Ll I
g A S e 1

Mt ST M FRERTALI LS)
3 3

AL~
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

By 384 HEH B E i 75 F3p L B A
w??iﬁﬁﬁﬁiﬁaﬁiiﬁﬁﬁﬁ
Local Grouping Algorithﬁf}for Synthesizing Low-Cost
Parameter Extractor of Low-F3'ower Pfe-computation-Based

Content Addressable Memory

B 7%

Tsung-Sheng Lai

IR FHE BL
Advisor: Feipei Lai, Ph.D.

P EX K 98 £ 6
June, 2009

B2 RERBLE2MBX
DREBETELZE
BB EEELERAUSRIEDERAIFTEARNETE
TR R b6 IR A 2 B HEER 3B

Local Grouping Algorithm for Synthesizing Low-Cost
Parameter Extractor of Low-Power Pre-computation-Based
Content Addressable Memory

WX RBIEE (2358 R96922071) AR EBRETAIE
ZErARZATEMBX NRE 98 £ 6 A 14 BATHZRE
BB LMBR UKRKE FHHLER

o3RE 8 - %ﬁ %ﬁ_

(38 H33%)
L&t%} fe=
Al AR

4 x 4= é-ﬁi

KEIVFIPER YA S BN LR 8 R HE RN S gk
FFoo PR WREAGEY Al T8 AT FE L ARF S IR o b ik A
ﬁﬂﬁ?ﬂff’?ﬁﬁiﬁ CREAFTNE TR ANMSEFEF AT Y

Chs —’:m{é}.ﬁ*j{ﬁ’

A\

s RHT AR R AR B BRI R R Rt e ER i §

MR FE G emE RO RA AT RAPFEFEAS{REL THmRT R AEL R G IR S G T Ao

RBAPFA > B X AARF| L H 2 mdrprs AN hgpe > o h7 o 4 FA
AR AL TR P TR R TR S 8 ﬁ*sz" %o R RN - - A fE
T H B s A Lo

R 3 AR R A 2 fgzu; fgéﬁ.rft«M YEIPE - E N A o) SRS o o S
FAAG ALK R Wh%rﬁﬁ i1 ¢ SO R CE L o
Eﬁﬁ'\:"?ﬂjﬁ ’ gﬁ;—\‘._’gﬁ:’fl] 7 fP/ 5 g g o n"y?’-_E‘ Jl’Ll FWQ %E{] r‘!’lﬁf\k q-\j\ El ""‘fr’é‘f—p\ rﬂg‘f’/\ » L)

N 3E EESRYERE > T TN

ﬁﬂﬁ?%iﬁkﬁﬂ&ﬁ‘%&%%é$?$§#ﬁ—£@$ﬂ B~ % Fo B
JRAGFEELR > 12 % LowPower e F 3k - £ L% - HI R T T B E KX 3
FAEF PR A e s o PR E S EAES Rl A 0 ¥ R %

R K p A RO A G R E e RIS s Ko

s

LRl S S RN S AR A N R S S

LAVEIR I

i &

Flor 77 TARUIREFE REPVAFIZFEFENRA Y HFFLLE o0
LA T ERT RS AN D o iphmY P APRN - BENIFEE T L E M R
AFEAPN F T AR ORI R @ F TR RIS op I B Sl A 2
R Ay o o prob iy g di- B R RS - BT ARRS AL Ak P
HEAEP-Brd R 8o 7% %% 8T 0 % f- Gate-Block Selection i & ;2 v- #pF »
e T b 58, 88% et 4L 4 T U g T 0.53%0 CMOS T S M P o do% * Ak
Mend 3 2 L4502 3 stk Gate-Block Selection & & i pF > 24 en= j2 (v 2R ¥ R b 13%en
ARt I

BgEF P BV ThbiE R AR C MHF MR BRI

Abstract

Content addressable memory (CAM) plays an important role on the performance of some devices
due to the high speed of CAM. But the power consumption of CAM is also high. In this work, we
propose a synthesis algorithm to synthesize the parameter extractor for low-power
pre-computation-base CAM (PB-CAM) such that the data can be mapped to parameters uniformly
and the cost of the parameter extractor can also be lower. Moreover, we also propose a method to
reduce the impact on mapping data to parameters when most data are identical in some data blocks.
In the experimental results, the average reduction of the power consumption can achieve 58.88%
and the number of CMOS transistors can save 0.53% when compared with Gate-Block Selection
algorithm. If the Gate-Block Selection algorithm is also enhanced by our proposed discard and

interlaced method (DAI method) then.the power consumption: can still be reduced by 13%.

> Wil

Keywords: content addressable memory (CAM), 'ﬁ'fe-computafion, low power, low cost, synthesis

algorithm

Contents

PRI R EF T [
PR]
BB B 11
N 013 1 [o! ST UPRUTPR v
(000 01 (=] 0| K TP P P OT P UPPPTOUPPPPRRPURTPTS v
LIST OF FIQUIES..... ittt et e s et e e et e e sraesneesaneanee s vii
LIS OF TaDIES ...t nne s IX
Chapter 1 INrodUCTION.........coeiiie e re e 1
1.1 Power Dissipation in CMOSVLSIFCICUIL...........cccoevrevieiie e 1
1.1.1 Switching Power Dissipatioh .. 2

1.1.2 Short-Circuit Power DISSIDETION .1, 2

1.1.3 Leakage Power Dissipaf%hi .. 3

1.2 Concept of Content Add_res_séblé"Memory W A 4
1.2.1 Content Addreséable IMIEMOEY . 4

1.2.2 Applications of Content /Addressable Memory.........c.ccccceeeevvevieenne. 5

1.2.3 CAM CEIl .ot 6

1.2.4 Write Operation of a CAM Cell.........ccoooviiiiiiii e 7

1.2.5 Read Operation of a CAM Cell.........ccoviiiiiiiiii e 9

1.2.6 Search Operation of a CAM Cellcccoovvviiiiiiiiicieec e, 10

1.2.7 MatCh Line SIrUCTUIE.......eeiviiviiiiieie e 11

Chapter 2 Related WOrKc.oooiiiiic e 14
2.1 Selective Pre-charge SCheme ... 16

2.2 Pre-computation SCREME........cccoiiiiiiiieiie e 17
2.2.1 0ONnes CouNt SCNBIMEcc.oiviiiiiiiieie e 18

2.2.2 BIOCK-XOR SChEMEoiviiiiiiee et 21

2.2.3 Gate-Block Selection Algorithm..........cccccoveviiiiiiiiiicee e, 22

Vv

2.3 Motivation and ODJECHIVE........c.civveiecie et 25

Chapter 3 Proposed APPrOaCh..........cccveiiiiieiie e 26
3.1 The Benefit of Distributing the Data Uniformly...........cccccevvviviniininnenne. 26

3.2 Local Grouping AlGOrthM........c.ccoveiiiiieeeee e 28
3.2.1 Definition of the Variables...........cccooovevieiiiiiniieecce e 28

3.2.2 Top Level of Local Grouping Algorithm............ccccevvvvviveiiniininnn 29

3.2.3 Grouping FUNCHIONccuveiieiie e 31

3.2.4 Find Gate FUNCLION........ccoveiieiie e 36

3.2.5 Demonstration of Local Grouping Algorithmcccccevvevinnnnnnn 40

3.2.6 Time Complexity of Local Grouping Algorithm..........c...ccccevenen. 43

3.3 Discard and Interlaced Methodcccocvviiiiiiiin s 45
Chapter 4 Experimental Results.i.......«..... .. 0, TR 48
4.1 Experimental Environmeht .. 48

8.2 RESUMS ..oooeoveeoe oo b ITE/0 A S 52
4.2.1 Experimental Results of 'Random Data.......ccoovvviiii e, 52

4.2.2 Experimental RESUltS'of MIBENChoovveieieeee e, 56

Chapter 5 Conclusion..................... S A 63
RETEIBINCES ...oeeeee ettt et e s ne et e et e e teenreesreeanee s 64

Vi

List of Figures

Figure 1-1 A simplified block diagram of a CAM.cccccvviiii v 5
Figure 1-2 A conventional 9T CAM Cell..........ccooiiiiii e 7
Figure 1-3 A 9T CAM cell performs a write operation.............cccocoeevveeiieiieesneseenn 8
Figure 1-4 A 9T CAM cell performs a read operation.ccccevveeveeiiiesiecsieeseenns 9
Figure 1-5 (a) XOR type CAM cell. (b) XNOR type CAM cell.........c..ccovevnnenn. 10
Figure 1-6 The schematic of CAM (four word CAM cellS).......cccccvevveviiiieiinenn, 11
Figure 1-7 A NOR type matCh liN€.........ccoviiiiiiiie e 12
Figure 1-8 A NAND type match liNe........c.cooveiiiiiiiie e 12
Figure 2-1 The simplified architecture of the selective pre-charge scheme............. 16
Figure 2-2 The basic architecture of PB=CAM.ccccooiviiiii i 17
Figure 2-3 7T PB-CAM cell. rvreie S, U 19
Figure 2-4 Static pseudo-NMOS CAM.WOTE-CIFCUIT: v .vevveveee e 20
Figure 2-5 Static parameter comparisdri'fjéi{cUit. .. 20
Figure 2-6 The 14 bits block-xor parame't?e'r EXErACIOT.c.. ., 21
Figure 2-7 The Gate-Block Seleétio_h AIGOFINML it 23
Figure 3-1 An example of the 2-level parémeter extractor for the n bits data. 29
Figure 3-2 The top level of the local grouping algorithm.ccccooeiiieiiciieinn 30
Figure 3-3 The general grouping fUNCLION.ccccoiiiiiiii e 31
Figure 3-4 The simple grouping function for 2-bit block.cccccooviiiiiiiiininn 32
Figure 3-5 The function for distinguishing all gate types.c.cccooevvviveeviieiieinnnn 33
Figure 3-6 The status of reducing hardware cost of the parameter extractor........... 35
Figure 3-7 The find gate fUNCLION.c.ccoviiiiiiie e 37
Figure 3-8 The function of distinguishing gate types 5,6 and 7............cccccovevvennnnnn 39
Figure 3-9 The synthesized parameter extractor of the demonstrative example...... 42
Figure 3-10 The discard and interlaced method.ccccovveviieiiiiiccie e 46
Figure 4-1 The unique data distribution of three random data sets...............c.c........ 55
Figure 4-2 The data distribution of the patricia_small...............c.ccccooiiiiiiieiieinn 59

vii

Figure 4-3 The data distribution of the patricia_large

viii

Table 1-1
Table 1-2
Table 1-3
Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7

List of Tables

The comparison of the number of rules between CAM and TCAM......6

Search operations of XOR and XNOR type CAM cells. 11
Comparison between NOR type and NAND type match lines. 13
Number of data is related to the same parameter (ones count). 18
Number of data is related to the same parameter (block-xor). 22
The time complexity of gate-block selection algorithm...................... 24
The average number of matched rows for four 2-bit parameters. 26

The available synthesized gate types for 2-bit block. (a: msb, b: Isb) . 32

An example of the benefit of using additional gate types. 34
An example of the choice.of-the low-cost gate type.cccccevveevrennen, 34
The method of finding the Iow-éost gate type.....ooeveeviie e 36
The relation of the:logiC gate type of the methods 2 and 4. 39

An example to demonstratéﬁbcal grouping algorithm. (First level) 40

An example to demonstrate local grouping algorithm. (Second level) 41

The time complexit)f/'m_c the local grouping algorithm................cc........ 43
The comparison of the time:complexity of the algorithms. 44
An example of the problem of the identical data.................ccccevvennnnen. 45
An example to demonstrate the DAI method. (Steps 2 and 3)............. 46
An example to demonstrate the DAI method. (Result)............ccc........ 47
The test data in the eXpPeriment............ccoevveiie i, 48
The configurations for all schemes in the experiment................cc........ 49
The configurations for each scheme in the experiment........................ 49
The configuration for DAI method in the MiBench experiment.......... 50

The standard deviation of each block in the MiBench experiment...... 51
The number of data in the random test data.ccoocevivviiiiiiniene. 52
The standard deviation on the number of unique data that are mapped

to each parameter in the random test data.ccccceevevieiiicvieiieinnn, 52

Table 4-8
Table 4-9
Table 4-10
Table 4-11

Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-16
Table 4-17

The high level simulation result. ..., 53
The improvement rate of the high level simulation result.................... 53
The number of data in the MiBench...........cccccooviiiiiiiie i 56
The standard deviation on the number of unique data that are mapped

to each parameter in the MiBench.ccccoovi i, 57
The high level simulation result in the MiBench.c..cccoeeee. 58

The average reduction rate of the high level simulation in MiBench. .58
The average power consumption in MiBench............cccccccovveiiieiiienne, 61
The average reduction rate of the power consumption in MiBench. ... 61
The average reduction rate of the power on the parameter extractor. .. 62

The average reduction rate of the number of CMOS elements............ 62

Chapter 1 Introduction

The performance of modern devices becomes faster than before, however the power
consumption and thermal of devices also increase. So the reduction of the power
consumption of a device becomes an important issue for many researches especially for
embedded systems and portable devices. Content addressable memory (CAM) is one
hot topic in these researches. CAM can search for content in parallel within it; so many
devices use it to increase performance such as the translation look-aside buffer (TLB) in
microprocessors and the tag memory of caches. In the network, the ternary content
addressable memory (TCAM) also plays an important role because it performs the
routing lookup and packet classification. in the network router. Although CAM can
operate in high frequency, it alse,consumes rnuc_:h power. The high power consumption
is not suitable for portable devices and'en:fﬂ!ae_dded systems. Therefore, the reduction of
the power consumption of CAM Whiié maintaining its high speed searching
performance is required. In this. thesis;-we proposed an algorithm to synthesize the
parameter extractor of Pre-computation-based CAM and the parameter extractor can
more uniformly map the data to each parameter. We also proposed a method to reduce
the impact on mapping data to parameters when some blocks have a lot of identical

data.

1.1 Power Dissipation in CMOS VLSI Circuit

In the CMOS VLSI circuits, the power consumption can be separated into switching,
short-circuit and leakage power consumption. So the average power consumption can
be modeled by the following equation [1]:

+PR

leakage

P, =P

avg switching

+ P,

short—circuit

(Equation 1-1)

1

1.1.1 Switching Power Dissipation

Switching power consumption is due to charging and discharging the parasitic
capacitances when the transistors are switching. It is one of dominant sources of the
power consumption in the CMQOS circuits; the other is leakage power consumption. We

can use the following equation to model the switching power consumption [2]:

Puitoning = G X Cp ¥V % e (Equation 1-2)
Where:
Ay = The 0 to 1 transition probability per clock cycle.
C, = The sum of all load capacitance.
V4 = The supply voltage of the circuit.
f o = Clock frequency.

-y

1.1.2 Short-Circuit Power, Dissipation

When the NMOS and PMOS of a device are on simultaneously, there is a direct
current path between power supply and ground that causes the short-circuit power

consumption. If the supply voltage is lower than the sum of the threshold voltage of the
NMOS and PMOS in the device (V, <V, +’th‘) then the short-circuit current can be

eliminated [1]. The short-circuit power consumption of a CMOS inverter can be

estimated by the following equation [2]:

B Vy —2V,)° x (Equation 1-3)

short—circuit — 4
12 clk

Where:

£ = An effective transistor strength that is a constant which depends on the transistor

sizes and the technology.

V, = The threshold voltage of the NMOS and PMOS transistors.
= Input rising/falling time.

T.. = Clock cycle time.

1.1.3 Leakage Power Dissipation

Leakage power consumption can be separated into sub-threshold leakage and
reverse-bias diode leakage as the following equation [2]:

P

leakage

= (! sub_threshota + ! iode) X Ve (Equation 1-4)

“V)/(n \ .
Isub—threshold = Ke(vgs e (1_ = VdS) (Equatlon 1'5)
Vr

\

lyoge = 15 (8" = 1) 2 (Equation 1-6)
Where ~"=
K, n = A function of the technology.
Vi = Gate-source voltage:
Vi = Drain-source voltage.
V, = Threshold voltage.

V; =KT/q = Thermal voltage.

Is = Reverse saturation current.

The sub-threshold current flows from source to drain when the transistors are off and
the gate to source voltage is still below the threshold voltage. Therefore the transistors
still conduct by weak current. The reverse-bias current flows through the reverse-biased

diodes that are formed between the diffusion regions and the substrate. These currents

are small for former process technologies, but they are no longer neglected due to the

popularity of deep-submicron technology [3].

1.2 Concept of Content Addressable Memory

In the following sections, we will introduce some concepts of CAM first. The topics

include the architecture, operations and applications of CAM.

1.2.1 Content Addressable Memory

CAM is one kind of fully associative memory so it can search for the data that are
stored in the memory in parallel.:CAM:-is different from the random access memory
(RAM). Because RAM uses the-access addres_s as‘input.and decodes the address to find
the data within it then output.the data. B‘at ,CAM uses the search data as input and
compares the search data with the stored d;ta within_it'in parallel. If the data is found
then CAM will output some addrésses to-access.a RAM and the RAM stores some data
which are related to the data in CAM. For example, Figure 1-1 shows the simplified
block diagram of CAM. The size of it is eight words and each word is stored in eight
CAM cells. The data in the CAM compare with the search data from the search line (SL)
buffers (or called drivers) and there is a match in this example. So the voltage of match
line 2 (ML2) remains high and the others are discharged low when the NOR type match
line is used. Then the encoder outputs an address and decoder decodes this address to

load data from the RAM.

1 1 1 0 0 1 0 1 —MLI1—
[[T T [T T T T [T T [T |

0 1 1 0 1 1 0 1 —ML2—
[[[1T 1 [T T [T [

1 1 0 1 1 1 1 1 —ML3—

[T T T T T T T T T T T T T T 171 Encoder [~ Decoder —— RAM

1 0 1 0 1 0 0 I —ML4—

0 0 0 0 0 1 1 0 —ML5—
[I T T T [T T T T [T T T T]

1 1 1 1 1 1 0 1 —ML6—

0 0 1 1 0 0 1 1 —ML7—

Bufter for SL and SL_bar |

S0 | | !I)/
Figure 1-1 Assimplified block diagram of a CAM.

1.2.2 Applications of Content Addressable Memory

CAM is often used in many devices especially in computer networking devices. For
example, the routing table of the network router and the policy table of the hardware
firewall are implemented by CAM. It is used for packet forwarding and packet
classification. CAM can be classified into two types. One is binary CAM as shown in
Figure 1-1, the other is ternary CAM. Binary CAM is often used in computer devices
but not network devices in recent years because it only can store two states “0” and “1”
in a CAM cell. In this situation, it must contain many rules to gain high performance

that causes the hardware cost become higher. So many network devices use ternary

CAM to store the rules. Ternary CAM can store additional one state that is “don’t care”
state and therefore it can store more rules than binary CAM when the hardware cost is
the same. For example, in Table 1-1 binary CAM needs four space to store the rules but

the ternary CAM only needs one space.

Table 1-1 The comparison of the number of rules between CAM and TCAM.

CAM Type Rules
0100

. 0101
Binary CAM 0110
0111

Ternary CAM 01xx

Other applications of CAM include TLB [4], processor caches [5], database
accelerators, artificial neural network and, intrusion prevention system [6]. Thus we can
see that CAM plays an impertant role in E)ﬂg’ff(')rmance of devices in these applications.

But it is only used in some devices.that are related t0-the performance of systems due to

the expensive cost of it.

1.2.3 CAM Cell

A CAM cell can search one bit data within it and the data can also be read from it or
written into it through bit line by controlling the word line. A schematic of a
conventional nine transistors CAM cell is shown in Figure 1-2. It uses six transistors
static random access memory (SRAM) to store the data as shown in gray block of
Figure 1-2. So the read and write operations of a CAM are the same as in a SRAM. The
connection of the control transistor Ny depends on which match line structure is used
in the CAM. This transistor decides whether the match line of one word discharge or

not. Detailed operations of a CAM cell will be introduced in next sections.
6

6T SRAM Vdd
..... WL WL
A
NW1 | | 1 _} NWP
Qb
N1 N2
‘ T N3 NDY T |
| __{Netrl |
BL gL SLb BLb

Figure1-2 " A cl:ori'\",t_zﬁt"ional 9T CAM cell.

1.2.4 Write Operation of a' CAM-Cell

When CAM performs write operation of one word, the data are inputted to the bit line
drivers. The bit line and bit line bar are driven with bit line drivers. Then word line of
this word is charged to high. After these operations, the data will be written into each
CAM cell of one word.

For example, Figure 1-3 shows write operation of a CAM cell. The data written into a
CAM cell is zero so the bit line is logic 0 and bit line bar is logic 1. Furthermore, we
want to write data into a CAM cell hence the word line is logic 1. Then the NMOS
NW1 and NW2 are turned on. If the stored data Q is logic 0 then the voltage of this cell
is almost stable. Otherwise the PMOS P1 is turned on and NMOS N1 is turned off. A

current Ig, is generated from the V44 node to ground through P1 and NW1. At the same
7

time, the P2 is turned off and N2 is turned on. A current lg.p, is generated from the Vg
node to ground through NW2 and N2. For a while, the Q will become logic 0 and Qb
become logic 1 due to the bit line drivers are designed mush stronger than the
transistors in the CAM cell. Then P1 and N2 are turned off. N1 and P2 are turned on.

The voltage of this CAM cell has become stable.

6T SRAM vdd
AWL=A L CWL=1
.
[EL 1 —
Nw1]| A Qﬂ NW2
N1 N2| |
‘ T N3 ND T ‘
‘ _ﬁctrl ‘
BL=0 gL SLp BLb=1

Figure 1-3 A 9T CAM cell performs a write operation.

In the explanation of the above example, we can know that the size of transistors and
the drivers of CAM should be designed carefully to ensure that the write operations of a

CAM are correct.

1.2.5 Read Operation of a CAM Cell

When CAM performs read operation of one word, the bit line and bit line bar should
be charged to logic 1 first. Then the word line of this word also is charged to high. After

charging these lines, the data can be read from the bit line. An example is shown in

Figure 1-4.
6T SRAM vdd
......................... - WL=1
1 Eq
I ' ——
NW1 | A\ _} NW2
Qb=1
Iread
N1 N2
T N3 NDN T
Nectrl
BL=1 sL SLb BLb=1

Figure 1-4 A 9T CAM cell performs a read operation.

In Figure 1-4, we assume that the stored data in this CAM cell is zero. The bit line
and bit line bar is charged to high then so is the word line. After charging the word line,
the NMOS NW1 and NW?2 are turned on. A current l.eq is generated from the Vqq node
to ground through NW1 and N1. Note that when the read operation starts, the bit line
drivers are turned off. Therefore the bit line will be discharged to logic zero when the
size of N1 is larger than NW1. Because we need to ensure that the data will not flip

when reading data from a CAM cell.

1.2.6 Search Operation of a CAM Cell

The 9T CAM cell [7] can be classified into two types according to its comparative
method. One is XOR type CAM cell and the other is XNOR type CAM cell. The two
CAM cells are shown in Figure 1-5 and the search line and the bit line are combined
here. For instance, we assume that the stored data and the search data are logic 1 in
these two CAM cells. Then N2 and N3 are turned on. N1 and N4 are turned off. Current
flows through N2 and SLb to ground in Figure 1-5 (a) therefore My is turned off.
Moreover, the match line is pre-charged to high before searching data so the voltage of
the match line will not be pulled down in this CAM cell. In Figure 1-5 (b), the My is
turned on because N3 is turned on and SL is logic.1. Therefore the CAM cell will pass
the current to the next CAM cell thatd$ connected with the same match line. If there is

no next CAM cell then the match line WiI-I‘.:_l?‘e.éonnected to ground.

2

WL

[L

S
e <

N1 N2 — —

TL T1 T JL

WL
7 |Fiem
N4

1
Y, M —mMN -I_l— MM
ML MLn Mt:trl MLn+1
t Mctrl
SL = SLb SL SLb
(a) (b)
Figure 1-5 (a) XOR type CAM cell. (b) XNOR type CAM cell.

The search operation of these two CAM cells can be summarized in Table 1-2. If we
replace the “on” state with logic 1 and the “off” state with logic O then the search

operation is like the logic XOR and XNOR. This is why we name these two types as
10

XOR and XNOR types. Other structure of CAM cells can be found in [7, 8].

Table 1-2 Search operations of XOR and XNOR type CAM cells.

XOR type XNOR type
Q SL Mctrl Mctrl
0 0 Off On
0 1 On Off
1 0 On Off
1 1 Off On

1.2.7 Match Line Structure

The match line connects several CAM cells to store one word data. It is used to
determine which data match the search data.. The simplified schematic is shown in
Figure 1-6. The match lines are pre-charged'to high first and then search data are

inputted into search line drivers. After"dgta are inputted to the search line drivers, they

-—

CCH{)3 CCH{)] Cellm CCHO() H—MLO

drive the search line and search linesbar to perform search operation in each CAM cell.

N\

Encoder |—

SLy [SLb; SL,| [SLb, SL,| [SLb, SLo| [SLb,

Search line drivers | Match 1ir_1€
| sense amplifier

(MLSA)
D D, D, Dy

CC“]; CCll]z CCllH Cell]() —ML 1

Ce”23 Cengz cell;] Ce”p_o —ML2

cells; cells; celly; cell;p F-ML3

A

Search Data

Figure 1-6 The schematic of CAM (four word CAM cells).
The match line structure [7] can also be classified into two types according to what

kind of CAM cell we use in the CAM. If the XOR type CAM cells are used then the

11

match line structure is NOR-type match line. Otherwise, it is NAND-type match line
when the XNOR type CAM cells are used. These two match line structures are shown

in Figure 1-7 and Figure 1-8.

My |7

ML
Mc[rln-l ﬁMcl1-I0

SLoug = SLby. SLy = SLby

Figure 1-7 A NOR:type match line.

\":m
Bl Medb =
TL TL
1 1
M [1 Mo ML_(“\ I I T ML MLSA >—
M rin-1 Mctr]t)
M . Cli
c"al'lq v L, SLby,., SL, SLby

Figure 1-8 A NAND type match line.

A typical search operation of a NOR type match line has three phases. These three
phases include search line pre-charge, match line pre-charge and match line evaluation.
Before searching data, the search line is pre-charged to low in order to prevent the
match line connecting to ground. After disconnecting the match line from ground, the
signal pre is asserted to turn on the PMOS M. Then the match line is pre-charged to
high. In this time, the search data are inputted into the match line drivers and evaluate

the match line. If the search data word matches all the stored bits of the CAM cell on

12

the same match line then the voltage of the match line will remain high, otherwise it
will be pulled down to low. The match line sense amplifier (MLSA) is responsible for
sensing the voltage of a match line and outputting the strong voltage that are
corresponded to the sensing voltage.

The search operation of a NAND type match line has two phases. These two phases
include match line pre-charge and match line evaluation. Before searching data, the
signal pre is asserted to turn on the PMOS M, and then the match line is pre-charged
to high. After the match line is pre-charged, the search line can be driven by inputting
the search data. Next, the signal eval is asserted to turn on the NMOS Mey, and the
match line can be evaluated. If the search data.matches the stored data then the voltage

of the match line will be pulled.down to'lew;etherwise it will remain high.

Table 1-3 Comparison betwé'e,n‘l_NO'R type and NAND type match lines.

= NOR type NAND type
Voltage of match When mateh | |1 || ‘High Low
line When mismatch | L ow High
Performance T o ~ Fast Slow
Power consumption ' _ High Low

Table 1-3 shows the differences between NOR type and NAND type match lines. The
performance of NOR type match line is faster than the NAND type due to the pull down
path of the NAND type match line is too long when the stored data is matched.
However, the power consumption of NOR type match line is higher than that of NAND
type match line. Because in most applications, the search data matches only one data in
CAM so the number of the discharged operations of the NOR type match line is more

than that of NAND type.

13

Chapter 2 Related Work

In this chapter, we will introduce some designs on low power CAM briefly.
Moreover, we will also introduce some designs that are related to our work in the
following sections.

Most researches of the CAM are organized well and introduced in [7]. These
researches of low power CAM focus on some topics. They include how to reduce the
power consumption of the match line, search line and architecture. Some designs will
be introduced in the followings.

In low-swing scheme [9], each match line is added an additional injection
capacitance to share the charge with the:match line. Therefore, the voltage of the match
line is less than the supply veltage" and the_ power: consumption is less than the
conventional design in the missing sitlja't‘fg'ih-._ ,Another scheme for reducing the power
consumption of the match line Is curre;'t?race scheme [10]. The match lines are
pre-charged low and evaluated bS/ charging the match lines with a current Iy from a
current source. Furthermore, the search lines are also pre-charged to the search data
during the match line is pre-charged. A sense amplifier with half-latch is used to fast
sense the match result in each match line. In the missing state, the voltage of the match
line is charged to Iy xRmi/m, where m is the number of missing cells in one match line.
Otherwise, the match line is charged to high voltage. Hence, this design can save the
power consumption of the match line in the missing situation. Moreover, it can also
save power on the search line because it eliminates the stage of the search line
pre-charge low. The current-saving scheme [11, 12] is similar to the current-race
scheme but a current control circuit is added on each match line to control the Iy.. In

missing state, the current is less than in the matching state.

14

Another power consumption of the CAM is search line driving scheme. In the
conventional NOR type match line structure, the search line must be pre-charged to low
first. If we eliminate the search line pre-charge phase then the dynamic power
consumption of the search line in the pre-charge phase can be reduced [7]. Another
scheme is hierarchical search line scheme [13]. It is based on pipeline scheme. In the
first segment, the match line and search line always are active. But the match line is not
pre-charged and the search line is inactive in the following segments when the match
line is mismatched in the previous segment. Thus it can reduce the power consumption
of the match line and search line. The bank-selection scheme [7, 14, 15] is another
design to reduce power consumption, but.it.focuses on architecture level. The CAM is
divided logically into several banks. and eacﬁ' bank ‘contains one continuous address
space of the CAM. When the CAM perf_or_ms the search-operation, the search data word
is divided logically into stored bits.and bgai{-'select bit_s. Then the bank-select bits are
used to decide which bank will-be active-:in this‘search operation. After the bank is
active, the stored bits are compared' with the search data in the bank. Therefore this
scheme can reduce power consumption because only some banks are active in one
search operation. But the drawback of the bank-selection scheme is bank overflow. This
situation happens when the capacity of the bank is smaller than the number of the stored
data.

In the researches of the routing table and TCAM, the topics include encoding the
rules and reducing the power consumption of the priority encoder. Most researches
focus on encoding the table in TCAM. However, the tables are encoded for binary
CAM with a simple scheme in [16]. If the table is encoded then it can store the number
of rules as the original design with less space. Therefore this method can reduce the

hardware cost and power consumption. Furthermore, the priority encoder is one of the

15

dominant power consumption and delay of TCAM. A power-optimized 64-bit priority
encoder is proposed in [17]. It improves the conventional priority encoder on delay and

power consumption and it also can be pipelined.

2.1 Selective Pre-charge Scheme

The data words are divided into two segments in the selective pre-charge scheme [18].
Some bits of data are stored in the first segment and the others in the second segment.
While the CAM performs search operation, the first segment is active and the relative
bits of data are compared. If the relative bits of some data words are matched in the first
segment then the associated match line in the second segment will be pre-charged to
high. After that, the remaining bits of data are-compared in the second segment. If the
remaining bits of some data are mafcheq then it'means the search data is matched in the
CAM. Otherwise, the searching data is. fh‘i-is;znégbhed. Therefore, this scheme reduces the
power consumption of the match lines. EH‘owever, if+many stored data in the first
segment are identical then the pov;/ér _cbnsumption of the CAM is still high.

The simplified architecture of the selective pre-charge scheme is shown in Figure 2-1.
The XNOR type CAM cells are used in the first segment and the XOR type CAM cell

in the second segment.

Second First
segment segment

Iy S gy L T T[]
Wy N .. o ™ T MM TL M

SLia * SLb,, SL; ¥ SLb, SL,; SLb; SLy SLbyg

Figure 2-1 The simplified architecture of the selective pre-charge scheme.

16

2.2 Pre-computation Scheme

In this section, we will introduce the concept of pre-computation based CAM
(PB-CAM). Then in the following sections, the three different designs of PB-CAM wiill

be introduced.

|
i I I i : LT T T T T T T T T T T T T T 1 i Encoder —
| ' FML4
i T T T T T T T T T T T T T T T :
j i
| T MLS—
1]
i I I [[[[T [T [T [T T T T [1 :
! I ML6
i L T T T T T T T T T T T [[T T\
i - ML7—
I 1 I
i .\
' 1Pardmeter Memory
l Drivers | | SL and SL.bar drivers ‘ Data Memory
Parameter

D e (S Do
Figure 2-2 The basic architecture of PB-CAM.

The PB-CAM is shown in Figure 2-2 which contains one parameter extractor, drivers,
parameter memory, data memory and encoder. The parameters in the parameter
memory are calculated from the data by the parameter extractor. When the search
operation is performed, the data is inputted into the search line drivers and the
parameter extractor. Then the parameter is outputted from the parameter extractor and
inputted into drivers. Afterward, the parameter memory can perform the search
operation. If the stored parameters are matched then the relative match line in the CAM

is pre-charged. After that, the match line can be evaluated. If the stored data is also

17

matched then the match line remains high. Otherwise, it will be discharged low. This
scheme is similar to selective pre-charge scheme but the efficiency of reducing the

power consumption depends on the parameter extractor and search data.

2.2.1 Ones Count Scheme

The PB-CAM is first proposed in [19]. The parameter extractor is implemented by
the ones count function in [19]. The ones count parameter extractor counts the number
of binary one which appears in one data word. However the hardware cost and delay of
the ones count parameter extractor is expensive when the data word length grows.
Furthermore, if we assume the data have a uniform.distribution then the number of data
that are mapped to parameters IS n6t uniform. This-situation is shown in Table 2-1 and
the data word length is 14 bits. This d|s!:_n_1bunon IS ndt good for reducing the power

=3

consumption of the match line .becau'sc;e m'_é_ny Identical-parameters may appear in the

memory in one search operation.. '

Table 2-1 Number of data is related to the same parameter (ones count).

Ones count Relative data Average probability

parameter
0 1 0.0061035%
1 14 0.0854492%
2 91 0.5554199%
3 364 2.2216797%
4 1001 6.1096191%
5 2002 12.2192383%
6 3003 18.3288574%
7 3432 20.9472656%
8 3003 18.3288574%
9 2002 12.2192383%
10 1001 6.1096191%
11 364 2.2216797%
12 91 0.5554199%
13 14 0.0854492%
14 1 0.0061035%

Total 2'* = 16384 100%

18

However the ones count parameter extractor is used to cooperate with 7T PB-CAM
cell. This PB-CAM cell only uses seven transistors such that the hardware cost and
power consumption of data memory are less than the conventional design. The circuitry

of 7T PB-CAM cell is shown in Figure 2-3.

WL, 1

1 @ > Qb
NMOS1

Matchline
—0<} NMOS2

NMOS3

BL, 1

Figure 2-3 7T PB-CAM cell.

This 7T PB-CAM cell is not suitable %6Eévery parameter extractor because the match
line remains high when Q, =1 and BL__nI = O-E"HoWever, the 7T PB-CAM cell cooperates
with the ones count parameter extractor el_egantlg/. We explain the operations in the
following three conditions. First, if the parameter is matched and the data is also
matched then the operation of the cell is correct. Second, if the parameter matches the
incoming parameter but the data do not. It means the number of binary ones in the
stored data and searching data are the same but they are different. Therefore there must
be Qi = 1 and BL; = 0 in one cell and Q; = 0 and BL; = 1 in another cell of the same
match line. So the match line is discharged by at least one cell. Third, if the parameter is
mismatched and the data is also mismatched then the voltage of the match line is
discharged by the static pseudo-NMOS CAM word circuit [19]. This circuit is shown in
Figure 2-4. If the parameters are matched then the parameter comparison circuit outputs

logic 0. Otherwise, it outputs logic 1. Therefore, the 7T PB-CAM cell can operate well

19

with the ones count parameter extractor.

\"II|1||

Parameter v
Comparison Ol PMOSI
Circuit

CAM Cell T CAM Cell

Match li
atch line _ Buffer
NMOS2 NMOS2 —| [:lNMOSI

) R

Figure 2-4 Static pseudo-NMOS CAM word circuit.

P|ag{n-'-1 ¥

CLR

WL e e ;
I i« B i
: l T
| |
1T i< |
i >
1 — I |
=2 _C |
Lnit
| r' |
i TT |

Comparison
Detector

Figure 2-5 Static parameter comparison circuit.
The parameter comparison circuit is shown in Figure 2-5. It performs three
operations. First, in parameter setting operation, the CLR is set to logic 0. Then the
stored parameter Q is charged to logic 1. The max parameter means invalid flag in this

20

circuit because the decimal representation of the max value of one parameter word is
larger than the bit length of data. Second, in the parameter writing operation, the WL is
asserted such that the parameter P can be written into the storage unit Q. Third, in the
parameter comparing operation, if the input parameters P match the stored parameters Q

then the comparison detector will output logic 0. Otherwise, it will output logic 1.

2.2.2 Block-XOR Scheme

The block-xor scheme is proposed to improve the ones count parameter extractor in
[20, 21] but it uses 9T CAM cell. The block-xor parameter extractor is composed of
several two fan-in XOR gates. The'block diagram of 14 bits block-xor parameter
extractor is shown in Figure 2-6 and the design'of.the valid bit is in the below of Figure
2-6. If the parameters are all binary oﬁé -tx_k‘}_‘en_f-?r.l.e 4 bits.data in the msb are used as the
parameter. Otherwise, the original parameﬁtré._rsﬂare used::So the data is invalid when the
stored parameters are all binary one, thjfthermoré, whén the 4 bits data in the msb are all

binary one, the msb of the parameter will'be:0. The multiplexer will select the parameter

to output. In other words, this design does not have conflicting status.

13 di» dy, dyg dy dg dy d; ds dy d, d; d, dy
Py P, Py Py

AL

d

(P[P TP [Py] (diTdi[di [dw]

B 5 Multiplexer

¥

Figure 2-6 The 14 bits block-xor parameter extractor.

21

If we assume that the distribution of the data is uniform then the block-xor parameter
extractor can distribute the data to parameters more uniformly than the ones count

parameter extractor. The distribution is shown in Table 2-2 and the data word length is

14 bits.

Table 2-2 Number of data is related to the same parameter (block-xor).
Block-xor Relative data Average
parameter probability

0000 1024 6.25%
0001 1024 + (1024/8) 7.03125%
0010 1024 + (1024/8) 7.03125%
0011 1024 6.25%
0100 1024 + (1024/8) 7.03125%
0101 1024 6.25%
0110 1024 6.25%
0111 1024 (1024/8) 7.03125%
1000 1024 +(1024/8) 1, 1.03125%
1001 1024 . 6.25%
1010 1024 6.25%
1011 1024 + (1024/8) 1 7.03125%
1100 2.8 11024 6.25%
1101 1024, ++(2024/8) 7.03125%
1110 1024 +(1024/8) 7.03125%
1111 Valid bit

2.2.3 Gate-Block Selection Algorithm

The block-xor can distribute the data to parameters more uniformly when the data
have a uniform distribution. However, if the data do not have a uniform distribution and
most 4-bit msb data are identical then the power consumption is still high. In [22], a
gate-block selection algorithm is proposed to synthesize the proper parameter extractor
when the data do not have a uniform distribution. This scheme is suitable for the
embedded systems because the algorithm must analyze the trace of the system first.
Then it tries to find a proper parameter extractor for this system. Furthermore, one
equation is used to formulate the average number of comparison operation in the

22

algorithm when one 2 fan-in gate is used to extract a parameter. This equation is shown
in Equation 2-1.

Cavg =N0X(l_ p)+N1Xp

N N :
=Ny x (——2—) + N, x(L) (Equation 2-1)
N, + N, N, + N,
N +N,°
N, + N,
Where
P= For all data, the probability of a two fan-in gate outputting the logic 1 in one
block.

N,= For all data, the number of zero entries in one parameter.
N,= For all data, the number of ong entries in one parameter.

Gate-Block Selection Algorithm
Input Data = (Do, Dy, ..., Dna)
n: bit length of the input data, _
I: number of input bits for each partition block.
Step 1: Record
NAND_parameter (k) = D, D,,,
NOR_parameter (k) = D, + D,,,
XOR_parameter (k) = D, ® D, ,
Fori,k=0,1,..,(n/2)-1, Vinput patterns
Step 2: Compute NAND_Cayg(k), NOR_Cayg(K), XOR_Cayg(K)
Using Equation 2-1, V k
Step 3: Select a logic gate with the minimal Cag(K), V Kk
Step 4: If generated parameter bits > [n/I]

< T

Repeat step 1 to step 3 and use previous generated parameter as input data.
Else
Finish

Figure 2-7 The Gate-Block Selection Algorithm.

23

The gate-block selection algorithm is shown in Figure 2-7. In step 1, the output
parameters of each gate are computed in each 2-bit block for all data. Then in step 2 and
3, the Cayq is computed for each gate. One logic gate which has minimal C.q is selected
for each 2-bit block. It means that the selected logic gate can make the average number
of comparison operation lower than the others. In step 4, it determines whether the

algorithm finishes or not.

Table 2-3 The time complexity of gate-block selection algorithm.

Level Time complexity of each level

Step1: mx(n/2)xgxc,
Step 2: (n/2)xgxc,
Step 3: (n/2)xc,
Step.4: c,

Step 1: 'mx (n/2?)x g xc,
Stepi2: (n/2°)x gxc,
Step 3: \(n12%) xc,
-Step 4: ¢,

>T

Step 1 mx(n/2*)x g xc,
Step 2 (n/2")x g xc,

' Step 3 (n/2")xc,
Step 4: c,

We analyze the time complexity of gate-block selection algorithm in Table 2-3 when
the size of each block is two bits. We also define some variables in the following.
Let
m: The number of the unique data. The unique data means that only one data are
chosen and the other duplicate data is discarded.
n: The word length of data.
k: The value of k is the level that we want to synthesize. The range of k

ist<k <[log,n].

g: The number of different gate is used in the gate-block selection algorithm. They
24

are NAND, NOR, XOR in Figure 2-7. Therefore, the value of g is 3.
c: Constant value.

Therefore, the total time complexity is the sum of the time complexity of each level.
That is(c, xmxgxn+cC, xgxN+C, X n)><[1—(%)"]+c4 x k. The time complexity is

polynomial time O(mn).

2.3 Motivation and Objective

The block-xor scheme can not distribute data to different parameters uniformly when
the data do not have a uniform distribution. Furthermore, the execution time of
gate-block selection algorithm.will-grow when. the-number of different gates that are
used to synthesize the parameter extract_on_i§ increasing in the algorithm. Therefore, we
want to use more different gates to synthé:;;l?éé the parameter extractor for PB-CAM in
order to distribute the data more uniformly tha_n block-xor scheme and gate-block
selection algorithm. We also want td decrease the ‘execution time when more different

gates are used. Moreover, we want to reduce the impact on mapping data to parameters

when some blocks have a lot of identical data.

25

Chapter 3 Proposed Approach

We will introduce the benefit of distributing the data uniformly and our synthesizing
algorithm for the parameter extractor of PB-CAM in the following sections. We will
also introduce the method to reduce the impact on mapping data to parameters when

some blocks have a lot of identical data.

3.1 The Benefit of Distributing the Data Uniformly

Table 3-1 The average number of matched rows for four 2-bit parameters.

: Para{'r'het a0 Avg.
msb | msb Isb Isb Case i . matc Prob. of match
0 1 0 1 &% Texardle h occurrence | (distributi
e ;-’r.? | (case) on)
st | Sk o 2 213
2 | 2 | 2 | R 2 LW 1.33
worsd || 00 O%) £ %0, 1/3
o, el
best 28 22 15
2 2 3 1 : 1 15
worse 00, 00 15
10, 11 '
best 28 82 15 3/4
3 1 3 1 ! 1.75
worse 09, 00 2.5 1/4
00, 11 '
est | 2000 |
i : * ’ worse 00, 00 2 ' ’
10, 10
est | 000 [55
3 1 4 0 ! 1 25
worse 09, 00 2.5
00, 10 '
est | 00|
4 0 4 0 e 00. 00 p 1 4
00, 00

26

The average number of matched rows for four 2-bit parameters in the parameter
memory is shown in Table 3-1 and each parameter bit is extracted from one data block.
Although each parameter is related to one data, the data is not shown in Table 3-1. The
first column to fourth column is the number of “zero” or “one” in the msb or Isb of the
four 2-bit parameters. It means the distribution of each parameter bit. For example, in
the second row, there are two binary ones and two binary zeros in the msb of these four
2 bits parameters as well as in the Isb. If we assume that these four parameters are all in
the parameter memory and every parameter is searched one time. Then the average
number of matched rowsare (1+1+1+1)/4=1inthebestcaseand (2+2+2+2)/

4 = 2 in the worse case. Moreover, the probability of the occurrence of the best case is
1[4 (2% 202 =2/3 and 2x 4L/ (2rx 2D]L[44 (24x 21)]> =1/3, the worse case.
Therefore, the average number of rng_tehed rows under this distribution are

e

1x(2/3)+2x(1/3)=4/3=1.33."We can":sgé'that the average matched rows are small

when the data in the same block. are.mappethto parameters and the distribution of these
parameters is uniform. Therefore, .if we,-can map the data in the same block to
parameters and the number of binary zeros in this parameter bit position is close to that
of binary one. Then the average number of matched rows will decrease in the parameter
memory. The power consumption will also be decreased in the PB-CAM because the
number of the match lines being pre-charged in the data memory is decreasing. So our
algorithm is based on this idea to distribute the data to the parameters such that the
power consumption of PB-CAM is smaller than that of block-xor scheme and

gate-block selection algorithm.

27

3.2 Local Grouping Algorithm

In this section, we will introduce our algorithm. Before introducing the algorithm, we

will define some variables and terminologies first. And then we also analyze the time

complexity of our algorithm and compare it with that of gate-block selection algorithm.

3.2.1 Definition of the VVariables

diZ

Pi:

B;:

bs:

Cii

Qi j-

One bit of the data in the bit position i.

One bit of the parameter in the bit position i.

The word length of the data. So the data is dp-1dn-2...d1do.

The number of unique data in the trace of the system. The unique data means
that only one data are;chosen-from originalidata and the other duplicate data

are discarded.

=l

The set of unique data. S0|S] = m.

Each data is divided into Several .blocké logically. The block B; contains all
data that are in the same position i.

The size of each block. The size of each block is two bits in this algorithm.

A set C. ={(0,c,),(L¢c,),....(2" -1,c)} contains several pairs for each

o
bs-bit data block B;. The first element of the pair is the decimal representation
of the bs-bit data in the block B;. The second element of the pair is the number
of times the data appears in the data block B; of set S, which is relative to the
first element of the pair.

A synthesized logic gate type of the parameter extractor in the i-th level and

the position j.

28

An example of the synthesized parameter extractor is shown in Figure 3-1. This
parameter extractor has two levels for n bits data. The level of the parameter extractor

begins at one.

By Bioa B, By
F-————————-— I ety 1 Fo————————- 1 oo —————- 1
Level i dos d,.2 i | dus dys i | ds & i | do i
= =T Iy st well | —__ =T __ T |
I 21) g2 20
v v v ¥
z 22 (a1 T B2a0
¥ ¥
Pm-'4]—| =t Py

Figure 3-1 Anexample of thei2-level paramieter extractor for the n bits data.

; | = ‘: .

3.2.2 Top Level of Local Glil(_i')upjii-nQE;Algo-rithm

The top level of the local groupih'g allgori_thml is':;shown in Figure 3-2. In the lines 11
to 16, each 2-bit data block of all unique input data is analyzed and statistics gathered
because we need the information to synthesize the proper parameter extractor. In the
lines 18 to 21, the elements of the C; of each block are sorted by the count of each
decimal number in descending order. Then the sorted C; is inputted into the FindGate
function that will be introduced later. This function will output the proper type of the
logic gate that can distribute the data block uniformly to one bit parameter. Then the
output type is recorded. In the lines 23 to 29, if the level of the synthesized parameter
extractor is that we want then the algorithm is finished. Otherwise, the new data are

computed by the new generating gates and old data for next level. The other variables

are also prepared for next level.

29

1 Local Grouping Algorithm

2 Input:

3 S The set of unique data.

4 n: The word length of data. So data is dn.1ds-2 ... dido.

5 level: The number of levels of the parameter extractor that we want to

synthesize.

6 Output: The parameter extractor.

7 Local variable:

8 Ci: Setof counting pairs {(0, co), (1, c1), (2, C2), (3, c3)} for 2-bit block B;.
Initial value of co, 1, C, and cs is zero.

9 li: The index of the level in the parameter extractor. Initial value is one.

10 {

11 foralldata € S{

12 for all 2-bit data block dyiv1dzi, i =0to [n/2]-1{

13 J = decimal presentation of dy;;10; ;

14 ¢j=cj+ Llinthe (j,) ofbi;

15 }

16 } W

17 =

18 fori=0to |n/2]-1{

19 Sort the elements+(0, cfo), (L4.€1),1(2; cz)and (3, c3) of Cj in descending
order by c;, where ‘j.e{0,123}; *

20 FindGate (sorted C;) and record the gate type in the li-th level and
i-th position of the parameter extractor;

21 }

22

23 if (li<level){

24 Using the data set and the generating gates in the li-th level of the
parameter extractor to compute the new data set and replace data set
with the new data set;

25 n = word length of new data;

26 Initialize C; for new data; //i=0to |n/2]-1

27 li=li+1;

28 Goto line 11;

29 }

30 }

Figure 3-2 The top level of the local grouping algorithm.

30

3.2.3 Grouping Function

Before introducing the FindGate function, we need to implement our idea first. As

our mention before, we want to map the data in the same block to parameters and the

number of binary zeros in this parameter bit position is close to that of binary ones.

Therefore, we analyze the data and gather the statistics first in Figure 3-2. Then we use

these statistics to group the data in the same block into two groups such that the

difference of the relative count of these two groups is minimal. After that, we can map

one group to zero and the other group to one. Therefore, the proper gates can be found

by these two groups. The general version of the grouping function for two groups is

shown in Figure 3-3. Then we modify this function such that it can run faster when the

size of the block is two bits. This modified function<s shown in Figure 3-4.

© oo ~N O 01 &~

10

12
13

14
15

Grouping function // General vers’iob;_':for'two groups

Input: _ 2 :

Sorted C, :{(jo,cjo),(jl,c’h),...,(jk,'Cjk)tland ¢, >c; >..>¢c; .
Where k =2%-1 and bs.is block size. The block size is two bits that are
unnecessary in this function. '

Output: Two groups Go and Gj. Initial is empty.

Local variable: gco=gc; =0,p=1,9=0

{

Place jo into Gg and j; into G;
9C, =09C, +C; , 0C, =gC, +C;
fori=2to2™-1

{

place the jj into Gy
gc, =9C, +C;

if (9cp = gcg) swap (p, q)

¥

Figure 3-3 The general grouping function.

31

1 SimpleGrouping function

2 Input:

3 Sorted Ci: The element (j, ¢;) of C; is sorted by c; in descending order
suchthat c¢; >c; >c; >c; . The block size is two bits.

4 Output: The groups Go and G

5 {

6 Place the jo into Go and the j; and j; into Gg;

7 if((c; +c;,)=c;) place the j; into Go;

8 else place the j; into G;

9 }

Figure 3-4 The simple grouping function for 2-bit block.

These two grouping functions choose one element from C; in order and place this
element into a group. After adding this element, if the total count of this group is greater
than that of the other group then the next chasen element will be added into the other

group. These functions use the greedy‘method to ehoose the elements. Therefore, these

two functions can make the difference oftE.count of two groups is minimal.
i f |
| :, |

The available synthesized gate types for 2-bit block. (a: msh, b: Isb)

Table 3-2
Mapping Gomapto0 Gomaptol Identity of gate

Grouping Gimaptol Gimapto0 type
Go={0 b=

o ={0} aor anorb gtl
Gy =41, 2, 3} not (a nor b)
Go={1} aor(noth) = (nota)and b = t2
G, =40, 2, 3} (nota) nand b a nor (not b) J
Go = {2} (nota) orb = aand (not b) = .
G =40, 1, 3} a nand (not b) (not a) nor b J
Go={3 db=

0 =13} anand b aan gtd
G1=40,1, 2} not (a nand b)
Go={0,1

0={0.1} a not a gts
Gi={2 3}
Go={0,2

0=10.2} b not b gté
Gl = {1, 3}
Go={0,3

0=10. 3} axorb a xnor b gt7
G ={1, 2}

Then we want to find the synthesized gate from the groups so we analyze all groups
first. The total combinations of groups are shown in the first column of Table 3-2 when
the size of each block is two bits. Moreover, the fourteen gate types under two mapping
status are shown in the second and third columns. We also mark each row an identity
because we only choose one gate type from each row in our algorithm. Besides, all the
gate types in Table 3-2 can be distinguished by the function in Figure 3-5. So the
number of the logic gate types is used in our algorithm that is more than the gate-block
selection algorithm. We show the benefit of using these additional gate types in the

following example.

1 DistinguishAllGateType function
2 Input: Groups Go and G;
3 Output: The gate type

=W

4 {
5 if(1Gol =1 { .
6 if (jo=0) return gtl;:
7 elseif (jo=1) return gt?; -
8 else if (jo=2) return gt3;
9 else return gt4;
10 }
11 else if(|Go|=2){
12 Bitwise xor two elements of Gy and store the decimal presentation of
the result in the variable i;
13 if (i=1) return gt5;
14 else if (i =2) return gt6;
15 else if (i=3) return gt7,
16 }
17 }

Figure 3-5 The function for distinguishing all gate types.

33

Table 3-3 An example of the benefit of using additional gate types.

2-bit data Appearance times (count)
00 3
01 10
10 3
11 3
(a) 2-bit data distribution.

Gate type Parameter 0 Parameter 1
anorb 16 3
anand b 3 16

axorb 6 13
a nor (not b) 9 10

(b) The number of data that are related to the parameter.
The data distribution is shown in Table 3-3(a) and the mapping status for four logic
gate types is shown in Table 3-3(b). We can see that the gate-block selection algorithm
will select the XOR gate as the synthesized géfe but the gate type that is in the last row

of Table 3-3(b) can perform better than. XOR-gate: Therefore, we can know that the

\

additional four gate types are hecessary, F—ﬂ:"we want'to map the data to the parameter

uniformly.

Table 3-4 An example of the choice of the low-cost gate type.

2 bits data | Appearances times
00 3
01 1
10 3
11 3

(a) 2-bit data distribution.

Gate Type Parameter 0 Parameter 1
a 4 6
b 6 4
axorb 6 4

(b) The number of data that are related to the parameter.

34

Although we can use the SimpleGrouping function and DistinguishAllGateType
function as FindGate function in our algorithm. However we can see that we have more
than one choice when some relative counts of two groups are equal in the last three
rows of Table 3-2. In this status, we should choose a low-cost gate type as the
synthesized gate instead of depending on the sorted order. An example is shown in
Table 3-4. The number of data that are related to the parameters is similar in Table
3-4(b) in these three gate types. Therefore, these three gate types can distribute the data
to the parameters uniformly. We can choose the gate type a or b that are better than xor
because the number of the CMOS transistors of these two gate types is less and the
fan-in is only one. If a or b gate type appears.in the level that is more than one then the
hardware cost can be saved. An example-is s.h.'owr] in Eigure 3-6. Three gate types are
saved in the most significant part of thé"_g@ra@g‘ter extractor. Therefore, we analyze the

order of the counts in the ‘groups..in Téﬁ[?“é'-s in° order to construct our FindGate

function. w5 A\ \}
B}- Bz Bl Bn
1 i 1 e N | e T ‘.
Level : ds ds : ! ds da : : ds da |1 ! di do |1
| [| I I I
et = e | e -
vy v v v . v
! g1 g1z g1 210
l
v v v v
2 g1 g a
I
[. .
XX 1§
3 g;_n=garcb
Pu

Figure 3-6 The status of reducing hardware cost of the parameter extractor.

35

3.2.4 Find Gate Function

Table 3-5

The method of finding the low-cost gate type.

Order of counts

(o i dor j3 €40123 Jo# i # i # Jz)

Groups

(p.ae{01}, p=q)

Method of finding gates
in the comment of the
FindGate function

Gp = {JO J:1}
Gq = {ia, J3}

Gp = {jo, J2}
Gg = {s, Js}

Gp= {JO J:3}
Gg = {is, J2}

Method 1

Gp = {JO J:2}
Gg = {i, Ja}

Gp = {!0, J3}
Gq = {i1, o}

Method 2

Gp = {jo, j1}
Gq ={ls, js}

Gp = {J:o, Jz} 5
Ga =4, Ja}

(:; p = {Ej()1 j 3:}' ~
Gq = {jmJak. [

Method 3

G = {j === |

Method 5

Jo I J2 Ia

Ga = {is, jaiis} |

Gp = {io. 2}
Gg = {lunds}

Gp = {io, J3}
Gq = {jude}

Method 4

Gp = {jo}
Gg = {i1, Jo, ja}

Method 5

Cj, >Cj, >Cj, >Cy,

Cj, >Cj, =Cj, >Cy,

Gp = {JO J:3}
Gg = {is, J2}

Gp = {io}
GCI = {j11 j2’ J3}

Method 6

In the first column of Table 3-5, all possible orders of the count of one 2-bit block are

listed and the relative groups are also shown in the second column. For example, in the

third row of Table 3-5, ¢, =c; >c; >c;,so c; +c; >c; . Each group must have

two elements according to the grouping function. Furthermore, jo and j; can be

exchanged in these two groups because c; =c;.

Therefore,

there are two

combinations in the third row. Based on Table 3-5 we can implement the FindGate

36

function in Figure 3-7.

1 FindGate function
2 Input: Sorted C; ={(j,.¢;),(J:,¢;). (J2.C5,).(Js.C;,)} and
C, 2C, 2¢C, >¢C;
3 Output: One gate type.
4 {
5 bool jstoGy = false;
6 If (Cj1+ Cj2 >=Cjo) JatoGy = true;
7 if (Cjo=cj1) {
8 if (cp=cjp) return one of gt5, gté and gt7; // Method 1
9 else { // Method 2
10 temp = jo + j1
11 return DistinguishGateType567 (temp);
12 }
13 }/lend if (cjo= cj1)
14 else if (cj2= Cj3) {
15 if (jstoGo = true’) {)
16 if (Cj1=Cjp) | returnone pf gt5, gt6 and gt7; // Method 3
17 else { 1/ Method 4 1\
18 temp=jo t Js
19 return'Dis_tinguishGateType567 (temp);
20 } '
21 }
22 else {
23 Place jo into Go; Place j1, joand jzinto G1; // Method 5
24 }
25 }//end else if (cj2 = Cj3)
26 else { // Method 6
27 //SimpleGrouping function
28 Place jo into Go; Place j; and j, into Gg;
29 if (jstoGo = true) Place j3 into Go;
30 else Place j3 into Gg;
31 }// end else
32 return DistinguishAllGateType (Go, G1);
3 }

Figure 3-7 The find gate function.

37

This function is easy to construct, for example, if our condition matches the method 2

then we can determine whether ¢, is equal to c; or not in order to separate the

methods 1 and 2 from the others in Table 3-5. After that, we can also determine whether

c, isequalto c; or notto separate the methods 1 and 2. So we can distinguish these

methods easily. After distinguishing these methods, we need to choose the gate type as
the synthesized gate. Therefore, we classified these methods under three situations. First,
the methods 1 and 3 cover all combinations of the groups when each group has two
elements so we can choose one gate type from gt5, gt6 and gt7. Second, the methods 2
and 4 cover some combinations of the groups so we need another function to choose the
logic gate type that will be explained later. Third, the methods 5 and 6 can use the idea
of the SimpleGrouping function® to group- the. elements and then the
DistinguishAllGateType function can he usggl _fo.choose a proper gate type.

The total combinations of the-groups of-fm.ethods 2 and 4 are arranged in Table 3-6.
We can find the relation betweéh d_ifferent statuses of the groups in this table. For

example, if ¢, =c, >¢, >c, then each group has two elements that is based on the

grouping idea. Moreover, numbers 1 and 2 can be exchanged. This status is shown in
the 7" row of the method 2 of Table 3-6 and the relative gate type is gt5 and gt6. So we
can choose one gate type to output. We also find the characteristic value of the different
groups of these two methods in the first column of Table 3-6 such that we can
implement the distinguishing function easily. The characteristic value of the method 2 is
Jo + j1 and that of method 4 is j, + j3 in our algorithm. But it is easy to find that the
characteristic value of the methods 2 and 4 can also be jo + j; or jo + js. Then we can
implement the DistinguishGateType567 function as in Figure 3-8 that is based on the

characteristic value.

38

Table 3-6 The relation of the logic gate type of the methods 2 and 4.

Method 2 4
C. =C. C. C.
Order of o =i 7t 2 C. Sc. Sc. —c.
counts Cjo — le > Cj2 — ng Jo h 12 I3
cV=ji+
Jist
(i=0in Gate | Gate
Method2) | 1° h 12 I | type | 10 h 12 I type
(i=2in
Method4)
2 3 2 3
1 0 . 3 2 gte, 3 2 0 L gte,
2 3 7 2 3 7
1 0 3 > 3 > 1 0
1 3 1 3
5 0 2 3 1 gt5, 3 1 0 2 gt5,
1 3 7 1 3 7
2 0 3 1 3 1 2 0
147 2= = 1 2
3 0 3 2 1 gt5, 2 1 0 3 gt5,
WA o~ F 1 2 6
3 O 2 1y ::-.E- :-:l" \| .i 2 1 3 O
0 d<=|ll & 3
, V|2 EeWl MesiMeal o | Y| 2 | gs
0Nl [6{|/¢ 3 6
2 1 3 g | 3 0 2 1
0 25 | - 0 2
4 L 3 2 0 gt5, 2 0 L 3 gts,
0 2 7 0 2 7
3 1 > 0 > 0 3 1
0 1 0 1
5 2 3 1 0 gto, 1 0 2 3 gte,
0 1 7 0 1 7
3 2 1 0 1 0 3 2
1 DistinguishGateType567 function
2 Input: cv is the characteristic value of groups.
3 Output: The gate type
4 {
5 if (cv=3) return one of gt5 and gt6;
6 elseif (cvisodd) return one of gt6 and gt7;
7 elseif (cviseven) return one of gt5 and gt7;
8 }

Figure 3-8 The function of distinguishing gate types 5, 6 and 7.

39

3.2.5 Demonstration of Local Grouping Algorithm

Table 3-7 An example to demonstrate local grouping algorithm. (First level)
Data
0011
1101
0100
1100
1001
(@)
Block B; Block Bg
00 11
11 01
01 00
11 00
10 01
> ()%
C,’ Co
Binary (Decimal/Count,ofB;) (Decimal, Count of By)
00 0,1) :‘:;, : (0, 2)
01 wO !l M (1,2)
10 Al " |l (2.0)
11)" (3, 1)
(©)
Sorted C; Sorted Cy
(Decimal, Count of B;) (Decimal, Count of By)
(3, 2) (0, 2)
0,1) (1,2
(1,1) (3,1)
(2,1) (2,0)
(d)

After introducing the local grouping algorithm, we use an example to demonstrate the
local grouping algorithm. The five 4-bit data are shown in Table 3-7(a). The data are
divided into two 2-bit data block logically in Table 3-7(b). Then we count the 2-bit data
in each block in Table 3-7(c). For example, the 2-bit binary data (11), = (3)10 appears

two times in the block B;. So C; has an element (3, 2) in Table 3-7(c). After counting

40

the 2-bit data, the elements of Cy and C; are sorted by the count in descending order in
Table 3-7(d). Then the sorted Cy and C; are inputted into the FindGate function. First,
the sorted Co, matches the method 2 in Table 3-5 because (co = 2) = (€1=2) > (c3 = 1) >
(c; = 0). So the characteristic value is (0 + 1) = 1 that is inputted into the
DistinguishGateType567 function. One of the gate types 6 and 7 can be chosen, we
choose gate type 6 because the number of the CMOS transistors is fewer. Second, the
sorted C; matches the method 3 and each group has two elements in Table 3-5 because
(cs=2)>(co=1)=(c1=1)=(c;=1)and c,+c, >c,.So we can choose gate types 5, 6
and 7 in the FindGate function. We choose gate type 6 here because the number of
CMOS transistors of the gate types 5.and 6 i_s fewer than gate type 7. Moreover, the
fan-in of the gate type 6 is connécted to thé least significant bit of the 2-bit data.

Therefore, the first level of the paramet'e{r_gg_(_tractor has two gate types 6.

2

I
(]

Table 3-8 An example to demonstrate local grouping algorithm. (Second level)

Block Bgiofinew data
' 0L ™
4%
10
10
01
(@)
Co
Binary (Decimal, Count of By)
00 (0, 0)
01 (1,2
10 (2,2)
11 (3,1)
(b)
Sorted Cy
(Decimal, Count of By)
1.2
(2,2)
@1
(0,0)
()

41

After synthesizing the first level of the parameter extractor, if we implement gt6 with
a buffer then the new data are calculated by the gates in the first level and the old data
in Table 3-8(a). Then the number of 2-bit data are counted and sorted for each block in
Table 3-8(b) and (c). The sorted Co in Table 3-8(c) also matches the method 2 and each
group has two elements. So we also choose gate type 6. Therefore, we need four
inverters to construct the parameter extractor when the buffer is implemented by two
inverters. However the gate-block selection algorithm needs one NAND, NOR and
XOR. The synthesized parameter extractor is shown in Figure 3-9. So the hardware cost
of our synthesized parameter extractor is fewer than that of the gate-block selection.
Moreover, the data are also distributed,to..the parameters uniformly in these two

parameter extractors.

d_‘q d: d] di d_‘; l].: d | {.l.;;.
P, Py
(a) Local Grouping (b} Gate-Block Selection
Algorithm Algorithm

Figure 3-9 The synthesized parameter extractor of the demonstrative example.

42

3.2.6 Time Complexity of Local Grouping Algorithm

Table 3-9

The time complexity of the local grouping algorithm.

Level

Time complexity of each level

Line 11~16: mx(n/2)xc;
Line 18~21: (n/2)xc,
Line 23: ¢,

Line 24: mx(n/2)xc,
Line 25, 27, 28: c,

Line 26: (n/2%)c,,

Line 11~16: mx(n/2%)xc,
Line 18~21: (n/2%)xc,
Line 23: c,

Line 24: mx(n/2%)xc,
Line 25, 27, 28: ¢,

Line 26: (n/2%)c,,

Line 11~16: “mx (n/2%) x ¢;
Line 18~21: - (/2") x Gg =
Line 23: ¢, A

m: The number of the unique data. '

n: The word length of data.

k: The value of k is the level that we want to synthesize. The

1<k <[log,n].

c: Constant value.

The total

time complexity of the local grouping

range of k is

algorithm is

e, <fl- (), -) T e X[l () T 0 < -) hrkoxe, + (k=D

in Table 3-9. So the time complexity is O(mn). Hence the local grouping algorithm is

also a polynomial time algorithm. Then we compare the time complexity of the local

grouping algorithm with that of gate-block selection algorithm in Table 3-10.

43

Table 3-10 The comparison of the time complexity of the algorithms.

Time complexity of the gate-block selection algorithm

clxmxgxnx[l—(%)"]ﬂzzxgxnx[l—(%)k]+c3xnx[l—(%)k]Jrchk

c,: The time to calculate the output of one gate and counting the appearance times.
Cc,: The time to calculate the C,,4 Of one gate in one block.
C,: The time to select one gate that has minimal Cayg in one block.

c,: The time to determine whether the algorithm is finish or not.

Time complexity of the local grouping algorithm

mxnx{csx[l—(%)k]ng[l—(%)k1]}+nx{c6x[l—(%)k]wwx[%—(%)k1]}+k><c7 Fk-)xc,

Cs: The time to count the appearance times of one block of one data.
Cs: The time to sort four elements and find one proper gate type.

The time complexity of the FindGate function is constant and the most times of
the comparison are nine. Moreover, the time to sort four elements is also
constant.]

c,: The time to determine whether the-algorithm'is finish or not.

Cg: The time to calculate the output of ope gate.

C,: The time to prepare the local vatiabl§§ for next level.

C, . The time to initialize the c'ountinlg set'C; of one block B; for next level.
C, = C; +C, N

C,=C,

The time complexity of these two algorithms is polynomial time O(mn). Furthermore,
the dominant source of the time complexity is the number of the unique data. So if the
number of the unique data increases and it is far more than the word length of the data
then the execution time of the gate-block selection algorithm will be larger than that of
the local grouping algorithm. We can also see that in Table 3-10 because c, =c; +c,
and the first product term of the time complexity of the gate-block selection is
multiplied by the number of gates that is used to synthesize. Therefore, the execution
time of the local grouping algorithm can be smaller than that of the gate-block selection

algorithm.

44

3.3 Discard and Interlaced Method

The drawback of the selective pre-charge scheme is the power consumption still
remains high when the most data in the first segment are identical [7]. Some parameter
extractors of the PB-CAM also meet this problem. For example, in Table 3-11, the most
data are identical in the first five columns. If we use the block-xor parameter extractor
without valid bit design to map the data to 2-bit parameters and the size of each block is
four. Then we can see that the po is uniform distribution but the p; is identical in the last
second column of Table 3-11. This situation causes the data to be centralized in some
parameters such that the average match times are still high. So we introduce a method to

reduce the impact on mapping data.in the:following. Before introducing the method, we

will introduce the standard deviation{[23] first because we use the standard deviation to

measure the variability of the data, | (=5
Table 3-11 An example of the problem of the identical data.
Original data 17 XOR
dy de ds da “d3 d> ds do p1 Po
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1 0 1

If there are N values X, ..., X, then the standard deviation of these N values is in the

Equation 3-1.

o= /%iNzl(xi —X)?

(Equation 3-1)

Where: x is the mean of the N values. Thatis X = (X, + X, +...+ X,; + Xy)/ N .

We can see that if the most values are close to the mean then the standard deviation is

45

small. Otherwise, the standard deviation is high. Therefore, when the standard deviation
on the appearance times of the data of one block is high, most data of this block are
most likely identical or the data are centralized in some values. So our method is based
on this idea that is shown in Figure 3-10. It discards some blocks those have high
standard deviation and interlaces some blocks those have high and some blocks those

have small standard deviation in order to break the identical data in some blocks.

Discard and Interlaced Method

Divide unique data into t blocks.

Compute the standard deviation of each block.

Choose some blocks BS, which have high standard deviation and discard them.
Choose other blocks BS; which have high standard deviation.

Choose and copy other blocksiBS; which have small standard deviation.
Interlace the blocks BS; and BS; as-new-blocks BSewo.

Use the blocks BSpewo and;the remamlng part.of original data as new input data

of the parameter extractor. .
Figure 3-10° The dlscaf'd and interlaced method.

~N O o B~ W DN B

Table 3-12 An example to demonstrate the’DAI method. (Steps 2 and 3)

Block B; / B> 8 B: Bg
Position d; de d5 ds ; d3 d, d: do
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
Data 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 0 1 0 1 1 1
Standard
deviation V6 V6 2 0

We use the data in Table 3-11 to demonstrate the discard and interlaced method (DA
method). First, the data are divided into four 2-bit data blocks and the standard
deviation on the appearance times of each block is calculated in Table 3-12. Second, the

standard deviations of the B3 and B; are high so we choose BSy = {Bs} and BS; = {B,}.

46

We also choose BS; = {Bo} because it has small standard deviation. After choosing, we
discard the BSy then data = dsdsdsdodido. Next, the BS; and BS; are interlaced and
combined with the remaining data so data = dsdod,d;dsd>d1do. The reconstructed data
are shown in Table 3-13 and the output result of the block-xor parameter extractor
without valid bit design is in the last two columns. The average match times in Table
3-13 are smaller than that in Table 3-11. Therefore, we can know that this method can
reduce the impact on mapping data when most data are identical or centralized in some
values.

Note that the reconstructed data are used as the input data of the parameter extractor
instead of storing them in the data memory.because we still need the original data to
make the comparison result is correct.~-So fﬁe wires.are connected with parameter
extractor as the bit positions of ‘the recor]§t_ruct_gd data in‘the hardware design. Moreover,
this method can also apply to the syntpeg{;é:a algorith_m. We should only remove the

duplicate data on the reconstructed data and then use'them as the input unique data of

the algorithm.
Table 3-13 An example to demonstrate the DAI method. (Result)
Reconstructed data XOR
d5 do d4 d]_ d3 d2 dl dO pl pO
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 1 0
0 0 1 1 0 1 1 0 0 0
0 1 1 1 0 1 1 1 1 1

47

Chapter 4 Experimental Results

In this section, we will introduce our experimental environment and compare our
algorithm and method with the gate-block selection algorithm and block-xor without

valid bit design. The experimental results will also be shown in the following sections.

4.1 Experimental Environment

Table 4-1 The test data in the experiment.
Test data (The word length is 32 bits) Annotation
MiBench [24] Modify the sim-cahce.c in the
SimpleScalar [25] and dump the data
address that are used to access data TLB
as test data.
Random data] The, data words are separated into 4-bit
_ | blecks.“First, 15 numbers are generated
"= randomly between 0 and 1000 for each
_biock. Then the 15 numbers divide the
[areal that-is from 0 to 1000 into 16 areas.
Second, the sizes of these 16 areas are
"used-as the probability of generating
data in the blocks. After that, the test
data are generated.

We use two kinds of test data in our experiment. One is MiBench [24] and the other
is random data. The method that is used to obtain these data is shown in the second
column of Table 4-1. Furthermore, the other configurations for all schemes and the
simulation tools are shown in Table 4-2. The high-level simulation tool is used to count
the times of all status in the CAM when the test data are searched. For example, the
dominant source of the power consumption on the match line of CAM is the match lines
are pre-charged and then discharged. So we can count the number of rows of one data is

mismatched and the relative parameter is matched in total search. We also count the

48

number of rows of that one data and relative parameter are mismatched in this search
but the parameter and data in the same position are matched in the previous search or
replacement. Therefore, we can sum these two counts and use them as the estimative
power consumption on the match line of CAM. Moreover, we also pre-fetch data and

store them in the CAM before searching.

Table 4-2 The configurations for all schemes in the experiment.

Spice simulation tool Synopsys NanoSim

High level simulation tool Design by ourselves
Technology CIC 0.18um SPICE MODEL
Supply voltage 1.8V

CAM cell Conventional 9T XOR type
Parameter comparison circuit As:in the ones count scheme [19]
Match line structure of data memory NOR type-match line

Word structure Staticyf19]

Capacity of parameter memory [4/Dits x 128 words
Capacity of data memory =82 bits x 128 words
Replacement Policy . Icounter-based LRU
Pre-fetch data Fr N yes

Size of the data block for ‘each 9 bits

parameter extractor

Number of levels of the parameter

extractor 3 levels

Table 4-3 The configurations for each scheme in the experiment.

Schemes Configurations
Block-XOR Without valid bit design
The priority of selecting gates is NAND > NOR >
XOR when the Cayq is equal.
gtl =anor b, gt2 = a nor (not b),
gt3 = (not a) nor b, gt4 = a nand b,
gtb=a, gté =b, gt7 =axorb
The gt5 and gt6 are implemented by two inverters
The priority of selecting gate types is gt6 > gt5 >
gt7 when we need to choose a gate type to return.

Gate-block selection algorithm

Local grouping algorithm

49

The other configurations for each scheme are shown in Table 4-3. In the second row,
the block-xor parameter extractor without valid bit design is used in our experiment
because the pure xor function can distribute data more uniformly than the block-xor
scheme with valid bit design when data are uniform distribution. We also define the
gate types that are used in the experiment and the priority of selecting gates for
gate-block selection algorithm and local grouping algorithm. Moreover, the
configuration of DAI method is shown in Table 4-4. The block 3 is discarded. Besides,
block 2 and copied block O are interlaced as new blocks 3 and 2 when MiBench is used
because we divided the unique data of the benchmark into four blocks and analyzed
them. We found that the standard deviation.of most significant two blocks is high and

least significant one block is low. This dnalytie.result is shown in Table 4-5.

F Y
P

Table 4-4 The configuration for E}A'I'method in the MiBench experiment.

Block 3 Block 2 Block 1 Block 0
Original O31030...do5004 . T : d23d22...d17d16 dy5014...dgdg d-ds...ddg
New block 3 “ “New block2 Block 1 Block 0
DAI
method 3000207 010205003 | d190sdigls 0170601607 | disdig...deds d7ds...d1do

50

Table 4-5 The standard deviation of each block in the MiBench experiment.
] Standard deviation

MiBench Block 3 Block 2 Block 1 Block 0

bf small_decode 511.18 511.18 85.90 0.63
bf _small_encode 511.17 511.17 85.89 0.63
bitcnts_large 10.09 10.09 7.90 0.65
bitcnts_small 10.06 10.06 7.86 0.64
crc_small_encode 255.69 255.69 64.22 0.62
dijkstra_large 258.18 258.18 62.13 0.70
dijkstra_small 258.18 258.18 62.13 0.70
fft_large 64.01 64.01 31.87 0.45
fft_large_inv 64.01 64.01 31.87 0.45
fft_small 64.01 64.01 31.87 0.45
fft_small_inv 64.01 64.01 31.87 0.45
patricia_large 257:49 257,49 62.05 0.74
patricia_small 25743 257.43 62.05 0.74
gsort_large 209:21| o~ 29922 63.36 0.67
gsort_small 257019k <41 1 257,10 62.14 0.69
rijndael_small_decode 511,141 ||518.14 84.65 0.68
rijndael_small_encode 511.16(~ |511.16 84.68 0.64
sha_small_encode ' 258.49 7"2___58.49 63.29 0.82
susan_large_corners 7154.87|. “+4671.03 111.21 1.00
susan_large_edges 7154.87 4671.03 111.19 1.00
susan_large_smoothing 7154.87 4671.03 111.21 0.99
susan_small_corners 706.85 705.91 97.32 1.24
susan_small_edges 706.84 705.91 97.30 1.24
susan_small_smoothing 706.85 706.73 97.34 1.23
toast_small_encode 303.11 303.11 66.06 1.04
untoast_small_decode 326.30 326.30 68.84 0.74

51

4.2 Results

In this section, we will show the experimental results on the random data first then

that on the MiBench.

4.2.1 Experimental Results of Random Data

Table 4-7

Table 4-6 The number of data in the random test data.
Random data Number of d_at_a
unique original
newDatal 982,514/ 1,000,000
newData2 988,613/ 1,000,000
newData3 990,763| 1,000,000
newData4 993,294| 1,000,000
newData5 989,177 1,000,000
datal 49,986 50,000
data2 49,962 50,000

=%

The standard deviation.on the number of unique data that are mapped to
each parameter in the randem test data.

Standard deviation
Random data
group gsel Xor

newDatal 524.97 2085.12 6224.66
newData2 257.48 4294.38| 17547.60
newData3 554.34 4013.53 5610.75
newData4 269.23 1647.30 3935.91
newData5 272.28 3199.01 3849.80
datal 50.80 264.47 266.61
data2 47.59 140.18 289.65

The number of unique data and original data is shown in Table 4-6. We can see that
the difference of them is small because the random data does not have locality. So the
most data will be stored in the CAM but the miss rate will be high. Moreover, we

calculate the standard deviation on the number of unique data that are mapped to

52

parameters in Table 4-7. The lower the standard deviation is, the more uniform the
number of data that is relative to each parameter is. So we can see that the parameter
extractor generated by our algorithm in the “group” column can distribute the data more
uniformly than the gate-block selection algorithm and pure xor function in the “gsel”
and “xor” columns. But this method only can measure the global scope because only
some parts of data are stored in the CAM. So we use the high level simulation tool that
is designed by ourselves to count the status of the CAM when each operation is
performed. The results of the high level simulation are shown in Table 4-8 and the

improvement rate is shown in Table 4-9.

Thehigh Tevel simulation result.

Table 4-8
Random data ~. n__nafc_mis +.(mat_mat -> mis_mis)
Y Jgroup gsel Xor

newDatal © 8,934,661 8,946,933 9,022,533
newData2 298,939,674|" 8,972,140| 9,594,843
newData3 8,936,071 ' 8,965,914/ 9,006,159
newData4 8,934,051 8,945,856 8,973,156
newData5 8,939,205| 8,956,204| 8,968,062
datal 446,491 449,224 449,692
data2 447,135 448,026 450,661

Table 4-9 The improvement rate of the high level simulation result.

mat_mis + (mat_mat -> mis_mis) (%)
Random data group
Vs. gsel Vs. xor

newDatal 0.1372% 0.9739%

newData2 0.3619% 6.8283%

newData3 0.3328% 0.7782%

newData4 0.1320% 0.4358%

newData5 0.1898% 0.3218%

datal 0.6084% 0.7118%

data2 0.1989% 0.7824%

Average 0.2801% 1.5475%

53

We can see that the improvement rate is small when the random data are used
because the random data do not have locality. Therefore, most search operations are
missed in the data memory and data are often replaced such that the counts are close in
these three schemes. In next section, we will see that the improvement rate will increase

when the data have locality.

Unique data distribution of newDatal

70000
£ 65000
<
S AW - grou
B 60000 %ﬁ% = ggel
g
2 55000 F 2t

50000

0123456718 9101112131415
Parameter
e |I !I .l-
Y 45.(2) j
Unique data distribution of newData?2

80000 |
S
<
% 70000 ¢ o \./)'\)\ —¢—group
560000 .4—0—+—0—3v4><‘%+v7&<:7¢x—0—?;—47. —=— oge]
§ \-’ \ / Xor
Z. 50000 [

40000

0123456718 9101112131415
Parameter
(b)

54

Unique data distribution of datal

3700)!

3500 o~
z 3300 - \ /)\ A
“ i —¢— group
o
5 3100 o/\/}\//\‘\’/ \\/L —=— gsel
E o0 [o= N
=) W _n Xor
“ 2700 -

2500

012345678 9101112131415
Parameter
(c)
Figure 4-1

The number of data that are mappea,tQ __ea’i:kf paraméter is shown in Figure 4-1. We
only show three data sets in these figur?s. ‘i-_'i}e more uniform the data distribution is, the
smoother the line is. Therefore, our s;)ﬁthesized :-prarﬁeter extractors are better than the
other two schemes in our experimeﬁt when thé random data are used. Moreover, the
most data of each block are different so we do not need to use the discard and interlaced
method on the random data. We did not either use the NanoSim to run the simulation

when the random data are used because the result of the high level simulation is close

=

on these three schemes.

55

The unique data‘distribution of three random data sets.

4.2.2 Experimental Results of MiBench

Table 4-10 The number of data in the MiBench.
MiBench Number of d_at_a
unique original
bf small_decode 8,442 623,941
bf small_encode 8,441 623,938
bitcnts_large 220 1,724
bitcnts_small 219 1,729
crc_small_encode 4,271 1,369,097
dijkstra_large 4,308 36,247
dijkstra_small 4,308 30,658
fft_large 1,094 962,149
fft_large_inv 1,094 688,480
fft_small fog., 1,094 116,383
fft_small_inv oL = [1004 172663
patricia_large - - . 4,297| 3,265,344
patricia_small EAYARNE T
gsort_large B | '—_; I! I| 4,332] 3,145,099
gsort_small | = | V| Y 4008 107,078
rijndael_small_decode _.” l"‘._';_ ; 8,418 623,970
rijndael_small_encode . S . % 8,433| 623,969
sha_small_encode ' 4,315 312,043
susan_large_corners 114,998 221,568
susan_large_edges 114,996 221,566
susan_large_smoothing 115,000 221,570
susan_small_corners 11,624 14,820
susan_small_edges 11,622 14,818
susan_small_smoothing 11,626 14,822
toast_small_encode 4,992 25,937
untoast_small_decode 5,356 25,945

The number of unique data and original data is shown in Table 4-10. The difference
of them is large because these data sets have locality and most data are duplicate in each
data set. The standard deviations on the number of unique data that are mapped to each

parameter are shown in Table 4-11. The difference of the standard deviation of each

56

scheme is small in the last three columns when the DAI method is not used in these

schemes; because data are centralized in some parameters due to most data are identical

in some blocks. After using the DAI method, the standard deviations of each scheme are

decreased that are shown in the “dai_group”, “dai_gsel” and “dai_xor” columns.

Furthermore, most standard deviations in the “dia_group” column are smaller than the

others.
Table 4-11 The standard deviation on the number of unique data that are
mapped to each parameter in the MiBench.
MiBench _ _ Sta_ndard deviation
dai_group| dai_gsel | dai_xor group gsel xor

bf_small_decode 527.63| 527.97| 527.97| 878.16| 878.57| 914.27
bf_small_encode 184 52791 527.91] 878.19| 878.60] 914.16
bitcnts_large 4.38 9.44}~ 15.67 25.12 25.12 25.64
bitcnts_small 4431~ 1619 15.59 25.06 25.06 25.49
crc_small_encode 1.09)7267.20| _"267.28| 437.46| 437.73| 462.70
dijkstra_large 3.60| [2AT.82|) 1247.82) 442.07| 441.94] 441.94
dijkstra_small 3.60[24782 | [247482] 442.07| 441.94] 441.94
fft_large 6866 59,63/ ||59.63] 10856 108.56| 108.56
fft_large_inv 68.66/ ~'159.63| 1'5963 108.56| 108.56| 108.56
fft_small 68.66 59.63 59,63 108.56| 108.56| 108.56
fft_small_inv 68.66 59.63 59.63| 108.56| 108.56] 108.56
patricia_large 2.34| 268.58| 268.58| 440.74| 440.74| 465.17
patricia_small 268.52| 268.52| 268.52| 440.63| 440.63] 465.06
gsort_large 8.98| 250.72| 254.09| 443.84) 443.95 449.91
gsort_small 268.67| 248.41| 251.92| 439.97| 439.97| 446.16
rijndael_small_decode 526.13| 526.31| 526.13| 878.96] 879.17| 911.28
rijndael_small_encode 1.95| 527.29| 527.06] 878.46] 878.71] 912.90
sha_small_encode 3.18] 269.80| 270.19| 44255 44259 467.67
susan_large_corners 2.85| 3054.54| 3054.54| 7295.45| 8366.22| 8385.63
susan_large_edges 1.92| 3052.78| 3052.78| 7295.58| 8366.33| 8384.24
susan_large_smoothing 8.46| 3054.42| 3054.42| 7295.33| 8366.12| 8385.65
susan_small_corners 3.69| 724.88| 725.17| 1214.27| 1214.29| 1256.79
susan_small_edges 3.12| 724.76| 725.04| 1214.34| 1214.36| 1256.57
susan_small_smoothing| 726.65| 726.64| 726.95| 1216.11| 1216.11] 1258.93
toast_small_encode 5.34| 305.56| 312.33] 521.43| 521.48| 540.77
untoast_small_decode 2.38| 326.82| 334.76] 561.78) 561.78| 579.81

57

Table 4-12

The high level simulation result in the MiBench.

Mibench mat_mis + (mat_mat -> mis_mis)
dai_group | dai_gsel dai_xor group gsel xor
bf_small_decode 18,015,217| 16,644,821 16,644,821 35,478,702| 33,171,997 33,185,089
bf_small_encode 9,280,497| 16,644,828| 16,644,828| 35,478,719 33,171,936 33,185,054
bitcnts_large 14,314 28,001 29,054 57,135 56,596 54,664
bitcnts_small 14,313 30,117 29,276 57,219 56,690 55,239
crc_small_encode 20,364,290 37,193,389, 37,193,676| 77,857,529| 74,150,863| 74,159,018
dijkstra_large 403,649 854,593 854,593| 1,561,272 1,714,874 1,714,874
dijkstra_small 373,477 804,033 804,033| 1,450,283 1,604,999 1,604,999
fft_large 31,151,734| 27,005,873 27,005,873| 46,837,508| 54,023,813| 54,023,813
fft_large_inv 22,331,308| 19,349,879| 19,349,879| 33,535,963| 38,665,089| 38,665,089
fft_small 3,765,030, 3,262,801| 3,262,801 5,660,491| 6,529,231| 6,529,231
fft_small_inv 5,599,548 4,848,193| 4,848,193| 8,407,287| 9,686,612| 9,686,612
patricia_large 49,726,827| 53,009,762 53,009,762|194,911,337|105,808,393| 105,868,310
patricia_small 16,189,035 8,855,006 *8,855,006| 32,088,174| 17,588,741 17,648,889
gsort_large 48,761,156| 64,978,205| 64,977,862:141,398,770| 130,253,771| 130,252,556
gsort_small 3,246,987 1,862,427| 2,425,654 4,261,816 3,520,477| 4,432,758
rijndael_small_decode | 18,012,230 16,645‘,439_ 16_,6‘38,821 35,467,704| 33,174,326 33,173,548
rijndael_small_encode 7,955,024 16,641,66'8'::_,.;'[@-,637,048 30,411,328| 33,172,656| 33,169,248
sha_small_encode 4,971,033] 8,475,166 ? 8,475,944 19,005,237 16,893,203| 16,899,213
susan_large_corners 3,295,462 ?5_,97£|3,-|766 5,978,766} 12,589,608| 11,916,070 11,920,096
susan_large_edges 3,295,699 5,978,690 5,978;690 12,479,185| 11,915,964| 11,920,017
susan_large_smoothing| 3,240,315| 5,978,828 5,978,828| 12,479,356 11,917,063 11,920,207
susan_small_corners 212,522 396,645 396,660 819,060 783,145 790,586
susan_small_edges 217,831 396,608 396,561 826,315 783,093 790,468
susan_small_smoothing 410,282 396,796 397,433 814,511 783,222 792,275
toast_small_encode 345,488 684,781 685,449 1,331,370, 1,360,472| 1,366,557
untoast_small_decode 376,650 718,738 714,377| 1,437,708 1,429,930 1,424,436

Table 4-13

The average reduction rate of the high level simulation in MiBench.

Average reduction rate of the high level simulation

dai_gruop

dai

gsel

dai xor

group

gsel xor

gsel

Xor

gsel

Xor

gsel

Xor

59.39% | 60.11%

49.62%

49.99%

49.00%

49.49%

-7.08%

-6.20%

The result of the high level simulation is shown in Table 4-12 and the average

reduction rate is shown in Table 4-13. When the DAI method is not used in each

58

scheme, most data are centralized in some parameters such that the result of each
scheme is high, especially for the local grouping algorithm. This situation can be seen in
the last three columns of Table 4-12 and the last column of Table 4-13. However, each
scheme can be improved when the DAI method is used in each scheme. This situation

can be seen in Table 4-12 and Table 4-13.

Unique data distribution of patricia_small
1200
= 1000 ﬁ'ﬂ
§ 800 l —— group
o
5 600 { —=— oge]
< |
5 400 xor
“ 200 f {
0 AL ! _
01 23456 7289101112131415
Parameter
Unique data distribution of patricia_small
600
AAS A " N AN i
MOH\M iR AT
<
= 400 —— dai_group
7 AR
£ 200 dai
R R
» I N AR
0123456 7¢8 9101112131415
Parameter

Figure 4-2 The data distribution of the patricia_small.

59

Unique data distribution of patricia_large
1200
= 1000
<
= 800 | —— oroup
o
_qg 600 | —=%— ogel]
§ 400 / XOor
“ 200
o =S s ""-‘‘*''-‘‘*''-‘‘*"-""0-"0"—0"'1-L ‘ .
01234546 78 9101112131415
Parameter
Unique data distribution of patricia_large
600
A Al A Al A Al Al "
= 500
<
= 400 ——dai_group
(@)
5 30 e oo oottt eeeooese - daigsl
£ 200 dai_xor
“ 100 |
0 Lyv | poud A " A A Ly
0123456728 9101112131415
Parameter

The data distributions of patricia are shown in Figure 4-2 and Figure 4-3. When the
DAI method is not used, the most data are distributed to some parameters. But the
impact on mapping is reduced when the DAI method is used. We can also see that the
data are still centralized in some parameters in the patricia_small but the number of data

that are related to one parameter is reduced, because the DAI method can only reduce

Figure 4-3

The data distribution of the patricia_large.

the impact of some blocks. It can not break all identical data of all data blocks.

60

Table 4-14

The average power consumption in MiBench.

MiBnech Average Power Consumption on total circuit (UW)
dai_group| dai_gsel | dai_xor group gsel xor
bitcnts_large 4150.33| 7437.91| 7674.15| 13436.19| 13331.50| 12490.76
bitcnts_small 4139.43| 7914.27| 7693.84| 13428.88| 13304.16| 12579.35
crc_small_encode 6266.96| 11487.83| 11487.85| 22545.01| 21763.89| 21765.89
dijkstra_large 5455.15| 11021.99| 11029.75| 18636.03| 20736.97| 20734.16
fft_small 13528.01| 11822.05| 11822.67| 19399.59| 22511.40| 22510.41
fft_small_inv 13558.05| 11841.11| 11841.53| 19415.87| 22514.30| 22513.74
patricia_small 12643.04| 9680.81| 9680.81| 23092.27| 17543.30| 17570.47
gsort_small 12164.48| 9944.28| 10973.30| 18383.02| 17819.36| 19490.27
sha_small_encode 6646.77| 11486.07| 11486.70| 24090.53| 21755.78| 21761.76
susan_small_corners 6028.83| 11344.96| 11353.23| 22026.17| 21269.45| 21443.44
susan_small_edges 6320.37| 1134458 11351.71| 22160.86| 21272.35| 21444.37
susan_small_smoothing 11280.94| 11347.65| 11372.37| 21892.86| 21269.41| 21485.58
toast_small_encode 5956.30{: 11202.83|+11226.05| 20437.40| 21135.14| 21207.09
untoast_small_decode 6169.06| 1 11693.39| 11637.49| 21986.08| 22111.57| 22024.57

Table 4-15

The average reductidﬁ‘-‘{,at"e‘-of the power consumption in MiBench.

Average reduction, rate of the power consumption

dai_gruop

dai

gsel ||

| dai xor

group

gsel

Xor

gsel

o Xor

gsel

Xor

gsel

Xor

58.88%

59.10%

46.00%

45.93%

45.57%

45.54%

-1.42%

-1.49%

Due to the simulation time of the SPICE code, we only simulated some benchmarks.

The results are shown in Table 4-14 and the reduction rate is shown in Table 4-15.

Although some benchmarks are not simulated, the reduction rate of our scheme is still

higher than the others. The power consumption of the gate-block selection scheme and

block-xor scheme can also be reduced when the DAI method is used on them.

Furthermore, the power consumption of the parameter extractor and the number of

CMOS elements are also obtained from the NanoSim. The average reduction rates of

them are shown in Table 4-16 and Table 4-17. The result shows that our parameter

extractors not only reduce the power consumption but also save some hardware cost.

61

Table 4-16

The average reduction rate of the power on the parameter extractor.

Average reduction rate of the power on the parameter extractor

dai_group group
dai_gsel dai_xor gsel Xor
63.60% 63.62% 21.85% 22.17%
Table 4-17 The average reduction rate of the number of CMOS elements.
Average reduction rate of the number of CMOS elements on total circuit
dai_group group
dai_gsel dai_xor gsel xor
0.53% 0.59% 0.20% 0.48%

62

Chapter 5 Conclusion

In this work, we propose a local grouping algorithm to synthesize a proper parameter
extractor such that the power consumption of the PBCAM can be reduced. Moreover,
the cost of the parameter extractor is also lower than the others. We also propose the
DAI method to reduce the influence of the identical data in some data blocks. This
method can improve the efficiency of the parameter extractor. The experiment results
also show that our schemes can reduce the power consumption and the number of
CMOS elements. Moreover, the DAI method can also improve the gate-block selection
algorithm and block-xor scheme. Therefore, our schemes are suitable for embedded

systems when the applications of a'system are known in advance.

=y

63

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. P. Chandrakasan and R. W. Brodersen, "Minimizing power consumption in
digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498-523,
Apr. 1995,

A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, 1
ed. Norwell, MA and AH Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1995.

N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, et al.,
"Leakage current: Moore's law meets static power," Computer, vol. 36, no. 12,
pp. 68-75, Dec. 2003.

L. T. Clark, C. Byungwoo, and M. Wilkerson; "Reducing translation lookaside
buffer active power," in.Proceedings of‘the International Symposium on Low
Power Electronics and Design (I‘SI;;F;_‘ZI_:'_D'), 2003, pp. 10-13.

V. Chaudhary, T. H. Chen, F. Sll-f:e_érin, and L. 'T. Clark, "Critical race-free
low-power nand match line‘content.addressable memory tagged cache memory,"
IET Computers & Digital Techniques, vol. 2, no. 1, pp. 40-44, Jan. 2008.

C.-C. Wu, S.-H. Wen, N.-F. Huang, and C.-N. Kao, "A pattern matching
coprocessor for deep and large signature set in network security system,” in
IEEE Global Telecommunications Conference (GLOBECOM), 2005, p. 5.

K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM)
circuits and architectures: a tutorial and survey,"” IEEE Journal of Solid-State
Circuits, vol. 41, no. 3, pp. 712-727, Mar. 2006.

K. J. Schultz, "Content-addressable memory core cells: a survey,” Integration,
the VLSI Journal vol. 23, no. 2, pp. 171-188, Nov. 1997.

G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, "200MHz/200MSPS 3.2W
at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect
circuits and bank selection scheme,” in Proceedings of the IEEE Custom

Integrated Circuits Conference, 2003, pp. 387-390.

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

I. Arsovski, T. Chandler, and A. Sheikholeslami, "A ternary content-addressable
memory (TCAM) based on 4T static storage and including a current-race
sensing scheme,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp.
155-158, Jan. 2003.
I. Arsovski and A. Sheikholeslami, "A current-saving match-line sensing
scheme for content-addressable memories,” in IEEE International Solid-State
Circuits Conference (ISSCC), Digest of Technical Papers, 2003, pp. 304-494
vol.1.
I. Arsovski and A. Sheikholeslami, "A mismatch-dependent power allocation
technique for match-line sensing in content-addressable memories,” IEEE
Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1958-1966, Nov. 2003.
K. Pagiamtzis and A. Sheikholeslarﬁi, "A - low-power content-addressable
memory (CAM) using pipelined hiera_rc_hical search scheme," IEEE Journal of
Solid-State Circuits, vol, 39, na.(9,p: 1512-1519, Sep. 2004.
J.-H. Lee, G.-h. Park; S~B. Park, and S.:D! Kim, "A selective filter-bank TLB
system [embedded processor. MMU.for low power]," in Proceedings of the
International Symposium on. Low_ Power ‘Electronics and Design (ISLPED),
2003, pp. 312-317.
P. Echeverria, J. L. Ayala, and M. Lopez-Vallejo, "A banked
precomputation-based CAM architecture for low-power storage-demanding
applications,” in IEEE Mediterranean Electrotechnical Conference
(MELECON), 2006, pp. 57-60.
S. Hanzawa, T. Sakata, K. Kajigaya, R. Takemura, and T. Kawahara, "A
large-scale and low-power CAM architecture featuring a one-hot-spot block
code for IP-address lookup in a network router,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 4, pp. 853-861, Apr. 2005.
K. Cheong, Q. Shaolei, and A. Mason, "A power-optimized 64-bit priority
encoder utilizing parallel priority look-ahead,” in Proceedings of the
International Symposium on Circuits and Systems (ISCAS), 2004, pp. 11-753-6
65

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Vol.2.

C. A. Zukowski and S.-Y. Wang, "Use of selective precharge for low-power
content-addressable memories,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS), 1997, pp. 1788-1791 vol.3.

C.-S. Lin, J.-C. Chang, and B.-D. Liu, "A low-power precomputation-based
fully parallel content-addressable memory,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 4, pp. 654-662, Apr. 2003.

S.-J. Ruan, C.-Y. Wu, and J.-Y. Hsieh, "Low Power Design of
Precomputation-Based Content-Addressable Memory,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 16, no. 3, pp. 331-335, Mar.
2008.

C.-Y. Wu, S.-f. Ruan, C.-K. Cheng,'- and_M.-B. Lin, "A new Block-XOR
precomputation-based CAM-design fo_r low=power embedded system," in IEEE
International Conference on Eléé't_ft;’g;,[]_igis, Circuits and Systems (ICECS), 2005,

pp. 1-4.

J.-Y. Hsieh and S.-J. Ruan, "Synthésis and. design of parameter extractors for
low-power pre-computatioh-based content-addressable memory using
gate-block selection algorithm,” in Asia and South Pacific Design Automation
Conference (ASPDAC), 2008, pp. 316-321.

Standard deviation. Available: http://en.wikipedia.org/wiki/Standard deviation

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, "MiBench: A free, commercially representative embedded benchmark
suite,” in IEEE International Workshop on Workload Characterization
(WWC-4), 2001, pp. 3-14.

SimpleScalar LLC. Available: http://www.simplescalar.com/

66

