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摘要 
 

    近年來，近場通訊系統的應用日趨廣泛，諸如超高頻近場射頻辨識系統、近

距離無線通訊技術(NFC)。在近場通訊系統中，我們希望成功的設計天線，並優化

系統的效能，因此收發兩端的天線耦合分析就變得很重要。本論文提出一個簡單

的公式，可以計算近場通訊系統中傳送天線和接收天線之間的功率耦合係數(power 

coupling coefficient)。此公式的適用性不拘天線的種類、形式、尺寸、工作頻率；

所需的資訊為收發兩端天線在該工作頻率下的三維遠場場形、天線之間的相對傾

斜角度及距離。換言之，我們所提出的公式可視為遠場福利斯傳輸方程式(Friis 

transmission equation)在近場的類比。 

 

為了驗證公式的準確性，我們先考慮幾種常用的天線，利用他們的場形標準

式(close-form pattern)，將計算的近場耦合係數和全波分析模擬(HFSS)作比較。此

外，我們也以超高頻近場射頻辨識系統為例，設計符合此應用的天線，並且比較

量測、模擬、理論計算的結果。透過這些驗證，我們確認所提出的公式可以精準

的算出近場功率耦合係數。在實驗中我們也發現了一些影響耦合程度的參數，諸

如接收天線的阻抗匹配、發送天線的指向性。藉由提出的公式，我們還可以計算

超高頻近場射頻辨識系統的讀取距離以及可靠度。因此，這篇論文提出的成果相

信有助於應用在近場通訊系統。 

 

關鍵詞 — 電磁耦合、近場、能量傳輸、射頻辨識、超高頻天線。 

 

 

 

 

  



 

 

 

 



 

Abstract 
 

Recently, near-field communication systems have been widely used in many 

applications such as the near-field UHF RFID item-level tagging, the Near Field 

Communication (NFC) device, and the mCoupons. To successfully design and optimize 

the near-field communication systems, it is important to investigate the near-field 

coupling between the transmitting and receiving antennas. In this thesis, a simple 

formula has been presented for computing the coupling coefficient between two 

antennas that are placed in the near field of each other. The choices of the two antennas 

are arbitrary, and all the information needed includes the corresponding normalized 

vector far-field patterns along with their relative orientations and the antenna spacing.    

To verify the proposed formulation, the coupling coefficients in several near-field 

scenarios, including a practical near-field UHF RFID system, are computed and 

compared to those measured and full-wave simulated using Ansoft HFSS. They are all 

in good agreement. Additionally, it is shown that several factors may influence the 

coupling coefficient, such as the impedance matching of the receiving antenna and the 

directivity of the transmitting antenna. With the aid of the proposed formulation, the 

near-field read range and read reliability can be determined and the near-field coupling 

phenomena can be investigated. The results thus obtained may be useful in the 

near-field communication systems. 

 

Keywords — Electromagnetic coupling, near field, power transmission, RFID, UHF 

antennas. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

In the past years, there have been increasing research interest in near-field 

communication systems, and the emerging technology has been deployed in many 

diverse applications. For example, the near-field UHF RFID has been used in item-level 

tagging such as pharmaceutical and retailing [1]-[3]. The LF and HF RFID systems 

have been extensively used in the access control and public transportation ticketing. The 

Near Field Communication (NFC) system that enables contactless payments via any 

hand-held device, say a mobile phone, also receives considerable attentions [4]-[6]. 

There are still other applications, such as the health monitoring [7], the mCoupons [8], 

and the magnetic resonance imaging (MRI) [9], etc.  

In order to successfully design and optimize the near-field communication systems, 

it is critical to investigate the antenna coupling between transmitting and receiving 

antennas that are placed in the near zone of each other. In lower frequency range, such 

as the LF (125-134 KHz) and the HF (13.56 MHz) bands, either the electric field or 

magnetic field would dominate in the antenna near zone depending on the antenna type. 

The electric field of an electric dipole antenna dominates, whereas the magnetic field of 
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an electric loop antenna dominates. Therefore, in the near-field magnetic (inductive) 

coupling system, the transmitting and receiving antennas used are mostly loop antennas. 

Some attempts have been made to compute the LF/HF inductive coupling power 

transfer [10]-[13]. However, in the UHF band or even higher, such as the 860-960 MHz, 

2.4-GHz, and 5.8-GHz bands, inductive and capacitive coupling are associated with 

different regions of the antenna impedance. The field distribution in the same near zone 

becomes more complicated and may also include an electrostatic or magnetostatic 

component. While an antenna radiates the electromagnetic field, the near-field region 

can be either inductive or capacitive which relying upon the operating frequency. To the 

authors’ best knowledge few studies have so far been done on emphasizing the 

generality for any antenna types and the relative orientation of the antennas for 

calculating the near-field antenna coupling in the microwave region. 

The goal of this thesis is to propose an analytic form to compute the near-field 

coupling coefficient as a function of the spacing between two arbitrary antennas. In 

near-field measurement, we can determine the far-field pattern of antenna by measuring 

the near-field coupling between test and probe antennas [14]. The proposed formulation, 

in a sense, is an inverse transformation of near-field measurements. We can calculate the 

near-field coupling coefficient by means of the three-dimensional vector far-field 

patterns and the relative orientation of the transmitting and receiving antennas. The 

 2



 

proposed formulation is a near-field counterpart of the Friis equation in the far zone, 

and is applicable to any antennas used in the near-field communication systems. 

 

1.2 Thesis Overview 

This thesis is organized as below. Chapter 2 presents the formulation to calculate 

the near-field coupling coefficient. It is based mainly on the coupling quotient expressed 

in terms of the antenna far fields [15]. However, the associated numerical complexity 

due to the usage of the fast Fourier transform (FFT) and the tedious truncation methods 

has been greatly reduced. 

For verification, the formula is used to calculate the coupling coefficients of 

several near-field setups. In Chapter 3, three commonly-seen scenarios are simulated 

using Ansoft HFSS. The results are compared with those computed via the proposed 

method, and they agree well. 

In Chapter 4, a near-field UHF RFID system is chosen as an example. All the 

results obtained through measurement, HFSS simulation, and the formulation are 

demonstrated and compared. Some factors are found and discussed for enhancing the 

coupling level. Additionally, several practical applications in near-field UHF RFID 

systems are performed, and the proposed formulation may be helpful for determining 

the near-field read range and read reliability.  

 3
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Finally, some observations and design guidelines are summarized in Chapter 5. 

Three Appendices are attached at the end of this thesis. The derivation of coupling 

quotient in terms of far-field patterns is shown in Appendix 1. The general solution of 

the scalar Helmholtz equation in spherical coordinates is derived in Appendix 2. 

Moreover, in Appendix 3, it derives the orthogonality relationships of tesseral 

harmonics. 

 



 

Chapter 2  

Near-Field Coupling Coefficient 

 

2.1 Introduction 

In wireless communication, it’s crucial to determine the coupling coefficient, that 

is, the amount of power accepted by the receiving antenna when a given amount of 

power comes from the transmitting antenna. When the receiving antenna is located in 

the far field of the transmitting antenna, the coupling coefficient can be determined by 

the Friis equation: 

    
2

4t rC G G p
d

λ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                     (2.1) 

where Gt, Gr are the gains of transmitting and receiving antennas, respectively, d is the 

antenna spacing, and p is the polarization mismatch loss between the two antennas. As 

for the near-field case, in order to determine the coupling coefficient between the 

transmitting and receiving antennas, we require other approaches described in this 

chapter. We have organized this part into following sections. In Section 2.2, we 

categorize the exterior fields of the transmitting antenna, and clarify the near-field 

region considered in this thesis. Section 2.3 presents the theory for computing the 

coupling coefficient versus longitudinal displacement of two antennas separated along 

axis, which is considered as the prototype of the three-dimensional formulation. Since 
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the transmitting and receiving antennas are often randomly oriented, we merge the 

orientation obstacle into the formulation described in subsection 2.3.3. Furthermore, the 

coupling coefficient versus relative displacement of two antennas in a transverse plane 

normal to the separation axis is also discussed in Section 2.4. Finally, the capability of 

the formulation is summarized in Section 2.5. 

 

2.2 Antenna Field Regions 

    The exterior fields of a transmitting antenna can be divided into near-field and 

far-field regions as shown in Fig. 2.1 [14], [19]. The near-field region is further divided 

into two sub-regions, the reactive and radiating near field. In the reactive near field, 

energy is stored in the electric and magnetic fields very close to the transmitting antenna 

instead of radiating from the source. The near-field region is commonly taken to extend 

about 2λ π  from the surface of the antenna. However, with the experience of 

near-field measurement, it indicates that a distance of one wavelength ( λ ) determines a 

more reasonable outer boundary to the reactive near field. Once the distance from the 

transmitting antenna is more than one wavelength, the electric and magnetic fields tend 

to propagate predominantly in phase, but do not exhibit a plane-wave characteristic 

( ( )exp ikr r ) until they reach the far-field region. This propagation region between the 

reactive near field and the far field is called the radiating near field.  
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Fig. 2.1 Antenna near and far field regions. 

The far-field region extends to infinity and the direction of electric field, magnetic 

field and propagation are perpendicular among one another in this region. The inner 

radius of the far field can be estimated from the general free-space integral for the 

vector potential and is typically set at 22D λ λ+ . Notice that the added λ covers the 

possibility of the maximum dimension D of the antenna being smaller than a 

wavelength. In other words, the so-called Rayleigh distance 22D λ  is measured from 

the outer boundary of the reactive near field of the antenna. 

 

2.3 Antenna Coupling versus Longitudinal Displacement 

Consider a receiving antenna placed in the near field of a transmitting antenna as 

depicted in Fig. 2.2. The incident and emergent waveguide mode coefficients for the 

transmitting (receiving) antenna are aT and bT (aR and bR) respectively. Referring to [15], 
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the coupling quotient between the transmitting and receiving antennas is defined as 

bR/aT. It can be interpreted as the signal coupled into the receiving antenna when a unit 

signal is fed into the transmitting antenna, which is identical to the definition of the 

forward transmission coefficient of the scattering parameters S21, when the transmitting 

and receiving antennas and the region in between are considered as a two-port network. 

Since we are more interested in the coupled power level, |bR/aT|2 is used instead. It 

means the amount of power accepted by the receiving antenna when a unit power comes 

from the transmitting antenna. Mostly, |bR/aT|2 is expressed in decibels and is referred to 

as the power coupling level or the coupling coefficient C here in this thesis. 
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Fig. 2.2 Arbitrarily oriented receiving antenna in the near field of a transmitting 
antenna. 
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2.3.1 Spherical Wave Expansions for the Coupling Coefficient 

The coupling quotient between the transmitting and receiving antennas can be 

written as [15] 

    
( ) ( ) iR TR R

x y
T zK k

f fb C e dk dk
a k k

⋅

<

− ⋅
= − ∫∫ k rk k

           (2.2)  

where ˆ ˆ ˆx y zxk yk zk= + +k  is the propagation vector, and 2k π λ= =k  with λ 

the free-space wavelength. ˆ ˆ ˆ ˆxx yy zd zd= + + = +r R  

t to the transmitting antenna.

alized vector far-

is the position vector of the 

rece  and 

transmitting antennas, respectively. CR is a mismatch constant defined as 

iving antenna with respec

φθ φ TT ff ˆ+  are the norm

φθ φθ RRR fff ˆˆ +=

field patterns for the receiving and θTf ˆ=

( )1
RFeed

R
R L

ZC
η

=
− Γ Γ

                         (2.3) 

where η is the intrinsic impedance of free space, ZRFeed is the characteristic impedance 

of the feed waveguide of the receiving antenna, and ΓR, ΓL are the reflection coefficients 

of the feed waveguide when looking into the receiving antenna and its passive load, 

respectively. The derivation of (2.2) is done by Yaghjian [15] and shown in Appendix 1.  

Note from (2.2) that the coupling quotient is a function of the position vector r. 

The double integral in (2.2) is taken over the transverse components of propagation 

vector dkx and dky, and the inner product of the two vector far-field patterns in the 

integrand represents the interaction between the transmitting and receiving antennas. 
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The integral interval K < k means that only the propagating waves are integrated, which 

corresponds to the real part of the complex power. 

Applying the Laplacian operator ∇2 to (2.2) yields 

( ) ( )

( ) ( ) ( )

2 2

2          

iR TR R
x y

T zK k

iR TR
x y

zK k

f fb C e dk dk
a k k

f fC k e dk dk
k k

⋅

<

⋅

<

− ⋅
⎡ ⎤∇ = − ∇⎣ ⎦

− ⋅
= − −

∫∫

∫∫

k r

k r

k k

k k
      (2.4) 

Recasting (2.4) and we have 

 ( )2 2 0R

T

bk
a

∇ + =                         (2.5) 

which means that the coupling quotient satisfies the scalar Helmholtz equation. As a 

result, the coupling quotient can be expanded by linear combination of the elementary 

wave functions, and the most general form is a summation over all possible values of m 

and n [16], written as (see Appendix 2) 

( ) ( ) ( ) 01
0

0
cos

n
immR

nm n n
n m nT

b B h k P e
a

ϕθ
∞

= =−

=∑ ∑ r              (2.6) 

where r, θ0, and φ0 are the corresponding spherical coordinates of the position vector r. 

 and are the spherical Hankel functions of the first kind and the associated 

Legendre polynomials, respectively. Bnm are the spherical wave coefficients. Here, the 

coupling quotient is expanded by a set of known basis which can be determined by 

forward recurrence relations or obtained in Matlab and Mathematica databases, and 

leaving only the spherical wave coefficients Bnm unknown.  

( )1
nh m

nP  
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Fig. 2.3 Rotated (primed) coordinate system with receiving antenna on the z’-axis. 

Through the above series expansion method, the singularity that occurs when γ 

approaches zero can be avoided, and the integration variables dkx and dky are changed to 

be dθ0 and dφ0, resulting in a simpler double integral. To further simplify (2.6) and 

facilitate evaluation of Bnm, the coordinate system in Fig. 2.2 is rotated around the origin, 

namely the phase center of the transmitting antenna, such that the phase center of the 

receiving antenna lies on the z-axis of the rotated coordinate system as depicted in Fig. 

2.3.  

Therefore, in this new coordinate system ẑd=r  and θ0 = 0°. The relative 

orientation between the transmitting and receiving antennas can then be accounted for 

simply by rotating the far-field patterns accordingly. In addition, it is known that the 
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associated Legendre polynomial ( )0cosθm
nP , for its argument being unity, is nonzero 

only when m = 0. Thus (2.6) can be rewritten as (2.7): 

( ) ( )1

0
,     

2
R T R

nT

b D Dd d
a

+
>n nB h k

∞

=

=∑              (2.7) 

where DT and DR are the largest dimensions of the transmitting and receiving antennas, 

respectively. The coupling quotient in (7) is now a function of the antenna spacing d 

rather than the position vector r. The remaining work is to evaluate the unknown 

spherical wave coefficients Bnm and Bn.  

 

2.3.2 Evaluation of the Spherical Wave Coefficients 

To evaluate Bnm and acquire Bn in (2.7), first we begin with (2.2), and let the 

separation distance r approach to infinite. According to the Sommerfeld radiation 

condition, (2.2) can be written as 

( ) ( ) ( )2R Rb Cr f
a k

π

→ ∞

nts [17] and behaves as 

ikr

R T
T
r

i ef
r

→∞

∼ − ⋅k k               (2.8) 

On the other hand, as r  the spherical Hankel function in (2.6) has an 

approximation of large argume

   (1) 1( ) ( )    
ikr

n
n

r

eh kr i
kr

+

→∞
∼ −                     (2.9) 

Substituting (2.9) into (2.6), and compared with (2.8), we have    
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( ) ( ) ( )

01
0

0

2

          ( ) (cos )

ikr
R

R R T
T
r

ikrn
imn m

nm n
n m n

b er C i f f
a k

e

r

B i P e
kr

φ

π

θ

→∞

∞
+

= =−

= × − ⋅ ×

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑

k k

       (2.10)   

Clearly , ikre kr  can be canceled out. In a further step, we multiply both side of 

(2.10) by ( ) 0-
0cos imm

nP e φθ , and exploit the orthogonality relationships of those basis 

functions as shown by Appendix 3, we have 

( ) ( )
( )

( ) ( ) ( ) 0
2

0 00 0

2 1 !
2 !

          cos sin

n

nm R

imm
R T n

i n n m
B C

n m

0 0f f P e d d
π π φθ θ φ θ−

+ −
= − ×

+

− ⋅∫ ∫ k k

   (2.11) 

For m = 0, (2.11) reduces to 

 
( )

( ) ( ) ( )

0

2 0
0 0 00 0

2 1
2

       cos sin

n
n n R

R T n

nB B C i

0f f P d d
π π

θ θ φ θ

+
= = − ×

− ⋅∫ ∫ k k
      (2.12) 

Given the 3D vector far-field patterns for both transmitting and receiving antennas 

and the relative orientation, the associated inner product in the integrand of (2.12) could 

readily be calculated. Please note that to evaluate Bn Yaghjian exploited an FFT 

algorithm in [14] to convert the double integral into summations. In this work, a simple 

numerical integration is adopted to calculate Bn directly from (2.12). Substituting Bn 

thus obtained into (2.7) yields the desired coupling quotient. Although an infinite series 

is needed based on (2.7) to compute the coupling quotient, it has been observed that the 

series would converge with merely less than ten terms. 
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Furthermore, in the far-field Friis equation (2.1) 2ˆ ˆt Rp e e= ⋅  indicates the 

polarization mismatch loss between two antennas, where  and  are unit vectors 

representing the polarization of the electric field of the transmitting and receiving 

antennas, respectively. In the proposed near-field formulation, the polarization 

mismatch loss has also been consulted by the pattern inner product 

t̂e ˆRe

R Tf f⋅  since we 

can always express ˆ ˆ as R R Rf f fθ ϕθ ϕ+  and ˆ as T T ˆ Tf f fθ ϕθ ϕ+ . Consequently, the 

proposed formulation, in a sense, can be regarded as a near-field counterpart of the Friis 

transmission formula.  

 

2.3.3 Relative Orientations  

To evaluate the inner product R Tf f⋅ , the normalized far-field vector patterns( fR 

and fT ) are transferred from the spherical coordinate system to the rectangular 

coordinate system. Since there is often a relative orientation between transmitting and 

receiving antennas, consider each antenna rotates about Z-axis as illustrated in Fig. 2.4. 

We convert ,f fφ θ  from spherical coordinates into , ,x y zf f f  in rectangular 

coordinates by 

sin cos cos
cos cos sin

0 sin

x A A A

y A A A

z A

f
f

f
f

f

φ

θ

φ θ φ
φ θ φ

θ

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

               (2.13) 
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Fig. 2.4 A relative orientation of the receiving antenna in terms of spherical coordinate 

system ( ),A Aθ φ . 

f , ,After obtaining x y zf f , we can substitute it into (2.12) to compute the pattern 

inner product, and further attain (2.7). 

 

2.4 Antenna Coupling versus Transverse Displacement 

In the preceding work, we evaluate the coupling coefficient versus the longitudinal 

axis between the transmitting and receiving antenna. Mostly, in this situation the 

coupling coefficient is larger than the scenario that the receiving antenna has an offset 

(Δx, Δy) on a transverse plane and is separated from the transmitting antenna by d. 

Typically this scenario is often our concern for application purpose.  

The coupling coefficients are also obtained for this scenario. Consider the 

transmitting antenna is located at the coordinate origin, while the receiving antenna 

“scans” on a transverse plane with a constant antenna orientation. Fig. 2.5 shows the 
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receiving antenna located at an off-axis point A’ with transverse offsets (Δx, Δy) from 

the on-axis point A. The transverse offsets can then be converted into the relative 

orientation for the antennas. 

1

2 2
1

tan

tan

y
x

x y
d

φ

θ

−

−

⎧ Δ⎛ ⎞Δ = ⎜ ⎟⎪ Δ⎝ ⎠⎪
⎨ ⎛ Δ + Δ⎪Δ = ⎜ ⎟
⎪ ⎜ ⎟

⎝ ⎠⎩

⎞                    (2.14) 

Given the tag antenna position A’(Δx, Δy, d) and the 3D patterns of the reader and 

tag antennas, the associated coupling coefficient can be computed by rotating the 3D 

patterns in accordance with the relative antenna orientation. Also, note that the antenna 

spacing in the formula should be d’ instead of d. 

 

x

y

z

xΔ
yΔ

A

A’

d ′
d

Transmitting 
antenna          

Receiving 
antenna

(Δx, Δy, d)
(0, 0, d)

x

y

z

xΔ
yΔ

A

A’

d ′
d

Transmitting 
antenna          

Receiving 
antenna

(Δx, Δy, d)
(0, 0, d)

 

Fig. 2.5 The receiving antenna has an offset (Δx, Δy) on the transverse plane normal to 
the separation axis. 
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2.5 Summary 

    In this chapter, we specify the near-field region discussed in this thesis. A simple 

formulation has been presented for computing the coupling coefficients between two 

antennas that are placed in the near field of each other and are arbitrarily oriented. 

Although the formula is complicated to some extent, it could be regarded as a near-field 

counterpart of the Friis transmission formula. Based on the proposed formula and 

program, all the information we need to compute the near-field coupling coefficient are 

the 3D radiation patterns of each antenna and their relative orientation.  
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Chapter 3  

Comparisons between the Formulation and HFSS Simulation 

 

3.1 Introduction 

In order to verify the proposed formulation, three classic scenarios in the UHF 

band are considered in this chapter. The design frequencies of all the antennas are at 915 

MHz. The associated coupling coefficients between the transmitting and receiving 

antennas are computed and compared to those simulated using Ansoft HFSS. Please 

note that, in the HFSS simulation, the quantity |S21|2 is used for comparison, which is 

obtained by assuming port 2, namely the receiving antenna in our cases, being perfectly 

matched to its load impedance. For consistency, this condition can be included in our 

formulation merely by setting ΓRL = 0. Also, it must be mentioned that according to the 

condition in (2.7) the coupling coefficients can be computed only when the antenna 

separation is larger than the mean value of the largest dimensions for the transmitting 

and receiving antennas. Therefore, d ≥ 85 mm is chosen in the following examples. 

 

3.2 Side-by-Side, Parallel Half-Wave Dipoles 

Consider two identical, y-directed half-wavelength dipole antennas, one of which 

is placed at the origin and the other on the z-axis with a separation d. The former is 
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chosen as the transmitting antenna, while the latter is the receiving antenna. Since it is 

not difficult to derive the normalized vector far-field pattern of an ideal y-directed 

half-wavelength dipole based on its well-known z-directed counterpart, they are given 

as 

2 2

sin sincos
2 cos sin

1 sin sin
fθ

π θ ϕ

θ ϕ
θ ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠∝
−

                 (3.1) 

2 2

sin sincos
2 cos

1 sin sin
fϕ

π θ ϕ

ϕ
θ ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠∝
−

                     (3.2) 

Substituting (3.1) and (3.2) into (2.12) yields the desired spherical wave 

coefficients Bn. The computed coefficients Bn diminishes significantly for higher order 

terms when n > 7 leading to fast convergence of (2.7). In the HFSS simulation, the 

configuration of the dipole is shown in Fig 3.1, and the corresponding patterns at 915 

MHz are shown in Fig 3.2.  
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Fig. 3.1 Geometry of the HFSS simulated dipole. 
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Fig. 3.2 Simulated radiation patterns of the dipole at 915MHz.  
(a) x-z plane and (b) y-z plane. 
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Fig. 3.3 Coupling coefficient versus antenna separation for polarization-matched 
dipoles. 

The near-field coupling coefficient as a function of antenna spacing d computed by 

the proposed method and those obtained via HFSS are depicted in Fig. 3.3. Excellent 

agreement can be observed verifying the proposed formulation. 
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3.3 Side-by-Side, Polarization-Mismatched Half-Wave Dipoles  

In the preceding subsection, the two dipoles are polarization matched 

corresponding to the best case in a two-dipole system. However, in most cases, they are 

arbitrarily oriented. Besides, to demonstrate the capability of our method, a scenario 

having polarization-mismatched dipoles is also considered. In the current case, the 

receiving dipole lying on the y-z plane is rotated by 20° around its phase center. This 

can be accounted for in our formulation simply by transforming the coordinate system 

of the vector far-field pattern of the receiving dipole accordingly. Using (2.13), 

Aθ and Aφ  defined in Fig. 2.3 are 20° and 90°, respectively. Accordingly the 

corresponding rectangular components of the receiving antenna are 

cos20

sin 20

xR R

yR R

zR R

f f

f f

f f

φ

θ

θ

= −⎧
⎪ = ° ⋅⎨
⎪ = − ° ⋅⎩

                     (3.3) 

Likewise, Bn thus obtained diminishes significantly for n > 9 leading to fast 

convergence of (2.7). The coupling coefficients thus obtained are plotted in Fig. 3.4. 

One can see that the coupling coefficients are smaller here than in the preceding case 

because of the polarization mismatch between the two dipoles. 
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Fig. 3.4 Coupling coefficient versus antenna separation for polarization-mismatched 
dipoles. 

 

3.4 Polarization-Matched Square Loop and Half-Wave Dipole 

Here, a square loop antenna having its perimeter equal to a wavelength is used to 

replace the transmitting dipole in Section 3.2. The loop antenna is centered at the origin 

with the loop lying on the x-y plane and oriented in such a way that the resultant 

polarization is aligned with the y-directed receiving dipole. In the HFSS simulation, the 

structure of the square loop antenna and the patterns are shown in Fig 3.5 and Fig 3.6, 

respectively.  
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Fig. 3.5 Geometry of the HFSS simulated square loop. 
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Fig. 3.6 Simulated radiation patterns of the square loop antenna at 915MHz.  
(a) x-z plane and (b) y-z plane. 

 We observe that the simulated pattern in the y-z plane is doughnut-shaped, while 

the x-z plane pattern is omni-directional with a slightly shaking at ±90°. This 

circumstance indicates that its normalized co-polarized component of the far-field 

pattern can be represented as an array composed of two parallel dipoles a quarter 

wavelength apart. Consequently, the radiation patterns of the square loop can be 

approximated using the principle of pattern multiplication with the element factor  
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              (3.5) 

while the array factor can be derived as 

sin sin
21

j
AF e

π θ φ
= +                        (3.6) 

The coupling coefficient for this setup can thus be computed as a function of the 

antenna spacing. The results are compared with those simulated and shown in Fig. 3.7. 

In this example, the error is larger than previous two cases due to the far-field pattern of 

square loop is an approximation, which is not a exact solution used in previous cases. 
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Fig. 3.7 Coupling coefficient versus antenna separation for polarization-matched square 
loop and dipole. 
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3.5 Summary 

   In the previous three scenarios, the agreement between the computed results and 

those simulated by HFSS indicates that the proposed method can be utilized to 

determine the near-field coupling coefficient as the relative orientation, the antenna 

spacing, and the far-field patterns of the transmitting and receiving antennas are known.  

 

 



 

Chapter 4  

Application in Near-Field UHF RFID System 

 

4.1 Introduction 

A RFID system is a spontaneous wireless data collection technology with a long 

history [18]. Depending upon their operating principle, RFID systems are classified into 

three categories: passive, semi-passive, and active. A passive RFID system is the least 

complex and cheapest, hence widely used for many applications. Without a power 

supply of a passive tag its own, the required energy to turn on the tag chip depends upon 

the electromagnetic field coupling from the reader. Accordingly, two different coupling 

techniques are further categorized: near-field coupling and far-field coupling.  

Low frequency (LF, 125-134 kHz) and high frequency (HF, 13.56 MHz) RFID 

systems are short-range systems based on near-field coupling. On the other hand, 

Ultra-high frequency (UHF, 860-960 MHz) and microwave (2.4 GHz and 5.8 GHz) 

RFID systems are typically long-range systems based on far-field coupling. LF and HF 

RFID systems have been deployed in the market for many commercial applications. 

However, the larger size of the antennas used in the LF/HF band systems confines their 

further development. Thus, it is straight forward to reduce antenna size by designing the 

system in a higher frequency band, such as the UHF band. In addition, the near-field 
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UHF RFID systems have other superiorities, including higher data rate, and lower 

manufacturing cost, making them suitable for item-level tagging. 

The near-field UHF RFID system is composed of a reader and a tag just as in the 

ordinary RFID systems. The simplified system architecture is depicted in Fig. 4.1. The 

power generated by the reader circuitry Preader is transferred to the reader antenna, and 

then acquired by the tag antenna through near-field coupling. The power absorbed by 

the tag chip Pchip can be expressed as [19] 

chip reader reader chipP P Cτ τ= × × ×                    (4.1) 

where τreader and τchip are the impedance mismatch coefficients of the reader and tag 

between the front-end circuitry and the associated antenna, respectively. They can be 

expressed as 

2

2

1 ,   

1 ,   

T S
reader t t

T S

C R
chip R R

C R

Z Z
Z Z

Z Z
Z Z

τ

τ
∗

−⎧ = − Γ Γ =⎪ +⎪
⎨

−⎪ = − Γ Γ =
⎪ +⎩

                 (4.2) 

    Please note that since both the impedances of tag and chip are complex, we use a 

modified power wave reflection coefficient proposed by Kurokawa [20]. Equation (4.2) 

also indicates that the maximum power transfer occurs at conjugate impedance match 

between both components.       
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Fig. 4.1 Simplified architecture of near-field RFID systems. 

    C is the coupling coefficient between the reader and tag antennas. With the aid of 

the proposed formulation (2.7), (2,12), the coupling coefficient C can be readily 

calculated. 

To verify the results by experiment, a near-field UHF RFID system is implemented 

in this chapter. In Section 4.2, we present a broadband square loop array with a back- 

reflector and it is used as the reader antenna. In Section 4.3, two different tag antenna 

designs [21], [22] are used individually in the system. We compared a series of 

experiments with the proposed formulation in Section 4.4. The measurement results are 

in good agreement with those computed by the proposed method and those simulated by 

HFSS as well. Furthermore, some factors are found to be crucial for improving the 

power coupling level in Section 4.5. For practical applications, such as Point of Sale 

(POS), the proposed formulation is capable of determining the near-field read range and 

the read reliability, which is introduced in Section 4.6. Finally, we summarized the 

measured results and findings in Section 4.7.  
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4.2 Reader Antenna 

Typically, a loop antenna is favorable for a near-field reader antenna. However, the 

square loop with perimeter of a wavelength demonstrated in Section 3.4 is not an 

appropriate design due to poor concentration of power. Therefore, we develop a loop 

array with back-reflector to aggregate the radiated power.  

The geometry of the proposed reader antenna for the near-field UHF RFID system 

is shown in Fig. 4.2, and the photographs are shown in Fig 4.3. Two printed square loop 

antennas, of which the perimeters are equal to a wavelength, are back-to-back connected 

by a coplanar strip (CPS) of length Lcps. The two arms of the CPS are connected 

respectively at their midpoints to the inner and outer conductors of the feeding coaxial 

cable. The coaxial cable is fed from the direction normal to the antenna plane. Although 

a balun could be added to slightly improve the radiation performance, the proposed 

design directly fed via a coaxial cable can still provide satisfactorily higher gain and 

well-shaped radiation pattern. As one may expect, the design radiates bi-directionally; 

however, most RFID reader antennas require unidirectional radiation pattern. To 

produce unidirectional radiation pattern and further increase the antenna gain, an 

electrically large, planar conducting sheet is utilized as a back reflector for the loop 

array as shown in Fig. 4.2 The spacing H between them is set to be approximately a 

quarter wavelength in free space. 
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Fig. 4.2 Geometry of two-element square loop array with a back reflector. 
 

 

 

(a) (b)
Fig. 4.3 Photographs of two-element square loop array with a back reflector. 
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A prototype antenna designed around 915 MHz was fabricated on an FR-4 

substrate with dielectric constant εr = 4.4 and thickness h = 0.6 mm. A copper sheet of 

dimensions 400×400 mm2 is used as the back reflector and placed at a distance H = 82 

mm from the loop array. Throughout the design process, simulations are carried out on 

HFSS. The simulated and measured input return losses of this antenna are shown and 

compared in Fig. 4.4. We can find that the design is well matched within a wide 

frequency range, and the measured 10-dB return loss bandwidth is 19.1% (848-1022 

MHz). The peak gains measured at 920 MHz and 930 MHz are 10.2 and 10.1 dBi, 

respectively. Since the radiation pattern remains nearly the same throughout the return 

loss bandwidth, for simplicity, Fig. 4.5 depicts the x-z and y-z plane patterns measured 

at 920 MHz only.  
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Fig. 4.4 Simulated and measured input return losses of the reader antenna. 
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Fig. 4.5 Simulated and measured radiation patterns of the proposed reader antenna at 

920MHz. (a) x-z plane and (b) y-z plane. 
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4.3 Tag Antennas 

    Passive tags utilize the coupled energy from a reader to power up the chip circuit. 

To have a superior power transfer between the tag antenna and the chip, the input 

impedance must be conjugate matched to the chip impedance, which is highly 

capacitive generally. The capacitive reactance of chip impedance makes the matching 

task become difficult between tag antenna and chip. Thus the design guidance of tag 

antennas is miniaturized as well as a well-coupled power. Two different tag antenna 

designs, referring to [21] and [22] are implemented. Each of them is used in our 

near-field experiment setup.  

 

4.3.1 Folded Dipole with a Closed Loop 

The first one is a folded dipole with a closed loop [21] whose main advantage is its 

tunable input impedance to achieve conjugate match for various commercial tag chips. 

A prototype antenna design at 915 MHz is depicted in Fig. 4.6, and the photograph of 

the antenna, of which the total antenna area is 64.4 × 27.6 mm2, is shown in Fig. 4.7. 

Please note that, to facilitate measuring the coupling coefficient through the vector 

network analyzer (VNA), the antenna is designed for 50 Ω instead of being conjugate 

matched to the highly capacitive tag chips and is fed by a section of CPS connected to a 

balun connected to the coaxial cable. This additive balun degrades the 
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Fig. 4.6 Geometry of the folded dipole antenna. 
 

 

 

Fig. 4.7 Photograph of the folded dipole antenna. 
 

pattern of the tag antenna inevitably, which will be stated and discussed at Section 

4.3.3. 

The proposed folded dipole was fabricated on the FR-4 with thickness of 0.6 mm. 

The simulated and measured return losses of the folded dipole with the Balun are shown 

and compared in Fig. 4.8, and the radiation patterns of x-z plane and y-z plane are 
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shown in Fig. 4.9. Due to the fabrication errors and the uncertainty of the dielectric 

constant of FR4, the resonant frequency of the prototype antenna slightly shifts from the 

design frequency of 915 MHz to 920 MHz. The peak gain measured at 920 MHz is 2.2 

dBi. We can utilize this tag for near-field applications by operating at a lower output 

power of reader, so the tag responds only to stronger fields in the vicinity of the reader 

antenna. 

 

 

Fig. 4.8 Simulated and measured return losses of the folded dipole with the Balun 
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Fig. 4.9 Simulated and measured radiation patterns of the folded dipole with the Balun 
at 920MHz (a) x-z plane and (b) y-z plane. 
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4.3.2 Meander Circular Loop 

The other design used is a meandered circular loop [22]. A print planar type 

circular loop antenna is able to reduce size by adding stubs attached to the structure. The 

prototype antenna designed at 915 MHz is depicted in Fig. 4.10. It is also designed for 

50 Ω, and the same feeding structure is used for measurement’s sake. The fabrication of 

the proposed meander loop was on the FR-4 with thickness of 0.6 mm. Fig. 4.11 shows 

the return losses obtained from simulation and measurement, and Fig. 4.12 shows the 

radiation patterns of the x-z plane and y-z plane. Both the return losses and radiation 

patterns of CPS-fed meander loop are evaluated with the Balun, and the peak gain 

measured at 930 MHz is 2.7 dBi. 
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Fig. 4.10 (a) Photograph of 930-MHz meander loop. (b) Geometry of meander loop fed 
by CPS and balun. 
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Fig. 4.11 Simulated and measured return losses of the meander loop with the Balun 
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Fig. 4.12 Simulated and measured radiation patterns of the meander loop with the Balun 
at 930MHz (a) x-z plane and (b) y-z plane. 

4.3.3 Microstrip-to-CPS Transition 

A coplanar stripline (CPS) is a balanced transmission line which can be used for 

balanced fed-in antennas such as dipoles and loops. On the other hand, a microstrip line 

is an unbalanced transmission line, and is one of the most widely used transmission 

lines in microwave circuits. In many cases, when a transition (balun) is used between 

the microstrip line and the CPS, the overall antenna performance is limited by the balun 

structure. At this section, we digress and discuss the balun used in the above-mentioned 

tag antennas. 

The proposed balun operates from 890 MHz to 945 MHz with an insertion loss 

ratio (S21) less than 1 dB and return loss (S11) better than 10 dB for back-to-back 
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Fig. 4.13 Proposed structure of the microstrip-to-CPS transition.  

transition. In spite of a narrow band, however, its bandwidth is wide enough for our 

application. Figure 4.13 shows the back-to-back uniplanar microstrip-to-CPS transition. 

It consist of a 50 Ω microstrip line (W1 = 1.3 mm) which branched into two paths. The 

characteristic impedance of each microstrip branch is chosen as 100 Ω (W2 = 0.265 mm) 

for easy fabrication. The differential 180° phase difference between two microstrip line 

branches can be accomplished by introducing a delay line where 2 1 4gL L λ− =  [23] 

with λg the guided wavelength in the microstrip. This result indicates that the dominant 

mode of coupled-microstrip line is odd mode, which can be subsequently utilized as a 

fed-in structure to balanced antenna. The gap of the CPS is 0.4 mm, strip width is 3 mm, 

and the CPS characteristic impedance is 50 Ω verified by HFSS.  
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    The limitation of the proposed balun is that it degrades the radiation patterns. In 

Fig. 4.9 (b), the pattern in y-z plane is supposed to be omni-directional instead of 

reflecting fields toward the positive z-direction. A similar phenomenon can be found in 

Fig 4.12 (b). These inaccuracies are attributed to the truncated ground plane which 

reflects the power from tag antennas, hence excessive power radiates in the y direction. 

Two attempts have been made for eliminating such excessive power. The first one is to 

extend the length of CPS. In our design, L3 is chosen as 0 4 82 mmλ ≈ . The other 

manner employs a 45° tapered ground plane, as shown in Fig 4.13. The current flowing 

on both sides of tapered ground planes are canceled out due to their opposite phases. 

Further optimization of the balun and antenna design is possible depending on the 

requirements of particular application.   

 

4.4 Measurement Results 

    The aforementioned reader and tag antennas are utilized to measure the coupling 

coefficient in the near-field UHF RFID system. The experiment setup is shown in Fig. 

4.14. The measurements are performed in an anechoic chamber, and the associated 

coupling coefficients are obtained by measuring the |S21|2 at the antenna terminals by the 

HP8753D VNA depicted in Fig. 4.15. We introduce the experiments in two subsections 

here, that is, the coupling coefficients versus longitudinal displacements and transverse 
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displacements, respectively. 
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Fig. 4.14 Measurement setup for the near-field RFID system. 
 
 

 

Fig. 4.15 Photograph of HP8753D VNA. 
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4.4.1 Coupling Coefficient versus Longitudinal Displacement  

First of all, the coupling coefficients are measured for various antenna separations 

d, and two sets of data are acquired respectively using the two tag antennas. During the 

measurement, the reader antenna is fixed, while the tag antenna is moved from d = 85 

mm to 400 mm with an incremental step of 5 mm. Besides, the antennas are kept 

polarization matched with the main beam maximum aimed at each other. A photograph 

of the experiment setup is shown in Fig. 4.16. Also, note that the 3D far-field patterns 

Eθ, Eφ needed in the formula require a finer sampling step of 1° due to the numerical 

integration, and therefore they are obtained by transforming the near-field measurement 

data. 

 

Fig. 4.16 Photograph of the measurement setup in anechoic chamber. 
 

Tag antenna

Reader antenna
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The coupling coefficients for the case using the folded dipole as tag antenna are 

measured at 920 MHz, which is the resonant frequency of the fabricated folded dipole. 

The measured, calculated, and full-wave simulated coupling coefficients are plotted in 

Fig. 4.17. Clearly, the agreement among them is quite excellent.  

Then, the same measurement procedure is repeated when the folded dipole is 

replaced by the meandered circular loop. However, the measurement is conducted at 

930MHz, namely the resonant frequency of the meandered circular loop. The results 

obtained are plotted in Fig. 4.18. Again, a satisfactorily good agreement can be observed 

among them. Figs. 4.17 and 4.18 both demonstrate the accuracy and validity of the 

proposed formulation. 
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Fig. 4.17 Coupling coefficient versus antenna separation for the near-field RFID setup 
at 920 MHz. (Tag antenna: folded dipole) 
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Fig. 4.18 Coupling coefficient versus antenna separation for the near-field RFID setup 
at 930 MHz. (Tag antenna: meandered circular loop) 
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4.4.2 Coupling Coefficient versus Transverse Displacement 

The coupling coefficients are also obtained for the case where the tag antenna is 

placed at various points on a transverse plane spaced apart from the reader antenna by d. 

In this setup, the reader antenna is fixed, while the tag antenna “scans” on a transverse 

plane with a constant antenna orientation. Recalled from Section 2.3, once we have 

determined the transverse offsets (Δx, Δy) from the on-axis point, the transverse offsets 

can be converted into the relative orientation for the antennas. In addition, the 3D 

far-field patterns are assembled as matrices, and the field intensities are listed in θ by 
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row and φ by column, with sampling step of 1°. Therefore, all we need to do is to rotate 

the patterns with Δθ and Δφ. Please note that the antenna spacing in the formula should 

be d’ instead of d. 

Here, the folded dipole is chosen as the tag antenna, while the square loop array 

with a back reflector is used as the reader antenna. The measurements are made in 

25-mm increments along both x- and y-axes employing a near-field planar scanner 

system developed by Nearfield Systems Inc, which is shown in Fig 4.19. The entire 

scanning area is 400×400 mm2.  

 

 

    

(a)                                (b) 
 

Fig. 4.19 Photographs of (a) the reader antenna which is fixed at a certain position, and 
(b) the tag antenna which is placed on a near-field planar scanner. 
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The measured and calculated coupling coefficients for the transverse planes at d = 

100, 200, and 300 mm are plotted in Figs. 4.20-4.22, respectively. Again, the results 

calculated by the formula agree very well with those measured. Note that the maximal 

coupling occurs at the on-axis point and the minimal coupling near the corners of the 

scanning area. However, near the corners, the coupling coefficient slightly increases as 

d is increased because the angular offset from the on-axis point becomes smaller 

accordingly. Therefore, as can be observed from those figures, the spatial distribution of 

the coupling coefficient is more uniform for a larger d. As has been discussed by the 

experimental verification above, we further confirm the validation of the proposed 

formulation. 

Another contribution of the proposed formulation is that it greatly reduces the 

computation time. In each case, to compute the coupling coefficients by Matlab 

program takes about 15 minutes, while HFSS simulation would cost more than 60 hours 

with fine segments performing on the same computer. On the other hand, the proposed 

formulation also provides a scanner-based method. With the known far-field patterns of 

transmitting and receiving antennas, we can evaluate the near-field antenna coupling by 

computer in stead of measurements in an anechoic chamber. 

 47



 

 

Fig. 4.20 Coupling coefficient versus transverse displacements for d = 100 mm.  
(a) Calculated and (b) measured 3D surface plots, (c) calculated and (d) measured contour plots. 
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Fig. 4.21 Coupling coefficient versus transverse displacements for d = 200 mm.  
(a) Calculated and (b) measured 3D surface plots, (c) calculated and (d) measured contour plots. 
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Fig. 4.22 Coupling coefficient versus transverse displacements for d = 300 mm.  
(a) Calculated and (b) measured 3D surface plots, (c) calculated and (d) measured contour plots. 
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4.5 Enhancement of Power Coupling Level 

After verifying the capability of the proposed formulation, an accompanied issue 

arises. Since we are aware of the coupling coefficients for certain tag-reader pairs, one 

fundamental question is which parameter tends to be a limiting factor for maximal 

power transfer. To optimize the design of reader and tag antennas, let us discuss two 

factors which may influence the coupling coefficient, the impedance matching of the 

receiving antenna and the directivity of the transmitting antenna. 

 

4.5.1 Impedance Matching of the Receiving Antenna  

Following the same procedure as Section 4.4, the coupling coefficient is 

investigated at frequencies other than the resonant frequency of the tag antenna here. 

The measurements are conducted respectively at 910, 920, 930, and 940 MHz spanning 

only a small fraction of the wide bandwidth of the reader antenna. For the scenario that 

the meander loop acts as a tag antenna, the |S21|2 displayed on the VNA is depicted in 

Fig. 4.23. One can see the maximal |S21|2 occurs at the resonant frequency (930 MHz) of 

the meander loop. Besides, the more the operating frequency deviates from resonance, 

the lower the |S21|2 would be. Replacing the folded dipole as a tag antenna, similar 

results are attained.  
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Fig. 4.23 Photograph of the curve of |S21|2 on the VNA. 

The coupling coefficients measured and computed via the formula are compared 

and plotted in Figs. 4.24 and 4.25. For off-resonance operation, the associated coupling 

coefficient decreases mainly due to the impedance mismatch of the tag antenna.  

Since large numbers of tags are being used in the supply chain and tags have a 

relatively short product life, the price and cost of them must be as low as possible. This 

requirement leads to simple antenna designs, primarily strip-line dipoles or loops. 

However, it is well known that strip-line antennas have relatively narrow bandwidth and 

short dipoles suffer from the problem of fractional bandwidth. From the 

above–mentioned experimental approach, we ascertain that deviations in antenna 

impedance from the complex conjugate of the chip impedance will significantly 

influence the tag performance. 
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Fig. 4.24 Coupling coefficient versus antenna separation for the near-field RFID setup 
at 910, 920, 930, and 940 MHz. (Tag antenna: folded dipole) 
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Fig. 4.25 Coupling coefficient versus antenna separation for the near-field RFID setup 
at 910, 920, 930, and 940 MHz. (Tag antenna: meander loop) 
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4.5.2 Directivity of the Transmitting Antenna 

Next, additional measurements are performed by using the folded dipole as the tag 

antenna and replacing the proposed high-gain reader antenna by the meandered circular 

loop, which is designed initially as a tag antenna. Fig. 4.26 shows the measured and 

computed coupling coefficients along with those for the case using the proposed reader 

antenna. The latter exhibits a higher coupling coefficient due to the more directive 

far-field pattern of the reader antenna. Therefore, a reader antenna that has a higher gain 

is preferable in the near-field UHF RFID systems. 
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Fig. 4.26 Coupling coefficient versus antenna separation for the near-field RFID setup 
at 920 MHz. (Tag antenna: folded dipole. Reader antenna: meander circular loop and 

square loop array with back reflector)  
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4.6 Practical Applications of Near-Field RFID Systems  

In practical applications of item-level tagging, it is required that near-field UHF 

RFID systems should work in a more reliable manner. In this section, we investigate 

two practical issues including the near-field read range and read reliability.  

Typically, RFID system is strongly limited by the forward (reader-to-tag) channel 

power. That is, if the reader is able to provide sufficient power to the tag chip, then there 

will be sufficient power in the return signal to communicate with the reader. This is due 

to the sensitivity of readers (-90 dBm ~ -70 dBm) are higher than those of tags (-15 

dBm ~ -7 dBm). Therefore, we only consider the forward link in this section. 

Furthermore, while we do not directly measure chip information, the consideration here 

is focused on the interaction between the reader and tag antennas, and we use the 

relation of proposed formulation (4.3) between transmitting power, receiving power, 

and distance.   

 

4.6.1 Near-Field Read Range 

Read range is an important characteristic of the RFID tag, even in a near-field 

system. It is the maximum distance which the tag can be detected. One limitation for the 

read range is the maximum distance which tag just receives enough power to turn on the 

chip circuitry, while the other limitation is the maximum distance which the reader is 
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able to detect the backward signal. As mentioned previously, the read range is chosen as 

the first one since it is normally shorter. 

In near-field (UHF) RFID systems, it is desired that the tags can only be detected 

within a specified read range and are imperceptible beyond that. With the aid of the 

proposed formula, it is straightforward to determine the read range for near-field RFID 

systems. First, rewrite (4.1) into (4.3): 

( ) ( ) ( ) ( ) ( )dB reader dB th dB reader dB chip dBC P P τ τ− = − + +             (4.3) 

where Pth is the chip sensitivity, representing the minimum threshold power necessary 

to power up the tag chip provided by the chip vendors.  

For simplicity, it is assumed that the reader circuitry (tag chip) and the antenna are 

perfectly matched such that τreader(dB) = 0 (τchip(dB) = 0). Given the output power of the 

reader circuitry Preader and the Pth of the tag chip, one can find the corresponding read 

range from the curve of coupling coefficient C calculated by the proposed formula 

regarding the coupling coefficient as a function of antenna separation for the particular 

reader and tag antennas used. For example, consider one of the above scenarios where 

the folded dipole is the tag antenna and the square loop array with a back reflector is the 

reader antenna. For a given Pth(dB) = −3 dBm and Preader= 10 dBm, one can read from 

Fig. 4.17 that the corresponding read range for coupling coefficient C = −13 dB is equal 

to 280 mm. This information further means that the output power exceeding 10 dBm 
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may enable the reader to detect the tags outside the read range in addition to those 

within. 

 

4.6.2 Read Reliability 

    We define the read reliability as the probability that a reader successfully detects 

and identifies a tag when a tag is in the read range of reader antenna [24]. Here, we 

establish a Monte Carlo simulation for determining the read reliability in free-space 

environment. Recalled from (4.3), typically the output power of a near-field reader is 

arranged from 10 dBm to 30 dBm, and the chip sensitivity varies from -15 dBm to -7 

dBm. We define the threshold of the coupling loss -Cth(dB) as the permissible maximal 

coupling loss under the given Preader and Pth. For example, under the specification of 

Preader = 10 dBm and Pth = -10 dBm, -Cth = 20 dB is achieved. This definition further 

means that a tag antenna with ( ) ( )tag dB th dBC C− > −  will be unreadable since the power 

loss in free space is too large and incapable to turn on the chip circuitry. 

In the POS of a supermarket, tags are attached to objects which are packed in a 

basket, pass through the convey belt, and a reader under the convey belt reads the tags 

and processes tag information. For the operation below, the meander circular loop is 

chosen as the tag antenna, while the square loop array with a back reflector is used as 

the reader antenna and be operated at 930 MHz. We assume there is only one tag 
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attached to the object, and the scattering of the object is negligible. We first model the 

distribution of the tag position in the basket. The dimensions of the basket are 

40×40×30 cm3 as shown in Fig. 4.27 and the basket is 10 cm above the reader antenna. 

Although in real situations, objects would be packed onto the bottom prior to the top in 

the basket, for measurement’s convenience, we model the distribution of the tag 

position as a random variable. Next, the orientation of the tag is also simulated 

randomly. 

After those setups are accomplished, we sample 10000 data of coupling 

coefficients calculated from the proposed formulation (Matlab program), and they are 

compared with two thresholds of the coupling loss, -Cth = 20 dB and 30 dB. On the 

other hand, we have conducted an experiment by collecting 500 data of |S21|2 identical 

to the simulation setup. The simulated and measured read reliability is shown as the 

cumulative density function (CDF) in Fig. 4.28. Also, the statistics of the results are 

listed in Table 4.1.  

Table 4.1 Comparison between the simulation and measurement 

Classification 
Read reliability Coupling Coefficient (dB)

-Cth = 20 dB -Cth = 30 dB Mean  
Standard 
derivation 

Simulation 63.2 % 96 % -18.01 6.493 

Measurement 57 % 93 % -20.09 6.24 
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Fig. 4.27 Geometry of the basket which is 10 cm above the reader antenna. 
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Fig. 4.28 Comparison of simulated and measured CDF of read reliabilities at 930 MHz. 
(Tag antenna: meander circular loop. Reader antenna: square loop array with back 

reflector) 
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4.7 Summary 

    We have implemented a near-field UHF RFID system, and evaluated the antenna 

coupling by both the analytic and experimental approaches. Our measurements reveal 

the fact that power coupling level depends on various kinds of factor, such as the 

impedance matching of a tag antenna, and the directivity of a reader antenna. In addition, 

we have evaluated the free-space read range and read reliability. From the practical 

application discussed in this chapter, the proposed formulation provides important 

guidelines with simplicity. 

 



 

Chapter 5 

Conclusion 

 

5.1 Summary of This Thesis 

    Basically, this thesis focuses on the power transfer relation in near-field 

communication system. The kernel of the formulas (2.7), (2,12) applies to any two 

arbitrarily oriented and separated antennas in free space, and all the parameters we need 

are the relative orientation and the 3D vector far-field pattern of each antenna at a single 

frequency. Our major contribution is to develop a series of experiments to verify the 

proposed equation which can be regarded as a near-field counterpart of the Friis 

transmission equation. Additionally, we have proposed methods to determine the read 

range and the read reliability in near-field RFID systems. In this chapter, we briefly 

summarize our works and some important results. 

In Chapter 2, we specify the boundary between near and far field and develop the 

method to simplify the proposed equation to calculate the coupling coefficient. The 

coupling coefficient is given by a spherical wave representation and it is also a function 

of the antenna separation within three-dimensional space. Although the proposed 

equation (2.7) is expressed by an infinite series, our method indicates that the series 

converges within less than ten terms.  

 61



 

In Chapter 3, the proposed formula is verified by considering three typical 

scenarios, and the associated results have been shown to agree well with those 

simulated.  

In Chapter 4, an experiment setup for a near-field UHF RFID system is designed 

and implemented. The coupling coefficients obtained via the formula, measurement, 

and the HFSS simulation are all in good agreement. Meanwhile, some factors crucial to 

the coupling coefficient are identified, including the impedance matching of the 

receiving antenna, directivities and relative orientation of the transmitting and receiving 

antennas, etc. Furthermore, with the aid of the proposed formulation we can evaluate the 

read range and the read reliability. It is believed that the proposed formula may be 

useful for the design and optimization of near-field communication systems. 

 

5.2 Future Works 

    As the study and discussions throughout this thesis, the near-field antenna 

coupling is considered by single transmitting and receiving antenna in free space, 

neglecting the scattering field of obstacles in environment. However, in practical   

RFID application, there are often multiple tags placed in the read range, and RF signal 

of different tags may interfere among one another. To further investigate RFID 

performance for practical cases and item-level tagging, it is suggested that combining 
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the proposed formulation with environmental factors. For example, the direction of 

scattering field can be constructed by a statistical model. Other possible solution is to 

measure the pattern of tag antenna along with the object, and substituting it into (2.12) 

and (2.7). 

    Another issue is whether UHF near-field antennas work reliably in the presence of 

metal and water. UHF near-field technology has been promoted by industry as a 

solution to the “metal and water problem” [25], however, some publications show that 

commercial near-field tags can not solve the “metal and water problem”. In contrary, it 

may degrade the performance worse than far-field tags [26]. Therefore, it is a worthy 

research to derive a rigorous analysis of the UHF near-field antenna especially in 

developing the proposed formulation that includes the presence of metal or water near 

the tag antenna. By means of proper physics understanding, some approaches may be 

conducted to lead to a more general model. 
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Appendix 

 

    In this thesis, we focus on the power transfer relation in near-field communication. 

The kernel of the proposed formulation is evaluating the coupling quotient as a solution 

of the scalar Helmholtz equation, so it can be expanded in a series of spherical wave 

functions by giving the spherical wave coefficients Bnm as unknown. Next, we use the 

orthogonality relationships of tesseral harmonics to evaluate the Bnm. In this appendix, 

the coupling quotient in terms of normalized far-field patterns is introduced detailedly, 

which is done by Yaghjian [15]. In the second place, we derive the series expansion of 

spherical wave functions and spherical wave coefficients. The derivations below are 

also mentioned in [16], and we emphasize the associated sections in this thesis. 

 

A.1 Coupling Quotient in Terms of Far-Field Patterns 

The theory of the coupling quotient begins with the Kerns “transmission integral” 

(To the authors’ best effort, the original publication of Kerns can not be founded in June 

2009), which express the coupling quotient in terms of the transmitting and receiving 

plane-wave characteristics of each antenna:   

( ) ( )02 10
1

1
iR

x y
T R L

b s s e dk dk
a

∞ ∞
⋅

−∞ −∞

′= ⋅
− Γ Γ ∫ ∫ k rk k             (A.1) 

where s10(k) and s’02(k) are the vector transmitting and receiving characteristics defined 
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with respect to plane waves traveling in the k direction but with phase referenced to the 

phase center of each antenna. Other definitions of symbols are identical to those in 

Chapter 2.3.1. Equation (A.1) is an exact solution from Maxwell’s equations, and the 

assumptions are neglecting multiple reflections between two antennas. However, (A.1) 

cannot be used to compute bR/aT unless the characteristic s10 and s’02 are transformed to 

commonly measured parameters of the antennas. 

    We first transform the receiving functions s’02 into its transmitting function s’20 by 

reciprocity theorem: 

( )
 ( )02

20
z

RFeed

s k s
Z kη
′

′= −
k

k                      (A.2) 

Again, all parameters have been defined in Chapter 2.3.1. Substituting s’02 from 

(A.2) into (A.1) gives 

( ) ( ) ( )20 101
iR RFeed

z x y
T R L K k

b Z k s s e dk dk
a kη

⋅

<

′= − ⋅
− Γ Γ ∫∫ k rk k         (A.3) 

Note that the integral interval in (A.3) has been made to K < k by leaving only the 

radiating part of the spectrum. The radiating characteristics s10 and s’20 for K < k are 

related to the normalized complex electric far-field patterns by  

( ) ( )

( ) ( )

10

20

T
z

R
z

is f
k
is f
k

⎧ =⎪⎪
⎨
⎪ ′ − = −
⎪⎩

k k

k k
                     (A.4) 

    Substituting (A.4) into (A.3) produces the coupling quotient for two antennas as a 
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double integral over the inner product of the complex electric far-field patterns of the 

antennas: 

( ) ( )
    iR TR R

x y
T zK k

f fb C e dk dk
a k k

⋅

<

− ⋅
= − ∫∫ k rk k

           (A.5) 

where CR is consolidated notation for the mismatch factor 

( )1
RFeed

R
R L

ZC
η

=
− Γ Γ

                         (A.6) 

The coupling quotient bR/aT expressed in (A.5) and (A.6) are identical to (2.2) and 

(2.3).  

 

A.2 Series Expansion of Spherical Wave Functions 

    We first consider the scalar Helmholtz equation ( )2 2 0k ψ∇ + =  in spherical 

coordinates: 

2
2 2

2 2 2 2 2

1 1 1sin 0
sin sin

r k
r r r r r

ψ ψ ψθ ψ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
+ =  (A.7)  

To solve the solution ψ, we use the method of separation of variables and let 

 ( ) ( ) ( )R r Hψ θ φ= Φ                      (A.8) 

Substituting (A.8) into (A.7), dividing by ψ, and multiplying by 2 2sinr θ , we 

attain 

2 2
2 2

2

sin sin 1sin sin 0d dR d dH dr k
R dr dr H d d d
θ θ θ θ

θ θ φ
Φ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ Φ⎝ ⎠ ⎝ ⎠

2 2r =  (A.9) 
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For proper choosing constants m and n, we can completely separate (A.9) into 

three independent equations: 

2 2

2

( ) ( 1) 0

1

d dRr kr n n R
dr dr

d dH m

⎛ ⎞ ⎡ ⎤

2

2
2

2

(sin ) ( 1) 0
sin sin

0

n n H
d d

d m
d

θ
θ θ θ θ

φ

+ − + =⎜ ⎟ ⎣ ⎦⎝ ⎠
⎡ ⎤

+ + − =⎢ ⎥
⎣ ⎦

Φ
Φ =

         (A.10) 

+

    Note that the constant m and n are independent. 

    The R equation is related to Bessel’s equation. Its solution is a combination of the 

spherical Bessel function of the first and second kinds, denoted by ( )nj kr  and 

, respectively. Typically these two functions represent standing waves. On the 

other hand, to express a plane-wave characteristic, it is convenient to define the 

spherical Hankel function of the first and second kinds as 

( )ny kr

( ) ( ) ( )
( ) ( ) ( )

(1)

(2)

n n n

n n n

h kr j kr iy kr

h kr j kr iy kr

= +

= −
                 (A.11) 

     represents an inward-traveling wave, while ( )(1)
nh kr ( )(2)

nh kr  represents an 

o expand the near-field coupling quotient, empirically we 

choose as the basis in our formulation. 

    The H equation is related to Legendre’s equation, and their solutions are called 

associated Legendre functions. We express them as 

outward-traveling wave. T

(1)
nh k( )r  

( )cosm
nP θ  and ( )cosm

nQ θ , with 

associated Legendre polynomials of the first and second kind, respectively. A study of 
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associated Legendre polynomials shows that all functions have singularities at θ = 0 or θ 

= π except (cosm
nP )θ  with n as an integer. Since ψ should be finite in the range 0 to π 

on θ, then n must be an integral and we choose ( )cosm
nP θ  as our basis. 

The Φ equation is a so-called harmonics equation, and the solution of the harmonic 

equation are called harmonic functions and denoted by ( )h mφ . Commonly used 

harmonic functions in spherical coordinates are 

sin ,  cos ,  m m ,  im ime eφ φφ φ −                    (A.12) 

    Since a single-valued ψ in the range 0 to 2π on φ  is desired in our formulation, 

we choose ( )h mφ ime φ  and ime φ− to be a linear combination of . 

    Summ above discussi ψ to the scalar 

Helm

arize the 

holtz equation as 

ons, we can form product solutions 

( ) ( )(1)
,m n nh kr ecosm i

nP mϕψ = θ

t linear com

( ) (cosn

                (A.13) 

are the desired elementary functions for the coupling quotient with m and n integrals. To 

construc l solutions, we construc binations of the elementary 

function as 

m

t more genera

( ) )

,
0

1

0
   

n

nm m n
n m n

n
m i

nm n
n m n

B

B h k er P ϕ

ψ ψ
∞

= =−

∞

= =−

=

=

∑ ∑

∑∑ θ
             (A.14) 

where Bnm are the unknown spherical wave coefficients. Here we sum up all possible 

values of m and n, and the remaining work is to evaluate the unknown spherical wave 
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coefficients Bnm.  

 

A.3 Orthogonality Relationship of Tesseral Harmonics 

The orthogonality relationships state that an arbitrary function ( ,f )θ φ  defined 

over the surface of a sphere can be expanded in a series of tesseral harmonics. Here the 

tesseral harmonics of nth degree and mth order are defined as the functions 

( ) ( ), cos cose m
mn nT P mθ φ θ= φ  and ( ) ( ), cos sino m

mn nT P mθ φ θ= φ . In other words, 

( ),f θ φ  can be represented as 

( ) ( ) ( ) (0
0 1

, cos cos sin cos
n

m
n n mn mn n

n m
f a P a m b m P )θ φ θ φ φ

∞

= =

⎡ ⎤
= + +⎢ ⎥⎣ ⎦
∑ ∑ θ (A.15) 

whose coefficients are determined by 

( ) ( )

( )

( )

2

0 0 0

2

0 0

2

0 0

2 1 , ,  
4

2 1 ( )! , (cos ) cos  sin  
2 ( )!

2 1 ( )! , (cos ) sin  sin  
2 ( )!

n n

m
mn n

m
mn n

na f P d d

n n ma f P m
n m

n n mb f P m
n m

π π

π π

π π

θ φ θ φ θ φ
π

d d

d d

θ φ θ φ θ θ
π

φ

θ φ θ φ θ θ
π

+
=

+
=

+
=

∫ ∫

∫ ∫

∫ ∫

－

＋

－

＋
φ

  (A.16) 

    To derive the orthogonality relationships of tesseral harmonics, we first assume 

two solutions to the scalar Helmholtz as 

( ) ( )
( ) ( )

(1)
1

(1)
2

,

,

i
n mn

j
q pq

h kr T

h kr T

ψ θ φ

ψ θ φ

=

=
                   (A.17) 

where ( ),i
mnT θ φ  and ( ),j

pqT θ φ  are tesseral harmonics. For our proof we use Green’s 

theorem, which is 
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( )2 22 1
1 2 1 2 2 1  ds d

n n
ψ ψψ ψ ψ ψ ψ∂ ∂⎛ ⎞ = ∇ ∇⎜ ⎟∂ ∂⎝ ⎠∫∫ ∫∫∫－ － ψ τ      (A.18) 

    The right-hand side vanishes since ψ1 and ψ2 are well behaved solutions to the 

same Helmholtz equation. Next, applying (A.18) to a sphere of radius r, we have 

22 2 1
1 20 0

0r
r r

π π ψ ψψ ψ θ φ∂ ∂⎛ ⎞d d =⎜ ⎟∂ ∂⎝ ⎠∫ ∫ －            (A.19) 

    Substitute (A.17) into (A.19), we have 

( ) 22 (1) (1) (1) (1)

0 0
sin 0i j

n q n q mn pqkr h h h h T T d d
π π

θ θ φ′ ′ =∫ ∫－       (A.20) 

    Furthermore,  can be canceled out for arbitrary r only when (2 (1) (1) (1) (1)
n q n qkr h h h h′ ′－ )

n q . Hence =

( ) ( )
2

0 0
 , , sin 0      n qi j

mn pqT T d d
π π

θ φ θ φ θ θ φ = ≠∫ ∫         (A.21) 

    Now we can separate the variable ,θ φ  in (A.21). For the φ  integration, we have 

already known their orthogonality relationships 

    (A.22) 

    For the θ integration,  

2 2

0 0

2 2

0 0

sin cos  cos sin  0

0
sin sin  cos cos     

0

m p d m p d

m p
m p d m p d

m p
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∫ ∫
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2 1

n q

n

P P d n

P d
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π

π

θ θ θ θ

θ θ θ

q

n q

= ≠

= =⎡ ⎤⎣ ⎦ +

∫

∫
          (A.23) 

    Finally, the overall orthogonality relationships of tesseral harmonics can be 

combined and expressed as 
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    When m, n = p, q, we have 

( ) ( )
( )

22

0 0

4
2 1 0,  

, sin       !2 0
2 1 !

i
mn

n m i
T d d n m m

n n m

π π e
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＝

＋

－

  (A.25) 

    For any ( ),f θ φ  on a sphere expressed as (A.15), we multiply each side by 

, sini
p qT θ , and integral over 0 to 2π on φ  and 0 to π on θ. All terms except those have 

m, n = p, q vanish by (A.24), and by (A.23), the results state as (A.16) are proved. 

    Using (A.15) and (A.16), we can consequently derive the spherical wave 

coefficients Bnm as (2.11).  
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