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摘 要 

快取記憶體在分層式記憶體架構中扮演加速存取動作的角色。程式與資料物

件在記憶體中的排列順序是影響快取錯失率的重要原因之一。先賢們的研究都集

中在找出適用於直接映射式快取記憶體的方法，其方法是把這些物件錯置排列至

各個快取關連組。錯置排列的方法有助於減少衝突性錯失。然而某些系統的記憶

區塊大到可以容納許多程式或資料物件，而且被讀進快取記憶體的最小單位是記

憶區塊，而非物件，因此所有物件只得互搶快取記憶體內有限的空間。 

本論文提出一套方法論，旨於利用調整物件在記憶體中排列的方法來改善快

取記憶體的效率。這套方法包含兩項重點：探索物件的組織，以及針對各種快取

架構產生專屬的物件排列法。探索物件組織的方法涵蓋了解構資料或程式的成

份，以及產生物件存取活動的軌跡。此外本文亦特別提出一個適用於虛擬機器（例

如爪哇虛擬機器）的探索技術，其著眼點是基於此類程式具有特殊的軟體架構。 

本論文的重點是尋求產生適用於各類快取記憶體的物件排列之法。前提是假

定物件的尺寸小於記憶區塊。這意味著賦予物件地址編號必須統合兩項動作，一

則是用於快取關連組錯置物件法，二則是將物件合併到記憶體區塊。本論文提出

的辦法是藉由存取活動的軌跡來建立物件關連模型。在發展的過程中，文本分析

了物件關連模型、快取架構、及快取錯失之間的因果關係。然而這些因果關係實

際上十分困難而無法算出最佳解。因此本文也提出頗具實用性的技術，用以產生

適用於不同快取架構的物件排列法。本論文亦實作了相當繁複的實驗來驗證所提

出來的方法。實驗的結果頗具有說服力，可以支持本文提出的技術的有效性。 

關鍵字：快取記憶體;記憶體最佳化;程式碼排列;資料排列;虛擬機器 
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Abstract 

The cache provides acceleration in access through the memory hierarchy. The 

order of arranging code and data objects in the main memory is an important factor that 

affects cache miss rates. Prior related researches focus on arranging objects interleaved 

between cache sets for the direct mapped cache. Interleaving the address of each items 

helps to resolve conflict misses. However, there are computer systems that a memory 

block can be large to collect a number of code and data objects, and the unit to be 

loaded to the cache is a memory block, not an object. Therefore, objects contend spaces 

within cache blocks as well.  

This dissertation provides a methodology for optimizing cache memory utilization 

of applications in various fields by arranging their relocatable objects within the main 

memory. The methodology includes the exploration of object space and generation of 

object layouts for all kinds of cache organization. The object space exploration involves 

techniques in inspecting the data and program integrant and acquiring the profile of 

objects accesses. The exploration also contains a technique particular for the virtual 

machine, e.g., the Java virtual machine, because of its unique program structure. 

Generating object layout adapted for cache memory is the keystone in this 

dissertation. The presumption is that objects are smaller than a memory block. That 

means assigning addresses to objects must incorporate two movements into one. The 

first is interleaving objects to cache sets. The second is gathering these objects to fit one 

cache block. Our study suggests creating the object affinity model by profile 
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information. This study analyzes the relationship between the object affinity model, 

cache configurations, and cache misses. The packing and placement problem turns to be 

hard to find an optimal solution. Thereafter, this study proposes practical techniques of 

generating object layouts for different cache organizations. This dissertation also 

includes experiments to evaluate the proposed techniques. The experiments provide 

convincible results and support the effectiveness of the proposed approaches. 

Keywords: cache memory; memory optimization; code layout; data layout; virtual 

machine 
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Chapter 1  
 
Introduction 

1.1 Motivation 

The memory hierarchy of a computer system breaks into levels by speed and 

capacity. A higher-level memory has shorter access time, but the unit cost of capacity is 

higher. On the contrary, a lower-level memory offers large capacity but suffers slower 

access time. Cache memory is a compromising approach for accelerating access to a 

large amount of data. A cache is a temporary storage area resides in the faster memory. 

It constantly holds frequent-accessed items duplicated from the slower memory or 

secondary storage. Therefore, access operations to the slower memory can be replaced 

with fast accesses to the cache memory once it holds desired data items. This is how 

cache memory helps to increase the system performance. There are several ways to 

improve the cache performance. One aspect is to increase the cache hits (or reduce the 

cache misses, vice versa). If the cache memory can hold more active data items, one can 

decrease the accesses to the slower memory. 

There are several factors affect cache misses. One among those is the arrangement 

of code/data items, or say object, in the memory space. The term “object” can be a 

program variable in the main memory or basic blocks in programs. The activities of 
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accessing objects are actually manipulating contents in the cache memory. The activities 

comprise a series of invalidating cache blocks and loading memory blocks, and cause 

consecutive cache hits and misses. 

The address number is the key parameter of the cache mapping function. It 

determines the placeholder in the cache memory for an object associated with a given 

address. The address translation consists of arithmetical steps. The activities of 

accessing objects can be considered as manipulating contents in the cache memory. A 

cache memory accesses main memory by blocks, and the address space is segmented 

into blocks. As a result, the access activities comprise a series of invalidating cache 

blocks and loading memory blocks, and cause consecutive cache hits and misses. 

Besides, the objects belonging to the same set contend for the same cache block. 

Summarizing these factors, the assignment of address numbers to objects indirectly 

affects the activity of accesses to the cache memory and the occurrences of cache 

misses. This is the origin of the object placement problem. 

The problem is not a new topic in the study of compilers. At the code generation 

stage of a compiler, it has to assign basic blocks in a control flow graph to the linear 

address space. That is to render instructions following a certain arrangement. The 

arrangement of instruction codes may incorporate with the optimization process for 

memory hierarchy (as discussed in [1]). Furthermore, this problem can be applied to 

arrange general data items in the memory or storages beyond the optimizing compilers. 

Typical object placement methods consider that an object is roughly the same size 

as one cache block and memory block, e.g., Gloy et al. [2]. That implies a memory 
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block can hold one object. This is true in many real applications. However, there are 

also real applications that a memory block is bigger than an object. Therefore, a 

memory block can gather a number of objects. The nature of some architectures leads to 

large memory blocks and cache blocks. This is significant to embedded systems, since a 

processor or a program often manipulates memory devices with large storage blocks 

directly. For example, a modern embedded processor may have built-in NAND flash 

memory interface, and the program can interact the chips directly. The unit of a read 

operation of a NAND flash memory is a page with 4096-byte in size. In this case, one 

flash page can gather several data objects. The assignment of data objects to flash pages 

can affect the number of the accesses to the flash memory by a program. This causes 

one of the performance issues for embedded systems. 

Properly grouping objects to memory blocks can help to gather more information 

being used into cache blocks, and reduce cache misses eventually. Consider a simple 

example that accesses objects (a, b, c) in the following order {a,c,a,c,b}. It is easy to 

find that packing (a,b) into one memory block can cause more misses than packing (a,c) 

together. The policy is to figure out closely appeared objects and packs them together 

into a group. Eventually, this policy acts like a predictor that helps to load the objects 

being used in advance. When object a is loaded into the cache for the first access 

activity, object c is loaded spontaneously, because both of them are located in the same 

memory block. Therefore, the next access activity can reach object c immediately 

without any miss. 

These preconditions make assigning addresses to objects a complicated problem, 

and it is not covered by other pioneers’ works. Our study suggests the address 
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assignment task must incorporate two movements into one. The first is interleaving 

objects between cache sets. The second is gathering objects to fit one memory block. 

We term the first movement “placement” and the second one “packing”. This 

dissertation presents a systematic approach in dealing with this problem. Our approach 

uses profile information as a guide to arrange objects in the memory spaces. The profile 

information is used to create object access model. The relations between the object 

access model, cache configurations, and the origin of cache misses are investigated. 

Finally, our research proposes a technique to generate object layout that can be expected 

to improve cache performance. 

1.2 Usefulness 

Our approach is good for the real application that needs to gather objects to one 

block. Consider the scenario of interfacing to a file system. A file system segments a 

file and save them to the storage units, or say blocks, clusters, or chunks in different 

terms. For instance, the Ext2 file system, widely used in Linux ([3]), supports block size 

of 1024, 2048, or 4096 bytes. That means a block can hold some records of the file. If 

all the records are randomly arranged, it leads the possibilities of accessing each block 

distribute uniformly. That means the process is apt to access blocks absent in the disk 

cache, and the benefit of using the disk cache is reduced. However, if the record 

arrangement follows our approach, the locality of accessing blocks would be improved. 

Precisely speaking, the process is likely to access blocks reside in the disk cache within 

a certain duration. 
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NAND flash memory plays multiple roles to a computer system. It can be used as a 

secondary storage device, as well as a non-volatile memory that directly connected to a 

CPU. Because of the hardware characteristics, demand paging is a common technique 

used to interface NAND flash [4]. Therefore, there are challenges in using NAND flash 

in an embedded system. Using NAND flash as code memory is called execute-in-place 

(XIP), and we shall discuss about XIP in the next section. On the other hand, in either 

the respect of NAND flash page or block, a storage unit is large enough to hold several 

data objects together. Naturally, storing data objects in NAND flash also faces the 

packing and placement problem. 
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1.3 Scope and Organization 
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Figure 1.1. The framework of manipulating packing and placement for cache memory in 

different problem domains. 

The main purpose of this dissertation focuses on modeling the object packing and 

placement for the three major kinds of cache organization. In addition, the treatment to 

different field of applications is also included in this research. Figure 1.1 illustrates the 

entire framework associated with the object packing and placement process.  

The top part in the framework prepares parameters that are used by the packing and 

placement algorithms. The mission of the top part is to mark out the scope and 

organization of the objects to be dealt with. Its mission also includes measuring runtime 
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usage of objects for profile information. The techniques used to collect the profile 

information vary by the field of application. Dealing with generic data items can be 

straightforward. Technique for program code arrangement may involve with the study 

in compilers. The arrangement of a virtual machine, like Java Virtual Machine, can be a 

unique class. Developing the technique requires insight into the design of a virtual 

machine. Therefore, it deserves a detailed discussion in this dissertation. All these 

relevant techniques are presented in Chapter 5. 

The block in the middle of the framework can be regarded as a black box. The 

inputs of the black box are parameters describes object characteristics and profile 

information. The mission of the black box is generating object layout for a specific type 

of cache memory. The design of the black box is the core of our research. To 

characterizing the nature of the problem, this dissertation formulates the problem model 

in Chapter 3. A thorough understanding of the problem model helps us to propose 

solutions of packing and placement problems, in Chapter 4, that practical enough to be 

utilized in real compilers or applications. 

Chapter 6 has a series of experiment that utilize the proposed techniques to face 

real application. The experiments demonstrate the proposed techniques should work 

fine with program code arrangement on different cache organizations. 

Before digging into the major article of this dissertation, Chapter 2 shall widely 

survey topics related with our research and explain why the pioneers’ works did not 

cover our research subject. 
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Chapter 2  
 
Background 

2.1 Memory Hierarchy 

A computer system may require a large memory for storing program and data. Not 

all of them are accessed by the computer system simultaneously at any moment because 

of the principle of locality ([5]). A computational process typically accesses program 

codes and data items in the memory in a clustered manner. The locality behavior has 

two extents. Temporal locality models the access activties along time axis. A temporal 

locality set of objects are likely to be referenced occasionally within a given period. 

Spatial locality means that a process is likely to access objects in several geometric 

neighborhoods in storage devices during the whole lifetime. 

CPU

Level-1 Cache

Level-2 Cache

Main Memory

Hard Drive / CDROM

w
ithin the chip

 

Figure 2.1 The memory hierarchy. 
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The memory hierarchy is a compromised approach to manage massive code and 

data objects in an efficient way. As shown in Figure 2.1, memory devices are stacked by 

access speed. The fastest memory is attached to the CPU directly, such as an on-chip 

static RAM. The slowest memory device is placed in the bottom layer, such as hard 

drive or CDROM. Objects are loaded to the upper layer before being used. Because a 

small portion of objects will be used, the capacity of the upper layer is usually smaller 

than the lower layer. The concept can be applied to many places in a computer system, 

such as the CPU cache in a processor, TLB to paged memory management, and virtual 

memory in an operating system [6][7]. Technically speaking, the system design policy 

can freely devise the scheme of exchanging objects between the upper and lower 

memories. However, cache memory plays an important role for this purpose. 

2.1.1 Cache Organization 

Cache memory is a mechanism dedicated for using a piece of small and fast 

memory to manipulated data contents stored in a large and slow main memory. In 

respect of functionality, it is a set of protocol to manage buffers in the memory. A cache 

memory consists of cache blocks (cache lines), thereby dividing the main memory into 

blocks. When a processor is about to access raw data in the main memory, raw data are 

transferred to cache block from main memory on block basis. The modified raw data are 

written back to the main memory from a cache block on block basis as well. Selecting a 

cache block for swapping a specific memory block is very important. That mapping is 

the origin of cache misses. By the method of mapping memory blocks to cache blocks, 

cache memories can be classified into three types as follows. 
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 Direct Mapped Cache 

The cache blocks a separated into isolated sets. Conversely, each cache set has exactly 

one cache block. For a direct mapped cache with K cache sets, there are K cache blocks 

available. For a given memory address x, the formula (2.1) is used to calculate the 

corresponding cache set k. 











sizeblockcache

Kx
k

__

 mod 
 

(2.1)

In other words, all the memory blocks are divided into K sets, and each memory 

block is mapped to a fixed cache set. Memory blocks belonging to the same cache set 

have to contend for the only one cache block. If a cache set holds unwanted memory 

block, it will be invalidated, and loads the demanded memory block into that cache 

block. This leads to a conflict miss. Direct mapped cache is popular because of the 

simplicity in cache block management. However, the conflict misses could be awesome 

in the worst case, as discussed in Hill’s work [8].  

 Fully Associative Cache 

There is no restriction in mapping memory blocks to cache blocks. A memory block can 

be swapped to any cache blocks in this configuration. If there is no cache block contains 

wanted memory block, the cache system have to invalidate a victim cache block and 

load the desired memory block into it. Choosing the victim cache block uses a sort of 

replacement algorithm. Such kind of cache misses is called a capacity miss. 

 Set Associative Cache 
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It can be regarded as a combination of the above two organization. The cache blocks are 

grouped into K sets, as a direct mapped cache. Each cache sets has N cache blocks, 

where N > 1. The term N-way describes the capacity of each cache set. When the 

processor is about to access a memory block absent in the k-th cache set, the cache 

memory uses the replacement algorithm to choose and invalidate a victim cache block 

in this set. The reclaimed cache block is used to hold the wanted memory block. The 

activity within a cache set is identical to a fully associative cache. 

It is worth to briefly survey the replacement algorithms. Belady has made intensive 

research in these algorithms ([9]). Smith [10] categorizes the replacement algorithm to 

three classes. 

 Class 1 – They are non-usage-based algorithms. It assumes all the blocks shares 

equal usage frequency. The choice of victim pages has no concern with the activities 

of accessed items. FIFO and random replacement (RAND) are the in this class.  

 Class 2 – They are usage-based algorithms. They make decisions based on history 

or other statistics, such as LRU. 

 Class 3 – The algorithm knows everything, past and future. That is the optimal 

algorithm, or denoted as OPT in the relevant literatures. 

OPT algorithm is for analytic purpose. It is not used in real cache memory system. 

LRU usually outperforms than FIFO and others, but it is too costly to implement LRU 

in a real system. There are pseudo LRU algorithms ([6][11]) approximate LRU, such as 

the one used in the Intel Pentium processor [12]. FIFO and RAND are the simplest in 

implementation and widely used in many primitive computer systems. 
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The performance of the cache memory can be evaluated in terms of the average 

access time, as the Equation (2.2), defined in [5]. 

Average memory access time = Hit time + Miss rate × Miss penalty (2.2) 

The Equation tells that performance of the cache memory is dependent on cache 

miss rate. The lower cache miss rate leads to higher performance. In the book by 

Hennessy and Patterson [5], they enumerate the techniques in reducing cache misses. 

Two of them are related to our research. The first is to enlarge the cache block size, and 

the second is using the compiler to generated code and data optimized for the cache 

memory. 

The size of a cache block concerns with the fundamental assumption of our 

proposed packing and placement problem, because larger block can gather more 

objects. Smith [10] has discussed the pro and con of small and large cache block (and 

also discussed in [13][14][15][16][17][18][19][20][21]). The advantages of the former 

become the disadvantages of the later. Naturally, it takes less time in transferring data 

from main memory to a small cache block, and it reduces miss penalty. Conversely, the 

overall miss count is higher while transferring a fix amount of data in contrast to the 

cache with large cache block. Large cache block has advantages in simpler hardware 

circuit because of the smaller tag memory. Therefore, the search cost is reduced. It can 

result to shorter access time for “hits”. On the contrary, one of the disadvantages for 

typical applications is that a cache block may contain many unused data in respect of a 

small locality. Nonetheless, this disadvantage can be suppressed by putting more 
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information being used in a cache block. Such that load them in one time can be more 

efficient. 

The choice of small or large cache block depends on several factors. The first is the 

geometry of the main memory. The readable/writable unit of the main memory usually 

bounds the minimal size of cache block. Besides, for high transfer latency (transmission 

overhead) and high bandwidth main memory, the choice of the cache block is in favor 

of large ones. That causes minor increasing in miss penalty in contrast to small cache 

block. Since the increasing in bandwidth is a technology trend, it implies larger cache 

block size can be a trend as well. 

Programmers and compilers can help to arrange code and data items in a program. 

This is the origin of our research. There are several aggressive ways to help skillful 

programmers to increase the localities of their programs, such as rewriting the loops, 

changing the directions of iterating arrays (such as [22][23]), or incorporating 

cache-aware algorithms (for example, graph algorithms optimal for caches in the work 

of Park, Penner, and Prasanna in [24]). 

There is another kind of approach to refine the locality. By altering the code or data 

placements in the memory or storage devices, it is possible to improve the spatial 

locality [1]. The intuition is to gather frequently used objects into one area; therefore, 

the spatial locality of the process is changed. The cache memory loads the concentrated 

area and satisfies most of accesses. A further step is considering the cache organization 

besides locality while creating the placement, such that the placement is more efficient 

in increasing cache hits for the given application. 
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2.1.2 XIP and NAND Flash 

In a regular computer system, RAM is the major addressable component in the 

main memory space. The operating system loads a program from storage devices to 

RAM before execution. The CPU fetches machine codes from RAM and carries out 

instructions. Since a program should not modify itself, the RAM for placing program 

codes (called code memory) is treated as ROM. 

However, a low-level embedded system seldom has sufficient RAM as a desktop 

PC does. In such circumstance, it becomes expansive to use RAM as code memory. 

Using ROM to serve as code memory is a classical approach, but it is not rewritable, 

impossible to update programs. Therefore, NOR flash memory is a popular alternative 

because its physical interface is identical to ROM. A NOR flash chip can be connected 

to processor’s host bus and it is good for programs to execute-in-place (XIP) without 

extra hardware ([25][26]). Its programming interface (erasing and writing) is quite 

straightforward, and designers do not have to worry about bad block management. 

However, NOR flash memory is small in capacity, the trend is migrating the code 

memory to NAND flash memory ([27]). 

NAND flash memory has some important characteristics. The storage space 

consists of blocks. An erase operation is performed on block-basis. Each block consists 

of pages. The read operations are performed on page-basis. It does not allow random 

byte access, and the CPU must read out the whole page at a time, which is a slow 

operation compared with access to RAM. Table 2.1 lists typical combinations of blocks 

and pages. 
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Table 2.1. Typical combinations of NAND flash blocks and pages 

Block Size (bytes) # Pages / Block Page Size
16K 32 512 
256K 64 4096 
512K 128 4096 
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Figure 2.2. Execute programs stored in a NAND flash memory by using a shadow RAM 

These properties cause a processor hardly to execute programs stored in NAND 

flash memory using the “execute-in-place” (XIP) technique. Nowadays, most 

implementations treat NAND flash memories as second storage devices like hard drives, 

the system duplicate entire content including both program code and data from NAND 

flash memory to a shadow RAM (as the configuration in Figure 2.2). Although this 

implementation is straight forward, but there are several drawbacks. First, it requires 

RAM large enough to hold everything regardless of useful content or not, sometimes up 

to 1 GB. After system boot, NAND flash memory is useless. The run time performance 

is definitely good because everything is already in RAM, but it is obviously uneconomic 

for small-scale embedded system. Second, the system suffers from long boot delay due 

to waste time in reading everything from NAND flash memory to RAM, it could take 

15 seconds to download entire content from 512M NAND. Third, if the program code 

grows beyond original design, both NAND flash memory and RAM must upgrade 

together. 
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Figure 2.3. Execute programs stored in a NAND flash memory by using a cache. 

Yet another approach is adopting a memory management unit (MMU) and a small 

cache memory. Program codes always resident in NAND flash memory. CPU will fetch 

instructions from cache memory. When CPU is about to run a code fragment absent in 

cache memory, MMU will load code fragments from NAND flash pages to cache 

memory. A system may implement such kind of MMU by either hardware (as the 

configuration in Figure 2.3), such as Park et al. in [28], or by the operating system’s 

virtual memory mechanism. This is known as “execute-in-place”, which efficiently 

utilizes NAND flash memory without leaving it alone after boot, and retains precious 

RAM resource to applications. 

2.2 Graph and Combinatorial Algorithms 

In this dissertation, we try to transform the modeled problems to well-known graph 

problems. Since there are rich researches dealing with these well-know problems, which 

implies our modeled problems can be handled by those pioneer researches. Two 

well-known graph problems were adopted in our research. The first one is graph 

partitioning problem, and the second is the MAX k-CUT problem. 
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Definition 2.1 GARPH-PARTITIONING. Graph G=(V,E) weights w(v)Z+ for each 

vV and length l(e)Z+ for each eE. Given K, J Z+, find a partition of V into 

disjoint sets {V1, V2,..,Vm} such that ∑vVi w(v) ≤ K. Such that if E’E is the set of 

edges that have two endpoints in two different set Vi, then ∑eE’ l(e) ≤ J. 

Graph partitioning problem is known to be NP-complete, as discussed in the book by 

Garey and Johnson [29]. It is a widely surveyed in many researches, so we review only 

key development in this topic. MIN-BISECTION is a simplified version of it. That 

breaks a weighted graph into two parts and minimizes the sum of inter-partition edges. 

Some graph partitioning heuristics are done by recursive invocation of 

MIN-BISECTION until generating desired number of partitions. These methods are 

surveyed in Wang et al. [30]. Furthermore, the local-refinement technique partially 

exchanges elements in given partitions to get better results. Kernighan and Lin [31] first 

propose local refinement method to refine the bisection partitions, and there are many 

improved heuristics based on their approach. 

Alternatively, Hendrickson and Leland [32] propose a multi-level scheme to solve the 

graph-partitioning problem. The whole process contains three major steps. The first step 

constructs a coarse graph by using the maximal matching, which merges vertexes to 

coarser vertexes and preserves the properties of the original graph. The second step uses 

global partitioning algorithms to generate unrefined partitions, and then use 

local-refinement algorithms (i.e., method by Kernighan and Lin) to generate desired 

number of partitions. The third step uncoarsens each partition and restores the vertexes 

within it. 
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Definition 2.2 MAX k-CUT. Given a weighted graph G=(V,E). Let wi,j denotes weight 

of edge ei,j. The aim is to partition V into K subsets, as partition P={P1,P2,..PK}, where 

K>2. Maximize the total weight of inter-partition edges, as maximize the following 

equation. 

 
 


Ksr PjPi

ji

sr

wPw
1 ,

,)(  (2.3) 

MAX k-CUT is known to be a NP-complete problem, as discussed in [33][34]. It is 

a generalization of the other two well-known problems. In the case of K=2, it becomes 

the MAXCUT problem. It is a NP-hard problem as discussed in [29][35]. Applying 

MAX k-CUT to an unweighted graph, or say wi,j=1 for any i and j, it becomes the 

k-COLORING problem. k-COLORING can be used for resolving resource confliction. 

For example, it is used to assign registers to variables during the code generation stage 

of compilers. Aho et al. have explained using a k-COLORING heuristic algorithm for 

register-allocation in their book [36]. It is no wonder that some prior researches in 

code/data placements adopt k-COLORING (shall be discussed in Section 2.3.1), since 

they aim to resolve conflicts of assigning cache sets (colors) to code/data fragments 

(vertexes). 

Since MAX k-CUT is NP-hard, it is not possible to solve it in polynomial time 

unless P=NP. Pioneers seek for approximation algorithms in polynomial time. A simple 

random method that randomly distributes vertexes to partitions is a 
k

k 1 -approximation 

algorithm ([33]). The technique of semidefinite programming (SDP) is widely used in 

dealing with combinatorial optimization problems. Goemans and Williamson, in 

[37][38], use SDP to provide an approximation algorithm for MAXCUT problem. The 
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techniques in solving MAXCUT inspire the development in solving MAX k-CUT. 

Frieze and Jerrum [39] generalize the work of Goemans and Williamson and use SDP 

and randomized algorithm ([40]) to provide an approximation algorithm for MAX 

k-CUT problem. We briefly restate their approach here. The original problem can be 

formulated as follows: 

Given G=(V,E), |V|=n, and maximize )1(
1

ij
ji

ij Xw
k

k


 


,  

such that Xi i =1 and Xi j = 1

1




k
, i,jV. 

Using the technique of SDP relaxation, the constraint of Xi j is changed as follows: 

1

1





k

Xij  and  X <0*, i,jV. 

The next step solves X={Xij}, and find unit vectors {v1, v2,…,vn}, such that 

ijj
T
i Xvv  . Meanwhile, it generates k random unit vectors {r1, r2,…,rk}, and assign 

each vertex i to a partition Pk as long as vi is close to rk. 

There are successive researches that improve the work of Frieze and Jerrum, 

including Klerk, Pasechnik, and Warners [41], Kann et al. [42][43], Coja-Oghlan, 

Moore, and Sanwalani [44], and Ghaddar, Anjos, and Liers [45]. 

                                                 

* X must be an nn symmetric, positive semidefinite matrix. 
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The above approaches using SDP can provide good approximation, but it could 

take long time for solving SDP (as discussed in [46]) in real applications, such as using 

it in VLSI layout. Therefore, Kahruman et al. [47] propose a greedy heuristic for 

solving MAXCUT. Their algorithm iteratively separates endpoints from heavy edges 

into two partitions. Our algorithm devised in this dissertation (Section 4.2) shares the 

similar concept with their method. Cho, Raje, and Sarrafzadeh [48] propose a 

linear-time heuristic for solving MAX k-CUT. Their approach uses a MAXCUT 

heuristic and  recursively breaks a graph into 2n partitions. 

2.3 Related Works 

2.3.1 Placements 

Code placement is a topic closed to our research. Each of these researches usually 

comprises two parts: the first part models the control flow. The second part places the 

code fragments to the memory space using certain heuristic approaches. Some 

placement heuristics try to avoid conflict miss for set-associative and direct-mapped 

caches, and the others wholly ignore the characteristics of the cache memory. 

Hwu and Chang incorporate basic block and function placements in their 

IMPACT-I C compiler [49]. Profile information of the compiling program must be 

provided upon compilation. The compiler constructs the weighted call graph of basic 

blocks with profile information. Then, it selects popular execution traces and uses them 

to arrange basic blocks and functions in the memory. The trace selection algorithm is 
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discussed in [50]. Its concept is to build the trace of executed basic blocks by calling 

frequency. The generated program is expected to cause less cache misses while 

execution. 

McFarling [51] uses directed acyclic graph (DAG) to represent the program 

structure, and use the DAG to evaluate the code placement in set-associative cache. 

Then it uses a labeling procedure to arrange codes. The work of Pettis and Hansen [52] 

is the classic in code placement. The approach creates the weighted procedure call graph 

(WCG) of the program, each vertex represent a procedure. It iteratively merges vertexes 

connected with the heaviest edge until no more edge left. The steps of merging the 

WCG determine the placement order of procedure blocks. 

Gloy et al. [2][53] criticize the insufficiency of the weighted call-graph. They 

indicate that WCG provides neither the importance of conflicts between siblings nor 

more distant temporal relationships. They proposed the construction of temporal 

relationship graph (TRG) to capture temporal information. The vertexes of the TRG are 

the sliced code trunks, and each trunk properly fits one cache block. Their approach 

iteratively merges the TRG, similar to the merge procedure by Pettis and Hansen. It 

determines the relative placement and distributes trunks into cache blocks to avoid 

conflict misses. Calder et al. [54] apply the similar technique (TRG) to arrange data 

items (local variables, heap) generated by a compiler. Furthermore, Sherwood, Calder, 

and Emer, in [55], realize the TRG technique by hardware. Guillon et al., in [56], 

improve the approach of Gloy et al. in [2][53]. Gloy’s approach slices procedures into 

fractions and places them to align cache blocks, thereby expanding the code size. 
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Guillon et al. provide an enhanced version that reduces the useless gaps between 

fractions. 

Hashemi, Kaeli, and Calder propose a coloring-like approach that arranges the 

procedures for direct mapped cache [57]. First, it breaks each procedure into pieces, and 

each piece fits a cache block. A weighted call graph of procedures is created and used to 

determine the order of applying a coloring heuristic. 

To avoid conflict miss, it had better to map a pair of caller/callee procedures to 

disjoint cache sets. For example, procedure A calls procedures B, and procedure B 

returns to procedure A at last. If procedure A and B share the same cache set, procedure 

A will be discarded from cache when it calls procedure B. At the time returns from 

procedure B to procedure A, it causes a cache miss due to reloading procedure A back 

to the cache. 

The concept of the coloring heuristic is to interleave procedures to different cache 

sets. If there is an edge connects two procedures in the call graph, they should be 

painted with different color. This policy is equivalent to place them to different cache 

sets. 

Instead of WCG or TRG, Kalamatianos and Kaeli, in [58], propose to construct a 

Conflict Miss Graph (CMG) to manipulate the placement of procedures. The vertexes of 

the CMG correspond to procedures. The weight of an edge is the highest cache misses 

possibly cause by two incident procedures. In another respect, higher cache misses 

implies higher affinity between two incident procedures. Their approach divides a 
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procedure into pieces and uses a k-coloring algorithm to interleave procedure pieces to 

cache sets. The edges of the CMG are used to determine the steps of coloring. 

The approach of Janapsatya et al. [59] finds out the loop structure from the control 

flow graph (CFG), and divides the CFG into pieces. The last stage is addressing code 

block ordered by usage count. It considers cache blocks when assigning code blocks to 

real addresses. The work of Tomiyama and Yasuura, in [60][61], breaks the WCG into 

traces. The approach constructs traces that the sum of weights of edges in the traces is 

maximized. The traces are used for the reference of distributing blocks into cache 

blocks. They adopt an integer linear programming (ILP) algorithm to minimize the 

cache conflict misses and assign addresses to blocks. 

Um and Kim propose a code placement approach [62] which uses the concept of 

scheduling in real-time system. Their approach treats a code block as a task and cache 

sets as processors. The goal is to schedule these tasks (code blocks) to processors (cache 

sets) and complete the mission as early as possible. 

Data placement deals with arranging and packing data objects. It is similar to “code 

placement” problem in many ways, but not necessary to analysis the program structure. 

The approach of Chilimbi et al. [63] has two strategies: clustering and coloring. 

“Clustering” is dividing the hierarchy tree of the data objects into sub-trees. The size of 

a sub-tree fits for a cache block. Because the data objects within the same sub-tree are 

likely to be accessed simultaneously, packing them into the same cache block should 

reduce cache misses as shown in the experiment. “Coloring” is distributing sub-trees 

into cache blocks so that accessing should causes less conflict misses, and  data objects 
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within the same sub-tree are arranged by access frequency. Similar researches in 

restructing abstract data structures in a program include Panda, Semeria, and Micheli in 

[64], Rabbah and Palem in [65], Palem et al. in [66], Chilimbi, Davidson, and Larus in 

[67]. 

What is the nature of the placement problem? The works of Petrank and Rawitz 

[68][69] discover the principle of the placement problem. They conclude that finding 

optimal placements for direct mapped and set associative caches is a NP-complete 

problem. As a result, there is no efficient approach to find optimal placements, and one 

can only use heuristics to generate placements. Furthermore, the comparison of such 

heuristics is meaningless, and “the measure of such algorithms should be their 

improvement over existing non-cache-conscious algorithms on given benchmarks.” 

Nonetheless, their works exclude fully associative cache from discussion. Since the 

addresses of arranged blocks in the memory makes no difference to their activities in the 

cache memory. 

Panda, Dutt, and Nicolau (in [70], also in Panda et al. [71]) propose an approach to 

pack variables to fit cache block and distribute the block of variables to cache sets. They 

first create a “closeness graph” (CIG) of variables from the access sequences. The graph 

is used to create “clusters” for grouping variables. The grouping algorithm iteratively 

performs a knapsack heuristic to create clusters. Finally, the generated clusters are 

distributed to cache sets using a coloring heuristic. Their research has involved with 

both the packing and placement movements, but their approach can process unit length 

variables only in contrast to our work. 
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Some placement researches focus at specific field of applications. There are 

code/data arrangement techniques focused on reducing power consumption, as in the 

work of Parameswaran and Henkel in [72], Choi and Kim in [73][74], and Hettiaratchi 

and Cheung in [75]. Their common feature is to introduce parameters of DRAM, e.g., 

burst cycle, and power consumption, to characterize the placement problem. Kulkarni et 

al., in [76], propose a cache-conscious technique to arrange multimedia data embedded 

in C source programs. 

2.3.2 XIP and NAND Flash 

Park et al., in [28], propose a hardware module to allow direct code execution from 

NAND flash memory. In this approach, program codes stored in NAND flash pages will 

be loaded into RAM cache on-demand instead of moving entire contents into RAM. 

Their work is a universal hardware-based solution and does not consider 

application-specific characteristics. 

Samsung Electronics offers a commercial product called “OneNAND” based on 

the same concept ([77]). It is a single chip with a standard NOR flash interface. 

Actually, it contains a NAND flash memory array for storage. The vendor intents to 

provide a cost-effective alternative to NOR flash memory used in existing designs. The 

internal structure of OneNAND comprises a NAND flash memory, control logic, 

hardware ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three 

buffers: 1KB for boot RAM, and a pair of 2KB buffers used for bi-directional data 

buffers. Our approach is suitable for systems using this type of flash memories. 
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Park et al., in [78], propose a pure software approach to achieve execute-in-place 

by using a customized compiler that properly inserts NAND flash reading operations 

into program code. Their compiler determines insertion points by summing up sizes of 

basic blocks along the calling tree. Special hardware is no longer required, but in 

contrast to earlier work [28], there is still a need for tailor-made compiler. 

2.3.3 Locality 

The principle of locality is the foundation to all researches in the related fields. 

Peter Denning, in his early research [79], stated that there are “localities” in the 

execution trace of code blocks. Therefore, the concept of “working set” is introduced to 

observe the usage of memory pages of a process. Later, he began to use the “locality 

set” to explain the memory demands of a program (as stated in [80] by Denning). The 

memory block access trace of a program is a concatenation of a series of locality sets. In 

[81], Denning defines the measure of “locality” as the distance from a processor to an 

object x at time t, denoted as D(x,t). An object x is said to be in the locality set means 

the distance is constraint by T, that is, D(x,t) < T. Therefore, the phrase “better locality” 

in our research always means the locality set has more elements under the same 

constraint. 

2.3.4 Other Related Topics 

The work of Rubin, Bodik, and Chilimbi [82] focuses on a framework to evaluate 

cache performance of a given data placement for the cache memory. Since it is difficult 
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to manipulate a large amount of trace data, their framework introduce a technique to 

“compact the trace”. The approach finds out the “grammar” of the data access traces. 

They use Nevill-Manning’s SEQUITUR algorithm [83] to represent the trace as a 

context-free grammar (derived from the previous work [84]), and the grammar is used 

to distribute data objects into pages. Chilimbi and Shaham, in [85], extend similar 

approach to place data items over direct-mapped and set-associative caches. 

The idea of packing programs to fit virtual memory pages is a classic topic. In 

early 1970s, Ryder [86] proposes to pack small programs to fit one virtual memory page 

so that it reduces paging. The approach is applied to early multi-program operating 

systems like IBM OS/VS2. Hatfield and Gerald, in [87], discuss a similar problem 

aimed for arranging relocatable sectors (which are smaller than pages) within a 

program. 

Nevertheless, modern processor architectures still face to similar challenges. As 

stated, the placement problem involves not only the characteristic of the storage media 

but also the processor architecture. Rong Xu and Zhiyuan Li discuss the cache mapping 

problem for the processor with partitioned cache, e.g., Intel StrongARM SA-1110 and 

the Intel XScale [88]. In a processor with partitioned cache, the software can control the 

cache zone that a memory page maps to it. For example, a memory page can be mapped 

to main-cache, mini-cache, or non-cacheable area. Since there are capacity limit, 

choosing which and how to mapping data items is a combinatorial problem. Their 

research proves the problem is NP-hard. Therefore, they propose a greedy algorithm to 

fit the most accessed pages into caches. The algorithm enumerates every memory page 

to evaluate the cache misses when the memory page is mapped to main-cache, 
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mini-cache, or none. The iteration order is controlled by conflict weights of memory 

pages. The conflict weight is the number of interleaving access between the undecided 

and decided memory pages. This approach offers 1% ~ 2% improvement in cache 

misses, but the heuristic takes O(m3n) where m is the number of pages and n is the 

number of memory accesses! 

A program written in an object-oriented language may contain a large number of 

data objects. The layout of contained data objects effects memory performance. One of 

the issues is accessing to scattered objects in the memory could causes higher cache 

misses. Stamos [89] has surveyed the relationship of Smalltalk runtime environment and 

the virtual memory. Because a virtual memory page can holds several Smalltalk objects, 

grouping objects to fit virtual pages can reduce page faults. The approach statically 

traverses the object forest in a certain order (DFS, BFS, or by object type) and expands 

the data layout in the memory. The approach improves the spatial locality of data 

objects in the virtual memory. 

Modern object-oriented languages like Java support garbage collection. Garbage 

collection systems still face to memory performance issue. For example, Hirzel, in [90], 

demonstrates a garbage collector for Java that can incorporate several data layout 

strategies. The approach is to sort objects in the memory by a selectable layout rule 

while reclaiming and compacting objects. The layout rule is traversing the object forest 

in DFS or BFS order, sorting by thread, and some other static rules. The experimental 

results show the approach can help the Java application to reduces cache or TLB misses. 

Similar techniques can be applied to heap memory management, such as works in 

[91][92][93][94][95]. 
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Chapter 3  
 
Problem Modeling 

3.1 Object Access Trace 

We start to discuss the packing and placement problem in a formal way. Consider a 

set of objects, defined as O = {o1, o2, o3,...}. These elements are the relocatable units to 

be placed in the memory. Since one of the problem presumptions is sizes of objects are 

irregular, not necessary identical, the function size(oi) denotes the size of the given 

object oi. Besides, the function addr(oi) denotes the beginning address in the memory of 

the given object. 

The problem assumes that one of the three cache organizations is configured to 

mediate the processor/program and the main memory. Consider either the direct mapped 

cache or the set associative cache, it is assumed to have K sets. A cache block has M 

bytes in size. Because the cache memory exchanges raw data with the main memory by 

cache blocks, the main memory space is segmented into memory blocks. The size of a 

memory block is M bytes, identical to the size of a cache block, so that it can fit into a 

cache block. The collection of memory blocks is defined as a set B = {b0, b1, b2,...}. In 

a program’s respect, it can access (load/store) arbitrary objects in the main memory. The 
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bottom layer undertakes data access activities. When accessing object oi, the cache 

system loads the memory block containing the oi from the main memory to a cache 

block. The loaded memory block bj can be derived by (3.1). 







M

oaddr
j i )(

 
(3.1)

After that, the program accesses the object in the cache block. Since a direct 

mapped cache divides the memory space into K sets, the block bj is located in set Bk, 

where k is calculated by (3.2). 

k ≡ j (mod K) (3.2)

As the program constantly accesses objects in the main memory, the activities can 

be recorded as a trace of the accessed objects, denoted as object access trace (OT). It is 

used to represent the accessed objects arranged in temporal order. Figure 3.1 explains 

the conversion flows of the object access trace. It contains three traces. The first object 

access trace (OT) are composed of alphabets denote objects. Its entire trace can be 

converted to an address trace (AT) by written down the address numbers of each object 

with function addr(). Similarly, applying Equation (3.1) to elements in AT yields the 

block access trace (BT). The horizontal line that divides an address number into two 

parts denotes it. It is the sequence of blocks swapped into the cache. A cache conflict 

miss arises upon mismatch, the system pays penalty for loading the missing block to the 

cache. 
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Figure 3.1. The conversion of object access trace to block access traces. 

Consider an object access trace shown as the first row of Figure 3.2(a). The object 

access trace is converted to a block access trace (BT) under the mapping shown in 

Figure 3.2(b). The second row of Figure 3.2(a) is a block access trace. When the system 

is about to access bj, it matches whether the cache block in the set Bj(mod k) holds bj.  

OT abefafbcdefecdbdaedaf

BT XXZZXZXYYZZZYYXYXZYXZ

CBT X Z XZXY Z  Y XYXZYXZ

(a) 

oi a b c d e f

bj X X Y Y Z Z

(b) 

Figure 3.2. (a) An example of object access trace, block access trace, and compressed block 

access trace in three rows. (b) A legal packing mapping that injects six objects to three 

memory blocks. 
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The goal of this problem is to find a layout scheme that assigns objects to the 

memory space. The layout scheme injects objects to blocks, as well as object access 

trace to block access trace. After the new layout scheme is deployed, the new block 

access trace working on the K-set direct mapped cache is expected to cause fewer cache 

misses because of the layout scheme. 

In the meanwhile, the problem has two preconditions. First, it restricts an object 

must be smaller than a memory block, i.e., i, size(oi)  M. It leads to a memory block 

can hold several objects. Assigning address to an object is equivalent to determining 

both the memory block and cache set the object shall attend. Meanwhile, as long as the 

cache block gets larger (M increases), the horizontal line moves to the left progressively 

in Figure 3.1. The side effect is to inject more objects to the same memory block. In 

other words, this problem considers the scheme of “packing” objects to memory blocks 

and “placing” objects to cache sets simultaneously. This is the major difference between 

our study and related researches dealing with sole placement problem. 

The second precondition disallows any object to be placed across memory blocks. 

Since an object is assumed smaller than a memory block, the entire object is restricted 

to lie within a memory block, not crossing two of them. The condition prevents extra 

cache load. Make such a presumption is reasonable. For instance, real compilers have a 

code/data alignment optimization pass [96]. The optimization pass aligns instruction 

blocks or data items, prevents them to lie across the cache block boundary, and reduces 

extra fetches (also suggest by Intel [11]). 
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The proposed approach employs the information from the object access trace to 

construct the layout scheme by the packing and placement technique. The object access 

trace can be obtained by capturing the activities in executing benchmark or real 

programs. Our study itemizes scopes in measuring the trace information. The scopes 

differ by the connectivity of objects in the trace. Distinguishing these scopes is 

important because it affects the choice of methods for the packing and placement 

problem. The scopes are listed as follows. 

 Degree-1 trace information 

This is to count the number of occurrences of each object in the entire object access 

trace. Telling the popularity of objects is useful. It is call “Degree-1” since the 

measuring scope is limited to one object, regardless of before and after objects by 

temporal order. For example, the profile information used in Path Flow Analyzer for 

PA-RISC (mentioned in [52]), the researches of Steinke et al. [98], and Raman and 

August [1] can be classified to this category. 

 Degree-2 trace information 

Degree-2 access trace information is to observe the pair-wise relation between two 

objects in the trace. In other words, it counts the occurrences of object pairs in the 

access trace. The symbol wi,j denotes the occurrence of the segment oi, oj in the object 

access trace. The relation is undirected, and oi, oj is equivalent to oj, oi. For 

example, consider the object access trace shown in the first row of Figure 3.2(a). Its 

access trace information is expressed as the adjacent matrix in Figure 3.3(a).  
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Degree-2 trace information is used in several related researches, such as 

[54][57][58]. There are variations by incorporating different metrics to express the 

affinity between two objects, such as Gloy et al. in [2]. 

 Degree-k trace information ( k > 2 ) 

By extending the idea of the Degree-2 trace information, Degree-k trace 

information means concerning an object with the (k-1)-th after object. The entering and 

leaving of an object is not merely decided by the preceding object. More than one object 

together composes the complete cache activity history. Such as the analysis technique 

showed in Section 3.4, both Degree-2 and Degree-3 trace information are used to reflect 

the relations of objects entering and leaving. The importance is stressed by Petrank and 

Rawitz in [68][69]. They suggest that solving placement problem perfectly by pair-wise 

information is insufficient. In fact, there is no prior research using it to resolve 

placement problems, because manipulating such deep levels of affinity is difficult. One 

of the obvious issues is that k is a variable choice. It is an auxiliary analysis tool used in 

our research. Incapable for forming the graph model, they could not be used for solving 

the problem. 

Degree-2 trace information is especially useful because it can be transformed to 

graphs. An object access graph OG = (V, E) is constructed by the following 

instructions:  

(i) The vertex set V is equivalent to the object set O, that is i, vi=oi. The value si = 

size(oi) is given as the size of vertex vi. (ii) For any non-zero wi,j, an undirected edge 
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ei,j can be add to the graph OG to connect vertexes oi to oj. The value wi,j is given as 

the length of the edge ei,j. Figure 3.3(b) is the object access graph of the sample trace 

listed above. The edges are labeled with the Degree-2 trace information. 

 a b c d e f 

a ∞ 1 0 2 1 3 

b 1 ∞ 1 2 1 1 

c 0 1 ∞ 2 1 0 

d 2 2 2 ∞ 2 0 

e 1 1 1 2 ∞ 3 

f 3 1 0 0 3 ∞ 

(a) 

 

Figure 3.3 (a) The adjacent matrix. (b) The object access graph. (c) Group the original object 

trace graph into partitions. 

The sum of edge length of OG = (V, E) is obviously the length of the object access 

trace as well as the length of the block access trace, that is – 

||||
,

, BTOTw
ji

ji 


 (3.3) 

This is no coincidence because summing up all wi,j equals to count the occurrences 

of all segments in the trace. The object access graph is useful in manipulating the 

packing and placement problem in the following discussions. 
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3.2 One Page Cache Model 

A K-set direct mapped cache divides the memory space into K separated memory 

regions. The cache can hold one memory block from each region at a time. Therefore, 

we begin to construct the problem model from the simplest case, the 1-set direct 

mapped cache, or name it one-page cache in this dissertation. In this simplified model, 

the memory space is a monolithic region. The cache memory has only one cache block, 

thereby holding one memory block at a time. Because of having one cache set, 

considering the assignment of “placing” objects to cache sets becomes unnecessary. The 

only task is to consider packing objects into memory blocks. The meaning of “packing” 

can be considered as a mapping function with conditions. 

Definition 3.1. A legal packing is an onto-mapping fpack: O  B, such that for each bj, 





jipacki bofo

i Mosize
)(

)(


 

That means the total size of objects within a memory block must be less than or equal to 

the cache block size.  

For example, consider six objects of the object access trace in Figure 3.2(a). When 

the size of every object is 1 unit, and the capacity of a memory block is 2 units, the 

mapping shown in Figure 3.2(b) is a legal packing by definition. 
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Assume object size is the only factor needed for constructing a mapping function. 

The goal is to find a mapping function that assigns objects to memory blocks efficiently 

by filling memory blocks as full as possible, and produces memory blocks as few as 

possible. Actually, this is exactly the purpose of the BIN PACKING problem [29].  

The size of each object is inconsistent. A “bin” (container) is equivalent to a memory 

block, whose capacity is a given constant. The goal is to minimize the number of bin 

used, that matches the purpose of reducing memory usage. 

However, if the temporal relations among objects are introduced to the 

construction of mapping functions, the one-page cache problem is no longer a BIN 

PACKING problem. 

A memory block may contain several objects. The consequence is that a block can 

appear in the block access trace consecutively and repetitively. For the example shown 

in Figure 3.2, objects a and b are assigned to block X, and XX appears at the beginning 

of the block access trace. A trace segment consisted of a block repeated many times in 

the block access trace leads to cache hits. To deal with this situation, we define a 

compressed block access trace (CBT) derived from the original block access trace. That 

means deriving a shorter block access trace by merging repeated symbols in the block 

access trace as shown in the third row of Figure 3.2(a).  

Because adjacent blocks are always different in a compressed block access trace, 

the one-page cache has to load each memory block of it. Consequently, for an object 

access trace, the length of the corresponding compressed block access trace is the 

number of cache misses happened in the one-page cache.  
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In the viewpoint of object access graph, the packing mapping equals to grouping 

vertexes into partitions. A vertex denotes an object, and a partition equals to one 

memory block that encloses several objects. The packing mapping equals to partitioning 

all objects to disjoint subsets. By using the packing mapping in Figure 3.2(b), the 

original graph is divided into three partitions, as shown in Figure 3.3(c). 

This mapping is a utilization of BIN PACKING as mentioned above. Its purpose is 

filling memory blocks with objects as full as possible. Next, we are going to analyze all 

types of temporal relations and create a link between those types and cache misses. As 

shown in Figure 3.4, there are two kinds of edges in the partitioned object access graph. 

 Type-I Edges – The Interior edges within partitions. 

 Type-B Edges – The edges across different partitions (Blocks). 

   

o1 o2I o3 o4IB

object partition

B

o5 o6I

B
B

 

Figure 3.4. Define the type of edges in the access graph. 

The sum of length of Type-B edges is the length of the compressed block access 

trace. The reason can be found by the following equation. 

∑wi,j= |OT| = |BT| = Length( Type-I Edges ) + Length( Type-B Edges ),  

where Length(Type-I Edges) means summing lengths of all Type-I edges, as well as for 

Type-B edges. As defined above, two objects connected by a Type-I edge are assigned 



 

41 

to the same memory block, and they will be “compressed” in the compressed block 

access trace. Therefore, the operation of generating a compressed block access trace is 

to eliminate repeated symbols in the block access trace. The operation equals to 

removing Type-I edges and keeping Type-B edges in the equation. Therefore, it results 

to – 

|CBT| = Length( Type-B Edges ) 

That proves the claim. The finding leads to the next claim that minimizing the 

cache misses is equivalent to minimizing the sum of length of Type-B edges. All these 

together define the following packing problem for the one-page cache model. 

Definition 3.2. Construct a legal packing fpack. Use that mapping to separate the 

vertexes in the object access graph OG = (V, E) to disjoint partitions. Each partition 

corresponds to a memory block bi. The goal is to find an optimal fpack that minimizes 

the sum of length of Type-B edges (defined as Equation (3.4)), thereby minimizing the 

cache misses caused by reproducing the same object access trace. 

  



ji

jiji wBTMisses
,

,, ,  

where δi,j=1 if ei,j is a Type-B edge, otherwise 0. 

(3.4) 

Proposition 1. The packing problem for the one-page cache is equivalent to the graph 

partitioning problem. 
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Graph partitioning is a well-known NP-complete problem [29], as introduced in Section 

2.2. That means looking for an optimal mapping for the one-page cache is NP-hard as 

well. 

3.3 Direct Mapped Cache 

For arranging objects for a general K-set direct mapped cache (K>1), it involves 

not only packing but also placement movements. Because the main memory is divided 

into K regions, there are K memory block sets. Each set Bk = {bk, bk+1×K, bk+2×K,…} 

contains more than one memory blocks, where 0  k < K. The combination of the two 

movements creates a two-dimensional mapping that injects every object to a (set, block) 

pair, defined as follows. 

Definition 3.3. fpp : O  S  Bk, where O is the object set, S represents cache sets, and 

Bk represents blocks in the k-th cache set. 

The mapping can transform an object access trace OT to a block access trace BT, 

and each element in the BT is an ordinal pair of the set and block. According to the 

mapped cache set index k, the BT can be decomposed into K disjoint block access 

sub-traces, denoted as BTk, where 0  k < K. In the meanwhile, the mapping of the 

one-page cache can be regarded as a special case of a one-dimensional mapping 

working on subspace fpp : O  1  B0. As a result, the object access trace is no longer 

decomposable. 
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OT abhecfafgbhcgdefegfcdbhfdahegdaf 
BT WWZYXYWYZWZXZXYYYZYXXWZYXWZYZXWY 

BT0 WW  X W  W X X     XXW  XW   XW 
BT1   ZY Y YZ Z Z YYYZY   ZY  ZYZ  Y 

CBT0 W   X W    X         W  XW   XW 
CBT1   ZY    Z     Y  ZY   ZY  ZYZ  Y 

(a) 

oi a b c d e f g h 

bj W W X X Y Y Z Z 

 (0,0) (0,0) (0,1) (0,1) (1,0) (1,0) (1,1) (1,1) 

(b) 

Figure 3.5. (a) An example of object access trace, block access trace, block access sub-traces, 

and compressed block access sub-traces. (b) A legal fpp injects eight objects to four memory   

blocks. 

Consider accessing eight objects on a 2-set direct mapped cache. The OT in Figure 

3.5(a) is an object access trace which consists of eight objects. Figure 3.5(b) is an fpp 

injects these objects to memory blocks. A memory block can be numbered as a (set, 

block) pair. Figure 3.5(a) also shows the BT, which is converted from OT by the 

mapping fpp, and two decomposed sub-traces, BT0 and BT1. 

Because memory blocks belonging to the same cache set contend for a single cache 

block, it makes each block access sub-trace can be regarded as a standalone block 

access trace working on a one-page cache. In this respect, the number of cache misses 

caused by the block access trace BT can be calculated by the following formula: 
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(3.5)

Because the mapping fpp can decompose the original block access trace to K 

disjoint block access sub-traces BTk, the first equation means that summing up the 

misses of all sub-traces equals total misses. The subsequent equation implies that each 

sub-trace works on a one-page cache. The original problem becomes a joint of one-page 

cache problems. According to the discussion in the one-page model, the number of 

misses caused by the original block access trace is equal to the length of the compressed 

block access trace. It results to the last equation. The number of misses can be 

calculated by summing up the length of all the compressed block access sub-traces, 

denoted as CBTk. For example, in Figure 3.5(a), CBT0 and CBT1 are compresses block 

access sub-traces of BT0 and BT1, respectively. The cache misses caused by the OT 

under the mapping fpp is 21. 

o1 o2I o3 o4IB

B

o5 o6I o7 o8IB

S SS

object partition region
 

Figure 3.6. The components of an object access graph for the direct mapped cache. 
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The deriving of the formula explains the essentiality of defining the one-page 

cache. Particularly, the deriving process implies that after distributing objects to sets, 

the original problem becomes K sub-problems, and each of them can be a graph 

partitioning problem. 

We can extend the graph model of the one-page cache to express the object access 

graph for the K-set direct mapped cache. After applying the mapping fpp to a given 

object access graph, it generates a two-level partition graph OG’ as illustrated in Figure 

3.6. Since the purpose of the mapping fpp is to assign each object to a (set, block) pair. 

The components of OG’ include objects, partitions, and regions. The definition of 

objects and partitions are the same as those defined for the one-page cache model. The 

disjoint regions enclose partitions in the graph OG’. A region corresponds to a cache set 

such that the graph OG’ has K regions for a K-set direct mapped cache. The edges in the 

graph OG’ can be classified into three types, described as follows. 

 Type-I Edges – The Interior edges within partitions, as previous definition. 

 Type-B Edges – The edges across different partitions (Blocks) but within the same 

region. 

 Type-S Edges – The edges across different regions (cache Sets). 

These three types of edges can classify the origin of cache hits and misses to the 

following items. 

 Hit-I – An object pair (oi, oj) connected by a Type-I edge is located in the same 

memory block. It implies both objects must exist in the cache block simultaneously. 
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Therefore, the transitions from oi to oj in the object access trace always causes 

cache hits. 

 Miss-B – An object pair (oi, oj) connected by a Type-B edge is located in two 

distinct memory blocks but belong to the same set. Because only one cache block is 

available for swapping memory blocks from one set, either oi or oj exclusively stays 

in the cache block. A transition from one to the other in the trace leads to swap two 

distinct blocks into the cache block, and this activity causes one cache conflict miss. 

 Hit-S and Miss-S – Objects (oi, oj) connected by Type-S edges are located in 

different sets. Since each cache set works independently, a transition of a Type-S 

edge may cause either cache hit or miss. The reason of the errors is the graph model 

is based on the pair-wise trace information. Petrank and Rawitz [68][69] have stated 

that it is insufficient for precise estimating cache misses with pair-wise information. 

In other words, all activities happened before the transition of the given Type-S edge 

working together to determine whether it causes cache hit or miss. 

Observing the classified origin of cache hit and miss sorts out the strategy of the 

packing and placement technique. Decreasing the amount and length of Type-B edges 

certainly helps to decrease Miss-B. In the respect of one-page cache, minimizing sum of 

Type-B edge length is equal to generating shortest CBTs. Meanwhile, for a given object 

access trace, |BT| is fixed among all object layouts, and the follow relation holds – 

∑wi,j= |OT| = |BT| 

=Length(Type-I-Edges)+Length(Type-B-Edges)+Length(Type-S-Edges) 

(3.6) 

By minimize the length of Type-B edges in Equation (3.6), the sum of the other two 
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items is maximized. That means, we are looking for maximizing Length(Type-I-Edges) 

+ Length(Type-S-Edges). The next problem is to develop a method to find a layout 

satisfying the goal. However, it is hardly to find an optimal answer. In the next Chapter, 

we shall discuss about this issue and propose heuristics for this goal. 

On the other hand, assuming all small objects have been packed to memory blocks, 

the remaining job is to distribute these blocks to sets. It becomes considering the 

placement problem for the K-set direct mapped cache. By the previous analysis on the 

packing and placement problem, we can propose another respect in modeling the 

placement problem. In terms of the graph OG’, all the Type-I edges are excluded from 

the placement problem, because they were handled by the packing stage. By that means, 

the placement problem is defined as follows. 

Definition 3.4. Consider the block access graph BG=(B,E), where B={b1,b2,…} 

represents vertexes corresponding to memory blocks, and E is the edge set constructed 

from the compressed block access trace. Each edge ei,j has a length wi,j, derived from 

the trace information. The goal is to partition B into K subsets {B0, B1,.., BK-1} and 

maximize the Equation (3.7). Actually, the edge set in BG is the union of Type-B edges 

and Type-S edges. The objective function (goal) is to maximize the sum of the length of 

Type-S edges. 

 
 Ksr BbBb

ji

sjri

w
0 ,

,  (3.7)

Proposition 2. The placement problem for the direct mapped cache is equivalent to the 

MAX k-CUT problem. 
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Papadimitriou and Yannakakis [34] suggest that an unweighted version of this problem 

is a MAX-SNP complete problem. Kann et al. [43] show MAX k-CUT problem, defined 

in Section 2.2, and its dual, the MIN k-PARTITION problem, are NP-hard. That means 

the placement problem is hard and cannot be solved in polynomial time.  

Some related researches consider the placement problem as k-coloring problem 

(such as Hashemi, Kaeli, and Calder in [57], Kalamatianos and Kaeli in [58]). The 

coloring respect is to assign two different colors to two consecutive executed objects. In 

other words, these two objects are distributed to different cache sets. However, the 

k-coloring problem does not deal with edge lengths. That means it could ignore the 

weighted affinity information between two objects. On the contrary, modeling the 

placement problem after MAX k-CUT emphasizes the influence of temporal 

relationships. This is the difference between our placement approach and the others’. 

3.4 Fully Associative Cache 

The fully associative cache consists of a number of cache blocks. Each memory 

block in the main memory can be bounded to any cache blocks. That means the 

mapping from memory block to cache is a many-to-many relation, in contrast to a 

many-to-one relation (onto) of the mapping for the direct mapped cache. The addresses 

of an object and of a memory block no longer determine their locations in the cache 

memory. In other words, there is only one set in this organization. Therefore, generating 

object layouts for the fully associative cache solely consists of the “packing” movement. 

The “placement” movement is meaningless in this case. This property is similar to what 
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we have discussed about the one-page cache model. In fact, the one-page cache model 

can be regarded as a special case of the fully associative cache as well. In other words, it 

is a fully associative cache with only one cache block. 

Can the optimal packing for the one-page cache apply to the n-page fully 

associative cache? Consider the object access trace in Figure 3.2(a). The mapping in 

Figure 3.2(b) is optimal that satisfies graph partitioning, thereby generating the shortest 

compressed block access trace (CBT) with 15 elements. Apply the CBT to work on a 

2-page fully associative cache, it causes 8 cache misses on the FIFO cache, 9 cache 

misses on the LRU cache, and 6 cache misses on the OPT cache. However, there is 

another packing mapping for this 2-page cache shown in Figure 3.7. The length of the 

CBT is 18, longer than the previous one, but it causes 7 cache misses on a LRU cache, 9 

cache misses on a FIFO cache, and 7 cache misses on a OPT cache. This packing 

mapping is a counter example negates the question. 

OT abefafbcdefecdbdaedaf

BT XXZYXYXYZZYZYZXZXZZXY

CBT X ZYXYXYZ YZYZXZXZ XY

(a) 

oi a b c d e f

bj X X Y Z Z Y

(b) 

Figure 3.7. (a) An example of object access trace, block access trace, and compressed block 

access trace in three rows. (b) A legal packing mapping that injects six objects to three 

memory blocks. 
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The counter example also shows that a 2-page cache optimal placement is not 

optimal for one-page cache. It implies finding a universal optimal placement for all 

sizes of fully associative cache is impossible. Once a placement is tailored for the 

k-page cache, it cannot ensure being optimal for the r-page cache for which k ≠ r. The 

reason is the OG keeps only pair-wise information, and an OG can be constructed by 

many different object access traces. In other words, the transformations from access 

traces to OG are “onto” mappings. Conversely, OG cannot express the precise temporal 

orders of all derivable object access traces. The following discussion shall demonstrate 

exploring object relations by higher degrees of trace information. 

There are intrinsic differences between the one-page cache and the n-page fully 

associative cache (n>1). Since several memory blocks can concurrently stay in the 

cache, mapping objects to blocks must consider the inter-block relationship. In other 

word, the inter-block relationship affects the way of loading the block access trace. The 

n-page cache must employ a sort of the replacement algorithm, due to the limited cache 

capacity. When the processor cannot reach the memory block about to be accessed in 

the cache memory, the cache memory uses the replacement algorithm to choose a victim 

cache block and reclaims the storage space. That is to commit the dirty cache block to 

main memory and invalidate that entry. The reclaimed cache block is used to swap-in 

the desired memory block. Belady [9], Smith and Goodman [97] have made intensive 

researches in replacement algorithms. The goal of all replacement algorithms is making 

a decision on the element to leave. Assume the replacement algorithm is optimal (OPT 

or MIN in literatures), it should accurately pick the memory block that presents in the 

cache now and again in the farthest future. Conversely, the memory blocks remaining in 

the cache are those likely being used in the near future. 
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Figure 3.8 illustrates the concept of OPT algorithm. The string in the Figure is an 

object access trace. Assume the capacity of the cache memory is four elements. The 

processor has already accessed symbols in the string from the beginning to the dashed 

line cut (left to right). Each arrow connects an accessed object and the next nearest 

occurrence of it in the string. At the given moment, the cache memory contains four 

symbols {a,b,e,f}. Since the next symbol c absents in the cache memory, a capacity 

miss arises. By the OPT replacement, symbol a is chosen to be the victim since its next 

occurrence is far behind the others. 

abefafbcdefecdbda

abef symbol set in the cache at 
the given moment  

Figure 3.8. Choose the least used elements by the OPT replacement. 

The goal of the “packing” method is opposite to which of replacement algorithms. 

It resolves objects tend to be accessed together in the near future, and puts them into the 

same memory block. Consider the same object access trace as in Figure 3.9. The set 

{a,b,e,f} consists of objects existing in the cache memory at the moment t1, and it is 

termed lived object set in this article. The next four symbols being accessed are {c,d,e,f} 

that constitutes a neighbor lived object set. Apparently {a,b,e,f}{c,d,e,f}={e,f} and 

{c,d,e,f}\{e,f}={a,b}. That means when the clock shifts to t2, {e,f} will persist in the 

cache memory, and {a,b} is no longer used. Therefore, if the memory block can hold 2 

objects in total, and the capacity of the cache memory is 2 blocks, the best policy (only 
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valid at this moment) from the beginning to t2 is grouping {a,b} in one block, and {e,f} 

to the other one. 

abefafbcdefecdbda

abef symbol set in the cache at 
the given moment

t1 t2

 

Figure 3.9. Compare the two locality sets along the object access trace. 

As discussed in Section 3.1, the Degree-2 trace information is collected from the 

pair-wise relations between two objects. In other words, the predictive scope is limited 

to one successive object. However, the predictive scope should expand beyond one 

object as our previous discussion. Therefore, the Degree-k trace information must be 

used to grouping objects being accessed “in the near future”. 

abefafbcdefecdbda

a bI f eB

PARTITION
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c d
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Figure 3.10. The object locality set hold by the cache contributes lengths to the edges of the 

objects access graph. 
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Combining the discussion together, Figure 3.10 illustrates the relations between 

objects in the lived object set during the moment t0 to t1. Assume that the first memory 

block has objects {a,b}, the second one has {e,f}, and both of them are loaded in the 

2-page cache memory. The Degree-2 and Degree-3 trace information extracted from the 

duration t0 to t1 contribute edges to the object access graph OG in the Figure. The edges 

are classified to the following types. 

 Type-I Edges – The Interior edges within partitions. They connect objects within a 

block in the lived object set. 

 Type-B Edges – The edges across different partitions (Blocks) in the lived object 

set. 

 Type-F Edges – The Interior edges within partitions. One endpoint is an object in 

the lived object set, and the other is an object coming after the lived object set in the 

trace (in the post trace). After shifting in time, it becomes Type-I edges. 

 Type-P Edges – The edges connect objects in two different partitions, one of which 

is a partition in the lived object set and the other is not. After shifting in time, it 

becomes Type-B edges. 

 Type-R Edges – The definition is similar to Type-P and Type-F edges. However, 

one endpoint connects to the partition (block) in the lived object set that will be 

discarded later by the replacement algorithm. 

A transition along a Type-P or Type-R edge implies the object and the belonging 

block appear in the next lived object set. Since the victim block is away from the cache, 

a Type-R transition causes a capacity miss. Therefore, a good packing mapping should 
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reduce the number of Type-R edges and increase the number of Type-B, Type-F and 

Type-I edges to all lived object sets. 

Meanwhile, the former model applies to in the one-page cache model as well. 

There is no Type-B, Type-P edges in the one-page cache model because the cache 

memory can hold only one memory block. As a result, the only goal is increasing the 

number of Type-I edges. 

abefafbcdefecdbda
 

(a) 

abefafbcdefecdbda
 

(b) 

Figure 3.11. Using Degree-2 and Degree-3 trace information to find the closest objects to 

objects a and e. 

The example in Figure 3.11 is so small such that the mapping of objects can be 

derived by observation. Figure 3.11(a) shows the Degree-2 and Degree-3 trace 

information in terms of object a. It seems objects {b, e} are the closest ones by simple 

counting. Figure 3.11(b) shows the trace information in terms of object e, and objects 

{d, f} are the closest ones. Observing the trace information in such way can infer the 

mapping in Figure 3.2(b). 

The issue of the realization in generating layouts needs further discussion. Both 

Type-R and Type-P edges are similar because they connect forward to objects. Since the 

Type-R edges are given to those victim blocks by the OPT replacement algorithm, and 

Length(Type-R Edges) < Length(Type-P Edges), the cache miss rate is minimized. 

Nevertheless, OPT is only for analytic purpose. Realizing OPT is impossible. The other 
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classes of replacement algorithms, which can be realized, have no knowledge about 

future accesses. Such as a RANDOM replacement algorithm invalidates arbitrary cache 

blocks upon misses. They could spoil the scheme created by the Degree-k trace 

information, because the associations by the Type-P and Type-R edges are in vain, the 

effectiveness of the Degree-k trace information is suppressed neither. This is the reason 

that the mapping in Figure 3.2(b) outperforms the mapping Figure 3.7(b) on a OPT 

cache, but the winner exchanged when apply both on a LRU cache. Only Type-I (and 

Type-F) edges preserve the effectiveness across different classes of replacement 

algorithms. Based on these observations, we propose the approaches in Section 4.3. 
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Chapter 4  
 
Practical Approaches 

4.1 Hardness of Packing and Placement for 

Direct Mapped Cache 

Section 3.3 analyzes the properties of the packing and placement problem for the 

k-set direct mapped cache. It proposes a method to transform the object access trace to a 

graph by using the Degree-2 trace information. That graph expresses the relations 

between objects, memory blocks, and sets. The temporal relations among entities 

classify the edges in the graph into three types (Type-I, Type-B, and Type-S). The goal 

of the packing and placement problem is creating a memory layout that minimizes 

cache misses when reproduce the same object access trace. Due to the nature of the 

pair-wise trace information, we derive the following formula to estimate cache misses – 

|BT| - ( Length(Type-I-Edges) + Length(Type-S-Edges) ) (4.1) 

The length of the block access trace |BT| is a constant in this formula, but the 

lengths of Type-I edges and Type-S edges are derived by the object layout. In other 

words, maximizing the sum of lengths can minimize cache misses. It is easy to show 
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that minimizing the sum of length of all Type-B edges is a dual problem to Equation 

(4.1) by the following equation. 

|BT| - (Length(Type-I-Edges) + Length(Type-S-Edges) ) 

=(Length(Type-I-Edges)+Length(Type-B-Edges)+Length(Type-S-Edges)) 

- Length(Type-I-Edges)+Length(Type-S-Edges)) 

= Length(Type-B-Edges) 

(4.2) 

Therefore, the packing and placement problem can be defined as follows. 

Definition 4.1. Consider a K-set direct mapped cache and an object set allocating to the 

memory, defined as O = {o1, o2, o3,...}. The memory space is partitioned into K disjoint 

sets of memory blocks. A set denoted as si-=-{bi,1, bi,2, bi,3 … } represents a 

collection of memory blocks, where each bi,j denotes a memory block belonging the 

i-th set si. The size of each memory block bi,j is M. The purpose is to find a legal 

mapping function fpp(oi)  br,t that assigns each object to a memory block in a 

specific set. Meanwhile, it must satisfy the condition that 



tri bo

i Mosize

,

)( . The goal is 

minimizing the following cost function – 

 



Ss

jijipp

i

oowfCost ),()( , , 

where 1, ji   if fpp(oi), fpp(oj)si, and fpp(oi) ≠ fpp(oj). 

(4.3)
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In the last equation, w(oi, oj) is the value from the Degree-2 trace information, or 

the length of Type-B edges, equivalently. 

Subsequently, we are going to show that finding an optimal solution for this 

problem is as hard as solving the MIN k-PARTITION problem. The MIN 

k-PARTITION is a dual problem of the MAX k-CUT [43]. 

Consider a graph G1=(V,E) with K partitions, where |V(G1)|=Q, and the each 

vertex is associated with value K. Since the vertex set V is divided into K partitions, the 

number of vertexes in each partition is denoted as (n1,n2,…nK), and the vertex set is 

denoted as },...,,{ ,2,1,
...1

rnrrr
Kr

vvv


� , where vr,h denotes a vertex is the h-th vertex in 

the r-th partition. In other words, the vertex subset { vr,1, … vr,nr
 } contains vertexes 

belonging to the r-th partition. Figure 4.1 shows an example of G1, and the dashed lines 

divide the graph G1 into partitions. We use different notations to distinguish edges 

within and across partitions. p(vr,h, vr,s) denotes the length of an edge inside the r-th 

partition, and w(vr,h, vq,s) denotes the length of an edge across two distinct partitions. 

Since the graph G1 is assumed to satisfy the conditions of MIN k-PARTITION, it 

implies the summing up length of edges within the same partitions ∑p(u,v) gets the 

minimum comparing to other geometrics of the partitioned G1. In the meanwhile, the 

condition ∑w(x,y) >∑p(u,v) is hold. 
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Next, we create a mapping F(v) to transform G1=(V,E) to G2=(V’,E’), where 

G2=(V’,E’) is a restricted version for the packing and placement problem for the direct 

mapped cache. The mapping F(v) works in the following way. 

 vi,jV, F(vi,j)={v’i,j,1,…,v’i,j,K}, where v’V’. (4.4) 

The mapping means evenly splitting every vertex vi,j into K fractional vertexes. 

The value is evenly distributed to fractions as well, that is, the value of each fraction 

vi,j,t is 1
K
K . As a result, we can get a transformed vertex set, written as 

)}(),...,(),({ ,2,1,
...1

rnrrr
Kr

vFvFvFV 


 � . These fractional vertexes {v’i,j,1, v’i,j,2,…, 

v’i,j,K} are connected to each other and become a KK complete graph. Therefore, 

 
2

1KK
 edges are appended to the edge set E’(G2). Edge length h is given to all these 

kind of edges, and its value is given as h = ∑w(x,y)+∑p(u,v), that equals to the summing 

up lengths of all inter-partition edges. This ensures h is the greatest value among all 

edge lengths in E(G1). The fractional vertex v’i,j,1 replaces the role of vi,j, and edges 

connected to vi,j are re-attached to v’i,j,1 correspondingly. Therefore, the edge set 

E’(G2) is expressed as follows. 

 
tsji

tjisji vveEE
,,,

,,,, ,  , where 1≤i≤K, 1≤j≤ni, and st, 1 ≤ s, t ≤ K. 
(4.5)
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For example, the graph G2 in Figure 4.2 is constructed from the graph G1 in Figure 

4.1 using the discussed method. The vertexes and the sub-graph enclosed by a shadow 

area in G2 are expanded from a single vertex in G1. 

Next, we are going to show that the optimal partition layout of G1 that satisfies 

MIN k-PARTITION can be transformed and becomes an optimal layout of G2 for the 

K-set packing and placement problem. That is, G2 can be used to represent an object 

access graph. Each vertex v’i,j,t represents an object and its value corresponds to the 

size of an object. The length of an edge is marked by the Degree-2 trace information. 

Besides, block size constraint is assumed K. Since each vertex subset { vr,1, vr,2, … 

vr,nr
} belongs to the same partition in G1, the vertex subset { {v’r,1,1, …, 

v’r,1,K }…{ v’r,nr,1
, … v’r,nr,K

 } } is grouped into the same r-th partition in G2. 

Consider the sub-graph enclosed within the r-th partition. The length of edges connects 

v’r,x,1 and v’r,y,1, which is p(u,v), both are smaller than h. 

Moreover, hvvp
yxnyx

yrxr

r


  and ,,1

1,,1,, ),(  holds by our scheme. Therefore, every subset 

{ v’r,t,1, v’r,t,2,…,v’r,t,K } can be consolidated to a memory block and that makes the 

sum of objects in a memory block fulfills the problem requirement. Since the lengths of 

all Type-B edges are exactly p(u,v), and       Qyxwvup
KhK
2

)1(
,, holds. 

Therefore, the layout satisfies the problem requirements. 

Subsequently, the K-set packing and placement problem is as hard as MIN 

k-PARTITION, as well as MAX k-CUT. Since there is no polynomial time algorithm to 
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find an optimal layout to satisfy MIN k-PARTITION, neither solves the K-set packing 

and placement problem. 

v1,1 v1,2p1 v1,3p2

v2,1 v2,2p3 v2,3p4

v3,1 v3,2p5 v3,3p6

v4,1 v4,2p7 v4,3p8

w1 w2 w3

w4 w5 w6

w7 w8 w9

 

Figure 4.1. A partitioned graph satisfies MIN k-PARTITION. The symbols wi and pi denote edge 

lengths. 
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Figure 4.2. A sample graph transformed from Figure 4.1. 

4.2 Approaches for Direct Mapped Cache 

The previous section has shown that it is hardly to find an optimal solution of 

minimizing the sum of length of Type-B edges. That implies the K-set packing and 

placement problem is hard to solve by its nature. The practice in finding a solution is to 

decompose the main problem to smaller sub-problems after constructing the object 

access graph, and find feasible solutions for each of them. By heuristic goal in Section 
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3.3, the objective function of the packing and placement problem is to maximize 

(Length(Type-I-Edges) + Length(Type-S-Edges)). It implies a two-stage approach in 

seeking feasible answers by dealing with each of the two items in the equation 

individually. One method is to maximize Length(Type-I-Edges) first and 

Length(Type-S-Edges) after. The reversed direction, that is to maximize 

Length(Type-S-Edges) first and Length(Type-I-Edges) after, can be an alternative 

method for comparision. The two directions stand for different aspects in solving the 

same problem. According the finding in Section 3.3, maximizing Length(Type-I-Edges) 

can surely increase cache hits. Therefore, we predict the first method should be better 

since longer edges are favor to become Type-I edges. It directly faffects cache miss 

counts. Still, both approaches are discussed in the following sub-sections. The 

experiment in Chapter 6 implements both approaches for verifying our prediction. 

4.2.1 Packing Followed by Placement 

The first step of the approach is to maximize Length(Type-I-Edges) from object 

access graph. We call this step the “packing” stage. This movement visits temporal 

relations from the object access trace, and “packs” objects into numerous memory 

blocks. The packing stage can be deemed as a utilization of the one-page cache 

problem, stated in Definition 3.2. Both of them begin with the object access trace and 

the corresponding graph OG. The purpose is assigning objects O to memory blocks B, 

in conjunction with a condition that the capacity limitation for a memory block is M. 

Maximizing the sum of weighted edges that lie in blocks (Type-I edges) is a dual 

of minimizing the sum of length of edges that lie across blocks (Type-B edges). As 
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stated, constructing such a mapping function fpack is equivalent to finding answers for a 

graph partitioning problem. Therefore, we have to use a heuristic method to assign 

objects to memory blocks in practice. Once this sub-problem is solved, the original 

object access trace can be converted to a block access trace. 

In terms of graph partitioning, many researches provide algorithms to solve the 

problem. Most of them are based on the work of Kernighan and Lin [31]. However, 

their method seems unsuitable for solving the packing problem because it is incapable 

of separating a graph to arbitrary number of partitions†. 

Therefore, our implementation adopts the greedy algorithm in Figure 4.3 to 

perform the partitioning works (similar to the approach in [99]). The algorithm 

iteratively merges two vertexes (objects) connected by the heaviest edge into a larger 

piece. The merged piece cannot be greater than a memory block. The collection of 

objects of a memory block grows larger while progressively merging vertexes. The 

procedure continues until there are no qualified vertexes for merging. Given a random 

graph, the average time complexity of the algorithm is O(|V|2). Meanwhile, applying the 

algorithm to the OG of a typical program, the average complexity becomes O(|V|). The 

                                                 

† There are famous packages for graph partitioning, such as METIS [100]. In theory, we are not 
necessary to propose a graph-partitioning solver because we did not define a variant of graph 
partitioning problem. A package like METIS should be able to handle the problem well. 
Unfortunately, the fact is that we did adopt METIS while developing the experiment in the 
past, but it is insufficient for our application because of two reasons. First, the number of 
generating partitions must be given as a parameter, but it is not a constant in our experiment. 
Second, the errors of individual partition size are too big for our application. For example, if the 
layout calls for 512-bytes partitions, METIS generates some partitions with 400 bytes. That 
means the layout eventually occupies more memory space. Since the size of our partition can 
be small, the errors can cause very different experimental result. In other words, it wastes 
spaces because of internal fragmentation. 
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reason is the average vertex degree of those graphs is a small constants, inferred by 

Figure 5.7. 

Procedure GreedyPartitioning 
Input G=(V,E) — Access graph. 
  M — The size bound of a memory block. 
Output   

 G=(V,E) — A graph with merged vertexes. 
do 

 Take an edge e(u,v)  E with the greatest length. 

  E = E \ e(u,v). 
 if ( size(u) + size(v) < M )    
  Merge(G,u,v). 
 endif 

while E   

End Procedure 
 
Procedure Merge 
Input G=(V,E) — Access graph. 
  u, v — The vertex pair to be merged 
 
 Create a new vertex w. 
 Let size(w) = size(u) + size(v). 
 for each vertex x in V 
  new_edge_length = e(x,v) + e(x,u) 
  if new_edge_length != 0  
   Add an edge e(w,x) with new_edge_length to E. 
  end if 
 end for 
 V = V \ { u, v } + {w} 

End Procedure 

Figure 4.3. The pseudo code of the partitioning algorithm 

The second step (the placement stage) continues the job to place these 

near-identical-sized memory blocks to cache sets. Its goal is to maximize 

Length(Type-S-Edges). The input of this step is the block access trace. The processing 

flow includes discovering temporal relations between memory blocks from the trace, 
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and using that information to create a block access graph, whose vertexes correspond to 

blocks. Next, partition the graph into K sets. Actually, the second step has been stated in 

Definition 3.4, and the previous discussion indicates that this can be considered as a 

MAX k-CUT problem. It is well known that a naïve randomized heuristic can deal with 

the MAX k-CUT problem. That is randomly assigning each vertex (or say object) to a 

set. In the evaluation section, the implementation shall adopt the random heuristic for 

reference. Besides, we propose a greedy algorithm to find a feasible solution to 

distribute blocks to K sets. The algorithm is described in pseudo code DistributeObjects 

in Figure 4.4. The time complexity of this algorithm is O(|E|). Subsequently, the 

time-complexity of the packing followed by placement method is O(|V|2+|E|). 

Function DistributeObjects 
Input G=(V,E) — Access graph 
  k — Number of sets 

Output   
 S={S(i)} — A collection of k sets. Each set contains some vertexes in G. 
 
Let X = Edges of the graph G, sorted by edge length in descending order. 

Let S(i) = {} represents the i-th set, i = 1…k. 

Let {Value(i)} = 0 represents the sum of vertex values in the i-th set, i = 1…k. 
Let T(i) = 0 represents the sum of vertexes belonging to the i-th sets, i = 1…k. 

 

while ( X   ) 

 Pick an edge e(u,v) with the largest length from X, 
  where u and v denotes both ends in G. 
 X = X \ e(u,v). 
 if ( both u and v belong to a set in S )  
  bypass this iteration. 

  endif 
 
 if ( ( degree_of (u) > degree_of (v) ) || 

     ( ( ( degree_of (u) == degree_of (v) ) &&  
     ( sum of adjacent edge lengths of (u) >  
              sum of adjacent edge lengths of (v) ) ) ) 
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   swap ( u, v ). 

  endif 
 
 if ( v belongs to a set in S ) swap ( u, v ). 
 
 if ( u does not belong any set in S ) 
  tu =Place_Vertex_to_Minimimal_Distance_Set( G, k, S, Value, u, -1 ). 

 else 
  Find tu where u belongs to a set S(tu). 

 endif 
 
 Place_Vertex_to_Minimimal_Distance_Set ( G, k, S, Value, v, tu ). 

end while 
End Procedure 
 
Function Place_Vertex_to_Minimimal_Distance_Set 
Input G=(V,E) — Access graph 
  k — Number of sets 

 S={S(i)} — A collection of k sets. Each set contains some vertexes in G. 
 {Value(i)} — Sum of vertex values in the i-th set, i = 1…k. 
 avoid_set — Avoid to place the vertex to the given sets. 
 u — The vertex to be placed. 

Output   
 S={S(i)} — The vertex u can be add to one set S(tu) in S. 

Return 
 The ordinal number of the set contains u. 
 
Let min_distance = INT_MAX. 
 
while ( visit every S(i) in S ) 
 if ( S(i) is the avoid_set ) bypass this iteration. 
 Let d = Distance ( u, S(p), G ). 
 if ( d < min_distance ) 
  candidate_set = i. 
 else if ( d == min_distance ) 
  if ( Value(i) < Value(candidate_set) ) 
   candidate_set = i. 

  endif 
 endif 
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end while  
 

Assign uS(candidate_set). 

Value(candidate_set) = Value(candidate_set) + value of u. 
 
return candidate_set 

End Function 
 
Function Distance ( u, S, G ) 
Input u – A vertex in G. 
  S – A set of vertexes in G. 
  G – The access graph. 
Return  distance 
  

Let distance = 0. 
 while ( visit every vertex v in S ) 

  if (  edge e(u,v)  G ) 

   distance = distance + length of e(u,v). 

  endif 
 end while 
 return distance. 

End Function 

Figure 4.4. The pseudo code of distributing blocks to sets. 

4.2.2 Placement Followed by Packing 

Yet another approach begins with maximizing Length(Type-S-Edges) with discrete 

objects and Degree-2 trace information. Since Type-S edges refers to those lie across 

cache sets, this movement distributes objects to K sets, and splits the original object 

access trace into K sub-traces. In fact, it means decomposing the original packing and 

placement problem to K smaller packing problems for one-page cache. This is the 

aspect discussed in Chapter 3. Our implementation adopts the procedures in Figure 4.4 
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to distribute objects K sets, and therefore the original object access trace can be break 

into K sub-traces. 

The next step is to deal with k object access traces for one-page cache. This is 

equivalent to maximize Length(Type-I-Edges) and minimize Length(Type-B-Edges). As 

discussed in Section 3.2, the packing problem for the one-page cache is equivalent to 

graph partitioning. Again, our implementation adopts the procedures in Figure 4.3 to 

gather objects into memory blocks. That is edges with the largest length are moved into 

the memory blocks and maximizes Length(Type-I-Edges). The time-complexity of the 

placement followed by packing method is O( |V|2+|E|). 

4.3 Approaches for Fully Associative Cache 

Section 3.4 characterizes the activity of an object access trace in the fully 

associative cache. Based on the discovery in the discussion, we proposed practical 

heuristic methods for generating placements for the fully associative cache. In the 

following paragraphs, the configuration of the n-page cache is defined as (M-block size, 

N-cache blocks). 

4.3.1 One-Page Cache Method 

The major difference between the fully associative cache and one-page cache is the 

former incorporates block replacement. Degree-2 trace information is enough for 

analyzing one-page cache model but insufficient for modeling the fully associative 
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cache. However, higher degrees of trace information are hardly modeled as graphs, and 

seeking the packing solution could fall back to one-page cache model. Since the graph 

partitioning can be used to generate optimal placements for the one page cache, as long 

as P=NP. Our research adopts this characteristic to develop a heuristic approach. 

Consider the (M, N)-cache placement problem, this heuristic treats it as an equivalence 

of the (M, 1)-cache placement problem. The steps are – 

 Create the object access graph OG from the given object set. 

 Using a graph partitioning algorithm, such as the one in Figure 4.3, to partition the 

constructed object access graph. The constraint of a partition size should set to M 

bytes.  

 The objects within the same partition in its output should be packed to the same 

memory block. Besides, this algorithm does not confine the relative order among 

partitions. 

The experiment in Section 6.3 shows the generated layouts offer significant 

improvements than the original layout. This technique is effective because of the 

following reason: the length of the compressed block access trace (CBT) is the shortest 

among all combinations, thereby ensuring the layout generated by this method offers 

moderate performance. 

4.3.2 Two-Pass Partitioning Method 

The proposed two-pass partitioning is an alternative technique for generating 

layouts for the fully associative cache. The concept of analyzing by Degree-k trace 
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information in Section 3.4 is to find out objects tend to coexist in cache memory. As its 

name suggests, this method partitions the object access graph in the following two steps. 

First Pass – The principle is the find out objects tend to coexist in the cache memory. In 

other words, these objects shall fill up the space of the entire n-pages cache. To this end, 

the first pass divides the object access graph (OG) into a coarse block access graph 

(CBG). The size of each coarse block is M  N bytes, as if partitioning for an enlarged 

one-page cache. The first pass generates disjoint subsets by coarse blocks. Each has 

objects frequently stay in the cache memory by extending the concept of the one-page 

cache model. 

Second Pass – The second pass iteratively deals with coarse blocks (partitions) 

generated in the first pass. This method extracts isolated object access trace graphs from 

every coarse block. Next, it partitions each graph into finer pieces, by using the graph 

partitioning algorithm once again. Each of them fits one cache block, i.e., the partition 

size is M. Finally, this method arranges objects belonging to the same partition into the 

same memory block. 

Combining both passes together can find that the mission of the first pass has 

another purpose. It tries to simulate the effect of the Degree-k trace information. 

Because higher degrees of relations (i.e., Type-F edges) are picked out from the others 

in this pass. The second pass is actually performing partition based on these selected 

trace information. 
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One of the advantages of this method is the ability to process extremely large data 

sets because of the divide-and-conquer strategy. The first pass helps to break the large 

and complex problem to several smaller problems, which ease the computation in the 

second pass. Take the previous trace for the 2-page cache as an example. Figure 4.5 

shows the partition result after the first pass, the graph is divided into two parts. The 

maximal size of each part is 4 because of the overall cache size. Next, the second pass 

divides the right sub-graph into two smaller parts, and Figure 4.6 is the partition result 

after the second pass. This allocation is the same as the mentioned example. 
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Figure 4.5. The partition result after the first pass. The gray edges connect the access trace 

graph before partitioning. The two shadowed blocks are the generated partitions. 

 

Figure 4.6. The partition result after the second pass. 
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4.4 Approaches for Set Associative Cache 

Just as a direct mapped cache is a joint of one-page caches, a set associative cache 

can be regarded as a joint of fully associative cache. Utilizing the Degree-2 trace 

information to generate object layouts is similar to doing the same task for a direct 

mapped cache. The difference between these two cache organizations is that a set 

associative cache applies replacement algorithms to individual cache sets for selecting 

victim cache blocks. However, recall the discussion in Section 3.4, the on-the-fly 

replacement activities can spoil the offline-generated inter-block relations, such as the 

RAND replacement algorithm discards arbitrary cache block upon a capacity miss. As a 

result, maximizing Type-I edges (edges within blocks) should be considered prior to 

other types of edges. The problem of distributing objects to cache sets also happens to 

the set associative cache. 

Put these factors together, the packing and placement approach should be able to 

packing related objects to memory blocks, and distributing these memory blocks to 

cache sets. That is the procedure of the packing followed by placement approach 

described in Section 4.2.1. The latter experiment shall evaluate whether this approaches 

can generate object layouts that can reduces cache misses on a set associative cache. 
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Chapter 5  
 
Explorations of  
Objects and Traces 

The previous chapters focus on characterizing the packing and placement problems 

for different cache organizations. The input of those packing and placement problems is 

abstract objects and access traces constituted by abstract objects. The abstract objects 

can belong to any kind of classes, such as program variables, class instance, program 

codes, or records in files, as long as they are relocatable in the main memory or storage 

media. The defined packing and placement problem is independent of classes of objects, 

so that it can be regarded as a black box. Its input is the object and trace information, 

and the output is the object layout. 

Nevertheless, the exploration of specific application domain may need distinct 

technique in defining objects and constructing access traces. Defining the meaning of an 

object is not merely itemizing elements in the application domain. In some cases, not all 

elements in the application domain are worth to be handled by the packing and 

placement techniques. The mission of defining objects also includes identifying whether 

an element affects application performance or not. Dealing with critical portions of 

objects is always a priority mission. Characterizing techniques for special application 

domains is the purpose of this chapter. 
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5.1 Generic Data Objects 

The exploration of generic data objects usually uses primitive methods. We itemize 

the components need exploration. 

 Identify the scope of an object 

A data object should be a relocatable unit, but not necessary to be a minimal and 

indecomposable unit. A typical case is variables in a program. Such as Panda et al. [70] 

deal with the layout for program variables. A data object can be an item on the storage 

device as well, such as files and records in disk drives or flash memories.  

 Identify the index and address of an object and the memory block geometry 

The way of addressing an object affects the choice of cache organization, thereby the 

layout approach. Most data objects in the main memory have their unique address 

numbers, which are easy for manipulation. However, data objects (records) stored in the 

file are usually indexed by their offsets or keys, which hide the physical property of the 

storage media. 

 Inspecting the object access trace 

Once determine the scope of a data object, the object access trace can be acquired by 

tracking the activities of data access in the experiment. 
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Here is an example to explain the concept of data object exploration. Consider a 

primitive text-to-speech system. The recorded voice clips are stored in an external 

storage media. The program prepares a linear buffer in RAM. The buffer is segmented 

into blocks and served as a fully associative cache. The size of a cache block is large for 

transmission efficiency and accommodates for the storage device. For example, it can 

be a multiple of NAND flash pages, because an access to consecutive pages with the 

bulk-transfer mode is more efficient than doing it one by one. Therefore, a cache block 

can contain several voice clips. When the program reads an English word from a given 

article, it finds the corresponding voice clip from the blocks in cache. 

In this example, each voice clip is identified as a data object. The address of an 

object is its offset in the storage media. Inspecting the object access trace can be 

acquired by training the TTS program with given articles. All these parameters can be 

delivered to the black box of packing and placement. The black box should generate an 

object layout as the guide to place voice clips into the storage media. 

5.2 Generic Code Objects 

5.2.1 Motivation 

Code generation is usually the final stage in a compiler. Its mission is generating 

the target program, which is usually a sequence of machine codes in practice. The 

arrangement of machine codes in the target program can be tuned for memory 

hierarchy, such that the target program causes fewer cache misses and page faults while 
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execution. Consider a program fragment in Figure 5.1. Most compilers generate codes 

in a top-down order, such that the layout of the sample program can be similar to the 

order in Figure 5.2(a). The dashed line in the Figure represents the memory boundary, 

such that the program codes of Statement-A, B, and C are placed in the same memory 

block, but those of Statement-D are placed in the next block. Despite of Condition-A, 

the program always runs across two memory blocks. Each execution potentially leads to 

a cache miss because the second memory block may absent in the cache memory. In 

other words, the expected value of the count of potential cache miss (worst-case) is 

100% * 1 = 1 times. 

Assume that the profile information of the program fragment indicates that 

Condition-A holds in 90% repetitive executions. Properly change program layout can 

helps to reduce cache misses. Figure 5.2(b) shows an alternative layout to the same 

source program. In this case, the program codes of Statement-C are moved to the second 

memory block, since it is rarely used. Therefore, 90% repetitive executions involve only 

the first memory block. The other 10% repetitive executions involve two of them. The 

expected value of the count of potential cache miss is 10% * 2 = 0.2 times (use the 

value 2 because the program jumps forward and backward), which is an 80% 

improvement to the original layout. 
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Statement-A; 
if ( Condition-A ) 
{ 
 Statement-B; 
} 
else 
{ 
 Statement-C; 
} 
Statement-D; 
return; 
 

Figure 5.1. A program fragment to be rearranged. 

Statement-A

Statement-B

Statement-C

Statement-D

return

then
else

Statement-A

Statement-B

Statement-C

Statement-D

return

then else

memory block boundary

(a) (b)  

Figure 5.2. Two layouts of program statements. 

Pettis and Hansen [52] have discussed the relevant issue in their work. They 

propose approaches applied to both procedures and basic blocks. Actually, the 

algorithms for procedure arrangement and for basic block arrangement are similar. 

Meanwhile, the approach of Gloy et al. [2] is focused on the arrangement of procedures. 

Either arranges procedures or basic blocks, it is a matter of granularity after all. 
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The approach may look similar to the trace scheduling technique [101]. However, 

its goal is different. Its goal is to eliminate or postpone branch instructions that could 

hazards in the instruction pipelines of a process. Our goal is to packing and placing code 

objects to memory blocks and cache sets. Ball and Larus [102] have discussed about 

where and how to insert inspecting points in a program to capture the execution trace. 

5.2.2 Control Flow Analysis and Basic Blocks 

Code objects are program fractions to be packed into memory blocks and 

distributed to cache sets. The concept of packing and placement technique is to finding 

out the relationships, i.e., the execution orders, between each pair of code objects. It is 

the purpose for control flow analysis, and also for profiling in which our approach asks 

for. Before analyzing the inter-relationships between code objects, it is necessary to 

define the scope of a code object. 

The scope of the code object used in control flow analysis is the basic block.  

Definition 5.1. A basic block‡ conforms to the following rules ([36]) – 

1. The only entry of the basic block is through the first instruction of it. In other words, 

there is no other branch destination in the basic block exception the beginning. 

                                                 

‡ Referred as ordinary basic block in the following paragraphs. 
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2. The instructions within a basic block must be executed sequentially and entirely. No 

instruction other than the last one is allowed to be a conditional or unconditional 

branch instruction, but the last instruction is not necessary a branch instruction. In 

other words, the control flow only leaves the basic block from its tail. 

The compiler can create a static control flow graph (CFG) using basic blocks as 

vertexes. An edge of the control flow graph connects a basic block following another. 

The basic blocks can be used as the code objects. Keeping track of the execution of 

basic blocks gets the profile information (it can be done by a profiler). Such that both 

the CFG and object access graph characterize the relations between two basic blocks. 

The difference is the former is created statically, and the latter is created by profile 

information. The lengths of the edges in the object access graph express the “closeness” 

between basic blocks, which is insufficiently expressed by an unweighted CFG. 

pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl 8(%ebp), %eax
movl %eax, (%esp)
call _goo

_goo:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
addl $10, %eax
popl %ebp
ret

movl %eax, 8(%ebp)
movl 8(%ebp), %eax
incl %eax
leave
ret

BASIC BLOCK A

BASIC BLOCK C

BASIC BLOCK B

    

Figure 5.3. The basic blocks involved in a function call. 
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The packing and placement algorithms can use the object access graph to locate 

basic blocks in the memory space. However, locating adjacent basic blocks to 

discontinuous addresses could cause errors. The first case is shown as Figure 5.3. Basic 

block A and B are concatenated program fractions. The last instruction in the basic 

block A is a “call” to basic block C that ends with a “ret” instruction (return to the 

caller). After the execution of basic block C finished, it should jump to basic block B. 

When the instruction “call” takes place, the CPU pushes the next instruction address, 

which is supposed to be the beginning of basic block B, to the stack. Such that the “ret” 

instruction pops out the address from stack, and jumps to basic block B. The problem is 

that the process of packing and placement might tear off basic block A and B to two 

discontinued places in the memory space. Such that the basic block placed after basic 

block A is no longer basic block B. The CPU cannot push the correct return address, 

supposed to be the beginning of basic block B, to the stack. This situation causes an 

error. 

The second case of mistake happens with two adjacent basic blocks A and B, and 

the last instruction of basic block A is not a branch instruction. Therefore, the CPU 

should execute two basic blocks sequentially. Once the two blocks are tore away in the 

packing and placement process, an unconditional branch instruction must be appended 

to the tail of basic block A to enforce an unconditional jump to basic block B, or a 

wrong program flow will be taken during execution. The problem is the added cost in 

execution time, because a branch instruction could flush the instruction pipeline of a 

modern superscalar processor. 
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Therefore, we suggest a variation of basic block to be adopted as the definition of 

the code objet.  

Definition 5.2. A variant basic block conforms to the following rules –  

1. The beginning of a basic block is the instruction next to a branch instruction (except 

the “call” instruction) or the first instruction of the procedure. 

2. The tail of a basic block must be a branch instruction (except the “call” instruction). 

3. The entry of a basic block is not limited to the beginning of a basic block, and the 

control flow can jump to any place within a basic block. The exit of a basic block is 

still limited to the end of a basic block. No branch instructions (except a “call”) are 

allowed within a basic block, except the last one. 

Simply speaking, this strategy is to break a program into code objects by dividing 

codes at branch instructions. On the other hand, the transformation between basic blocks 

and the proposed variation is a one-to-one mapping. A variant basic block v is a 

concatenation of ordinary basic blocks bi. That is vi=b1b2b3…bn. The last 

instruction of basic blocks b1 to bn-1 must not be a branch instruction (except “call” 

instructions in the latter discussion), but the basic block bn must end up with a branch 

instruction. 
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prolog

loop initial

loop condition

if

then

loop incr

epilog

foo()
{

goo();
for ( init ; cond ; incr )
{

if ( expr )
{

do_something;
}

}
return value;

}

Source Code Control Flow Graph (CFG)

 

Figure 5.4. The example illustrates transformation between the ordinary and the variant basic 

block. The left pseudo code is what the CFG represents for. 

The CFG in Figure 5.4 represents the program listed in the left box. The solid 

rounded rectangles represent ordinary basic blocks of the program. An ordinary basic 

block with at least two outgoing edges must be ended with a branch instruction. The 

first “prolog” block contains a function all to goo(), such that it is a ordinary basic block 

by definition. The dashed rectangles are variant basic blocks; each encloses at least an 

ordinary basic block. 

Meanwhile, bi in a CFG, it exactly belong to a variant basic block vj. Since the 

control flow jumps from many places to the beginning of an ordinary basic block, the 



 

85 

basic block bi is connected with a set B of basic blocks by incoming edges in the CFG, 

but at most one basic block bk in B is ended without a branch instruction by the nature 

of a computer program. If such bk exists, it must be located in the same variant basic 

block with bi (somehow, bk is actually bi-1). Otherwise, bi is the leading block in the 

variant basic block. That means the predecessor of an ordinary basic block in a variant 

basic block is fixed. Assuming bi is not ended with a branch instruction, the successor 

of it in a variant basic block is also fixed. Altogether, the elements that constitute a 

variant basic block are fixed. This property of the variant basic block is important 

because it suggests a variant basic block preserves the interconnections among ordinary 

basic blocks enclosed by it. The packing and placement process in definitely not the 

only optimization pass in the code generation stage. The other optimization passes still 

rely on ordinary basic blocks. Thus, our proposed method will not destroy the existing 

structure by introducing the concept of the variant basic block. 

As the definition of code object is complete, the profile information should be 

generated with such code objects, not with ordinary basic blocks. The collected 

information is than sent to the black box of packing and placement. It shall generate an 

arrangement of basic blocks, and the compiler can utilize the tuned arrangement to 

relocate program codes.  

5.2.3 Benchmark Overview 

Table 5.1 summarizes the benchmark programs used in the experiments in Chapter 

6. All these benchmark programs come with source codes so that we can use a 
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customized compiler to rebuild them for the experiments. Table 5.3 lists the statistics of 

basic blocks of benchmark programs. The major precondition of our theory assumes 

numerous objects are small to fit into memory blocks and cache blocks. The following 

statistics of the benchmarks should be able to explain whether the packing and 

placement approach can be applied to arrange variant basic blocks of a program. 

We calculated the average size of basic blocks that constitute programs is 23 bytes. 

That means a 64-bytes cache line can hold two basic blocks and a 512 bytes cache line 

can hold 22 basic blocks on the average. On the other hands, lines in Figure 5.5 

illustrate the distribution of basic block sizes appeared in the execution trace of each 

benchmark programs. The Figures share common feature that smaller basic blocks are 

relatively more than bigger basic blocks. Basic blocks smaller than the average size 

constitute a major portion of a distribution. It implies a cache block or memory block 

can hold several basic blocks. Therefore, gathering basic blocks is a major issue for a 

compiler or linker to generate executable images. 
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Table 5.1. A briefing of benchmark programs 

Benchmark Purpose URL of Source Code 

bc 
Arbitrary precision numeric 
processing language and 
interpreter 

ftp://ftp.gnu.org/gnu/bc/bc‐1.06
.tar.gz 

gawk 
The environment of the 
awk text processing 
language 

ftp://ftp.gnu.org/gnu/gawk/gawk‐
3.1.6.tar.bz2 

grep 

Searches one or more input 
files for lines containing a 
match to a specified 
pattern 

ftp://ftp.gnu.org/gnu/grep/grep‐
2.5.3.tar.bz2 

indent C source code formatter 
ftp://ftp.gnu.org/gnu/indent/ind
ent‐2.2.9.tar.gz 

tcc Tiny C compiler 
http://download.savannah.nongnu.
org/releases/tinycc/tcc‐0.9.24.t
ar.bz2 

unzip Decompress ZIP files 
(version 5.52) 

http://sourceforge.net/projects/
infozip/ 

 

Table 5.2. The basic block statistics of benchmark programs 

Basic Block Size ( byte ) Benchmark 
Mean Std. dev. Min Max 

#used 
blocks 

bc 25.4 35.1 2 309 1481 
gawk 24.7 39.1 2 1189 9649 
grep 22.9 32.0 2 583 2305 
indent 22.6 34.4 2 624 1876 
tcc 20.7 30.0 2 562 4525 
unzip 28.6 46.5 2 818 3323 

 

Table 5.3. The basic block statistics of object access traces 

Basic Block Size ( byte ) Benchmark 
Mean Std. dev. Min Max

#used 
blocks 

bc 26.9 36.6 2 227 729 
gawk 27.1 40.8 2 436 761 
grep 27.4 36.0 2 211 642 
indent 22.5 36.5 2 624 1096 
tcc 24.3 37.6 2 562 1491 
unzip 31.6 45.8 2 366 533 
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Figure 5.5. Distribution of different sizes of basic blocks within each benchmark programs. 
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In the meanwhile, there are notable properties of the object access graph of a 

program. We use statistics to describe the “shapes” of object access graphs. The 

guideline of collecting these programs as benchmark suite is equals to collecting 

different “shapes” of object access graphs. 

The length of an edge in the graph stands for how often the two adjacent objects 

executed after one and another. Figure 5.6 illustrates the contribution of top-rated edges 

in edge length to the overall object access graph. For example, 5% of non-zero length 

edges contribute 70% of length in the graph of gawk. The information can be interpreted 

that these 5% of Degree-2 traces (pair-wise traces) contribute 70% of overall 

occurrences in the object access trace. These folding lines (expressed by dots for 

readness) share a common feature that a minor portion of pair-wise relations contribute 

majority of the occurrences in object access traces. Besides, each program has a distinct 

folding lines due to the uniqueness in program structure and execution flows. The 

characteristics have connection with the degree of improvement by the packing and 

placement approaches. We have plot two asymptotic curves 100 – c / ( x + 0.01 * c ) to 

approximate the statistical lines. The experimental result shows that a program’s chart 

can be approximate by an asymptotic curve with constant c. The greater constant c is, 

the packing and placement layout generates fewer misses than the original one. 

Figure 5.7 provides an aspect of the ratio between numbers of distinct edges and 

basic blocks (vertexes). The ratios are close to y = x. It implies that one can still 

estimate the problem size of packing and placement by the number of basic blocks and 

program size even the object access trace is absent. Furthermore, Figure 5.8 shows the 

ratio between sum of edge length and the number of distinct basic blocks. Take gawk 
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for example, there are 10% of distinct basic blocks appeared in the edges that contribute 

80% of occurrences to the object access trace. In other words, these 10% popular basic 

blocks participate 80% of access activities. 

 

Figure 5.6. The contributions of (non-zero length) edges in object access graphs of benchmark 

programs. The x-axis denotes number of edges arranged by the length in descending order, 

from left to right. The y-axis represents the sum of edge length from the left-most edge to the 

current position. The x-axis is cut-off at 30% since 30% of edges contribute more than 90% of 

overall edge lengths. 
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Figure 5.7. The number of vertexes connected by the non-zero length edges in the object 

access graphs. The meaning of the x-axis is identical to the previous chart. The y-axis 

represents the sum of connected vertexes of the edges from the left-most end to the current 

position. 
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Figure 5.8. The chart shows the ratio between the sum of edge length and the number of 

connected vertexes of benchmark programs. The meaning of x-axis is identical to the y-axis of 

Figure 5.6, and the meaning of y-axis is identical to the y-axis of Figure 5.7. 

5.3 Partial Arrangement on Performance 

Bottleneck 

We have analyzed the properties of object access graphs of the introduced 

benchmark programs in the previous discussion. Figure 5.6 illustrates the sum of length 

of a small portion of edges contributes high percentage of overall sum of length to the 

object access graph. Meanwhile, this small subset of edges connects a small number of 

vertexes, which is illustrated as Figure 5.8. 
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This phenomenon is rational. One source is basic blocks that constitute loops in the 

program. They appear in the object access trace more often than the others do. Besides, 

basic blocks constitute the same loop should appear as small sub-sequences in the whole 

trace. The segments of this kind of sub-sequences become those top-rated edges in 

lengths of the graph. 

The observation on the phenomenon inspires an alternative method that reduces the 

complexity of generating basic block layout. The method is to perform packing and 

placement on the subset of basic blocks. These basic blocks are selected from those 

connected by the top-ranked “long” edges in the graph. It is precisely setting up a 

threshold to “Accumulated Edge Length” in Figure 5.8. Take the program bc as an 

example. Assume the threshold is 70% of accumulated edge length (x-axis), these 

top-ranked edges connects about 8% of overall basic blocks (about 56 to 729 basic 

blocks as showed in Table 6.7). The method picks out these 8% basic blocks and 

associated edges, and composes a sub-graph OG’. Then it performs the packing and 

placement process on the sub-graph OG’. The rest of basic blocks are arranged in the 

original order, and it requires no computation at all. In other words, the method picks 

out loops and other busy parts in a program, and rearranges basic blocks within these 

busy parts only. Setup a threshold on the charts is a process helps to screen out these 

components in a program. In addition, the sub-graph OG’ can be a collection of 

disconnected sub-graphs from discrete parts in a program. 

Apparently, the major contribution of this method is saving computation time. 

Consider our proposed heuristic algorithm for the packing and placement approach. The 

complexity is O(|E|). Meanwhile, Figure 5.7 illustrates the amount of vertex is linear 
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proportional to the amount of edges to all benchmark programs. Therefore, the 

execution time of the proposed approach can be proportional to O(|V|) particular for 

these benchmark programs. 

The developing of the proposed method is for reducing the demand in computing 

resource while generating object layouts. Probably this method is an insignificant 

contribution for using offline and batch programs to generate object layouts. However, 

reducing processing time becomes the first priority issue when introducing such a 

feature to real-time systems. For example, Huang, Lewis and McKinley, in [106], 

propose a modified P.H. algorithm aimed for just-in-time compilation in Java virtual 

machines. The modified algorithm is emphasized in speed rather than quality. For the 

same reason, the proposed method aims for timesaving. The trade-off is the quality of 

the generated layout cannot surpass the offline version. However, we shall show that 

properly select a threshold can reach an acceptable balance between the trade-off and 

gain in the experiment. 

5.4 Virtual Machine Interpreters 

Java technology has already become an important player in embedded systems. 

There are numerous Java applications designed for mobile phones. The performance of 

the embedded Java virtual machine (KVM in J2ME CLDC) [103] is a significant issue. 

Especially, the large interpreter within the Java Virtual Machine (JVM) hungers for 

computation time and energy. Performance and power consumption issues are much 

crucial for whom want to have JVMs “execute-in-place” (XIP) in NAND flash 
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memories on mobile phones. The reason is that the cache miss penalty is extremely high 

in this configuration. Moreover, the concept can be extended to refine the program 

layout of a JVM for the cache memory used in any generic memory hierarchy. Since the 

importance of Java technology, it is worthwhile to invent a particular approach for the 

Java virtual machine, either for those stored in NAND flash memory or for generic 

memory hierarchy. 

Virtual machine is a special class of software and an important branch of system 

programs. Our goal was to refine interpreters and simulators, such as the Java virtual 

machine, so that they will generate less cache misses when running on embedded 

devices with a limited amount of cache memories and NAND XIP. For example, 

system-on-chips (SOC) usually offer limit on-chip SRAM, thereby insufficient for 

loading program code to it. In this case, XIP is an ideal scheme for storing and 

executing programs on the fly. 

5.4.1 KVM Internal 

Source Level. In respect of functionality, the KVM can be broken down into several 

parts: startup, class files loading, constant pool resolving, interpreter, garbage 

collection, and KVM cleanup. Lafond and Lilius, in [104], have measured the energy 

consumptions of each part in the KVM. Their study showed that the interpreter 

consumed more than 50% of total energy. In our experiments running Embedded 

Caffeine Benchmark [105], the interpreter contributed 96% of total memory accesses. 

These evidences bring out the conclusion that the interpreter is the performance 
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bottleneck of the KVM, and they motivated us to focus on reducing the cache misses 

generated by the interpreter. 

Figure 5.9 shows the program structure of the interpreter. It is a loop enclosing a 

large switch-case dispatcher. The loop fetches bytecode instructions from Java 

applications, and each “case” sub-clause deals with one bytecode instruction. The 

control flow graph of the interpreter, as illustrated in Figure 5.10, is a flat and shallow 

spanning tree. There are three major steps in the interpreter, 

(1) Rescheduling and Fetching. In this step, KVM prepares the execution context and 

the stack frame. Then it fetches a bytecode instruction from Java programs. 

(2) Dispatching and Execution. After reading a bytecode instruction from Java 

programs, the interpreter jumps to corresponding bytecode handlers through the big 

“switch…case…” statement. Each bytecode handler carries out the function of the 

corresponding bytecode instruction. 

(3) Branching. The branch bytecode instructions may bring the Java program flow 

away from original track. In this step, the interpreter resolves the target address and 

modifies the program counter. 
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ReschedulePoint: 
RESCHEDULE 
opcode = FETCH_BYTECODE ( ProgramCounter ); 
switch ( opcode ) 
{ 
 case ALOAD: /* do something */ 
  goto ReschedulePoint; 
 case IADD: /* do something */ 
  … 
 case IFEQ: /* do something */ 
  goto BranchPoint; 
  … 
} 
BranchPoint: 
 take care of program counter; 
 goto ReschedulePoint; 
 

Figure 5.9 Pseudo code of KVM interpreter 

 

Figure 5.10 Control flow graph of the interpreter 

Assembly Level. Our analysis of the source files revealed the peculiar program 

structure of the VM interpreter. Analyzing the code layout in the compiled executables 

of the interpreter helped this study to create a code placement strategy. The assembly 

code analysis in this study is restricted to ARM and gcc for the sake of demonstration, 

but applying our theory to other platforms and tools is an easy job. Figure 5.11 

illustrates the layout of the interpreter in assembly form (FastInterpret() in interp.c). The 

first trunk BytecodeFetching is the code block for rescheduling and fetching, it is 

exactly the first part in the original source code. The second trunk LookupTable is a 
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large lookup table for dispatching bytecode instructions. Each entry links to a bytecode 

handler. It is actually the translated result of the “switch…case…case” statement. 

The third trunk BytecodeDispatch is the aggregation of more than a hundred 

bytecode handlers. Most bytecode handlers are self-contained which means a bytecode 

handler occupies a contiguous memory space in this trunk and it does not jump to 

program codes stored in other trunks. Only a few exceptions invoke functions stored in 

other trunks, such as “invokevirtual.” Besides, several constant symbol tables spread 

over this trunk. These tables are referenced by the program codes within the 

BytecodeDispatch trunk. 

 

Figure 5.11. The organization of the interpreter at assembly level 
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The last trunk ExceptionHandling contains code fragments for exception handling. 

Each trunk occupies a number of memory blocks (or NAND flash pages). In fact, the 

total size of BytecodeFetching and LookupTable is about 1200 bytes (compiled with 

arm-elf-gcc-3.4.3), which is almost small enough to fit into two or three 512-bytes 

memory block (as large as a NAND flash page). Figure 5.12 shows the size distribution 

of bytecode handlers. The average size of a bytecode handler is 131 bytes, and there are 

79 handlers smaller than 56 bytes. In other words, a 512-bytes memory block could 

gather 4 to 8 bytecode handlers. The inter-handler execution flow dominates the number 

of cache misses generated by the interpreter. This is the reason that our approach tries to 

rearrange bytecode handlers within the BytecodeDispatch trunk. 

 

Figure 5.12 Distribution of Bytecode Handler Size (compiled by gcc-3.4.3) 
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5.4.2 Analyzing Control Flow 

5.4.2.1 Indirect Control Flow Graph 

Static branch-prediction and typical code placement approaches derive the layout 

of a program from its control flow graph (CFG). However, the CFG of a VM interpreter 

is a special case. Its CFG is a flat and shallow spanning tree enclosed by a loop. The 

CFG does not provide sufficient information to distinguish the temporal relations of 

each bytecode handler pair. If someone wants to improve the program locality by 

observing the dynamic execution order of program blocks, the CFG is apparently not a 

good tool to this end. Therefore, we propose a concept called “Indirect Control Flow 

Graph” (ICFG). It uses the real bytecode instruction sequences to construct the 

alternative CFG of the interpreter. 

Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and 

E, and use the virtual machine to run a very simple user applet. Consider the following 

short alphabetic sequence as the instruction sequence of the user applet: 

A-B-A-B-C-D-E-C 

Each alphabet in the sequence represents a bytecode instruction. In Figure 5.13, the 

graph connected with the solid lines is the CFG of the simplified interpreter. By 

observing the flow in the CFG, the program flow becomes: 

[Dispatch]–[Handler A]–[Dispatch]–[Handler B]… 
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Figure 5.13 The CFG of the simplified interpreter 

It is hard to tell the relation between handler-A and handler-B because the loop 

header hides it. In other words, this CFG cannot clearly express which handler would be 

invoked after handler-A is executed. The idea of the ICFG is to observe the patterns of 

the bytecode sequences executed by the virtual machine, not to analyze the structure of 

the virtual machine itself. Figure 5.14 expresses the ICFG in a readable way. It happens 

to be the sub-graph connected by the dashed directed lines in Figure 5.13. 

 

Figure 5.14. An ICFG example. The number inside the circle represents the size of the handler. 

5.4.2.2 Tracing the Locality of the Interpreter 

As stated, the Java applications that a KVM runs dominate the temporal locality of 

the interpreter. Precisely speaking, the incoming Java instruction sequence dominates 
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the temporal locality of the KVM. Therefore, the first step to exploit the temporal 

locality is to consider the bytecode sequences executed by the virtual machine. Consider 

the previous example sequence, the order of accessed memory blocks is supposed to be: 

[BytecodeFetching]–[LookupTable]–[A]– 

[BytecodeFetching]–[LookupTable]–[B]– 

[BytecodeFetching]–[LookupTable]–[A]… 

Obviously, memory blocks containing BytecodeFetching and LookupTable are 

much often to appear in the sequence than those containing BytecodeDispatch. As a 

result, blocks containing BytecodeFetching and LookupTable are favorable to last in the 

cache. Blocks holding bytecode handlers have to compete with each other to stay in the 

cache. Thus, we induced that the order of executed bytecode instructions is the major 

factor impacts cache misses. 

Consider an extreme case: in a system with three cache blocks, two cache blocks 

always hold memory blocks containing BytecodeFetching and LookupTable due to the 

stated reason. Therefore, there is only one cache block available for swapping memory 

blocks containing bytecode handlers. If all the bytecode handlers were located in 

distinct memory blocks, processing a bytecode instruction would cause a cache miss. 

This is because the next-to-execute bytecode handler is always located in an uncached 

memory block. In other words, the sample sequence causes at least eight cache misses. 

Nevertheless, if both the handlers of A and B are grouped to the same block, cache 

misses decreases to 5 times, and the block access trace becomes: 

miss-A-B-A-B-miss-C-miss-D-miss-E-miss-C 



 

103 

If we expand the group (A, B) to include the handler of C, the cache miss count 

would decrease to four times, and the block access trace looks like the following one: 

miss-A-B-A-B-C-miss-D-miss-E-miss-C 

Therefore, the core issue of this study is to find an efficient code layout method 

partitioning all bytecode instructions into disjoined sets based on their execution 

relevance. Each memory block contains one set of bytecode handlers. We propose 

partitioning the ICFG reaches this goal. 

Back to Figure 5.14, the directed edges represent the temporal order of the 

instruction sequence. The weight of an edge is the transition count for transitions from 

one bytecode instruction to the next. If we remove the edge (B, C), the ICFG is divided 

into two disjoined sets. That is, the bytecode handlers of A and B are placed in one 

block, and the bytecode handlers of C, D, and E are placed in the other. The block 

access trace becomes: 

miss-A-B-A-B-miss-C-D-E-C 

This placement causes two cache misses, and this is 75% lower than the worst 

case! The next step is to transform the ICFG diagram to an undirected graph by merging 

reversed edges connecting same vertices, and the weight of the undirected edge is the 

sum of weights of the two directed edges. Formally speaking, we can model a bytecode 

access graph AG=(V, E) as: 

 Vi – represents the i-th bytecode instruction. 

 Ei,j – the edge connecting i-th and j-th bytecode instruction. 
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 Fi,j – number of times that two bytecode instructions i and j executed after each 

other. It is the weight of edge Ei,j. 

 K – number of expected partitions. 

 Wx,y – the inter-set weight.  x ≠ y, Wx,y= ΣFi,j where Vi  Px and Vj  Py. 

What is the difference between AG and OG (object access graph) acquired by the 

technique described in Section 5.2? The last section defines a variation on of basic 

blocks as code objects. The object access trace is acquired by tracking the execution of 

these basic blocks. Profiling a program can get the object access trace, in other words. 

The defined AG is constituted by bytecode handlers (served as vertexes) in the virtual 

machine. A bytecode handler consists of several basic blocks. The access trace is 

acquired by profiling the application executed by the virtual machine, not to profile the 

virtual machine itself. 

Nonetheless, the AG is served as the input of the black box of the packing and 

placement technique. The black box generates the layout of objects in AG. Finally, the 

layout is used to arrange bytecode handler in the virtual machine, thereby reducing the 

cache misses caused by the refined virtual machine. 
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5.5 Discussion on Effectiveness and Impact of 

Profiling 

The trace information is the key factor that determines the object layout in our 

research. The trace information acquires from profiling the subject program. Profiling is 

usually done by running the program with typical usage scenarios. The goal is to 

acquire trace information that is expected to cover all possible patterns of object access 

activities. In other words, the quality of object layout, that is to have the program cause 

fewer misses when face to real utilization, closely concerns with profiling.  

In terms of increasing the test coverage of profiling, an approach is to have the 

program run test cases as more as possible. This dissertation shall not stress on the issue 

of test case preparation. Assume there is a complete profiling plan that can generate 

sufficient profile information. It leads to a long object access trace. Does it increase the 

processing time of generating object layout? Consider applying this technique to 

generate program code layout. The number of code objects in the discovered object 

access trace should always equals to the number of basic blocks, as well as the number 

of vertexes in the corresponding CFG. The number of edges in the object access graph 

should also equals to the number of edges in the corresponding CFG. The reason is for 

each segment in the object access should reflect the fact of a transition from one basic 

block to the other in the program. At last, no matter how many simulations were 

invoked, the |V| and |E| of the derived OG are constants. The profiling results only alter 

the edge lengths in the derived OG, by Equation (3.3).  



 

106 

Generating object layouts involves algorithms for graph partitioning and MAX 

k-CUT, as discussed in Chapter 3. No matter which kind of algorithms were adopted for 

the implementation, the complexities of known algorithm candidates are equations 

involve with |V| and |E|, not with edge length. Subsequently, long object access trace is 

harmless to time and memory cost of generating object layouts. This encourage the 

users of the packing and placement approach to generate rich profile information 

without worry about processing time. 
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Chapter 6  
 
Evaluations and Experiments 

The parameters of the proposed packing and placement approach are objects, 

temporal relations among objects, and the cache configuration. In terms of object types, 

the proposed approach is independent of the fields of utilization. Therefore, the 

following experiment applies the proposed approach to arrange the basic blocks in a 

program. Basic blocks within a program have various sizes, which match the 

prerequisite of the parameter “objects” of the proposed approach. The profile 

information of a program offers the executing order of basic blocks, which is another 

parameter asked by the proposed approach. The purpose of the experiment is to reduce 

the cache misses by packing and placing close-related basic blocks to proper memory 

block(s). Although there are code-arrangement approaches regarding only static 

structural information, using the temporal relations to help code arrangements can be an 

efficient alternative. 

6.1 Experimental Setup 

The outline of the experimental steps is described as follows — 
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1. Compile and build the target program (benchmark program). In the meanwhile, 

gather the layout information (size, location) of basic blocks in the target program 

from the compilation output. 

2. Profile the target program. Execute the target program with meaningful test cases 

and capture the execution trace of basic blocks within the program. A cache 

simulation program calculates the cache miss counts from the given basic block 

layout and execution trace. 

3. Arrange and generate a basic block layout by using the layout program. The layout 

program references the basic block layout information by the step 1 and execution 

trace by the step 2. The layout program can invokes one of the packing and 

placement techniques (either our techniques or other researches’ techniques) to 

generate a layout scheme of basic blocks. 

4. Use the generated object layout scheme as a guide to rearrange basic blocks in the 

benchmark program. It then evaluates the cache misses for comparison. 

The benchmark suite consists of six programs introduced in Section 5.2.3. The 

experimental platform is a Linux 2.6.20 / Pentium-4 computer. A modified gcc-4.2.1 

(i686-linux) is used to build the benchmark programs. In order to capture execution 

traces, the target program is launched by customized gdbserver-6.6 that captures the 

execution trace of the target program. 
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6.2 Direct Mapped Cache: Experimental 

Analysis 

The experiment implements several approaches to arranging basic blocks in 

benchmark programs. One of them is sorting all basic blocks by their usage frequency 

in descending order, and distributes objects to memory blocks in the address space. The 

purpose is evaluating the realization of using Degree-1 trace information to generate 

program layout. We expected such a layout should be worse than our approach. 

Section 4.2 has introduced two techniques in packing and placement objects, either 

first packing objects to memory blocks and placing these blocks to sets later, or doing it 

conversely. While developing these two techniques, we have predicted the first one 

should outperform than the other. Therefore, both techniques are implemented and 

evaluated here. The experimental comparison is expected to match the prediction made 

in Section 4.2. Meanwhile, in terms of the algorithms used to placing objects and blocks 

to sets, two algorithms are implemented. The first one is the random placement. It is a 

useful choice for realizing MAX k-CUT. The second one is the proposed heuristic 

algorithm discussed in the previous section. Therefore, there are altogether four 

combinations of proposed approaches for generating program layouts. 

In addition to show the performance of our approaches, this experiment implement 

a famous approach proposed by Pettis and Hansen (P.H.)[52] that arranges basic blocks 

in a program. The main purpose of their approach is to improve the program locality 

and reduce both cache misses and virtual memory page faults. In our respect, their 
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approach provides a certain “packing” mechanism. In contrast to other approaches, e.g., 

Gloy’s TRG ([2]) that considers only object placement (interleaving), P.H. method is 

worthy for comparison. 

Since the experiment is to rearrange the basic blocks in a program, not to alter the 

program structure, the total amount of basic blocks is independent of layouts. The 

execution trace is collected by running a benchmark program, and then the simulator 

reproduces the trace working on different cache configurations and records the number 

of cache misses. In this manner, the length of the object access trace is a constant, 

independent of cache configurations and program layouts. The object access trace is 

transformed to a block access trace by a program layout. As a result, both the length of 

the block access trace and number of cache block misses vary by layouts. Consequently, 

evaluating the performance should use the following formula to get object miss rate. 

The lower is better. 

length  traceaccessobject 

counts missblock  cache
rate missobject   

(6.1) 

Since the denominator is a constant to each benchmark program, the numbers in 

the charts and tables in remainder of this section are expressed by block miss counts for 

readability. 

The size of a cache memory block and number of cache sets are two factors 

affecting performance. The former associates the number of basic blocks gathered in a 

cache block, and the later determines the basic block layouts. This experiment simulates 

the program memory accessing behavior of each benchmark program working on kinds 
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of cache configuration. There are two parameters in the simulated cache configurations. 

The first parameter is cache block size, which includes 64, 128, 256, and 512 bytes. The 

second parameter is the number of cache set: 2, 4, 8… to 128 sets per cache. 

In the meanwhile, distinct basic block layout of a benchmark program must be 

generated for each cache configurations (block size, #-sets). For example, two versions 

of basic block layout of the program “indent” are generated for the (64-bytes, 4 sets) 

and (128-bytes, 8 sets) test cases. 

Next, we explain the experimental results in many aspects. 

The first collection of charts (Figure 6.1 to Figure 6.6) lists the block miss counts 

by all benchmark programs. The major measurement of the x-axis in each chart is block 

size, and the minor measurement is the number of cache sets. Each chart contains four 

column sets of experimental results (block misses) by program layouts created with our 

proposed approaches, i.e., (i) packing basic blocks first and randomly placing memory 

blocks to sets, (ii) packing basic blocks first and placing memory blocks to sets, (iii) 

randomly distributing basic blocks to k-sets, and packing them to memory blocks after, 

(iv) distributing basic blocks to k-sets, and packing them to memory blocks after. The 

miss counts roughly decrease along the x-axis. That means increasing total size of cache 

by either enlarging block size or expanding sets can reduce misses. 

The charts confirm our important prediction (made in Section 4.2): the packing 

followed by placement method is more than a match to the placement followed by 

packing method. Since the former method moves long edges to Type-I edges, which 
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directly affects miss rates. The difference is obvious in spite of which placement 

algorithm was used. As far as placement algorithms, our placement approach is better 

than the random placement algorithm. 

Since the prediction is verified, we adopt experimental results from the packing 

followed by placement method (with our placement algorithm) for comparisons.  

The purpose of the next collection of figures (Figure 6.7 to Figure 6.12, each chart 

stands for one program) is to observe the distribution of miss counts in different aspects. 

The x-axis represents the number of cache sets. The y-axis represents the memory block 

sizes. It is definitely true that the miss counts decrease along both axes because of 

increasing in overall cache size. On the other hand, cross cutting diagonally the 3D chart 

can see how the miss counts shift by different memory block sizes but the total cache 

memory size is a constant. We add labels aside some columns to emphasis the size of 

cache memory. For example, the diagonal series with four columns: (512-bytes, 2-sets), 

(256-bytes, 4-sets), (128-bytes, 8-sets), and (64-bytes, 16-sets) stands for the block miss 

distribution working on the cache of 1K-bytes. Observing the diagonal series finds that 

layouts for smaller blocks can cause more cache misses. For example, the column 

(64-bytes, 16-sets) is apparently taller than the column (512-bytes, 2-sets) in Figure 6.9. 

Oddly, this observation implies that unconditionally adopting a cache with 512-byte 

cache-line and generating a corresponding object layout is better than adopting a cache 

with 64-byte cache-line. 
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To avoid the odd conclusion, it is necessary to quantify the penalties caused by 

cache misses to measure cache performance. The average memory access time is 

defined in [5] as the following equation. 

Average memory access time = Hit time + Miss rate × Miss penalty (6.2) 

Therefore, the total cost of penalty is (Miss rate × Miss penalty). The penalty can 

be usually estimated in terms of time, even power consumption. In terms of time, the 

main memory access time spend for transfer n-bytes of raw data can be – 

Memory access time (n) = Overhead + Data_transfer_time (n) (6.3) 

In the equation, Overhead refers to time spent in transferring commands between 

hosts and slaves. Data_transfer_time (n) refers to the time used to transfer the payload 

data. The functions of Overhead and Data_transfer_time() are closely dependent on the 

electrical characteristics of the main memory (or storage media). Overhead is usually a 

constant because of transferring a fixed amount of commands, and Data_transfer_time() 

is usually proportional to the transferred data amount. That means the transferred data 

amount is proportional to access time and power consumption, and vice versa. It is also 

proportional to miss penalty.  

For this reason, the next collection of charts (Figure 6.13 to Figure 6.18) plots the 

amounts of transferred data owing to cache misses. Each column represents the number 

of bytes read from main memory to cache. That is the product of block miss counts 

multiplies block size. Overhead is omitted because it is hardware-dependent and usually 
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a small constant. Intuitively, a cache with smaller cache block can cause more cache 

misses because each single cache miss leads to read a small piece of data. The number 

of misses for reading the same amount of data is more than the one with larger cache 

block, but the model changes after multiplying the block size. For example, the amount 

of transferred data of the layout of (512-bytes, 2-sets) is greater than the other three 

columns that composites a 1KB cache in Figure 6.16. Actually, the amount drops as the 

block size decreases. The relation between the transferred amount and block size is 

discussed in [3]. Consequently, the distribution shapes in this collection of charts are 

different to those in the last collection. It concludes that the increasing in cache size by 

enlarging block size is irrelevant to decrease the transferred data items. 

The next collection of charts (Figure 6.19 to Figure 6.24) compares our proposed 

approach (drawn in columns) with the original layout, ordering basic blocks by 

frequency, and by the P.H. method (drawn in folded lines). The definitions of x and 

y-axes are the same as the first collection of figures. These Figures show the fact that 

the layouts by the packing and placement approach seems to be better because it leads 

to fewer block misses than the others in most cases.  

There are some notable issues to be discussed. (1) The differences of all these 

approaches are not so obvious for the case of 64-bytes per block. It is because one 

memory block is small and packs insufficient objects together, and the effect of the 

packing approach becomes insignificant as a result. 

(2) When # cache sets increases, cache misses by distinct layouts are close. This is 

because the cache memory is large to hold the most active parts of the program, thereby 
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the cache misses converging together. (3) Conversely, when # cache sets is lower (look 

at the left-hand-side of a column set in each chart), the gaps between our layout and the 

others show no coincident behavior. Some gaps are big (bc, grep, indent, tcc), the others 

don’t. Our cross-analysis suggests there are connections with the size of a program 

(Table 5.3) and the shape of the object access graph (Figure 5.6). For big programs, 

which refer to those with many basic blocks (indent, tcc), our layout efficiently groups 

closely used basic blocks together and offers better locality. That means small cache can 

catch active basic blocks more precisely, thereby providing greater improvement 

(bigger gap). For a program with a distribution curve explicitly closing to the top-left 

corner (indent, grep) in Figure 5.6, the gaps are bigger, too. It means a relative small 

portion of basic blocks contributes most of the activities. Both our approach and P.H. 

method can provide better locality in compare to the original layout.  

To evaluate the degree of performance improvement, we can consider the ratio of 

miss penalties caused by both the original layout and our approach, using the following 

formula – 

original

ours

original

ours
rate Miss

rate Miss

penalty  Miss rate Miss

penalty  Miss rate Miss
 PenaltyRelative 




  
(6.4)

Figure 6.25 shows the individual relative penalty of benchmark programs. The 

cache misses penalty by the original layout is 100%. The columns stand for relative 

penalties, and shorter is better. Each column group gathers statistics from all benchmark 

programs. The charts show the effectiveness of the packing and placement approach, 

only with a few exceptions at 64-bytes per block.  
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To understand the overall performance from individual benchmarks of the packing 

and placement approach, the weighted relative penalties are calculated by the following 

formula – 









programthi

programthi

iblocksbasicofnum

ienaltyrelative_piblocksbasicofnum

 

 

)(___

)(*)(___

 Penalty RelativeWeighted  

(6.5) 

Based on the formula, the overall performance of the packing and placement 

approach is presented in Figure 6.26. In the 3D chart, data series are arranged by the 

memory block size in the y-axis, and it is arranged by the number of cache sets in the 

x-axis. The first-hand observation can find that all the columns are lower than 100%, 

which means our approach is efficient to all cases. The relative penalty columns form a 

zigzag line, but roughly keep at the same level (to be discussed later), as the cache 

grows bigger by expanding number of sets along the x-axis. That means contribution of 

the approach is stable in spite of the number of sets. The approach should be able to 

apply to any number of sets and get expectable improvement. 

In the y-axis direction, the relative penalties decrease as the cache grows by 

enlarging block size. It implies that the improvement by the packing and placement 

layout becomes more significant as the memory block size gets bigger. Observing the 

diagonal series can find similar trends. A diagonal series represents relative penalties 

under a given cache size. It is easily to find the relative penalties are inversely 

proportional to block sizes. For example, the (512-bytes, 2-sets) column is shorter than 
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the (64-bytes, 16-sets) column in the diagonal series of 1K bytes; the (512-bytes, 8-sets) 

column is shorter than the (64-bytes, 64-sets) column in the diagonal series of 4K bytes. 

There is still a phenomenon (in Figure 6.25 and Figure 6.26) to be discussed. Why 

do the column heads form a zigzag line (along x-axis) rather than a smoothly 

descending curve? We have to look back on the generation of a relative penalty. The 

denominator is the cache misses by the original layout, and the numerator is cache 

misses by our approach, as seen in Equation (6.4). The next step is to look at the curves 

formed by the columns along the x-axis by our approach, which can be found in Figure 

6.7 to Figure 6.12. There are monotonic decreasing curves (with only one exception 

case), and the shapes are smooth. On the contrary, the curves by the original layout can 

be observed in Figure 6.19 to Figure 6.24. They are not as smooth curves as ours are. 

Therefore, the composite results become zigzag curves. 

Besides, the last column (represents for 128 cache sets) in each horizontal row 

significantly rises up. The reason is the cache memory is large to hold most active parts 

in a program, thereby the both layouts causing similar cache misses, and the last column 

rising up. 

The appearance derives a conclusion that our approach can be significantly useful 

if a cache block is large. As discussed in the beginning of this article, loading more 

information being used at one time to a large cache block is efficient. The packing and 

placement approach is good at gathering related objects together. As a result, it can 

increase the performance of caches with larger cache block. 
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Figure 6.1. Block misses of bc by the four packing and placement implementation. The chart 
juxtaposes the results from those working on different cache configurations; differ by block 

size and number of sets (x-axis). 

 
Figure 6.2. Block misses of gawk by the four packing and placement implementation, from 

experiments working on caches differ by blocks size and sets. 

 
Figure 6.3. Block misses of grep by the four packing and placement implementations, from 

experiments working on caches differ by blocks size and sets 
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Figure 6.4. Block misses of indent by the four packing and placement implementations, from 

experiments working on caches differ by blocks size and sets 

 
Figure 6.5. Block misses of the tcc by the four packing and placement implementations, from 

experiments working on caches differ by blocks size and sets 

 
Figure 6.6. Block misses of unzip by the four packing and placement implementation, from 

experiments working on caches differ by blocks size and sets 
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Figure 6.7. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of bc by the packing first and placement next approach. 

The label aside the column indicates the total size of the cache of the given experimental 

condition. 
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Figure 6.8. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of gawk by the packing first and placement next 

approach. 
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Figure 6.9. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of grep by the packing first and placement next 

approach. 
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Figure 6.10. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of indent by the packing first and placement next 

approach. 
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Figure 6.11. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of tcc by the packing first and placement next approach. 
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Figure 6.12. An overall observation, in both the respect of block size and cache set counts, of 

the block misses caused by the layout of unzip by the packing first and placement next 

approach. 
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Figure 6.13. Estimate the amount of data read from main memory by all cache misses (bc). 
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Figure 6.14. Estimate the amount of data read from main memory by all cache misses (gawk). 
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Figure 6.15. Estimate the amount of data read from main memory by all cache misses (grep). 
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Figure 6.16. Estimate the amount of data read from main memory by all cache misses (indent). 
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Figure 6.17. Estimate the amount of data read from main memory by all cache misses (tcc). 
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Figure 6.18. Estimate the amount of data read from main memory by all cache misses (unzip). 
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Figure 6.19. Compare layouts of bc by packing and placement with other approaches. 

 

Figure 6.20. Compare layouts of gawk by packing and placement with other approaches. 

 

Figure 6.21. Compare layouts of grep by packing and placement with other approaches. 
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Figure 6.22. Compare layouts of indent by packing and placement with other approaches. 

 

Figure 6.23. Compare layouts of tcc by packing and placement with other approaches. 

 

Figure 6.24. Compare layouts of unzip by packing and placement with other approaches. 
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Figure 6.25. Relative penalties of all benchmarks for the cases that block size are 64 and 128 

bytes.  

 

Figure 6.25 (continued). Relative penalties of all benchmarks for the cases that block size are 

256 and 512 bytes. 
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Figure 6.26. Weighted relative penalties from benchmarks on a direct mapped cache. 

6.3 Fully Associative Cache: Experimental 

Analysis 

This section evaluates the two techniques proposed in Section 4.3. The experiment 

uses the proposed techniques to arrange basic blocks within benchmark programs. After 

that, it simulates the execution of a benchmark program on different configurations of 

fully associative cache with four kinds of basic blocks layouts, which include the 

original layout by the compiler, ordering basic blocks by usage counts (frequency-sort 

layout), and the layouts by the two proposed approaches. The simulated cache 

configurations include four sizes of cache block (also memory block): 64, 128, 256, and 

512 bytes per block. For each cache block size, there can be 1 to 32 cache blocks in the 
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cache. Besides, the experiment also simulates both FIFO and LRU replacement 

algorithms for the cache memory. 

As the reason explained in Section 6.2, the performance index of a basic block 

layout is the block miss count. Figure 6.27 to Figure 6.38 are the first collection of 

charts that show the raw experimental results. Two charts for each benchmark program 

illustrate the block miss counts. The one is the experimental results of executing the 

program on a cache with FIFO replacement, the other is the experimental results on a 

cache with LRU replacement. The major x-axis is block size and the minor x-axis is the 

number of cache blocks in each chart. The charts show that the layouts generated by the 

two proposed approaches overcome the original layout and the frequency-sort layout. 

Even in the case of 64-bytes per block, the gaps between the original layout and the 

processed layouts are still significant. Besides, the proposed approaches are effective in 

spite of the replacement algorithm. This outcome matches our inference in Section 3.4. 

When the #cache block is low, some gaps between our approach and the original 

layout are big, but some are not. Not surprisingly, our explanation for the direct mapped 

cache experiment (in page 114) can be extended to this experiment as well. The only 

changed factor is #cache set versus #cache block, but both actually concern with overall 

cache memory capacity. That is, when cache memory is small, our approach generates 

less cache misses for programs with the founded properties. 

On the other hands, it seems not much difference between the experimental results 

by the two proposed approaches (the column pairs through the charts). We suggest a 

reasonable explanation to this outcome that concerns with the characteristic of the 
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benchmark. Consider the object access graph of a program, the degree of a vertex (basic 

block) is usually small. For example, a “if…then…else…endif” compound statement 

(illustrated in Figure 5.2) consists of four basic blocks. The degree of each vertex is 

about two or three. Similar situation applies to the compound statement of a loop, which 

can be transformed to an “if” statement easily. As a result, the number of edges can be 

linear proportional to the number of vertexes. The Figure 5.7 illustrates the expected 

outcome. Either partitioning the graph to coarser grains than to finer grains, or 

partitioning the graph to finer grains directly can get similar layouts. Therefore, the 

experiment results can be similar. 

Since the two proposed approaches generate similar experimental statistics, the 

following charts adopt only one-page cache heuristic for readability. Using the relative 

penalty defined in Section 6.2, Equation (6.4), Figure 6.39 (on FIFO cache) and Figure 

6.40 (on LRU cache) illustrate the degree of improvement of our approaches, in 

compared with the original layout. Each column represents a benchmark program. The 

degrees of improvement vary by programs, but the degrees of improvement increase 

along with block size. To figure out the overall respect, Figure 6.41 (on FIFO cache) 

and Figure 6.42 (on LRU cache) use the Equation (6.5) to illustrate the weighted 

relative penalties of the one-page cache heuristic. The x-axis is the number of cache 

blocks and the y-axis is the block size. The approach provides improvements despite of 

the number of cache blocks. However, the curves formed by the columns along x-axis 

are zigzag especially when the cache block size is small (consider the cases of 64-bytes 

and 128-bytes in both charts). Therefore, we have to track back to Figure 6.27 to Figure 

6.38 for answers. Consider the two curves in each chart. The one is the curve by the 

original layout, and the other is the curve fit the top of columns by our approaches.  
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The rate of declining of a curve is related the locality sets and the ability of capturing 

working set in a program. In the theory, the more cache blocks are, a cache memory 

holds more locality sets. However, the code size of each set is distinct, and the number 

of locality set is definitely not constantly proportional to the number of cache blocks. 

Therefore, the declining rates of both curves are different, and this reason makes the 

calculated relative penalties vibrate along #cache blocks.  

Meanwhile, the degree of improvement becomes greater as the size of a cache 

block (memory block) increases. Similar outcome can be observed along the diagonal 

columns, which represents different cache organizations under the same cache total size. 

The outcome means the contribution of our approaches becomes significant as the 

system has larger memory blocks. 

 

Figure 6.27. The miss counts caused by all kinds of layout of bc working on a fully associative 

cache with FIFO replacement. 
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Figure 6.28. The miss counts caused by all kinds of layout of bc working on a fully associative 

cache with LRU replacement. 

 

Figure 6.29. The miss counts caused by all kinds of layout of gawk working on a fully 

associative cache with FIFO replacement. 

 

Figure 6.30. The miss counts caused by all kinds of layout of gawk working on a fully 

associative cache with LRU replacement. 
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Figure 6.31. The miss counts caused by all kinds of layout of grep working on a fully 

associative cache with FIFO replacement. 

 

Figure 6.32. The miss counts caused by all kinds of layout of grep working on a fully 

associative cache with LRU replacement. 

 

Figure 6.33. The miss counts caused by all kinds of layout of indent working on a fully 

associative cache with FIFO replacement. 
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Figure 6.34. The miss counts caused by all kinds of layout of indent working on a fully 

associative cache with LRU replacement. 

 

Figure 6.35. The miss counts caused by all kinds of layout of tcc working on a fully associative 

cache with FIFO replacement. 

 

Figure 6.36. The miss counts caused by all kinds of layout of tcc working on a fully associative 

cache with LRU replacement. 



 

136 

 

Figure 6.37. The miss counts caused by all kinds of layout of unzip working on a fully 

associative cache with FIFO replacement. 

 

Figure 6.38. The miss counts caused by all kinds of layout of unzip working on a fully 

associative cache with LRU replacement. 

 

Figure 6.39. Relative penalties of all benchmarks for the cases that block size are 64 and 128 

bytes on a fully associative cache with FIFO replacement. 
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Figure 6.39 (cont’d). Relative penalties of all benchmarks for the cases that block size are 256 

and 512 bytes on a fully associative cache with FIFO replacement. 

 

Figure 6.40. Relative penalties of all benchmarks for the cases that block size are 64 and 128 

bytes on a fully associative cache with LRU replacement. 
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Figure 6.40 (cont’d). Relative penalties of all benchmarks for the cases that block size are 256 

and 512 bytes on a fully associative cache with LRU replacement. 
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Figure 6.41. Weighted relative penalties from benchmarks on a fully associative cache with 

FIFO replacement. 



 

139 

1
2

4
8

16
32

64 Bytes

128 Bytes

256 Bytes

512 Bytes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
W

e
ig

h
te

d
 R

e
a

lt
iv

e
 P

e
n

a
lt

y

# Cache Blocks

B
lo

ck
 S

iz
e

1K

1K

1K

1K

2K

2K

2K

2K

16K

64

 

Figure 6.42. Weighted relative penalties from benchmarks on a fully associative cache with 

LRU replacement. 

6.4 Set Associative Cache: Experimental 

Analysis 

This section evaluates the performance of our approaches working on the set 

associative cache. The experiment is generating basic block layouts of given benchmark 

programs, as what the previous sections did. The parameters of the configuration of a 

set associative cache include four items: cache block size, number of cache set, number 

of cache blocks in a cache set (denoted as the N-way cache in the literatures), and the 

replacement algorithm. This experiment uses two cache block sizes: 64 and 128 bytes 

per block. The number of cache set ranges from 2 to 128 sets, and there are 2, 4, and 8 

cache blocks per set, since the real cache usually has large number of cache sets with 
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small associativities. The simulated cache uses only FIFO replacement, since the 

difference between FIFO and LRU replacements make minor influence in the previous 

experiment of fully associative cache. 

The focus of this experiment is to watch the magnitude of cache misses as the 

number of blocks per set changes. Table 6.1 to Table 6.6 are the experimental cache 

misses of benchmark programs. Rows belonging to each (block size, # cache sets)-pair 

illustrate the miss counts for different number of cache blocks. Take Table 6.1 as an 

example. Considering the case of (64-bytes, 16-sets), the original layout causes 16634 

misses when there are two cache blocks in a set. The statistics in these six tables 

indicate the layouts generated by the proposed technique cause less cache misses than 

those by the others. 

The last columns in the tables are the numbers of relative penalty, which is defined 

in Equation (6.4). It compares the performance of the proposed approach with the 

original layout. Figure 6.43 shows the overall performance ratio by the weighted 

relative penalties, including both 64 and 128-bytes cache blocks. The columns are 

grouped by cache sets. Each column in a set represents the weighted relative penalty by 

either 2, 4, or 8 cache blocks per set. Consider the columns stand for identical cache size 

in total. The chart tells the weighted relative penalty is strictly lower as enlarging the 

cache block. That means columns in the 128-bytes group are all shorter than the 

columns in the 64-bytes group, as those columns represent the same cache size. For 

example, the values of (128-bytes, 2-set, 2-blocks) is less than which of (64-bytes, 2-set, 

4-blocks) or (64-bytes, 4-set, 2-blocks). It infers that contribution of the proposed 

approach becomes obvious as the cache block growing larger. From the other point of 
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view, for fixed cache total size and cache block size, these seems no consistent trend in 

the changing of weighted relative penalty, or say they are uncorrelated. 

The observation leads to our presumed perspective, i.e., the proposed approach can 

generate basic block layout that causes less cache miss then the others. Especially, it is 

effective for large cache blocks. 
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Table 6.1. Cache misses caused by layouts of bc program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 52296 68440 54679 43050 82.32% 

4 39641 49692 38729 30500 76.94% 2 

8 23998 30388 22291 17587 73.29% 

2 37521 49283 37307 30555 81.43% 

4 24564 31080 24315 17463 71.09% 4 

8 15537 19242 14911 12021 77.37% 

2 25317 32242 25222 21038 83.10% 

4 15487 19506 14885 11629 75.09% 8 

8 8458 9263 7955 6454 76.31% 

2 16634 20659 15454 11927 71.70% 

4 8589 10165 7926 6382 74.30% 16 

8 3159 2133 2353 1971 62.39% 

2 10198 10423 8587 6724 65.93% 

4 3377 2128 3017 1665 49.30% 32 

8 534 371 437 376 70.41% 

2 5079 2023 2937 2329 45.86% 

4 675 371 451 373 55.26% 64 

8 421 318 359 328 77.91% 

2 1424 391 1435 487 34.20% 

4 435 318 359 326 74.94% 

64 

128 

8 418 318 354 323 77.27% 

2 31762 43915 22913 16565 52.15% 

4 21523 28720 15020 10811 50.23% 2 

8 12953 16351 9184 6846 52.85% 

2 21263 27611 14413 10535 49.55% 

4 13993 16574 9760 7214 51.55% 4 

8 7208 8106 4912 3603 49.99% 

2 14007 17079 9560 7108 50.75% 

4 7400 8707 4620 3920 52.97% 8 

8 2811 2036 1907 1306 46.46% 

2 8331 8695 5303 3654 43.86% 

4 2948 2048 1588 1128 38.26% 16 

8 361 217 227 200 55.40% 

2 4229 1933 2450 1372 32.44% 

4 511 211 224 198 38.75% 32 

8 241 162 177 158 65.56% 

2 1319 241 694 232 17.59% 

4 255 162 179 158 61.96% 64 

8 237 162 177 159 67.09% 

2 254 162 177 161 63.39% 

4 237 162 178 161 67.93% 

128 

128 

8 237 162 179 158 66.67% 
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Table 6.2. Cache misses caused by layouts of gawk program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 102851 112860 106394 99283 96.53% 

4 81399 66188 70341 69069 84.85% 2 

8 41821 42902 39464 35379 84.60% 

2 74399 66173 84769 69183 92.99% 

4 39639 41384 37903 39346 99.26% 4 

8 28620 21475 22440 22313 77.96% 

2 40660 42666 45482 43945 108.08% 

4 28288 22035 20859 21168 74.83% 8 

8 15925 8410 9286 7674 48.19% 

2 28889 21097 32456 21611 74.81% 

4 15452 8041 7390 9524 61.64% 16 

8 1402 664 499 570 40.66% 

2 14717 8134 19901 9310 63.26% 

4 2331 834 503 785 33.68% 32 

8 583 371 353 388 66.55% 

2 4034 1109 3100 3989 98.88% 

4 599 369 358 384 64.11% 64 

8 513 333 333 338 65.89% 

2 1811 370 365 423 23.36% 

4 517 333 332 335 64.80% 

64 

128 

8 507 333 331 340 67.06% 

2 63997 58198 52953 39448 61.64% 

4 30368 32775 24949 21425 70.55% 2 

8 21785 16357 15155 12637 58.01% 

2 31201 32659 25173 21115 67.67% 

4 21188 16169 15699 12532 59.15% 4 

8 13008 6883 7510 6649 51.11% 

2 21772 16056 16439 11764 54.03% 

4 12727 6611 7002 6037 47.43% 8 

8 3264 518 394 542 16.61% 

2 12853 5772 9934 5591 43.50% 

4 3575 684 1823 409 11.44% 16 

8 395 204 217 200 50.63% 

2 4356 912 3838 955 21.92% 

4 793 202 219 197 24.84% 32 

8 338 172 186 170 50.30% 

2 1354 208 459 264 19.50% 

4 338 172 184 170 50.30% 64 

8 320 172 182 172 53.75% 

2 441 173 182 171 38.78% 

4 326 172 186 169 51.84% 

128 

128 

8 320 172 183 171 53.44% 
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Table 6.3. Cache misses caused by layouts of grep program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 6430 4872 3681 3326 51.73% 

4 3375 3842 3045 2783 82.46% 2 

8 2892 3075 2438 2471 85.44% 

2 3396 3926 3187 2767 81.48% 

4 2904 3004 2521 2505 86.26% 4 

8 2363 2040 1784 2135 90.35% 

2 2911 3000 2543 2418 83.06% 

4 2336 1973 1847 1813 77.61% 8 

8 1441 959 892 1208 83.83% 

2 2274 1989 1693 1984 87.25% 

4 1409 937 975 1113 78.99% 16 

8 689 499 479 526 76.34% 

2 1478 983 1083 1101 74.49% 

4 737 508 464 573 77.75% 32 

8 439 293 283 323 73.58% 

2 888 496 434 621 69.93% 

4 435 297 288 316 72.64% 64 

8 390 281 279 305 78.21% 

2 479 296 287 360 75.16% 

4 391 281 279 301 76.98% 

64 

128 

8 390 281 281 306 78.46% 

2 3589 3168 1947 1606 44.75% 

4 2210 2481 1711 1373 62.13% 2 

8 1754 1686 1128 1111 63.34% 

2 2172 2415 1543 1384 63.72% 

4 1732 1670 1289 1080 62.36% 4 

8 1099 708 672 673 61.24% 

2 1713 1574 1156 998 58.26% 

4 1115 693 735 568 50.94% 8 

8 507 338 359 291 57.40% 

2 1127 787 882 589 52.26% 

4 559 339 312 264 47.23% 16 

8 300 161 183 156 52.00% 

2 683 343 343 322 47.14% 

4 291 163 182 163 56.01% 32 

8 235 144 160 150 63.83% 

2 320 161 190 167 52.19% 

4 237 144 165 148 62.45% 64 

8 234 144 162 152 64.96% 

2 261 144 163 150 57.47% 

4 234 144 166 150 64.10% 

128 

128 

8 234 144 160 150 64.10% 
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Table 6.4. Cache misses caused by layouts of indent program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 352053 524279 356834 282076 80.12% 

4 307845 440899 299715 249704 81.11% 2 

8 289033 365931 286972 236418 81.80% 

2 308629 437665 294894 252224 81.72% 

4 287464 363843 284086 238962 83.13% 4 

8 250967 289503 241753 202455 80.67% 

2 285363 371134 281712 240530 84.29% 

4 248994 287420 253025 210945 84.72% 8 

8 189652 169772 175822 139645 73.63% 

2 246622 291435 246483 212320 86.09% 

4 187814 165842 174497 135169 71.97% 16 

8 101205 52203 81926 61171 60.44% 

2 182758 152384 169026 127829 69.94% 

4 100999 47596 97459 56474 55.92% 32 

8 24265 3081 11863 7539 31.07% 

2 101325 42394 81675 54256 53.55% 

4 25445 3069 14586 9763 38.37% 64 

8 580 416 411 430 74.14% 

2 34706 2733 21833 11102 31.99% 

4 2107 418 411 428 20.31% 

64 

128 

8 532 416 411 428 80.45% 

2 221184 368826 170752 140047 63.32% 

4 200547 297645 157785 129709 64.68% 2 

8 182085 221479 144451 114334 62.79% 

2 201428 301270 160716 130900 64.99% 

4 180513 225776 131904 114028 63.17% 4 

8 149903 128032 105496 74557 49.74% 

2 178391 227316 140052 112184 62.89% 

4 146515 127907 111984 74807 51.06% 8 

8 88982 39211 53741 33279 37.40% 

2 140890 117906 99053 74500 52.88% 

4 88629 36453 54562 36116 40.75% 16 

8 28440 2707 9851 3987 14.02% 

2 87877 32547 67544 33169 37.74% 

4 26565 2582 10221 4580 17.24% 32 

8 498 214 224 206 41.37% 

2 32669 2247 31675 6793 20.79% 

4 2329 218 226 208 8.93% 64 

8 299 214 225 206 68.90% 

2 2778 220 227 206 7.42% 

4 299 214 226 206 68.90% 

128 

128 

8 299 214 228 206 68.90% 
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Table 6.5. Cache misses caused by layouts of tcc program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 77733 78958 79073 66610 85.69% 

4 61321 47040 65030 44595 72.72% 2 

8 31080 12312 49644 25443 81.86% 

2 65496 46409 54040 44314 67.66% 

4 33272 12382 44112 27353 82.21% 4 

8 6143 7979 5093 4290 69.84% 

2 45249 12923 40748 20276 44.81% 

4 16404 8039 15899 4395 26.79% 8 

8 4347 5519 3445 3130 72.00% 

2 20976 8448 12805 4767 22.73% 

4 4364 5607 3558 3159 72.39% 16 

8 2805 3077 1878 1831 65.28% 

2 4586 5735 10260 3437 74.95% 

4 2895 3319 1974 2020 69.78% 32 

8 1538 1375 929 1035 67.30% 

2 2983 3362 2458 2056 68.92% 

4 1601 1402 970 1042 65.08% 64 

8 916 618 587 638 69.65% 

2 1884 1516 1142 1187 63.00% 

4 1061 630 578 665 62.68% 

64 

128 

8 802 575 572 612 76.31% 

2 48643 38526 40024 27725 57.00% 

4 32688 11666 32245 4625 14.15% 2 

8 4723 6926 3521 2514 53.23% 

2 34279 11626 29484 6774 19.76% 

4 15351 7042 3962 2514 16.38% 4 

8 3379 4804 2287 1647 48.74% 

2 12901 7338 14780 2500 19.38% 

4 3283 4880 2301 1821 55.47% 8 

8 2044 2766 1274 1035 50.64% 

2 3668 4932 9073 1953 53.24% 

4 2129 2904 1329 1096 51.48% 16 

8 1193 1169 651 555 46.52% 

2 2191 2918 1540 1193 54.45% 

4 1196 1150 674 575 48.08% 32 

8 572 333 332 325 56.82% 

2 1375 1228 778 666 48.44% 

4 712 349 340 326 45.79% 64 

8 461 290 313 299 64.86% 

2 862 362 408 358 41.53% 

4 485 290 310 301 62.06% 

128 

128 

8 450 290 313 298 66.22% 
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Table 6.6. Cache misses caused by layouts of unzip program and its relative penalties. 

Block Size # 
Sets 

Blocks 
/ Set Original Freq. P.H. Ours Rel. 

Penalty 
2 3961 4499 4578 3847 97.12% 

4 2932 3011 3133 2831 96.56% 2 

8 1177 1227 984 915 77.74% 

2 2732 2871 3075 2792 102.20% 

4 1211 1276 1106 882 72.83% 4 

8 998 877 848 792 79.36% 

2 1338 1346 1123 1021 76.31% 

4 985 877 838 780 79.19% 8 

8 785 633 615 593 75.54% 

2 965 879 813 741 76.79% 

4 794 644 633 588 74.06% 16 

8 716 504 553 518 72.35% 

2 801 683 643 621 77.53% 

4 722 496 547 491 68.01% 32 

8 547 295 328 297 54.30% 

2 718 489 533 501 69.78% 

4 558 291 337 312 55.91% 64 

8 423 280 311 293 69.27% 

2 565 288 386 314 55.58% 

4 428 280 311 288 67.29% 

64 

128 

8 421 280 313 289 68.65% 

2 2101 2162 1987 1614 76.82% 

4 944 1091 737 507 53.71% 2 

8 639 603 491 448 70.11% 

2 980 1145 1314 866 88.37% 

4 637 626 491 436 68.45% 4 

8 530 424 353 341 64.34% 

2 645 641 477 444 68.84% 

4 531 420 361 365 68.74% 8 

8 455 300 309 282 61.98% 

2 524 461 398 357 68.13% 

4 457 291 310 279 61.05% 16 

8 388 162 194 166 42.78% 

2 469 286 316 261 55.65% 

4 392 152 205 166 42.35% 32 

8 258 142 160 151 58.53% 

2 382 150 211 183 47.91% 

4 265 142 161 151 56.98% 64 

8 252 142 161 149 59.13% 

2 283 142 162 151 53.36% 

4 252 142 168 149 59.13% 

128 

128 

8 252 142 164 150 59.52% 
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Figure 6.43. Weighted relative penalties from benchmarks on a set associative cache. 

6.5 Experiments on Partial Arrangement 

6.5.1 Direct Mapped Cache Experiment 

This experiment generates distinct program layouts by given thresholds, and 

evaluates the caused cache misses by these layouts. The goal is to evaluate the quality of 

these partially rearranged program layouts compared with the global rearranged version. 

The experiment continues to use the benchmark programs in Section 4.4. The 

experimental cache configurations are assumed to have 256-bytes cache block and the 

number of cache sets is ranged from 2, 4, 8, to 128. For each cache configuration, the 

experiment generates program layouts by setting thresholds from 60% to 100%. Later 

on, we will analyze the cache misses caused by these distinct layouts. 
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Table 6.7 lists subgraph information and execution time of all benchmark programs 

by threshold levels. As mentioned, the proposed method selects a portion of edges by 

changing thresholds on the sum of edge lengths. Thus, it extracts vertexes from selected 

edges and constructs a subgraph containing these vertexes from the original object 

access graph. The column “Edges” and “Vertexes” in the table refer to items in the 

extracted subgraphs. Take indent for example. When the threshold is 80%, the subgraph 

has 142 vertexes and 217 edges. Please keep in mind that the relations between 

thresholds and the amount of edges and vertexes are illustrated in Figure 5.6 and Figure 

5.8. Therefore, it is not surprising that both the gaps of amounts between 90% and 100% 

in the columns “Vertexes” and “Edges” are steep. The column “Time” represents the 

time spent in running the packing and placement implementation and generating a 

program layout with the given subgraph. It is a common appearance that the changes in 

spent time from 60% to 90% are gentle to all benchmark programs. Since the 

experimental implementations adopt linear time algorithm (while dealing with program 

codes), there is a sharp gap of spent time between 90% and 100%, reflects a gap in  

edge amounts. 

Figure 6.44 to Figure 6.49 illustrate the relative penalties (in y-axis) by threshold 

levels. The x-axis is marked by the number of cache sets. The number of cache sets 

separates columns to groups. Each group has five individual columns, and one column 

stands for the relative penalty by threshold. Setting the threshold to 100% means 

arrange all basic blocks. The purpose is to tell the differences between the fifth column 

and the other four. The four columns should uniformly converge to the fifth column as 

the coverage of basic blocks increasing. However, smaller coverage of basic blocks 

implies the influence on cache misses made by the arranged parts becomes minority. As 
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a result, the relative penalties vibrate to rather than uniformly converge to the fifth 

column (100%). 

Figure 6.50 integrates the experimental results from six programs into a monolithic 

index. Each column is a weighted relative penalty derived from the columns in the six 

charts ahead. The trend is the columns of 90% are relatively better than the front three 

columns. Consider the index together with the spent time in Table 6.7, setting threshold 

to 90% seems to generate ideal program layout and cost reasonable execution time as 

well, particular for the adopted benchmark. 

Table 6.7. Sub-graph size and computation costs by different levels of threshold. 

bc gawk Thresholds 
on Lengths Edges Vertexes Time(sec) Edges Vertexes Time(sec) 
60% 20 26 0.1977 44 38 0.2093 
70% 48 56 0.2023 60 49 0.2121 
80% 111 98 0.2193 81 65 0.2204 
90% 227 163 0.2667 195 150 0.2928 
100% 1369 729 3.7512 1087 761 4.3417 
 grep indent 
60% 12 14 0.0758 48 44 0.8924 
70% 19 20 0.0763 99 81 0.8979 
80% 36 35 0.0766 217 142 0.9144 
90% 124 104 0.1192 401 253 1.0446 
100% 892 647 3.2768 1974 1139 8.9946 
 tcc unzip 
60% 3 5 0.5206 11 11 0.0562 
70% 16 17 0.5496 20 21 0.0565 
80% 29 23 0.5516 35 34 0.0587 
90% 54 37 0.5543 87 88 0.0839 
100% 2552 1499 18.7317 697 557 2.3442 
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Figure 6.44. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(bc). 

 
Figure 6.45. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(gawk). 

 

Figure 6.46. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(grep). 
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Figure 6.47. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(indent). 

 

Figure 6.48. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(tcc). 
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Figure 6.49. Perform packing and placement on a subset of basic blocks. The percentage of 

each column stands for the threshold for screening basic blocks by adjacent edges’ lengths 

(unzip). 

 

Figure 6.50. Weighted relative penalties of all threshold levels for different cache 

organizations. 

6.5.2 Fully Associative Cache Experiment 

Next, the same approach is applied to the packing technique for the fully 

associative cache. Similarly, the experiment repeats the packing process on five levels 

of threshold: 60%, 70%, 80%, 90%, and 100%. The layout is generated and evaluated 

on fully associative caches that have 128-bytes cache blocks, FIFO replacement, and 1 

to 8 cache blocks. 
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Table 6.8 lists the amount of vertexes (basic blocks) involved in the packing 

process on the corresponding threshold for each benchmark program. The excluded 

basic blocks are arranged by the original relative order by the compiler (gcc). Besides, 

the Table also lists the time spend in generating the layout. The Table suggests that the 

durations of the packing process at 60% to 90% are roughly the same. There are great 

gaps between the durations of 90% and 100%. 

Figure 6.51 to Figure 6.56 compare the relative penalties of different threshold 

levels. Each figure has four groups of columns. A group corresponds to the experiment 

working on a kind of cache block count, denoted by the label on the x-axis. The five 

columns in a group represent the relative penalties by threshold levels. The more basic 

blocks involved in the packing process, the relative penalty is lower. As a result, the 

columns in a group are gradually shorter one by another from left to right. Figure 6.57 

integrates the results from those six charts by using the weighted relative penalty. The 

columns in each group step down to the column stands for 100%. Consider both Table 

6.8 and Figure 6.57 together, the experimental result suggests that setting the threshold 

to 90% basic block arrangement provides a balance between quality and time cost. 
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Table 6.8. Sub-graph size and computation costs by different levels of threshold. 

bc gawk Thresholds 
on Lengths Edges Vertexes Time(sec) Edges Vertexes Time(sec) 
60% 20 26 0.2097 44 38 0.2141 
70% 48 56 0.2120 60 49 0.2231 
80% 111 98 0.2249 81 65 0.2332 
90% 227 163 0.2807 195 150 0.3011 
100% 1369 729 3.9501 1087 761 4.4196 
 grep indent 
60% 12 14 0.0767 48 44 0.9120 
70% 19 20 0.0779 99 81 0.9300 
80% 36 35 0.0795 217 142 0.9564 
90% 124 104 0.1189 401 253 1.0968 
100% 892 647 3.4130 1974 1139 9.8138 
 tcc unzip 
60% 3 5 0.5316 11 11 0.0571 
70% 16 17 0.5510 20 21 0.0584 
80% 29 23 0.5511 35 34 0.0608 
90% 54 37 0.5527 87 88 0.0853 
100% 2552 1499 19.2725 697 557 2.4907 

 

Figure 6.51. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (bc) 



 

156 

 

Figure 6.52. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (gawk) 

 

Figure 6.53. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (grep) 

 

Figure 6.54. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (indent) 
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Figure 6.55. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (tcc) 

 

Figure 6.56. Pack subsets of basic blocks for the fully associative cache, and calculate the 

relative penalties of the packed layout and the original layout. (unzip) 

 

Figure 6.57. Weighted relative penalties of all threshold levels for different cache 

organizations. 
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6.6 Virtual Machine Experiment 

In this section, we devise an experiment to evaluate the performance of the 

rearranged virtual machine. The experimental environment and approach is different 

from other experiments in the previous sections, because the goal is to simulate an 

embedded system. The following article introduces the experimental environment first, 

explains the approach used to modify the virtual machine, and summarizes the 

experimental results. 

6.6.1 Evaluation Environment 

Figure 6.58 shows the block diagram of our experimental setup. In order to 

simulate real embedded applications, we have implanted Java ME KVM into uClinux 

for ARM7 in the experiment. One of the reasons to use this platform is that uClinux 

supports FLAT executable file format which is perfect for realizing XIP. We run the 

KVM/uClinux on a customized gdb. This customized gdb dumps memory access traces 

and performance statistics to files. The experimental setup assumes there is a 

specialized hardware unit acting as the NAND flash memory controller, which loads 

program codes from NAND flash pages to the cache. It also assumes all flash memory 

access operations works transparently without the help from the operating system. In 

other words, modifying the OS kernel for the experiment is unnecessary. This 

experiment uses “Embedded Caffeine Mark 3.0” [105] as the benchmark. 
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Figure 6.58 Hierarchy of simulation environment 

There are several kinds of NAND flash commodities in the market: 512-bytes, 

2048-bytes, and 4096-bytes per page. In this experiment, we model the cache simulator 

after the following conditions: 

1. There are four kinds of NAND flash page: 512, 1024, 2048 and 4096 byes per page. 

2. The program works on a system with a fully associative cache, which uses FIFO 

replacement algorithm. 

3. The number of cache blocks in the cache varies from 2, 4 … to 32. 

6.6.2 Virtual Machine Modification Procedures 

The experiment tries to realize our approach on a practical embedded platform. The 

implementation consists of two steps, and the experimental program automatically 

handles everything without human intervention. The refinement process acts as a post 

processor of the compiler. It parses assembly codes generated by the compiler, arranges 

code blocks, and writes refined assembly codes as a substitution. This instrument is very 

effective in manipulating final executable file. Inevitable, our instrument is 

compiler-dependent and CPU-dependent. It is tightly integrated with gcc for ARM. 

Figure 6.59 illustrates the full processing flow, entities, and relations between those 

entities of the implementation. 

Title Version 
arm-elf-binutil 2.15 
arm-elf-gcc 3.4.3 
uClibc 0.9.18 
J2ME (KVM) CLDC 1.1 
elf2flt 20040326 
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Figure 6.59. Entities in the refinement process 

A. Collecting dynamic bytecode instruction trace 

The first step is to collect statistics from real Java applications or benchmarks. The 

following processes need the relevance of each bytecode instruction pairs for 

partitioning bytecode handlers. To make the simulation as real as possible, we modified 

both KVM and gdb for ARM. The modified KVM passes the bytecode trace to the 

customized gdb while running Java applications. The customized gdb dumps the trace 

for a special program called TRACER. Then the program analyzes the relevance from 

the trace dump. 

B. Rearranging the KVM interpreter 

This is the core of the process. A program called REFINER is in charge of this 

step. It acts as a post processor of gcc. Its duty is to parse bytecode handlers in the 

interpreter from the assembly code, and gathered those bytecode handlers into partitions 
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using the proposed algorithms. Each partition fit for one NAND flash page. The 

program consists of several subtasks described as follows. 

B.1. Parsing layout information of original KVM 

The very first thing is to compile the original KVM. REFINER parses the assembly 

codes and the map file generated by gcc. The structure of the interpreter in assembly 

code is introduced in Section 5.4.1. REFINER analyzes the jumping table in the 

LookupTable trunk to find out the address and size of each bytecode handler. 

B.2. Using the graph partition algorithm to group bytecode handlers into disjoint 

partitions 

At this stage, REFINER constructs the ICFG with: (1) the bytecode instruction 

relevance collected by TRACER; (2) the machine code layout information collected in 

the stage A. It uses the heuristic algorithm described in Figure 4.3 to divide the 

undirected graph into disjoint partitions. 

B.3. Rewriting the assembly code 

REFINER parses and extracts assembly codes of all bytecode handlers. Then, it creates 

a new assembly file and dumps all bytecode handlers partition by partition according to 

the result of B.2. 
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B.4. Propagating symbol tables to each partition 

As described in Section 5.4.1, there are several symbol tables distributed in the 

BytecodeDispatch trunk. In most RISC processors like ARM or MIPS, an instruction is 

unable to carry arbitrary constants as operand because of limited instruction word 

length. The solution is to huddle those constants into a symbol table and place the table 

near the instruction need the constant. Hence, the compiler generates instructions with 

relative addressing operands to load constants from the accompanied symbol table. Take 

ARM for example, its ABI defined two instructions called LDR and ADR for loading a 

constant from a symbol table to a register [106]. It confines the distance between a 

LDR/ADR instruction and the referred symbol table to 4K bytes. 

Besides, it could cause a cache miss if a machine instruction in memory block X 

loads a constant si from symbol table SY located in memory block Y. Our solution was to 

create a local symbol table Sx in memory block X and copy the value si to the new table. 

Therefore, the relative distance between si and the instruction never exceeds 4KB, and it 

is impossible to raise cache misses when the CPU tried to load si.  

B.5. Dumping contents in partitions to NAND flash pages  

The aim is to map bytecode handlers contained in one partition to a NAND flash page. 

REFINER compiles the KVM with rearranged assembly codes and refreshes the address 

and size information of all bytecode handlers. The updated information helps REFINER 

to add padding bytes to each partition, so that the starting address of each partition is 

aligned to the boundary of a NAND flash page. 
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6.6.3 Experimental Result  

In this experiment, we rewrite four versions of KVM. Each of them suits for one of 

the memory block size. The experimental statistics are compared with those from the 

original KVM. Table 6.9 is the highlight of the experimental results. Both the miss 

counts by the original KVM and refined KVM are listed in the table. Besides, the 

column “Improve.” lists the improvement ratio between the two data sets, 

i.e.,
original

oursoriginal

Misses

MissesMisses 
. 

In the test case with 4KB/512-bytes per page, the cache miss rate of the refined 

KVM is less than 1%, in contrast to the cache miss rate of the original KVM that is 

greater than 3%. In the best case, the cache miss rate of the refined KVM is 96% lower 

than the value from the original one. Besides, in the case with only two cache blocks 

(1KB/512-bytes per page), the improvement is about 50%. It means the tuned KVMs 

outperform on devices with limited cache blocks. 
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Table 6.9. Experimental cache miss counts. Data of 21 to 32 pages are omitted due to 
being less relevant. 

512 Bytes/Page Miss Count 1024 Bytes/Page Miss Count 
# Pgs Improve. Original Ours # Pgs Improve. Original Ours 

2 48.94% 52106472 25275914 2 38.64% 29760972 17350643 
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007 
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730 
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010 
10 78.02% 12263183 2560674 10 96.72% 6354864 197996 
12 89.61% 9993229 986256 12 96.02% 3924402 148376 
14 95.19% 6151760 280894 14 92.97% 1735690 115991 
16 95.63% 4934205 204975 16 90.64% 1169657 104048 
18 94.37% 3300462 176634 18 75.11% 380285 89934 
20 90.48% 1734177 156914 20 58.30% 122884 48679 

Total Access 548980637 521571173 Total Access 548980637 521571046 
         

2048 Bytes/Page Miss Count 4096 Bytes/Page Miss Count 
# Pgs Improve. Original Ours # Pgs Improve. Original Ours 

2 40.74% 25616314 14421794 2 62.32% 14480682 5183539 
4 78.17% 14733164 3055373 4 86.32% 7529472 978537 
6 80.10% 8284595 1566059 6 93.27% 2893864 185037 
8 93.80% 4771986 281109 8 74.91% 359828 85762 
10 95.66% 2297323 94619 10 33.39% 88641 56096 
12 81.33% 458815 81395 12 -89.68% 25067 45173 
14 54.22% 96955 42166 14 0.08% 16547 15708 
16 52.03% 62322 28403 16 -33.81% 7979 10144 
18 24.00% 26778 19336 18 -17.08% 5484 6100 
20 10.08% 18390 15710 20 -24.69% 3536 4189 

Total Access 548980637 521570848 Total Access 548980637 521570757 

Figure 6.60 is the chart of the relative penalty, i.e.,
original

ours
Miss

Misses
. The numbers are 

arranged by the total size of the cache memory. Figure 6.61 illustrates the same 

information but the data items are arranged by the number of cache blocks. The 

vibration of each line concerns with block size. For smaller block size, the vibration 

range is greater. In spite of vibration, the shapes of these lines are tending to be 

concave. When there are small numbers of available cache blocks, the cache miss rates 

of the refined KVM decline faster than the rates of the original version, and the line 

goes downward. Once there is enough cache blocks to hold the entire locality of the 

original KVM, the refined version gradually loses its advantages, and the line turns 

upward.  
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Figure 6.60. The chart of the experimental relative penalty. Each line is an experiment works 

on a given memory block size. The x-axis is the size of the cache memory ( number_of_blocks 

* block_size ). 

 

Figure 6.61. The chart of the experimental relative penalty. The x-axis is the number of cache 

blocks. 

It seems the bottoms of these lines might be concerned with the working set sizes 

of bytecode handlers. Our cache simulator is able to count the amount of distinct 

memory blocks that a bytecode handler had accessed. Table 6.10 shows the average of 

accessed memory blocks collected from original KVM. The table also lists where the 



 

166 

line touches the bottom and the corresponding amount of cache blocks. It seems that if 

the cache blocks are much enough to hold more than 3 working sets (excluding trunk 1, 

2, and fan-out function calls), both the original and refined version start to converge 

together, and the line turns upward. 

Table 6.10. Average accessed page of each bytecode handler and the bottom position 
of the curves of relative penalty. 

Page Size Avg. Accessed Pages Bottom @ Blks Ratio 
512 6.446428571 16 2.481994 
1024 4.580357143 10 2.183236 
2048 3.607142857 10 2.772277 
4096 2.732142857 6 2.196078 
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Chapter 7  
 
Conclusions and Future Works  

The main purpose of this dissertation is to characterize object arrangement problem 

by cache configurations while objects are smaller than a cache block (memory block, as 

well). To solve the problem, our research finds modeling the layout problem as graphs 

by Degree-2 trace information is a manipulable analysis tool. This tool creates clear 

connections between the object layout problem and some well-known graph problems. 

It leads the most important conclusion in our research – 

 The simplified model, one-page cache, is equivalent to the graph partition problem. 

 For direct mapped cache, the packing movement is equivalent to the graph partition 

problem, and the placement movement is equivalent to the MAX k-CUT problem. 

 For fully associative cache, the object layout generation can be a composition of 

graph partitioning. 

Since both the two famous graph problems are thoroughly studied by many other 

researches, we suggest those algorithms can be adopted to solve the packing and 

placement problem. The heuristics proposed in this dissertation aim for verifying our 

theory practically, not for the algorithmic research purpose. 
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What we expected is that our approach should generate efficient object layout 

when the block size is large. In the theoretic level, our model has comprised both 

packing objects and distributing to cache sets. Our expectation is proved by the 

experiments. 

This dissertation has not covered the model of multilevel cache. We suggest the 

developed analytic methods can be a further extended for modeling multilevel cache. 

Types of edges in an object access graph can be classified into more sub-categories to 

express the relations in each level of cache hierarchy. For example, Type-I1, 

Type-I2…Type-In-edges might be added to the object access graph. On the other hand, 

after expanding the equation of multilevel cache access time, the miss possibility by the 

n-th level cache (Ln-Miss) can be insignificant in contrast to the value by Level-1 cache. 

Therefore, the effectiveness of an object layout for multilevel cache is probably 

indistinguishable from the one for the top-level cache. 

Meanwhile, our method uses profile information generated before deployment. In 

addition to increasing the prediction preciseness of profiling, dynamically monitor 

object access in real activities can also generate trace information and apply the packing 

and placement approach. Some related researches introduce such mechanisms to 

garbage collection. We regard the conclusion by Section 5.3 as a foundation for 

adopting the packing and placement approaches in on-line generation of object layout. 

However, the on-line utility of the packing and placement approach still worth further 

research. 
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There are reasons in choosing the size of a cache block while developing the 

system. In terms of hardware, the size of a cache blocks grows as technology evolving, 

e.g., incorporating with new generation of flash memory. Whatever the reason is, the 

packing and placement problem takes place as long as a cache block is large. A series of 

experiments consistently prove the improvements archived by the proposed approaches 

become more significant as the cache block and memory block grows larger. 
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