

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

複音音樂的樂器編制分析及其在音樂相似度估計上的應用

Instrumentation Analysis of Polyphonic Music and

Its Application to Music Similarity Measure

 許年德

Nien-Teh Hsu

指導教授：貝蘇章 博士

Advisor: Soo-Chang Pei, Ph.D.

中華民國 98 年 6 月

June, 2009

誌謝誌謝誌謝誌謝

 能完成這篇論文，首先要特別感謝我的指導教授貝蘇章老師，老師在研究上

的熱忱以及經驗一直是我敬佩以及學習的榜樣。並且感謝老師當初願意指導我進

行音樂訊號處理相關的研究，讓我達成了一直以來想要嘗試這塊領域的目標。同

時也要感謝我的父母親，一路栽培我到進入研究所，使我能夠衣食無缺，放心地

專注在課業上，如此的成果理當歸功於你們。

 謝謝實驗室一起奮鬥的夥伴們：家宏、仕昕、佩君和 Joost。這兩年來除了在

課業上的彼此討論之外，還有發生在實驗室裡的大小有趣事情，現在回想起來也

都還歷歷在目。感謝大家一路走來的包容和支持。在此要特別感謝仕昕，在我遭

遇挫折或是需要幫忙的時候，你總是義不容辭的伸出援手和表達關心，和你在課

業以外的興趣交流也讓我的研究生活不再枯燥乏味。

 感謝實驗室的學長姐們，你們認真嚴謹的研究態度激勵了我，讓我時常提醒

自己要好好利用身處在學術界的這兩年時間。感謝實驗室的學妹們：二馬、嘟嘟

和鳥蛋，你們為整個實驗室帶來了活力和歡笑，謝謝你們一直以來的支持和關心。

 最後要感謝正在閱讀這份論文的你，謝謝你從千萬本中論文拿起此篇，這篇

論文雖然經過校閱，但仍多有疏漏，請多多包涵與指教。

中文摘要中文摘要中文摘要中文摘要

 在過去的數十年裡，由於網際網路的蓬勃發展，各式各樣多媒體檔案的數量

不斷增加。在這之中，不論是在獲取或是發佈數位音樂檔案都變得比過去容易很

多。也由於此數量規模的不斷爆增，我們需要一個新的聆聽音樂和發掘新音樂的

方法。

 在這篇論文的一開始，我們會介紹一個簡單的音樂相似度估計系統，並且模

擬它的效能。根據實驗結果顯示，使用較低階的特徵向量來描述曲子的特性，並

不足以讓我們分離出不同音樂內容本身對相似度造成的影響，例如和絃、曲風、

樂器編制和旋律。因此，這篇論文的主要目標在於將原本的低階特徵替換為與音

樂內容有關的中階特徵。於此，我們將特別著重於樂器編制的自動化分析。音樂

訊號音色的時頻分析和單一樂器的分類問題都將在此篇論文中討論，以做為基本

的工具。之後我們將延伸此想法到處理更複雜的複音音樂，並且截取其隨時間變

化的樂器編制資訊。藉由在相似度估計系統上使用此資訊，我們發現計算出的相

似樂曲結果中，將可以特別針對樂器和音色，而非其他音樂內容。如此將可以取

代原本的相似度估計系統，達到實現多模式音樂相似度估計的目標。

關鍵字：基於內容的音樂資訊擷取、樂器分類、音樂相似度估計、音樂訊號處理

Abstract

During the past few decades, the world has ushered in a new era, with booming

Internet technology and immense multimedia content distribution. The acquisition

and circulation of digital music file become much easier than ever. Due to this

rapidly rising of music quantity, a brand new way of discovering and recommending

music is thus highly expected.

In the beginning of this study, a conventional music similarity measure system

based on the signal analysis methods is implemented and evaluated. According

to the experimental results, it shows that the low-level features from signal analysis

techniques are not strong enough to fulfill the discrimination between various musical

content, such as the chord progression, genre, instrumentation, and melody. There-

fore, the aim of this study is to incorporate the low-level feature with the mid-level

feature, in order to utilize the musical content. We focus on the way to extract the

instrumentation information leaved by the composers. The time-frequency analysis

of musical instrumental signals and the classification problem of various instruments

in the monophonic case are studied. After that, we extend the idea to deal with

the polyphonic music and analyze its time-varying instrumentation information. By

incorporating this information back to the original similarity measure system, the

calculated similar songs can resemble to each other specifically in the sense of the

instrumentation.

Index Term — Content-based music information retrieval, Instrument

classification, Music similarity measure, Audio signal processing

Contents

1 Introduction 7

1.1 Background . 7

1.2 Primary Achievements of This Study 9

1.3 Organization . 9

2 A Music Similarity Measure System 11

2.1 Introduction and Related Work . 11

2.2 Feature Extraction . 14

2.2.1 Mel-Frequency Cepstral Coefficients 15

2.2.2 Timbral Texture Feature . 17

2.2.3 MPEG-7 Audio Descriptors 19

2.3 Cluster Modeling . 20

2.3.1 k-means Clustering . 21

2.3.2 Gaussian Mixture Models . 23

2.4 Distance Measure . 25

2.4.1 Likelihood Function . 25

2.4.2 Kullback-Leibler Divergence 26

2.4.3 Earth Mover’s Distance . 26

2.4.4 Monte-Carlo Sampling . 27

2.5 Simulation Results . 28

2.5.1 Music Similarity Measure Toolbox 29

2.5.2 Experiment Setup . 29

2.5.3 Results . 30

2.6 Discussion . 35

3 Time-Frequency Analysis of Music Instrumental Signal 38

3.1 Introduction and Related Work . 38

3.2 Characteristics of Musical Instrumental Signal 40

1

3.2.1 Pitch . 41

3.2.2 Harmonics . 42

3.3 Constant Q Transform . 43

3.3.1 Motivation . 43

3.3.2 Implementation . 44

3.3.3 An Efficient Algorithm . 46

3.4 Time-Frequency Analysis Using the Constant Q Transform 48

3.5 Simulation Results . 50

3.5.1 Music Database . 50

3.5.2 Results . 51

3.6 Discussion . 52

4 Instrument Classification of Monophonic Music 57

4.1 Introduction and Related Work . 57

4.2 History and Concept of Musical Instrument Classification 59

4.3 Description of the Proposed System 61

4.3.1 Feature Normalization . 62

4.3.2 Support Vector Machine . 63

4.3.3 k-Fold Cross Validation . 65

4.4 Simulation Results . 66

4.4.1 Data Preprocessing . 66

4.4.2 Instrument Family Classification Results 68

4.4.3 Individual Instrument Classification Results 68

4.5 Discussion . 69

5 Instrumentation Analysis of Polyphonic Music 73

5.1 Introduction and Related Work . 73

5.2 Motivation and a Small Experiment 75

5.3 Description of the Proposed System 79

5.3.1 Feature Extraction . 79

5.3.2 Beat Tracking and Feature Integration 81

5.3.3 Fuzzy Clustering . 82

5.3.4 Instrument Identification . 83

5.4 Simulation Results . 86

5.4.1 Experiment Setup . 86

5.4.2 Instrument Identification Result 86

5.4.3 Instrumentation Analysis Result 87

5.5 Discussion . 89

2

6 An Instrumentation-Based Music Similarity Measure System 90

6.1 Introduction and Related Work . 90

6.2 Instrumentation Analysis System . 92

6.3 Proposed Similarity Measure System 92

6.3.1 Normalized Cross-Correlation 94

6.3.2 Kullback-Leibler Divergence 94

6.3.3 Entropy Difference . 95

6.3.4 MFCC Distance . 95

6.3.5 Weighted Distance Optimization 95

6.4 Simulation Results . 96

6.5 Discussion . 99

7 Conclusions and Future Work 101

7.1 Conclusions . 101

7.2 Future Work . 103

References 104

3

List of Figures

2.1 A basic framework of the music similarity measure system. Some of

the possible approaches in each stage are also listed. 13

2.2 Block diagram for computing the MFCCs. 15

2.3 Triangular filter bank used in the computation of the MFCCs. The

top plot shows the original triangular filter bank. The bottom plot is

the same but with normalization. 17

2.4 A 2-D demonstration of the k-means algorithm. 21

2.5 A 1-D demonstration of GMMs. The top plot shows the data his-

togram. The bottom plot shows the GMM calculation results with

three mixtures. 24

2.6 Distance matrix of the similarity measure experiment. Black repre-

sents zero distance while white represents the largest distance. 31

2.7 Distance vector of the 15th song, “Bill Evans: Waltz for Debby”. . . . 32

2.8 Distance vector of the 26th song, “Chopin: Piano Sonata No.3 mov.4”. 33

2.9 Evaluation of the Monte-Carlo sampling method. Top and bottom

part represent the efficiency and performance analysis, respectively. . 34

3.1 Spectrum of a C4 piano note. 42

3.2 Magnitude of the spectral kernel in the CQT. The CQT here is with

sampling frequency 44100 Hz and quarter-tone resolution. 46

3.3 Computation time of the TF-CQT in terms of different k. The input

signal is a 2.2-minute wave file, with fs = 44100 Hz. 49

3.4 TF-CQT result of the C4 note played on piano. B = Bmin. 53

3.5 STFT result of the C4 note played on piano. A 4096-points Hamming

window with half overlapping is used. 53

3.6 TF-CQT result of the C4 note played on viola. B = Bmin. 54

3.7 STFT result of the C4 note played on flute. A 4096-points Hamming

window with half overlapping is used. 54

3.8 TF-CQT result of the C4 note played on flute. B = Bmin. 55

4

3.9 STFT result of the C4 note played on flute. A 4096-points Hamming

window with half overlapping is used. 55

3.10 TF-CQT result of the C4 and E4 note played on three instruments,

only three major bins (FF, 1st and 2nd partial) are considered. The

x-axis represents the frame, while y-axis represents magnitude. 56

4.1 Taxonomy of the instrument classification opted in this work. 61

4.2 Block diagram of the instrument classification system. 62

4.3 Illustration of the SVM. Black and white points are corresponding to

different data set. 64

4.4 Example of segmenting the instrumental signal stream into individual

notes. 67

5.1 Experimental results of applying the MPEG-7 Audio Descriptors to

polyphonic music. 77

5.2 Experimental results of applying the MPEG-7 Audio Descriptors to

polyphonic music. 79

5.3 Block diagram of the proposed instrumentation analysis system. . . . 80

5.4 A demonstration of the Beatroot graphical user interface. 81

5.5 Instrument identification illustration: Selection of integrated vectors

with their membership function exceeding the threshold. 84

5.6 Instrument identification illustration: Calculating the instrument la-

beling histogram of selected integrated vectors using pre-trained SVM

models for each cluster. 84

5.7 Simulation results of “Beethoven: Violin Sonata Spring mov.4”. Only

the 3.5 minutes in beginning is selected. 88

5.8 Simulation results of “Brahms: Piano Trio No.4 mov.3”. Only the

3.5 minutes in beginning is selected. 88

6.1 Block diagram of the proposed instrumentation-based music similar-

ity measure system. 93

6.2 A query-and-hit example. The top plot is instrumentation estimation

of the query song, Mozart violin sonata KV. 380, mov. 3. The bottom

plot shows the estimation of the hit song, Mozart violin sonata KV.

296, mov. 1. In this example c = [0.73, 0.18, 0.04, 0.05]. 97

6.3 Evaluation result of the similarity measure system. It displays the

accuracy of each subset inside the database using different feature

schemes. Overall, by incorporating the proposed features the accu-

racy can be increased by nearly 10%. 98

5

List of Tables

2.1 Summary of the parts included in the MPEG-7 standards. 19

2.2 Detailed algorithm of the k-means clustering. 22

2.3 List of the songs using in similarity measure experiments. 37

3.1 Illustration of the pitch and music notation. 41

3.2 Comparison of variables in calculation of the DFT and the CQT. . . 44

4.1 List of the musical instrumental samples from Electronic Music Studio

used in the experiment. 70

4.2 Confusion matrix of the instrument family classification results. . . . 71

4.3 Confusion matrix of the individual instrument classification results

(left-half part). 71

4.4 Confusion matrix of the individual instrument classification results

(right-half part). 72

5.1 Corresponding velocity (volume) of piano and lead instruments in

each song. 78

5.2 Detail of the feature vector used in this system. 80

5.3 Recognition rates for different instrument combinations in the West-

ern classical music. Note that string is regarded as a combination of

violin and cello here. 86

5.4 Number of training instrument models and average recognition rate

comparing to other works. 87

6.1 Detail information of each subset inside the testing database. 96

6

Chapter 1

Introduction

1.1 Background

Since that music is readily accessible in the compressed digital form [1], recently

people were used to store and listen to the music files in their electronic devices,

such as the personal computers and MP3 players. This trend leads to a significant

increase in the personal music collection size: it can easily exceed the practical limit

on the time we have to listen to them. For instance, one thousand music tracks inside

a personal music device contain a total duration of approximately three days of

nonstop continuous audio [2]. The compression technique and the rising of Internet

technology also make the distribution of new music recordings become much easier.

The sales volume of traditional CD stores has rapidly deteriorated due to the fact

that online music stores gradually seize the market [3].

Conventional ways of listening and discovering music, such as listening to the

radio broadcasting and buying the CDs from the record stores, are no longer suf-

ficient for the immense music pieces in our life. On the contrary, a personalized

7

and automatic recommendation system is thus required. So far until now, the most

common method of accessing the music content is through the textual metadata. A

well-known example of the online metadata-driven music recommendation service is

Pandora.com1. The site is originally created by the Music Genome Project [4]. It

maintains a large database which contains a set of human-entered metadata, such

like the artist, genre, and recording year. Users enter a song or artist that they

enjoy, and the service can automatically respond to play selections that are musi-

cally similar in the sense of the metadata. The other example of the commercial

systems is Last.fm2, a music community website, which has similar functionalities

as Pandora.com. The drawback of these systems, however, is they require great

time for preparing the database that contains all information needed. For instance,

a company may need to hire a team to enter these information before starting the

recommendation process. When the size of the database become large, the cost also

grows. Hence it cannot be generalized to large-scale music databases.

To address this problem, we introduce the technique of automatic music sim-

ilarity measure, as part of content-based music information retrieval task, aiming

at using a computer-based method to compute the similarity between music tracks

by means of the audio signal processing methods. To date, several schemes have

been proposed by researchers. The methods can be roughly characterized to three

main stages: the feature extraction step, cluster modeling step, and distance cal-

culation step. To our best knowledge, most of the existing systems applied the

low-level feature set, such like the Mel-frequency cepstral coefficients, in their first

stage. Nevertheless, the idea of using these low-level features is usually taken from

1http://www.pandora.com
2http://www.last.fm

8

the speech or audio processing applications. Consequently, it cannot make use of

the musical content. The main purpose of this study is to propose a novel similarity

measure system with the low-level feature replaced by the content-related mid-level

features. This purpose is identified as being of importance to implement a real-world

music recommendation system that can automatically generate a playlist in every

different aspects [5] (i.e., toward the multi-modal music recommendation system).

1.2 Primary Achievements of This Study

There are two main notable achievements in this study. The first one is to design an

efficient instrumentation analysis algorithm for dealing with the polyphonic music.

In contrast with the existing algorithms, it can give an additional time-varying

information about the dominance of each instrument. This part of the work is

illustrated in Chapter 5 and published in [6]. The second one is to further apply

this instrumentation information as a mid-level feature to design a novel music

similarity measure system. This part of the work is introduced in Chapter 6 and

also published in [7].

1.3 Organization

The rest of this study is structured as follows. In Chapter 2 we discuss several basic

ideas inside the music similarity measure systems. A simple and efficient system

with low-level feature extraction is implemented and evaluated. The shortness and

insufficient parts of the method will also be emphasized and summarized. In Chapter

3, we focus on how to use the constant Q transform to analyze an instrumental signal

9

by its time-frequency distribution. In Chapter 4, we deal with the simplest task in

the instrument recognition task – the isolated notes of the monophonic music pieces.

Different approaches are compared and ranked in terms of the recognition rates to

the benchmark database. Additionally, in Chapter 5, we move on to tackle the

recognition problem in the polyphonic case. In contrast to previous studies, the aim

of our work is trying to extract the time-varying instrumentation information that

leaved by composers, in the musicology point of view. A beat-synchronous feature

integration process in combination with the fuzzy clustering technique is applied to

solve this problem. Then in Chapter 6, we will reconstruct a new music similarity

measure system by incorporating the instrumentation information. That is to say,

combine the low-level feature with the mid-level feature in the framework. Finally,

conclusions and future work of this thesis work are drawn in Chapter 7.

10

Chapter 2

A Music Similarity Measure

System

2.1 Introduction and Related Work

Music similarity measure has become a big issue among the area of audio signal

processing. At the present there is more and more music files stored on personal

computers, in music libraries, or even on Internet. In order to search and choose the

desired music by user in an efficient way, some features need to be extracted from

the music files for users to make their own choices. Although traditional approaches

that dealing with the embedded metadata (e.g., artist, performer, title and genre)

were presented, these human-generated tags suffer from their limited applicability

in many music-related applications [8].

Moreover, by the help of quick-growing computation speed of digital signal pro-

cessing, it becomes much easier for people to analyze and synthesize audio files by

the computer. Hence automatic music information retrieval is considered as an ef-

11

ficient and essential technique nowadays comparing to the traditional approaches

[9]. The purpose of designing a music similarity measure system is to implement

a framework, which allows to compute the distance of each song in pair. Here the

term distance is regarded as the perceptual dissimilarity between two music pieces.

The similarity could lie in many different musical aspects, such as same genre, same

artist, or same album. Therefore, the evaluation process of similarity measure sys-

tems could also differ and depends on the purpose of the application.

So far, several systems have been introduced and implemented by researchers.

Logan and Saloman presented a method to compare songs based on the traditional

signal analysis technique [10]. In their system, each song is identified as a unique

signature, which is based on the k-means clustering algorithm of the spectral feature.

Then the signatures are compared by the earth mover’s distance [11]. Pampalk et

al. made some modification for reducing the computation time, and also some

other improvements [12], [13]. These works also participated in the International

Society for Music Information Retrieval (ISMIR) contest. The results are evaluated

in terms of the genre classification and the artist identification tasks. Pampalk et al.

proposed a method to efficiently access and explore the music pieces by similar signal

processing method [14], [15]. The output result is called Island of Music. It uses a

2-D plane to display the similarities between songs on several isolated regions. In

addition, Aucouturier and Pachet described the usage of music similarity measure

in [16]. The framework of their system is similar to the previous ones, but with

different clustering and distance measure methods selection. They evaluated the

result by both objective and subjective criteria. Aucouturier et al. also made a

comprehensive study on the parameter selection problems of each stage [17], [18].

In their work, they especially emphasized on the calculation of the timbre similarity.

12

Figure 2.1: A basic framework of the music similarity measure system. Some of the

possible approaches in each stage are also listed.

While music similarity measure technique gains more interest from researchers,

at the same time several development toolkits are published. The first one is Marsyas

[19], an open source software framework for audio processing with specifically em-

phasis on the music information retrieval applications. MA Toolbox [20] and DTU

Toolbox [21] also play an important role. The major difference is that they are

developed under Matlab environment. These applications implement the calcula-

tion process discussed before and with slightly different feature selections. However,

one can easily find that their performance is highly dependent on the situation of

execution.

Among these research works, most of the systems can be roughly characterized

to a three-stage pattern recognition framework. The corresponding three stages are

as follows: the feature extraction step, the cluster modeling step, and the distance

measure step. Figure 2.1 shows a basic framework of similarity measure system and

some of their possible approaches. We will introduce the detail of each stage in the

13

following sections.

2.2 Feature Extraction

The aim of extracting the feature vector from a music piece is to obtain a meaningful

and uniform vector to represent the music itself in the desired manner. There are

several reasons that we cannot compare the songs directly by their amplitude. First

of all, in psychoacoustics, human usually “listens” in the frequency domain instead

of time domain. Secondly, the similarity in perception usually lies within the high-

level characteristics, like genre and tempo. Last but not least, if we do so, a simple

time-shift applying to the music piece will lead to a completely different calculation

result. Therefore, a generalized feature extraction algorithm is required for further

processing.

Since the development of audio signal processing is much later than that of

speech signal processing area, many ideas come from the field of speech processing.

One of the most representative instances is the Mel-frequency cepstral coefficients

(MFCCs). In MFCCs, the frequency bands are positioned logarithmically, which

approximates the response of the human auditory system. It performs better than

the linear-spaced frequency bands, such like the discrete Fourier transform (DFT)

and the discrete cosine transform (DCT). In addition, there are still many other

features that are widely used in this area. Spectral centroid, spectral roll-off, time

domain zero-crossing rate together form a solid combination of the feature vector.

Followings are the detail description of each feature set.

14

Figure 2.2: Block diagram for computing the MFCCs.

2.2.1 Mel-Frequency Cepstral Coefficients

The Mel-frequency cepstral coefficients (MFCCs) is a representation defined as the

real cepstrum of a windowed short-time signal derived from the fast Fourier trans-

form (FFT) of that signal [22]. It is considered as the most widely-used spectral

feature in audio and speech signal processing applications.

Figure 2.2 shows the block diagram for computing the MFCCs. First of all, the

audio signal is sent to a high-pass filter:

sout[n] = sin[n]− a · sin[n− 1], (2.1)

where sin[n] and sout[n] denote the input and output signal, respectively. The value

of a is usually selected between 0.9 and 1. The goal of the pre-emphasis process is

to compensate the high-frequency component that was suppressed during the sound

production mechanism. This phenomenon is especially obvious for the human vocal

tract model.

Next, the input audio signal is then blocked into frames of approximately 20 to

30 ms with overlap of 1/3 to 1/2 of the frame size. This is due to the non-stationary

property of the audio signal. Thus we need to segment the signal to considerably

small pieces to make it close to stationary. Usually the frame size is set to equal

to power of two in order to facilitate the use of the FFT algorithm. If it is not the

15

case, the zero-padding process needs to be applied.

After that, we multiply each frame with a Hamming window in order to improve

the continuity of the beginning and the ending points inside the frame. Let s[n],

n = 0, ..., N−1 denote the signal in a frame, then the signal after applying Hamming

windowing is s[n] · w[n], where w[n] is the Hamming window defined by

w[n, α] = (1− α)− α cos[
2πn

N − 1
] (2.2)

In the fourth step, we perform the FFT to obtain the magnitude frequency

response of each frame. Spectral analysis shows that different timbres in audio

signals correspond to different energy distribution over the frequency bands. Then,

the most crucial step should be the triangular band-pass filtering. We multiply the

FFT result by a set of twenty triangular band-pass filters to get the log energy of

each filter. The formula of the filter bank is

Bm(k) =

0, if k < fm−1

k−fm−1

fm−fm−1
, if fm−1 ≤ k ≤ fm

fm+1−k
fm+1−fm

, if fm ≤ k ≤ fm+1

0, if fm+1 < k

(2.3)

This process is designed to imitate the functionality of the human auditory sys-

tem. Figure 2.3 shows a visualization of the triangular filter bank. This figure is

plotted using the Audio Processing Toolbox developed by Jang [23].

In the final step, we apply the discrete cosine transform (DCT) on the twenty log

energies Ek, k = 1, ..., 20 obtained from the triangular band-pass filtering to derive

the L Mel-scale cepstral coefficients. Here we use the type-2 DCT as follows:

Cm =
N−1∑

k=0

Ek cos[
π

N
(k +

1

2
)m] (2.4)

16

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

p
li
tu

d
e

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

Frequency (Hz)

A
m

p
li
tu

d
e

Figure 2.3: Triangular filter bank used in the computation of the MFCCs. The top

plot shows the original triangular filter bank. The bottom plot is the same but with

normalization.

Since we have already performed the FFT algorithm, the DCT transforms the fre-

quency domain into a time-like domain called the quefrency domain. The obtained

features are similar to the cepstrum. The purpose is to further reduce the feature

size, and in practice we only consider the 1st to 13th vectors of the DCT result.

2.2.2 Timbral Texture Feature

Except for the MFCCs, there are also several other timbre features suggested by

researchers. Here we introduce some of the spectral features suggested in [9]. These

features are based on the short-time Fourier transform (STFT) computation and

are calculated for every single frame as well. Followings are the description of these

features:

1. Spectral Centroid:

The spectral centroid of a frame is defined by the gravity center of the mag-

17

nitude spectrum of the STFT,

Gt =

∑N
n=1 Mt[n]× n∑N

n=1 Mt[n]
(2.5)

It represents a rough sketch of the spectral shape. The frame with higher

spectral centroid usually leads to higher frequency combination.

2. Spectral Roll-off :

The spectral roll-off is defined as the frequency Rt below which 85% of the

magnitude distribution is concentrated,

Rt∑
n=1

Mt[n] = 0.85×
N∑

n=1

Mt[n] (2.6)

It can be regarded as another rough representation of the spectral shape.

3. Spectral Flux:

The spectral flux is defined as the squared difference between the normalized

magnitude of successive spectral distributions,

Ft =
N∑

n=1

(Nt[n]−Nt−1[n])2 (2.7)

The spectral flux is a measure of the total amount of the spectral change.

4. Time-Domain Zero Crossing Rate:

The time-domain zero crossing rate is defined as

Zt =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (2.8)

It provides a measure of the noisiness of the signal, and could also be used in

the separation process of the audio and speech signal.

18

Table 2.1: Summary of the parts included in the MPEG-7 standards.

MPEG-7 Systems Tools for efficient transport and storage

MPEG-7 DDL For defining the syntax

MPEG-7 Visual Dealing with visual descriptions

MPEG-7 Audio Dealing with audio descriptions

MPEG-7 Multimedia Description For generic features and multimedia descriptions

MPEG-7 Reference Software Software implementation of relevant parts

MPEG-7 Conformance Testing For testing the conformance of implementations

MPEG-7 Extraction and usage Informative material about the usage

MPEG-7 Profiles and levels Provides guidelines and standard profiles

MPEG-7 Schema Definition Specifies the schema using the DDL

2.2.3 MPEG-7 Audio Descriptors

MPEG-7 is an ISO/IEC standard developed by the Moving Picture Experts Group

(MPEG). This committee has also developed several multimedia standards: MPEG-

1, MPEG-2 and MPEG-4, which are widely used in the compression and transmis-

sion applications. MPEG-7, formally named as Multimedia Content Description

Interface, is a standard aiming at describing the the content data of multimedia.

It supports the exposition of the information meaning, which can be accessed by a

device or a computer code. MPEG-7 does not aim at any particular application;

instead, the elements inside MPEG-7 standards support a wide range of applications

as possible [24], [25].

Table 2.1 lists a summary of the parts included in MPEG-7. Although the

standards contain rich material, in this work only the MPEG-7 Audio Descriptors

are used. These descriptors are going to be applied as the basic low-level features

for implementing the instrumentation analysis system (see Section 5.3.1 for more

information).

19

2.3 Cluster Modeling

After the feature extraction step is done, the modeling block usually receives a

sequence of feature vectors calculated on a frame-by-frame manner. The number of

frames for a music piece mainly depends on the duration. Exploiting redundancies

in the frame time vicinity inside a music piece is useful for further reduce the feature

size. By clustering the feature vectors, it can help us to derive a statistical model

of the music characteristics. There are several possible methods that can be chosen

from. The methods can be mainly divided into two classes: the static approach and

the dynamic approach.

Histogram is one of the simplest example of the static method. It mixes all the

time frames together, and statistically calculates the counts correspond to every

possible value. Vector quantization (VQ), Gaussian mixture models (GMMs), and

k-means algorithm also belong to this class. Notice that these approaches cannot

reveal the time property, since they disarrange the order of the time sequence. For

another, the hidden Markov models (HMMs) is considered as a well-known example

of the dynamic approach. It consists of several hidden states and uses the transition

probabilities to describe the characteristics of the feature vectors.

One should believe that in most cases the dynamic approach would outperform

the static approach, since the former one utilizes the time information. But in [26],

the authors argue that in the polyphonic situation, the above argument is not always

true. The reason is that the dynamic nature of the polyphonic timbre frames are

difficult to model correctly. Following is an introduction to two famous clustering

methods: the k-means clustering algorithm and the GMMs.

20

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x-axis

y
-a

x
is

Figure 2.4: A 2-D demonstration of the k-means algorithm.

2.3.1 k-means Clustering

The k-means clustering methods, as one of the simplest unsupervised learning algo-

rithms, was original proposed by MacQueen in 1967 [27]. The main idea is to derive

k centroids, as the representative of each cluster, to minimize total intra-cluster

variance. The squared-error objective function is

V =
k∑

i=1

∑
xj∈Si

(xj − µi)
2 (2.9)

where Si denotes the ith cluster set, i = 1, ..., k and µi is the centroid of all the

points inside Si. The algorithm is composed by two iterative phases. First of all,

the centroids should be placed in a scheming way because that different locations

will cause different results. The better choice is to place them as much as possible

far away from each other. The next step is to make each point belong to a given data

set and associate it to the nearest centroid. These two steps are repeated until there

is no further improvement. Table 2.2 lists the detailed algorithm of the k-means

21

Table 2.2: Detailed algorithm of the k-means clustering.

Step 1: Choose k points as initial centroids.

Step 2: Assign each data to the closest centroid.

Step 3: Recalculate the centroids according to the above assignment.

Step 4: Repeat 2 and 3 until the objective function is no longer improved.

clustering.

Figure 2.4 shows a 2-D executing result of the algorithm. The cross signs denote

the cluster centroids. The points belong to two clusters are marked as red and

blue to be clearly identified. In addition, there are several considerations in the

clustering algorithm. First, the way to initialize the centroids is not specified, but

it tends to make an influence on the clustering result. One popular approach is to

do the random selection, repeat several times to inspect the results and choose the

best one. Secondly, the result also depends on the selection of the distance metric.

In (2.9), we adopt the simplest one – the Euclidean distance in the calculation.

However, there are also other possible choices, such like the city block distance

and the cosine metric. For the last one, comparing to other hierarchical clustering

methods, choosing the proper value of k in the algorithm is a challenging task.

Consider our application in the music similarity measure task, if there is T1

feature vectors correspond to T1 frames that are extracted from a music file S1,

we then apply the clustering algorithm to reduce the data size to only k central

vectors. That is to say, for every song Si with variable frame size Ti inside the music

database, we unify theses vectors to k centroids in order to make a comparison of

them.

22

2.3.2 Gaussian Mixture Models

Unlike the non-parametric k-means algorithm, the Gaussian mixture models (GMMs)

can be regarded as a model-based clustering method. It assumes the data un-

der modeling is generated via a probability density function (PDF), which is the

weighted sum of a set of Gaussian PDFs. In practice, with a proper mixture num-

ber selection, one can use the GMMs to fit any kind of distributions. Moreover, by

using the expectation-and-maximization (EM) algorithm, we can identify the opti-

mal parameters for the GMMs in an iterative manner. The detailed algorithm of

EM can be found in [28].

A finite mixture model is a distribution of the form

p(x) =

g∑
j=1

πjp(x; µj,Σj) (2.10)

where g is the number of mixtures, πj represents the partial membership subjected

to
g∑

j=1

πj = 1 (2.11)

We use µj and Σj to denote the mean and covariance matrix of the jth mixture,

respectively. With a initial guess for the parameters of the mixture model, the partial

membership of each data point in the elemental distribution can be computed by

calculating the expectation values for the membership variables of each data point.

This is considered as the expectation step. The probability that xi belongs to mixture

j given the current estimates is

ωi,j =
πjp(xi; µj,Σj)

g∑
k=1

πkp(xi; µk,Σk)

(2.12)

23

−4 −3 −2 −1 0 1 2 3 4
0

200

400

600

800

Data values

C
o
u
n
t
s

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

Data values

P
r
o
b
.

g
1

g
2

g
3

g
i

w
i
g

i

Σ
i
 w

i
g

i

Figure 2.5: A 1-D demonstration of GMMs. The top plot shows the data histogram.

The bottom plot shows the GMM calculation results with three mixtures.

Consider the maximization step, we re-estimate µj and Σj by

µ̂j =

n∑
i=1

ωi,jxi

n∑
i=1

ωi,j

(2.13)

and

Σ̂j =

n∑
i=1

ωi,j(xi − µ̂j)(xi − µ̂j)
T

n∑
i=1

ωi,j

(2.14)

Figure 2.5 shows a 1-D demonstration of the GMMs calculation. This demo is

plotted using the DCPR Toolbox developed by Jang [29]. In this example three

mixtures are applied to approximate the distribution. Comparing to the k-means

algorithm, not only the means (related to the centroid in k-means) but also the

covariance matrix is computed and stored in the GMMs. Therefore, for a proper

choice of mixture number g, one can expect the GMMs should outperform the k-

means algorithm for obtaining a precise statistical information.

24

2.4 Distance Measure

After receiving a set of the statistical models, say the centroids from the k-means

or the means and covariance matrices from the GMMs, the remaining question is as

follows: how can we estimate the pairwise distance between these model?

In statistics, calculating the likelihood function of two models should be one of

the most straight forward approaches. Nevertheless, there are still many other ap-

proaches have been proposed as well. For example, the Kullback-Leibler divergence

(KLD) aims at measuring the difference between two PDFs, and it is also corre-

lated to other quantities in information theory [30], [31]. Robner suggested another

dissimilarity measure called the earth mover’s distance (EMD) that is originally de-

signed for the image retrieval works [11]. It is also possible to just simply sample

from one statistical model and compute the likelihood of the samples given the other

GMMs [16]. We will go into the detail of these approaches in the following section.

2.4.1 Likelihood Function

In statistics, a likelihood function is a conditional probability function regarded as

a function of its second argument B and with its first argument A held fixed

b 7→ P (A|B = b) (2.15)

In our application, the likelihood function is used to calculate the probability of the

feature vector, say A’s MFCCs, given the statistical model, say B’s GMMs. Being a

straightforward and reasonable approach; however, it requires to access A’s MFCC

data, which is not desired to be stored in the database (i.e., only the models are

desired to be stored). It also requires large computational time for computing all

the possible MFCC vectors.

25

2.4.2 Kullback-Leibler Divergence

In probability and information theory, the Kullback-Leibler divergence (KLD) is a

non-commutative measure of the difference between two probability distributions

[32]. For the probability distributions P and Q as discrete random variables, the

KLD of Q from P is defined as:

KLD[P ||Q] =
∑

i

P [i] log
P [i]

Q[i]
(2.16)

On the contrary, in continuous cases it is defined as:

KLD(P ||Q) =

∞∫

−∞

P (x) log
P (x)

Q(x)
dx (2.17)

Although the KLD is often regarded as a distance measure, actually it is not a real

metric due to its asymmetric property. From the information theory point of view,

the KLD measures how inefficient on average it would take to code one distribution

using the other one as the codebook. However, the drawback is that it only considers

the dissimilarity bin-by-bin instead of cross-bin.

2.4.3 Earth Mover’s Distance

The earth mover’s distance (EMD) [11] is suggested to overcome the drawback from

the KLD: it takes the additional cross-bin information into account. Given two dis-

tributions, one can be treated as a mass of earth properly spread in space, the other

as a collection of hole in that the same space. This is the physical meaning of the

EMD. Computing the EMD is based on a solution to the well-known transportation

problem. Suppose that there is a set of suppliers, each with a given amount of goods,

are required to supply several consumers, each with a given limited capacity. The

26

algorithm aims at finding a least amount of work, on the flow of goods form the

suppliers to the consumers that best satisfies consumer’s demands.

Let P = {(p1, wp1), ..., (pm, wpm)} denote the first signature with m clusters,

where pi represents the cluster representation and wp is the weight of the cluster.

Q = {(q1, wq1), ..., (qn, wqn)} denotes the second signature with n clusters, and D =

[dij] denotes the ground-truth distance matrix where dij is the ground-truth distance

between clusters pi and qi.

The goal is to find a flow F = [fij], with fij being the flow between pi and qj,

that minimizes the overall cost

WORK(P, Q, F) =
m∑

i=1

n∑
j=1

dijfij (2.18)

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

n∑
j=1

fij ≤ wpi
1 ≤ i ≤ m

m∑
i=1

fij ≤ wqi
1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min(
m∑

i=1

wpi
,

n∑
j=1

wqj
)

Once the transportation problem has been solved, then we have found the opti-

mal flow F , the EMD is defined as the work normalized by the total flow:

EMD(P, Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

(2.19)

2.4.4 Monte-Carlo Sampling

The Monte Carlo sampling method was suggested by Aucouturier in his music sim-

ilarity application [16], [17], [18]. It can be regarded as a simplification of the likeli-

hood calculation. The method begins with a sampling process from one statistical

27

model, and to compute the likelihood of the samples given the other model. This

process could roughly corresponds to recreating a song from its timbre model, and

applying the likelihood method defined above to this newly created song and the

model of the other song. To be more specific, we sample a large number of points

SA from model A and compute the likelihood of the samples with given model B.

The formula is as follows:

D(A,B) =
NS∑
i=1

log P (SA
i /A) +

NS∑
i=1

log P (SB
i /B)

−
NS∑
i=1

log P (SA
i /B)−

NS∑
i=1

log P (SB
i /A) (2.20)

where NS is the number of samples drawn from each distribution. We normalize

the distance to lie in 0 and 1 and make them symmetric.

This approach is well suited for large scale musical databases, because we do not

need to store the feature vectors, but only the parameters from statistical models.

The authors also show that in experiment when NS is large enough, the result

should approach to the likelihood calculation.

2.5 Simulation Results

The experiment and evaluation is developed by the Music Similarity Toolbox (MA

Toolbox)1 [20] implemented by Pampalk. It consists of three stages, as described in

the previous sections. Here we construct a small music database with thirty songs,

covering a variety of different genres. The distances between each song in pair are

calculated and normalized, in order to make a comparison. We will also analyze and

verify the simulation results in the end of this section.

1http://www.ofai.at/ elias.pampalk/ma/

28

2.5.1 Music Similarity Measure Toolbox

The Music Similarity Measure Toolbox (MA Toolbox) is a collection of functions

designed for Matlab environment. It contains several functions to analyze the music

files and compute their similarities. The toolbox implements several functions to

visualize intermediate steps in the computations. Furthermore, some extra func-

tionalities are also included to create the Island of Music, where islands represent

the clusters of similar pieces [14]. Although the toolbox is not suitable for dealing

with large scale databases, it can help us to take a glance at the implementation

aspect of similarity measure process.

2.5.2 Experiment Setup

The database consists of thirty songs with different genres representation as their

tags. A wide range of different genres are collected (e.g., Jazz, Classical, Popular,

Rock, Metal, and Dance). Table 2.3 lists the title, artist, and the related genres for

each song.

To ensure the variety of different recording qualities, the pieces were taken from

radio, CD, and MP3 compressed audio files. The files were all stored as 11025Hz,

16-bit, and mono audio format for computational efficiency. In this experiment,

we select the MFCCs as our feature vector to extract from. In addition, k-means

clustering (Section 2.3.1) and Monte-Carlo sampling (Section 2.4.4) are also selected

as the clustering and distance measure methods. To be more specific, three clusters

are used in k-means algorithm and the number of sampling points in Monte-Carlo

method is 3000.

For testing the functionality, each song is input as a query to the database and

29

thus calculate the song-by-song distance between pair. Because the final distance

measure should fairly depend on the data length, we hereby normalize the largest

distance to one, thus all the distances would be bounded in the interval of zero to

one. Finally, we make the distance become symmetric by averaging

distsymmetric(i, j) = (dist(i, j) + dist(j, i))/2 (2.21)

for each i and j.

2.5.3 Results

Figure 2.6 shows a visualization of the 30 × 30 resulting distance matrix. Each

element is displayed by a color in between the black and white. As illustrated by

the color bar on the right side, the black represents zero distance while the white

represents the maximal distance. The diagonal term of the matrix is totally black

since the auto-term distance should be close to zero. Moreover, the elements around

the diagonal line tend to be in the dark gray color (i.e., with shorter distance). This

result may due to we arranged the songs with similar genre tags (e.g., Jazz and

Bassa nova) or instruments to be close to each other.

To be more specific, we make an investigation on two particular entries in the

distance matrix to verify the result. The first one is the 15th entry, Waltz for Debby

by artist Bill Evans, which is shown in Figure 2.7. The height directly corresponds

to the distance between the 15th song and the remaining songs inside the database.

According to the plot, the three closest songs are listed as follows:

1. Jazz Trio – “Country” by Keith Jarrett

2. Jazz Vocal – “The Girl in the other Room” by Diana Krall

3. Bassanova – “C’est si bon” by Lisa Ona

30

Song Index

S
o
n
g

In
d
e
x

5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: Distance matrix of the similarity measure experiment. Black represents

zero distance while white represents the largest distance.

31

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Song Index

N
o
rm

a
li
ze

d
D

is
ta

n
ce

Figure 2.7: Distance vector of the 15th song, “Bill Evans: Waltz for Debby”.

Based on the music theory, the genres of these songs are all considerably corre-

lated to Jazz, but with different instrument arrangements. We also can find that

the farthest one with this song is Legacy of Kings performed by Hammerfall. It is

because the timbre and instrumentation of Jazz greatly differs from the metal style

music.

For another, consider the 26th entry, Piano Sonata No.3 mov.4 composed by

Chopin, which is illustrated in Figure 2.8. The three closest songs related to it are

as follows:

1. New Age Piano – “Pastoral” by Yuriko Nakamura

2. Japanese Ballad – “Crucify My Love” by X Japan

3. New Age Piano – “One Summer’s Day” by Joe Hisaishi

Although these songs are labeled with different genres, it appears that they are

all played on piano (i.e., consist the same instrument as the 26th entry). Note that

the distance between it and the classical cello song (i.e., the 26th song) is somewhat

32

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Song Index

N
o
rm

a
li
ze

d
D

is
ta

n
ce

Figure 2.8: Distance vector of the 26th song, “Chopin: Piano Sonata No.3 mov.4”.

larger than that with the new age piano music (i.e., the 24th song). The above two

examples indicate that the similar songs calculated by the system tend to share the

same genre or instrument arrangement with the query song, which is consistent with

the human perception.

However, this two examples also reveal that the closest songs derived from the

system does not aim at any of particular musical content. The relation between the

retrieved songs may lie in the genre, instrumentation, or even the chord progression.

The reason is that MFCCs cannot access any of these contents; instead, it only

represents the spectral characteristic of each frame inside a song. Therefore, in the

following chapter we will discuss how to derive a more selective feature that can be

specifically directed against the instrumentation information.

We conclude this section by evaluating the Monte-Carlo sampling method in the

cluster modeling step. As described previously, a large number of points are ran-

domly sampled in the distributions, and then their likelihood function as a distance

33

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

Number of Sampling Points

C
o
m

p
u
ta

ti
o
n

T
im

e
(s

ec
)

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

Number of Sampling Points

S
ta

n
d
a
rd

D
ev

ia
ti
o
n

Figure 2.9: Evaluation of the Monte-Carlo sampling method. Top and bottom part

represent the efficiency and performance analysis, respectively.

metric is calculated. In intuition we know that more sampling points should result

in more precise distance estimation and much closer to the real likelihood in theory.

But however it also leads to the enormous increase of the computation time. Follow-

ing we aim at finding the relationship between the sampling points, the estimation

precision, and the computation time. This can help us to find a reasonable number

of sampling points in our experiment.

Here we choose two songs with their lengths approximately equal to three minutes

for calculating the distance. They are both with the same format as previous:

sampling rate 11025 Hz, mono wave file. There is only one variable in this experiment

– the number of sampling points, denoted as NS. In order to calculate the precision

of the estimation, the calculation according to each number will go for several times.

The principle is, if it comes up with a lower precision, they may share a large

standard deviation. Therefore we use the standard deviation of the trials to evaluate

34

the precision.

Figure 2.9 shows simulation result. The number of points is simulated from a

very small number to 4000. According to the plot, the computation time increases

linearly with number of points, while the standard deviation decreases. It can be

shown that when the number of sampling points is approximately larger than 2500,

it reaches a saturation point and does not go down anymore. So in this experiment

we believe that NS = 3000 should yield an acceptable result with respect to saving

the computation time.

2.6 Discussion

In this chapter, we implemented a music similarity measure system and used a

music database that covers a variety of different styles to evaluate its performance.

Although the result is considerably close to the human perception, the limitation is

that it cannot be oriented toward any of the particular music content. Moreover,

in order to utilize this measuring technique to a recommendation system, there are

several notable points need to be considered.

The first one is the subjective nature of the similarity. People with different tastes

would favor different styles of the music. Due to this fact, it is better to construct a

personalized recommendation system with the maintaining of the preference file by

the technique like relevance feedback [33]. The performance of the recommendation

system can also be improved grouping the users with similar preference and interests

together [5]. The second consideration is the great semantic gap between the high-

level perception-related features (e.g., chord, key, and instrumentation) and the low-

level features (e.g., MFCCs and spectral centroid). In Chapter 5, we will introduce

35

how to overcome the gap by designing a system to integrate the low-level features.

36

Table 2.3: List of the songs using in similarity measure experiments.

No. Genre Title Artist

01 Rap/Hip-Hop My Humps The Black Eyed Peas

02 Rap/Hip-Hop Don’t Phunk My Heart The Black Eyed Peas

03 Popular All Rise Blue

04 Rock Fairy Tales Gone Bad Sunrise Avenue

05 Rock It’s My Life Bon Jovi

06 Rock Earn the Crown Backyard Babies

07 Rap/Metal/Rock In the End Linkin Park

08 Rap/Metal/Rock Papercut Linkin Park

09 PostRock Rescue – Day 4 Explosions In The Sky

10 PostRock Ett Ef

11 Japanese Ballad Crucify My Love X Japan

12 Metal Rusty Nails X Japan

13 Metal Legacy of Kings HammerFall

14 Jazz Trio Country Keith Jarrett

15 Jazz Piano Waltz for Debby Bill Evans

16 Bossa Nova C’est Si Bon Lisa Ono

17 Jazz Vocal Girl in the Other Room Diana Krall

18 Fusion Daisy Field T-Square

19 Chinese Popular A Little Love Piece Sodagreen

20 Chinese Popular Too Smart Cheer Chen

21 Dance Fast and Furious Teriyaki Boyz

22 House Da hype feat R.S. DutchForce

23 Trance Deadline DutchForce

24 New Age One Summer’s Day Joe Hisaishi

25 New Age Pastoral Yuriko Nakamura

26 Classical Piano Piano Sonata No.3 Chopin

27 Classical Cello Cello Suite No.1 Bach

28 Classical Symphony The Planets Holst

29 Classical Symphony Symphony No.7 Beethoven

30 Electro Orchestra Garlibdli Temple Michiru Yamane

37

Chapter 3

Time-Frequency Analysis of Music

Instrumental Signal

3.1 Introduction and Related Work

In digital signal processing (DSP), music signal is one of the most important cat-

egories that are appealing for research work. Many techniques in DSP have been

applied to analyze the music signal in several applications. Consider the frequency

analysis, the discrete Fourier transform (DFT) is a well-known and widely used

method due to its good mathematical properties and a fast algorithm implemen-

tation: the fast Fourier transform (FFT). The complexity of calculating a N -point

FFT is only in the order of N log2 N .

However, music signal has its own unique characteristics that are considerably

dissimilar to other signals. For instance, comparing to the speech signal, generally

the music signal is much complex for processing in many aspects. First of all, in

music signal lots of instruments are played simultaneously, while in speech signal

38

only one speaker is considered at the same time. Secondly, instruments can be

classified according to how the sound is initially produced (e.g., string, percussion

and wind families). Each of these instruments preserves different mechanism, while

in speech signal the generating model is fixed (e.g., the vocal tract model).

Moreover, an isolated note of a single musical instrumental tone usually com-

prises a fundamental frequency component and successive harmonics as a pulse train

in frequency domain. As a result, Brown [34] introduced the constant Q transform

aiming to fit these special attributes of the musical signal. The calculation is with

a constant ratio of center frequency to resolution, since that the frequencies have

been chosen to integrate the scale of Western music are geometrically distributed.

To compensate its long computation time, Brown improved the time-consuming cal-

culation by incorporating the FFT algorithm within the matrix multiplication step

[35]. Nevertheless, the calculation efficiency is still an essential issue. To address the

channel selectivity and the complexity problems, there are several derivations which

combine the constant Q transform with other filter structures such like the fast

filter bank (FFB) and the bounded-Q transform [36], [37], [38]. In addition, these

transforms have been applied to some music-related applications by researchers [39],

[40].

Another drawback of the conventional DFT is that it cannot observe the spec-

trum varying according to time. It is still based on calculating the mapping from

time to frequency domain, instead of consider the whole time-frequency plane. Mu-

sic signal, due to its highly non-stationary property, requires a good resolution both

in the time and frequency domain. To overcome this problem, one simple solu-

tion is to segment the signal into frames and then calculate the short-time Fourier

transform (STFT). The techniques in time-frequency analysis such like the Gabor

39

transform and the wavelet transform are also suitable for analyzing the signal. In

[41] Pielemieier introduced some of the properties and applications when applying

time-frequency analysis to the musical signal.

The aim of this chapter is to combine the idea from the constant Q transform

and the time-frequency techniques to analyze the musical instrumental signal. The

rest of this chapter is organized as follows. At the beginning, a brief introduction of

musical instrumental signal characteristics is presented. In this section we stress on

the related characteristics such like the pitch and the harmonics of the musical signal.

Secondly, the idea of the constant Q transform is reviewed and a comparison with

the traditional DFT is held. After that, the transform is extended into the time-

frequency distribution function and a simple implementation method is presented.

Finally, we apply this transform to three major instrumental signals to verify the

performance.

3.2 Characteristics of Musical Instrumental Sig-

nal

The musical signal is a special class in the signal category that has its own charac-

teristics different from the speech signal in many ways. First of all, music normally

has a wide range frequency distribution among the audible range of human, from 0

to 20kHz. As we know the bandwidth of the speech signal is usually limited into 50

to 7kHz. In addition, when considering time-domain characteristics, musical signal

usually has a lower silence ratio except that it is sung by a singer or played on

a solo instrument only. Comparing to an ordinary speech signal, music has lower

40

Table 3.1: Illustration of the pitch and music notation.

Note C4 #C4 D4 #D4 E4 F4

Frequency (Hz) 261.6 277.2 293.7 311.1 329.6 349.2

Note #F4 G4 #G4 A4 #A4 B4

Frequency (Hz) 370.0 392.0 415.3 440.0 466.16 493.9

variability in zero-crossing rate (ZCR) which is defined as

ZCR =
1

2N

N∑
n=1

|sign x(n)− sign x(n− 1)| (3.1)

Following we introduce two main characteristics: the pitch and the harmonics of

the music signal.

3.2.1 Pitch

In Western music theory, from the age of musician Bach (1685-1750), the music

sound we hear is grouped into twelve separate categories. Each of the category is

labeled by a unique representation called note. That is to say, the letters A through

G represent seven notes and the other five semi-tones are represented by appending

either a pound sign (#, or sharp) or something that looks remarkably similar to a

lower-case b (also called a flat).

Each tone has its own pitch that is related to the fundamental frequency (FF).

Musicians found that a double fundamental frequency sounds the same as its original

note in human perception, hence they defined an octave. For instance, C4 (also the

middle C) means the 4th octave of the C note in each instrument. The corresponding

fundamental frequency of each semi-tone is defined in a geometrically distributed

way as

fnth note = f0 × 2
n
12 (3.2)

41

0 500 1000 1500 2000 2500 3000 3500 4000
−10

−5

0

5

10

15

20

25

30

35

40

Frequency (Hz)

A
m

p
li
tu

d
e

(d
B

)

Figure 3.1: Spectrum of a C4 piano note.

where f0 is the base frequency. The fundamental frequency components of semi-

tones are not equally-spaced in frequency domain. However, they distribute like

a log-scale instead of the linear distribution. Table 3.1 lists an illustration of the

pitches and their corresponding frequencies within an octave.

3.2.2 Harmonics

So far we know the corresponding fundamental frequency of each semi-tone, but it

is still not enough to describe the characteristics of a note for a specific instrument.

Any non-electronic instrument actually produces many frequencies, all of which are

overshadowed by the fundamental frequency [42]. These extra frequencies are called

the harmonics. For example, Figure 3.1 shows the spectrum of a C4 note played

on piano. It can easily observed that the first peak of the amplitude is centered at

261.6Hz as its fundamental frequency, but with a set of additional peaks follows on.

The successive harmonics component is also called partial in music theory. In

42

most cases they are an integer multiple of the fundamental frequency. Although in

this example the power of partials tends to decay when frequency increases, it is not

a general phenomenon. On the contrary, it has been discovered that different instru-

mental tones consists of different partial distributions. One can use this distribution

difference to discriminate the desired instrument from others. This technique has

been utilized in the unsupervised music source separation applications [43].

3.3 Constant Q Transform

3.3.1 Motivation

The conventional spectral transformation such as the DFT takes N -tuple points into

account, and then transform the signal to frequency domain for further analysis. It

yields several well-known properties, such like the equally-spaced frequency resolu-

tion, and the linear scale in frequency domain. But as described before, the musical

signal comprises several pulses in frequency domain: the fundamental frequency

and the successive partials. In Figure 3.1 we can find that after applying the DFT,

several peaks are presented and equal-spaced distributed. For the partial tracking

problem, it would be better to do the transform against the log scale to obtain a

constant pattern in the frequency domain for regular pattern recognition. In addi-

tion, if we utilize the mapping from the DFT into a log-scale frequency axis, it gives

too little information about the low frequency part and too detailed information at

the high frequencies.

The second consideration is about the frequency resolution. The frequencies

that have been chosen to make up the scale of the Western music are geometrically

43

Table 3.2: Comparison of variables in calculation of the DFT and the CQT.

CQT DFT

Frequency fk f0 · 2 k
b exponential in k k ·∆f linear in k

Window Size Nk R ·Q/fk variable N constant

Resolution ∆fk fk/Q variable R/N constant

fk/∆fk Q constant k variable

spaced. In this case the frequencies are located in the specific bin once the note (or

pitch) fixed. However, the DFT does not invoke such information to transform the

musical signal. Instead of that, the resolution should be geometrically related to

the frequency. For instance, consider two adjacent notes in different octaves. The

first pair is A4 with 440 Hz and #A4 with 466.16 Hz, thus the frequency difference

between them is 26.2 Hz. On the other hand, if we consider two octaves below:

A2 with 110 Hz and #A2 with 116.54 Hz, the frequency difference 6.54 Hz is much

smaller than the former one. From this example we can figure out that due to the

log-scale distribution of the fundamental frequencies of musical notes, the higher

frequency resolution is needed for the higher frequency component. This property

also resembles the situation in our auditory system.

The constant Q transform (CQT) is proposed to solve above issues by Brown in

[34]. Table 3.2 summarizes a comparison of different variables in calculation of the

DFT and the CQT.

3.3.2 Implementation

Like the DFT, a CQT also consists of a bank of filters. But in contrast with the

former, the filterbank has geometrically spaced center frequencies fk,

fk = f0 · 2 k
b (3.3)

44

where b stands for the number of filters per octave and f0 is the minimal center

frequency. To fulfill the previous requirement, here we choose the bandwidth of the

k-th filter as

∆k = fk+1 − fk = fk(2
1
b − 1) (3.4)

This yields a constant ratio of bin frequency to resolution

Q =
fk

∆k

= (2
1
b − 1)−1 (3.5)

Because the bandwidth of the filter also equals to

∆ =
fs

N
(3.6)

where fs is the sampling frequency and N is the number of points in window. Thus

the desired bandwidth (3.4) can be achieved by choosing the window length to be

Nk = Q
fs

fk

(3.7)

For other parameters, first we need to choose a minimal frequency f0 and the

number of bins per octave b according to the requirement of the application. To

illustrate, b = 24 yields a quarter-tone resolution transform. In addition, the maxi-

mal frequency fmax only affects the number of bins to be calculated. The CQT can

thus be implemented as following:

Xcq[k] =
1

Nk

Nk∑
n=0

x[n]wNk
[n]e

−2πjnQ
Nk (3.8)

where

K = b · log2(
fmax

f0

)

Q = (2
1
b − 1)−1

and for k < K

Nk = Q
fs

fk

45

FFT bin number

C
Q

T
b
in

n
u
m

b
er

1000 2000 3000 4000 5000 6000 7000 8000

5

10

15

20

25

30

35

40

45

Figure 3.2: Magnitude of the spectral kernel in the CQT. The CQT here is with

sampling frequency 44100 Hz and quarter-tone resolution.

For the window function wNk
[n], Brown used the Hamming window instead of the

rectangular window in his implementation.

We should also notice that the CQT as in (3.8) is not invertible. Since the

temporal decimation factor N [k] is greater than the analysis window length wN [n]

for high-frequency component. This means that there are some samples never being

used when calculating the higher frequency bins.

3.3.3 An Efficient Algorithm

Comparing to the conventional FFT implementation, although it possesses several

properties that are pretty suitable for musical signal analysis, the calculation of the

CQT according to (3.8) is considerably time consuming, thus an efficient algorithm

is highly needed.

46

We can comprehend the CQT as a matrix multiplication form

Xcq = x · T ∗ (3.9)

where T ∗ is the complex conjugate of the temporal kernel

Tnk =

1
Nk

wNk
[n]e

−2πjnQ
Nk , if n < Nk

0, otherwise

(3.10)

Since the temporal kernel T is independent of the content of signal x, it can thus

be pre-calculated to speed up the total computation. Nevertheless, it is pretty

memory-consuming to store the whole matrix value. Because that T contains many

non-vanishing value, computing the result of x · T ∗ still takes time.

Brown invented a reduction method in [35] to further reduce the computation

time. It can be shown that for any two discrete functions x[n] and y[n],

N−1∑
n=0

x[n]y∗[n] =
1

N

N−1∑

k=0

X[k]Y ∗[k] (3.11)

where X[k] and Y [k] denote the DFT of x[n] and y[n], respectively. This is a form

of the Parseval’s equation. The idea is to carry out the matrix multiplication in the

frequency domain. Since the windowed complex exponentials of the temporal kernel

have a DFT that vanishes almost everywhere except for the immediate vicinity of

the corresponding frequency. The spectral kernel is a sparse matrix as depicted in

Figure 3.2. Brown suggests to eliminate components that are below the threshold

with accepting a considerably small error.

As a result we can calculate the CQT in a different way:

Xcq[k] =
1

N

N−1∑
n=0

xft[n]S∗nk (3.12)

where Snk consists of one dimensional DFTs applied column-wise. This equation

involves with less computation than the former one. Although it takes time to

47

create the spectral kernel, but once it has been done then all the succeeding CQT

computations can be performed much faster.

3.4 Time-Frequency Analysis Using the Constant

Q Transform

In previous section we have introduced the procedure of calculating the CQT. How-

ever, if we want to apply it to a real musical signal, say a three to four minutes

wave file, there are some problems still needs to be solved. The first one is, as the

same consideration as the DFT, we are not able to discover the frequency distribu-

tion varying with respect to time. To illustrate, for a piano record consisting of a

series of melody, the result of the CQT should be fairly complicated, and it makes

no sense to analyze the individual notes produced by the instrument. This can be

easily solved by utilizing the concept from the short-time Fourier transform (STFT)

or Gabor transform. The idea is to divide the signal into several pieces in time, and

to do the spectrum transform for each segment separately. Nevertheless, the CQT

somewhat behaves differently as that DFT does. In CQT, the determination of fmin

and fmax make the number of points inside a window become fixed. For example,

consider the situation that sampling rate equals to 32000 samples/s, fmin = 175 Hz

yields a window with 6231 samples, while fmax = 13432 Hz yields a window with

only 162 samples. Thus for implementing the time-frequency version of the CQT

(denoted as TF-CQT), it is reasonable to determine the sliding window shift size B

according to fmin and fmax.

The second problem is, if we choose the sliding window shift size to be equal

48

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sliding Window Size (times minimun window)

C
o
m

p
u
ta

ti
o
n

T
im

e
(s

ec
o
n
d
s)

Figure 3.3: Computation time of the TF-CQT in terms of different k. The input

signal is a 2.2-minute wave file, with fs = 44100 Hz.

to the number of sampling points corresponding to fmin, we would lose a lot of

information in the higher frequency component. To address this problem, we define

the minimum required shift size Bmin the same as the window size of fmax, that is

Bmin =
fs ·Q
fmax

(3.13)

In this implementation we set the sliding window shift size B to be a multiple of

Bmin

B = k ·Bmin (3.14)

where k is an integer multiplier. Thus the CQT in (3.8) is extended into the TF-CQT

by

XTF−CQT[n, k] =
1

Nk

nB+Nk∑
p=nB

x[p]wNk
[p]e

−2πjpQ
Nk (3.15)

The choosing of multiplier k in (3.15) is a trade-off problem between the sim-

ulation time and the time resolution. The lower value of k would leads to longer

49

computation time but with more overlapped frequency components and detailed

time-varying information. Figure 3.3 shows the required computation time of the

TF-CQT with varying values of k. The computation time tends to decrease expo-

nentially while the sliding window size increases.

3.5 Simulation Results

In this section the TF-CQT is applied to analyze the real-world musical instrumental

signal. In our implementation, b is set to be equal to 12, which results in a semi-tone

resolution per octave. The minimal frequency and maximum frequency are chosen

to be 130.8 Hz (C3 note) and 2092.8 Hz (C7 note), respectively.

3.5.1 Music Database

The musical instrumental samples are collected from the Electronic Music Studios1

provided by the University of Iowa. It offers a wide range of isolated notes played on

several different instruments, such like piano, violin, oboe, bassoon and so on. The

detail of the database that we construct can be referred to Table 4.1. The resource

is allowed to be downloaded and used in research purpose for free. Originally, all

files are stored in 16-bit, 44.1 kHz, mono, AIFF format. We then converted them

to a 8-bit, 44.1 kHz, wav format in our experiment.

In this simulation we select piano, viola and flute to construct the instrument

set, since they all have different sound producing mechanisms and are classified to

different instrument families (will be discussed in Chapter 4). The instruments are

played on two notes: C4 (261.6 Hz) and E4 (329.6 Hz). All the wave files from single

1http://theremin.music.uiowa.edu/

50

notes are trimmed into 2.2 seconds in order to unify the duration.

3.5.2 Results

Figure 3.4, 3.6 and 3.8 show the results of applying the TF-CQT to three instru-

ments played on the C4 note. To evaluate the result, we also plot the spectrogram

generating by the STFT in Figure 3.5, 3.7 and 3.9. In STFT, a 4096-points Ham-

ming window with half overlapping is employed. Since the sampling frequency is

considerably high, we only plot the first 120 FFT-bins to observe the spectrum

peaks. In comparison with the STFT results, the TF-CQT requires less bin num-

ber, and each bin is corresponding to a specific semi-tone. This makes TF-CQT

suitable to deal with the musical instrumental signal. For another, the spectrum

peaks in the STFT result are equally-distributed while the peaks in the TF-CQT

are logarithmic distributed. In the partial-tracking problem, it is more suitable to

use the TF-CQT instead of the STFT. The reason is, although the tone differs, the

pattern in the TF-CQT remains the same with only a shift in the frequency domain.

This logarithmic distribution makes the template to be invariant to the tone change.

According to the plots, it is easy to find out the difference between these instru-

mental signals through their time-frequency distribution. Consider the time axis,

the piano, which can be regarded as a percussion instrument, have its energy decay-

ing rapidly after the hammer hits the string inside. The time-frequency distribution

in the other two signals can somewhat sustain for a while until the sound-producing

process is finished. Next, consider the frequency axis, we discover that each instru-

mental signal possesses its own energy distribution in the harmonics. Besides, in

some instruments the harmonic energy is even greater than the fundamental fre-

51

quency energy.

To be more specific, in Figure 3.10 we draw the energy curves of three major

CQ-bins: the FF, 1st and 2nd partial, but this time with two different observation

notes: C4 and E4. The result shows that even though the tone varies, the shapes

from same instrument still resemble closely to each other. This makes the TF-CQT

to be a powerful tool for instrument classification applications.

3.6 Discussion

In this chapter, we extend the idea of the CQT to the time-frequency plane and use it

to analyze several instrumental signals. Due to its high compatibility with the music

signal, the result shows that it is more reasonable to use the TF-CQT in the audio

applications. However, there are still some disadvantages and limitations that needs

to be discussed in the end of this chapter. First of all, although the CQT is suitable

for dealing with the pattern recognition problems, the CQ-bin cannot exactly match

the frequencies of the successive partials. For example, the fundamental frequency

of the A4 note fA4,1 is 440 Hz, and the frequencies of the second fA4,2 and the third

fA4,3 harmonics are 880 Hz and 1320 Hz, respectively. fA4,2 is exactly equal to the

fundamental frequency of the A5 note, thus resulting in a correct match to the CQ-

bin. Nevertheless, there is no CQ-bin with its central frequency being exactly the

same as fA4,3. The closest two bins are 1318.5 Hz and 1396.9 Hz, if we use semi-

tone resolution. For the second consideration, the computational efficiency for the

CQT is still an issue that needs to be discussed and improved by other techniques.

Comparing to the STFT, it still takes too large computation time.

52

0
10

20
30

40
50

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

CQ-bin

Time (frame)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 3.4: TF-CQT result of the C4 note played on piano. B = Bmin.

0

50

100

0

10

20

30

40

50
0

50

100

150

200

250

300

FFT-bin

Time (frame)

50

100

150

200

250

300

Figure 3.5: STFT result of the C4 note played on piano. A 4096-points Hamming

window with half overlapping is used.

53

0
10

20
30

40
50

0

50

100

150

200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CQ-bin
Time (frame)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 3.6: TF-CQT result of the C4 note played on viola. B = Bmin.

0

50

100

0

10

20

30

40

50
0

20

40

60

80

100

120

140

FFT-bin
Time (frame)

20

40

60

80

100

120

Figure 3.7: STFT result of the C4 note played on flute. A 4096-points Hamming

window with half overlapping is used.

54

0
10

20
30

40
50

0

50

100

150

200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

CQ-binTime (frame)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 3.8: TF-CQT result of the C4 note played on flute. B = Bmin.

0

50

100

0

10

20

30

40

50
0

50

100

150

200

20

40

60

80

100

120

140

Figure 3.9: STFT result of the C4 note played on flute. A 4096-points Hamming

window with half overlapping is used.

55

0 100 200
0

0.05

0.1
Piano

F
u
n
d
a
m

en
ta

l
F
re

q
u
en

cy

0 100 200
0

0.02

0.04

1
st

p
a
rt

ia
l

0 100 200
0

0.05

0.1

2
n
d

p
a
rt

ia
l

0 100 200
0

0.05

0.1
Viola

0 100 200
0

0.02

0.04

0 100 200
0

0.01

0.02

0.03

0 100 200
0

0.01

0.02

0.03
Flute

0 100 200
0

0.02

0.04

0.06

0 100 200
0

0.02

0.04

0.06

C4 note
E4 note

Figure 3.10: TF-CQT result of the C4 and E4 note played on three instruments, only

three major bins (FF, 1st and 2nd partial) are considered. The x-axis represents

the frame, while y-axis represents magnitude.

56

Chapter 4

Instrument Classification of

Monophonic Music

4.1 Introduction and Related Work

Based on the findings in the previous chapter, it seems that the harmonic structures

are able to represent the various instrumental signals and can be further utilized to

make automatic classifications. During the past few decades, the automatic classifi-

cation of instrumental signals has become a fascinating and essential subproblem in

content-based music information retrieval tasks. It is closely related to the area of

machine learning and signal processing. However, the musical instrument identifi-

cation has not yet received much interest from researchers comparing to the speech

recognition, for instance. The goal is to correctly classifying the instrumental signals

according to their timbre variations.

Indeed, there are several studies conducted by researchers toward this topic. Ero-

nen et al. reported a comprehensive study on classifying the orchestral instruments

57

using the spectral and temporal properties of sounds [44]. There database covers

1498 samples and is tested in terms of both family and individual classifications.

Various types of features, such like ceptral and linear prediction coefficients, are

compared and ranked by the output recognition rates of the classifiers [45]. Krishna

et al. applied the line spectral frequencies (LSF) related features, which are proved

to be effective in speech applications, into the classification work toward the solo

phrases of the instruments [46]. Similarly, Essid et al. adopted the conventional sta-

tistical approaches, Gaussian Mixture Models (GMMs) and support vector machines

(SVMs) to deal with the classification works of the solo excerpts [47]. Since these

conventional feature extraction methods and classifiers have gradually been well in-

vestigated, researchers began to design new feature sets and classification schemes.

For example, Benetos et al. developed a subset feature selection methods based on

the non-negative matrix factorization (NMF) [48]. Essid et al. applied the pairwise

classification strategies to improve the classification perofrmance [49]. Moreover,

Klapuri analyzed the instrumental signals of the isolated notes using the source-

filter-decay model [50]. The classification is done by estimating the coefficients

of the testing instrumental signals. Su implemented a musical auto-transcription

system, which consists of several modules like the rhythm recognition unit, pitch

recognition unit and timbre recognition unit [51]. The system aims at automatically

transcript the musical content inside a music clip by integrating a set of modules

together.

The aim of the study in this chapter is to illustrate the taxonomy of the in-

strument hierarchy in literature, and then conduct an experiment that mainly deals

with the instrumental signals of isolated notes. The rest of this chapter is organized

as follows. In Section 4.2 we will make a literature review of the history of musical

58

instrument classification, and specify the taxonomy adopted in this work. Next, the

detail of the automatic classification system is introduced in Section 4.3. Finally,

the experimental results and the discussion are drawn in the end of this chapter.

4.2 History and Concept of Musical Instrument

Classification

At various times, in various different regions, various schemes of musical instru-

ment classification have been proposed. Kartomi introduced the nature, the society-

oriented classification toward literary and oral transmission in [52]. In his work, the

instrument classification methods applied in several regions (e.g., Chinese, Indian,

Srilankan, and Java) have been comprehensively investigated. The oldest known

classification scheme can be traced back to Chinese in fourth century BC. In that

approach, the instruments are grouped together according to what they are made

of, e.g., the stone, wood, and silk.

An ancient system has been proposed in first century BC originally for Indian

instruments. The instruments are divided into four groups, mainly according to how

the sound is originally produced and the materials: whether the sound is produced

by vibrating string, by vibrating columns of air, percussion instrument made of

wood or metal, and percussion instrument made with skin head. The method was

revised by Hornbostel and Sachs in 1914. The system, named as Hornbostel-Sachs

system, partition the instrument into four categories as follows.

1. Idiophones, the instruments which the sound is produced by vibrating them-

selves, such like the xylophone.

59

2. Membranophones, the instruments which the sound is produced by vibrating

membrane, such like the drums.

3. Chordophones, the instruments which the sound is produced by vibrating

strings, such like the piano and violin.

4. Aerophones, the instruments which the sound is produced by vibrating the

columns of air, such like the organ and the oboe.

It is also possible to classify the instruments by the pitch range. The following

terms are named after the singing voice classification.

1. Soprano instruments, such like the flute, clarinet, violin and trumpet.

2. Alto instruments, such like the oboe, alto flute, viola and horn.

3. Tenor instruments, such like the trombone.

4. Bass instruments, such like the bassoon, double bass, bass clarinet and tuba.

Generally, the most widely used system in the West today, should be the one

that divides instrument into the wind, strings and percussion families. In some cases

the wind family is further divided into the woodwind (i.e., wind instruments with a

reed) and the brass instrument (i.e., wind instrument where the air is set in motion

directly by the lips). Figure 4.1 shows the taxonomy of the instrument classification

adopted in this work. As can be seen, it represents as a double-layer taxonomy,

which combines the instrument family (e.g., the woodwind) as the first layer, and

the individual instrument (e.g., the flute) as the second layer. In the aspect of

the machine learning problem, the recognition rates can be separately defined in

these two layers, one for instrument family and another for individual instruments.

60

Figure 4.1: Taxonomy of the instrument classification opted in this work.

The double-layer nature of the taxonomy also improves the classification capability

comparing to the approach that directly classifies the individual instruments.

4.3 Description of the Proposed System

Figure 4.2 shows the block diagram of the instrument recognition system. The

system comprises the conventional machine learning functionalities: the training

data with correct labels are first applied to establish models which can be used to

determine the estimated labels of the testing data. Basically, the system is similar

to the one proposed by Deng et al. [53], except for the feature selection and ranking

processes.

In the feature extraction step, the MFCCs and the MPEG-7 Audio Timbre De-

61

Figure 4.2: Block diagram of the instrument classification system.

scriptors are extracted from every instrumental signal and form a 33-dimensional

low-level feature vector, which is the same as the one we used in Chapter 5. The

classifiers chosen in this experiment is the support vector machines (will be illus-

trated in Section 4.3.2). The experimental data is first divided into the training and

testing subset in order to evaluate the recognition performance. The k-fold cross

validation method (will be introduced in Section 4.3.3) is used in this simulation.

4.3.1 Feature Normalization

In order to enhance the performance of classifying the signals, a feature normaliza-

tion process is required prior to the SVM classifiers [54]. There are two well-known

normalization methods can be applied in this stage. The first one is to normalize the

feature vector into a zero-mean and unit standard deviation vectors. Suppose we

have a set of training data x1, x2, ..., xN . Let vi denote the feature vector extracted

from the ith data xi, which is a p-dimensional vector. First we need to calculate the

mean and variance of every feature vector in a particular dimension j, denoted as

62

µj and σj, respectively. Then the normalized value of vi,j is calculated by

v∗i,j =
vi,j − µj

σj

(4.1)

The normalization process is repeated for every particular dimension in the vector

space.

The second method is linear normalization, which normalizes the feature vector

into a distribution in between of zero and one. That is,

v∗i,j =
vi,j −minj

maxj −minj

(4.2)

where maxj and minj denotes the maximal and minimal value appearing in the jth

dimension of the feature vectors. In this study, we adopt the first one as our feature

normalization method.

4.3.2 Support Vector Machine

For a series of data, in some applications we would like to partition them into

two sets, according to their features. Various approaches have been proposed by

researchers, like the k-nearest neighbor, neural network and decision tree, all result

in similar recognition rates. However, the support vector machine possesses simple

nature and is easy to use in most of the applications. The support vector machine

(SVM) is a supervised learning algorithm designed for classification and regression

problems. The input data points are considered as two sets of vectors in an N -

dimensional space. The idea of an SVM is to construct a separating hyperplane

in such space, denoted as the optimal separating hyperplane, which maximizes the

margin between the two corresponding data sets. In order to calculate the margin,

two parallel hyperplanes, denoted as the support hyperplane are constructed, one on

63

Figure 4.3: Illustration of the SVM. Black and white points are corresponding to

different data set.

each side of the separating hyperplane, which are pushed up against the two data

sets. In intuition, a good separation is achieved by the hyperplane that has the

largest distance to the nearest data points of both sets, since generally the larger

the margin will give less recognition error.

Figure 4.3 gives an illustration of the SVM classification. In the 2-D space, black

and white points correspond to different data sets. The goal is to find a line with

the largest margin to discriminate the training data sets. The solid and dashed line

denote the optimal separating hyperplane and the support hyperplanes, respectively.

Suppose we have a set of training data points x with their labeling information

ci as

S = {(xi, ci)|xi ∈ Rp, ci ∈ {1,−1}} (4.3)

where 1,−1 denotes two different classes, and the data point xi is a p-dimensional

64

vector. Since any hyperplane in that space can be expressed by

w · x− b = 0 (4.4)

So the goal is to find a hyperplane w which can discriminate two different data sets,

such that

w · x− b ≤ −1, for all ci = −1

w · x− b ≥ +1, for all ci = +1 (4.5)

This equation can be rewritten as

ci(w · x− b) ≤ 1, for all i (4.6)

We can summarize the equations into the following optimization problem:

choose w,b to maximize ||w||

which is subjected to ci(w · x− b) ≤ 1, for all i (4.7)

The above equation is considered as the prime problem of the SVM. This problem

can be solved by standard quadratic programming techniques and programs.

In our instrument classification system, a series of the training instrumental

signal with the labeling information are used to calculate the optimal hyperplanes,

which can be stored as the corresponding instrumental model in the system. The

rest of the testing instrumental signal are then applied to scan which sites do they

belong to according to the optimal hyperplanes.

4.3.3 k-Fold Cross Validation

The cross validation is a statistical way to partition the database into several parts,

such that some of the parts are used as the training data and the others are used

65

to confirm and validate the performance. Among the various validation techniques,

the k-fold cross validation is considered as one of the most often used methods.

In k-fold cross validation, the original dataset is first partitioned into k subsets.

Of the k subsets, a single subset is employed as the validation data for testing

the performance, while the remaining k − 1 subsets are used as the training data.

The process is repeated k times, with each of the k subsets used exactly once as the

validation data. We can then average the k performance estimation to derive a single

estimation output. The advantage of this approach is that although the partition

process is random, it ensures that all observations are used for both training and

validation. k = 5, 10 both are the common used selections. In our instrument

classification system, since the data sizes are considerably small, we use the 5-fold

cross validation in both of the individual and instrument family classification tasks.

4.4 Simulation Results

Before performing the experiments, a data preprocessing is conducted to segment

the instrumental signal into the isolated notes. The simulation results can be di-

vided into two parts: the instrument family classification results and the individual

instrument classification results. In both parts, the recognition processes are made

according to the taxonomy illustrated in Figure 4.1.

4.4.1 Data Preprocessing

The experimental data used in this simulation are collected from the Musical Instru-

mental Samples1 (MIS) offered by the Electronic Music Studios, University of Iowa.

1http://theremin.music.uiowa.edu/MIS.html

66

Figure 4.4: Example of segmenting the instrumental signal stream into individual

notes.

In the MIS, all samples are in mono, 16 bit, 44.1 kHz, AIFF format. The excep-

tion is the piano, which is recorded in stereo. The database we collected consists of

twenty various instruments, where some of them are both recorded with and without

vibrato. The instrumental recordings offered by the MIS are with various volume

of the notes, like pp, mf and ff. We only choose the mf (stands for mezzo-forte)

volumes of the notes, since they are considered to be the moderately loud volumes.

Since most of the instrumental recording files in the MIS contain about one

octave of the notes (i.e., totally twelve semi-tones), the segmentation and labeling

process is conducted by hand, in order to verify the recognition performance in

terms of the isolated individual notes. Figure 4.4 illustrates the segmentation and

labeling processes. Therefore, after the data preprocessing, the database can be

identified with 24 different categories, each with various number of notes and the

pitch ranges. Table 4.1 lists the detail information of the monophonic database used

in this chapter. Overall, the database consists of 973 various instrumental isolated

notes.

67

4.4.2 Instrument Family Classification Results

Musical instruments form a hierarchical structure, which comprises various instru-

ment families, as depicted in Figure 4.1. In some applications, classification down

to the level of instrument families is sufficient for practical needs. For instance, a

user may only query the music-searching system by the word “string” instead of

the exact instrument such like the cell and violin. The accuracy of the instrument

family classification is defined by

Accuracy =
#of testing data belonging to the same family as query

#of testing data
(4.8)

Table 4.2 lists the resulting confusion matrix of the instrument family classifi-

cation experiment. As can be shown, the overall recognition accuracy is 97.03%.

According to the result, it seems that the recognition performance to the level of

instrument families is enough for applying to the other content-based information

retrieval applications.

4.4.3 Individual Instrument Classification Results

Similar to the previous one, the accuracy of the individual instrument classification

is defined by

Accuracy =
#of testing data belonging to the exact same instrument as query

#of testing data

(4.9)

Table 4.3 and 4.4 list the left and right half part of the confusion matrix of the

individual instrument classification experiment, respectively. It appears that the

recognition accuracy of the piano is the most highest one comparing to the other

instruments. This may due to the fact that it is the unique instrument inside the

68

percussion family, and possesses different sound producing mechanism with other

instruments. The other notable point is that since we separate the instrument played

with and without vibration into different categories, the recognition performance

degrades when the instrument has these two types of played modes.

4.5 Discussion

The aim of the study in this chapter is to verify the capability of automatically

classifying the monophonic instrumental signal using various low-level features. The

design of our classification system is similar to the one proposed by Deng et al. [53].

However, the experimental result shows that our recognition rates are higher than

theirs in both of the individual and family classification cases. One possible reason

is that we segment the continuous instrumental recordings, which contains a full

musical scale, into a set of isolated notes, and thus resulting in the increase of the

recognition rates. In addition, only the recordings with mf velocity are selected to

construct the database. This may also cause the offset in the recognition results.

69

Table 4.1: List of the musical instrumental samples from Electronic Music Studio

used in the experiment.

No. Instrument Family Lowest Highest Size

01 Flute (without vib.) Woodwind B3 C7 38

02 Flute (with vib.) Woodwind B3 #C7 39

03 Alto Flute (with vib.) Woodwind G3 G6 37

04 Bass Flute (with vib.) Woodwind C3 #A5 35

05 Oboe Woodwind #A3 #G6 35

06 Eb Clarinet Woodwind G3 #F6 42

07 Bb Clarinet Woodwind D3 #C7 47

08 Bass Clarinet Woodwind #C2 B5 46

09 Bassoon (with vib.) Woodwind #A1 D5 41

10 Soprano Sax. (without vib.) Woodwind #G3 #D6 32

11 Soprano Sax. (with vib.) Woodwind #G3 #D6 32

12 Alto Sax. (without vib.) Woodwind #C3 #G5 32

13 Alto Sax. (with vib.) Woodwind #C3 #G5 32

14 French Horn Brass #A1 F5 44

15 Bb Trumpet (without vib.) Brass E3 D6 35

16 Bb Trumpet (with vib.) Brass E3 D6 35

17 Tenor Trombone Brass E3 C5 33

18 Bass Trombone Brass #C1 G4 43

19 Tuba Brass C1 C4 37

20 Violin (arco) String G3 #C7 43

21 Viola (arco) String C3 G6 44

22 Cello (arco) String C2 A5 46

23 Doublebass (arco) String E1 G4 40

24 Piano Keyboard B0 B7 85

Total Size: 973

70

Table 4.2: Confusion matrix of the instrument family classification results.

Instruments Woodwind Brass String Percussion

Woodwind 97.0 3.3 0.7 0

Brass 1.5 95.3 2.0 1.2

String 2.6 1.2 96.2 0

Percussion 0 0.4 0 99.6

Table 4.3: Confusion matrix of the individual instrument classification results (left-

half part).

01 02 03 04 05 06 07 08 09 10 11 12

01 85.4 5.9 1.2 0 0 0.4 4.3 0 0 0 0 0

02 3.1 86.9 2.3 0 0 1.9 1.2 0 0 0 0 0

03 1.2 0.8 89.1 8.1 0 0 0 0 0.4 0 0 0

04 1.3 0.9 5.1 88.0 0 0 0 0 0.4 0 0 0

05 0.4 0.4 0 0 94.0 0.9 0 0 0 0 0 0

06 1.4 2.1 0.4 0 0.4 85.4 7.9 0.4 0.4 0 0 0.4

07 1.9 1.3 0.3 0 0.6 6.7 86.0 0.3 0.3 0.3 0 0.6

08 0.7 0.3 0 0 0 0 0.7 93.8 0 0.7 0 1.6

09 0 0 0 0.7 0 0 0.4 0 98.5 0 0 0

10 0 0.5 0.9 0 0 0 0.9 0 0 87.3 4.7 0.5

11 1.4 0 0.9 0 0 0 0 0.5 0 1.9 89.7 0.5

12 0.5 0 0 0 0.5 0 0.9 2.8 0.5 0.5 0.5 88.3

13 0 0 1.4 0 0 0 0 0 0 0.5 0.5 1.4

14 1.7 0.3 0 0 0 0 0.3 0.7 0 0 0 1.0

15 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0.3 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0.4 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0

21 0.3 1.4 0.7 0 1.7 0 0 0.3 0 0 0 0

22 0 0 0 0.7 3.3 0 0.3 0 0 0 0 0

23 0 0.4 0 0.8 0 0 0 0.8 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0

71

Table 4.4: Confusion matrix of the individual instrument classification results (right-

half part).

13 14 15 16 17 18 19 20 21 22 23 24

01 0 0.4 0 0 0 0 0 0 2.0 0.4 0 0

02 0 0.8 0 0 0.4 0 0 0 2.7 0.8 0 0

03 0 0 0 0 0 0 0 0 0.4 0 0 0

04 0 0 0 0 0 0 0 0 0.9 0 3.4 0

05 0 0 0 0 0.4 0 0 0 1.3 2.6 0 0

06 0 0 0 0 0.4 0 0 0 0.7 0 0.4 0

07 0 0 0 0 0 0 0 0.3 0.6 0.3 0 0.3

08 0 0 0 0 0 0 0 0 1.6 0.3 0.3 0

09 0 0 0 0 0.4 0 0 0 0 0 0 0

10 2.3 1.4 0 0 0 0 0 0 1.4 0 0 0

11 2.8 0.9 0 0 0 0 0 0 1.4 0 0 0

12 1.4 3.8 0 0 0 0 0 0 0.5 0 0 0

13 89.7 2.3 1.4 0 0 0 0 0 2.8 0 0 0

14 0.3 89.8 0 0 0 4.8 0 0 1.0 0 0 0

15 0 0 97.9 2.1 0 0 0 0 0 0 0 0

16 0 0 3.9 96.1 0 0 0 0 0 0 0 0

17 0 0 0 0 98.2 1.8 0 0 0 0 0 0

18 0 1.4 0 0 1.7 96.5 0 0 0 0 0 0

19 0 0 0 0 0 0 97.6 0 0 0 0 0.4

20 0 0 0 0.7 0 0 0 99.3 0 1.6 0 0

21 0 0.7 0.3 0 0 0 0 0 94.5 0 0 0

22 0 0 0 0 0 0 0.3 0 0.7 94.1 0.7 0

23 0.4 0 0 0 0 0 0.4 0 1.5 0.8 95.1 0

24 0 0.3 0 0 0 0 0 0 0 0 0 99.7

72

Chapter 5

Instrumentation Analysis of

Polyphonic Music

5.1 Introduction and Related Work

In Chapter 4, we already discussed the way to classify the musical signal of mono-

phonic isolated notes. Now in this chapter, we extend the problem into a polyphonic

situation. The term polyphonic here is used to describe the property in a music clip

with more than one instrument existed at the same time. For instance, a Beethoven’s

violin sonata, which is composed of violin and piano, can be regarded as a polyphonic

piece.

Generally, identifying the instrument set in a polyphonic music clip is more chal-

lenging than in a monophonic clip. This is due to the complex nature from mixing

different sources together. Several research works have been conducted to deal with

this problem [55]. First of all, Eggink et al. [56] developed a system that can iden-

tify a predominant solo instrument in the presence of an accompanying keyboard or

73

orchestra using the harmonic features and GMM classifiers. It makes a strong as-

sumption that the harmonic structure of predominant melody should stick out than

other instruments. In addition, they did not aim at identifying all the instrument

set existed in the music clip. Kitahara et al. [57] tried to decompose the polyphonic

problem into three sub-problems: feature variations caused by sound mixtures, pitch

dependency of timbres and the musical context. However, it assumes that the note

data information is already known. Essid et al. [58] exploited a taxonomy of music

ensembles by applying the hierarchical clustering technique. Eggink et al. proposed

another instrument identification method using the missing feature approach [59].

The above work all aims to identify the instruments appeared in the audio file,

but with some of their own constraints or limitations. Nevertheless, they cannot

reveal the instrumentation cue written by composers. In music, the term instrumen-

tation emphasized here is referred to the way a composer arrange each individual

instrument employed in a composition. To illustrate, say in a Beethoven’s violin

sonata, it is possible for the violin to dominate the melody in the first half of the

progression, while the piano dominates the rest. Some instruments are very likely

to appear in only a few segments but not the whole song. Instruments are also ex-

pected to change their roles of representing dominance and accompaniment during

the progression. Generally, the dominance of each instrument should be examined

and analyzed by its melody line, volume, and even the note component. Here we

only use the volume hearing by the listeners to approximate its dominance. The aim

of this work is to roughly manifest this time-varying instrumentation information.

The rest of this chapter is organized as follows. First, in Section 5.3 we will

show the block diagram of our proposed system and clearly illustrate the detail

information about each block. The system is then evaluated on a Western classical

74

music database to test its performance in Section 5.4. Finally, the discussion about

the system is drawn in Section 5.5.

5.2 Motivation and a Small Experiment

To move from the monophonic case to the polyphonic problem, our idea is to contin-

ually utilize the same low-level features instead of designing a new one, but establish

a bridge to overcome the semantic gap. We constructed a small experiment to iden-

tify how the polyphonic nature make influence on the feature calculation procedure.

The feature vector employed in this section is derived from the MPEG-7 Audio

Descriptor. Following is the detail information about these feature descriptors [24].

1. Harmonic Spectral Centroid

The Harmonic Spectral Centroid descriptor is the amplitude-weighted mean

of the harmonic peaks of the spectrum. Like the following three descriptors,

it performs a basic fundamental frequency estimation algorithm and then cal-

culate the power of the relative harmonics. It has similar property with the

other centroid descriptors, but applies only to the harmonic part of the signal.

2. Harmonic Spectral Deviation

The Harmonic Spectral Deviation descriptor relates to the spectral deviation

of the log-amplitude components from a global spectral envelope.

3. Harmonic Spectral Spread

The Harmonic Spectral Spread describes the amplitude-weighted standard de-

viation of the harmonic power of the spectrum, normalized by the instanta-

neous Harmonic Spectral Centroid.

75

4. Harmonic Spectral Variation

The Harmonic Spectral Variation descriptor indicates the normalized correla-

tion between the amplitude of the harmonic power between two subsequent

time-slices of the signal.

5. Log Attack Time

The Log Attack Time descriptor characterizes the “attack” property of a sound

(i.e., the time it takes for the signal amplitude to rise from silence to the

maximum). This descriptor captures the difference between a sudden and a

smooth sound.

6. Temporal Centroid

The Temporal Centroid descriptor also indicates the envelop of a signal, rep-

resenting where in time the energy of a signal is focused. This descriptor aims

at distinguishing between a decaying and a sustain note, when the lengths and

the attack time of the two notes are identical.

The music material used in this experiment is the song Let It Be performed by

the Beatles. In order to fully control the instrument and the volume, we use a MIDI

synthesis software called Reason to synthesize the wave files in terms of various

different situations. The song is fragmented into four clips, each with the duration

equals to thirty seconds. There are two tracks in the MIDI files, that are played on

the piano and the lead instruments. As mentioned earlier, the clip is first applied

to a framing process and calculate the descriptors. The descriptors calculated from

frames are averaged to get a final scalar value.

Figure 5.1 shows the result of the experiment. The six sub-plots correspond to

six features from the MPEG-7 Audio Descriptors that was discussed before. The

76

1 2 3
0

1000

2000

3000

4000

5000
Harmonic Spectral Centroid

1 2 3
0

0.2

0.4

0.6

0.8
Harmonic Spectral Deviation

1 2 3
0

0.2

0.4

0.6

0.8

1
Harmonic Spectral Spread

1 2 3
0

0.1

0.2

0.3

0.4
Harmonic Spectral Variation

1 2 3
0

0.5

1

1.5
Log Attack Time

1 2 3
0

5

10

15

20
Temporal Centroid

Clip 1
Clip 2
Clip 3
Clip 4

Piano

Only

Lead

Only
Mix

Figure 5.1: Experimental results of applying the MPEG-7 Audio Descriptors to

polyphonic music.

four colors represent the four clips fragmented from the original song. The number

in the x-axis (i.e., 1, 2 and 3) denote three different situations: only the piano

track is presented, both piano and lead tracks are presented, and only the lead

track is presented in the clip, respectively. It can be shown that the first four

descriptors results in a great difference when the instrument set changes, and they

are approximately independent to the changing of clips. For example, the Harmonic

Spectral Centroid and the Harmonic Spectral Spread descriptors are larger when

there is only the lead instrument presented, and are smaller when there is only

the piano instrument presented. For clips mixed with two instruments, the values

are in between. This is due to the fact that the descriptors somewhat have an

averaging nature. For another, the Harmonic Spectral Deviation and the Harmonic

Spectral Variation descriptors have the largest number when two tracks are mixed

77

Table 5.1: Corresponding velocity (volume) of piano and lead instruments in each

song.

No. Song01 Song02 Song03 Song04 Song05 Song06 Song07

Piano 120 120 110 100 90 80 70

Lead N/A 70 70 70 70 70 70

No. Song08 Song09 Song10 Song11 Song12 Song13

Piano 70 70 70 70 70 N/A

Lead 80 90 100 110 120 120

and presented simultaneously. The experimental result reveals that the low-level

features, such as the MPEG-7 Audio Descriptors, are able to capture the timbre

variation even in the polyphonic music.

The purpose of the second experiment is to test how the volume of an instrument

makes influence on the features. Similar to the first one, the song Let It Be is

used in the experiment. We also apply Reason to synthesize thirteen songs, which

correspond to various volume allocations in the MIDI file. Table 5.1 lists the detail

information about the allocation of the velocities, which can be roughly regarded as

the volume, of each song. The velocity of each instrument is a value that lies within

0 to 128. In the setting, the volume of the piano decreases when the song number

increases. After the calculation of the features, the results are shown in Figure 5.2. It

appears that the first four features (i.e., the Harmonic Spectral Centroid, Harmonic

Spectral Deviation, Harmonic Spectral Spread and Harmonic Spectral Variation)

tend to increase and decrease linearly when the volume allocation differs. Owing

to this results, we believe that these basic features can still capture the instrument

difference to some degree even in the polyphonic music. The following part of this

section is to illustrate the proposed method of the instrumentation analysis system.

78

1 3 5 7 9 11 13
0

1000

2000

3000

4000

5000
Harmonic Spectral Centroid

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8
Harmonic Spectral Deviation

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1
Harmonic Spectral Spread

1 3 5 7 9 11 13
0

0.1

0.2

0.3

0.4
Harmonic Spectral Variation

1 3 5 7 9 11 13
−2

−1

0

1

2
Log Attack Time

1 3 5 7 9 11 13
0

5

10

15

20
Temporal Centroid

Figure 5.2: Experimental results of applying the MPEG-7 Audio Descriptors to

polyphonic music.

5.3 Description of the Proposed System

The entire block diagram is shown in Figure 5.3. To begin with, the feature vectors

and beat data of the input polyphonic music clip are extracted. After that an

integration process is formed by averaging frames inside the same beat intervals. A

fuzzy clustering algorithm is then applied to the integrated feature. The number of

clusters should equal to the number of instruments. Finally, the cluster center and

a few corresponding integrated features are used in the instrument identification

process to determine the final instrument set.

5.3.1 Feature Extraction

In the first stage, we apply the low-level feature vector extraction to capture the

basic signal characteristics from each frame. In order to simplify and unify the sys-

79

Figure 5.3: Block diagram of the proposed instrumentation analysis system.

Table 5.2: Detail of the feature vector used in this system.

MFCC Features

01 - 13 Mean of the first 13 MFCCs

14 - 26 Standard deviation of the first 13 MFCCs

MPEG-7 Timbre Descriptors

27 Harmonic Centroid Descriptor

28 Harmonic Deviation Descriptor

29 Harmonic Spread Descriptor

30 Harmonic Variation Descriptor

31 Spectral Centroid Descriptor

32 Temporal Centroid Descriptor

33 Log-Attack-Time Descriptor

tem, we select two low-level feature sets recommended in [53]. The study conducted

several feature selection criteria to rank the features in the instrument recognition

task. These two feature sets are the MPEG-7-based descriptors [60] and the MFCCs.

Musical instrument timbre descriptors in MPEG-7 standard aim at describing per-

ceptual features of instrument sounds. Collectively, they form a 33-dimensional

feature vector of each frame. Table 5.2 lists the detail information about our feature

vector. The input audio file is first converted to mono if needed, and then downsam-

ple to 16000 Hz to enhance the processing speed. After that, a hamming window

with half-overlapped frame is applied to extract the feature vectors.

80

Figure 5.4: A demonstration of the Beatroot graphical user interface.

5.3.2 Beat Tracking and Feature Integration

So far, the feature vector obtained from each frame can only reveal the spectral

information in a considerably short period, which is considered to be stationary.

The integration of these fragmentary vectors needs to be accomplished according to

the note data messages inside a music clip. However, since that calculating the exact

onset time and duration of each note is still fairly challenging today, we adopt the

beat-synchronous integration scheme suggested in [61] instead. The idea is, instead

of integrating the feature vector inside a note, the integration process is constructed

inside every beat interval. BeatRoot developed in [62] is used to perform the beat-

tracking algorithm to the input signal. Figure 5.4 display a demonstration of the

GUI of Beatroot. It estimates the beginning and the ending time of each beat and

give an acceptable result for our further processing. Generally, a music clip tends

to have only one or two notes appearing inside a beat time. The integration process

81

on beat interval could approximate the case on every exact note. Other minor

exceptions can be treated as the outliers and be removed by a smoothing filter in

the final stage.

Let vk,1, vk,Nk
denote the feature vectors calculated from the first and the last

frame in the kth beat, respectively. Then the integration process can be done by

averaging Nk vectors,

sk =

Nk∑
t=1

1

Nk

vk,t, (5.1)

where sk denotes the beat-synchronous integrated vector in the kth beat.

5.3.3 Fuzzy Clustering

One of the major difficulty in instrument identification of polyphonic music is the

timbre mismatch between the training and testing instruments. For instance, the

violin used in the training process could not resemble the one in the testing music.

Due to this reason, directly applying the beat-synchronous feature to supervised

classifiers in a frame-by-frame manner would not perform well. On the other hand,

we exploit the temporal continuity property in the instrumentation to solve this

problem. That is, in most cases the instrument tends to be arranged consistently

and the timbre of each specific instrument should not have a large change. We thus

apply the fuzzy clustering technique to the integrated vectors of the entire music

clip.

The fuzzy c-means clustering (FCM) algorithm attempts to partition a finite

collection of elements s into a collection of c fuzzy clusters with respect to minimizing

the following objective function Q:

Q =
c∑

i=1

∑

k

um
ik||sk − ci||2, (5.2)

82

where m is a fuzzification coefficient (m = 2 in this paper). We use c and uik to

denote the resulting cluster centers and the membership function. They can be

obtained by iteratively repeating the following equations:

ci(t) =

∑
k

um
ik(t)sk

∑
k

um
ik(t)

, (5.3)

and

uik(t + 1) =
1

c∑
j=1

(||sk−ci(t)||
||sk−cj(t)||)

2/(m−1)

(5.4)

Details of the algorithm can be found in [63]. Unlike hard k-means clustering,

FCM gives the membership function as soft labeling, which can be regarded as the

degree of dominance for a particular instrument. Experimental result shows that

the volume of the instrument would directly make influence on the membership

function output. Since estimating the number of instruments is beyond the scope

of our work, we manually fed the correct number c into the system.

5.3.4 Instrument Identification

In instrument identification process, we use the support vector machine (SVM) as

a supervised learning algorithm to accomplish the recognition task. The detail

introduction of the SVM classifier can be found in Section 4.3.2.

After the integration process is finished, the remaining work is to identify the

correct instrument represented by each cluster. Before the identification process, we

use the SVM to build pre-trained models [64]. The training data is collected from

different solo recordings, in order to consider the timbre variation between different

music clips. Since that directly classifying the cluster centers using SVMs sometimes

gives unfavorable results, we use an alternative method. A membership degree

83

0 1 2

0.4

0.8

Time (minutes)

M
em

b
er

sh
ip

F
u
n
ct

io
n

Figure 5.5: Instrument identification illustration: Selection of integrated vectors

with their membership function exceeding the threshold.

1 2 3 4 5
0

0.2

0.4

0.6

0.8
Histogram for the first cluster

1 2 3 4 5
0

0.2

0.4

0.6

0.8
Histogram for the second cluster

Cello

Violin

Piano

Guitar

Cello

Violin

Piano Guitar

Oboe

Oboe

Figure 5.6: Instrument identification illustration: Calculating the instrument label-

ing histogram of selected integrated vectors using pre-trained SVM models for each

cluster.

84

threshold T (0.9 in this paper) is set. For every cluster, integrated vectors with

their membership function values higher than the threshold are grouped together

and individually applied to SVMs to obtain the classification labeling result li of

those integrated vectors.

li = SVM{xk|uik > T} (5.5)

The result is then used to calculate the instrument labeling histogram. Figure 5.5

and 5.6 show an example of the integrated vectors selection and the histogram

calculation result.

Let Hi,j denote the jth instrument labeling count in the ith cluster derived from

li, the labeling probability Pi,j is generated by averaging the count Hi,j within the

same cluster as follows,

Pi,j =
Hi,j

Nj∑
j=1

Hi,j

(5.6)

The identification process is done by selecting the largest probability in Pi,j,

Li = arg
j

max
i,j

Pi,j, (5.7)

where Li represents the identification result of the ith cluster. After the first step,

the jth instrument is marked as already used in the histogram table. The system

will continue to find the largest probability that exists in unused instruments and

so on, until all clusters are labeled. For example, in Figure 5.6 cluster 1 will first be

labeled as violin, and then cluster 2 will be labeled as piano. Finally, the labeled

instrument set Li and the membership function uik are treated as the instrumen-

tation information output. This method is designed to solve the timbre mismatch

problem. Since that the fuzzy clustering step is unsupervised, integrated vectors

will automatically be clustered together with respect to different instruments, due

85

Table 5.3: Recognition rates for different instrument combinations in the Western

classical music. Note that string is regarded as a combination of violin and cello

here.

Violin Sonata Cello Sonata

Violin 82.93% Cello 85.71%

Piano 85.37% Piano 90.48%

Piano Trio Oboe Concerto

Piano 96.67% Oboe 83.33%

Violin 81.11% String 66.67%

Cello 94.44% Average 85.19%

to its temporal continuity property. Classifiers are applied to the clustering result

in the last stage.

5.4 Simulation Results

5.4.1 Experiment Setup

The evaluation of this work can be divided into two parts. First, the instrument

identification process gives an estimation of the instrument set. We can calculate the

averaging recognition rate by testing a set of duo and trio songs. For another, the

instrumentation analysis result output a time-varying distribution related to each

instrument. In this part we select two famous classical music clips to demonstrate

our simulation results.

5.4.2 Instrument Identification Result

In this experiment, five common instrument models are trained by the SVM using

clean solo recordings beforehand. They are cello, violin, piano, guitar and oboe.

86

Table 5.4: Number of training instrument models and average recognition rate com-

paring to other works.

Kitahara et al. [65] Essid et al. [58] Our works

Number of models 4 12 5

Recognition rate 83.30% 53.00% 85.19%

The average length of training data for each model is about 50 minutes. To evaluate

the identification performance, instead of using the MIDI-based synthesized files, we

select four regular musical forms in real-world Western classical music as the testing

data. Each of them is composed of different instrument sets. The database consists

of 200 music clips, and the overall duration of the music clips is about 10 hours.

The recognition accuracy of instrument i is defined by

Accuracyi =
of clips correctly identified as i

of testing music clips
(5.8)

The result is listed in Table 5.3. It results in an 85.19% recognition rate in aver-

age, which is essentially comparable to other relative works in terms of the training

model size [65], [58]. Table 5.4 lists a comparison of the averaging recognition rates

with other relative works. One should notice that the larger number of training

models leads to the lower average recognition rate. In addition, the training and

testing data used in these works are not exactly the same.

5.4.3 Instrumentation Analysis Result

Membership function output from the fuzzy clustering algorithm combined with the

instrumental labels are considered as the dominance of the instrument played in a

music clip. We select two well-known Western classical music pieces to demonstrate

the result. They are a violin sonata composed by Beethoven, and a piano trio

87

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

minutes

m
em

b
er

sh
ip

fu
n
ct

io
n

piano
violin

Figure 5.7: Simulation results of “Beethoven: Violin Sonata Spring mov.4”. Only

the 3.5 minutes in beginning is selected.

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

minutes

m
em

b
er

sh
ip

fu
n
ct

io
n

piano
cello
violin

Figure 5.8: Simulation results of “Brahms: Piano Trio No.4 mov.3”. Only the 3.5

minutes in beginning is selected.

88

composed by Brahms. Figure 5.7 and Figure 5.8 show the results of these duo and

trio pieces, respectively. By referring to the music scores and recordings, it can be

shown that the system output a reasonable estimation.

5.5 Discussion

In this chapter, an instrumentation analysis algorithm for polyphonic music is pro-

posed. The system can automatically identify the instrument set without knowing

any of the note data information, such like the pitch and onset timing. As men-

tioned earlier, the system takes considerably less computation time. It only requires

a beat-tracking algorithm with fuzzy clustering technique. We examined it with

five common instrument models, and find that the result is comparable to other

relative works. Moreover, it can roughly sketch the dominance of each instrument

during the music progression. We believe this time-varying result can be used as

a mid-level feature to improve the performance of music recommendation systems.

To be more specific, the systems may recommend a list of songs which is similar in

their instrumentation information as a new option, instead of using the metadata

(e.g., the genre and artist).

For future work, we would like to increase the number of training instruments.

The system will be modified to further accommodate to drum and human voice,

which are very common in recent popular music. The inharmonic nature of these

signals needs to be handled by extra algorithms.

89

Chapter 6

An Instrumentation-Based Music

Similarity Measure System

6.1 Introduction and Related Work

The advent of the audio compression techniques and the booming Internet technol-

ogy has changed the way people listens to and discover new music. Owing to the

rapid growth in the digital music collection size, the conventional way of discovering

and recommending music, such as the radio broadcasting, is no longer sufficient for

the immense music files nowadays. As a result, a computer-based and personalized

music recommendation system is highly expected [2].

One of the most crucial steps in implementing such system is calculating the

similarity between songs. Several algorithms have been proposed and evaluated

by researchers toward this topic [10], [12], [14], [16], [17]. However, most of the

existing systems rely mainly on calculating the statistical model of the low-level

features, such as the Mel-frequency cepstral coefficients (MFCCs), inside a music

90

clip. These low-level features, in spite of their highly efficient and uniform nature,

could not access to any of the musical content (e.g., the melody, chord progression

or instrumentation). This shortage has been investigated in [61], [66]. In [66], the

authors incorporated the chord progression estimation into the feature extraction

step to boost the accuracy of musical emotion classification.

In music, the term instrumentation is referred to the way a composer arrange

the individual instrument employed in a composition. In our previous work [6], we

proposed an algorithm to analyze the musical signal and derive its instrumentation

estimation. Unlike the existing algorithms, it not only gives the identification result,

but also output a time-varying information of each instrument. This information can

be further employed to design several mid-level features, which are well correlated

with the musical content, to enhance the similarity calculation procedure. More-

over, by combining these mid-level features, our similarity calculation result can be

specifically oriented toward the instrumentation cue, except for other content. This

property should be fairly useful for many music information retrieval tasks.

The rest of this chapter is organized as follows. In Section 6.2 we briefly introduce

the structure and functionality of the instrumentation analysis system. Then in

Section 6.3 we illustrate the way to utilize the instrumentation information as a

mid-level feature to construct a similarity measure system. This system is evaluated

by an objective test in Section 6.4. Finally, the conclusions and future work are

drawn in Section 6.5.

91

6.2 Instrumentation Analysis System

The purpose of our instrumentation analysis system is to identify the instrument set

inside a music piece, and then draw a rough sketch of their time-varying dominance

as an additional information. The detail algorithm can be found in Chapter 5. First

of all, the low-level feature vector, which combines the mean and variance of the

MFCCs and MPEG-7 Audio Descriptors are extracted. We also apply BeatRoot to

extract the beat data of the input music piece. The feature vector is then integrated

by averaging frames inside the same beat interval. This integration process leads

to a more compact and content-based feature representation. Instead of classifying

each integrated vectors independently, an unsupervised fuzzy c-means algorithm is

applied. The number of clusters c is equal to the number of instruments appearing

in the music piece. This approach employs the time coherence of instruments inside

a music piece (i.e., the consistency of the instrument set throughout the music), and

also aims at solving the timbre mismatch problem between the training and testing

data. Then the cluster centers with a few corresponding integrated vectors are used

in the instrument identification process, which consists of a set of SVMs and the

pre-trained models, to identify the final instrument set. The membership function

related to a cluster is regarded as the time-varying dominance of that instrument.

Finally, the identification instruments with their dominance are considered as the

output of the system.

6.3 Proposed Similarity Measure System

Figure 6.1 shows the block diagram of the proposed instrumentation-based music

similarity measure system. For a music database that consists of N songs, first

92

Figure 6.1: Block diagram of the proposed instrumentation-based music similarity

measure system.

we apply the instrumentation analysis algorithm to extract the instrumentation

information of all the songs. The ith instrumentation information is denoted as

Ii(mi, ni), where mi, ni are the instrument and the beat interval index, respectively.

After obtaining these mid-level representations, we design a distance calculation

step to calculate the distance vector of all the songs in pairs. This design mainly

focuses on the song pairs with the same instrument set (e.g., two violin sonatas).

The distance calculation between different instrument sets is beyond the scope of

this paper. The distance vector of Ii and Ij, denoted as disti,j, can be expressed as

a four-dimensional vector

disti,j = [CC, KL, ED, MD]T (6.1)

These four values is calculated as follows.

93

6.3.1 Normalized Cross-Correlation

The normalized cross-correlation of instrument m of Ii and Ij is

CCm(τ) =
1

min(Li, Lj)

∞∑
n=0

Ii(m,n) · Ij(m,n + τ) (6.2)

where Li and Lj denote the data length (time duration) of Ii and Ij. By averaging

all instruments with their maximal values and taking the inverse, we can obtain the

distance

CC = (
1

M

∑
m

max
τ

(CCm(τ)))−1 (6.3)

where M is the number of instruments. This coefficient is used to measure the

similarity of two waveforms as a function of a time-lag applied to one of them.

6.3.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is used to measure the difference between two

instrument distributions. Let Pi(m), Pj(m) denote the instrument distributions of

Ii and Ij by calculating the mean membership value according to time, such as

Pi(m) =
1

Li

∑
ni

Ii(m,ni) (6.4)

The KL divergence from Pj(m) to Pi(m) is calculated as

DKL(Pi||Pj) =
M∑

m=1

Pi(m) log
Pi(m)

Pj(m)
(6.5)

Owing to the asymmetric property of the divergence, we made it become symmetric

by summing up from two directions:

KL = DKL(Pi||Pj) + DKL(Pj||Pi) (6.6)

94

6.3.3 Entropy Difference

Let histi,m(X) denote the histogram of the mth instrument in Ii, the entropy

Hi,m(X) can be calculated by

Hi,m(X) = −
∑

k

histi,m(xk) log2 histi,m(xk) (6.7)

We can then calculate the absolute difference between Hi,m and Hj,m and average

the difference with respect to all the instruments to obtain the distance

ED =
1

M

M∑
m=1

|Hi,m −Hj,m| (6.8)

The entropy of an instrumentation function can be regarded as an estimation of the

changing speed of the dominance and accompaniment instruments inside a music

piece.

6.3.4 MFCC Distance

Unlike the above three features, the MFCC distance (MD) is directly derived from

the low-level feature MFCCs. We apply MA Toolbox developed by Pampalk to

calculate the distance [20]. MFCCs are first extracted from each song, and then

applied to a k-means clustering step to obtain a statistical model. Finally, the

Monte-Carlo sampling method is applied to approximate the likelihood function of

the songs in pair as a distance measure MD.

6.3.5 Weighted Distance Optimization

In the testing stage, we apply a weighted average to the distance vector to obtain

the final scalar distance di,j,

di,j = c · disti,j (6.9)

95

Table 6.1: Detail information of each subset inside the testing database.

Subset Number of pieces Class Instruments

Violin Sonata 135 Duo Violin & Piano

Cello Sonata 20 Duo Cello & Piano

Piano Trio 47 Trio Piano & Violin & Cello

where c = [c1, c2, c3, c4] and is subjected to

∑
r

cr = 1, 0 ≤ cr ≤ 1, for all r. (6.10)

The way of choosing the coefficient c is based on a 10-fold cross validation in the

experiment. That is to say, c is selected to maximize the accuracy while nine-tenth

of the music pieces represent the training data. After c is determined, the rest

one-tenth of the pieces are used to validate the performance. The process is then

repeated ten times to average the result.

In our work, c is selected to maximize the accuracy while nine-tenth of the music

pieces represents the training data. After c is determined, the rest one-tenth of the

pieces is used to validate the performance. The process is then repeated ten times

to average the result.

6.4 Simulation Results

In our instrumentation analysis system, the pre-trained model comprises five instru-

ments: the violin, cello, piano, guitar and oboe. Due to its limitation to detect

the drum pattern and human voice, we operate the system on a Western classical

music database, instead of the popular songs. The database consists of three sub-

sets: two duo classes and one trio class. Table 6.1 lists the detail information of

them. Overall, the database contains 202 pieces, which are collected from the work

96

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Time (minutes)

D
o
m

in
a
n
ce

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (minutes)

D
o
m

in
a
n
ce

(b)

Violin
Piano

Violin
Piano

Figure 6.2: A query-and-hit example. The top plot is instrumentation estimation of

the query song, Mozart violin sonata KV. 380, mov. 3. The bottom plot shows the

estimation of the hit song, Mozart violin sonata KV. 296, mov. 1. In this example

c = [0.73, 0.18, 0.04, 0.05].

composed by the Baroque, Classics, Romantic and Contemporary composers (e.g.,

Bach, Beethoven, Brahms, Chopin, and Prokofiev). All songs are converted to the

16000 Hz and mono wave files if needed.

To date, the way of choosing the proper evaluation criterion is still very chal-

lenging for music similarity applications. In this study, we adopt the composer

classification criterion and measure the accuracy to evaluate the performance. Ac-

cording to music theory, the pieces composed by the same composer tend to share

similar properties, such like the instrumentation and chord progression. Therefore,

the classification performance is expected to be improved while we integrate these

content-based information in the system.

For each input query song, first we compute its distances with all other songs in-

side the database, as described in the previous section, and then apply the k-nearest

97

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
r
r
e
c
t
n
e
s
s

Random Choose
MFCCs
MFCCs + Proposed

Violin Sonata Cello Sonata Piano Trio Overall

Figure 6.3: Evaluation result of the similarity measure system. It displays the

accuracy of each subset inside the database using different feature schemes. Overall,

by incorporating the proposed features the accuracy can be increased by nearly 10%.

neighbor (kNN) to select the k closest songs. Figure 6.2 shows an example of the

successful query and hit songs with their instrumentation estimations. These songs

are both the movements from the violin sonatas composed by Mozart. According

to the plot, it appears that although having distinct durations, the two songs pos-

sess several similar properties in their instrumentation estimations, such like the

distribution of the instrument and the changing speed of the dominance and accom-

paniment instruments. To quantitatively analyze the performance, the accuracy is

defined by

Accuracy =
of music with the same composer as query

k
(6.11)

Three different approaches are compared in this experiment. The random-choosing

approach is considered as the baseline. We also compare the cases of using the

MFCCs only and the one integrated with the proposed features.

98

Figure 6.3 illustrates the accuracy of each individual subset and the overall per-

formance in terms of different approaches. In all subsets, the classification accuracies

tend to increase by incorporating the proposed mid-level features. It seems that the

increase in duo classes are greater than the one in the trio class. One possible ex-

planation is the degradation of the instrumentation estimation correctness when the

number of instruments inside the piece increases. Generally, the integration results

in an increase from 49.79% to 59.24% in overall classification performance in our

experiment. The result shows the proposed features are fairly helpful since they can

access the musical content.

6.5 Discussion

In this chapter, we present a music similarity measure system based on the in-

strumentation information instead of merely using the low-level feature. Three

instrumentation-related mid-level features are designed and combined with the MFCCs

together to improve the measure performance. This approach aims at overcoming

the semantic gap between the signal characteristics and the musical content, which is

considered as one of the most challenging tasks in content-based music information

retrieval applications. We examine the system on a classical music database. The

result shows that by incorporating the mid-level features, the composer classification

accuracy can be further increased by approximately 10%.

For future work, there are two possible directions. First, we are still refining the

instrumentation analysis system by detecting the drum patterns and human voices,

in order to handling the real-world popular music. For another thing, except for

the instrumentation, other information (e.g., melody and tempo) is also likely to

99

increase the performance in the similarity measure tasks.

100

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The development of the feature extraction techniques in audio signal processing led

us to infer that the music similarity measure system designed by such techniques

can be well consistent with the human auditory system. The simulation results, as

shown in Chapter 2, clearly supports this expectation. The result shows that the

retrieved similar songs tend to share the same instrument arrangement or the genre

categories with the original query song. One possible explanation is that the signal

processing techniques utilized in this study, such like the MFCCs, could capture

the characteristics of the individual timbre to some degree. Generally, the musical

timbre has a strong influence on classifying the songs according to their genres and

instrument arrangements.

Although the results seems to fulfill our expectation, this design still leaves room

for improvement if we want to incorporate it into a personalized music recommen-

dation system. That is, in such applications it is required to design a new mid-level

101

features that directly orients toward a specific musical content (e.g., the genre and

instrumentation). This is the main topic in the following chapters. In Chapter 3,

we extend the idea of the constant Q transform into the time-frequency plane, to

examine the distributions of various instrumental signals. The experimental result

shows that the time-frequency analysis using the CQT is more suitable for analyzing

the instrumental signals when dealing with the pattern recognition problems.

Based on the findings from the analyzing results of the musical instrumental

signals, we examine the usage of various feature sets to classifying the real-world

instrumental pieces in terms of both the monophonic and polyphonic cases. Recog-

nizing the instrumental trajectories in the polyphonic music is more challenging than

the monophonic music. In this study, we continually utilize the low-level features

instead of designing a brand new one, but with the temporal feature integration

strategy and the fuzzy clustering techniques. In Chapter 5, a new instrumentation

analysis system is proposed. The main difference of our proposed system and the

related works is that we try to estimate the dominance of each existing instrument

with respect to time. These time-varying information seems to accord with the vol-

umes of the instrumental sounds, which is considerably consistent with the human

perception.

Due to the success of estimating the instrumentation information, we further

utilize these information as mid-level feature sources, and design a instrumentation-

based music similarity measure system. In contrast with the system discussed in

Chapter 2, the proposed system can be specifically oriented toward the instrument

content, but not other musical contents. The performance has been evaluated by

a classical music database with an objective test. The result shows that the in-

corporation of these newly designed mid-level features can enhance the composer

102

classification accuracies.

7.2 Future Work

This study has taken a step in the direction of designing a new mid-level feature ex-

traction method and music similarity measure system. The study conducted several

representative experiments based on the small-scale music databases. We acknowl-

edge that although we tried to cover a wide range of different music styles, the

results could not be generalized to all the possible real-world music pieces, owing to

the limitation of the database sizes. In addition, the subjective nature of the music

similarity seems to restrict the capability for quantitatively analyzing the perfor-

mance of our systems. The approaches outlined in this study should be replicated

in other large-scale music databases consisting the other real-world music pieces. To

achieve this, further research may include the design of recognizing the percussion

instruments, such as a drum set, which is considered to be non-harmonic. More-

over, in most of the popular music, the arrangers tend to use lots of the synthesized

instruments, which are difficult to be recognized and classified correctly.

103

References

[1] K. Brandenburg and M. Bosi, “Overview of MPEG audio: Current and future

standards for low-bit-rate audio coding,” Journal-Audio Engineering Society,

vol. 45, pp. 4–21, 1997.

[2] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney,

“Content-based music information retrieval: Current directions and future chal-

lenges,” Proceedings of the IEEE, vol. 96, no. 4, pp. 668–696, 2008.

[3] S. Douglas, “Music downloads reach record high,” 2007, [online] available at

http://www.investmentmarkets.co.uk.

[4] M. Castelluccio, “The Music Genome Project,” Strategic Finance, vol. 88, no.

6, pp. 57–58, 2006.

[5] H. C. Chen and A. L. P. Chen, “A music recommendation system based on

music and user grouping,” Journal of Intelligent Information Systems, vol. 24,

no. 2, pp. 113–132, 2005.

[6] S. C. Pei and N. T. Hsu, “Instrumentation analysis and identification of poly-

phonic music using beat-synchronous feature integration and fuzzy clustering,”

in Proceedings of the ICASSP, 2009, (accepted).

[7] S. C. Pei and N. T. Hsu, “A novel music similarity measure system based on

instrumentation analysis,” in Proceedings of the ICME, 2009, (accepted).

[8] C. S. Xu, N. C. Maddage, and X. Shao, “Automatic music classification and

summarization,” IEEE Transactions on Speech and Audio Processing, vol. 13,

no. 3, pp. 441–450, 2005.

104

[9] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”

IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–

302, 2002.

[10] B. Logan and A. Salomon, “A music similarity function based on signal anal-

ysis,” in Proceedings of the ICME, 2001, pp. 952–955.

[11] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a

metric for image retrieval,” International Journal of Computer Vision, vol. 40,

no. 2, pp. 99–121, 2000.

[12] E. Pampalk, “Speeding up music similarity,” in Proceedings of the MIREX,

2005.

[13] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of audio-based music

similarity and genre classification,” in Proceedings of the ISMIR, 2005.

[14] E. Pampalk, A. Rauber, and D. Merkl, “Content-based organization and visual-

ization of music archives,” in Proceedings of the ACM International Conference

on Multimedia, 2002, pp. 570–579.

[15] E. Pampalk, S. Dixon, and G. Widmer, “Exploring music collections by brows-

ing different views,” Computer Music Journal, vol. 28, no. 2, pp. 49–62, 2004.

[16] J. J. Aucouturier and F. Pachet, “Music similarity measures: What’s the use?,”

in Proceedings of the ISMIR, 2002.

[17] J. J. Aucouturier and F. Pachet, “Improving timbre similarity: How high is

the sky?,” Journal of Negative Results in Speech and Audio Sciences, vol. 1,

no. 1, pp. 1–13, 2004.

[18] J. J. Aucouturier, F. Pachet, and M. Sandler, “The way it sounds: Timbre

models for analysis and retrieval of music signals,” IEEE Transactions on

Multimedia, vol. 7, no. 6, pp. 1028–1035, 2005.

[19] G. Tzanetakis and P. Cook, “MARSYAS: A framework for audio analysis,”

Organised Sound, vol. 4, no. 3, pp. 169–175, 2000.

[20] E. Pampalk, “A Matlab toolbox to compute music similarity from audio,” in

Proceedings of the ISMIR, 2004, pp. 254–257.

105

[21] T. Kolenda, S. Sigurdsson, O. Winther, L. K. Hansen, and J. Larsen, “DTU:

Toolbox,” 2002, [online] available at http://isp.imm.dtu.dk/toolbox/.

[22] X. Huang and H. W. Hon, Spoken Language Processing: A Guide to Theory,

Algorithm and System Development, Prentice Hall PTR, 2001.

[23] J. S. Jang, “Audio Processing Toolbox,” [online] available at

http://www.cs.nthu.edu.tw/ jang.

[24] J. M. Martinez, “MPEG-7 overview,” ISO/IEC JTC1/SC29/WG11N5525,

2003, [online] available at http://www.chiariglione.org/mpeg/standards/mpeg-

7.

[25] S. Quackenbush and A. Lindsay, “Overview of MPEG-7 audio,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 725–729,

2001.

[26] J. J. Aucouturier and F. Pachet, “The influence of polyphony on the dynamical

modelling of musical timbre,” Pattern Recognition Letters, vol. 28, no. 5, pp.

654–661, 2007.

[27] J. B. MacQueen, “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of the Berkeley Symposium on Mathematical

Statistics and Probability, 1967, pp. 281–297.

[28] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Pro-

cessing Magazine, vol. 13, no. 6, pp. 47–60, 1996.

[29] J. S. Jang, “DCPR (Data Clustering and Pattern Recognition) Toolbox,” [on-

line] available at http://www.cs.nthu.edu.tw/ jang.

[30] S. Chretien and A. O. Hero III, “Kullback proximal algorithms for maximum-

likelihood estimation,” IEEE Transactions on Information Theory, vol. 46, no.

5, pp. 1800–1810, 2000.

[31] X. Zhou, Y. Fu, M. Liu, M. Hasegawa-Johnson, and T. S. Huang, “Robust anal-

ysis and weighting on MFCC components for speech recognition and speaker

identification,” in Proceedings of the ICME, 2007, pp. 188–191.

106

[32] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[33] G. Salton and C. Buckley, “Improving retrieval performance by relevance feed-

back,” Journal of the American Society for Information Science, vol. 41, no. 4,

pp. 288–297, 1990.

[34] J. C. Brown, “Calculation of a constant Q spectral transform,” The Journal

of the Acoustical Society of America, vol. 89, no. 1, pp. 425–434, 1991.

[35] J. C. Brown and M. S. Puckette, “An efficient algorithm for the calculation

of a constant Q transform,” The Journal of the Acoustical Society of America,

vol. 92, no. 5, pp. 2698–2701, 1992.

[36] C. N. dos Santos, S. L. Netto, L. W. R. Biscainho, and D. B. Graziosi, “A mod-

ified constant-Q transform for audio signals,” in Proceedings of the ICASSP,

2004, vol. 2, pp. 469–472.

[37] D. B. Graziosi, C. N. dos Santos, S. L. Netto, and L. W. P. Biscainho, “A

constant-Q spectral transformation with improved frequency response,” in Pro-

ceedings of the ISCAS, 2004, vol. 5, pp. 544–547.

[38] F. C. C. B. Diniz, I. Kothe, L. W. P. Biscainho, and S. L. Netto, “A bounded-Q

fast filter bank for audio signal analysis,” in Proceedings of the International

Telecommunications Symposium, 2006, pp. 1015–1019.

[39] F. C. Diniz, L. W. P. Biscainho, and S. L. Netto, “Practical design of filter

banks for automatic music transcription,” International Symposium on Image

and Signal Processing and Analysis, pp. 81–85, 2007.

[40] O. Izmirli, “A hierarchical constant Q transform for partial tracking in musical

signals,” in Proceedings of the 2nd COST G-6 Workshop on Digital Audio

Effects, 1999.

[41] W. J. Pielemeier, G. H. Wakefield, and M. H. Simoni, “Time-frequency analysis

of musical signals,” Proceedings of the IEEE, vol. 84, no. 9, pp. 1216–1230, 1996.

[42] M. Lawrence, “Simple music theory as it relates to signal processing,” 2004,

[online] available at http://cnx.org/content/m12461.

107

[43] Z. Duan, Y. Zhang, C. Zhang, and Z. Shi, “Unsupervised single-channel music

source separation by average harmonic structure modeling,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 16, no. 4, pp. 766–778, 2008.

[44] A. Eronen and A. Klapuri, “Musical instrument recognition using cepstral

coefficients and temporal features,” in Proceedings of the ICASSP, 2000, vol. 2,

pp. 753–756.

[45] A. Eronen, “Comparison of features for musical instrument recognition,” in

Proceedings of the IEEE Workshop on Applications of Signal Processing to Au-

dio and Acoustics, 2001.

[46] A. G. Krishna and T. V. Sreenivas, “Music instrument recognition: from iso-

lated notes to solo phrases,” in Proceedings of the ICASSP, 2004, vol. 4, pp.

265–268.

[47] S. Essid, G. Richard, and B. David, “Musical instrument recognition on solo

performance,” in Proceedings of the EUSIPCO, 2004, pp. 1289–1292.

[48] E. Benetos, M. Kotti, and C. Kotropoulos, “Musical instrument classification

using non-negative matrix factorization algorithms and subset feature selec-

tion,” in Proceedings of the ICASSP, 2006, vol. 5, pp. 221–224.

[49] S. Essid, G. Richard, and B. David, “Musical instrument recognition by pair-

wise classification strategies,” IEEE Transactions on Audio, Speech and Lan-

guage Processing, vol. 14, no. 4, pp. 1401–1412, 2006.

[50] A. Klapuri, “Analysis of musical instrument sounds by source-filter-decay

model,” in Proceedings of the ICASSP, 2007, pp. 53–56.

[51] B. Su, An intergrated musical auto-transcription system, Master Thesis, Na-

tional Taiwan University, 2001.

[52] M. J. Kartomi, On Concepts and Classifications of Musical Instruments, Uni-

versity Of Chicago Press, 1990.

[53] J. D. Deng, C. Simmermacher, and S. Cranefield, “A study on feature analysis

for musical instrument classification,” IEEE Transactions on Systems, Man,

and Cybernetics, vol. 38, no. 2, pp. 429–438, 2008.

108

[54] S. Aksoy and R. M. Haralick, “Feature normalization and likelihood-based

similarity measures for image retrieval,” Pattern Recognition Letters, vol. 22,

no. 5, pp. 563–582, 2001.

[55] S. Essid, G. Richard, and B. David, “Instrument recognition in polyphonic

music,” in Proceedings of the ICASSP, 2005, vol. 3, pp. 245–248.

[56] J. Eggink and G. J. Brown, “Instrument recognition in accompanied sonatas

and concertos,” in Proceedings of the ICASSP, 2004, vol. 4, pp. 217–220.

[57] T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “Instrument

identification in polyphonic music: Feature weighting with mixed sounds, pitch-

dependent timbre modeling, and use of musical context,” in Proceedings of the

ISMIR, 2005, pp. 558–563.

[58] S. Essid, G. Richard, and B. David, “Instrument recognition in polyphonic

music based on automatic taxonomies,” IEEE Transactions on Audio, Speech,

Language Processing, vol. 14, no. 1, pp. 68–80, Jan. 2006.

[59] J. Eggink and G. J. Brown, “A missing feature approach to instrument identi-

fication in polyphonic music,” in Proceedings of the ICASSP, 2003, vol. 5, pp.

553–556.

[60] S. F. Chang, T. Sikora, and A. Purl, “Overview of the MPEG-7 standard,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no.

6, pp. 688–695, 2001.

[61] D. P. W. Ellis, C. V. Cotton, and M. I. Mandel, “Cross-correlation of

beat-synchronous representations for music similarity,” in Proceedings of the

ICASSP, 2008, pp. 57–60.

[62] S. Dixon, “Automatic extraction of tempo and beat from expressive perfor-

mances,” Journal of New Music Research, vol. 30, no. 1, pp. 39–58, 2001.

[63] W. Pedrycz and F. Gomide, Fuzzy Systems Engineering: Toward Human-

Centric Computing, Wiley-IEEE Press, 2007.

[64] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,”

2001, [online] available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

109

[65] T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “Instrogram:

A new musical instrument recognition technique without using onset detection

nor f0 estimation,” in Proceedings of the ICASSP, 2006, pp. 14–19.

[66] H. T. Cheng, Y. H. Yang, Y. C. Lin, I. B. Liao, and H. H. Chen, “Automatic

chord recognition for music classification and retrieval,” in Proceedings of the

ICME, 2008, pp. 1505–1508.

110

