

國立臺灣大學電機資訊學院資訊工程學系
碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

局部分群演算法用以合成低功率預先計算型

內容可定址記憶體上的低成本參數擷取器

Local Grouping Algorithm for Synthesizing Low-Cost

Parameter Extractor of Low-Power Pre-computation-Based

Content Addressable Memory

賴聰勝

Tsung-Sheng Lai

指導教授﹕賴飛羆 博士

Advisor: Feipei Lai, Ph.D.

中華民國 98 年 6 月

June, 2009

國

立

臺

灣

大

學

資

訊

工

程

學

系

碩
士
論
文

賴
聰
勝

撰

98
6

局
部
分
群
演
算
法
用
以
合
成
低
功
率
預
先
計
算
型

內
容
可
定
址
記
憶
體
上
的
低
成
本
參
數
擷
取
器

i

口試委員會審定書

ii

誌謝

經過了許多時間的努力，終於完成此篇論文，而最感謝的當然是我的指導教授賴飛羆老

師，老師不僅教導我學術上的知識，並且也讓我學到生活上的許多道理，此外也提供了良好

的學習和實驗環境，使得我可以專心的將大部分時間放在研究上，努力完成了此篇論文，讓

我在台大的這幾年收穫許多。

也感謝口試委員汪大暉教授、莊仁輝教授、梁文耀教授以及蔡坤霖教授在口試時的指導

以及許多的建議，使我在口試的時候能夠更瞭解自己的論文以及報告還有哪些方面可以加強。

感謝我的家人，每次在我感到失望及沮喪時，陪我出外散心，紓解心中的不快，也讓我

被問題困惑時，可以轉換情緒，使得我能夠想到解決的方法，將困惑我的問題一一迎刃而解，

家人是我最大的精神支柱。

感謝李鴻璋教授對我的論文做建議以及指導和糾正，也感謝幫助我許多的彭治弘學長，

每次我有問題問時，都能以我較能理解的方式解釋給我聽，此外也常常和我討論，教我許多

的知識，讓我學到了許多的東西，而且此次論文題目的靈感也是來自於和學長的討論，此外

學長也在此篇論文幫了許多大忙，非常感謝學長大力相挺。

也感謝實驗室的同窗江忠桓、詹承浩還有李育安等和我一起修課及寫論文，大家一同克

服種種難關，以及 Low Power 組的學弟童顗叡、葉紘瑋、林志威、范聖欣、蕭錦濤、嚴天斈，

若不是有你們的幫忙以及大力的配合，計畫以及許多任務也無法順利的完成，且實驗室的歡

笑都是來自於大家，我會將這份美好的回憶珍藏在心底的。

也非常感謝親切的周憲政學長對我們這些學弟的照顧，常常關心我們這些學弟的學業狀

況以及生活。

iii

摘要

因為內容可定址記憶體的高速特性，使得它在許多需要高速的設備中扮演著重要的角

色，但是它的耗電量也非常的高。在這篇論文中我們提出一個合成演算法用來合成低功率預

先計算型內容可定址記憶體上的參數擷取器，使得資料能夠被均勻的映射到每個參數，而且

硬體的成本也較少。此外我們也提出一個方法去減少當一些資料在區塊中大部分是相同時，

對參數擷取器所帶來的影響。實驗結果顯示，當和 Gate-Block Selection 演算法比較時，我

們的方法可以減少 58.88%的功率消耗，也可以省下 0.53%的 CMOS 電晶體數目。如果用我們提

出的捨去及交錯法去改善 Gate-Block Selection 演算法時，我們的方法仍然可以減少 13%的

功率消耗。

關鍵字：內容可定址記憶體、預先計算、低功率、低成本、合成演算法

iv

Abstract

Content addressable memory (CAM) plays an important role on the performance of some devices

due to the high speed of CAM. But the power consumption of CAM is also high. In this work, we

propose a synthesis algorithm to synthesize the parameter extractor for low-power

pre-computation-base CAM (PB-CAM) such that the data can be mapped to parameters uniformly

and the cost of the parameter extractor can also be lower. Moreover, we also propose a method to

reduce the impact on mapping data to parameters when most data are identical in some data blocks.

In the experimental results, the average reduction of the power consumption can achieve 58.88%

and the number of CMOS transistors can save 0.53% when compared with Gate-Block Selection

algorithm. If the Gate-Block Selection algorithm is also enhanced by our proposed discard and

interlaced method (DAI method) then the power consumption can still be reduced by 13%.

Keywords: content addressable memory (CAM), pre-computation, low power, low cost, synthesis

algorithm

v

 Contents

口試委員會審定書 .. i

誌謝 ... ii

摘要 ..iii

Abstract... iv

Contents ... v

List of Figures..vii

List of Tables.. ix

Chapter 1 Introduction.. 1

1.1 Power Dissipation in CMOS VLSI Circuit .. 1

1.1.1 Switching Power Dissipation .. 2

1.1.2 Short-Circuit Power Dissipation ... 2

1.1.3 Leakage Power Dissipation... 3

1.2 Concept of Content Addressable Memory... 4

1.2.1 Content Addressable Memory... 4

1.2.2 Applications of Content Addressable Memory................................. 5

1.2.3 CAM Cell .. 6

1.2.4 Write Operation of a CAM Cell .. 7

1.2.5 Read Operation of a CAM Cell... 9

1.2.6 Search Operation of a CAM Cell .. 10

1.2.7 Match Line Structure... 11

Chapter 2 Related Work ... 14

2.1 Selective Pre-charge Scheme ... 16

2.2 Pre-computation Scheme.. 17

2.2.1 Ones Count Scheme .. 18

2.2.2 Block-XOR Scheme.. 21

2.2.3 Gate-Block Selection Algorithm... 22

vi

2.3 Motivation and Objective... 25

Chapter 3 Proposed Approach.. 26

3.1 The Benefit of Distributing the Data Uniformly.. 26

3.2 Local Grouping Algorithm... 28

3.2.1 Definition of the Variables.. 28

3.2.2 Top Level of Local Grouping Algorithm.. 29

3.2.3 Grouping Function .. 31

3.2.4 Find Gate Function.. 36

3.2.5 Demonstration of Local Grouping Algorithm 40

3.2.6 Time Complexity of Local Grouping Algorithm............................ 43

3.3 Discard and Interlaced Method .. 45

Chapter 4 Experimental Results ... 48

4.1 Experimental Environment .. 48

4.2 Results .. 52

4.2.1 Experimental Results of Random Data ... 52

4.2.2 Experimental Results of MiBench .. 56

Chapter 5 Conclusion ... 63

References ... 64

vii

List of Figures

Figure 1-1 A simplified block diagram of a CAM. .. 5

Figure 1-2 A conventional 9T CAM cell.. 7

Figure 1-3 A 9T CAM cell performs a write operation.. 8

Figure 1-4 A 9T CAM cell performs a read operation. .. 9

Figure 1-5 (a) XOR type CAM cell. (b) XNOR type CAM cell........................... 10

Figure 1-6 The schematic of CAM (four word CAM cells)..................................... 11

Figure 1-7 A NOR type match line... 12

Figure 1-8 A NAND type match line.. 12

Figure 2-1 The simplified architecture of the selective pre-charge scheme............. 16

Figure 2-2 The basic architecture of PB-CAM. ... 17

Figure 2-3 7T PB-CAM cell. .. 19

Figure 2-4 Static pseudo-NMOS CAM word circuit. .. 20

Figure 2-5 Static parameter comparison circuit. .. 20

Figure 2-6 The 14 bits block-xor parameter extractor.. 21

Figure 2-7 The Gate-Block Selection Algorithm. .. 23

Figure 3-1 An example of the 2-level parameter extractor for the n bits data. 29

Figure 3-2 The top level of the local grouping algorithm. 30

Figure 3-3 The general grouping function. .. 31

Figure 3-4 The simple grouping function for 2-bit block. 32

Figure 3-5 The function for distinguishing all gate types. 33

Figure 3-6 The status of reducing hardware cost of the parameter extractor. 35

Figure 3-7 The find gate function... 37

Figure 3-8 The function of distinguishing gate types 5, 6 and 7.............................. 39

Figure 3-9 The synthesized parameter extractor of the demonstrative example...... 42

Figure 3-10 The discard and interlaced method. .. 46

Figure 4-1 The unique data distribution of three random data sets.......................... 55

Figure 4-2 The data distribution of the patricia_small. .. 59

viii

Figure 4-3 The data distribution of the patricia_large.. 60

ix

List of Tables

Table 1-1 The comparison of the number of rules between CAM and TCAM...... 6

Table 1-2 Search operations of XOR and XNOR type CAM cells. 11

Table 1-3 Comparison between NOR type and NAND type match lines. 13

Table 2-1 Number of data is related to the same parameter (ones count). 18

Table 2-2 Number of data is related to the same parameter (block-xor). 22

Table 2-3 The time complexity of gate-block selection algorithm....................... 24

Table 3-1 The average number of matched rows for four 2-bit parameters. 26

Table 3-2 The available synthesized gate types for 2-bit block. (a: msb, b: lsb) . 32

Table 3-3 An example of the benefit of using additional gate types. 34

Table 3-4 An example of the choice of the low-cost gate type. 34

Table 3-5 The method of finding the low-cost gate type...................................... 36

Table 3-6 The relation of the logic gate type of the methods 2 and 4. 39

Table 3-7 An example to demonstrate local grouping algorithm. (First level) 40

Table 3-8 An example to demonstrate local grouping algorithm. (Second level) 41

Table 3-9 The time complexity of the local grouping algorithm.......................... 43

Table 3-10 The comparison of the time complexity of the algorithms. 44

Table 3-11 An example of the problem of the identical data.................................. 45

Table 3-12 An example to demonstrate the DAI method. (Steps 2 and 3)............. 46

Table 3-13 An example to demonstrate the DAI method. (Result) 47

Table 4-1 The test data in the experiment. .. 48

Table 4-2 The configurations for all schemes in the experiment.......................... 49

Table 4-3 The configurations for each scheme in the experiment........................ 49

Table 4-4 The configuration for DAI method in the MiBench experiment.......... 50

Table 4-5 The standard deviation of each block in the MiBench experiment. 51

Table 4-6 The number of data in the random test data. .. 52

Table 4-7 The standard deviation on the number of unique data that are mapped

to each parameter in the random test data. ... 52

x

Table 4-8 The high level simulation result. .. 53

Table 4-9 The improvement rate of the high level simulation result.................... 53

Table 4-10 The number of data in the MiBench... 56

Table 4-11 The standard deviation on the number of unique data that are mapped

to each parameter in the MiBench.. 57

Table 4-12 The high level simulation result in the MiBench. 58

Table 4-13 The average reduction rate of the high level simulation in MiBench. . 58

Table 4-14 The average power consumption in MiBench...................................... 61

Table 4-15 The average reduction rate of the power consumption in MiBench. ... 61

Table 4-16 The average reduction rate of the power on the parameter extractor. .. 62

Table 4-17 The average reduction rate of the number of CMOS elements............ 62

1

Chapter 1 Introduction

The performance of modern devices becomes faster than before, however the power

consumption and thermal of devices also increase. So the reduction of the power

consumption of a device becomes an important issue for many researches especially for

embedded systems and portable devices. Content addressable memory (CAM) is one

hot topic in these researches. CAM can search for content in parallel within it; so many

devices use it to increase performance such as the translation look-aside buffer (TLB) in

microprocessors and the tag memory of caches. In the network, the ternary content

addressable memory (TCAM) also plays an important role because it performs the

routing lookup and packet classification in the network router. Although CAM can

operate in high frequency, it also consumes much power. The high power consumption

is not suitable for portable devices and embedded systems. Therefore, the reduction of

the power consumption of CAM while maintaining its high speed searching

performance is required. In this thesis, we proposed an algorithm to synthesize the

parameter extractor of Pre-computation-based CAM and the parameter extractor can

more uniformly map the data to each parameter. We also proposed a method to reduce

the impact on mapping data to parameters when some blocks have a lot of identical

data.

1.1 Power Dissipation in CMOS VLSI Circuit

In the CMOS VLSI circuits, the power consumption can be separated into switching,

short-circuit and leakage power consumption. So the average power consumption can

be modeled by the following equation [1]:

leakagecircuitshortswitchingavg PPPP   (Equation 1-1)

2

1.1.1 Switching Power Dissipation

Switching power consumption is due to charging and discharging the parasitic

capacitances when the transistors are switching. It is one of dominant sources of the

power consumption in the CMOS circuits; the other is leakage power consumption. We

can use the following equation to model the switching power consumption [2]:

clkddLswitching fVCP  
2

10 (Equation 1-2)

Where:

10  = The 0 to 1 transition probability per clock cycle.

LC = The sum of all load capacitance.

ddV = The supply voltage of the circuit.

clkf = Clock frequency.

1.1.2 Short-Circuit Power Dissipation

When the NMOS and PMOS of a device are on simultaneously, there is a direct

current path between power supply and ground that causes the short-circuit power

consumption. If the supply voltage is lower than the sum of the threshold voltage of the

NMOS and PMOS in the device (tptndd VVV ) then the short-circuit current can be

eliminated [1]. The short-circuit power consumption of a CMOS inverter can be

estimated by the following equation [2]:

clk
tddcircuitshort T

VVP



3)2(

12
 (Equation 1-3)

Where:

 = An effective transistor strength that is a constant which depends on the transistor

sizes and the technology.

3

tV = The threshold voltage of the NMOS and PMOS transistors.

 = Input rising/falling time.

clkT = Clock cycle time.

1.1.3 Leakage Power Dissipation

Leakage power consumption can be separated into sub-threshold leakage and

reverse-bias diode leakage as the following equation [2]:

dddiodethresholdsubleakage VIIP  )((Equation 1-4)

)1()/()(

T

dsnVVV
thresholdsub V

V
eKeI Ttgs  

 (Equation 1-5)

)1( TV

V

Sdiode eII (Equation 1-6)

Where:

nk, = A function of the technology.

gsV = Gate-source voltage.

dsV = Drain-source voltage.

tV = Threshold voltage.

qKTVT / = Thermal voltage.

SI = Reverse saturation current.

The sub-threshold current flows from source to drain when the transistors are off and

the gate to source voltage is still below the threshold voltage. Therefore the transistors

still conduct by weak current. The reverse-bias current flows through the reverse-biased

diodes that are formed between the diffusion regions and the substrate. These currents

4

are small for former process technologies, but they are no longer neglected due to the

popularity of deep-submicron technology [3].

1.2 Concept of Content Addressable Memory

In the following sections, we will introduce some concepts of CAM first. The topics

include the architecture, operations and applications of CAM.

1.2.1 Content Addressable Memory

CAM is one kind of fully associative memory so it can search for the data that are

stored in the memory in parallel. CAM is different from the random access memory

(RAM). Because RAM uses the access address as input and decodes the address to find

the data within it then output the data. But CAM uses the search data as input and

compares the search data with the stored data within it in parallel. If the data is found

then CAM will output some addresses to access a RAM and the RAM stores some data

which are related to the data in CAM. For example, Figure 1-1 shows the simplified

block diagram of CAM. The size of it is eight words and each word is stored in eight

CAM cells. The data in the CAM compare with the search data from the search line (SL)

buffers (or called drivers) and there is a match in this example. So the voltage of match

line 2 (ML2) remains high and the others are discharged low when the NOR type match

line is used. Then the encoder outputs an address and decoder decodes this address to

load data from the RAM.

5

Figure 1-1 A simplified block diagram of a CAM.

1.2.2 Applications of Content Addressable Memory

CAM is often used in many devices especially in computer networking devices. For

example, the routing table of the network router and the policy table of the hardware

firewall are implemented by CAM. It is used for packet forwarding and packet

classification. CAM can be classified into two types. One is binary CAM as shown in

Figure 1-1, the other is ternary CAM. Binary CAM is often used in computer devices

but not network devices in recent years because it only can store two states “0” and “1”

in a CAM cell. In this situation, it must contain many rules to gain high performance

that causes the hardware cost become higher. So many network devices use ternary

6

CAM to store the rules. Ternary CAM can store additional one state that is “don’t care”

state and therefore it can store more rules than binary CAM when the hardware cost is

the same. For example, in Table 1-1 binary CAM needs four space to store the rules but

the ternary CAM only needs one space.

Table 1-1 The comparison of the number of rules between CAM and TCAM.
CAM Type Rules

Binary CAM

0100
0101
0110
0111

Ternary CAM 01xx

Other applications of CAM include TLB [4], processor caches [5], database

accelerators, artificial neural network and intrusion prevention system [6]. Thus we can

see that CAM plays an important role in performance of devices in these applications.

But it is only used in some devices that are related to the performance of systems due to

the expensive cost of it.

1.2.3 CAM Cell

A CAM cell can search one bit data within it and the data can also be read from it or

written into it through bit line by controlling the word line. A schematic of a

conventional nine transistors CAM cell is shown in Figure 1-2. It uses six transistors

static random access memory (SRAM) to store the data as shown in gray block of

Figure 1-2. So the read and write operations of a CAM are the same as in a SRAM. The

connection of the control transistor Nctrl depends on which match line structure is used

in the CAM. This transistor decides whether the match line of one word discharge or

not. Detailed operations of a CAM cell will be introduced in next sections.

7

Figure 1-2 A conventional 9T CAM cell.

1.2.4 Write Operation of a CAM Cell

When CAM performs write operation of one word, the data are inputted to the bit line

drivers. The bit line and bit line bar are driven with bit line drivers. Then word line of

this word is charged to high. After these operations, the data will be written into each

CAM cell of one word.

For example, Figure 1-3 shows write operation of a CAM cell. The data written into a

CAM cell is zero so the bit line is logic 0 and bit line bar is logic 1. Furthermore, we

want to write data into a CAM cell hence the word line is logic 1. Then the NMOS

NW1 and NW2 are turned on. If the stored data Q is logic 0 then the voltage of this cell

is almost stable. Otherwise the PMOS P1 is turned on and NMOS N1 is turned off. A

current IBL is generated from the Vdd node to ground through P1 and NW1. At the same

8

time, the P2 is turned off and N2 is turned on. A current IBLb is generated from the Vdd

node to ground through NW2 and N2. For a while, the Q will become logic 0 and Qb

become logic 1 due to the bit line drivers are designed mush stronger than the

transistors in the CAM cell. Then P1 and N2 are turned off. N1 and P2 are turned on.

The voltage of this CAM cell has become stable.

Figure 1-3 A 9T CAM cell performs a write operation.

In the explanation of the above example, we can know that the size of transistors and

the drivers of CAM should be designed carefully to ensure that the write operations of a

CAM are correct.

9

1.2.5 Read Operation of a CAM Cell

When CAM performs read operation of one word, the bit line and bit line bar should

be charged to logic 1 first. Then the word line of this word also is charged to high. After

charging these lines, the data can be read from the bit line. An example is shown in

Figure 1-4.

Figure 1-4 A 9T CAM cell performs a read operation.

In Figure 1-4, we assume that the stored data in this CAM cell is zero. The bit line

and bit line bar is charged to high then so is the word line. After charging the word line,

the NMOS NW1 and NW2 are turned on. A current Iread is generated from the Vdd node

to ground through NW1 and N1. Note that when the read operation starts, the bit line

drivers are turned off. Therefore the bit line will be discharged to logic zero when the

size of N1 is larger than NW1. Because we need to ensure that the data will not flip

when reading data from a CAM cell.

10

1.2.6 Search Operation of a CAM Cell

The 9T CAM cell [7] can be classified into two types according to its comparative

method. One is XOR type CAM cell and the other is XNOR type CAM cell. The two

CAM cells are shown in Figure 1-5 and the search line and the bit line are combined

here. For instance, we assume that the stored data and the search data are logic 1 in

these two CAM cells. Then N2 and N3 are turned on. N1 and N4 are turned off. Current

flows through N2 and SLb to ground in Figure 1-5 (a) therefore Mctrl is turned off.

Moreover, the match line is pre-charged to high before searching data so the voltage of

the match line will not be pulled down in this CAM cell. In Figure 1-5 (b), the Mctrl is

turned on because N3 is turned on and SL is logic 1. Therefore the CAM cell will pass

the current to the next CAM cell that is connected with the same match line. If there is

no next CAM cell then the match line will be connected to ground.

Figure 1-5 (a) XOR type CAM cell. (b) XNOR type CAM cell.

The search operation of these two CAM cells can be summarized in Table 1-2. If we

replace the “on” state with logic 1 and the “off” state with logic 0 then the search

operation is like the logic XOR and XNOR. This is why we name these two types as

11

XOR and XNOR types. Other structure of CAM cells can be found in [7, 8].

Table 1-2 Search operations of XOR and XNOR type CAM cells.
 XOR type XNOR type

Q SL Mctrl Mctrl
0 0 Off On
0 1 On Off
1 0 On Off
1 1 Off On

1.2.7 Match Line Structure

The match line connects several CAM cells to store one word data. It is used to

determine which data match the search data. The simplified schematic is shown in

Figure 1-6. The match lines are pre-charged to high first and then search data are

inputted into search line drivers. After data are inputted to the search line drivers, they

drive the search line and search line bar to perform search operation in each CAM cell.

Figure 1-6 The schematic of CAM (four word CAM cells).

The match line structure [7] can also be classified into two types according to what

kind of CAM cell we use in the CAM. If the XOR type CAM cells are used then the

12

match line structure is NOR-type match line. Otherwise, it is NAND-type match line

when the XNOR type CAM cells are used. These two match line structures are shown

in Figure 1-7 and Figure 1-8.

Figure 1-7 A NOR type match line.

Figure 1-8 A NAND type match line.

A typical search operation of a NOR type match line has three phases. These three

phases include search line pre-charge, match line pre-charge and match line evaluation.

Before searching data, the search line is pre-charged to low in order to prevent the

match line connecting to ground. After disconnecting the match line from ground, the

signal pre is asserted to turn on the PMOS Mpre. Then the match line is pre-charged to

high. In this time, the search data are inputted into the match line drivers and evaluate

the match line. If the search data word matches all the stored bits of the CAM cell on

13

the same match line then the voltage of the match line will remain high, otherwise it

will be pulled down to low. The match line sense amplifier (MLSA) is responsible for

sensing the voltage of a match line and outputting the strong voltage that are

corresponded to the sensing voltage.

The search operation of a NAND type match line has two phases. These two phases

include match line pre-charge and match line evaluation. Before searching data, the

signal pre is asserted to turn on the PMOS Mpre and then the match line is pre-charged

to high. After the match line is pre-charged, the search line can be driven by inputting

the search data. Next, the signal eval is asserted to turn on the NMOS Meval and the

match line can be evaluated. If the search data matches the stored data then the voltage

of the match line will be pulled down to low, otherwise it will remain high.

Table 1-3 Comparison between NOR type and NAND type match lines.
 NOR type NAND type

When match High Low Voltage of match
line When mismatch Low High

Performance Fast Slow
Power consumption High Low

Table 1-3 shows the differences between NOR type and NAND type match lines. The

performance of NOR type match line is faster than the NAND type due to the pull down

path of the NAND type match line is too long when the stored data is matched.

However, the power consumption of NOR type match line is higher than that of NAND

type match line. Because in most applications, the search data matches only one data in

CAM so the number of the discharged operations of the NOR type match line is more

than that of NAND type.

14

Chapter 2 Related Work

In this chapter, we will introduce some designs on low power CAM briefly.

Moreover, we will also introduce some designs that are related to our work in the

following sections.

Most researches of the CAM are organized well and introduced in [7]. These

researches of low power CAM focus on some topics. They include how to reduce the

power consumption of the match line, search line and architecture. Some designs will

be introduced in the followings.

In low-swing scheme [9], each match line is added an additional injection

capacitance to share the charge with the match line. Therefore, the voltage of the match

line is less than the supply voltage and the power consumption is less than the

conventional design in the missing situation. Another scheme for reducing the power

consumption of the match line is current-race scheme [10]. The match lines are

pre-charged low and evaluated by charging the match lines with a current IML from a

current source. Furthermore, the search lines are also pre-charged to the search data

during the match line is pre-charged. A sense amplifier with half-latch is used to fast

sense the match result in each match line. In the missing state, the voltage of the match

line is charged to IML×RML/m, where m is the number of missing cells in one match line.

Otherwise, the match line is charged to high voltage. Hence, this design can save the

power consumption of the match line in the missing situation. Moreover, it can also

save power on the search line because it eliminates the stage of the search line

pre-charge low. The current-saving scheme [11, 12] is similar to the current-race

scheme but a current control circuit is added on each match line to control the IML. In

missing state, the current is less than in the matching state.

15

Another power consumption of the CAM is search line driving scheme. In the

conventional NOR type match line structure, the search line must be pre-charged to low

first. If we eliminate the search line pre-charge phase then the dynamic power

consumption of the search line in the pre-charge phase can be reduced [7]. Another

scheme is hierarchical search line scheme [13]. It is based on pipeline scheme. In the

first segment, the match line and search line always are active. But the match line is not

pre-charged and the search line is inactive in the following segments when the match

line is mismatched in the previous segment. Thus it can reduce the power consumption

of the match line and search line. The bank-selection scheme [7, 14, 15] is another

design to reduce power consumption, but it focuses on architecture level. The CAM is

divided logically into several banks and each bank contains one continuous address

space of the CAM. When the CAM performs the search operation, the search data word

is divided logically into stored bits and bank-select bits. Then the bank-select bits are

used to decide which bank will be active in this search operation. After the bank is

active, the stored bits are compared with the search data in the bank. Therefore this

scheme can reduce power consumption because only some banks are active in one

search operation. But the drawback of the bank-selection scheme is bank overflow. This

situation happens when the capacity of the bank is smaller than the number of the stored

data.

In the researches of the routing table and TCAM, the topics include encoding the

rules and reducing the power consumption of the priority encoder. Most researches

focus on encoding the table in TCAM. However, the tables are encoded for binary

CAM with a simple scheme in [16]. If the table is encoded then it can store the number

of rules as the original design with less space. Therefore this method can reduce the

hardware cost and power consumption. Furthermore, the priority encoder is one of the

16

dominant power consumption and delay of TCAM. A power-optimized 64-bit priority

encoder is proposed in [17]. It improves the conventional priority encoder on delay and

power consumption and it also can be pipelined.

2.1 Selective Pre-charge Scheme

The data words are divided into two segments in the selective pre-charge scheme [18].

Some bits of data are stored in the first segment and the others in the second segment.

While the CAM performs search operation, the first segment is active and the relative

bits of data are compared. If the relative bits of some data words are matched in the first

segment then the associated match line in the second segment will be pre-charged to

high. After that, the remaining bits of data are compared in the second segment. If the

remaining bits of some data are matched then it means the search data is matched in the

CAM. Otherwise, the searching data is mismatched. Therefore, this scheme reduces the

power consumption of the match lines. However, if many stored data in the first

segment are identical then the power consumption of the CAM is still high.

The simplified architecture of the selective pre-charge scheme is shown in Figure 2-1.

The XNOR type CAM cells are used in the first segment and the XOR type CAM cell

in the second segment.

Figure 2-1 The simplified architecture of the selective pre-charge scheme.

17

2.2 Pre-computation Scheme

In this section, we will introduce the concept of pre-computation based CAM

(PB-CAM). Then in the following sections, the three different designs of PB-CAM will

be introduced.

Figure 2-2 The basic architecture of PB-CAM.

The PB-CAM is shown in Figure 2-2 which contains one parameter extractor, drivers,

parameter memory, data memory and encoder. The parameters in the parameter

memory are calculated from the data by the parameter extractor. When the search

operation is performed, the data is inputted into the search line drivers and the

parameter extractor. Then the parameter is outputted from the parameter extractor and

inputted into drivers. Afterward, the parameter memory can perform the search

operation. If the stored parameters are matched then the relative match line in the CAM

is pre-charged. After that, the match line can be evaluated. If the stored data is also

18

matched then the match line remains high. Otherwise, it will be discharged low. This

scheme is similar to selective pre-charge scheme but the efficiency of reducing the

power consumption depends on the parameter extractor and search data.

2.2.1 Ones Count Scheme

The PB-CAM is first proposed in [19]. The parameter extractor is implemented by

the ones count function in [19]. The ones count parameter extractor counts the number

of binary one which appears in one data word. However the hardware cost and delay of

the ones count parameter extractor is expensive when the data word length grows.

Furthermore, if we assume the data have a uniform distribution then the number of data

that are mapped to parameters is not uniform. This situation is shown in Table 2-1 and

the data word length is 14 bits. This distribution is not good for reducing the power

consumption of the match line because many identical parameters may appear in the

memory in one search operation.

Table 2-1 Number of data is related to the same parameter (ones count).
Ones count
parameter

Relative data Average probability

0 1 0.0061035%
1 14 0.0854492%
2 91 0.5554199%
3 364 2.2216797%
4 1001 6.1096191%
5 2002 12.2192383%
6 3003 18.3288574%
7 3432 20.9472656%
8 3003 18.3288574%
9 2002 12.2192383%
10 1001 6.1096191%
11 364 2.2216797%
12 91 0.5554199%
13 14 0.0854492%
14 1 0.0061035%

Total 214 = 16384 100%

19

However the ones count parameter extractor is used to cooperate with 7T PB-CAM

cell. This PB-CAM cell only uses seven transistors such that the hardware cost and

power consumption of data memory are less than the conventional design. The circuitry

of 7T PB-CAM cell is shown in Figure 2-3.

Figure 2-3 7T PB-CAM cell.

This 7T PB-CAM cell is not suitable for every parameter extractor because the match

line remains high when Qn = 1 and BLn = 0. However, the 7T PB-CAM cell cooperates

with the ones count parameter extractor elegantly. We explain the operations in the

following three conditions. First, if the parameter is matched and the data is also

matched then the operation of the cell is correct. Second, if the parameter matches the

incoming parameter but the data do not. It means the number of binary ones in the

stored data and searching data are the same but they are different. Therefore there must

be Qi = 1 and BLi = 0 in one cell and Qj = 0 and BLj = 1 in another cell of the same

match line. So the match line is discharged by at least one cell. Third, if the parameter is

mismatched and the data is also mismatched then the voltage of the match line is

discharged by the static pseudo-NMOS CAM word circuit [19]. This circuit is shown in

Figure 2-4. If the parameters are matched then the parameter comparison circuit outputs

logic 0. Otherwise, it outputs logic 1. Therefore, the 7T PB-CAM cell can operate well

20

with the ones count parameter extractor.

Figure 2-4 Static pseudo-NMOS CAM word circuit.

Figure 2-5 Static parameter comparison circuit.

The parameter comparison circuit is shown in Figure 2-5. It performs three

operations. First, in parameter setting operation, the CLR is set to logic 0. Then the

stored parameter Q is charged to logic 1. The max parameter means invalid flag in this

21

circuit because the decimal representation of the max value of one parameter word is

larger than the bit length of data. Second, in the parameter writing operation, the WL is

asserted such that the parameter P can be written into the storage unit Q. Third, in the

parameter comparing operation, if the input parameters P match the stored parameters Q

then the comparison detector will output logic 0. Otherwise, it will output logic 1.

2.2.2 Block-XOR Scheme

The block-xor scheme is proposed to improve the ones count parameter extractor in

[20, 21] but it uses 9T CAM cell. The block-xor parameter extractor is composed of

several two fan-in XOR gates. The block diagram of 14 bits block-xor parameter

extractor is shown in Figure 2-6 and the design of the valid bit is in the below of Figure

2-6. If the parameters are all binary one then the 4 bits data in the msb are used as the

parameter. Otherwise, the original parameters are used. So the data is invalid when the

stored parameters are all binary one. Furthermore, when the 4 bits data in the msb are all

binary one, the msb of the parameter will be 0. The multiplexer will select the parameter

to output. In other words, this design does not have conflicting status.

Figure 2-6 The 14 bits block-xor parameter extractor.

22

If we assume that the distribution of the data is uniform then the block-xor parameter

extractor can distribute the data to parameters more uniformly than the ones count

parameter extractor. The distribution is shown in Table 2-2 and the data word length is

14 bits.

Table 2-2 Number of data is related to the same parameter (block-xor).
Block-xor
parameter

Relative data
Average

probability
0000 1024 6.25%
0001 1024 + (1024/8) 7.03125%
0010 1024 + (1024/8) 7.03125%
0011 1024 6.25%
0100 1024 + (1024/8) 7.03125%
0101 1024 6.25%
0110 1024 6.25%
0111 1024 + (1024/8) 7.03125%
1000 1024 + (1024/8) 7.03125%
1001 1024 6.25%
1010 1024 6.25%
1011 1024 + (1024/8) 7.03125%
1100 1024 6.25%
1101 1024 + (1024/8) 7.03125%
1110 1024 + (1024/8) 7.03125%
1111 Valid bit

2.2.3 Gate-Block Selection Algorithm

The block-xor can distribute the data to parameters more uniformly when the data

have a uniform distribution. However, if the data do not have a uniform distribution and

most 4-bit msb data are identical then the power consumption is still high. In [22], a

gate-block selection algorithm is proposed to synthesize the proper parameter extractor

when the data do not have a uniform distribution. This scheme is suitable for the

embedded systems because the algorithm must analyze the trace of the system first.

Then it tries to find a proper parameter extractor for this system. Furthermore, one

equation is used to formulate the average number of comparison operation in the

23

algorithm when one 2 fan-in gate is used to extract a parameter. This equation is shown

in Equation 2-1.

10

2
1

2
0

10

1
1

10

0
0

10

)()(

)1(

NN

NN

NN

N
N

NN

N
N

pNpNCavg














 (Equation 2-1)

Where

P = For all data, the probability of a two fan-in gate outputting the logic 1 in one

block.

0N = For all data, the number of zero entries in one parameter.

1N = For all data, the number of one entries in one parameter.

Gate-Block Selection Algorithm

Input Data = (D0, D1, …, Dn-1)

n: bit length of the input data,

l: number of input bits for each partition block.

Step 1: Record

 NAND_parameter (k) = 122  ii DD

 NOR_parameter (k) = 122  ii DD

 XOR_parameter (k) = 122  ii DD

 For i, k = 0, 1, ..., (n/2)-1, patternsinput

Step 2: Compute NAND_Cavg(k), NOR_Cavg(k), XOR_Cavg(k)
 Using Equation 2-1, k

Step 3: Select a logic gate with the minimal Cavg(k), k

Step 4: If generated parameter bits >  ln /

 Repeat step 1 to step 3 and use previous generated parameter as input data.

 Else

 Finish
Figure 2-7 The Gate-Block Selection Algorithm.

24

The gate-block selection algorithm is shown in Figure 2-7. In step 1, the output

parameters of each gate are computed in each 2-bit block for all data. Then in step 2 and

3, the Cavg is computed for each gate. One logic gate which has minimal Cavg is selected

for each 2-bit block. It means that the selected logic gate can make the average number

of comparison operation lower than the others. In step 4, it determines whether the

algorithm finishes or not.

Table 2-3 The time complexity of gate-block selection algorithm.
Level Time complexity of each level

1

Step 1: 1)2/(cgnm 

Step 2: 2)2/(cgn 

Step 3: 3)2/(cn 

Step 4: 4c

2

Step 1: 1
2)2/(cgnm 

Step 2: 2
2)2/(cgn 

Step 3: 3
2)2/(cn 

Step 4: 4c

…

k

Step 1: 1)2/(cgnm k 

Step 2: 2)2/(cgn k 

Step 3: 3)2/(cn k 

Step 4: 4c

We analyze the time complexity of gate-block selection algorithm in Table 2-3 when

the size of each block is two bits. We also define some variables in the following.

Let

m: The number of the unique data. The unique data means that only one data are

chosen and the other duplicate data is discarded.

n: The word length of data.

k: The value of k is the level that we want to synthesize. The range of k

is  nk 2log1  .

g: The number of different gate is used in the gate-block selection algorithm. They

25

are NAND, NOR, XOR in Figure 2-7. Therefore, the value of g is 3.

c: Constant value.

Therefore, the total time complexity is the sum of the time complexity of each level.

That is kcncngcngmc k  4321])
2

1
(1[)(. The time complexity is

polynomial time O(mn).

2.3 Motivation and Objective

The block-xor scheme can not distribute data to different parameters uniformly when

the data do not have a uniform distribution. Furthermore, the execution time of

gate-block selection algorithm will grow when the number of different gates that are

used to synthesize the parameter extractor is increasing in the algorithm. Therefore, we

want to use more different gates to synthesize the parameter extractor for PB-CAM in

order to distribute the data more uniformly than block-xor scheme and gate-block

selection algorithm. We also want to decrease the execution time when more different

gates are used. Moreover, we want to reduce the impact on mapping data to parameters

when some blocks have a lot of identical data.

26

Chapter 3 Proposed Approach

We will introduce the benefit of distributing the data uniformly and our synthesizing

algorithm for the parameter extractor of PB-CAM in the following sections. We will

also introduce the method to reduce the impact on mapping data to parameters when

some blocks have a lot of identical data.

3.1 The Benefit of Distributing the Data Uniformly

Table 3-1 The average number of matched rows for four 2-bit parameters.

msb
0

msb
1

lsb
0

lsb
1

Case
Paramet

er
example

Avg.
matc

h
(case)

Prob. of
occurrence

Avg.
match

(distributi
on)

best
00, 01
10, 11

1 2/3
2 2 2 2

worse
00, 00
11, 11

2 1/3
1.33

best
00, 00
10, 11

1.5
2 2 3 1

worse
00, 00
10, 11

1.5
1 1.5

best
00, 00
10, 01

1.5 3/4
3 1 3 1

worse
00, 00
00, 11

2.5 1/4
1.75

best
00, 00
10, 10

2
2 2 4 0

worse
00, 00
10, 10

2
1 2

best
00, 00
00, 10

2.5
3 1 4 0

worse
00, 00
00, 10

2.5
1 2.5

best
00, 00
00, 00

4
4 0 4 0

worse
00, 00
00, 00

4
1 4

27

The average number of matched rows for four 2-bit parameters in the parameter

memory is shown in Table 3-1 and each parameter bit is extracted from one data block.

Although each parameter is related to one data, the data is not shown in Table 3-1. The

first column to fourth column is the number of “zero” or “one” in the msb or lsb of the

four 2-bit parameters. It means the distribution of each parameter bit. For example, in

the second row, there are two binary ones and two binary zeros in the msb of these four

2 bits parameters as well as in the lsb. If we assume that these four parameters are all in

the parameter memory and every parameter is searched one time. Then the average

number of matched rows are (1 + 1 + 1 + 1) / 4 = 1 in the best case and (2 + 2 + 2 + 2) /

4 = 2 in the worse case. Moreover, the probability of the occurrence of the best case is

3/2)]!2!2(/!4[/!4 2  and 3/1)]!2!2(/!4[/)]!2!2(/!4[2 2  , the worse case.

Therefore, the average number of matched rows under this distribution are

33.13/4)3/1(2)3/2(1  . We can see that the average matched rows are small

when the data in the same block are mapped to parameters and the distribution of these

parameters is uniform. Therefore, if we can map the data in the same block to

parameters and the number of binary zeros in this parameter bit position is close to that

of binary one. Then the average number of matched rows will decrease in the parameter

memory. The power consumption will also be decreased in the PB-CAM because the

number of the match lines being pre-charged in the data memory is decreasing. So our

algorithm is based on this idea to distribute the data to the parameters such that the

power consumption of PB-CAM is smaller than that of block-xor scheme and

gate-block selection algorithm.

28

3.2 Local Grouping Algorithm

In this section, we will introduce our algorithm. Before introducing the algorithm, we

will define some variables and terminologies first. And then we also analyze the time

complexity of our algorithm and compare it with that of gate-block selection algorithm.

3.2.1 Definition of the Variables

di: One bit of the data in the bit position i.

pi: One bit of the parameter in the bit position i.

n: The word length of the data. So the data is dn-1dn-2…d1d0.

m: The number of unique data in the trace of the system. The unique data means

that only one data are chosen from original data and the other duplicate data

are discarded.

S: The set of unique data. So |S| = m.

Bi: Each data is divided into several blocks logically. The block Bi contains all

data that are in the same position i.

bs: The size of each block. The size of each block is two bits in this algorithm.

Ci: A set)},12(...,),,1(),,0{(
1210 

 bscccC bs
i contains several pairs for each

bs-bit data block Bi. The first element of the pair is the decimal representation

of the bs-bit data in the block Bi. The second element of the pair is the number

of times the data appears in the data block Bi of set S, which is relative to the

first element of the pair.

gi_j: A synthesized logic gate type of the parameter extractor in the i-th level and

the position j.

29

An example of the synthesized parameter extractor is shown in Figure 3-1. This

parameter extractor has two levels for n bits data. The level of the parameter extractor

begins at one.

Figure 3-1 An example of the 2-level parameter extractor for the n bits data.

3.2.2 Top Level of Local Grouping Algorithm

The top level of the local grouping algorithm is shown in Figure 3-2. In the lines 11

to 16, each 2-bit data block of all unique input data is analyzed and statistics gathered

because we need the information to synthesize the proper parameter extractor. In the

lines 18 to 21, the elements of the Ci of each block are sorted by the count of each

decimal number in descending order. Then the sorted Ci is inputted into the FindGate

function that will be introduced later. This function will output the proper type of the

logic gate that can distribute the data block uniformly to one bit parameter. Then the

output type is recorded. In the lines 23 to 29, if the level of the synthesized parameter

extractor is that we want then the algorithm is finished. Otherwise, the new data are

computed by the new generating gates and old data for next level. The other variables

are also prepared for next level.

30

1 Local Grouping Algorithm

2 Input:

3 S: The set of unique data.

4 n: The word length of data. So data is dn-1dn-2 … d1d0.

5 level: The number of levels of the parameter extractor that we want to

 synthesize.

6 Output: The parameter extractor.

7 Local variable:

8 Ci: Set of counting pairs {(0, c0), (1, c1), (2, c2), (3, c3)} for 2-bit block Bi.

 Initial value of c0, c1, c2 and c3 is zero.

9 li: The index of the level in the parameter extractor. Initial value is one.

10 {

11 for all data  S {
12 for all 2-bit data block d2i+1d2i, i = 0 to  2/n -1 {

13 j = decimal presentation of d2i+1d2i ;

14 cj = cj + 1 in the (j, cj) of Ci;

15 }

16 }

17
18 for i = 0 to  2/n -1 {

19 Sort the elements (0, c0), (1, c1), (2, c2) and (3, c3) of Ci in descending
 order by cj, where }3,2,1,0{j ;

20 FindGate (sorted Ci) and record the gate type in the li-th level and

 i-th position of the parameter extractor;

21 }

22

23 if (li < level) {

24 Using the data set and the generating gates in the li-th level of the

 parameter extractor to compute the new data set and replace data set

 with the new data set;

25 n = word length of new data;
26 Initialize Ci for new data; // i = 0 to  2/n -1

27 li = li + 1;

28 Goto line 11;

29 }

30 }
Figure 3-2 The top level of the local grouping algorithm.

31

3.2.3 Grouping Function

Before introducing the FindGate function, we need to implement our idea first. As

our mention before, we want to map the data in the same block to parameters and the

number of binary zeros in this parameter bit position is close to that of binary ones.

Therefore, we analyze the data and gather the statistics first in Figure 3-2. Then we use

these statistics to group the data in the same block into two groups such that the

difference of the relative count of these two groups is minimal. After that, we can map

one group to zero and the other group to one. Therefore, the proper gates can be found

by these two groups. The general version of the grouping function for two groups is

shown in Figure 3-3. Then we modify this function such that it can run faster when the

size of the block is two bits. This modified function is shown in Figure 3-4.

1 Grouping function // General version for two groups

2 Input:
3 Sorted)},(),...,,(),,{(

10 10 kjkjji cjcjcjC  and
kjjj ccc  ...

10
.

 Where 12  bsk and bs is block size. The block size is two bits that are

 unnecessary in this function.

4 Output: Two groups G0 and G1. Initial is empty.

5 Local variable: gc0 = gc1 = 0, p = 1, q=0

6 {

7 Place j0 into G0 and j1 into G1
8

000 jcgcgc  ,
111 jcgcgc 

9 for i = 2 to 2bs-1

10 {

11 place the ji into Gp
12

ijpp cgcgc 

13 if (gcp ≧ gcq) swap (p, q)

14 }

15 }

Figure 3-3 The general grouping function.

32

1 SimpleGrouping function

2 Input:

3 Sorted Ci: The element (j, cj) of Ci is sorted by cj in descending order
 such that

3210 jjjj cccc  . The block size is two bits.

4 Output: The groups G0 and G1

5 {

6 Place the j0 into G0 and the j1 and j2 into G1;
7 if(

021
)(jjj ccc ) place the j3 into G0;

8 else place the j3 into G1

9 }
Figure 3-4 The simple grouping function for 2-bit block.

These two grouping functions choose one element from Ci in order and place this

element into a group. After adding this element, if the total count of this group is greater

than that of the other group then the next chosen element will be added into the other

group. These functions use the greedy method to choose the elements. Therefore, these

two functions can make the difference of the count of two groups is minimal.

Table 3-2 The available synthesized gate types for 2-bit block. (a: msb, b: lsb)

 Mapping

Grouping

G0 map to 0

G1 map to 1

G0 map to 1

G1 map to 0

Identity of gate

type

G0 = {0}

G1 = {1, 2, 3}

a or b =

not (a nor b)
a nor b gt1

G0 = {1}

G1 = {0, 2, 3}

a or (not b) =

(not a) nand b

(not a) and b =

a nor (not b)
gt2

G0 = {2}

G1 = {0, 1, 3}

(not a) or b =

a nand (not b)

a and (not b) =

(not a) nor b
gt3

G0 = {3}

G1 = {0, 1, 2}
a nand b

a and b =

not (a nand b)
gt4

G0 = {0, 1}

G1 = {2, 3}
a not a gt5

G0 = {0, 2}

G1 = {1, 3}
b not b gt6

G0 = {0, 3}

G1 = {1, 2}
a xor b a xnor b gt7

33

Then we want to find the synthesized gate from the groups so we analyze all groups

first. The total combinations of groups are shown in the first column of Table 3-2 when

the size of each block is two bits. Moreover, the fourteen gate types under two mapping

status are shown in the second and third columns. We also mark each row an identity

because we only choose one gate type from each row in our algorithm. Besides, all the

gate types in Table 3-2 can be distinguished by the function in Figure 3-5. So the

number of the logic gate types is used in our algorithm that is more than the gate-block

selection algorithm. We show the benefit of using these additional gate types in the

following example.

1 DistinguishAllGateType function

2 Input: Groups G0 and G1

3 Output: The gate type

4 {

5 if(|G0| = 1){

6 if (j0 = 0) return gt1;

7 else if (j0 = 1) return gt2;

8 else if (j0 = 2) return gt3;

9 else return gt4;

10 }

11 else if(|G0| = 2) {

12 Bitwise xor two elements of G0 and store the decimal presentation of

 the result in the variable i;

13 if (i = 1) return gt5;

14 else if (i = 2) return gt6;

15 else if (i = 3) return gt7;

16 }

17 }
Figure 3-5 The function for distinguishing all gate types.

34

Table 3-3 An example of the benefit of using additional gate types.
2-bit data Appearance times (count)

00 3
01 10
10 3
11 3

(a) 2-bit data distribution.

Gate type Parameter 0 Parameter 1
a nor b 16 3

a nand b 3 16
a xor b 6 13

a nor (not b) 9 10
(b) The number of data that are related to the parameter.

The data distribution is shown in Table 3-3(a) and the mapping status for four logic

gate types is shown in Table 3-3(b). We can see that the gate-block selection algorithm

will select the XOR gate as the synthesized gate but the gate type that is in the last row

of Table 3-3(b) can perform better than XOR gate. Therefore, we can know that the

additional four gate types are necessary, if we want to map the data to the parameter

uniformly.

Table 3-4 An example of the choice of the low-cost gate type.
2 bits data Appearances times

00 3
01 1
10 3
11 3
(a) 2-bit data distribution.

Gate Type Parameter 0 Parameter 1
a 4 6
b 6 4

a xor b 6 4
(b) The number of data that are related to the parameter.

35

Although we can use the SimpleGrouping function and DistinguishAllGateType

function as FindGate function in our algorithm. However we can see that we have more

than one choice when some relative counts of two groups are equal in the last three

rows of Table 3-2. In this status, we should choose a low-cost gate type as the

synthesized gate instead of depending on the sorted order. An example is shown in

Table 3-4. The number of data that are related to the parameters is similar in Table

3-4(b) in these three gate types. Therefore, these three gate types can distribute the data

to the parameters uniformly. We can choose the gate type a or b that are better than xor

because the number of the CMOS transistors of these two gate types is less and the

fan-in is only one. If a or b gate type appears in the level that is more than one then the

hardware cost can be saved. An example is shown in Figure 3-6. Three gate types are

saved in the most significant part of the parameter extractor. Therefore, we analyze the

order of the counts in the groups in Table 3-5 in order to construct our FindGate

function.

Figure 3-6 The status of reducing hardware cost of the parameter extractor.

36

3.2.4 Find Gate Function

Table 3-5 The method of finding the low-cost gate type.

Order of counts
(32103210 },3,2,1,0{,,, jjjjjjjj )

Groups
(qpqp  },1,0{,)

Method of finding gates
in the comment of the
FindGate function

Gp = {j0, j1}
Gq = {j2, j3}
Gp = {j0, j2}
Gq = {j1, j3}

3210 jjjj cccc 

3210 jjjj cccc 
Gp = {j0, j3}
Gq = {j1, j2}

Method 1

Gp = {j0, j2}
Gq = {j1, j3} 3210 jjjj cccc 

3210 jjjj cccc  Gp = {j0, j3}
Gq = {j1, j2}

Method 2

Gp = {j0, j1}
Gq = {j2, j3}
Gp = {j0, j2}
Gq = {j1, j3}
Gp = {j0, j3}
Gq = {j1, j2}

Method 3

3210 jjjj cccc 

Gp = {j0}
Gq = {j1, j2, j3}

Method 5

Gp = {j0, j2}
Gq = {j1, j3}
Gp = {j0, j3}
Gq = {j1, j2}

Method 4

3210 jjjj cccc 

Gp = {j0}
Gq = {j1, j2, j3}

Method 5

Gp = {j0, j3}
Gq = {j1, j2} 3210 jjjj cccc 

3210 jjjj cccc  Gp = {j0}
Gq = {j1, j2, j3}

Method 6

In the first column of Table 3-5, all possible orders of the count of one 2-bit block are

listed and the relative groups are also shown in the second column. For example, in the

third row of Table 3-5,
3210 jjjj cccc  , so

021 jjj ccc  . Each group must have

two elements according to the grouping function. Furthermore, j0 and j1 can be

exchanged in these two groups because .
10 jj cc  Therefore, there are two

combinations in the third row. Based on Table 3-5 we can implement the FindGate

37

function in Figure 3-7.

1 FindGate function
2 Input: Sorted)},(),,(),,(),,{(

3210 3210 jjjji cjcjcjcjC  and

3210 jjjj cccc 

3 Output: One gate type.

4 {

5 bool j3toG0 = false;

6 if (cj1 + cj2 >= cj0) j3toG0 = true;

7 if (cj0 = cj1) {

8 if (cj1 = cj2) return one of gt5, gt6 and gt7; // Method 1

9 else { // Method 2

10 temp = j0 + j1

11 return DistinguishGateType567 (temp);

12 }

13 } // end if (cj0 = cj1)

14 else if (cj2 = cj3) {

15 if (j3toG0 = true) {

16 if (cj1 = cj2) return one of gt5, gt6 and gt7; // Method 3

17 else { // Method 4

18 temp = j2 + j3

19 return DistinguishGateType567 (temp);

20 }

21 }

22 else {

23 Place j0 into G0; Place j1, j2 and j3 into G1; // Method 5

24 }

25 } // end else if (cj2 = cj3)

26 else { // Method 6

27 //SimpleGrouping function

28 Place j0 into G0; Place j1 and j2 into G1;

29 if (j3toG0 = true) Place j3 into G0;

30 else Place j3 into G1;

31 } // end else

32 return DistinguishAllGateType (G0, G1);

33 }
Figure 3-7 The find gate function.

38

This function is easy to construct, for example, if our condition matches the method 2

then we can determine whether
0j

c is equal to
1j

c or not in order to separate the

methods 1 and 2 from the others in Table 3-5. After that, we can also determine whether

1j
c is equal to

2j
c or not to separate the methods 1 and 2. So we can distinguish these

methods easily. After distinguishing these methods, we need to choose the gate type as

the synthesized gate. Therefore, we classified these methods under three situations. First,

the methods 1 and 3 cover all combinations of the groups when each group has two

elements so we can choose one gate type from gt5, gt6 and gt7. Second, the methods 2

and 4 cover some combinations of the groups so we need another function to choose the

logic gate type that will be explained later. Third, the methods 5 and 6 can use the idea

of the SimpleGrouping function to group the elements and then the

DistinguishAllGateType function can be used to choose a proper gate type.

The total combinations of the groups of methods 2 and 4 are arranged in Table 3-6.

We can find the relation between different statuses of the groups in this table. For

example, if 3021 cccc  then each group has two elements that is based on the

grouping idea. Moreover, numbers 1 and 2 can be exchanged. This status is shown in

the 7th row of the method 2 of Table 3-6 and the relative gate type is gt5 and gt6. So we

can choose one gate type to output. We also find the characteristic value of the different

groups of these two methods in the first column of Table 3-6 such that we can

implement the distinguishing function easily. The characteristic value of the method 2 is

j0 + j1 and that of method 4 is j2 + j3 in our algorithm. But it is easy to find that the

characteristic value of the methods 2 and 4 can also be j0 + j1 or j2 + j3. Then we can

implement the DistinguishGateType567 function as in Figure 3-8 that is based on the

characteristic value.

39

Table 3-6 The relation of the logic gate type of the methods 2 and 4.
Method 2 4

Order of
counts

3210 jjjj cccc 

3210 jjjj cccc  3210 jjjj cccc 

cv = ji +
ji+1

(i=0 in
Method2)

(i=2 in
Method4)

j0 j1 j2 j3
Gate
type

j0 j1 j2 j3
Gate
type

2 3 2 3
0 1

3 2 3 2
0 1

2 3 2 3
1

1 0
3 2

gt6,
7

3 2
1 0

gt6,
7

1 3 1 3
0 2

3 1 3 1
0 2

1 3 1 3
2

2 0
3 1

gt5,
7

3 1
2 0

gt5,
7

1 2 1 2
0 3

2 1 2 1
0 3

1 2 1 2
3

3 0
2 1

gt5,
6

2 1
3 0

gt5,
6

0 3 0 3
1 2

3 0 3 0
1 2

0 3 0 3
3

2 1
3 0

gt5,
6

3 0
2 1

gt5,
6

0 2 0 2
1 3

2 0 2 0
1 3

0 2 0 2
4

3 1
2 0

gt5,
7

2 0
3 1

gt5,
7

0 1 0 1
2 3

1 0 1 0
2 3

0 1 0 1
5

3 2
1 0

gt6,
7

1 0
3 2

gt6,
7

1 DistinguishGateType567 function

2 Input: cv is the characteristic value of groups.

3 Output: The gate type

4 {

5 if (cv = 3) return one of gt5 and gt6;

6 else if (cv is odd) return one of gt6 and gt7;

7 else if (cv is even) return one of gt5 and gt7;

8 }
Figure 3-8 The function of distinguishing gate types 5, 6 and 7.

40

3.2.5 Demonstration of Local Grouping Algorithm

Table 3-7 An example to demonstrate local grouping algorithm. (First level)
Data
0011
1101
0100
1100
1001
(a)

Block B1 Block B0

00 11

11 01

01 00

11 00

10 01
(b)

 C1 C0

Binary (Decimal, Count of B1) (Decimal, Count of B0)

00 (0, 1) (0, 2)

01 (1, 1) (1, 2)

10 (2, 1) (2, 0)

11 (3, 2) (3, 1)
(c)

Sorted C1 Sorted C0

(Decimal, Count of B1) (Decimal, Count of B0)

(3, 2) (0, 2)

(0, 1) (1, 2)

(1, 1) (3, 1)

(2, 1) (2, 0)
(d)

After introducing the local grouping algorithm, we use an example to demonstrate the

local grouping algorithm. The five 4-bit data are shown in Table 3-7(a). The data are

divided into two 2-bit data block logically in Table 3-7(b). Then we count the 2-bit data

in each block in Table 3-7(c). For example, the 2-bit binary data (11)2 = (3)10 appears

two times in the block B1. So C1 has an element (3, 2) in Table 3-7(c). After counting

41

the 2-bit data, the elements of C0 and C1 are sorted by the count in descending order in

Table 3-7(d). Then the sorted C0 and C1 are inputted into the FindGate function. First,

the sorted C0 matches the method 2 in Table 3-5 because (c0 = 2) = (c1=2) > (c3 = 1) >

(c2 = 0). So the characteristic value is (0 + 1) = 1 that is inputted into the

DistinguishGateType567 function. One of the gate types 6 and 7 can be chosen, we

choose gate type 6 because the number of the CMOS transistors is fewer. Second, the

sorted C1 matches the method 3 and each group has two elements in Table 3-5 because

(c3 = 2) > (c0=1) = (c1 = 1) = (c2 = 1) and 310 ccc  . So we can choose gate types 5, 6

and 7 in the FindGate function. We choose gate type 6 here because the number of

CMOS transistors of the gate types 5 and 6 is fewer than gate type 7. Moreover, the

fan-in of the gate type 6 is connected to the least significant bit of the 2-bit data.

Therefore, the first level of the parameter extractor has two gate types 6.

Table 3-8 An example to demonstrate local grouping algorithm. (Second level)
Block B0 of new data

01
11
10
10
01
(a)

 C0
Binary (Decimal, Count of B0)

00 (0, 0)
01 (1, 2)
10 (2, 2)
11 (3, 1)

(b)
Sorted C0

(Decimal, Count of B0)
(1, 2)
(2, 2)
(3, 1)
(0, 0)

(c)

42

After synthesizing the first level of the parameter extractor, if we implement gt6 with

a buffer then the new data are calculated by the gates in the first level and the old data

in Table 3-8(a). Then the number of 2-bit data are counted and sorted for each block in

Table 3-8(b) and (c). The sorted C0 in Table 3-8(c) also matches the method 2 and each

group has two elements. So we also choose gate type 6. Therefore, we need four

inverters to construct the parameter extractor when the buffer is implemented by two

inverters. However the gate-block selection algorithm needs one NAND, NOR and

XOR. The synthesized parameter extractor is shown in Figure 3-9. So the hardware cost

of our synthesized parameter extractor is fewer than that of the gate-block selection.

Moreover, the data are also distributed to the parameters uniformly in these two

parameter extractors.

Figure 3-9 The synthesized parameter extractor of the demonstrative example.

43

3.2.6 Time Complexity of Local Grouping Algorithm

Table 3-9 The time complexity of the local grouping algorithm.
Level Time complexity of each level

1

Line 11~16: 5)2/(cnm 

Line 18~21: 6)2/(cn 

Line 23: 7c

Line 24: 8)2/(cnm 

Line 25, 27, 28: 9c

Line 26: 10
2)2/(cn

2

Line 11~16: 5
2)2/(cnm 

Line 18~21: 6
2)2/(cn 

Line 23: 7c

Line 24: 8
2)2/(cnm 

Line 25, 27, 28: 9c

Line 26: 10
3)2/(cn

…

k

Line 11~16: 5)2/(cnm k 

Line 18~21: 6)2/(cn k 

Line 23: 7c

m: The number of the unique data.

n: The word length of data.

k: The value of k is the level that we want to synthesize. The range of k is

 nk 2log1  .

c: Constant value.

The total time complexity of the local grouping algorithm is

97
1

106
1

85)1(]})
2

1
(

2

1
[])

2

1
(1[{]})

2

1
(1[])

2

1
(1[{ ckckccnccnm kkkk  

in Table 3-9. So the time complexity is O(mn). Hence the local grouping algorithm is

also a polynomial time algorithm. Then we compare the time complexity of the local

grouping algorithm with that of gate-block selection algorithm in Table 3-10.

44

Table 3-10 The comparison of the time complexity of the algorithms.

Time complexity of the gate-block selection algorithm

kcncngcngmc kkk  4321])
2

1
(1[])

2

1
(1[])

2

1
(1[

1c : The time to calculate the output of one gate and counting the appearance times.

2c : The time to calculate the Cavg of one gate in one block.

3c : The time to select one gate that has minimal Cavg in one block.

4c : The time to determine whether the algorithm is finish or not.

Time complexity of the local grouping algorithm

97
1

106
1

85)1(]})
2

1
(

2

1
[])

2

1
(1[{]})

2

1
(1[])

2

1
(1[{ ckckccnccnm kkkk  

5c : The time to count the appearance times of one block of one data.

6c : The time to sort four elements and find one proper gate type.

 The time complexity of the FindGate function is constant and the most times of

 the comparison are nine. Moreover, the time to sort four elements is also

 constant.

7c : The time to determine whether the algorithm is finish or not.

8c : The time to calculate the output of one gate.

9c : The time to prepare the local variables for next level.

10c : The time to initialize the counting set Ci of one block Bi for next level.

851 ccc 

74 cc 

The time complexity of these two algorithms is polynomial time O(mn). Furthermore,

the dominant source of the time complexity is the number of the unique data. So if the

number of the unique data increases and it is far more than the word length of the data

then the execution time of the gate-block selection algorithm will be larger than that of

the local grouping algorithm. We can also see that in Table 3-10 because 851 ccc 

and the first product term of the time complexity of the gate-block selection is

multiplied by the number of gates that is used to synthesize. Therefore, the execution

time of the local grouping algorithm can be smaller than that of the gate-block selection

algorithm.

45

3.3 Discard and Interlaced Method

The drawback of the selective pre-charge scheme is the power consumption still

remains high when the most data in the first segment are identical [7]. Some parameter

extractors of the PB-CAM also meet this problem. For example, in Table 3-11, the most

data are identical in the first five columns. If we use the block-xor parameter extractor

without valid bit design to map the data to 2-bit parameters and the size of each block is

four. Then we can see that the p0 is uniform distribution but the p1 is identical in the last

second column of Table 3-11. This situation causes the data to be centralized in some

parameters such that the average match times are still high. So we introduce a method to

reduce the impact on mapping data in the following. Before introducing the method, we

will introduce the standard deviation [23] first because we use the standard deviation to

measure the variability of the data.

Table 3-11 An example of the problem of the identical data.
Original data XOR

d7 d6 d5 d4 d3 d2 d1 d0 p1 p0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1 0 1

If there are N values Nxx ...,,1 then the standard deviation of these N values is in the

Equation 3-1.





N

i
i xx

N 1

2)(
1 (Equation 3-1)

Where: x is the mean of the N values. That is Nxxxxx NN /)...(121   .

We can see that if the most values are close to the mean then the standard deviation is

46

small. Otherwise, the standard deviation is high. Therefore, when the standard deviation

on the appearance times of the data of one block is high, most data of this block are

most likely identical or the data are centralized in some values. So our method is based

on this idea that is shown in Figure 3-10. It discards some blocks those have high

standard deviation and interlaces some blocks those have high and some blocks those

have small standard deviation in order to break the identical data in some blocks.

1 Discard and Interlaced Method

2 Divide unique data into t blocks.

3 Compute the standard deviation of each block.

4 Choose some blocks BS0 which have high standard deviation and discard them.

5 Choose other blocks BS1 which have high standard deviation.

6 Choose and copy other blocks BS2 which have small standard deviation.

7 Interlace the blocks BS1 and BS2 as new blocks BSnew0.

Use the blocks BSnew0 and the remaining part of original data as new input data

of the parameter extractor.
Figure 3-10 The discard and interlaced method.

Table 3-12 An example to demonstrate the DAI method. (Steps 2 and 3)
Block B3 B2 B1 B0

Position d7 d6 d5 d4 d3 d2 d1 d0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 1 0 1 0 1 1 0

Data

0 1 0 1 0 1 1 1
Standard
deviation 6 6 2 0

We use the data in Table 3-11 to demonstrate the discard and interlaced method (DAI

method). First, the data are divided into four 2-bit data blocks and the standard

deviation on the appearance times of each block is calculated in Table 3-12. Second, the

standard deviations of the B3 and B2 are high so we choose BS0 = {B3} and BS1 = {B2}.

47

We also choose BS2 = {B0} because it has small standard deviation. After choosing, we

discard the BS0 then data = d5d4d3d2d1d0. Next, the BS1 and BS2 are interlaced and

combined with the remaining data so data = d5d0d4d1d3d2d1d0. The reconstructed data

are shown in Table 3-13 and the output result of the block-xor parameter extractor

without valid bit design is in the last two columns. The average match times in Table

3-13 are smaller than that in Table 3-11. Therefore, we can know that this method can

reduce the impact on mapping data when most data are identical or centralized in some

values.

Note that the reconstructed data are used as the input data of the parameter extractor

instead of storing them in the data memory because we still need the original data to

make the comparison result is correct. So the wires are connected with parameter

extractor as the bit positions of the reconstructed data in the hardware design. Moreover,

this method can also apply to the synthesized algorithm. We should only remove the

duplicate data on the reconstructed data and then use them as the input unique data of

the algorithm.

Table 3-13 An example to demonstrate the DAI method. (Result)
Reconstructed data XOR

d5 d0 d4 d1 d3 d2 d1 d0 p1 p0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 1 0
0 0 1 1 0 1 1 0 0 0
0 1 1 1 0 1 1 1 1 1

48

Chapter 4 Experimental Results

In this section, we will introduce our experimental environment and compare our

algorithm and method with the gate-block selection algorithm and block-xor without

valid bit design. The experimental results will also be shown in the following sections.

4.1 Experimental Environment

Table 4-1 The test data in the experiment.

Test data (The word length is 32 bits) Annotation

MiBench [24] Modify the sim-cahce.c in the

SimpleScalar [25] and dump the data

address that are used to access data TLB

as test data.

Random data The data words are separated into 4-bit

blocks. First, 15 numbers are generated

randomly between 0 and 1000 for each

block. Then the 15 numbers divide the

area that is from 0 to 1000 into 16 areas.

Second, the sizes of these 16 areas are

used as the probability of generating

data in the blocks. After that, the test

data are generated.

We use two kinds of test data in our experiment. One is MiBench [24] and the other

is random data. The method that is used to obtain these data is shown in the second

column of Table 4-1. Furthermore, the other configurations for all schemes and the

simulation tools are shown in Table 4-2. The high-level simulation tool is used to count

the times of all status in the CAM when the test data are searched. For example, the

dominant source of the power consumption on the match line of CAM is the match lines

are pre-charged and then discharged. So we can count the number of rows of one data is

mismatched and the relative parameter is matched in total search. We also count the

49

number of rows of that one data and relative parameter are mismatched in this search

but the parameter and data in the same position are matched in the previous search or

replacement. Therefore, we can sum these two counts and use them as the estimative

power consumption on the match line of CAM. Moreover, we also pre-fetch data and

store them in the CAM before searching.

Table 4-2 The configurations for all schemes in the experiment.

Spice simulation tool Synopsys NanoSim

High level simulation tool Design by ourselves

Technology CIC 0.18um SPICE MODEL

Supply voltage 1.8 V

CAM cell Conventional 9T XOR type

Parameter comparison circuit As in the ones count scheme [19]

Match line structure of data memory NOR type match line

Word structure Static [19]

Capacity of parameter memory 4 bits × 128 words

Capacity of data memory 32 bits × 128 words

Replacement Policy Counter-based LRU

Pre-fetch data yes

Size of the data block for each

parameter extractor
2 bits

Number of levels of the parameter

extractor
3 levels

Table 4-3 The configurations for each scheme in the experiment.

Schemes Configurations

Block-XOR Without valid bit design

Gate-block selection algorithm
The priority of selecting gates is NAND > NOR >

XOR when the Cavg is equal.

gt1 = a nor b, gt2 = a nor (not b),

gt3 = (not a) nor b, gt4 = a nand b,

gt5 = a, gt6 = b, gt7 = a xor b

The gt5 and gt6 are implemented by two inverters
Local grouping algorithm

The priority of selecting gate types is gt6 > gt5 >

gt7 when we need to choose a gate type to return.

50

The other configurations for each scheme are shown in Table 4-3. In the second row,

the block-xor parameter extractor without valid bit design is used in our experiment

because the pure xor function can distribute data more uniformly than the block-xor

scheme with valid bit design when data are uniform distribution. We also define the

gate types that are used in the experiment and the priority of selecting gates for

gate-block selection algorithm and local grouping algorithm. Moreover, the

configuration of DAI method is shown in Table 4-4. The block 3 is discarded. Besides,

block 2 and copied block 0 are interlaced as new blocks 3 and 2 when MiBench is used

because we divided the unique data of the benchmark into four blocks and analyzed

them. We found that the standard deviation of most significant two blocks is high and

least significant one block is low. This analytic result is shown in Table 4-5.

Table 4-4 The configuration for DAI method in the MiBench experiment.
 Block 3 Block 2 Block 1 Block 0

Original d31d30…d25d24 d23d22…d17d16 d15d14…d9d8 d7d6…d1d0

 New block 3 New block 2 Block 1 Block 0
DAI

method
d23d0d22d1 d21d2d20d3 d19d4d18d5 d17d6d16d7 d15d14…d9d8 d7d6…d1d0

51

Table 4-5 The standard deviation of each block in the MiBench experiment.
Standard deviation

MiBench
Block 3 Block 2 Block 1 Block 0

bf_small_decode 511.18 511.18 85.90 0.63

bf_small_encode 511.17 511.17 85.89 0.63

bitcnts_large 10.09 10.09 7.90 0.65

bitcnts_small 10.06 10.06 7.86 0.64

crc_small_encode 255.69 255.69 64.22 0.62

dijkstra_large 258.18 258.18 62.13 0.70

dijkstra_small 258.18 258.18 62.13 0.70

fft_large 64.01 64.01 31.87 0.45

fft_large_inv 64.01 64.01 31.87 0.45

fft_small 64.01 64.01 31.87 0.45

fft_small_inv 64.01 64.01 31.87 0.45

patricia_large 257.49 257.49 62.05 0.74

patricia_small 257.43 257.43 62.05 0.74

qsort_large 259.31 259.22 63.36 0.67

qsort_small 257.19 257.10 62.14 0.69

rijndael_small_decode 511.14 511.14 84.65 0.68

rijndael_small_encode 511.16 511.16 84.68 0.64

sha_small_encode 258.49 258.49 63.29 0.82

susan_large_corners 7154.87 4671.03 111.21 1.00

susan_large_edges 7154.87 4671.03 111.19 1.00

susan_large_smoothing 7154.87 4671.03 111.21 0.99

susan_small_corners 706.85 705.91 97.32 1.24

susan_small_edges 706.84 705.91 97.30 1.24

susan_small_smoothing 706.85 706.73 97.34 1.23

toast_small_encode 303.11 303.11 66.06 1.04

untoast_small_decode 326.30 326.30 68.84 0.74

52

4.2 Results

In this section, we will show the experimental results on the random data first then

that on the MiBench.

4.2.1 Experimental Results of Random Data

Table 4-6 The number of data in the random test data.
Number of data

Random data
unique original

newData1 982,514 1,000,000

newData2 988,613 1,000,000

newData3 990,763 1,000,000

newData4 993,294 1,000,000

newData5 989,177 1,000,000

data1 49,986 50,000

data2 49,962 50,000

Table 4-7 The standard deviation on the number of unique data that are mapped to

each parameter in the random test data.
Standard deviation

Random data
group gsel xor

newData1 524.97 2085.12 6224.66

newData2 257.48 4294.38 17547.60

newData3 554.34 4013.53 5610.75

newData4 269.23 1647.30 3935.91

newData5 272.28 3199.01 3849.80

data1 50.80 264.47 266.61

data2 47.59 140.18 289.65

The number of unique data and original data is shown in Table 4-6. We can see that

the difference of them is small because the random data does not have locality. So the

most data will be stored in the CAM but the miss rate will be high. Moreover, we

calculate the standard deviation on the number of unique data that are mapped to

53

parameters in Table 4-7. The lower the standard deviation is, the more uniform the

number of data that is relative to each parameter is. So we can see that the parameter

extractor generated by our algorithm in the “group” column can distribute the data more

uniformly than the gate-block selection algorithm and pure xor function in the “gsel”

and “xor” columns. But this method only can measure the global scope because only

some parts of data are stored in the CAM. So we use the high level simulation tool that

is designed by ourselves to count the status of the CAM when each operation is

performed. The results of the high level simulation are shown in Table 4-8 and the

improvement rate is shown in Table 4-9.

Table 4-8 The high level simulation result.
mat_mis + (mat_mat -> mis_mis)

Random data
group gsel xor

newData1 8,934,661 8,946,933 9,022,533

newData2 8,939,674 8,972,140 9,594,843

newData3 8,936,071 8,965,914 9,006,159

newData4 8,934,051 8,945,856 8,973,156

newData5 8,939,205 8,956,204 8,968,062

data1 446,491 449,224 449,692

data2 447,135 448,026 450,661

Table 4-9 The improvement rate of the high level simulation result.
mat_mis + (mat_mat -> mis_mis) (%)

group Random data

Vs. gsel Vs. xor

newData1 0.1372% 0.9739%

newData2 0.3619% 6.8283%

newData3 0.3328% 0.7782%

newData4 0.1320% 0.4358%

newData5 0.1898% 0.3218%

data1 0.6084% 0.7118%

data2 0.1989% 0.7824%

Average 0.2801% 1.5475%

54

We can see that the improvement rate is small when the random data are used

because the random data do not have locality. Therefore, most search operations are

missed in the data memory and data are often replaced such that the counts are close in

these three schemes. In next section, we will see that the improvement rate will increase

when the data have locality.

Unique data distribution of newData1

50000

55000

60000

65000

70000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

da
ta

group

gsel

xor

(a)

Unique data distribution of newData2

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

d
at

a

group

gsel

xor

(b)

55

Unique data distribution of data1

2500

2700

2900

3100

3300

3500

3700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

da
ta

group

gsel

xor

(c)
Figure 4-1 The unique data distribution of three random data sets.

The number of data that are mapped to each parameter is shown in Figure 4-1. We

only show three data sets in these figures. The more uniform the data distribution is, the

smoother the line is. Therefore, our synthesized parameter extractors are better than the

other two schemes in our experiment when the random data are used. Moreover, the

most data of each block are different so we do not need to use the discard and interlaced

method on the random data. We did not either use the NanoSim to run the simulation

when the random data are used because the result of the high level simulation is close

on these three schemes.

56

4.2.2 Experimental Results of MiBench

Table 4-10 The number of data in the MiBench.
Number of data

MiBench
unique original

bf_small_decode 8,442 623,941
bf_small_encode 8,441 623,938
bitcnts_large 220 1,724
bitcnts_small 219 1,729
crc_small_encode 4,271 1,369,097
dijkstra_large 4,308 36,247
dijkstra_small 4,308 30,658
fft_large 1,094 962,149
fft_large_inv 1,094 688,480
fft_small 1,094 116,383
fft_small_inv 1,094 172,663
patricia_large 4,297 3,265,344
patricia_small 4,296 542,003
qsort_large 4,332 3,145,099
qsort_small 4,298 107,078
rijndael_small_decode 8,418 623,970
rijndael_small_encode 8,433 623,969
sha_small_encode 4,315 312,043
susan_large_corners 114,998 221,568
susan_large_edges 114,996 221,566
susan_large_smoothing 115,000 221,570
susan_small_corners 11,624 14,820
susan_small_edges 11,622 14,818
susan_small_smoothing 11,626 14,822
toast_small_encode 4,992 25,937
untoast_small_decode 5,356 25,945

The number of unique data and original data is shown in Table 4-10. The difference

of them is large because these data sets have locality and most data are duplicate in each

data set. The standard deviations on the number of unique data that are mapped to each

parameter are shown in Table 4-11. The difference of the standard deviation of each

57

scheme is small in the last three columns when the DAI method is not used in these

schemes; because data are centralized in some parameters due to most data are identical

in some blocks. After using the DAI method, the standard deviations of each scheme are

decreased that are shown in the “dai_group”, “dai_gsel” and “dai_xor” columns.

Furthermore, most standard deviations in the “dia_group” column are smaller than the

others.

Table 4-11 The standard deviation on the number of unique data that are
mapped to each parameter in the MiBench.

Standard deviation
MiBench

dai_group dai_gsel dai_xor group gsel xor

bf_small_decode 527.63 527.97 527.97 878.16 878.57 914.27

bf_small_encode 1.84 527.91 527.91 878.19 878.60 914.16

bitcnts_large 4.38 9.44 15.67 25.12 25.12 25.64

bitcnts_small 4.43 16.19 15.59 25.06 25.06 25.49

crc_small_encode 1.09 267.20 267.28 437.46 437.73 462.70

dijkstra_large 3.60 247.82 247.82 442.07 441.94 441.94

dijkstra_small 3.60 247.82 247.82 442.07 441.94 441.94

fft_large 68.66 59.63 59.63 108.56 108.56 108.56

fft_large_inv 68.66 59.63 59.63 108.56 108.56 108.56

fft_small 68.66 59.63 59.63 108.56 108.56 108.56

fft_small_inv 68.66 59.63 59.63 108.56 108.56 108.56

patricia_large 2.34 268.58 268.58 440.74 440.74 465.17

patricia_small 268.52 268.52 268.52 440.63 440.63 465.06

qsort_large 8.98 250.72 254.09 443.84 443.95 449.91

qsort_small 268.67 248.41 251.92 439.97 439.97 446.16

rijndael_small_decode 526.13 526.31 526.13 878.96 879.17 911.28

rijndael_small_encode 1.95 527.29 527.06 878.46 878.71 912.90

sha_small_encode 3.18 269.80 270.19 442.55 442.59 467.67

susan_large_corners 2.85 3054.54 3054.54 7295.45 8366.22 8385.63

susan_large_edges 1.92 3052.78 3052.78 7295.58 8366.33 8384.24

susan_large_smoothing 8.46 3054.42 3054.42 7295.33 8366.12 8385.65

susan_small_corners 3.69 724.88 725.17 1214.27 1214.29 1256.79

susan_small_edges 3.12 724.76 725.04 1214.34 1214.36 1256.57

susan_small_smoothing 726.65 726.64 726.95 1216.11 1216.11 1258.93

toast_small_encode 5.34 305.56 312.33 521.43 521.48 540.77

untoast_small_decode 2.38 326.82 334.76 561.78 561.78 579.81

58

Table 4-12 The high level simulation result in the MiBench.
mat_mis + (mat_mat -> mis_mis)

Mibench
dai_group dai_gsel dai_xor group gsel xor

bf_small_decode 18,015,217 16,644,821 16,644,821 35,478,702 33,171,997 33,185,089

bf_small_encode 9,280,497 16,644,828 16,644,828 35,478,719 33,171,936 33,185,054

bitcnts_large 14,314 28,001 29,054 57,135 56,596 54,664

bitcnts_small 14,313 30,117 29,276 57,219 56,690 55,239

crc_small_encode 20,364,290 37,193,389 37,193,676 77,857,529 74,150,863 74,159,018

dijkstra_large 403,649 854,593 854,593 1,561,272 1,714,874 1,714,874

dijkstra_small 373,477 804,033 804,033 1,450,283 1,604,999 1,604,999

fft_large 31,151,734 27,005,873 27,005,873 46,837,508 54,023,813 54,023,813

fft_large_inv 22,331,308 19,349,879 19,349,879 33,535,963 38,665,089 38,665,089

fft_small 3,765,030 3,262,801 3,262,801 5,660,491 6,529,231 6,529,231

fft_small_inv 5,599,548 4,848,193 4,848,193 8,407,287 9,686,612 9,686,612

patricia_large 49,726,827 53,009,762 53,009,762 194,911,337 105,808,393 105,868,310

patricia_small 16,189,035 8,855,006 8,855,006 32,088,174 17,588,741 17,648,889

qsort_large 48,761,156 64,978,205 64,977,862 141,398,770 130,253,771 130,252,556

qsort_small 3,246,987 1,862,427 2,425,654 4,261,816 3,520,477 4,432,758

rijndael_small_decode 18,012,230 16,645,439 16,638,821 35,467,704 33,174,326 33,173,548

rijndael_small_encode 7,955,024 16,641,668 16,637,048 30,411,328 33,172,656 33,169,248

sha_small_encode 4,971,033 8,475,166 8,475,944 19,005,237 16,893,203 16,899,213

susan_large_corners 3,295,462 5,978,766 5,978,766 12,589,608 11,916,070 11,920,096

susan_large_edges 3,295,699 5,978,690 5,978,690 12,479,185 11,915,964 11,920,017

susan_large_smoothing 3,240,315 5,978,828 5,978,828 12,479,356 11,917,063 11,920,207

susan_small_corners 212,522 396,645 396,660 819,060 783,145 790,586

susan_small_edges 217,831 396,608 396,561 826,315 783,093 790,468

susan_small_smoothing 410,282 396,796 397,433 814,511 783,222 792,275

toast_small_encode 345,488 684,781 685,449 1,331,370 1,360,472 1,366,557

untoast_small_decode 376,650 718,738 714,377 1,437,708 1,429,930 1,424,436

Table 4-13 The average reduction rate of the high level simulation in MiBench.
Average reduction rate of the high level simulation

dai_gruop dai_gsel dai_xor group
gsel xor gsel xor gsel xor gsel xor

59.39% 60.11% 49.62% 49.99% 49.00% 49.49% -7.08% -6.20%

The result of the high level simulation is shown in Table 4-12 and the average

reduction rate is shown in Table 4-13. When the DAI method is not used in each

59

scheme, most data are centralized in some parameters such that the result of each

scheme is high, especially for the local grouping algorithm. This situation can be seen in

the last three columns of Table 4-12 and the last column of Table 4-13. However, each

scheme can be improved when the DAI method is used in each scheme. This situation

can be seen in Table 4-12 and Table 4-13.

Unique data distribution of patricia_small

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

da
ta

group

gsel

xor

Unique data distribution of patricia_small

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

d
at

a

dai_group

dai_gsel

dai_xor

Figure 4-2 The data distribution of the patricia_small.

60

Unique data distribution of patricia_large

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

da
ta

group

gsel

xor

Unique data distribution of patricia_large

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter

N
u
m

b
er

 o
f

d
at

a

dai_group

dai_gsel

dai_xor

Figure 4-3 The data distribution of the patricia_large.

The data distributions of patricia are shown in Figure 4-2 and Figure 4-3. When the

DAI method is not used, the most data are distributed to some parameters. But the

impact on mapping is reduced when the DAI method is used. We can also see that the

data are still centralized in some parameters in the patricia_small but the number of data

that are related to one parameter is reduced, because the DAI method can only reduce

the impact of some blocks. It can not break all identical data of all data blocks.

61

Table 4-14 The average power consumption in MiBench.
Average Power Consumption on total circuit (uW)

MiBnech
dai_group dai_gsel dai_xor group gsel xor

bitcnts_large 4150.33 7437.91 7674.15 13436.19 13331.50 12490.76

bitcnts_small 4139.43 7914.27 7693.84 13428.88 13304.16 12579.35

crc_small_encode 6266.96 11487.83 11487.85 22545.01 21763.89 21765.89

dijkstra_large 5455.15 11021.99 11029.75 18636.03 20736.97 20734.16

fft_small 13528.01 11822.05 11822.67 19399.59 22511.40 22510.41

fft_small_inv 13558.05 11841.11 11841.53 19415.87 22514.30 22513.74

patricia_small 12643.04 9680.81 9680.81 23092.27 17543.30 17570.47

qsort_small 12164.48 9944.28 10973.30 18383.02 17819.36 19490.27

sha_small_encode 6646.77 11486.07 11486.70 24090.53 21755.78 21761.76

susan_small_corners 6028.83 11344.96 11353.23 22026.17 21269.45 21443.44

susan_small_edges 6320.37 11344.58 11351.71 22160.86 21272.35 21444.37

susan_small_smoothing 11280.94 11347.65 11372.37 21892.86 21269.41 21485.58

toast_small_encode 5956.30 11202.83 11226.05 20437.40 21135.14 21207.09

untoast_small_decode 6169.06 11693.39 11637.49 21986.08 22111.57 22024.57

Table 4-15 The average reduction rate of the power consumption in MiBench.
Average reduction rate of the power consumption

dai_gruop dai_gsel dai_xor group
gsel xor gsel xor gsel xor gsel xor

58.88% 59.10% 46.00% 45.93% 45.57% 45.54% -1.42% -1.49%

Due to the simulation time of the SPICE code, we only simulated some benchmarks.

The results are shown in Table 4-14 and the reduction rate is shown in Table 4-15.

Although some benchmarks are not simulated, the reduction rate of our scheme is still

higher than the others. The power consumption of the gate-block selection scheme and

block-xor scheme can also be reduced when the DAI method is used on them.

Furthermore, the power consumption of the parameter extractor and the number of

CMOS elements are also obtained from the NanoSim. The average reduction rates of

them are shown in Table 4-16 and Table 4-17. The result shows that our parameter

extractors not only reduce the power consumption but also save some hardware cost.

62

Table 4-16 The average reduction rate of the power on the parameter extractor.
Average reduction rate of the power on the parameter extractor

dai_group group
dai_gsel dai_xor gsel xor
63.60% 63.62% 21.85% 22.17%

Table 4-17 The average reduction rate of the number of CMOS elements.
Average reduction rate of the number of CMOS elements on total circuit

dai_group group
dai_gsel dai_xor gsel xor
0.53% 0.59% 0.20% 0.48%

63

Chapter 5 Conclusion

In this work, we propose a local grouping algorithm to synthesize a proper parameter

extractor such that the power consumption of the PBCAM can be reduced. Moreover,

the cost of the parameter extractor is also lower than the others. We also propose the

DAI method to reduce the influence of the identical data in some data blocks. This

method can improve the efficiency of the parameter extractor. The experiment results

also show that our schemes can reduce the power consumption and the number of

CMOS elements. Moreover, the DAI method can also improve the gate-block selection

algorithm and block-xor scheme. Therefore, our schemes are suitable for embedded

systems when the applications of a system are known in advance.

64

References

[1] A. P. Chandrakasan and R. W. Brodersen, "Minimizing power consumption in

digital CMOS circuits," Proceedings of the IEEE, vol. 83, no. 4, pp. 498-523,

Apr. 1995.

[2] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, 1

ed. Norwell, MA and AH Dordrecht, The Netherlands: Kluwer Academic

Publishers, 1995.

[3] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, et al.,

"Leakage current: Moore's law meets static power," Computer, vol. 36, no. 12,

pp. 68-75, Dec. 2003.

[4] L. T. Clark, C. Byungwoo, and M. Wilkerson, "Reducing translation lookaside

buffer active power," in Proceedings of the International Symposium on Low

Power Electronics and Design (ISLPED), 2003, pp. 10-13.

[5] V. Chaudhary, T. H. Chen, F. Sheerin, and L. T. Clark, "Critical race-free

low-power nand match line content addressable memory tagged cache memory,"

IET Computers & Digital Techniques, vol. 2, no. 1, pp. 40-44, Jan. 2008.

[6] C.-C. Wu, S.-H. Wen, N.-F. Huang, and C.-N. Kao, "A pattern matching

coprocessor for deep and large signature set in network security system," in

IEEE Global Telecommunications Conference (GLOBECOM), 2005, p. 5.

[7] K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM)

circuits and architectures: a tutorial and survey," IEEE Journal of Solid-State

Circuits, vol. 41, no. 3, pp. 712-727, Mar. 2006.

[8] K. J. Schultz, "Content-addressable memory core cells: a survey," Integration,

the VLSI Journal vol. 23, no. 2, pp. 171-188, Nov. 1997.

[9] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, "200MHz/200MSPS 3.2W

at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect

circuits and bank selection scheme," in Proceedings of the IEEE Custom

Integrated Circuits Conference, 2003, pp. 387-390.

65

[10] I. Arsovski, T. Chandler, and A. Sheikholeslami, "A ternary content-addressable

memory (TCAM) based on 4T static storage and including a current-race

sensing scheme," IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp.

155-158, Jan. 2003.

[11] I. Arsovski and A. Sheikholeslami, "A current-saving match-line sensing

scheme for content-addressable memories," in IEEE International Solid-State

Circuits Conference (ISSCC), Digest of Technical Papers, 2003, pp. 304-494

vol.1.

[12] I. Arsovski and A. Sheikholeslami, "A mismatch-dependent power allocation

technique for match-line sensing in content-addressable memories," IEEE

Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1958-1966, Nov. 2003.

[13] K. Pagiamtzis and A. Sheikholeslami, "A low-power content-addressable

memory (CAM) using pipelined hierarchical search scheme," IEEE Journal of

Solid-State Circuits, vol. 39, no. 9, pp. 1512-1519, Sep. 2004.

[14] J.-H. Lee, G.-h. Park, S.-B. Park, and S.-D. Kim, "A selective filter-bank TLB

system [embedded processor MMU for low power]," in Proceedings of the

International Symposium on Low Power Electronics and Design (ISLPED),

2003, pp. 312-317.

[15] P. Echeverria, J. L. Ayala, and M. Lopez-Vallejo, "A banked

precomputation-based CAM architecture for low-power storage-demanding

applications," in IEEE Mediterranean Electrotechnical Conference

(MELECON), 2006, pp. 57-60.

[16] S. Hanzawa, T. Sakata, K. Kajigaya, R. Takemura, and T. Kawahara, "A

large-scale and low-power CAM architecture featuring a one-hot-spot block

code for IP-address lookup in a network router," IEEE Journal of Solid-State

Circuits, vol. 40, no. 4, pp. 853-861, Apr. 2005.

[17] K. Cheong, Q. Shaolei, and A. Mason, "A power-optimized 64-bit priority

encoder utilizing parallel priority look-ahead," in Proceedings of the

International Symposium on Circuits and Systems (ISCAS), 2004, pp. II-753-6

66

Vol.2.

[18] C. A. Zukowski and S.-Y. Wang, "Use of selective precharge for low-power

content-addressable memories," in Proceedings of IEEE International

Symposium on Circuits and Systems (ISCAS), 1997, pp. 1788-1791 vol.3.

[19] C.-S. Lin, J.-C. Chang, and B.-D. Liu, "A low-power precomputation-based

fully parallel content-addressable memory," IEEE Journal of Solid-State

Circuits, vol. 38, no. 4, pp. 654-662, Apr. 2003.

[20] S.-J. Ruan, C.-Y. Wu, and J.-Y. Hsieh, "Low Power Design of

Precomputation-Based Content-Addressable Memory," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 16, no. 3, pp. 331-335, Mar.

2008.

[21] C.-Y. Wu, S.-f. Ruan, C.-K. Cheng, and M.-B. Lin, "A new Block-XOR

precomputation-based CAM design for low-power embedded system," in IEEE

International Conference on Electronics, Circuits and Systems (ICECS), 2005,

pp. 1-4.

[22] J.-Y. Hsieh and S.-J. Ruan, "Synthesis and design of parameter extractors for

low-power pre-computation-based content-addressable memory using

gate-block selection algorithm," in Asia and South Pacific Design Automation

Conference (ASPDAC), 2008, pp. 316-321.

[23] Standard deviation. Available: http://en.wikipedia.org/wiki/Standard_deviation

[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, "MiBench: A free, commercially representative embedded benchmark

suite," in IEEE International Workshop on Workload Characterization

(WWC-4), 2001, pp. 3-14.

[25] SimpleScalar LLC. Available: http://www.simplescalar.com/

