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ABSTRACT

Proteins that bind specific DNA sequences play important roles in regulating gene
expression. Identifying target sequences of a DNA-binding protein helps to understand
how genes are regulated in cells and explain how genetic variations cause disruption of
normal gene expression. Position frequency matrices (PFMs) are one of the most widely
used models to represent such target sequences. However, up to now, for most species,
only a small fraction of the transcription factors (TFs) have experimentally determined
PFMs. Since biological experiments usually require much time and cost, it is strongly
desired to develop computational methods with satisfied accuracies to speedup the
progress. Here, a new method based on existing protein-DNA complex structures and
the knowledgebase containing the preference of contacts between amino acids and
nucleotides is proposed to predict quantitative specificities of protein-DNA interactions.
When given a query protein sequence, a protein-DNA complex structure of homologues
proteins is selected and the PFM prediction is made based on the selected template
incorporated with the built knowledgebase.

The proposed method is evaluated by two datasets and compared with existing
computational methods. It turns out that the proposed method can predict as well as the
compared structure-based methods. On the other hand, when a sequence-based method
that is trained by collected experimentally determined PFMs is compared, the proposed
method performs slightly worse. Even though, the proposed method still has its value
since different predictors usually have their own advantages and limitations. In
summary, it is concluded that a DNA-binding protein’s binding preference can be
predicted based on its primary structure using the complexes of its homologues. This

facilitates related studies in the future because target sequences of proteins without a



solved structure could be predicted now.
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Chapter 1  Introduction

Proteins that bind to specific DNA sequences are extremely important for the proper
regulation of gene expression. Identifying the target sequences of DNA-binding proteins
binds can help to understand how gene regulation proceeds and how genetic variations
cause disruption of normal gene expression within cells. In recent years, proteins can be
assigned to a certain molecular function (e.g., transcription factor) by biologists or
computational methods efficiently. However, quantitative functional information (e.g.,
DNA-binding specificities) remains insufficient for the requirement. Despite recent
progress in the development of high-throughput technologies for the measurement of
protein-DNA interaction parameters, the determination of highly resolved quantitative

binding specificity information is still laborious.

Position frequency matrix (PFM) is a simple probabilistic model to represent the
consensus of target DNA sequences that can be recognized by a DNA-binding domain
of transcription factors (TFs) [1-3]. PFMs indicate for a certain TF how frequently the

nucleotides A, C, G and T occur at each position within the binding site.

There are experimental methods for determining the binding specificity of a protein.
Surface plasmon resonance (SPR) is one of the methods for measuring the binding
affinity of a protein-DNA interaction directly. SPR is often used to study protein-ligand
interactions, but it can also be used to measure protein-DNA interactions. SPR is based
on the fact that the angle of light reflection from a surface depends on the mass of

molecular attached to the other side of the surface. DNA can be attached to the surface,



and then proteins are added to change the reflection angles of the light. The on-rate for
the formation of protein-DNA complex and the off-rate for its dissociation can thus be
measured, and then the binding affinities can be measured. Protein binding microarrays
(PBMs) are another technology for measuring binding specificity of proteins. PBM uses
arrays of over 44,000 spots which contain all possible combinations of DNA 10-mer. A
protein is added into the array, and is then washed to remove nonspecific binding. The
amount of proteins that bind to a specific DNA spot is determined with a fluorescent
antibody to the protein. Despite the significant progress of experimental methods,
proteins still need to be prepared for these methods, either purified form cells or
synthesized in vitro. So it still spends some time using experimental methods to

determine the binding specificity of protein-DNA interactions.

Using computational methods to model binding specificity can spend much less time
than using experimental methods does. One of the most widely used computational
methods for PFM inference of a transcription factor is to collect a set of promoter
sequences to which the transcription factor can bind, and then to conduct motif finding
and determine the frequency of each position among the detected over-represented
subsequences. Such methods require sufficient sequences for pattern discovery, which
are currently only available for a small amount of DNA-binding proteins. Previously,
some structure-based approaches were also presented to predict PFMs. Several
approaches are based on analyses of protein-DNA complex structures These methods
are shown to perform well in telling which positions in a PFM should be more
conserved and do not allow degeneration [4-7]. On the other hand, Schroder, A., et al.
applied the method support vector regression (SVR) to predict a quantitative measure

for the PFM similarity of between proteins based on their primary structure, and further
2



predict the PFM of a protein [8].

However, in [8] , the preference between amino acids in proteins and bases in
nucleotides was not considered. In addition, it requires homologues of the query protein
to have an annotated PFM, which is not usually available. In this regard, this thesis aims
at providing an alternative to predict target DNA sequences of a DNA-binding protein
from primary structure, provided that any homologue of the query protein has a
protein-DNA complex structure. In this thesis, a novel approach to predict PFM of a
protein based on its primary structure and a collection of protein-DNA complex
structures is proposed. The DNA sequence in a protein-DNA complex can be regarded
as a PFM that every column contains only one of the nucleotides (A, T, C, or G) with
probability equals to one. Based on the idea that similar contact residues of proteins
might bind to similar DNA bases, the sequences in protein-DNA complex structures
were used to infer the PFM of a given protein sequence. Furthermore, a knowledgebase
that describes the contact frequency between amino acids and bases is built to refine the

PFMs built by the DNA sequence in a protein-DNA complex structure.

In Chapter 2, several methods proposed for predicting target sequence of DNA-binding
proteins and previous studies of protein-DNA interactions are introduced. The proposed
method is introduced in Chapter 3, and in Chapter 4, the performance of the proposed
method is shown and some discussion is made. Finally, conclusions of this thesis are

included in Chapter 5.



Chapter 2 Literature Review

In section 2.1, different methods for predicting protein-DNA binding specificities are
introduced. Given a protein with a solved protein-DNA complex structure, its binding
specificity can be inferred by structure-based PFM predictions. For a protein without
solved structure (i.e. protein with only primary structure information), its binding
specificity can be inferred by protein-DNA binding information of its homologues, for
example, protein binding microarray (PBM) data, annotated PFMs, or protein-DNA

complex structures.

The technique of sequence alignment was used in this thesis, thus the basic idea of
sequence alignment is introduced in section 2.2. In addition, structure alignment is used
while comparing the proposed method in this thesis with the existing structure-based
PFM prediction, so an algorithm of structure alignment, TM-align is introduced in

section 2.3.

2.1 Algorithms for predicting protein-DNA binding
specificities
2.1.1 Predicting the binding preference of DNA-binding proteins

In the study of Berger, et al. [9] the Z-score transformed relative signal intensities for
168 homeodomains against all the probabilities of 32,896 8-mer DNA sequences were
obtained using protein binding microarrays (PBMs). After that, Alleyne, et al. applied

different machine learning algorithms to predict the Z-scores between mouse



homoedomains and indivisual DNA 8-mers [10].

In the study of [10], the contact region of these proteins were aligned and transferred
into feature sets for the training of prediction models. The sequence alignment was
converted into numerical encodings representing amino acid sequences of length | as

binary vectors of length | x20 digits, i.e. the 20 different amino acids were encoded as

20 orthogonal vectors and an amino acid sequence was represented by concatenating
binary vectors corresponding to residues at each position. Gaps were encoded as a
vector of 20 zeros. With derived features, classifiers including nearest neighbor, random
forest regression, support vector regression with linear, polynomial, and radial basis
function kernel, and principal components regression were applied to predict the
Z-score. It turns out that nearest neighbor performance best comparing to other
algorithms. The root mean square error (RMSE) of nearest neighbor is 0.76. This
reveals the fact that, the amino acids within contact regions do have influences on

binding preference of proteins.

2.1.2 Predicting PFM by homologues’ annotated PFMs

Schroder, et al. applied the regression method support vector regression (SVR) to

predict PFMs of proteins based on their primary structure [8]. Pairwise alignment scores,

structural and physicochemical properties, and phylogenetic distances, were used as

features to train the SVR models in order to predict the PFM similarity of two proteins.

The prediction frame work is described as followed (Figure 2-1):

i) Feeding the sequence, organism, and structural superclass of the protein to the
trained SVR models;

i) (the SVR model) reporting the PFMs with similarity higher than a threshold;



i)

Filtering outlier PFMs;

iv) Merging the remaining PFMs to get the final prediction;

(" External test set Input A ﬁedicted PEM similaritieh
* 414 TFs with known PFM TF with annotated binding between query TF with
*not used in training domain but unknown PFM: unknown PFM and all TFs

* Organism x with known PFM
c,:rTA-”-I-IIAG * Protein sequence EM‘ """""""""""""""""""
lutn PEM (e.g. MEF2A;mouse) | + Structural superclass "T/ 98% TTATII&TAG

Distance between
predicted and

known PFM: 0.04

Output

predicted PFM

CTATTTaTAG.

[ Filter outlier PFMs

PFM,

Merging of
remaining PFMs
to consensus PFM

using STAMP

MEFA, Homo sapiens

o ATTTXTAG

MEF2, Homo sapiens

s (TATTIaTAG

MEF2A, Homo sapiens

o 3l [Arcre A

RLM1, Sacch. cervisiae

best match threshold (25%)

e e |

(o1 Thery

Figure 2-1 Prediction framework of Schroder, A., et al’s work

The average absolute error (AAE) of this framework with default parameter is 0.12 on a
scale from 0 to 2. In comparison, the average similarity between two PFMs that are
randomly sampled is 0.64, indicating that the predicted performance of SVR model is

significantly higher than the performance expected by random guesses.

2.1.3 Predicting PFM based on structural model and potential functions

Morozov, et al. developed a simple null model called ‘contact” model for predicting

PFMs [5, 6]. This model only cares about the number of atomic contacts between
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protein side chains and DNA bases. The probability of the base pair type « in the PFM

column i is calculated as follows:

1
Z(l - N/Nmax) ifN = Nmax'o ifN > Nmax (i i Wt)
Pa = 1
7 (LF 3N/ Nuwax) if N < Nungse, 1if N > Nnge (i = wt)

, Where N is the observed number of atomic contacts (a heavy atom pair from the
protein and DNA respectively is defined to be in contact if they are closer than 4.5A),
wt denotes the base type observed in the position i in the complex, N, and is a free
parameter. This model has been shown to be generally as good as the static model using
physics-based potential function when a native protein-DNA complex is considered [5],
and has the advantage of consuming much less computation cost.

Different to the contact model, which considers only the coordinates of residue atoms,
the all-atom knowledge-based potential function presented by Zhou, et al. takes the
amino acid types into consideration. The FIRE potential function [7] is a succinct
knowledge-based potential function that considers interactions between all atom types.
Among the series of all-atom scoring functions presented in [7], FIRE has the advantage
of easy implementation and is shown to be generally as good as two of its extended
functions, cFIRE and vcFIRE, in predicting PFMs.

To construct the knowledgebase, the number of pairs of atom types i and j with the
distance falling within a specified range (r —Ar,r] were denoted as N,,s(i,j, 1),
where r =3,4,5,6,7,8,9,and 10 (A), and Ar issetas 3for r =3 and 1 for the rest
of the values of r. In this study, the number of pairs of atom types i and j with the
distance falling within a specified range, N,,s(i,j,r), are calculated based on the 990
protein-DNA complex structures collected from PDB [11]. With N,,(i,j,r) of all the

combinations, the potential between atom types i and j is represented as follows:
7



RT1 PG,
uFIRE (i, j, 1) = P
0 JAfr > T

ifr< ro:

where P(i,j,7) = Nops(i,j,7)/ 2r Nops (6,4, 7)  Prep(r) = 701 /X, 1A, 7oy =
10A . The value of « is set as 1.61 because it best fits of r* to the actual
distance-dependent number of ideal-gas points in finite protein-size spheres [7]. For a
given complex, the binding free energy, AG, is defined as the sum of all the potentials

of the observed atom pairs [5]:
AG = ) ufE (i j, 1)
ij

Assume that influences on binding free energy from different positions are independent,

and thus AG can be represented as follows:

AG = ZAG;;
i

where AG/ is the binding free energy of a base « (A, T, C, or G) at position i. By
combining two equations above, we can estimate the probabilities in each column of

PFMs as follows:

)i = exp(—BAGE)
“ ZbE{A,T,C,G} exp (—ﬁAGl‘,)

where p is a free parameter.

Alamanova, et al. used another potential function proposed in [12] to predict PFM [4].

Np Np

G = —lnP(ClD) = —ZZIHP(CldU,tUt])
J

i
where D is the set of atomic distances d;; between interface atoms, t; and ¢; are the

atom types. N, and N, are the number of atoms in the protein and DNA. The

8



probability of atomic contacts was modeled as the likelihood:

P(d;;, t;, t;|C

P(Cld;j t;, t5) = P(C)M
P(d;j t,, )

where P(C|d;;,t;,t) is the likelihood function, P(dyj,t;t;) is the marginal

probability, P(C) is the Bayesian prior and was set to one. The following formula

expresses the likelihood of observation a native-like interatomic distance:

_ Nops(dij, £, t))
Lay; Nops(dij ti, t;)

P(dy, ti, 4]C) = f(dyj ti, t;)

Where N,ps(d;j, t;,t;) is the number of contacts observed between t; and ¢
separated by distance d;;.

For each DNA sequence of length N in the protein-DNA complex, 4N+X random
sequences were generated, and their potentials when bound by the query protein are
calculated by the formulas above. The weights of each position in the PFM were
estimated by solving the linear equation:

AX=b

, Where X is a vector of 4N dimensions of the estimated weights, and A is a binary
matrix of dimensions (4N, 4N+X), with each row of the matrix A corresponding to one
DNA sequence. In addition, b is a vector consists of 4N+X potential values. The
linear equation is solved by least squares optimization. Finally, the probabilities in each

column of PFMs were estimated as follows:

Ji = ew(thAG)
“ ZyE{A,T,C,G}exp(_ﬂAG]i)

The workflow of this study is described as Figure 2-2
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Figure 2-2 Workflow of the study of Alamanova, et al.

2.2 Algorithms of sequence alignment

Sequence alignment is a fundamental problem of bioinformatics. Smith-Waterman and
BLAST are the most famous algorithms for local sequence alignment. Smith-Waterman
uses dynamic programming to solve the problem, and its time complexity is O(nxm),
where n and m are the length of the sequences. So it takes lots of time to align
sequences. In this regard, it is not useful while searching a huge database. On the other
hand, BLAST uses a heuristic approach to search the solution, and it takes much less

time than Smith-Waterman while aligning long sequences.

2.2.1 BLAST
BLAST (Basic Local Alignment Search Tool) is a local sequence alignment algorithm

10



for biological sequences, and we can use it for protein sequence or DNA sequence

alignment [13]. We can align a query sequence with a sequence database by BLAST,

and further find its similar sequences in the database.

BLAST is one of the most commonly used programs in the field of bioinformatics due

to its high speed for searching a solution. Although it does not guarantee an optimal

solution as Smith-Waterman does, its high speed still makes it very useful, and thus

being widely used.

The major steps of BLAST are listed as followed:

® Making a list of neighborhood words, for example, length 4 for amino acid
sequences;

® Constructing a dictionary for all words in the query;

® Matching query with score higher than a threshold,;

® Scanning the database for words;

® Extending the match in both directions when a match is found,

2.3 Algorithms of structure alignment

Protein structural comparisons are employed in many branches of structure biology,
ranging from protein fold classification, protein structure modeling to structure-based
protein function annotation. TM-align is one of the most famous algorithms for
structure alignment [14]. It is ~4 times faster than CE [15] and 20 times faster than

DALI [16] and SAL [17].

2.3.1 TMe-align

TM-align only employs the information of backbone C, coordinates of the given

11



protein structure. The algorithm executes the following steps:

1.

Initial structure alignment

There are three initial alignments being exploited. The first type of initial
alignment is obtained by assigning secondary structure to each residue of two
proteins using dynamic programming. The second type of initial alignment is based
on the gapless matching of two proteins. The smaller protein is gapless threaded
against the larger protein. The third initial alignment is also by dynamic
programming, but the scoring matrix is a combination of the first and the second
initial alignment.

Heuristic iteration

In this procedure, structures are rotated by TM-score rotation matrix based on the

initial alignment [18]. The score similarity is defined as:

1
Al
G TR a2y, ()

where d;; is the distance between the ith residue of the first structure and the jth
residue of the second structure under the TM-score superposition. dy(L,in) =
1.24%/Lpin — 15— 1.8, L,,;, is the length of the smaller structure. A new
alignment can be obtained by implementing dynamic programming on the matrix
S(i,j). Then a new TM-score rotation matrix is obtained by the new alignment, and
a new score matrix is obtained. The procedure is repeated until the alignment

converges. Finally, the alignment with the highest TM-score is returned.

12



Chapter 3 Methods

Although the structure-based PFM predictors have been shown to perform well [5-7],
especially in telling which positions in a PFM should be more conserved and do not
allow degeneration, it is strongly desired to design a new algorithm because
structure-based PFM prediction can be applied only when the query protein has a
structure solved. However, there are still many proteins do not have a solved structure.
In this regard, this thesis aims to develop a method to predict the target sequence of

these proteins.

As introduced in Chapter 2, there are algorithms for predicting protein-DNA binding
specificities based on their homologues’ protein-DNA binding information, such as
PBM or PFM. However, protein-DNA complex structures provide some kind of
protein-DNA binding information. Here a novel method for inferring PFMs of a protein

by using protein-DNA complex structures of its homologues is proposed.

3.1 Materials

3.1.1 Collection of protein-DNA complex structures

Protein-DNA complex structures from the 27 February 2009 release of PDB were
collected [11]. Protein-DNA complexes were collected for finding a proper template of
given query protein sequences. Since similar proteins binds similar DNA sequences, a
protein-DNA complex structure of the query’s homologue helps predicting target
sequences of the query. The template structures were required to satisfy the following

criteria: a) it is an X-ray structure with resolution better than 3.0A, b) the DNA
13



molecule has > 6 paired bases and has less than 30% non-paired bases, c) the protein
chain has > 5 contact residues (residues within 4.5A to the DNA molecule) and d) the
protein chain has >40 residues. There are 990 protein chains satisfying the criteria

above.

3.1.2 Collection of PFMs

Annotated PFMs of human, and mouse were collected from TRANSFAC [19], and
annotated PFMs of yeast were collected from MYBS [20]. Totally, 592 annotated PFMs

of human, 802 of mouse, and 117 of yeast were collected.

3.1.3 Relating PFMs to protein-DNA complex structures

After collecting the data above, the next step is to know with which protein-DNA
structures the collected PFMs are associated. PFMs were related to protein-DNA
complex structures by their entry names in UniProt database [21]. If a PFM and a
protein have the same entry name, they are associated with each other, i.e. this protein is
supposed to bind to the DNA sequences similar with those of the same entry name.
After mapping PFMs to the protein-DNA complex structures, 119 protein chains with an

annotated PFM are remained, corresponding to 26 different proteins.

3.2  Building the knowledgebase

Before building the knowledgebase, we clustered the collected protein chains by a
hierarchical clustering algorithm HomoClust [22] based on pair-wise sequence identity
reported by BLAST [13]. In each cluster, the protein chain with the largest average

similarity to the other protein chains is assigned as the representative of the cluster. The

14



sequences of collected 990 protein-DNA complexes were used as input for HomoClust.
In the end, 260 representatives were used to build the knowledgebase.

The contact residues of protein chains (residues with 4.5A to any nucleotide present) in
260 templates were defined first. With this information, contact counts between twenty
types of amino acids and four types of nucleotides were reported respectively. Note that
for amino acids, only the atoms of the side chains are considered, because they
discriminate different amino acids. Similarly, for nucleotides, only the atoms of bases
are considered. After counting the contacts the scores between amino acids and
nucleotides are calculated by the following equation.

c(a,n)

S(a,n) = loge(a @

,where a means a type of amino acid , n means a type of nucleotide. c(a,n) is the
observed contact counts of a and n, and e(a,n) is the expected contact frequency
between a and n. The expected contact number is calculated by
e(a,n) =f(a)-f(n) - C

where f(a) is the frequency that amino acid a appears in the Swiss-Prot database [21],
and f(n) is the frequency of the appearance of the nucleotide n , which was set to
0.25 in this study and C is the observed total contact counts between all amino acids
and nucleotides.

The scores between amino acids and nucleotides are shown as Figure 3-1. It appears
that nucleotides prefer amino acids with positive charges (Arginine, Histidine, and
Lysine) and amino acids with polar (Asparagine and Glutamine) to other amino acids.

On the other hand, it is interesting that Serine prefers Thymine to other nucleotides.
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Figure 3-1 Preference between amino acids and nucleotides

3.3  Prediction framework

When a query protein sequence is given, the PFM prediction will be performed by the
following three steps.

i) Template selection and contact residue substitution

i) Building a predicted PFM by DNA sequence in the template

iii) Refining the PFM by the knowledgebase

The prediction framework of this study is shown as Figure 3-2
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Figure 3-2 Prediction framework of this study. (A) Selecting a template from template
database by BLAST and find out the contact residues that are substituted. (B)
Generating a predicted PFM from the DNA sequence. (C) Calculating the PFM by the
knowledge base and the distance between nucleotides and the contact residues. (D)

PFM refinement by DNA sequence in the template structure.
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3.3.1 Template selection and contact residue substitution

Given a query protein sequence, a proper homologue is selected from the 990 protein
chains in template database using BLAST. The protein with the lowest e-value is
selected as template of the query. According to the sequence alignment reported by
BLAST, there will be mismatches on the contact residues (residues within 4.5A to the
nucleotide) of the template protein. The contact residues of the template protein are then
replaced by. Note that not for all the given query protein sequences, the PFM prediction
will be performed. If there’s no template with e-value < 0.001, no PFM prediction is

performed.

3.3.2 Building the predicted PFM by DNA sequence in the template

Since similar protein sequences bind similar DNA sequences, the DNA sequence in the
template structure gives us important information to infer PFMs. After a template was
selected, a PFM with probability of either one or zero based on the DNA sequence can
be obtained. If the position i of the DNA sequence is base n, then PFM,(i,n) =1,

otherwise, PFM,(i,n) =0

3.3.3 Refining the PFM by knowledgebase

Before refining the PFM built by the DNA sequence in the template structure, another
PFM is built by the knowledgebase first. For each DNA base pair in the template
structure, we can calculate a column of the PFM. If the DNA sequence in the template
structure is L, then a PFM of length L is constructed. To construct the PFM, a scoring
matrix M is calculated by the contact residues of each base pair and the distances

between amino acids and nucleotides.
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M(i,n) = (i=1~Ln€ef{ATCG)

M(i,n) is the score of nucleotide n at position i and it equals to the weighted sum of
the score between contact residue a and the nucleotide n defined by the knowledge
base, i.e. S(a,n). For each position i in the template structure, we have the set of
contact residues I; of this position. The weight of each contact residue a is given in
an inverse ratio of the distance d, to the DNA molecule in the template, and d, is
defined as the shortest atom pair distance between amino acid and DNA molecule in the
template. Here w is a free parameter that can be adjusted by the user. The contact
residues closer to the nucleotide are favored as w gets larger.

After calculating M, we can obtain a PFM by
eBM(in)

PFMk(l, Tl) = Zk b of T eB'M(irk

- (i=1~Ln€{4T,C,G)

where S is a free parameter. Now we have a second PFM, which is constructed by the

knowledgebase.

For refining the PFM built by the DNA sequence by the PFM built with the
knowledgebase, the two PFMs built (PFM; and PFM,) are going to be merged
together. If the contact residues of a base pair are conserved, then the information given
by the DNA sequence in the template structure should be kept, so the refinement can be

done by the following equation.

PFM,(i,n) = PFM,(i,n) -+ (1 = &) + PFM,(i,n) -8 (i=1~L,n € {A,T,C,G})
, & is the ratio of the number of substituted contact residues over the total number of

contact residues of the position i and 6§ = 0 if there is no contact residue at the
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position.

For the positions that are close to the starting or ending positions and without contact
residues, they are regarded as unimportant positions in this protein-DNA interaction. In
these positions, four types of nucleotides would be assigned with the same probability :
0.25. These positions are trimmed before reporting the prediction because they do not

provide any useful information.
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Chapter 4 Results

In this chapter, a measure to compare PFMs is first introduced in section 4.1.
Introduction of validation sets that used to test performance is followed in section 4.2.
In section 4.3 and 4.4, the performance of the proposed method and comparison with

other methods is introduced. Finally, discussions are made in section 4.5.

4.1  Measuring performance

To compare the predicted PFM and the annotated PFM, a measure called ‘Similarity’
was employed, referring to the similarity function used in [23] for comparing PFMs. To
calculate the similarity between two PFMs, say a and b, they are aligned to maximize

!
1—%;%\/ Z (ai,n_bi,n)z

nefAT,C,G}

where w is the number of positions that two PFMs aligned together, and a;,, and b;

are the probabilities of nucleotides n at position i inPFM a and b , respectively.

4.2  Validation sets

4.2.1 Training data of SABINE

In [8], 1239 protein sequences with their annotated PFMs with were collected from
different databases. 453 of them were public and attached in the source code of

SABINE. These protein sequences were used to evaluate the proposed method.
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4.2.2 Protein-DNA complexes with annotated PFMs

As mentioned in section 3.1.3, we have 26 different protein-DNA complex structures
with known PFMs, and they were also used to evaluate the proposed method. The
protein sequences of the protein-DNA complex structures were used as an input query
for prediction. When evaluating the proposed method, the query protein sequence runs
BLAST with other 989 template sequences and finds a template. However, there are two
proteins cannot find a template with e-value < 0.001, so we finally use 24 proteins for

evaluation.

4.3 Performance

Two validation sets described in 4.2 were used to evaluate the proposed method. In
4.3.1, we can see the improvement after the refining the PFMs built by DNA sequences
in the template structures by the training data of SABINE. Structure-based methods
require a protein-DNA complex structure to perform prediction, so in 4.3.2, the
proposed method is compared with structure-based methods using protein-DNA
complexes with annotated PFMs, and it turns out that the proposed method can predict

as well as structure-based methods predict.

4.3.1 Training data of SABINE

453 protein sequences contained in the training data of SABINE were used as query for
the proposed method. 96 of these protein sequences cannot find a template structure
with e-value < 0.001, so 357 protein sequences were tested. As shown in Figure 4-1,
PFMs built by employing the DNA sequence in the template (PFM,) have an average
similarity of 0.632, after refining PFM, by the knowledgebase, an average similarity
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of 0.682 is achieved. This shows that refinement by the knowledgebase do help
inferring the PFM of a query protein sequence.

In Table 4-1, it is shown that PFM becomes more similar to the annotated PFM after
refinement. For example, at the 11" position of annotated PFM, PFM, gives
probability = 1 to Thymine, after refinement, the knowledgebase divides some
probability to Cytosine, so the PFM after refinement becomes more similar to the
annotated PFM. Similar situations can be observed at 7, 8", 9" 10" and 13" position
of annotated PFM. On the other hand, PFM after refinement is shorter than PFMj,
because there is no any contact residue at 1% ~ 4™ position of DNA sequence in the
template structure, so predictions at these positions were trimmed before reporting the
result. It can be observed that trimming these unimportant positions also helps
improving the performance, because trimming these positions filters the unimportant

information given by the DNA sequence in the template structure.
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Figure 4-1 Similarities under training data set of SABINE
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Table 4-2 PFM become more similar with annotation after refinement

Binding Profile Similarity
Annotated PFM
< ; o
DNA sequence
0.498
of template
PFM after
refinement by 0.796
knowledge o

4.3.2 Protein-DNA complexes with annotated PFMs

Next, 24 protein sequences in protein-DNA complex structures were used for validation.
For the PFMs built by employing the DNA sequence in the template (PFM;), they have
an average similarity of 0.642 over the 24 proteins. After incorporating the PFMs built
by knowledgebase, an average similarity of 0.711 is achieved. It shows again that the
knowledgebase we built do help refining the prediction of PFM. In Table 4-2, it can be
observed that most of all the cases have improvement after refinement. (PFM, denotes
PFMs built by employing the DNA sequences of templates, and PFM,. denotes PFMs

after refinement)
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Table 4-3 Difference before and after PFM refinement by the knowledgebase

PDB ID PFM, PFM,. Difference
1IMDMA 0.498 0.535 0.037
1GTWA 0.618 0.660 0.042
1IMNNA 0.650 0.689 0.039
3CO7C 0.706 0.904 0.198
2NNYA 0.507 0.639 0.132
3BPYA 0.723 0.853 0.130
1HLOA 0.662 0.751 0.089
1A0AA 0.876 0.862 -0.014
INKPA 0.879 0.957 0.078
2UZKA 0.671 0.835 0.164
3G73A 0.473 0.556 0.083
2P10A 0.678 0.659 -0.019
6PAXA 0.440 0.547 0.107
1YSAC 0.405 0.375 -0.03
1B72B 0.600 0.669 0.069
1IMHDA 0.509 0.695 0.186
1TSRB 0.850 0.960 0.110
1D66A 0.596 0.994 0.398
1ZMEC 0.454 0.611 0.157
1KB2A 0.544 0.587 0.043
1IMNMA 0.751 0.433 -0.318
1AKHA 0.962 0.962 0
2HAPC 0.657 0.622 -0.035
1CDWA 0.716 0.716 0
Average 0.642 0.716 0.074
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The contact model proposed in [5, 6] and the all-atom knowledgebase potential (called
‘all-atom model’ in the following context) proposed in [7] were implemented in order to
make comparison with the proposed method. Superimposed structures and native

structures of these 24 proteins were used for PFM prediction respectively.

The superimposed structures were constructed by applying the rotation matrix reported
by TM-align [14]. The original protein chains in the template were removed and the
transformed coordinates of the query structure was appended into the template structure
to generate a superimposed protein-DNA complex structure for structure-based PFM
prediction. The templates selected here are the same as the templates selected by the
proposed method. As a result, contact model has an average similarity of 0.692 and
all-atom model has an average similarity of 0.679. On the other hand, the native
structures of these 24 proteins were also used as input of the two methods for PFM
prediction. As a result, contact model has an average similarity of 0.716, and all-atom

model has an average similarity of 0.689.

In Table 4-4, similarities of different algorithms are included. Contact model and
all-atom model are the algorithms described in this section. Native and superimposed
denote using native structure and superimposed structure as query for structure-based

prediction, respectively.

Compared with structure-based methods with superimposed structures, the proposed
method achieves a better performance. For users have unbound query protein structures
(protein structures without DNA), they could have better predicted PFMs if they apply

the proposed method with the protein sequence of the unbound structure. As for
27



structure-based method with native structures, sequence-based method can achieve the
same (or better, compared with all-atom model) performance as it does. This is a great
accomplishment that the proposed, sequence-based method can do as well as

structure-based method.
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Table 4-4 Similarities of 24 proteins of different algorithms

Contact Model All-atom Model Contact Model All-atom Model Proposed
PDB ID
native native superimposed superimposed method

1IMDMA 0.724 0.623 0.728 0.654 0.535
1GTWA 0.735 0.691 0.708 0.661 0.660
1IMNNA 0.794 0.745 0.713 0.733 0.689
3CO7C 0.721 0.860 0.738 0.677 0.904
2NNYA 0.851 0.754 0.751 0.713 0.639
3BPYA 0.742 0.702 0.735 0.821 0.853
1HLOA 0.854 0.716 0.835 0.737 0.751
1A0AA 0.538 0.974 0.490 0.705 0.862
INKPA 0.488 0.618 0.525 0.701 0.957
2UZKA 0.809 0.638 0.738 0.725 0.835
3G73A 0.626 0.620 0.649 0.552 0.556
2PI0A 0.651 0.678 0.616 0.621 0.659
6PAXA 0.763 0.677 0.619 0.685 0.547
1YSAC 0.545 0.643 0.589 0.467 0.375
1B72B 0.723 0.806 0.597 0.700 0.669
1MHDA 0.829 0.659 0.697 0.659 0.695
1TSRB 0.681 0.592 0.733 0.616 0.960
1D66A 0.838 0.817 0.767 0.756 0.994
1ZMEC 0.759 0.647 0.752 0.676 0.611
1KB2A 0.737 0.730 0.686 0.682 0.587
IMNMA 0.632 0.603 0.550 0.734 0.433
1AKHA 0.709 0.813 0.765 0.749 0.962
2HAPC 0.730 0.588 0.830 0.621 0.622
1CDWA 0.720 0.644 0.808 0.625 0.716
Average 0.716 0.689 0.693 0.680 0.711
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4.4  Evaluating SABINE

Sequences of these 24 proteins were also used as queries for SABINE [8]. When using
default parameter, there is no prediction performed by SABINE. That is, SABINE
cannot find a PFM with similarity higher than default threshold (0.95) from its training
data. The similarity threshold was thus set to 0, forcing SABINE report as many results
as possible, but SABINE still only report 21 results under this parameter. It appears that

there are queries that SABINE cannot perform a prediction.

SABINE achieves an average similarity of 0.794 for the 21 queries, and the proposed
method in this study has an average similarity of 0.710. However, after scanning the
public parts of SABINE’s training data set, 18 of 21 queries’ annotated PFMs have
similarity > 0.8 with SABINE’s training data set. It is quite strict for us under this
circumstance because SABINE already knows the annotated PFMs of queries. As for
the rest four queries, SABINE has an average similarity of 0.704, and the proposed
method has an average of 0.697. Given the query that is not contained in the training set

of SABINE, the proposed method can do as well as SABINE can.

4.5 Discussion

This section discusses several interesting points observed in this study and suggests

different parameters and methods to achieve a better performance for future studies.

4.5.1 Differences between DNA sequences in protein-DNA complex

structures and their annotated PFMs

In the process of this study, it is observed that some DNA sequences in protein-DNA
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complex structures have low similarities with their annotated PFMs. DNA sequences
in the protein-DNA complex structures were transferred into PFMs that contains
probabilities of 0 and 1, and these PFMs were used to calculate the similarity between
them and annotated PFMs of proteins in the structure. It turns out that only 4 of the 24
protein chains have similarity > 0.8, and 12 of them have similarity > 0.7 (). This is bad
for the proposed method, which predicts target sequences by the DNA sequences in
protein-DNA complex structures. Somehow it appears some protein-DNA complex
structures and their annotated PFMs give different information to us. Figuring out the

reason why this is happening might help improving the performance of the proposed

method.
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Figure 4-2 Distribution of similarities between DNA sequences and annotated PFMs
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Among these 12 proteins chains which have similarity > 0.7, the proposed method
achieved an average similarity of 0.75. Six of them have higher similarity than their
own DNA sequences have. This reveals that given cases that their DNA sequence in the
protein-DNA complex structures and annotated PFMs give similar information, the
proposed method can predict better.

Table 4-5 Similarities of 12 proteins with similarity > 0.7

Similarity of DNA sequence in the structure and  Similarity of prediction by the proposed method
QUERY
annotated PFM and annotated PFM

1IMNNA 0.703 0.688
3CO7C* 0.748 0.904
3BPYA* 0.754 0.852
1HLOA 0.767 0.750
1A0AA 0.876 0.861
INKPA* 0.879 0.956
2UZKA* 0.832 0.971
1YSAC 0.794 0.375

1B72B 0.722 0.669
IMNMA 0.750 0.432
1AKHA* 0.962 0.962
1CDWA* 0.715 0.715

*: prediction has higher similarity than query’s own DNA sequence

45.2 The effect of different contact distance cut-off

While building the knowledgebase and calculating the PFM by the knowledgebase,
different contact distance cut-offs were applied in order to build a better knowledgebase.
45, 6, and 7.5 A were applied as the distance cut-offs. As a result, using 4.5 A as
distance cut-off achieves the best average similarity (Table 4-6), so finally 4.5 A is used.

It appears that only atoms close enough to DNA molecules can provide correct
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information of protein-DNA interaction.

Table 4-7 Average similarity under different distance cut-off

Distance cut-off 45 6 7.5

Average Similarity 0.711 0.670 0.641

4.5.3 How to select a template

While selecting a template for a query protein sequence, it can be selected by e-value or
sequence identity between query and template. As a result, using e-value can select a
better template and thus have better performance (0.711 vs. 0.660). This might result

from many evolutionary related proteins share low sequence homology.

4.5.4  Similar protein sequences bind similar DNA sequences

The basic idea of the proposed method is that, similar protein sequences bind similar
DNA sequences, so the DNA sequences in templates are used for inferring target
sequences of proteins. The sequence similarities and PFM similarities between 119
protein chains that have an annotated PFM were calculated. The result is showed as
Figure 4-3, and it appears that the protein sequences with high similarity usually have

high similarity between their annotated PFMs.
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Figure 4-4 Correlation between protein sequence similarities and PFM similarities

4.5.5 Using the number of contact atoms of contact residues

It is expected that the contact residues with more contact atoms are more important. In
this regard, this information, the number of contact atoms in a residue is used when
building PFMs. There are two ways to exploit this information. One is assigning
weights proportional to the number of contact atoms to the contact residues when
calculating the scoring matrix M. Another is defining § when merging the PFM built
by DNA sequence in the template and the PFM built by the knowledgebase.

While giving weights by the number of contact atoms of contact residues, the formula in

3.3.2 for calculating the scoring matrix M would become:

, _ ZaEFS(ar n) ' (da * Ca)_w
M(l, n) B Zae[‘(da * Ca)_w

(i=1~Lne{AT, C, G}

where ¢, is the number of contact atoms of contact residue a, and the other variables
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are defined as described in section 3.3.2.

When applying the number of contact atoms of contact residues to merging the PFM
built by DNA sequence in the template and PFM built by the knowledgebase together,
the variable & in the formula described in section 3.3.3 is redefined.

PFM,.(i,n) = PFM,(i,n) - (1 —8) + PFM,(i,n) -8 (i =1~L,n € {A,T,C,G)})
where § is redefined as the number of contact atoms which is substituted over the total

number of contact atoms of position i.

Although this is a nice idea, however the two methods described above did not improve
the performance, either using them respectively or using them together. The average
similarity is still 0.71 under the validation set of protein-DNA complex structures when
using the methods described above. This might be caused by the fact that most of the
contact residues of the template were not substituted, so the information of DNA
sequence is usually kept. Thus slightly adjusting how to use the knowledgebase cannot

provide significant improvement.

4.5.6 The frequency of amino acids and nucleotides

While building the knowledgebase which describes the preferences between amino
acids of proteins and bases of nucleotides, the frequency of them was applied to
calculate the expected contact frequency. Finally the frequencies of amino acids were
obtained from Swiss-Prot, and the frequencies of nucleotides were set to 0.25. However,
these frequencies were obtained by the contact counts in the 260 non-redundant
protein-DNA complex structures at first. The frequency of a type of amino acid or

nucleotide amounts to its frequency obtained by the contact counts. The scores between
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amino acids and nucleotides are obtained by the same formula described in section 3.2.

The contact counts and scores under this scheme are shown in Figure 4-6 and Figure 4-5
respectively. It is observed that Arginine has lots more contacts with nucleotides than
other amino acids. However, under this scoring scheme, Arginine has lower scores. This
is caused by the fact that Arginine has lots of contacts so that its expected contact count
becomes very large, so Arginine gets lower scores. As a result, this scoring scheme is

discarded because it is believed that amino acids with more contacts should have higher

score.
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Figure 4-6 Contact counts between amino acids and nucleotides
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Figure 4-7 Scores between amino acids and nucleotides under the older scheme
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Chapter 5 Conclusions

A novel method for predicting targets sequences of DNA-binding proteins based on
primary structure is proposed in this thesis. Given a query protein primary structure, the
proposed method predicts its target sequences based on a knowledgebase that describes
the preference between amino acids of proteins and nuclectides of DNA sequences in

protein-DNA complex structures.

In the process of this study, different methods and parameters were implemented to
achieve a better performance. Different distance cut-offs were implemented to build the
knowledgebase of preference between amino acids and nucleotides. As a result, using
45A as distance cut-off achieves the best performance, telling us that only residues
close enough to DNA molecules can provide useful information. On the other hand,
number of atoms of a contact residue was considered as an important issue. However, it
does not have much influence on the performance of the proposed method, because
most of the contact residues of the template were not substituted. Because contact
residues are seldom substituted, it becomes important to select a proper template when
the proposed method is applied. Template can be selected by sequence identity or
e-value between two protein sequences, and it turns out that using e-value to select a

template of query can achieve a better performance.

As a result, the proposed method is shown to perform well when compared to the
structure-based methods [5-7]. However, users need a structure of query protein to

predict target sequences by structure-based method. This thesis provides an easier way
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for users want to know target sequences of proteins. The proposed method was also
compared with SABINE [8], which predicts target sequences of protein by support
vector regression (SVR). Although the proposed method cannot predict as well as
SABINE does for the validation set, however, there are protein sequences SABINE
cannot predict but the proposed method can. This thesis provides another method for

when SABINE cannot predict a given protein sequence.
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