ordinary basic block in the following paragraphs.

80

2. The instructions within a basic block must be executed sequentially and entirely. No
instruction other than the last one is allowed to be a conditional or unconditional
branch instruction, but the last instruction is not necessary a branch instruction. In

other words, the control flow only leaves the basic block from its tail.

The compiler can create a static control flow graph (CFG) using basic blocks as
vertexes. An edge of the control flow graph connects a basic block following another.
The basic blocks can be used as the code objects. Keeping track of the execution of
basic blocks gets the profile information (it can be done by a profiler). Such that both
the CFG and object access graph ‘characterize fﬁe r?lations between two basic blocks.
The difference is the former is «created-statically, and'the latter is created by profile

information. The lengths of the edges in ther:(_ZBjéct access graph express the “closeness”

between basic blocks, which is insqfﬁci@rlltly -é:;;préssed 'by an unweighted CFG.

BASIC BLOCK A

pushl %$ebp
movl %esp, %ebp
subl $4, %esp

movl 8 (%ebp), S%eax
movl %eax, (%esp)
call _goo BASIC BLOCK C

_goo:
pushl %ebp
movl %esp, %ebp
movl 8 (%ebp), %eax

addl $10, %eax
popl %ebp
ret

BASIC BLOCK B

movl %eax, 8 (%ebp)

movl 8 (%ebp), %eax
incl %eax
leave

ret

Figure 5.3. The basic blocks involved in a function call.

81

The packing and placement algorithms can use the object access graph to locate
basic blocks in the memory space. However, locating adjacent basic blocks to
discontinuous addresses could cause errors. The first case is shown as Figure 5.3. Basic
block A and B are concatenated program fractions. The last instruction in the basic
block A is a “call” to basic block C that ends with a “ret” instruction (return to the
caller). After the execution of basic block C finished, it should jump to basic block B.
When the instruction “call” takes place, the CPU pushes the next instruction address,
which is supposed to be the beginning of basic block B, to the stack. Such that the “ret”
instruction pops out the address from stack;and jumps to basic block B. The problem is
that the process of packing and placement migﬁt tear. off basic block A and B to two
discontinued places in the memory spacé. _.S_ucl'_l that the-basic block placed after basic
block A is no longer basic block B: Thq C%:IU .:cannot pysh the correct return address,

supposed to be the beginning of basic block B, to the'stack. This situation causes an

€rror.

The second case of mistake happens with two adjacent basic blocks A and B, and
the last instruction of basic block A is not a branch instruction. Therefore, the CPU
should execute two basic blocks sequentially. Once the two blocks are tore away in the
packing and placement process, an unconditional branch instruction must be appended
to the tail of basic block A to enforce an unconditional jump to basic block B, or a
wrong program flow will be taken during execution. The problem is the added cost in
execution time, because a branch instruction could flush the instruction pipeline of a

modern superscalar processor.

82

Therefore, we suggest a variation of basic block to be adopted as the definition of

the code objet.
Definition 5.2. A variant basic block conforms to the following rules —

1. The beginning of a basic block is the instruction next to a branch instruction (except

the “call” instruction) or the first instruction of the procedure.
2. The tail of a basic block must be a branch instruction (except the “call” instruction).

3. The entry of a basic block is not limited to the beginning of a basic block, and the
control flow can jump to any place wfthiﬁz'lg',basic block. The exit of a basic block is
still limited to the end of a basic bld(::k. No branch instructions (except a “call”) are

allowed within a basic block, eicep_t. the'last'one:

Simply speaking, this strategy is to break a program into code objects by dividing
codes at branch instructions. On the other hand, the transformation between basic blocks
and the proposed variation is a one-to-one mapping. A variant basic block v is a

concatenation of ordinary basic blocks b.. That is v,=b,®b,®b,®...®b . The last
instruction of basic blocks b, to b, , must not be a branch instruction (except “call”
instructions in the latter discussion), but the basic block 6, must end up with a branch

instruction.

83

Source Code Control Flow Graph (CFG)

foo()
{
goo();. i . loop initial
for (init ; cond ; incr)
{
if (expr)
{ . loop condition
do_something;
b
}

return value;

Figure 5.4. The example illustrates transformation"between the ordinary and the variant basic
block. The left pseudo code is what the CFG represents for.

The CFG in Figure 5.4 represents the program listed in the left box. The solid
rounded rectangles represent ordinary basic blocks of the program. An ordinary basic
block with at least two outgoing edges must be ended with a branch instruction. The
first “prolog” block contains a function all to goo(), such that it is a ordinary basic block
by definition. The dashed rectangles are variant basic blocks; each encloses at least an

ordinary basic block.

Meanwhile, Vb, in a CFG, it exactly belong to a variant basic block v Since the

control flow jumps from many places to the beginning of an ordinary basic block, the

84

basic block b; is connected with a set B of basic blocks by incoming edges in the CFG,
but at most one basic block b, in B is ended without a branch instruction by the nature
of a computer program. If such b, exists, it must be located in the same variant basic
block with b, (somehow, b, is actually b, ;). Otherwise, b, is the leading block in the

variant basic block. That means the predecessor of an ordinary basic block in a variant

basic block is fixed. Assuming b, is not ended with a branch instruction, the successor

of it in a variant basic block is also fixed. Altogether, the elements that constitute a
variant basic block are fixed. This property of the variant basic block is important
because it suggests a variant basicblock preser\}és the interconnections among ordinary
basic blocks enclosed by it. The;packing-and placemént process in definitely not the
only optimization pass in the code genqratli%‘ééage. The other optimization passes still

rely on ordinary basic blocks. Thus; our 'proi):bsed methed will not destroy the existing

structure by introducing the concept of the variant basiec block.

As the definition of code object is complete, the profile information should be
generated with such code objects, not with ordinary basic blocks. The collected
information is than sent to the black box of packing and placement. It shall generate an
arrangement of basic blocks, and the compiler can utilize the tuned arrangement to

relocate program codes.

5.2.3 Benchmark Overview

Table 5.1 summarizes the benchmark programs used in the experiments in Chapter

6. All these benchmark programs come with source codes so that we can use a

85

customized compiler to rebuild them for the experiments. Table 5.3 lists the statistics of
basic blocks of benchmark programs. The major precondition of our theory assumes
numerous objects are small to fit into memory blocks and cache blocks. The following
statistics of the benchmarks should be able to explain whether the packing and

placement approach can be applied to arrange variant basic blocks of a program.

We calculated the average size of basic blocks that constitute programs is 23 bytes.
That means a 64-bytes cache line can hold two basic blocks and a 512 bytes cache line
can hold 22 basic blocks on the average. On the other hands, lines in Figure 5.5
illustrate the distribution of basic'block Sizes é;-ipeared in the execution trace of each
benchmark programs. The Figures share-commqn feature that smaller basic blocks are
relatively more than bigger basic blocks. é%sw blocks smaller than the average size
constitute a major portion of a di.sfgr_ibugibn. It imﬁlies a -cache block or memory block

can hold several basic blocks. Therefore, gathering basic blocks is a major issue for a

compiler or linker to generate executable images.

86

Table 5.1. A briefing of benchmark programs

Benchmark | Purpose URL of Source Code
Arbitrary precision numeric .
be processing language and F:Ep.//ftp.gnu.or‘g/gnu/bc/bc-l.@G
: .tar.gz
interpreter
The environment of the .
gawk awk text processing gtrl)'é/i:ﬁ'ﬁzg'or‘g/gnu/gaWk/gaWk_
language T ’
Searches one or more input
files for lines containinga | ftp://ftp.gnu.org/gnu/grep/grep-
grep match to a specified 2.5.3.tar.bz2
pattern
indent C source code formatter ZEE:Q?S:%gﬁ:;;g/gnu/lndent/lnd
http://download.savannah.nongnu.
tce Tiny C compiler org/releases/tinycc/tcc-0.9.24.t
ar.bz2
wnzip Decompress ZIP files http://sourceforge.net/projects/

(version 5.52)

infozip/

Table 5.2. The basic block s'tatil

-
e
S

stics|of benchmark programs

Benchmark | Basic BlockSize.('byte) #used
Mean | Std. dev.| Min | Max | blocks
bc 254 35.1 2| 3091481
gawk 24.7 39.1 21189 | 9649
grep 229 32.0 2| 5832305
indent 22.6 344 2| 6241876
tcc 20.7 30.0 2| 562 | 4525
unzip 28.6 46.5 2| 8183323

Table 5.3. The basic block statistics of object access traces

Benchmark | Basic Block Size (byte) #used

Mean | Std. dev. | Min | Max | blocks
bc 26.9 36.6 2| 227 729
gawk 27.1 40.8 2| 436 761
grep 27.4 36.0 2| 211 642
indent 225 36.5 2| 624 | 1096
tcc 24.3 37.6 2| 562 | 1491
unzip 31.6 45.8 2| 366 533

87

,,,,,,,,,

R
0000000

444444

ch benchmark programs.

sic blocks within ea

of ba

Figure 5.5. Distribution of different sizes

88

In the meanwhile, there are notable properties of the object access graph of a
program. We use statistics to describe the ‘“shapes” of object access graphs. The
guideline of collecting these programs as benchmark suite is equals to collecting

different “shapes” of object access graphs.

The length of an edge in the graph stands for how often the two adjacent objects
executed after one and another. Figure 5.6 illustrates the contribution of top-rated edges
in edge length to the overall object access graph. For example, 5% of non-zero length
edges contribute 70% of length in the graph of gawk. The information can be interpreted
that these 5% of Degree-2 traces (pair-wiéé traces) contribute 70% of overall

occurrences in the object access’trace~~These~folding ‘lines (expressed by dots for

el

readness) share a common feature that a mi:ﬂfﬁ* portion of pair-wise relations contribute
majority of the occurrences in objégt access t-r:-aces.. Besid;as, each program has a distinct
folding lines due to the uniqueness. in -program s.j[ructure and execution flows. The
characteristics have connection with the degree of improvement by the packing and
placement approaches. We have plot two asymptotic curves 100 — ¢/ (x + 0.01 * ¢) to
approximate the statistical lines. The experimental result shows that a program’s chart
can be approximate by an asymptotic curve with constant c¢. The greater constant c is,

the packing and placement layout generates fewer misses than the original one.

Figure 5.7 provides an aspect of the ratio between numbers of distinct edges and
basic blocks (vertexes). The ratios are close to y = x. It implies that one can still
estimate the problem size of packing and placement by the number of basic blocks and
program size even the object access trace is absent. Furthermore, Figure 5.8 shows the

ratio between sum of edge length and the number of distinct basic blocks. Take gawk

89

for example, there are 10% of distinct basic blocks appeared in the edges that contribute
80% of occurrences to the object access trace. In other words, these 10% popular basic

blocks participate 80% of access activities.

BRORATR TR

90%

80%

70%

60%

50%

40%

Accamulated Edge Length

bc 7
gawk
grep
indent
tcc
unzip
y=100-220/(x+2.2)
y=1 OO—2CP/(X+0.2) N

o PO ¥ X+

0% ‘ ‘ ‘
0% 5% 10% 15% 20% 25% 30%

Number of Edges in (%), ranking by length

Figure 5.6. The contributions of (non-zero length) edges in object access graphs of benchmark
programs. The x-axis denotes number of edges arranged by the length in descending order,
from left to right. The y-axis represents the sum of edge length from the left-most edge to the
current position. The x-axis is cut-off at 30% since 30% of edges contribute more than 90% of
overall edge lengths.

90

T T T T iﬁﬁ
=)
90% — Dgz& —
D’ﬁ
32 o ¥
ol 285
(=7
80% T
@
£
@
2 70% gt
3 +%
4%
& o
T 60% e
V3
§ Aéjli i
S s0% | % —
2 ° Lﬁjm* +%
5] A0y Xe
5 a0k 5
§ 40% [— Abg+ fa" _
= 0T %
Ay
E Lk ®
30% |— SRS —
g ik
£ XX
£
20% — 4P X B
%éak gawk x
KE% grep x
10% = indent [m—
B¢ tcc ~
}}%&9 unzip e
=X
0% & I N R B = |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Edges in (%), ranking by length
. 3 B

At
Figure 5.7. The number of verte)geg"‘t;aiﬂn

access graphs. The meaning Q‘f',tlhe
&
represents the sum of connected verte

91

e\an-’z\gro length edges in the object
o,l-t_lj"',previous chart. The y-axis
iy
s from the left-most end to the current

-
- e
Py

70% \bc ‘
gawk
grep
60% indent
o tce

unzip

o [> 0O ¥ X +

50% -

40%

30%

20% -

Distinct Vertexes Connected by Edges

10% |-

0% Lol w [T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accumulated Edge Length

Figure 5.8. The chart shows the ratio be';vf/eeﬁ the sum of edge length and the number of
connected vertexes of benchmark prdgrams. The meaning of x-axis is identical to the y-axis of
Figure 5.6, and the meaning of j~axis is‘identical to the y-axis of Figure 5.7.

5.3 Partial Arrangement on Performance

Bottleneck

We have analyzed the properties of object access graphs of the introduced
benchmark programs in the previous discussion. Figure 5.6 illustrates the sum of length
of a small portion of edges contributes high percentage of overall sum of length to the
object access graph. Meanwhile, this small subset of edges connects a small number of

vertexes, which is illustrated as Figure 5.8.

92

This phenomenon is rational. One source is basic blocks that constitute loops in the
program. They appear in the object access trace more often than the others do. Besides,
basic blocks constitute the same loop should appear as small sub-sequences in the whole
trace. The segments of this kind of sub-sequences become those top-rated edges in

lengths of the graph.

The observation on the phenomenon inspires an alternative method that reduces the
complexity of generating basic block layout. The method is to perform packing and
placement on the subset of basic blocks. These basic blocks are selected from those
connected by the top-ranked “long”-edges in.t-he graph. It is precisely setting up a
threshold to “Accumulated Edge’Length™, in Fi.gure 5.8. 'Take the program bc as an
example. Assume the threshold is,70% .c;%é.i'(.fcumulated edge length (x-axis), these
top-ranked edges connects about. 8%6 of ovg;all.t)asic b-locks (about 56 to 729 basic
blocks as showed in Table 6.7). The methed pici:(s out these 8% basic blocks and
associated edges, and composes a sub-graph OG’. Then it performs the packing and
placement process on the sub-graph OG’. The rest of basic blocks are arranged in the
original order, and it requires no computation at all. In other words, the method picks
out loops and other busy parts in a program, and rearranges basic blocks within these
busy parts only. Setup a threshold on the charts is a process helps to screen out these

components in a program. In addition, the sub-graph OG’ can be a collection of

disconnected sub-graphs from discrete parts in a program.

Apparently, the major contribution of this method is saving computation time.
Consider our proposed heuristic algorithm for the packing and placement approach. The

complexity is O(|E|). Meanwhile, Figure 5.7 illustrates the amount of vertex is linear

93

proportional to the amount of edges to all benchmark programs. Therefore, the
execution time of the proposed approach can be proportional to O(|V|) particular for

these benchmark programs.

The developing of the proposed method is for reducing the demand in computing
resource while generating object layouts. Probably this method is an insignificant
contribution for using offline and batch programs to generate object layouts. However,
reducing processing time becomes the first priority issue when introducing such a
feature to real-time systems. For example, Huang, Lewis and McKinley, in [106],
propose a modified P.H. algorithm aimed for jﬁst-in-time compilation in Java virtual
machines. The modified algorithin i emphasiz_ed in speed rather than quality. For the
same reason, the proposed method aims fééﬁﬁiesaving. The trade-off is the quality of
the generated layout cannot surpégs_ the 'ofﬂ-izr:le ve.:rsion.-However, we shall show that

properly select a threshold can reach an-acceptable balance between the trade-off and

gain in the experiment.
5.4 Virtual Machine Interpreters

Java technology has already become an important player in embedded systems.
There are numerous Java applications designed for mobile phones. The performance of
the embedded Java virtual machine (KVM in J2ME CLDC) [103] is a significant issue.
Especially, the large interpreter within the Java Virtual Machine (JVM) hungers for
computation time and energy. Performance and power consumption issues are much

crucial for whom want to have JVMs “execute-in-place” (XIP) in NAND flash

94

memories on mobile phones. The reason is that the cache miss penalty is extremely high
in this configuration. Moreover, the concept can be extended to refine the program
layout of a JVM for the cache memory used in any generic memory hierarchy. Since the
importance of Java technology, it is worthwhile to invent a particular approach for the
Java virtual machine, either for those stored in NAND flash memory or for generic

memory hierarchy.

Virtual machine is a special class of software and an important branch of system
programs. Our goal was to refine interpreters and simulators, such as the Java virtual
machine, so that they will generate- less caché misses when running on embedded
devices with a limited amount‘of ‘cache xmer_n.ories and NAND XIP. For example,
system-on-chips (SOC) usually " offer hmﬂ% Sﬁ-chip SRAM, thereby insufficient for

loading program code to it. In this case, XIP!is /anvideal scheme for storing and

executing programs on the fly.

5.4.1 KVM Internal

Source Level. In respect of functionality, the KVM can be broken down into several
parts: startup, class files loading, constant pool resolving, interpreter, garbage
collection, and KVM cleanup. Lafond and Lilius, in [104], have measured the energy
consumptions of each part in the KVM. Their study showed that the interpreter
consumed more than 50% of total energy. In our experiments running Embedded
Caffeine Benchmark [105], the interpreter contributed 96% of total memory accesses.

These evidences bring out the conclusion that the interpreter is the performance

95

bottleneck of the KVM, and they motivated us to focus on reducing the cache misses

generated by the interpreter.

Figure 5.9 shows the program structure of the interpreter. It is a loop enclosing a
large switch-case dispatcher. The loop fetches bytecode instructions from Java
applications, and each “case” sub-clause deals with one bytecode instruction. The
control flow graph of the interpreter, as illustrated in Figure 5.10, is a flat and shallow

spanning tree. There are three major steps in the interpreter,

(1) Rescheduling and Fetching. In this step, KVM prepares the execution context and

the stack frame. Then it fetches a bytecode.instruction'from Java programs.

A I-.:'Iig :'|

(2) Dispatching and Execution. Aftef re‘é"ding' a byfecode instruction from Java
programs, the interpreter jumps to. corresponding bytecode handlers through the big

2

“switch..case..” statement. Each bytecode handler carries out the function of the

corresponding bytecode instruction.

(3) Branching. The branch bytecode instructions may bring the Java program flow
away from original track. In this step, the interpreter resolves the target address and

modifies the program counter.

96

ReschedulePoint:
RESCHEDULE
opcode = FETCH BYTECODE (ProgramCounter);
switch (opcode)
{
case ALOAD: /* do something */
goto ReschedulePoint;
case IADD: /* do something */

case IFEQ: /* do something */
goto BranchPoint;

}

BranchPoint:
take care of program counter;
goto ReschedulePoint;

Figure 5.9 Pseudo code of KVM interpreter

»| Rescheduling and
Fetching

......... |iadd ||iconsﬂ)| | Invokestatic#1

[resolveMethodReference |

[Invokestatic#2 |4J

Figure 5.10 Control flow graph of the interpreter

Assembly Level. Our analysis of the source files revealed the peculiar program
structure of the VM interpreter. Analyzing the code layout in the compiled executables
of the interpreter helped this study to create a code placement strategy. The assembly
code analysis in this study is restricted to ARM and gcc for the sake of demonstration,
but applying our theory to other platforms and tools is an easy job. Figure 5.11
illustrates the layout of the interpreter in assembly form (FastInterpret() in interp.c). The
first trunk BytecodeFetching is the code block for rescheduling and fetching, it is

exactly the first part in the original source code. The second trunk LookupTable is a

97

large lookup table for dispatching bytecode instructions. Each entry links to a bytecode

handler. It is actually the translated result of the “switch..case..case” statement.

The third trunk ByfecodeDispatch is the aggregation of more than a hundred
bytecode handlers. Most bytecode handlers are self-contained which means a bytecode
handler occupies a contiguous memory space in this trunk and it does not jump to
program codes stored in other trunks. Only a few exceptions invoke functions stored in
other trunks, such as “invokevirtual.” Besides, several constant symbol tables spread
over this trunk. These tables are referenced by the program codes within the

BytecodeDispatch trunk.

i

- Trunk #1

FastInterpret: BytecodeFetching
mov ip, sp

CFIO:

" stmfd sp!, {r4, r5, 16, ...

> LCFIL:
sub fp, ip, #4

.LCFI2:
sub sp, sp, #216

L573: Trunk #2
.word .L11 LookupTable
.word .L14
.word .L15

.word .L16
.word .L17

=

= -
=

SuORDUNJ |BUIRIXd ||BD U U L
w

L14: Tr
Idr r1, [.L574, ##%1-. | BytecodeDispatch

addrl, r1, #4 “R

¢ b .Lit e
.L15: 3
bl isAssignableToFast O

b .L11 3

L574: g
word 0 T

.word 0 =

.word 107269§248--" ®

L566:
loc 23392 0 Er””k "y i
idr 13, .L582+4 xceptionHandling
Idr r3, [r3, #12]
Idr r3, [r3, #8]

isAssignableToFast: <

L0 1dmfd sp, {fp, sp, pc}

Other trunks

Figure 5.11. The organization of the interpreter at assembly level

98

The last trunk ExceptionHandling contains code fragments for exception handling.
Each trunk occupies a number of memory blocks (or NAND flash pages). In fact, the
total size of BytecodeFetching and LookupTable is about 1200 bytes (compiled with
arm-elf-gcc-3.4.3), which is almost small enough to fit into two or three 512-bytes
memory block (as large as a NAND flash page). Figure 5.12 shows the size distribution
of bytecode handlers. The average size of a bytecode handler is 131 bytes, and there are
79 handlers smaller than 56 bytes. In other words, a 512-bytes memory block could
gather 4 to 8 bytecode handlers. The inter-handler execution flow dominates the number

of cache misses generated by the interpreters This is the reason that our approach tries to
| . _:

yis 5 % __'l!:- '/ y

rearrange bytecode handlers within the BytecodeD 'sggtéﬁ trunk.
f o) |
g | m—ﬁﬁ ! B

70
60
50
£40
© 30
20
10

S T S R S e

e e e e
KU\ S U O S
Range of Handler Size

Figure 5.12 Distribution of Bytecode Handler Size (compiled by gcc-3.4.3)

99

5.4.2 Analyzing Control Flow

5.4.2.1 Indirect Control Flow Graph

Static branch-prediction and typical code placement approaches derive the layout
of a program from its control flow graph (CFG). However, the CFG of a VM interpreter
is a special case. Its CFG is a flat and shallow spanning tree enclosed by a loop. The
CFG does not provide sufficient information to distinguish the temporal relations of
each bytecode handler pair. If someone wants. to improve the program locality by
observing the dynamic execution ordér of program blocks, the CFG is apparently not a
good tool to this end. Therefore, we pr;)p'(;.ggl-_zrtl_ '(.:oncept .called “Indirect Control Flow
Graph” (ICFG). It uses the real byté?oa-é.; instruction,” sequences to construct the

alternative CFG of the interpreter. .

Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and
E, and use the virtual machine to run a very simple user applet. Consider the following

short alphabetic sequence as the instruction sequence of the user applet:
A-B-A-B-C-D-E-C

Each alphabet in the sequence represents a bytecode instruction. In Figure 5.13, the
graph connected with the solid lines is the CFG of the simplified interpreter. By

observing the flow in the CFG, the program flow becomes:

[Dispatch]-[Handler A]-[Dispatch]-[Handler B]..

100

Fetching &
Dispatching

C Next Iteration)

Figure 5.13 The CFG of the simplified interpreter

It is hard to tell the relation between handler-A and handler-B because the loop
header hides it. In other words, this CEG cannot _clearly express which handler would be
invoked after handler-A is executed: Thesidea of the ICFG is to observe the patterns of
the bytecode sequences executed by the”Qing_a}_"“_niachine, not to analyze the structure of

=

the virtual machine itself. Figure 5.14 expreé@s the ICFG. in a readable way. It happens
| e 1 J

to be the sub-graph connected by the dashed directec_i_ liries in Figure 5.13.

9 1

2 1 1
1
& 1
Figure 5.14. An ICFG example. The number inside the circle represents the size of the handler.

5.4.2.2 Tracing the Locality of the Interpreter

As stated, the Java applications that a KVM runs dominate the temporal locality of

the interpreter. Precisely speaking, the incoming Java instruction sequence dominates

101

the temporal locality of the KVM. Therefore, the first step to exploit the temporal
locality is to consider the bytecode sequences executed by the virtual machine. Consider

the previous example sequence, the order of accessed memory blocks is supposed to be:

[BytecodeFetching] - [LookupTable]-[A]-
[BytecodeFetching] —[LookupTable]-[B]-

[BytecodeFetching] —[LookupTable] -[A]..

Obviously, memory blocks containing BytecodeFetching and LookupTable are
much often to appear in the sequence than these containing BytecodeDispatch. As a
result, blocks containing Bytecodelretching xand__LookupT able are favorable to last in the
cache. Blocks holding bytecode handlers haiz:eto competewith each other to stay in the

cache. Thus, we induced that thé order of eii’écui_:éd bytecode instructions is the major

factor impacts cache misses.

Consider an extreme case: in a system with three cache blocks, two cache blocks
always hold memory blocks containing BytecodeFetching and LookupTable due to the
stated reason. Therefore, there is only one cache block available for swapping memory
blocks containing bytecode handlers. If all the bytecode handlers were located in
distinct memory blocks, processing a bytecode instruction would cause a cache miss.
This is because the next-to-execute bytecode handler is always located in an uncached
memory block. In other words, the sample sequence causes at least eight cache misses.
Nevertheless, if both the handlers of A and B are grouped to the same block, cache

misses decreases to 5 times, and the block access trace becomes:

miss-A-B-A-B-miss-C-miss-D-miss—-E-miss-C

102

If we expand the group (A, B) to include the handler of C, the cache miss count

would decrease to four times, and the block access trace looks like the following one:

miss-A-B-A-B-C-miss-D-miss-E-miss-C
Therefore, the core issue of this study is to find an efficient code layout method
partitioning all bytecode instructions into disjoined sets based on their execution
relevance. Each memory block contains one set of bytecode handlers. We propose

partitioning the ICFG reaches this goal.

Back to Figure 5.14, the directed edges represent the temporal order of the
instruction sequence. The weight of an.edge is the transition count for transitions from
one bytecode instruction to the next. If V\./.e ri_move the edge (B, C), the ICFG is divided
into two disjoined sets. That is, the bytecég.-l;andlers of A and B are placed in one
block, and the bytecode handlers of C:, ID, and E are ‘placed in the other. The block

access trace becomes:
miss-A-B-A-B-miss-C-D-E-C

This placement causes two cache misses, and this is 75% lower than the worst
case! The next step is to transform the ICFG diagram to an undirected graph by merging
reversed edges connecting same vertices, and the weight of the undirected edge is the
sum of weights of the two directed edges. Formally speaking, we can model a bytecode

access graph AG=(V, E) as:

e ¥V, —represents the i-th bytecode instruction.

. El.J — the edge connecting i-th and j-th bytecode instruction.

103

o FiJ — number of times that two bytecode instructions i and j executed after each

other. It is the weight of edge EiJ'

e K —number of expected partitions.
o Wx’y — the inter-set weight. V x # , Wx’yz XF i where V; € P_and Vj € Py.

What is the difference between 4G and OG (object access graph) acquired by the
technique described in Section 5.2?7 The last section defines a variation on of basic
blocks as code objects. The object access trace is acquired by tracking the execution of
these basic blocks. Profiling a program can get:the object access trace, in other words.
The defined AG is constituted by, by:tecode handleré (served as vertexes) in the virtual
machine. A bytecode handler consists of;%gVeral basic_blocks. The access trace is
acquired by profiling the application exé_cf:uteEI' by the|virtual machine, not to profile the

virtual machine itself.

Nonetheless, the AG is served as the input of the black box of the packing and
placement technique. The black box generates the layout of objects in AG. Finally, the
layout is used to arrange bytecode handler in the virtual machine, thereby reducing the

cache misses caused by the refined virtual machine.

104

5.5 Discussion on Effectiveness and Impact of

Profiling

The trace information is the key factor that determines the object layout in our
research. The trace information acquires from profiling the subject program. Profiling is
usually done by running the program with typical usage scenarios. The goal is to
acquire trace information that is expected to cover all possible patterns of object access
activities. In other words, the quality ofiobject l_a_yout, that is to have the program cause

fewer misses when face to real utilization; closelyieoncerns with profiling.

I
=

In terms of increasing the test cov¢ra§; of profiling, an approach is to have the
program run test cases as more as possit?)lle. This diss_ertation shall not stress on the issue
of test case preparation. Assume theré is"a complete profiling plan that can generate
sufficient profile information. It leads to a long object access trace. Does it increase the
processing time of generating object layout? Consider applying this technique to
generate program code layout. The number of code objects in the discovered object
access trace should always equals to the number of basic blocks, as well as the number
of vertexes in the corresponding CFG. The number of edges in the object access graph
should also equals to the number of edges in the corresponding CFG. The reason is for
each segment in the object access should reflect the fact of a transition from one basic
block to the other in the program. At last, no matter how many simulations were
invoked, the |V| and |E| of the derived OG are constants. The profiling results only alter

the edge lengths in the derived OG, by Equation (3.3).

105

Generating object layouts involves algorithms for graph partitioning and MAX
k-CUT, as discussed in Chapter 3. No matter which kind of algorithms were adopted for
the implementation, the complexities of known algorithm candidates are equations
involve with |V| and |E|, not with edge length. Subsequently, long object access trace is
harmless to time and memory cost of generating object layouts. This encourage the
users of the packing and placement approach to generate rich profile information

without worry about processing time.

L | |

106

Chapter 6

Evaluations and Experiments

The parameters of the proposed packing and placement approach are objects,
temporal relations among objects, and the cache configuration. In terms of object types,
the proposed approach is independent jof the: fields of utilization. Therefore, the
following experiment applies the proposed appfoach to arrange the basic blocks in a
program. Basic blocks within a program Kave various sizes, which match the
prerequisite of the parameter “objects” ::f " the proposed approach. The profile
information of a program offers the executiél.;g ordgr of‘basic blocks, which is another
parameter asked by the proposed apprbach. The purpose of the experiment is to reduce
the cache misses by packing and placing close-related basic blocks to proper memory
block(s). Although there are code-arrangement approaches regarding only static

structural information, using the temporal relations to help code arrangements can be an

efficient alternative.
6.1 Experimental Setup

The outline of the experimental steps is described as follows —

107

1. Compile and build the target program (benchmark program). In the meanwhile,
gather the layout information (size, location) of basic blocks in the target program

from the compilation output.

2. Profile the target program. Execute the target program with meaningful test cases
and capture the execution trace of basic blocks within the program. A cache
simulation program calculates the cache miss counts from the given basic block

layout and execution trace.

3. Arrange and generate a basic blo_ck layeut ij using the layout program. The layout
program references the basic:bloek layout information by the step 1 and execution
trace by the step 2. The layout proglg:ém .can invokes one of the packing and
placement techniques (either. our t:elchn'iz:ciues lor otﬁer researches’ techniques) to

generate a layout scheme of basie blocks. _

4. Use the generated object layout scheme as a guide to rearrange basic blocks in the

benchmark program. It then evaluates the cache misses for comparison.

The benchmark suite consists of six programs introduced in Section 5.2.3. The
experimental platform is a Linux 2.6.20 / Pentium-4 computer. A modified gcc-4.2.1
(1686-linux) is used to build the benchmark programs. In order to capture execution
traces, the target program is launched by customized gdbserver-6.6 that captures the

execution trace of the target program.

108

6.2 Direct Mapped Cache: Experimental

Analysis

The experiment implements several approaches to arranging basic blocks in
benchmark programs. One of them is sorting all basic blocks by their usage frequency
in descending order, and distributes objects to memory blocks in the address space. The
purpose is evaluating the realization of using Degree-1 trace information to generate

program layout. We expected such a layout should'be worse than our approach.

Section 4.2 has introduced two techiii%gs in packing and placement objects, either
first packing objects to memory b_locks and gfacmg theése blocks to sets later, or doing it
conversely. While developing these tvs'rol te&miq’ueﬁs, we have predicted the first one
should outperform than the other. Therefor'e, both! techniques are implemented and
evaluated here. The experimental comparison is expected to match the prediction made
in Section 4.2. Meanwhile, in terms of the algorithms used to placing objects and blocks
to sets, two algorithms are implemented. The first one is the random placement. It is a
useful choice for realizing MAX k-CUT. The second one is the proposed heuristic

algorithm discussed in the previous section. Therefore, there are altogether four

combinations of proposed approaches for generating program layouts.

In addition to show the performance of our approaches, this experiment implement
a famous approach proposed by Pettis and Hansen (P.H.)[52] that arranges basic blocks
in a program. The main purpose of their approach is to improve the program locality

and reduce both cache misses and virtual memory page faults. In our respect, their

109

approach provides a certain “packing” mechanism. In contrast to other approaches, e.g.,
Gloy’s TRG ([2]) that considers only object placement (interleaving), P.H. method is

worthy for comparison.

Since the experiment is to rearrange the basic blocks in a program, not to alter the
program structure, the total amount of basic blocks is independent of layouts. The
execution trace is collected by running a benchmark program, and then the simulator
reproduces the trace working on different cache configurations and records the number
of cache misses. In this manner, the length of the object access trace is a constant,
independent of cache configurations.and progfe-im layouts. The object access trace is
transformed to a block access trace by a-program: layout.*As a result, both the length of
the block access trace and number of caghegfél'ck misses vary by layouts. Consequently,

evaluating the performance should-use| the -fg)llowing formula to get object miss rate.

The lower is better.

. . cache block miss counts (6.1)
object miss rate =

object access trace length

Since the denominator is a constant to each benchmark program, the numbers in
the charts and tables in remainder of this section are expressed by block miss counts for

readability.

The size of a cache memory block and number of cache sets are two factors
affecting performance. The former associates the number of basic blocks gathered in a
cache block, and the later determines the basic block layouts. This experiment simulates

the program memory accessing behavior of each benchmark program working on kinds

110

of cache configuration. There are two parameters in the simulated cache configurations.
The first parameter is cache block size, which includes 64, 128, 256, and 512 bytes. The

second parameter is the number of cache set: 2, 4, 8... to 128 sets per cache.

In the meanwhile, distinct basic block layout of a benchmark program must be
generated for each cache configurations (block size, #-sets). For example, two versions
of basic block layout of the program “indent” are generated for the (64-bytes, 4 sets)

and (128-bytes, 8 sets) test cases.
Next, we explain the experimental results ir'l--many aspects.

The first collection of charts (Figuré 65:.-.1:0 .Figure 6.6) lists the block miss counts
by all benchmark programs. The major Ir.nleasfir'em.e'nt of thie x-axis in each chart is block
size, and the minor measurement 1s .the:numb_er of cache sets. Each chart contains four
column sets of experimental results (block misses) by program layouts created with our
proposed approaches, i.e., (i) packing basic blocks first and randomly placing memory
blocks to sets, (ii) packing basic blocks first and placing memory blocks to sets, (iii)
randomly distributing basic blocks to k-sets, and packing them to memory blocks after,
(iv) distributing basic blocks to k-sets, and packing them to memory blocks after. The

miss counts roughly decrease along the x-axis. That means increasing total size of cache

by either enlarging block size or expanding sets can reduce misses.

The charts confirm our important prediction (made in Section 4.2): the packing
followed by placement method is more than a match to the placement followed by

packing method. Since the former method moves long edges to Type-I edges, which

111

directly affects miss rates. The difference is obvious in spite of which placement
algorithm was used. As far as placement algorithms, our placement approach is better

than the random placement algorithm.

Since the prediction is verified, we adopt experimental results from the packing

followed by placement method (with our placement algorithm) for comparisons.

The purpose of the next collection of figures (Figure 6.7 to Figure 6.12, each chart
stands for one program) is to observe the distribution of miss counts in different aspects.
The x-axis represents the number of c_ache sets. The y-axis represents the memory block
sizes. It is definitely true that the miss-counts-decrease along both axes because of
increasing in overall cache size. On the othex::-:hand, cross cutting diagonally the 3D chart
can see how the miss counts shift by d:ifl’feréii-t mémory 1-block sizes but the total cache
memory size is a constant. We add labels aside SOI;IC columns to emphasis the size of
cache memory. For example, the diagonal series with four columns: (512-bytes, 2-sets),
(256-bytes, 4-sets), (128-bytes, 8-sets), and (64-bytes, 16-sets) stands for the block miss
distribution working on the cache of 1K-bytes. Observing the diagonal series finds that
layouts for smaller blocks can cause more cache misses. For example, the column
(64-bytes, 16-sets) is apparently taller than the column (512-bytes, 2-sets) in Figure 6.9.
Oddly, this observation implies that unconditionally adopting a cache with 512-byte

cache-line and generating a corresponding object layout is better than adopting a cache

with 64-byte cache-line.

112

To avoid the odd conclusion, it is necessary to quantify the penalties caused by
cache misses to measure cache performance. The average memory access time is

defined in [5] as the following equation.
Average memory access time = Hit time + Miss rate x Miss penalty (6.2)

Therefore, the total cost of penalty is (Miss rate < Miss penalty). The penalty can
be usually estimated in terms of time, even power consumption. In terms of time, the

main memory access time spend for transfer n-bytes of raw data can be —

Memory access time (n):= Ovel_"_head + Data_transfer_time (n) (6.3)

In the equation, Overhead refets 0 :timg-'spent m transferring commands between
hosts and slaves. Data_transfer_ti;;eé (_n:) refers t(.). the time used to transfer the payload
data. The functions of Overhead and Data transfer time() are closely dependent on the
electrical characteristics of the main memory (or storage media). Overhead is usually a
constant because of transferring a fixed amount of commands, and Data_transfer time()
is usually proportional to the transferred data amount. That means the transferred data

amount is proportional to access time and power consumption, and vice versa. It is also

proportional to miss penalty.

For this reason, the next collection of charts (Figure 6.13 to Figure 6.18) plots the
amounts of transferred data owing to cache misses. Each column represents the number
of bytes read from main memory to cache. That is the product of block miss counts

multiplies block size. Overhead is omitted because it is hardware-dependent and usually

113

a small constant. Intuitively, a cache with smaller cache block can cause more cache
misses because each single cache miss leads to read a small piece of data. The number
of misses for reading the same amount of data is more than the one with larger cache
block, but the model changes after multiplying the block size. For example, the amount
of transferred data of the layout of (512-bytes, 2-sets) is greater than the other three
columns that composites a 1KB cache in Figure 6.16. Actually, the amount drops as the
block size decreases. The relation between the transferred amount and block size is
discussed in [3]. Consequently, the distribution shapes in this collection of charts are
different to those in the last collection. It concludes that the increasing in cache size by

enlarging block size is irrelevant to decrease the transferred data items.

=

The next collection of charts (Figure 6:?9 'to |Figure 6.24) compares our proposed
approach (drawn in columns) w1th the 0;{;ginai layoﬁt, ordering basic blocks by
frequency, and by the P.H. method (drawn in folci:ed lines). The definitions of x and
y-axes are the same as the first collection of figures. These Figures show the fact that
the layouts by the packing and placement approach seems to be better because it leads

to fewer block misses than the others in most cases.

There are some notable issues to be discussed. (1) The differences of all these
approaches are not so obvious for the case of 64-bytes per block. It is because one
memory block is small and packs insufficient objects together, and the effect of the

packing approach becomes insignificant as a result.

(2) When # cache sets increases, cache misses by distinct layouts are close. This is

because the cache memory is large to hold the most active parts of the program, thereby

114

the cache misses converging together. (3) Conversely, when # cache sets is lower (look
at the left-hand-side of a column set in each chart), the gaps between our layout and the
others show no coincident behavior. Some gaps are big (bc, grep, indent, tcc), the others
don’t. Our cross-analysis suggests there are connections with the size of a program
(Table 5.3) and the shape of the object access graph (Figure 5.6). For big programs,
which refer to those with many basic blocks (indent, tcc), our layout efficiently groups
closely used basic blocks together and offers better locality. That means small cache can
catch active basic blocks more precisely, thereby providing greater improvement
(bigger gap). For a program with a distribution,curve explicitly closing to the top-left
corner (indent, grep) in Figure 5.6, the gaps arg bigger, too. It means a relative small

portion of basic blocks contributes most of the activities: Both our approach and P.H.

-
e

method can provide better locality inicompare {0 the original layout.
parsy gl Yy

To evaluate the degree of performance improvément, we can consider the ratio of
miss penalties caused by both the original layout and our approach, using the following

formula —

Relative Penalty = Miss rategyrs X Miss penalty Miss rate gy (6.4)

Miss rateoriginal X Miss penalty ~ Miss rateoriginal

Figure 6.25 shows the individual relative penalty of benchmark programs. The
cache misses penalty by the original layout is 100%. The columns stand for relative
penalties, and shorter is better. Each column group gathers statistics from all benchmark
programs. The charts show the effectiveness of the packing and placement approach,

only with a few exceptions at 64-bytes per block.

115

To understand the overall performance from individual benchmarks of the packing
and placement approach, the weighted relative penalties are calculated by the following

formula —

Znum _of _basic_blocks(i)* relative_penalty(i) (6.5)

Weighted Relative Penalty = i=th program

Znum_of_basic_blocks(i)
i—th program

Based on the formula, the overall performance of the packing and placement
approach is presented in Figure 6.26:In the 3D. chart, data series are arranged by the
memory block size in the y-axis, anci it is arrangediby the number of cache sets in the
x-axis. The first-hand observation can ﬁndiilatall the c.olumns are lower than 100%,
which means our approach is effieient tb:alll-Zéses.-_ The relative penalty columns form a
zigzag line, but roughly keep at the _séme level I'(to_ be discussed later), as the cache
grows bigger by expanding number of sets aléng the x-axis. That means contribution of

the approach is stable in spite of the number of sets. The approach should be able to

apply to any number of sets and get expectable improvement.

In the y-axis direction, the relative penalties decrease as the cache grows by
enlarging block size. It implies that the improvement by the packing and placement
layout becomes more significant as the memory block size gets bigger. Observing the
diagonal series can find similar trends. A diagonal series represents relative penalties
under a given cache size. It is easily to find the relative penalties are inversely

proportional to block sizes. For example, the (512-bytes, 2-sets) column is shorter than

116

the (64-bytes, 16-sets) column in the diagonal series of 1K bytes; the (512-bytes, 8-sets)

column is shorter than the (64-bytes, 64-sets) column in the diagonal series of 4K bytes.

There is still a phenomenon (in Figure 6.25 and Figure 6.26) to be discussed. Why
do the column heads form a zigzag line (along x-axis) rather than a smoothly
descending curve? We have to look back on the generation of a relative penalty. The
denominator is the cache misses by the original layout, and the numerator is cache
misses by our approach, as seen in Equation (6.4). The next step is to look at the curves
formed by the columns along the x-axis by our approach, which can be found in Figure
6.7 to Figure 6.12. There are monotenic¢ decréésing curves (with only one exception
case), and the shapes are smooth::On the-contrary, the\curves by the original layout can

be observed in Figure 6.19 to Figure 6.24. ‘T:hey are not as smooth curves as ours are.

Therefore, the composite results become zigzag cuves.

Besides, the last column (represents for 128 cache sets) in each horizontal row
significantly rises up. The reason is the cache memory is large to hold most active parts
in a program, thereby the both layouts causing similar cache misses, and the last column

rising up.

The appearance derives a conclusion that our approach can be significantly useful
if a cache block is large. As discussed in the beginning of this article, loading more
information being used at one time to a large cache block is efficient. The packing and
placement approach is good at gathering related objects together. As a result, it can

increase the performance of caches with larger cache block.

117

Block Misses

70000

60000

50000

40000

30000

20000

10000

64-Bytes per Block

random placement=>packing'
placement=>packing
packing=>random placement
packing=>placement gzzmm

=3

R =

e

s
T

by

1 !
bt m f1
64 128 2 4 8 64 128 2 4 8 16 32

128-Bytes per Block 256-Bytes per Block

.y f A BT et
64 128 2 4 8 16 32 64 128
512-Bytes per Block

4

@
>
©
3

Figure 6.1. Block misses of bc by the four packing and placement implementation. The chart
juxtaposes the results from those working on different cache configurations; differ by block

Block Misses

120000

100000

80000

60000

40000

20000

size and number of sets (x-axis).

64-Bytes per Block

random placement=>packing’
placement=>packing
packing=>random placement
packing=>placement

v
.
i
28 2 4

128-Bytes per Block

3

16 32 64 128
512-Bytes per Block

T L L L

=
T ey

e
e

B

A ‘_§n =
6 32 64 128

256-Bytes per Block

Figure 6.2. Block misses of gawk by the four packing and placement implementation,
experiments working on caches differ by blocks size and sets.

Block Misses

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

random placement=>packing
placement=>packing
packing=>random placement
packing=>placement

|

\v
o
Al

& e R BT s, P

b
T
»

2 4 8 16 32 64 128 2 8 16 32 64 128
256-Bytes per Block 512-Bytes per Block

28 2
128-Bytes per Block

8 16 32 64 1

64-Bytes per Block

from

Figure 6.3. Block misses of grep by the four packing and placement implementations, from
experiments working on caches differ by blocks size and sets

118

400000 —40—¥r+—v—"—F7—7——"—T——"—T—7T—T— 77— T

random placement=>packing’
placement=>packing
packing=>random placement
packing=>placement

350000 -

300000

250000

200000

Block Misses

150000

=

Pty
BTy

100000

50000 i
1]

;

\

——_—_—
S S S S S S S S S S N S S S S S S N S S S S S N S S S S N OSSR E s =

e e e

e
e
RS
RSNt Lt

Eomommmeeeeeey

Eorrrprrrrr e
e

e

? \ wll i &

f R PRV E B A el e
2 8 16 32 64 128 2 4 B 16 32 64 128 2 4 8 16 32 84 128 2 4 8B 16 32 64 128
64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block

Figure 6.4. Block misses of /ndent by the four packing and placement implementations, from

experiments working on caches differ by blocks size and sets

=

120000 . . T . o T
random placement=>packing’ ¢
placement=>packing gz
100000 | packing=>ran_dom placement mmmw |
packing=>placement gz
80000 - 1
y
Y]
&
= o000 | !]
S i
5 .
q 40000 i 0
ol ; |
b
il 1
i A
i i
i N
20000 | gv EV |
H 1
i i
i i
i i
i A
EV i EV Tl B
o Ld R it i A 72 e el e i BN N N
2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block
Figure 6.5. Block misses of the zcc by the four packing and placement implementations, from
experiments working on caches differ by blocks size and sets

n———
y random placement=>packing’ ¢
placement=>packing pzzzzz
6000 | packing=>random placement gy
packing=>placement gzzm
5000 q
w
_% 4000 | 1
= i
w2 §
S 3000 ﬁ 1
S i
= i
i
2000 il]
o
il i
N N
M o
el | -
P LT A
N ol o
B Vi)
0 R 1 1y

f G e EPARH Byl meftin erbae: B

T2 4 8 16 32 64 128 24816326412 2 4 8 16 32 64 128 2 4 8 16 32 64 128
64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block

Figure 6.6. Block misses of unzijp by the four packing and placement implementation, from

experiments working on caches differ by blocks size and sets

119

Block Misses

/" 64-Bytes/Block
s P R i e -/ 128-Bytes/Block
/' 256-Bytes/Block

Cache Sets 64

2/ 512-Bytes/Block

o
Figure 6.7. An overall observation, in.both the respect of block size and cache set counts, of
1% 3 e

4, -
the block misses caused by the layout o’f*b the packing first and placement next approach.
Fl -
The label aside the column indicates

s ‘l’:’ég:he of the given experimental

Block Misses

/ 64-Bytes/Block
128-Bytes/Block
256-Bytes/Block

512-Bytes/Block
Cache Sets

Figure 6.8. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of gawk by the packing first and placement next
approach.

120

Block Misses
w
o
o
o

i/ 64-Bytes/Block
d 128-Bytes/Block
*:/ 256-Bytes/Block

/" 512-Bytes/Block

e ST
2
Figure 6.9. An overall observation, |n bcfth thg respect o’fplock size and cache set counts, of

the block misses caused by theklayo‘fn reﬁﬂk@adﬂng first and placement next

Block Misses

64-Bytes/Block
128-Bytes/Block
256-Bytes/Block

512-Bytes/Block
Cache Sets

128

Figure 6.10. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of indent by the packing first and placement next
approach.

121

Block Misses

7/ 64-Bytes/Block
128-Bytes/Block
1/ 256-Bytes/Block

-/ 512-Bytes/Block

Cache Sets 64
128
e i [t L
Figure 6.11. An overall observation, |mb6th the resp'ect 6f,block size and cache set counts, of
the block misses caused by the layout ej’f ing flrst and placement next approach.

Block Misses

/' 64-Bytes/Block

/' 128-Bytes/Block
3/ 256-Bytes/Block

512-Bytes/Block

Cache Sets 64

Figure 6.12. An overall observation, in both the respect of block size and cache set counts, of
the block misses caused by the layout of unzip by the packing first and placement next

approach.

122

Transferred Bytes

o fpor] G IS

¥
¥

2 11- —
Figure 6.13. Estimate the amount of_:d_a'ta re‘a_i_gj frg’%&_,m‘a n-memory by all cache misses (bo.

& 4 ’jf' > \“'I‘f{\ #..
) e 8

Fl

Transferred Bytes

Cache Sets

256.5
t
128 S Blocy

Figure 6.14. Estimate the amount of data read from main memory by all cache misses (gawk).

123

N
8
=}
8
Transferred Bytes

4

e SIEEER -
Figure 6.15. Estimate the amount of data read frO';‘_‘l;Emaiﬁ memory by all cache misses (grep).
A= - ! e
p ¢

=

20,000,000

- 15,000,000

PR R R

Transferred Bytes

b

8

Cache Sets

Figure 6.16. Estimate the amount of data read from main memory by all cache misses (/ndent).

124

S

Transferred Bytes

T o] Loy S
Figure 6.17. Estimate the amount of data read fro_t%*-.mafnﬁ:nemory by all cache misses (£c0.
1= T L

..:h‘: : i
{. N\
-"I1. E f’:_ :..

A *h

Transferred Bytes

Figure 6.18. Estimate the amount of data read from main memory by all cache misses (vnzip).

125

100000

2B

packing->placement s
original —m— |

frequency —g—

PH. ——

90000 -

80000 -

70000 -

60000 -

50000 -

40000 -

Block Misses

30000 -

20000 -

10000 +

0
2 4 8 16 32 64 128 2 4 8 16 32 1 2 4 8 16 1

64-Bytes per Block 128-Bytes perBlock 256-Bytes per Block 512-Bytes per Block

Figure 6.19. Compare layouts of bc by packing and placement with other approaches.

140000

2B

packing->placement s
original —m—

frequency —m—

PH, ——

120000 |

100000 |

80000 -

60000 -

Block Misses

40000 -

20000 -

2 4 8 16 32 64 128 7 i
64-Bytes per Block 128-Bytes per Block 256-Bytes per Block ~ 512-Bytes per Block

Figure 6.20. Compare layouts of gawk by packing and placement with other approaches.

14000 — —_—
packing->placement
original

frequency

PH.

12000 +

7
21
1

10000 +

8000

6000

Block Misses

4000

2000 -

N]

\‘ PRy SRSy e
N, 8 g NS en

2 4 8 16 32 64 128 8 16 32 64 121 2 4 8 16 32 64 128 2 4 8 16 32 64 128

64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block

Figure 6.21. Compare layouts of grep by packing and placement with other approaches.

126

700000

600000 -

500000 -

400000 -

300000 |

Block Misses

200000

100000 |

original +
frequency —g—
PH, ——

0

2 24 8 16 5 6
64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block

Figure 6.22. Compare layouts of /ndent by packing and placement with other approaches.

160000

140000 |

120000 +

100000 |

80000 -

60000 -

Block Misses

40000 -

20000 -

0

original + |
frequency —g—
PH, —— |

s = BN .
B 1 2 64125 2 4 8 16 @ b4 125

Figure 6.23.

32 64 128
-Bytes per Block

[«) BN
.h
mb

28-Bytes per Block 256-Bytes per Block ~ 512-Bytes per Block

-

Compare layouts of fcc by packing and placement with other approaches.

9000

8000

7000 +

6000 +

5000 +

4000 +

Block Misses

3000 -

2000 -

1000 -

"packing->placement’
original —m— |

frequency —g—

PH. —e— |

2 4 8 16 32 64 128 2 4 8 16 32 64 ws 2 4 8 1632 64125 2 4 8 16 32 64 128
64-Bytes per Block 128-Bytes per Block 256-Bytes per Block 512-Bytes per Block

Figure 6.24. Compare layouts of unzip by packing and placement with other approaches.

127

180%

0
T T — 2 T T T
@ i
EER A Q -
EEERY 3 NEEBA
m m m o .m ” m m “ PAAALIILY,
ENREN - Z ~ NEEHEY e
oxo=Z oo <t —
c 8.8 xaf oo
< M Lo 2N Le] 2 058N 7z
L 3oT § . Enw e o) T 55 C
c e I o F oPg 5 ——
©
[J]
- N N L B
MY om— B
kel) 1
om
w m 77z
L == ©g S L ——
= —
L AL ALY - a
P - AL, 7
eSS s
r ”//N\\\\\\\\\\\\\\\\\\\ o m - =
£ S
it A s wv) A LI,
= = < Q L SSSS————
0 =
(&
LSS AIS SIS IS, e...
r e———— o r S
RS = — ——
I L e
o il
L= by _
IR | |
'8 S ¢
@© 1
r e N e bz,. b A E
T T -~ =
= . L
r B s (<5} e
| SN ANARNRRIN RRANRREWN)
ST (3] L IO~
r - Mv_vkc — e
o] o
m [7,) SIS SIS SIS SIS S,
[. BT s ey, (O W) e [%ﬂﬁ//
=] — ==
A S TS T =
AL LL LAY M © Q227777
2 5 L =
I o) ()] B
SIS o
g
E——
[”/I/!/!/’/I/I/I/I/FW/!/II < .Lu = /§
NN
= ©
d s
L ——— ~ [a'4 =
N
| | | | | | | | fO- 1 1 1 1 i 1 1 1
Q Q Q O) o)) Q X R X X X xR X X X B
EN EN BN EN R R R R R) B p 2 2 g 3 B 3 3 3
= =} = =) =} = o o o o o
e = I 1= = =] =] =] =] o © ¥ 15 S o © F I
© = N o © © < N 3 - - - ~ -
- - - —
(=]
dAypuag aaimay] (e Aqouad sagmpy

12?# sets)

64

g‘l Z—Byggs Blog’k2

128

64 128
256 and 512 bytes.

g56—By?ees Blocsk2

4
Figure 6.25 (continued). Relative penalties of all benchmarks for the cases that block size are

S\

NN

S EEE

AN

Relative Penalty

g

64 bytes/block
128 bytes/block
256 bytes/block

=

Block Size

16I 3 L
Number of Sets ™

&

512 bytes/block

Figure 6.26. Weighted relati?éﬁé_ i k Ug a direct mapped cache.

=
+ i

Experimental
b

g6
i

=

&

This section evaluates the two techniques proposed in Section 4.3. The experiment
uses the proposed techniques to arrange basic blocks within benchmark programs. After
that, it simulates the execution of a benchmark program on different configurations of
fully associative cache with four kinds of basic blocks layouts, which include the
original layout by the compiler, ordering basic blocks by usage counts (frequency-sort
layout), and the layouts by the two proposed approaches. The simulated cache
configurations include four sizes of cache block (also memory block): 64, 128, 256, and

512 bytes per block. For each cache block size, there can be 1 to 32 cache blocks in the

129

cache. Besides, the experiment also simulates both FIFO and LRU replacement

algorithms for the cache memory.

As the reason explained in Section 6.2, the performance index of a basic block
layout is the block miss count. Figure 6.27 to Figure 6.38 are the first collection of
charts that show the raw experimental results. Two charts for each benchmark program
illustrate the block miss counts. The one is the experimental results of executing the
program on a cache with FIFO replacement, the other is the experimental results on a
cache with LRU replacement. The major x-axis is block size and the minor x-axis is the
number of cache blocks in each chart, The charfs;' show that the layouts generated by the
two proposed approaches overcome the--orjginal-layout and the frequency-sort layout.
Even in the case of 64-bytes per block, thé::'gaps between the original layout and the

processed layouts are still significant. Be'sideé, the propoesed approaches are effective in

spite of the replacement algorithm. This outcome matches our inference in Section 3.4.

When the #cache block is low, some gaps between our approach and the original
layout are big, but some are not. Not surprisingly, our explanation for the direct mapped
cache experiment (in page 114) can be extended to this experiment as well. The only
changed factor is #cache set versus #cache block, but both actually concern with overall
cache memory capacity. That is, when cache memory is small, our approach generates

less cache misses for programs with the founded properties.

On the other hands, it seems not much difference between the experimental results
by the two proposed approaches (the column pairs through the charts). We suggest a

reasonable explanation to this outcome that concerns with the characteristic of the

130

benchmark. Consider the object access graph of a program, the degree of a vertex (basic
block) is usually small. For example, a “if..then..else..endif” compound statement
(illustrated in Figure 5.2) consists of four basic blocks. The degree of each vertex is
about two or three. Similar situation applies to the compound statement of a loop, which
can be transformed to an “if” statement easily. As a result, the number of edges can be
linear proportional to the number of vertexes. The Figure 5.7 illustrates the expected
outcome. Either partitioning the graph to coarser grains than to finer grains, or
partitioning the graph to finer grains directly can get similar layouts. Therefore, the

experiment results can be similar.

Since the two proposed approaches generate similar experimental statistics, the
following charts adopt only one- page cachel'%éurlstlc for readablhty Using the relative
penalty defined in Section 6.2, Equation (6. 4) Flgure 6:39 (on FIFO cache) and Figure
6.40 (on LRU cache) illustrate the.degree: of improvement of our approaches, in
compared with the original layout. Each column represents a benchmark program. The
degrees of improvement vary by programs, but the degrees of improvement increase
along with block size. To figure out the overall respect, Figure 6.41 (on FIFO cache)
and Figure 6.42 (on LRU cache) use the Equation (6.5) to illustrate the weighted
relative penalties of the one-page cache heuristic. The x-axis is the number of cache
blocks and the y-axis is the block size. The approach provides improvements despite of
the number of cache blocks. However, the curves formed by the columns along x-axis
are zigzag especially when the cache block size is small (consider the cases of 64-bytes
and 128-bytes in both charts). Therefore, we have to track back to Figure 6.27 to Figure

6.38 for answers. Consider the two curves in each chart. The one is the curve by the

original layout, and the other is the curve fit the top of columns by our approaches.

131

The rate of declining of a curve is related the locality sets and the ability of capturing
working set in a program. In the theory, the more cache blocks are, a cache memory
holds more locality sets. However, the code size of each set is distinct, and the number
of locality set is definitely not constantly proportional to the number of cache blocks.
Therefore, the declining rates of both curves are different, and this reason makes the

calculated relative penalties vibrate along #cache blocks.

Meanwhile, the degree of improvement becomes greater as the size of a cache
block (memory block) increases. Similar outcome can be observed along the diagonal
columns, which represents different cache érgaﬁiéatipns under the same cache total size.
The outcome means the contribition of*-cll)ur .I,approaches becomes significant as the

system has larger memory blocks. I

140000

one-page
two-level
original
frequency

120000 -

I
N
t1]

100000 -

80000 -

60000 -

Block Misses

SN

| NN
]

40000 -

20000 -

RN
i
Y

Y T el e ey
VT e

0

A
®
3
g

2 1
64-Bytes per Block 128-Bytes perBlock 256-Bytes per Block 512-Bytes per Block

Figure 6.27. The miss counts caused by all kinds of layout of 6c working on a fully associative
cache with FIFO replacement.

132

one-page gy

b7z

two-level

original —m—

frequency —a—

140000

120000 -

100000 -

80000 -
60000

SasSIp\ Y201

40000 -

20000

512-Bytes per Block

256-Bytes per Block

Bytes per Block

128-

64-Bytes per Block

Figure 6.28. The miss counts caused by all kinds of layout of 6c working on a fully associative

cache with LRU replacement.

w,ﬂ..f_u
ZBN!
T T >

- SNNNNNNNN|
V|

S
e SIS

NN\
RIS RIS ISP SIS SIS

(AR NN
E o o o P i e)
T S S S S

A A A A L P A o A A

NNNANNANN RN NN |

V2277770777727774 N

NN
T

2
7
g N
v
N
v
64-Bytes per Block

SRR R RN RN |
27

o

160000

140000
120000 -

T s s = =
g 8 8 g s
g 8 8 8§ 8
§ 8 § § s
g 8 8 § 8§
SIS Y201

Bytes per Block

512

128-

256-Bytes per Block

Bytes per. l_3|ock
Figure 6.29. The miss counts causéd by all kinds. of layout of gawk working on a fully

associative cache with FIFO replacement

wm+
ZAN
2

frequency —a—

Z NN

=4

WSO
S

.,‘\\ L e
RS
SIS IIISS.
%‘2’/’%

Y I e A A A P,

NSNS |
vrzzzA™N

RAREENREERRNENNRNS

— (D T
A S S
‘22’%

R o 0 e)

<

~

777

160000

140000

120000 -

T s s = =
g 8 8 8 =
g 8 8 8§ 8
g 8 § § s
g 8 8 § 8§
SISSUN 42019

-Bytes per Block

512

Bytes per Block

256-

Bytes per Block

128-

64-Bytes per Block

Figure 6.30. The miss counts caused by all kinds of layout of gawk working on a fully

associative cache with LRU replacement.

133

25000

> >
= =
= =
> >
(= (=
© ©
c c
, , o , o , . ,
7I8 5 2 7IN 5 2 7IN
7N S .= A S .= A
JN a = N a = N e
40 : = 4L : = 4L
LTE B g LT T B g LT B ®
gan gan gan
385 8 3 2855 8 3 2855 -
225 225 225
$383 5 2 £8%52 2 & £5°§ 3
o £ 9__ S . o £ N S © £ SN
D A~ 2
Y Y
ot 7]
[S) [S)
x £ %5 £
[5] + [5] +
kel = B] kel S o
a o © o o O
[} > T] > @©
Q 3o Q. T =
7] fnd Q (%R — o
8 Y— m 8 — Q
S =) 2 o =
@ o @
5 8 2 g g 2
Tog -
X "ol
8 = £ S . ==
e o s = sin® 3 e
@ > @ > o
SW e m Wn 1 S <
<+ 0 - Q D! - (&) Zind
e < ©
> o5 (] > o5}
~ @ w © a n ©
SN & 3 [} S 3 ()
o B o B
o~ +— o—) “Ek) —
S c 9 8 c W ©
0 5 9 em > 32
5 S a .5 S ©
o O 278 O (@ -
8 A - 8 A
..W, wv b~ wv [ANANNNANENANNN NN |
- — I\ANANNNNNNNNNNNNY = - — VT o] N
B m §QB m
< <
© e 0 P77~ @ e
o o o o > = o o o o o > = g g g g g g g °
g g g g = g g g g g = g 8 &8 8 8 g &8
& 2 = B . 2 S ° = > . R 3 3 < 3 & e
b o
SISSI Y201 [32] SaSSIT Y201 [32] SOSSI\T Y001
o O
() ()
S S
=] =
2 =y
L L

Bytes per Block

256-Bytes per Block 512

134

128-Bytes per Block
associative cache with FIFO replacement.

64-Bytes per Block
Figure 6.33. The miss counts caused by all kinds of layout of /ndent working on a fully

one-page gy

two-level

b7z

original —m—

frequency —a—

| SNNNNNNNNNNN
Uiz

NANNENANNANNS
V7777 N

ANNNNNNNNNNNNNN

LA €9

NN RN |

/7

IANENNNENNE NN NN NN NN |
Vo e)

700000

600000

500000

400000 -
300000

SasSIp\ Y201

200000 -
100000 -

Bytes per Block

512

128-Bytes perBlock 256-Bytes per Block

64-Bytes per Block

Figure 6.34. The miss counts caused by all kinds of layout of /ndent working on a fully

associative cache with LRU replacement.

w,ﬂ..f_u
ZBN!
T T >

Pl

]
SN
= irrtsta

SN
b2z

350000

300000 -

250000 -

200000 -
150000 -

SISSIJ Y201

100000 -

50000 -

Bytes per Block

512

64-Bytes per Block

256-Bytes per Block

12_8-Bytes per. l_3|ock
Figure 6.35. The miss counts caused by all kinds. of layout of fccworking on a fully associative

cache with FIFO replacement.

w,ﬂ..f_u
ZBN!
T T >

350000

300000 -
250000 -

200000 -
150000

SISSI\ Y001

100000 -

L2

W N

-Bytes per Block

512

256-Bytes per Block

128-Bytes per Block

Bytes per Block

64-

Figure 6.36. The miss counts caused by all kinds of layout of zcc working on a fully associative

cache with LRU replacement.

135

10000

> >
= =
= =
=] =}
“— = . .
(3] (3]
c c pzzz2Z
S S » o
— — >
o ~) - - [=)] a .
L e 2 ;
“ﬂ 8 ;= “” e 8 £ c W,
N g = N e 8 X 5
7B o — ZAN e o — + Y L
VTG > 3 Q o 55 = o 8 Q
oQ &g =3 = LTT R e o =
WW.W% @ .Ww.mum d. @ 7 L L %
&l&.mu = m: &In_u.mu SIS m: L %%%//////%/////Aﬂ%
P ¥
£2°% @ N rcz°8 o @ N AR
° & o IN . ° = ~ < . 4
AV N] m r ~ N m. Q72277722227 W
— “— o r)
my O E s% O E =
o m [<5) Ke] ..m o Q2222222227227
e m o Q e ﬂ o Q L B 0o
]) D [2°] FTTTTTRTT S
w 8 o 3 W8 —
» T Q o B o
+ 8 - 9 @) v22727277,
2 2
> Y = > = pust L -
w o o M_..... o = TTITINERS
-8 = R4 g &
c d= —
= -
=
x Xx L x X
8§ ¥ 86 B Y
3 = 3 Sphu= 3 2272227
© © Ei £
£ © SLETE o ‘ ——— 8
3 > @ 3 >
. 2 < o e S
- 8 [S) « B L [E) V2222727272777,
2 |n_0.v D] . w w L S-S ©
iy a (S} V7] N ey’ A AN -
N 5 O IS 5 9
- s > -~ o = LA, «
[& P [S L SSSSSaaaaaaaaaaa
=
» wn .© » wn 8 FETTTTETTITTITITTTTTSS o
o +~ 'O 3] + 2
-] c m ©° c m ALY, <
- a 35 0 @ 353 W L SS—— <0
S . & o wn 5 o w L <+
U 2zrzae 8 O © 2 O © B—— Py
< @ 0
8 n 8)
= w0 z © . = - .
+ £ s I RN
© ©
[¢] (] &
o 2 9 9o o 9 o 9 o o = 2 2 2 g 9 g9 2 9o g9 g o L r SssSS -
S 8 8 8 8 &8 & 8 ¢ - g 8 8 8 8 8 8 8 8 8 [FETERIITITIRINY
g 8 8 8 8 8 8] ¢ € 8 8 2 8 8 8 8 § =
N (o]
SISSI Y201 (32} SISSTI\] Y201 2¢] | I L L |
© © £ 2 &5 &5 & £ %
o
g Q o S © © < K
=} 3
DU 2AD]D,
=) =) Guad 2awpd
L L

Figure 6.39. Relative penalties of all benchmarks for the cases that block size are 64 and 128
bytes on a fully associative cache with FIFO replacement.
136

grep [y

indent gzzmm

bc
gawk

120%

100% |

80%

60%

Aoudg a1y

40% -

20%

0%

32

6

1

ZAEBytes quck

51

2

32

6

1

6‘!Bytes quck

25i

2

chmarks for the cases that block size are 256

e

Relative penalties of all ben

d.

’

Figure 6.39 (cont

il

L

and 512 bytes on a fully associative ¢

ﬁe’ugth FIFO replacement.

cac
-

AEr

gawk

grep

indent gz

tec mmm
_=y

unzip

Vizzzzzzz

Czzzzz

przzzzzzzz777277772777777777

S
e
AT
g\\\\\\\u\
//.ﬁ//é

|
ISy

Vizzzzzzzzzzzzz
S S

N Y
zzzzzzzzz7

ISSSS
- =
AIUIEIHIHEHHIHmHTmitaccccc

Vzzzzzz

 AARARARARARARANARNRAN

S

IS
EzzZ

Wz

S5

Wz

NN

NN

SSSSS=———

TIRIRININININN

120%

100%

0% -
0%

L L
® X
o (=]
< N

80%

©

dqpuag sauwpy

32

6

1

8-Bytes B%ck

<t

12

2

32

6

64f‘3ytes Bﬁ)ck !

2

Figure 6.40. Relative penalties of all benchmarks for the cases that block size are 64 and 128

bytes on a fully associative cache with LRU replacement.

137

32

Ne}
Te}
(gl
(<]
P
[3+]
T T ()
N 9,
NEERBA — 7S
11007 2 e
- = »
£8E88 S £ a2
Lo LN = o 2
592 5§ o o 3 & 8
= S >
S e = E g &
(1] () - Q
= m < VA\.\ T N
5] 3] 55 +V+
- o w = 4 X dedasndadd
g @ A e
g wn 2
s (3]
&8 o D
5 o 5 e
I 2z L
o
L = K m =l
. < B
< (2 4| | BEeeeeeenoeet
- - o
£ Sy
=
c o
c. =
(<38 z
I, N br..._...m..._h
i = & = w =
c
777 y— A)
£ 0 IS L T R T & AT m
L © o - 2
- s - 2
v = 2
= "] - 4= <
B (53} (4+] o [$]
55 @ c @© *
72222222227, < %u c
L AN <R o
8 L n
8« 29
Q77222727) +=
L 3o >
~ — O
[J)
- x N
zzzz i
L - .\m n
= 3 =}
m = ° 9 N X X R ES &
, _ ; o ® = ® £ &% & & & § 8 8 8
o S 8 e S S 2 2 & o o o
2 8 N R 2 ® N = S ¢ g & 8 B8 § & & %
Q Q Q =} =) o o o =] [} @
N =} © © < N ~
- - <
. Ryeuad aAnjeay pajybiap
Aoudg a1y (o)
(&)
P
=2
(=]
L

Figure 6.41. Weighted relative penalties from benchmarks on a fully associative cache with
FIFO replacement.
138

100.00%

A
H
X

90.00%

80.00%

LN

(SEEEAN
s
T
«S»;
AR
R
i o B
753
&

I

T
o

70.00%

o

I

?.' 1
Yo

53
5
RN

ey
S

s
Su

I

%
&

60.00%

i

REREREN

i,
&

g

£

&

G
G,
o
—

7
RS

o
5
i

R

b R T e

b

58

e
Noaes

i

50.00%

I
I

AR

I

i

-] 45’
g ¢
R
e
e |
e,
R
T
oo
B
o P‘f
L
G

SIS

i

40.00%

N
IR

Weighted Realtive Penalty

3L

30.00%

5%

<4

frrs

20.00% ’
10.00% '

0.00%

R R B A N DR DN

64 Bytes

128 Bytes

s,
A
4
4“""".";.}‘

256 Bytes &
&

512 Bytes
Cache _B|o'clis

-1, 8% =5 TN
x ,'."'—_ _-:‘::‘16 B %
y L |)ﬁf m ‘..d:
Figure 6.42. Weighted relative penalti s f ben ar fs‘féga. a fully associative cache with

~ [LRU réplacement.

4
ﬁé g
;

'Experimental

6.4 Set Associat'i'vfé_,}___;f

Bt . !
4 i

Fogagad=t

Analysis

This section evaluates the performance of our approaches working on the set
associative cache. The experiment is generating basic block layouts of given benchmark
programs, as what the previous sections did. The parameters of the configuration of a
set associative cache include four items: cache block size, number of cache set, number
of cache blocks in a cache set (denoted as the N-way cache in the literatures), and the
replacement algorithm. This experiment uses two cache block sizes: 64 and 128 bytes
per block. The number of cache set ranges from 2 to 128 sets, and there are 2, 4, and 8

cache blocks per set, since the real cache usually has large number of cache sets with

139

small associativities. The simulated cache uses only FIFO replacement, since the
difference between FIFO and LRU replacements make minor influence in the previous

experiment of fully associative cache.

The focus of this experiment is to watch the magnitude of cache misses as the
number of blocks per set changes. Table 6.1 to Table 6.6 are the experimental cache
misses of benchmark programs. Rows belonging to each (block size, # cache sets)-pair
illustrate the miss counts for different number of cache blocks. Take Table 6.1 as an
example. Considering the case of (64-bytes, 16-sets), the original layout causes 16634
misses when there are two cache blocks in é-'set. The statistics in these six tables
indicate the layouts generated by:the preposed, tgchnique cause less cache misses than

\ -

those by the others. :rf'

The last columns in the tables are the numbers E)f relative penalty, which is defined
in Equation (6.4). It compares the performance of the proposed approach with the
original layout. Figure 6.43 shows the overall performance ratio by the weighted
relative penalties, including both 64 and 128-bytes cache blocks. The columns are
grouped by cache sets. Each column in a set represents the weighted relative penalty by
either 2, 4, or 8 cache blocks per set. Consider the columns stand for identical cache size
in total. The chart tells the weighted relative penalty is strictly lower as enlarging the
cache block. That means columns in the 128-bytes group are all shorter than the
columns in the 64-bytes group, as those columns represent the same cache size. For
example, the values of (128-bytes, 2-set, 2-blocks) is less than which of (64-bytes, 2-set,
4-blocks) or (64-bytes, 4-set, 2-blocks). It infers that contribution of the proposed

approach becomes obvious as the cache block growing larger. From the other point of

140

view, for fixed cache total size and cache block size, these seems no consistent trend in

the changing of weighted relative penalty, or say they are uncorrelated.

The observation leads to our presumed perspective, i.e., the proposed approach can
generate basic block layout that causes less cache miss then the others. Especially, it is

effective for large cache blocks.

141

Table 6.1. Cache misses caused by layouts of bc program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 52296 | 68440 | 54679 | 43050 82.32%

2 4 39641 | 49692 | 38729 | 30500 76.94%
8 23998 | 30388 | 22291 | 17587 73.29%

2 37521 | 49283 | 37307 | 30555 81.43%

4 4 24564 | 31080 | 24315 | 17463 71.09%
8 15537 | 19242 | 14911 | 12021 77.37%

2 25317 | 32242 | 25222 | 21038 83.10%

8 4 15487 | 19506 | 14885 | 11629 75.09%
8 8458 9263 7955 6454 76.31%

2 16634 | 20659 | 15454 | 11927 71.70%

64 16 4 8589 | 10165 7926 6382 74.30%
8 3159 2133 2353 1971 62.39%

2 10198 | 10423 8587 6724 65.93%

32 4 3377 2128 3017 1665 49.30%
8 1534 371 437 376 70.41%

2 5079 2023 2937 2329 45.86%

64 4 67p L\ BZ 451 373 55.26%
8 421|318 359 328 77.91%

2 1424/ 1 391 1435 487 34.20%

128 4 435 | 318 359 326 74.94%
8 " 418 318"} 354 323 77.27%

2 31762.{- 43915 |7 22913 | 16565 52.15%

2 4 21523 287201 = 15020 | 10811 50.23%
8 12953 | 16351 9184 6846 52.85%

2 21263 | 27611 | 14413 | 10535 49.55%

4 4 13993 | 16574 9760 7214 51.55%
8 7208 8106 4912 3603 49.99%

2 14007 | 17079 9560 7108 50.75%

8 4 7400 8707 4620 3920 52.97%
8 2811 2036 1907 1306 46.46%

2 8331 8695 5303 3654 43.86%

128 16 4 2948 2048 1588 1128 38.26%
8 361 217 227 200 55.40%

2 4229 1933 2450 1372 32.44%

32 4 511 211 224 198 38.75%
8 241 162 177 158 65.56%

2 1319 241 694 232 17.59%

64 4 255 162 179 158 61.96%
8 237 162 177 159 67.09%

2 254 162 177 161 63.39%

128 4 237 162 178 161 67.93%
8 237 162 179 158 66.67%

142

Table 6.2. Cache misses caused by layouts of gawk program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 102851 | 112860 | 106394 | 99283 96.53%

2 4 81399 | 66188 | 70341 | 69069 84.85%
8 41821 | 42902 | 39464 | 35379 84.60%

2 74399 | 66173 | 84769 | 69183 92.99%

4 4 39639 | 41384 | 37903 | 39346 99.26%
8 28620 | 21475 | 22440 | 22313 77.96%

2 40660 | 42666 | 45482 | 43945 | 108.08%

8 4 28288 | 22035 | 20859 | 21168 74.83%
8 15925 8410 9286 7674 48.19%

2 28889 | 21097 | 32456 | 21611 74.81%

64 16 4 15452 8041 7390 9524 61.64%
8 1402 664 499 570 40.66%

2 14717 8134.| 19901 9310 63.26%

32 4 2331 834 503 785 33.68%
8 1583 371 353 388 66.55%

2 4034 1109 3100 3989 98.88%

64 4 599 [\ 369 358 384 64.11%
8 518 || ™==33pB 333 338 65.89%

2 1811/| 1 370 365 423 23.36%

128 4 517/ <333 332 335 64.80%
8 ' 507 33371 331 340 | 67.06%

2 63997~ 58198 | 52953 | 39448 61.64%

2 4 30368 .32775]| = 24949 | 21425 70.55%
8 21785 | 16357 | 15155 | 12637 58.01%

2 31201 | 32659 | 25173 | 21115 67.67%

4 4 21188 | 16169 | 15699 | 12532 59.15%
8 13008 6883 7510 6649 51.11%

2 21772 | 16056 | 16439 | 11764 54.03%

8 4 12727 6611 7002 6037 47.43%
8 3264 518 394 542 16.61%

2 12853 5772 9934 5591 43.50%

128 16 4 3575 684 1823 409 11.44%
8 395 204 217 200 50.63%

2 4356 912 3838 955 21.92%

32 4 793 202 219 197 24.84%
8 338 172 186 170 50.30%

2 1354 208 459 264 19.50%

64 4 338 172 184 170 50.30%
8 320 172 182 172 53.75%

2 441 173 182 171 38.78%

128 4 326 172 186 169 51.84%
8 320 172 183 171 53.44%

143

Table 6.3. Cache misses caused by layouts of grep program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 6430 4872 3681 3326 51.73%

2 4 3375 3842 3045 2783 82.46%
8 2892 3075 2438 2471 85.44%

2 3396 3926 3187 2767 81.48%

4 4 2904 3004 2521 2505 86.26%
8 2363 2040 1784 2135 90.35%

2 2911 3000 2543 2418 83.06%

8 4 2336 1973 1847 1813 77.61%
8 1441 959 892 1208 83.83%

2 2274 1989 1693 1984 | 87.25%

64 16 4 1409 937 975 1113 78.99%
8 689 499 479 526 76.34%

2 1478 983 1083 1101 74.49%

32 4 737 508 464 573 77.75%
8 439 293 283 323 73.58%

2 888 496 434 621 69.93%

64 4 435 |\ 297 288 316 72.64%
8 390 | =281 279 305 78.21%

2 479'| 11 296 287 360 75.16%

128 4 391/ 7281 279 301 76.98%
8 * 390 281} 281 306 | 78.46%

2 3589 3168 [1947 1606 | 44.75%

2 4 2210 2481 1711 1373 62.13%
8 1754 1686 1128 1111 63.34%

2 2172 2415 1543 1384 | 63.72%

4 4 1732 1670 1289 1080 62.36%
8 1099 708 672 673 61.24%

2 1713 1574 1156 998 58.26%

8 4 1115 693 735 568 50.94%
8 507 338 359 291 57.40%

2 1127 787 882 589 52.26%

128 16 4 559 339 312 264 | 47.23%
8 300 161 183 156 52.00%

2 683 343 343 322 | 47.14%

32 4 291 163 182 163 56.01%
8 235 144 160 150 63.83%

2 320 161 190 167 52.19%

64 4 237 144 165 148 62.45%
8 234 144 162 152 64.96%

2 261 144 163 150 57.47%

128 4 234 144 166 150 64.10%
8 234 144 160 150 64.10%

144

Table 6.4. Cache misses caused by layouts of /ndent program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 352053 | 524279 | 356834 | 282076 | 80.12%

2 4 307845 | 440899 | 299715 | 249704 | 81.11%
8 289033 | 365931 | 286972 | 236418 | 81.80%

2 308629 | 437665 | 294894 | 252224 | 81.72%

4 4 287464 | 363843 | 284086 | 238962 | 83.13%
8 250967 | 289503 | 241753 | 202455 | 80.67%

2 285363 | 371134 | 281712 | 240530 | 84.29%

8 4 248994 | 287420 | 253025 | 210945 | 84.72%
8 189652 | 169772 | 175822 | 139645 | 73.63%

2 246622 | 291435 | 246483 | 212320 | 86.09%

64 16 4 187814 | 165842 | 174497 | 135169 | 71.97%
8 101205 | 52203 | 81926 | 61171 | 60.44%

2 182758 | 152384.| 169026 | 127829 | 69.94%

32 4 100999 | 47596 | 97459 | 56474 | 55.92%
8 24265 3081,/ 11863 7539 | 31.07%

2 101325 | 42394717\, 81675 | 54256 | 53.55%

64 4 25445 |\ 3069 | 14586 9763 | 38.37%
8 580|| “=.416 411 430 | 74.14%

2 34706 | [12738)| ¢ 21833 | 11102 | 31.99%

128 4 2107!/| <418 411 428 | 20.31%
8 £ 539 4161 a1 428 | 80.45%

2 221184 |- 368826 | 170752 | 140047 | 63.32%

2 4 200547 {,.2976451 157785 | 129709 | 64.68%
8 182085 | 221479 | 144451 | 114334 | 62.79%

2 201428 | 301270 | 160716 | 130900 | 64.99%

4 4 180513 | 225776 | 131904 | 114028 | 63.17%
8 149903 | 128032 | 105496 | 74557 | 49.74%

2 178391 | 227316 | 140052 | 112184 | 62.89%

8 4 146515 | 127907 | 111984 | 74807 | 51.06%
8 88982 | 39211 | 53741 | 33279 | 37.40%

2 140890 | 117906 | 99053 | 74500 | 52.88%

128 16 4 88629 | 36453 | 54562 | 36116 | 40.75%
8 28440 2707 9851 3987 | 14.02%

2 87877 | 32547 | 67544 | 33169 | 37.74%

32 4 26565 2582 | 10221 4580 | 17.24%
8 498 214 224 206 | 41.37%

2 32669 2247 | 31675 6793 | 20.79%

64 4 2329 218 226 208 8.93%
8 299 214 225 206 | 68.90%

2 2778 220 227 206 7.42%

128 4 299 214 226 206 | 68.90%
8 299 214 228 206 | 68.90%

145

Table 6.5. Cache misses caused by layouts of zcc program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 77733 78958 79073 66610 85.69%

2 4 61321 47040 65030 44595 72.72%
8 31080 12312 49644 25443 81.86%

2 65496 46409 54040 44314 67.66%

4 4 33272 12382 | 44112 | 27353 82.21%
8 6143 7979 5093 4290 69.84%

2 45249 12923 | 40748 | 20276 44.81%

8 4 16404 8039 15899 4395 26.79%
8 4347 5519 3445 3130 72.00%

2 20976 8448 12805 4767 22.73%

64 16 4 4364 5607 3558 3159 72.39%
8 2805 3077 1878 1831 65.28%

2 4586 5735.| 10260 3437 74.95%

32 4 2895 3319 1974 2020 69.78%
8 1538 1375 929 1035 67.30%

2 2983 3362 2458 2056 68.92%

64 4 1601 |\ 1402 970 1042 | 65.08%
8 916/| = =618 587 638 69.65%

2 1884/ (11516 1142 1187 63.00%

128 4 1061/ 7630 578 665 62.68%
8 * 802 i LA 612 | 76.31%

2 48643 38526 40024 27725 57.00%

2 4 32688 11666 32245 4625 14.15%
8 4723 6926 3521 2514 53.23%

2 34279 11626 | 29484 6774 19.76%

4 4 15351 7042 3962 2514 16.38%
8 3379 4804 2287 1647 48.74%

2 12901 7338 14780 2500 19.38%

8 4 3283 4880 2301 1821 55.47%
8 2044 2766 1274 1035 50.64%

2 3668 4932 9073 1953 53.24%

128 16 4 2129 2904 1329 1096 51.48%
8 1193 1169 651 555 46.52%

2 2191 2918 1540 1193 54.45%

32 4 1196 1150 674 575 48.08%
8 572 333 332 325 56.82%

2 1375 1228 778 666 48.44%

64 4 712 349 340 326 45.79%
8 461 290 313 299 64.86%

2 862 362 408 358 41.53%

128 4 485 290 310 301 62.06%
8 450 290 313 298 66.22%

146

Table 6.6. Cache misses caused by layouts of unzip program and its relative penalties.

Block Size SZts B/loscelis Original Freq. P.H. Ours PeRneall.ty
2 3961 4499 4578 3847 97.12%

2 4 2932 3011 3133 2831 96.56%
8 1177 1227 984 915 77.74%

2 2732 2871 3075 2792 | 102.20%

4 4 1211 1276 1106 882 72.83%
8 998 877 848 792 79.36%

2 1338 1346 1123 1021 76.31%

8 4 985 877 838 780 79.19%
8 785 633 615 593 75.54%

2 965 879 813 741 76.79%

64 16 4 794 644 633 588 74.06%
8 716 504 553 518 72.35%

2 801 683 643 621 77.53%

32 4 722 496 547 491 68.01%
8 547 295 328 297 54.30%

2 718 489 533 501 69.78%

64 4 558 |\ 291 337 312 55.91%
8 4231 %5280 311 293 69.27%

2 565 | (1| 288 386 314 55.58%

128 4 428'| =280 311 288 67.29%
8 " 421 2801 7313 289 | 68.65%

2 2101 2162 [1987 1614 76.82%

2 4 944 1091 737 507 53.71%
8 639 603 491 448 70.11%

2 980 1145 1314 866 88.37%

4 4 637 626 491 436 68.45%
8 530 424 353 341 64.34%

2 645 641 477 444 68.84%

8 4 531 420 361 365 68.74%
8 455 300 309 282 61.98%

2 524 461 398 357 68.13%

128 16 4 457 291 310 279 61.05%
8 388 162 194 166 42.78%

2 469 286 316 261 55.65%

32 4 392 152 205 166 42.35%
8 258 142 160 151 58.53%

2 382 150 211 183 47.91%

64 4 265 142 161 151 56.98%
8 252 142 161 149 59.13%

2 283 142 162 151 53.36%

128 4 252 142 168 149 59.13%
8 252 142 164 150 59.52%

147

100%

" 2 Cache Blocks
4 Cache Blocks
90% 8 Cache Blocks

80% |-

70% |

=

60% |-

777777777
7777

= @@

50% |-

Relative Penalty

77
=

40% |-

30% |-

20% -

10% -

7

==

2z

72777222727/ 77723

=

0%

Al s
N Y A

32 64 128

2 ock

64 128
Cache Sets

4

—00
N
@
e}
5
I3 ()]
@

664-Byt1efs3 Bloca2

Figure 6.43. Weighted relative penalties from bgnch‘marks on a set associative cache.
r’_“'x

6.5 Experlments on Ha:rt—”lql Arrangement
i, I,I '

6.5.1 Direct Mapped Cache Ekperiment

This experiment generates distinct program layouts by given thresholds, and
evaluates the caused cache misses by these layouts. The goal is to evaluate the quality of
these partially rearranged program layouts compared with the global rearranged version.
The experiment continues to use the benchmark programs in Section 4.4. The
experimental cache configurations are assumed to have 256-bytes cache block and the
number of cache sets is ranged from 2, 4, 8, to 128. For each cache configuration, the
experiment generates program layouts by setting thresholds from 60% to 100%. Later

on, we will analyze the cache misses caused by these distinct layouts.

148

Table 6.7 lists subgraph information and execution time of all benchmark programs
by threshold levels. As mentioned, the proposed method selects a portion of edges by
changing thresholds on the sum of edge lengths. Thus, it extracts vertexes from selected
edges and constructs a subgraph containing these vertexes from the original object
access graph. The column “Edges” and “Vertexes” in the table refer to items in the
extracted subgraphs. Take indent for example. When the threshold is 80%, the subgraph
has 142 vertexes and 217 edges. Please keep in mind that the relations between
thresholds and the amount of edges and vertexes are illustrated in Figure 5.6 and Figure
5.8. Therefore, it is not surprising that both thesgaps of amounts between 90% and 100%
in the columns “Vertexes” and ‘Edges” are ste.:-e'p. The column “Time” represents the

time spent in running the packing and” placement implementation and generating a

program layout with the given subgraph. It f_sfa éommon appearance that the changes in
spent time from 60% to 90% are gelntle-:-to all’ benchmark programs. Since the
experimental implementations adopt linear time alg(;rithm (while dealing with program
codes), there is a sharp gap of spent time between 90% and 100%, reflects a gap in

edge amounts.

Figure 6.44 to Figure 6.49 illustrate the relative penalties (in y-axis) by threshold
levels. The x-axis is marked by the number of cache sets. The number of cache sets
separates columns to groups. Each group has five individual columns, and one column
stands for the relative penalty by threshold. Setting the threshold to 100% means
arrange all basic blocks. The purpose is to tell the differences between the fifth column
and the other four. The four columns should uniformly converge to the fifth column as
the coverage of basic blocks increasing. However, smaller coverage of basic blocks

implies the influence on cache misses made by the arranged parts becomes minority. As

149

a result, the relative penalties vibrate to rather than uniformly converge to the fifth

column (100%).

Figure 6.50 integrates the experimental results from six programs into a monolithic
index. Each column is a weighted relative penalty derived from the columns in the six
charts ahead. The trend is the columns of 90% are relatively better than the front three
columns. Consider the index together with the spent time in Table 6.7, setting threshold
to 90% seems to generate ideal program layout and cost reasonable execution time as

well, particular for the adopted benchmark.

Table 6.7. Sub-graph size and:computation costs by 'different levels of threshold.

Thresholds | bc == || gawk
on Lengths | Edges | Vertexes Timé-(;s'ec) Edges | Vertexes | Time(sec)
60% 20 26 0.1977 44 38 0.2093
70% 48 56 1 1402023, '1'60 49 0.2121
80% 111 98 70.2193 | 81 65 0.2204
90% 227 163 0.2667 195 150 0.2928
100% 1369 | 729 3.7512 1087 | 761 4.3417
grep indent
60% 12 14 0.0758 48 44 0.8924
70% 19 20 0.0763 99 81 0.8979
80% 36 35 0.0766 217 142 0.9144
90% 124 104 0.1192 401 253 1.0446
100% 892 647 3.2768 1974 | 1139 8.9946
fcc unzip
60% 3 5 0.5206 11 11 0.0562
70% 16 17 0.5496 20 21 0.0565
80% 29 23 0.5516 35 34 0.0587
90% 54 37 0.5543 87 88 0.0839
100% 2552 | 1499 18.7317 | 697 557 2.3442

150

22285 000 e
Gl %V///‘///‘///‘//A/////////J‘Q &
2 =
S R

64

32

per Block
per Block

2|
e
=]

(bo.

Sets, with 256-Bytes

Figure 6.44. Perform packing and placement on a subset of basic blocks. The percentage of
Sets, with 256-Bytes

Figure 6.45. Perform packing and placement on a subset of basic blocks. The percentage of

\\\\\\\\\\\\\\\\n
SS===—————

S
=)

8 =]

=]

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths
each column stands for the threshold for screening basic blocks by adjacent edges’ lengths
(gawk

Sets, with 256-Bytes per Block
Figure 6.46. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’ lengths
(grep).
151

P,
AT T

Sets, with 256-Bytes per Block

Figure 6.47. Perform packing and placement on a subset of basic blocks. The percentage of

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths

(indend.

Sets, with 256-Bytes per Block

A
—

S 2553585585853 8 88858
0000000000

999999999

Figure 6.48. Perform packing and placement on a subset of basic blocks. The percentage of

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths

(tco).
152

b pzzzm |
b ey

0%
0%
0%
0%

100% (All) mm=m |

2
=

)

128

/ 3
g =
m =

iz

Sets, with 256-Bytes per Block

==
SSSSSa

X
c g & & =] o o S
T 2 o © R 8 3 2 8 R ©

,,,,,,,
% 2 02 2 2 2 R 2 2 xR

(=) Q o (=] o (=) (=] (=1 o o
(=) (=] 5] ~ (=] w0 <t o [3Y) —

Figure 6.49. Perform packing and placement on a subset of basic blocks. The percentage of
each column stands for the threshold for screening basic blocks by adjacent edges’ lengths
(unzip)

The layout is generated and evaluated

per Block

organizations.
153

Sets, with 256-Bytes
Next, the same approach is applied to the packing technique for the fully

Figure 6.50. Weighted relative penalties of all threshold levels for different cache
associative cache. Similarly, the experiment repeats the packing process on five levels
on fully associative caches that have 128-bytes cache blocks, FIFO replacement, and 1

6.5.2 Fully Associative Cache Experiment
of threshold: 60%, 70%, 80%, 90%, and 100%.

to 8 cache blocks.

Table 6.8 lists the amount of vertexes (basic blocks) involved in the packing
process on the corresponding threshold for each benchmark program. The excluded
basic blocks are arranged by the original relative order by the compiler (gcc). Besides,
the Table also lists the time spend in generating the layout. The Table suggests that the
durations of the packing process at 60% to 90% are roughly the same. There are great

gaps between the durations of 90% and 100%.

Figure 6.51 to Figure 6.56 compare the relative penalties of different threshold
levels. Each figure has four groups of columns. A group corresponds to the experiment
working on a kind of cache block count, deno;céd by. the label on the x-axis. The five
columns in a group represent the'relative pcnal_ti.es by:threshold levels. The more basic
blocks involved in the packing progess, ;ﬁ%’:éiative penalty is lower. As a result, the
columns in a group are gradually.s_h_orte;:r' oné;-l)y a.nother-from left to right. Figure 6.57
integrates the results from those six charts by using: the weighted relative penalty. The
columns in each group step down to the column stands for 100%. Consider both Table

6.8 and Figure 6.57 together, the experimental result suggests that setting the threshold

to 90% basic block arrangement provides a balance between quality and time cost.

154

Table 6.8. Sub-graph size and computation costs by different levels of threshold.

Thresholds | bc gawk
on Lengths | Edges | Vertexes | Time(sec) | Edges | Vertexes | Time(sec)
60% 20 26 0.2097 44 38 0.2141
70% 48 56 0.2120 60 49 0.2231
80% 111 98 0.2249 81 65 0.2332
90% 227 163 0.2807 195 150 0.3011
100% 1369 | 729 3.9501 1087 | 761 4.4196
garep indent
60% 12 14 0.0767 48 44 0.9120
70% 19 20 0.0779 99 81 0.9300
80% 36 35 0.0795 217 142 0.9564
90% 124 104 0.1189 401 253 1.0968
100% 892 647 3.4130 1974 | 1139 9.8138
fce unzip
60% 3 5 0.5316 11 11 0.0571
70% 16 17 0:5510 = | 20 21 0.0584
80% 29 23 105511 35 34 0.0608
90% 54 378 = U527 0% 88 0.0853
100% 2552 | 1499 1'9_,.-2@5'1 \ | 697 557 2.4907

= | |

V””
HNE N
AANE N
L

7
N

§
:
:

A

7
|
:
%

i

1

Figure 6.51. Pack subsets of basic blocks for the fully associative cache, and calculate the

i L .

=

—

i NN A

=

relative penalties of the packed layout and the original layout. (b¢)

155

2 2

o o
MW,AV ,,,,,,,, w M MW,AW ,,,,,,,, m m <esnm
8482 g8 | g Be45T |

m } m

x%////ﬁ//////////z///z//////////////1
E -

penalties of the packed layout and the original layo
penalties of the packed layout and the original layout. (gre,

ck subsets of basic blocks for the fully asso
ck subsets of basic blocks for the fully asso

g s

£ 2 2 2 2 £ 2 2 2 £ 2 c B £ 2 2 2 £ £ 2 2 2 £ 2 T T £ 2 2 2 £ 2 2 £ £ & 2
(=3 (=] (=]
§ 388k B3 &8 R &5 a | § 88 R 838 58 KR & 3 o 3 8§ 8 8 & 23 &8 8 R & °

. QO S

N = o™

o n

o] o

(O] (O]

S S

=} 3

(=] (=]

L L

]

den

che, and calculate the

ciative ca

penalties of the packed layout and the original layout. (/n
156

ck subsets of basic blocks for the fully asso

relative

Figure 6.54. Pa

e e
s s
o 8 3 S 3 __mm_ S

g o 2 ? i
IO, ° °
. \\A > 2
- - ® ©
: : ; H .m Q m
//////////////////w >
\\\ - & ...Im.

§m
NEE
y/ //w

S N

\\\\\\\\\\\\\\\A
/‘//‘///,//////////////,////////1

ets of basic blocks for the

penalties of the packed layout and the original layout. (unzj

bs

relative penalties of the packed layout and the original layo

ck subsets of basic blocks for the fully asso

ooooooooooooo
& & & ¥ 82 & 82 & & 82 = X &
0000000000000
8 28 8 8 R 8 88 8 & %

relative

=N
o
o
2

Figure 6.55. Pa
5

Figure 6.57. Weighted relative penalties of all threshold levels for different cache

6.6 Virtual Machine Experiment

In this section, we devise an experiment to evaluate the performance of the
rearranged virtual machine. The experimental environment and approach is different
from other experiments in the previous sections, because the goal is to simulate an
embedded system. The following article introduces the experimental environment first,
explains the approach used to modify the virtual machine, and summarizes the

experimental results.

6.6.1 Evaluation Enyironment

|-g'l I-.:HE :'|

Figure 6.58 shows the bloclf_dia_grarriz:of 6ur exl-)erimental setup. In order to
simulate real embedded applications, we-have impﬂanted Java ME KVM into uClinux
for ARM7 in the experiment. One of the reasons to use this platform is that uClinux
supports FLAT executable file format which is perfect for realizing XIP. We run the
KVM/uClinux on a customized gdb. This customized gdb dumps memory access traces
and performance statistics to files. The experimental setup assumes there is a
specialized hardware unit acting as the NAND flash memory controller, which loads
program codes from NAND flash pages to the cache. It also assumes all flash memory
access operations works transparently without the help from the operating system. In
other words, modifying the OS kernel for the experiment is unnecessary. This

experiment uses “Embedded Caffeine Mark 3.0” [105] as the benchmark.

158

Cgfrpe?:gcmrk J2ME AP Java / RAM Title . Version
arm-elf-binutil 2.15
K Virtual Machine (KVM) 1.1 ARM?7 / FLASH arm-elf-gcc 343
uClinux Kernel ARM?7 / ROM uClibc 0.9.18
GDB 5.0/ARMulator Intel X86 Je%]g‘fElt(KVM) (2::384(:02; 6
Windows/Cygwin

Figure 6.58 Hierarchy of simulation environment

There are several kinds of NAND flash commodities in the market: 512-bytes,
2048-bytes, and 4096-bytes per page. In this experiment, we model the cache simulator

after the following conditions:

1. There are four kinds of NAND flash page: 512, 1024, 2048 and 4096 byes per page.
2. The program works on a system with a fully associative cache, which uses FIFO
replacement algorithm.

-
e -,
=

3. The number of cache blocks in the cé¢he %aries- from2, 4 ... to 32.

6.6.2 Virtual Machine Modification Procedures

The experiment tries to realize our approach on a practical embedded platform. The
implementation consists of two steps, and the experimental program automatically
handles everything without human intervention. The refinement process acts as a post
processor of the compiler. It parses assembly codes generated by the compiler, arranges
code blocks, and writes refined assembly codes as a substitution. This instrument is very
effective in manipulating final executable file. Inevitable, our instrument is
compiler-dependent and CPU-dependent. It is tightly integrated with gcc for ARM.
Figure 6.59 illustrates the full processing flow, entities, and relations between those

entities of the implementation.

159

Statistics
from
original
KVM

KVM source
In C/C++

1

gcc

| g—Feed back REFINER

.S assembly Altered
output .S assembly input
¥/’\

A 4

Tuned KVM

Figure 6.59. Entities.in the refinement process

A. Collecting dynamic bytecode instruction trace.

\

e -,
g

g
.";.

The first step is to collect sta'tisticsl.f_!Yorri ;f-eallJ'ava _aﬁplications or benchmarks. The
following processes need the rélevalnce of clac':h bytecode instruction pairs for
partitioning bytecode handlers. To make the simulation as real as possible, we modified
both KVM and gdb for ARM. The modified KVM passes the bytecode trace to the
customized gdb while running Java applications. The customized gdb dumps the trace

for a special program called TRACER. Then the program analyzes the relevance from

the trace dump.
B. Rearranging the KVM interpreter

This is the core of the process. A program called REFINER is in charge of this
step. It acts as a post processor of gcc. Its duty is to parse bytecode handlers in the

interpreter from the assembly code, and gathered those bytecode handlers into partitions

160

using the proposed algorithms. Each partition fit for one NAND flash page. The

program consists of several subtasks described as follows.
B.1. Parsing layout information of original KVM

The very first thing is to compile the original KVM. REFINER parses the assembly
codes and the map file generated by gcc. The structure of the interpreter in assembly
code is introduced in Section 5.4.1. REFINER analyzes the jumping table in the

LookupTable trunk to find out the address and size of each bytecode handler.

B.2. Using the graph partition algorithm to group, bytecode handlers into disjoint

partitions

o ANV

At this stage, REFINER constrﬁcts_the ICFG with: (1) the bytecode instruction
relevance collected by TRACER; (2) the machine code layout information collected in
the stage A. It uses the heuristic algorithm described in Figure 4.3 to divide the

undirected graph into disjoint partitions.
B.3. Rewriting the assembly code

REFINER parses and extracts assembly codes of all bytecode handlers. Then, it creates
a new assembly file and dumps all bytecode handlers partition by partition according to

the result of B.2.

161

B.4. Propagating symbol tables to each partition

As described in Section 5.4.1, there are several symbol tables distributed in the
BytecodeDispatch trunk. In most RISC processors like ARM or MIPS, an instruction is
unable to carry arbitrary constants as operand because of limited instruction word
length. The solution is to huddle those constants into a symbol table and place the table
near the instruction need the constant. Hence, the compiler generates instructions with
relative addressing operands to load constants from the accompanied symbol table. Take
ARM for example, its ABI defined two instructions called LDR and ADR for loading a
constant from a symbol table to a register [166]. It. confines the distance between a

LDR/ADR instruction and the referred symbol table to'4K: bytes.

-

Besides, it could cause a cach; mlss if a maéhine iﬁstruction in memory block X
loads a constant s; from symbol table.Sy located in rr;emory block Y. Our solution was to
create a local symbol table S, in memory block X and copy the value s, to the new table.
Therefore, the relative distance between s; and the instruction never exceeds 4KB, and it

is impossible to raise cache misses when the CPU tried to load s;.

B.5. Dumping contents in partitions to NAND flash pages

The aim is to map bytecode handlers contained in one partition to a NAND flash page.
REFINER compiles the KVM with rearranged assembly codes and refreshes the address
and size information of all bytecode handlers. The updated information helps REFINER
to add padding bytes to each partition, so that the starting address of each partition is

aligned to the boundary of a NAND flash page.

162

6.6.3 Experimental Result

In this experiment, we rewrite four versions of KVM. Each of them suits for one of
the memory block size. The experimental statistics are compared with those from the
original KVM. Table 6.9 is the highlight of the experimental results. Both the miss
counts by the original KVM and refined KVM are listed in the table. Besides, the
column “Improve.” lists the improvement ratio between the two data sets,

Missesoyiginal — Missesoyys

1.e.,
Mlssesoriginal

In the test case with 4KB/512-byte's per pa’ge, the:eache miss rate of the refined
KVM is less than 1%, in contrast te _the ca%he miss rate of the original KVM that is
greater than 3%. In the best case, the cache miss rate of the refined KVM is 96% lower
than the value from the original one. Besides, in the case with only two cache blocks
(1KB/512-bytes per page), the improvement is about 50%. It means the tuned KVMs

outperform on devices with limited cache blocks.

163

Table 6.9. Experimental cache miss counts. Data of 21 to 32 pages are omitted due to
being less relevant.

512 Bytes/Page Miss Count 1024 Bytes/Page Miss Count

Pgs Improve. Original Ours # Pgs Improve. Original Ours
2 48.94% 52106472 25275914 2 38.64% 29760972 17350643
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010
10 78.02% 12263183 2560674 10 96.72% 6354864 197996
12 89.61% 9993229 986256 12 96.02% 3924402 148376
14 95.19% 6151760 280894 14 92.97% 1735690 115991
16 95.63% 4934205 204975 16 90.64% 1169657 104048
18 94.37% 3300462 176634 18 75.11% 380285 89934
20 90.48% 1734177 156914 20 58.30% 122884 48679
Total Access 548980637 521571173 Total Access 548980637 521571046

2048 Bytes/Page Miss Count 4096 Bytes/Page Miss Count

Pgs Improve. Original Ours # Pgs Improve. Original Ours
2 40.74% 25616314 14421794 2 62.32% 14480682 5183539
4 78.17% 14733164 3055373 4 86.32% 7529472 978537
6 80.10% 8284595 1566059 6 93.27% 2893864 185037
8 93.80% 4771986 281109 8 74.91% 359828 85762
10 95.66% 2297323 94619 10 33.39% 88641 56096
12 81.33% 458815 .81395 12 -89.68% 25067 45173
14 54.22% 96955 42166 14 . 0.08% 16547 15708
16 52.03% 62322 ., 28403 16 -33.81% 7979 10144
18 24.00% 26778 L7 /19336 18 -17.08% 5484 6100
20 10.08% 18390 15710{ljf. .”20y | -24.69% 3536 4189
Total Access 548980637 « 521570848 ‘% || T7otal Access 548980637 521570757

TR]
Misses ;¢

Figure 6.60 is the chart of thc_v_-_relaitive i)énal?tig,_ 1.6 . The numbers are

iSSoriginal

arranged by the total size of the cache; mémory. Figure 6.61 illustrates the same
information but the data items are arranged by the number of cache blocks. The
vibration of each line concerns with block size. For smaller block size, the vibration
range is greater. In spite of vibration, the shapes of these lines are tending to be
concave. When there are small numbers of available cache blocks, the cache miss rates
of the refined KVM decline faster than the rates of the original version, and the line
goes downward. Once there is enough cache blocks to hold the entire locality of the
original KVM, the refined version gradually loses its advantages, and the line turns

upward.

164

100%

512 Byles —&—

1024 Bytes :2:

2048 Bytes
4096 Bytes —H—

90%
80% |
0%
80% |
50% < 1

40%

Relative Penalties

30% [

20% [

10% |

0%

2048

4096

6144 |

14336 |-

16384 |-
432 |

20480 | [

22528

24576]

26624

28672

30720

32768 |

34816

36864

38912

40960 |

43008

Cache Total Size (bytes)

Figure 6.60. The chart of the experimental relative penalty. Each line is an experiment works
on a given memory block size. The x‘axis is the-size of the cache memory (number_of_blocks
*block size).

11

100%

'512 Byles —5— ‘

1024 Bytes :2:

2048 Bytes
4096 Bytes —H—

90%

80%

70%

60% |-

50% |

40% |

Relative Penalties

30%

20%

10% |

0% L

24

© O O o ¥ © © O N ¥ © 0 o o
N N M ™m0 M 0 < F F 3 3 non

Total Cache Blocks

S © O O o =
n n mn © o O

Figure 6.61. The chart of the experimental relative penalty. The x-axis is the number of cache
blocks.

It seems the bottoms of these lines might be concerned with the working set sizes
of bytecode handlers. Our cache simulator is able to count the amount of distinct
memory blocks that a bytecode handler had accessed. Table 6.10 shows the average of
accessed memory blocks collected from original KVM. The table also lists where the

165

line touches the bottom and the corresponding amount of cache blocks. It seems that if
the cache blocks are much enough to hold more than 3 working sets (excluding trunk 1,
2, and fan-out function calls), both the original and refined version start to converge

together, and the line turns upward.

Table 6.10. Average accessed page of each bytecode handler and the bottom position
of the curves of relative penalty.

Page Size|Avg. Accessed Pages|Bottom @ Blks| Ratio
512 6.446428571 16 2.481994
1024 4580357143 10 2.183236
2048 3.607142857 10 2772277
4096 2.732142857 6 2.196078

sl '-'“‘-' ':'

166

Chapter 7

Conclusions and Future Works

The main purpose of this dissertation is to characterize object arrangement problem
by cache configurations while objects are smaller than a cache block (memory block, as
well). To solve the problem, our researchsfinds modeling the layout problem as graphs
by Degree-2 trace information is a manipulablé analysis tool. This tool creates clear

connections between the object layout pfp]_a_lem‘ and some well-known graph problems.

e
g

It leads the most important conclusion,in Quf:.feééarch .

e The simplified model, one-page cache: is equival-ent to the graph partition problem.

e For direct mapped cache, the packing movement is equivalent to the graph partition
problem, and the placement movement is equivalent to the MAX k-CUT problem.

e For fully associative cache, the object layout generation can be a composition of

graph partitioning.

Since both the two famous graph problems are thoroughly studied by many other
researches, we suggest those algorithms can be adopted to solve the packing and
placement problem. The heuristics proposed in this dissertation aim for verifying our

theory practically, not for the algorithmic research purpose.

167

What we expected is that our approach should generate efficient object layout
when the block size is large. In the theoretic level, our model has comprised both
packing objects and distributing to cache sets. Our expectation is proved by the

experiments.

This dissertation has not covered the model of multilevel cache. We suggest the
developed analytic methods can be a further extended for modeling multilevel cache.
Types of edges in an object access graph can be classified into more sub-categories to
express the relations in each level of cache hierarchy. For example, Type-I;,
Type-I,...Type-I,-edges might be ‘added to the .(;bject access graph. On the other hand,
after expanding the equation of multilevel-cache access time, the miss possibility by the
n-th level cache (Ln-Miss) can be insign_iﬁc.e:l%;h.ﬁ contrast to the value by Level-1 cache.

Therefore, the effectiveness of an object -:l-ayout for-multilevel cache is probably

indistinguishable from the one for the top-level cache.

Meanwhile, our method uses profile information generated before deployment. In
addition to increasing the prediction preciseness of profiling, dynamically monitor
object access in real activities can also generate trace information and apply the packing
and placement approach. Some related researches introduce such mechanisms to
garbage collection. We regard the conclusion by Section 5.3 as a foundation for
adopting the packing and placement approaches in on-line generation of object layout.
However, the on-line utility of the packing and placement approach still worth further

research.

168

There are reasons in choosing the size of a cache block while developing the
system. In terms of hardware, the size of a cache blocks grows as technology evolving,
e.g., incorporating with new generation of flash memory. Whatever the reason is, the
packing and placement problem takes place as long as a cache block is large. A series of
experiments consistently prove the improvements archived by the proposed approaches

become more significant as the cache block and memory block grows larger.

L ALY

169

170

Bibliography

Raman E. and August D.I., “Chapter 5. Optimizations for memory hierarchies,” in
the Handbook of Compiler Design Optimizations and Machine Code Generation,

2" Ed. CRC Press, 2008.

Gloy N., Blackwell T., Smith M.D., and Calder B., “Procedure placement using
temporal ordering information,” in Proceedings of the 30th Annual IEEE/ACM
International Symposium on« Microarchitecture. (MICRO'97), pp. 303, IEEE,

1997.

Bovet D. and Cesati M., Understandirll?the Linux Kernel, Third Edition, Chapter

18, O'Reilly, 2005.

Micron Technology, Inc, “Design ‘and Use Considerations for NAND Flash

Memory,” Micron Technology, Inc, 2006.

Hennessy J.L. and Patterson D.A., Computer Architecture: A quantitative

Approach, 3" Ed, Morgan Kaufmann Publishers, 2003.

Silberschatz A., Galvin P.B., and Gagne G., Operating System Concepts, 7" Ed,

Wiley, 2004.

Burger D.C, Goodman J.R., and Sohi G.S., “Memory System”, in Computer

Science Handbook, ond Ed., CRC Press, 2004.

Hill M.D., "A case for direct-mapped caches," Computer, Vol.21, No.12, pp.25-40,

IEEE, Dec 1988.

171

[9] Belady L.A., “A study of replacement algorithms for a virtual-storage computer,”

IBM System Journal, Vol. 5, Number 2, pp. 78, IBM, 1966.

[10] Smith A. J., “Cache memories,” ACM Computing Survey. Vol. 14, 3, pp. 473-530,

ACM, 1982.
[11] Coffman E.G. and Denning P.J., Operating System Theory, Prentice-Hall. 1973.
[12] Intel, Intel Architecture Optimization Manual, Intel Corporation, 1997.

[13] Goodman J.R., “Using cache memory to reduce processor-memory traffic,” in 25

Years of the International Symposia on Computer Architecture, ACM, 1998.

[14] Przybylski S.A., Cache and Memory Hierérchy Design: A Performance-Directed

Approach. Morgan Kaufmann Publi§hg:r_s Ine., 1990.

— -,
g

[15] Al-Sayed H.S., "Cache memory applicdtion to microcomputers," Tech. Rep. 78-6,

Dep. of Computer Science, Towa State Umv; Ames, Towa, 1978.

[16] Anacker W. and Wang C.P., “Performance evaluation of computing systems with
memory hmrarchles,” IEEE Transactions on Computer. TC-16, 6 (Dec. 1967), pp.

764-773, IEEE, 1967.

[17] Gibson D.H., "Consideration in block oriented systems design," in Proceedings of
1967 Spring Joint Computer Conference, Vol. 30, pp. 75-80, Thompson Books

1967.

[18] Kaplan K.R. and Winder, R.O. “Cache-based computer systems,” IEEE Computer,

Vol. 6, 3 (March 1973), pp. 30-36, IEEE, 1973.

[19] Mattson R.L., “Evaluation of multilevel memories,” IEEE Transactions on

Magnetics, Vol. 7, 4 (Dec. 1971), pp. 814-819, IEEE, 1971.

172

[20] Meade R.M., "On memory system design," in Proceedings of Fall Joint Computer

Conference, Vol. 37, pp. 33-43, AFIPS Press, 1970.

[21] Strecker W.D., “Cache memories for PDP-11 family computers,” in Proceedings of

the 3rd annual symposium on Computer architecture, pp.155-158, ACM, 1976.

[22] Wolf M.E. and Lam M.S., “A data locality optimizing algorithm,” ACM

SIGPLAN Notices, Vol. 26, 6 (June 1991), pp. 30 - 44, ACM, 1991.

[23] Mowry T.C., Lam M.S., and Gupta A., “Design and evaluation of a compiler
algorithm for prefetching.” in Proceedings of the Fifth International Conference
on Architectural Support for'Progtamming Languages and Operating Systems

(ASPLOS-V), pp 62-73, ACM, 4992

[24] Park J.S., Penner M., and Prasanna'{V:K., "Optimizing graph algorithms for
improved cache performance;" IEEE-Transactions on Parallel and Distributed

Systems, Vol. 15,9, pp. 769-782, IEEE, 2004.

[25] Caceres R., Douglis F., Li K., and Marsh B., “Operating system implications of
solid-state mobile computers,” in Proceedings of the Fourth Workshop on

Workstation Operating Systems, pp. 21-27, IEEE, 1993.

[26] Verneer D., “eXecute-In-Place,” in Memory Card Magazine, March/April,

Lippincott & Peto Inc., 1991.

[27] Santarini M., “NAND versus NOR-Which flash is best for bootin’ your next

system?”” EDN October 2005, pp. 41-48. Reed Business Information, 2005.

173

[28] Park C., Seo J., Bae S., Kim H., Kim S., and Kim B., “A low-cost memory
architecture with NAND XIP for mobile embedded systems,” in ISSS+CODES
2003: First IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, pp. 138-143, ACM, 2003.

[29] Garey M.R. and Johnson D.S., Computer and Intractability - A Guide to the

Theory of NP-Completeness. Bell Telephone Laboratories, 1979.

[30] Wang M., Lim S.K., Cong J., and Sarrafzadeh M., “Multi-way partitioning using
bi-partition heuristics,” in Proceedings of the 2000 IEEE/ACM Asia South Pacific

Design Automation Conference, pp. 667—672, ACM, 2000.
[31] Kernighan B.W. and Lin Sy “An effective heuristic. procedure for partitioning
graphs”, Bell System Technology J(;u.ll_‘:&&'l;:-Vol. 49, pp. 291-307, 1970.

[32] Hendrickson B. and Leland R ;A ;Ihultiiével algorithm for partitioning graphs,” in
Proceedings of the 1995 ACM/IEEE. Conference on Supercomputing, ACM,

1995.

[33] Pardalos P.M. and Hearn D., Aspects of Semidefinite Programming, Kluwer

Academic Publishers, 2004.

[34] Papadimitriou C.H. and Yannakakis M., “Optimization, approximation and
complexity classes,” Journal of Computer and System Science, Vol. 43, pp.

425-440, Elsevier, 1991.

[35] Karp R.M., “Reducibility among combinatorial problems,” in Complexity of

Computer Computations, pp. 85-104, Plenum Press, 1972.

174

[36] Aho A.V., Lam M.S., Sethi R., and Ullman J.D., “Chapter 8. Code Generation,” in
Compilers: Principles, Techniques, and Tools 2nd Ed., pp. 505-582,

Addison-Wesley Longman Publishing Co., Inc., 2006.

[37] Goemans M.X. and Williamson D.P., “.879-approximation algorithms for MAX
CUT and MAX 2SAT,” in Proceedings of the Twenty-Sixth Annual ACM

Symposium on theory of Computing, pp. 422-431, ACM, 1994.

[38] Goemans M.X. and Williamson D.P., “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming,”

Journal of the ACM, Vol. 42, 6 (Noy: 1995—), pp-.1115-1145, ACM, 1995.

[39] Frieze AM. and Jerrum M,, #Improved approximation algorithms for MAX
k-CUT and MAX BISECTION”, mﬁ;e Proceedings of 4th International IPCO
Conference on Integer Programming and Combinatorial Optimization, Springer,

1995.

[40] Motwani R. and Raghavan P, Randomized algorithms. Cambridge University Press,

1995.

[41] Klerk E.D., Pasechnik D.V., and Warners J.P., “On approximate graph colouring
and MAX-k-CUT algorithms based on the 8-function,” Journal of Combinatorial

Optimization, Vol. 8, 3, pp. 267-294, Springer, 2004.

[42] Kann V., Khanna S., Lagergren J., and Panconesi A., “On the hardness of
approximating MAX k-CUT and its dual,” Chicago Journal of Theoretical

Computer Science, 1997.

175

[43] Kann V., Khanna S., Lagergren J., and Panconesi A., “On the hardness of
approximating MAX k-CUT and its dual,” in Proceedings of Fourth Israel
Symposium on Theory of Computing and Systems (ISTCS), pp. 61-67, IEEE

Computer Society, 1996.

[44] Coja-Oghlan A., Moore C., and Sanwalani V., “MAX k-CUT and approximating
the chromatic number of random graphs,” Random Structures and Algorithms,

Vol. 28, 3, pp. 289-322, Wiley, 2005.

[45] Ghaddar B., Anjos M., and Liers F., “A branch-and-cut algorithm based on
semidefinite programming for the minimum K=partition problem,” Optimization

Online, 2007.

[46] Laurent M. and Rendl F., “Semideﬁni@programming and integer programming,”

Report PNA-R0210, CWI, Amsterciam,' zApril' 2002

[47] Kahruman S., Kolotoglu E., Butenke S., and Hicks 1.V., “On greedy construction
heuristics for the MAX-CUT problem,” International Journal on Computational

Science and Engineering, Vol. 3, 3, pp. 211-218, Inderscience, 2007.

[48] Cho J.D., Raje S., and Sarrafzadeh M., "Fast approximation algorithms on
MAXCUT, k-coloring, and k-color ordering for VLSI applications," IEEE

Transactions on Computers, Vol.47, 11, pp.1253-1266, IEEE, 1998.

[49] Hwu W.W. and Chang P.P., “Achieving high instruction cache performance with
an optimizing compiler,” in Proceedings of the 16th Annual International
Symposium on Computer Architecture, pp. 242-251, IEEE Computer Society

Press, 1989.

176

[50] Chang P. P. and Hwu W.W., “Trace selection for compiling large C application
programs to microcode,” in the Proceedings of the 21st annual workshop on

Microprogramming and microarchitecture, pp. 21-29, ACM, 1988.

[51] McFarling S., “Program optimization for instruction caches,” in Proceedings of the
Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 183—-191, ACM, 1989.

[52] Pettis K. and Hansen R.C., “Profile-guided code positioning,” in Proceedings of
the ACM SIGPLAN Conference on Programming Languages Design and

Implementation, pp. 16-27, ACM, 1990.

[53] Gloy N. and Smith M.D; “Procedure placement using temporal ordering
information,” ACM Transactionsféi_fz'_--'l?.rograrmning Languages and Systems

a3

(TOPLAS), Vol 21, 5, pp. 97741027, A€M, 1999,

[54] Calder B., Krintz C., John S., and Austin T;-*“Cache-conscious data placement,” in
Proceedings of the 18" International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 139-149, ACM, 1998.

[55] Sherwood T., Calder B., and Emer J., “Reducing cache misses using hardware and
software page placement,” in Proceedings of the 13th International Conference on

Supercomputing, pp. 155-164, ACM, 1999.

[56] Guillon C., Rastello F., Bidault T., and Bouchez F, “Procedure placement using
temporal-ordering information: dealing with code size expansion,” in Proceedings
of the 2004 International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems, pp. 268-279, ACM, 2004.

177

[57] Hashemi A.H., Kaeli D.R., and Calder B., “Efficient procedure mapping using
cache line coloring,” ACM SIGPLAN Notices Vol. 32, 5, pp. 171-182, ACM,

1997.

[58] Kalamatianos J. and Kaeli D., “Temporal-based procedure reordering for improved
instruction cache performance,” in the Proceedings of the Fourth International

Symposium on High-Performance Computer Architecture, pp. 244, ACM, 1998.

[59] Janapsatya A., Parameswaran S., and Henkel J., “REMcode: relocating embedded
code for improving system efficiency,” In IEE Proceedings of Computers and

Digital Techniques, Vol. 151, 6,'pp. 457-4.65, IEE, 2004.

[60] Tomiyama H. and Yasuura H;, "Optimal codeplacement of embedded software for

:Eﬁliépean Design and Test Conference 1996.

i

instruction caches," in Proceedings of

pp.96-101, IEEE, 1996.

[61] Tomiyama H. and Yasuura H.; “Code placement techniques for cache miss rate
reduction,” ACM Transactions on Design Automation of Electronic Systems

(TODAES), Vol. 2, 4, pp. 410-429, ACM, 1997.

[62] Um J. and Kim T., “Code placement with selective cache activity minimization for
embedded real-time software design,” in Proceedings of the International
Conference on Computer Aided Design 2003 (ICCAD’03), pp. 197-200, ACM,

2003.

[63] Chilimbi T.M., Hill M.D., and Larus J.R., “Cache-conscious structure layout,” in
Proceedings of the ACM SIGPLAN 1999 conference on Programming language

design and implementation (PLDI), pp. 1 - 12, ACM, 1999.

178

[64] Panda P.R., Semeria L., and De Micheli G., “Cache-efficient memory layout of
aggregate data structures,” in Proceedings of the 14th International symposium on

Systems synthesis, pp. 101-106, ACM, 2001.

[65] Rabbah R.M. and Palem K.V., “Data remapping for design space optimization of
embedded memory systems,” ACM Transactions on Embedded Computing

Systems, Vol. 2, 2, pp. 186-218, ACM, 2003.

[66] Palem K.V., Rabbah R.M., Mooney V.J., Korkmaz P., and Puttaswamy K.,
“Design space optimization of embedded memory systems via data remapping,”
in Proceedings of the Joint Conference on-Languages, Compilers and Tools For
Embedded Systems: Softwafe and Compilers For Embedded Systems,

LCTES/SCOPES '02, pp. 28-37, ACM;=2002

[67] Chilimbi T.M., Davidsen’' B., and TFarus J.R.,- “Cache-conscious structure
definition,” in Proceedings: of" the ACM 'SIGPLAN 1999 Conference on
Programming Language Design and Implementation (PLDI '99), pp. 13-24, ACM,

1999.

[68] Petrank E. and Rawitz D., “The hardness of cache conscious data placement,” in
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pp. 101 — 112, ACM, 2002.

[69] Petrank E. and Rawitz D., “The hardness of cache conscious data placement,”
Nordic Journal of Computing, Vol. 12, 3, pp. 275 — 307, Publishing Association

Nordic Journal of Computing, 2005.

179

[70] Panda P.R., Dutt, N.D., and Nicolau A., “Memory data organization for improved
cache performance in embedded processor applications,” ACM Transactions on

Design Automation of Electronic Systems, Vol. 2, 4, pp. 384-409, ACM 1997.

[71] Panda P.R., Catthoor F., Dutt N.D., Danckaert K., Brockmeyer E., Kulkarni C.,
Vandercappelle A., and Kjeldsberg P.G., “Data and memory optimization
techniques for embedded systems,” ACM Transactions on Design Automation of

Electronic Systems Vol. 6, 2, pp. 149-206, ACM, 2001.

[72] Parameswaran S. and Henkel J., "Instruction code mapping for performance
increase and energy reduction . in embedded computer systems," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol.13, 4, pp.

498-502, IEEE, 2005.

> AV

[73] Choi Y. and Kim T., “Memory: layout 'féchniques for variables utilizing efficient
DRAM access modes in embedded:system d:esign,” in Proceedings of the 40th

Conference on Design Automation, pp 881-886, ACM, 2003.

[74] Choi Y. and Kim T., "Memory access driven storage assignment for variables in
embedded system design," in Proceedings of the Asia and South Pacific Design

Automation Conference 2004, pp. 478-481, IEEE, 2004.

[75] Hettiaratchi S. and Cheung P.Y.K., "Mesh partitioning approach to energy efficient

n

data layout," in Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition 2003, pp. 1076-1081, IEEE Computer Society, 2003.

[76] Kulkarni C., Ghez C., Miranda M., Catthoor F., and De Man H., "Cache conscious
data layout organization for embedded multimedia applications," in Proceedings

of Design, Automation and Test in Europe 2001, pp. 686-691, IEEE, 2001.

180

[77] Samsung Electronics, OneNAND Features & Performance, Samsung Electronics,

November 4, 2005.

[78] Park C., Lim J., Kwon K., Lee J., and Sang L.M., “Compiler assisted demand
paging for embedded systems with flash memory,” in Proceedings of the 4th
ACM International Conference on Embedded software (EMSOFT’04), pp.

114-124 , ACM, 2004.

[79] Denning P.J., “The working set model for program behavior,” Communications of

the ACM, Vol. 11, 5, pp. 323-333, ACM, 1968.

[80] Denning P.J., “The locality principle;> Communications of the ACM, Vol. 48, 7,

pp. 19-24, ACM, 2005.

[81] Denning P.J., “Working sets past and%'fésent,” IEEE Transactions on Software

Engineering, Vol. 6, 1, pp. 6484, IEEE, 1980.

[82] Rubin S., Bodik R., and Chilimbi T.M., “An efficient profile-analysis framework
for data-layout optimizations,” in Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of programming language, pp. 140

- 153, ACM, 2002.

[83] Nevill-Manning C. and Witten 1., “Identifying hierarchical structure in sequences:
A linear-time algorithm,” Journal of Artificial Intelligence Research, Vol. 7, pp.

67-82, 1997.

[84] Chilimbi T.M., “Efficient representations and abstractions for quantifying and
exploiting data reference locality,” in Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, pp. 191-202,

ACM, 2001.

181

[85] Chilimbi T.M. and Shaham R., “Cache-conscious coallocation of hot data

streams,” ACM SIGPLAN Notices, Vol. 41, 6, pp. 252-262, ACM, 2006.

[86] Ryder K., “Optimizing program placement in virtual systems,” IBM Systems

Journal, Vol. 13, 4, pp. 292, IBM, 1974.

[87] Hatfield D.J. and Gerald J., “Program restructuring for virtual memory,” IBM

Systems Journal, Vol. 10, 3, pp. 168, IBM, 1971.

[88] Xu R. and Li Z., “Using cache mapping to improve memory performance handheld
devices,” in Proceedings of 2004 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS'04), pp. 106-114, IEEE, 2004.

[89] Stamos J.W., “Static grouping of small objects to.enhance performance of a paged

virtual memory,” in ACM Transactiongféﬁ Computer Systems (TOCS), Vol. 2, 2,

pp. 155-180, ACM, 1984,

[90] Hirzel M., “Data layouts for ‘object-oriented programs,” in Proceedings of

SIGMETRICS '07 Conference, pp. 265 — 276, ACM, 2007.

[91] Zhao Q., Rabbah R., and Wong W., “Dynamic memory optimization using pool
allocation and prefetching”, ACM SIGARCH Computer Architecture News, Vol.

33, 5, pp. 27-32, ACM, 2005.

[92] Chilimbi T.M. and Larus J.R., "Using generational garbage collection to
implement cache-conscious data placement," in Proceedings of the International
Symposium on Memory Management (ISMM-98) of ACM SIGPLAN Notices,

Vol. 34, 3, pp. 37-48, ACM, 1998.

[93] LaMarca A. and Ladner R., “The influence of caches on the performance of

heaps,” Journal of Experimental Algorithmic, Vol. 1, ACM, 1996.

182

[94] Seidl M.L. and Zorn B.G., “Segregating heap objects by reference behavior and
lifetime,” in Proceedings of the Eighth International Conference on Architectural
Support For Programming Languages and Operating Systems, pp. 12-23, ACM,

1998.

[95] Truong D.N., Bodin F., and Seznec A., "Improving cache behavior of dynamically
allocated data structures," in Proceedings of PACT’98, Conference on Parallel

Architectures and Compilation Techniques, pp. 322-329, ACM, 1998.

[96] Allen R., and Kennedy K., Optimizing Compilers for Modern Architectures: A

Dependence-based Approach, 1% Ed., Morgan Kaufmann, 2001.

[97] Smith J.E. and Goodman J.R.,/“A" study of instruction cache organizations and
replacement policies,” in Proceédiﬁgs; of the - 10th Annual International
Symposium on Computer Architecture, pp. 132-137, IEEE Computer Society,

1983.

[98] Steinke S., Grunwald N., Wehmeyer L., Banakar R., Balakrishnan M., and
Marwedel P., “Reducing energy consumption by dynamic copying of instructions

b

onto onchip memory,” in Proceedings of the 15th International Symposium on

System Synthesis, pp. 213-218, ACM, 2002.

[99] Blazewicz J., Kubiak W., Morzy T., and Rusinkiewicz M., Handbook on Data

Management in Information Systems, Springer, 2003.

[100] METIS, Karypis Lab, Department of Computer Science & Engineering,

University of Minnesota, http://glaros.dtc.umn.edu/gkhome/software.

183

[101] Govindarajan R., “Chapter 19. Instruction Scheduling,” in the Handbook of
Compiler Design Optimizations and Machine Code Generation, 2nd Ed. CRC

Press, 2008.

[102] Ball T. and Larus J. R., “Optimally profiling and tracing programs,” ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol. 16,4, pp.

1319-1360, ACM, 1994.

[103] Sun Microsystems, J2ME Building Blocks for Mobile Devices, Sun Microsystems,

May 19, 2000.

[104] Lafond S. and Lilius J., “An ehergy ‘consumption'model for java virtual machine,”
Turku Centre for Computer, Setence TUCS Technical Report No 597, TUCS,

March 2004.

3-\i¥

[105] CaffeineMark 3.0, Pendragon _Sofig\ifare-:C-Jorp, http://www.benchmarkhq.ru/cm30.
[106] Fuber S., ARM System-on-Chip Archite’ctufe, 2nd Ed., Addison-Wesley, 2000.

[107] Huang X., Lewis B.T., and McKinley K.S, “Dynamic code management:
improving whole program code locality in managed runtimes,” in Proceedings of
the 2nd International Conference on Virtual execution environments, pp. 133-143,

ACM, 2006.

184

	fm
	thesis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

