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Abstract

A Game Theoretic Resource Allocation for
Inter-BS Coexistence in IEEE 802.22

Chun-Han Ko

Advisor: Hung-Yu Wei, Ph.D.

IEEE 802.22 is the first cognitive-radio-based wireless communication standard. We propose

a spectrum transaction scheme for dynamic resource renting and offering (DRRO) and

adaptive on demand channel contention (AODCC) in IEEE 802.22 inter-BS coexistence

mechanism to achieve efficient and fair spectrum sharing. Game theory is applied to formulate

and analyze the proposed spectrum sharing algorithm. We first analyze the simplest two-base-

station (BS) game through a graphical method to gain insights for the solution. Then, the

Nash Equilibrium of the n-BS game is derived and the utility profile at the Nash equilibrium

is shown to be unique. We prove several desirable properties, including allocative efficiency,

Pareto optimality, weighted max-min fairness, and weighted proportional fairness, are attained

at the Nash equilibrium. Lastly, we design a strategy-proof spectrum allocation mechanism

based on the proposed spectrum sharing algorithm so that truthful strategies optimize each

BS’s performance.

Keywords: IEEE 802.22; inter-BS coexistence; credit token; game theory; Nash equilibrium;

strategy-proofness.
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Chapter 1

Introduction

IEEE 802.22 is the first cognitive-radio-based standard operating over 54-862 MHz licensed

TV bands [1]. IEEE 802.22 systems, as depicted in Figure 1.1, are composed of base

stations (BSs) and consumer premise equipments (CPEs). IEEE 802.22 systems are enabled

to opportunistically access the licensed spectrum bands on the premise of not interfering with

the licensed users, e.g. TV stations and wireless microphones. Cognitive radio technique

[2, 3] is applied to perform spectrum sensing [4]. Through spectrum sensing, vacant channels

over which IEEE 802.22 systems can operate are discovered. However, an important issue

arises under a common scenario that multiple IEEE 802.22 BSs operate in the same vicinity

and cause severe interference. This issue is called inter-BS coexistence (or self-coexistence)

in IEEE 802.22 standard. To address this issue, an inter-BS coexistence mechanism is

defined.

CPECPE

CPE

802.22 BS1

Wireless MIC

CPE

CPE

CPE

CPE

802.22 BS2

TV Broadcaster

Wireless MIC

CPE

asterca

CPE

CPECPE

CPE

802.22 BS3

Figure 1.1: IEEE 802.22 Systems
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Figure 1.2: IEEE 802.22 Inter-BS Coexistence Mechanism

1.1 IEEE 802.22 Inter-BS Coexistence Mechanism

In IEEE 802.22 standard, the inter-BS coexistence mechanism [1] consists of four stages:

spectrum etiquette, interference-free scheduling, dynamic resource renting and offering

(DRRO), and adaptive on demand channel contention (AODCC), as illustrated in Figure 1.2.

Spectrum etiquette is the first stage where BSs try to locally find channels that their neighbor

BSs cannot or do not use. If no spare channel is available under this rule, BSs will conduct

interference-free scheduling.

In interference-free scheduling, BSs share the same channel by scheduling their traffic in

a non-interfering manner. It, however, can only occur on the premise that the BS who owns

the channel agrees to share it with others. In words, if the owner needs to operate exclusively,

interference-free scheduling cannot occur and the inter-BS coexistence mechanism must go

to the next stage.

IEEE 802.22 uses credit token for DRRO and AODCC operations. The concept of

credit token and its utilization for spectrum sharing are first introduced in [5]. In IEEE

802.22, credit token is similar to money except that credit token can be frozen but cannot

be transferred. Each BS is assumed to have a pre-given credit token budget. In DRRO, two

2



entities are defined: offeror is a BS who currently has unused resources; renter is a BS of

the counterpart, who currently has an additional resource requirement. An offeror can offer

its unused resources by broadcasting the offering information which includes the available

resources and the minimum number of credit tokens (MNCT) required. Renters who hear

the offering information can send renting requests which include the desired resources and

the number of credit tokens (NCT) willing to pay. After receiving and comparing the renting

requests, the offeror derives the best (in term of higher credit tokens) renters. These renters

are granted to access their requested resources and NCT they are willing to pay is frozen.

AODCC is the final stage of the mechanism. AODCC is triggered when BSs do not get

enough resources through the previous three stages. AODCC is very similar to DRRO except

that a channel owner, also called contention destination, now passively receives contention

requests. When a BS, called contention source, selects a contention destination and makes

a contention request, the channel contention procedure occurs at the contention destination.

The contention destination compares NCT the contention source is willing to pay with its

MNCT required. If the former is larger, the contention destination shall release the requested

resources and NCT the contention source is willing to pay is frozen; otherwise, the contention

destination replies with rejection.

1.2 Related Work

Recently, game theory has been applied to model IEEE 802.22 operations. S. Sengupta et

al. applied minority game theory to investigate the problem that whether a BS should stay

at the present channel or switch to another channel [6]. They showed a mixed strategy Nash

equilibrium existed and the mixed strategy space performed better than the pure strategy

space in achieving optimal solution. D. Gao et al. modeled the DRRO mechanism as

a progressive second price auction [7]. The utilization of this auction mechanism had a

major benefit that BSs would make their requests truthfully. D. Niyato et al. formulated the

transaction of spectrum bands between licensed users and BSs by a sealed-bid double auction

[8]. They also introduced a pricing mechanism to model the service between BSs and CPEs.
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Nash equilibrium was found through a numerical method. If interested in minority game

theory, progressive second price auction, and double auction, readers can refer to [19, 20, 21].

In this thesis, we aim to find a game theoretic solution for IEEE 802.22 inter-BS

coexistence. Compared to [6], it concentrated on spectrum etiquette. Compared to [7], it

investigated DRRO without taking credit token budgets into consideration. Compared to [8],

it focused on service pricing rather than inter-BS coexistence. In contrast, we propose a

spectrum sharing algorithm based on the IEEE 802.22 DRRO and ADOCC mechanisms. We

formulate the problem with game theory and discover that a Nash equilibrium always exists.

The Nash equilibrium has some desirable properties, including allocative efficiency, Pareto

optimality, weighted max-min fairness, weighted proportional fairness. Also, by adopting

the allocation rule of the spectrum sharing algorithm, we design a strategy-proof mechanism

which ensures efficiency and fairness at the truth-revealing dominant-strategy equilibrium.
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Chapter 2

Spectrum Sharing Scheme

2.1 System Model

The system we consider consists of an agent, A, and n BSs, BSi for i = 1, 2, ..., n. Agent

A, serving like a marketplace, provides the centralized renting-and-offering and contention

procedures for all BSs. Besides, Agent A offers spectrum using time O which is the vacant

or to-be-utilized spectrum using time of licensed users. If O is less than zero, “offering O”

means “retrieving −O.” Each BSi has a single orthogonal spectrum band, spectrum using

time T , a credit token budget Bi, and a max traffic requirement xi (in time) additional to

T . All of these are assumed to be public information. In other parts of this thesis, we will

use “spectrum” to denote spectrum using time for short. Figure 2.1(a) is an illustration of a

system of Agent A and three BSs. Figure 2.1(b) is the corresponding max additional traffic

requirements.

2.2 Spectrum Sharing Algorithm

Founded on DRRO and AODCC in the IEEE 802.22 inter-BS coexistence mechanism, we

propose a spectrum sharing algorithm. Initially, Agent A broadcasts that the renting-and-

offering procedure starts and it wants to provide spectrum O. After broadcasting this

information, Agent A receives the acquisition/offering requests from all BSs. According

to the type of the request, each BS is called an acquirer or an offeror. Agent A collects the
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Figure 2.1: System of Agent A and Three BSs

offered spectrum from the offerors and then assigns O and the collected offered spectrum to

the acquirers, in decreasing order of the unit acquisition price, for the requested amount until

exhaustion. (More details about the acquisition/offering requests and the unit acquisition

price will be explained later.) When multiple acquirers have the same unit acquisition price

and there is no enough spectrum for them, the amount assigned to them is assumed equal.

A BS, on the other hand, is assumed to aim to increase their spectrum. To increase the

spectrum, each BS must use its credit tokens not only to acquire others’ spectrum but also

to protect its originally owned spectrum from others’ contention. We assume every unit of

the spectrum to be acquired and the spectrum to be protected is equally significant for each

BS. Hence the credit token budget should be fairly allocated. Specifically, after hearing the

renting-and-offering information, each BSi makes an acquisition/offering request, yi, which

is the spectrum it claims to acquire if yi > 0 or to offer if yi < 0. At the same time, the unit

acquisition price for the spectrum to be acquired, [yi]
+, and the unit protection price for the

spectrum to be protectd, T − [−yi]
+, are both determined to be equal to pi (yi) =

Bi

T + yi

as depicted in Figure 2.2. The function [·]+ gives a non-negative value. When Agent A

receives the acquisition/offering requests, it assigns O and the offerors’ provided spectrum

to the acquirers under the previously described renting-and-offering procedure. After the
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Figure 2.2: Unit Spectrum Acquisition and Protection Price of BS i

renting-and-offering procedure, if the acquirers do not get enough spectrum, they will turn to

contention.

While the contention procedure starts, Agent A first collects the spectrum, T − [−yi]
+,

each BSi wants to protect. The collected
(
T − [−yi]

+)s are sorted in increasing order of the

unit protection price. Afterwards Agent A assigns the sorted
(
T − [−yi]

+)s to the acquirers

for the inadequate amount in decreasing order of the unit acquisition price. The assignment

ends if the unit protection price is greater than or equal to the unit acquisition price. Finally,

Agent A returns the unassigned spectrum back to all BSs. When multiple acquirers have

the same acquisition price and there is no enough spectrum for them, we assume the amount

assigned to them is equal. When multiple BSs have the same protection price and their

spectrum is assigned to others, we assume the assigned amount is equally afforded by these

BSs. After both renting-and-offering and contention procedures finish, the credit tokens the

acquirers spend for spectrum acquisition are frozen and data transmission begins.

Lastly, we show, in Table 2.1, the mathematical expressions of the spectrum BSi acquires

and offers in the renting-and-offering procedure and the spectrum BSi acquires or loses in the

contention procedure. The former is min (yi, ri) where ri(y) is the amount BSi can acquire

from renting. The latter is min
(
[yi − ri]

+
, ci

)
where [yi − ri]

+ represents the inadequate

amount after renting and ci represents the amount BSi can acquire (the first term) or will lose

from (the other two terms) contention. Then the total spectrum BSi gains or loses in both

procedures is min (yi, ri) + min
(
[yi − ri]

+
, ci

)
. For simplicity, we can also use min(yi, ti)

to represent the total spectrum BSi acquires or loses in both procedures where ti is the total

spectrum BSi can acquire (the first term) or will lose (the last two terms.) In Lemma 2.1,
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we prove min (yi, ri) + min
(
[yi − ri]

+
, ci

)
= min(yi, ti). Besides, the frozen credit tokens

of BSi is Pi (y) = pi (yi) [min(yi, ti)]
+. All other notations are summarized in Table 2.1 as

well.

Lemma 2.1. min(yi, ri) + min([yi − ri]
+

, ci) = min(yi, ti) ∀yi ≥ −T and ∀i ∈ {1, ..., n}.

Proof. See Appendix A.

2.3 Problem Description

The problem we want to investigate is as below.

Problem: Given that Agent A provides the spectrum O and that the original spectrum

T , the credit token budget Bi, and the max traffic requirement xi of each BSi are all public

information, if the acquisition/offering request yi is constrained by −T and xi, i.e. −T ≤

yi ≤ xi, how does each BSi make the acquisition/offering request in order to increase the

spectrum?
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Table 2.1: Notations

Agent A and BSi, i = 1, 2, ..., n.

T Spectrum owned by each BS.

O Spectrum offered by Agent A.

Bi Credit token budget of BSi.

xi Max traffic requirement additional to T of BSi.

yi Acquisition/offering request of BSi. It is the spectrum BSi claims to
acquire or to offer.

pi(yi) Unit acquisition and protection price of BSi. pi(yi) = Bi

T+yi

min (yi, ri) Spectrum BSi acquires or offers in the renting-and-offering procedure.

ri(y) Spectrum BSi can acquire from renting.

ri(y) =
[yi]

+∑
j;pj=pi

[yj ]
+

[
O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pi

[yj]
+

]+

min
(
[yi − ri]

+
, ci

)
Spectrum BSi acquires or loses in the contention procedure.

ci(y) Spectrum BSi can acquire or will lose from contention.

ci(y) =
[yi − ri]

+∑
j;pj=pi

[yj − rj ]
+

[ ∑
j;pj<pi

(
T − [−yj]

+
)
−

∑
j;pj>pi

[yj − rj ]
+

]+

−
(
T − [−yi]

+
)

+

⎡
⎢⎢⎣
(
T − [−yi]

+
)
−

T − [−yi]
+∑

j;pj=pi

(
T − [−yj]

+
)
[
−

∑
j;pj<pi

(
T − [−yj]

+
)

+
∑

j;pj>pi

[yj − rj ]
+

]+

⎤
⎥⎥⎦

+

min (yi, ti) Spectrum BSi acquires or loses in both procedures.

min (yi, ti) = min (yi, ri) + min
(
[yi − ri]

+
, ci

)
ti(y) Spectrum BSi can acquire or will lose in both procedures.

ti(y) =
[yi]

+∑
j;pj=pi

[yj ]
+

[
O +

∑
j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

]+

− T

+

⎡
⎢⎢⎣
(
T − [−yi]

+
)
−

T − [−yi]
+∑

j;pj=pi

(
T − [−yj]

+
)
[
−O −

∑
j;pj=pi

[yj]
+ +

∑
j;pj≥pi

yj −
∑

j;pj<pi

T

]+

⎤
⎥⎥⎦

+

Pi (y) Frozen credit tokens of BSi. Pi (y) = pi (yi) [min(yi, ti)]
+

9



Chapter 3

Game Formulation

Game theory is utilized to deal with the spectrum sharing problem. From the perspective

of each BS, spectrum sharing is intrinsically a game that each BS unitarily optimizes its

performance by acquiring or offering spectrum according to its credit token budget and max

traffic requirement. In the following, we briefly introduce game theory and then construct the

spectrum sharing game model.

3.1 Game Theory

Game theory is a set of mathematical tools used to model and analyze interactive decision

processes [9, 10]. The core of a game consists of three primary components:

1. A player set N .

2. A strategy space S formed from the Cartesian product of each player’s strategy set,

S =
∏
i∈N

Si.

3. A set of utility functions U = {ui (s)} where s ∈ S and ui (s), i ∈ N , represents player

i’s utility under the strategy profile s.

In a game, each player is assumed to choose the best available strategy. Each player’s best

available strategy is the one maximizing his utility under the belief that other players do in

the same way as well. The collection of all players’ best available strategies forms a steady

10



state at which no player has a reason to choose any strategy different from his best available

one. Such a steady state is called a Nash equilibrium [11].

Definition 3.1. A strategy profile s
∗ =
(
s∗i , s

∗
−i

)
is a Nash equilibrium if

ui (s
∗) ≥ ui

(
si, s

∗
−i

)
∀si �= s∗i and ∀i ∈ N

Though we can find the Nash equilibria of a game where each player has only a few

strategies by examining all the possible strategy profiles to see if they satisfy Definition 3.1,

it is always full of difficulties in more complicated games. An alternative method is to work

with players’ best response functions.

Definition 3.2. BRi (s−i) is the best response function of player i if

BRi (s−i) = {si : ui (si, s−i) ≥ ui (s
′
i, s−i) , ∀s′i �= si}

The best response function of any player depicts his best (in term of highest utility)

strategy given all possible s−i from other players. A Nash equilibrium can also be defined by

best response functions.

Definition 3.3. A strategy profile s
∗ =
(
s∗i , s

∗
−i

)
is a Nash equilibrium if

s∗i = BRi

(
s∗−i

)
∀i ∈ N

3.2 Spectrum Sharing Game

We now apply game theory to construct a model for the spectrum sharing problem. Besides

the three main components, the credit token budget and the max traffic requirement of each

BS should be taken into account as well:

1. Player set N : Each BSi is the player of the game. N = {1, 2, ..., n}.

2. Strategy space Y =
∏
i∈N

Yi: We treat BSi’s acquisition/offering request yi as its strategy.

11



All possible acquisition/offering requests of BSi compose the strategy set Yi.

Mathematically, Yi = {yi : −T ≤ yi ≤ xi} ∀i ∈ N .

3. Set of utility functions U = {ui(y)}: Since the goal of each BS is to increase its

spectrum, it is reasonable to set the spectrum as the utility. We ignore the constant

term T for the sake of convenience. The utility is therefore the spectrum acquired or

lost from renting, offering, and contention. Mathematically, BSi’s utility function is

ui(y) = min (yi, ti).

4. Set of credit token budgets (CTB set) B = {Bi}.

5. Max traffic set X = {xi}: Without losing generality, we assume {pi (xi)} is sorted in

decreasing order. This assumption will simplify our analysis.

The game model is summarized in Table 3.1.

Table 3.1: Spectrum Sharing Game Model

G = (N, Y, U, B, X)

Player Set Set of the BSs.

N = {1, 2, ..., n}

Strategy Space Cartesian product of each player’s strategy set which is the set of
all possible acquisition/offering requests.

Y =
∏
i∈N

Yi and Yi = {yi : −T ≤ yi ≤ xi} ∀i ∈ N

Set of Utility
Functions

Set of the spectrum each player acquires or loses.

U = {ui(y)} and ui(y) = min (yi, ti) ∀i ∈ N

CTB Set B = {Bi}

Max Traffic Set X = {xi} with {pi (xi)} arranged in decreasing order.

12



Chapter 4

Graphical Analysis - Two Players with

Same Budget

A graphical method to derive the Nash equilibrium in the simplest 2-same-budget-player

game is presented to gain the insights for the solution of the general n-player game, i.e.

Game G. It consists of two main procedures. First the utility functions of both players are

drawn to derive their best response functions. Then two best response functions are drawn

together. The resulting intersection is Nash equilibrium.

Recall that we have assumed p1 (x1) ≥ p2 (x2). This assumption reduces to x1 ≤ x2

when both players have the same credit token budget. Accordingly, the traffic requirements

can be categorized into three cases. The first case is x1+x2 ≤ O which, by applying x1 ≤ x2,

can be equivalently expressed as x1 ≤
O

2
and x2 ≤ O − x1. The second case is x1 ≤

O

2

and x1 + x2 > O, equivalently x1 ≤
O

2
and x2 > O − x1. The final case is x1 >

O

2
and

x1 + x2 > O which are equivalent to x1 >
O

2
and x2 >

O

2
. In the following, we discuss case

by case.

4.1 Traffic Case 1 - x1 ≤
O

2
and x2 ≤ O − x1

The best response function of player 1, illustrated in Figure 4.1(a), is uniquely x1. It means

player 1 will always play the unique dominant strategy, y1 = x1, regardless of player 2’s

13
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Figure 4.2: Best Response Functions and Nash Equilibrium in Traffic Case 2

strategy. We call such a strategy a dominant one since it always dominates (or results in

higher utility than) all other strategies. A similar observation is obtained in Figure 4.1(b)

that player 2’s best response function is x2 and therefore player 2 plays the unique dominant

strategy, y2 = x2. By drawing two best response functions together in Figure 4.1(c), we find

their intersection, (x1, x2), a unique Nash equilibrium. The corresponding utility profile is

(x1, x2) as well.

4.2 Traffic Case 2 - x1 ≤
O

2
and x2 > O − x1

We have already derived that player 1 plays the unique dominant strategy, y1 = x1 when

x1 ≤
O

2
. As depicted in Figure 4.2(b), player 2’s best response function is BR2 (y1) =

O − y1 � x2 which implies that the strategy, y2 = x2, is player 2’s unique dominant strategy.

However, it is not meaningful to discuss the concept of dominant strategy for player 2 while

it is like to play a single-player game. We explain why player 2 is like to play a single-player

14



game as follows: when x1 ≤
O

2
, player 1 plays the unique dominant strategy, y1 = x1, and

acquires x1 from O. (When x1 is less than zero, “acquiring x1” means “offering −x1.”) For

player 2, it has (O − x1) remained to acquire without any other player. Therefore player

2 is like to play a single-player game and it can always acquire (O − x1) by playing y2

such that O − x1 ≤ y2 ≤ x2. The single-player effect obviously results in multiple Nash

equilibria. This can also be shown by drawing the two best response functions together.

The resulting intersection is a line segment between (x1, O − x1) and (x1, x2) which means

multiple Nash equilibria, (x1, O − x1 � x2), exist. Though multiple Nash equilibria exist,

the corresponding utility profile is uniquely (x1, O − x1).

4.3 Traffic Case 3 - x1 >
O

2
and x2 >

O

2

We derive the best response function of player 1 from Figure 4.3(a) to Figure 4.3(c),

BR1 (y2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min (O − y2, x1) � x1 if y2 ≤
O

2

y−2 if
O

2
< y2 ≤ x1

x1 if x1 < y2

and the best response function of player 2 from Figure 4.3(d) and Figure 4.3(e),

BR2 (y1) =

⎧⎪⎪⎨
⎪⎪⎩

min (O − y1, x2) � x2 if y1 ≤
O

2

y−1 if
O

2
< y1

We see neither player 1 nor player 2 has dominant strategy. By drawing two best response

functions together, we find their intersection,
(

O

2
,
O

2

)
a unique equal-strategy Nash

equilibrium. The corresponding utility profile is
(

O

2
,
O

2

)
.
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Figure 4.3: Best Response Functions and Nash Equilibrium in Traffic Case 3

We summarize the observations as follows. As will be shown, the listed items, playing

the essential roles in the two-same-budget-player game, can be extended to the general n-

different-budget-player game.

1. Condition for unique dominant strategies: When x1 ≤
O

2
, player 1 plays the unique

dominant strategy, y1 = x1. When x2 ≤ O − x1, player 2 plays the unique dominant

strategy, y2 = x2.

2. Existence of a Nash equilibrium: A Nash equilibrium always exists in all cases.

3. Condition for multiple Nash equilibria: The only case where multiple Nash equilibria

exist is x1 ≤
O

2
and x2 > O − x1. We have explained that because player 2 is like

to play a single-player game with (O − x1) offered, it can always acquire (O − x1) by

playing O − x1 ≤ y2 ≤ x2. Multiple Nash equilibria, (x1, O − x1 � x2), hence exist.

4. Unique utility profile at the Nash equilibrium: Even in the multi-Nash-equilibrium

case, the corresponding utility profile is unique.
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Chapter 5

Mathematical Analysis - n Players

In this chapter, we first extend the two-same-budget-player game to the general n-different-

budget-player game, i.e. Game G. The result is summarized in Table 5.1. Afterwards, we do

formal derivations for the Nash equilibrium of Game G.

5.1 Extension from Two-Player Game to n-Player Game

Table 5.1: Summary of Extension

2-Same-Budget-Player Game n-Same-Budget-Player Game n-Different-Budget-Player Game

Traffic
Threshold

{
O

2
, O − x1

} ⎧⎪⎨
⎪⎩
−

j−1∑
l=0

xl

n−j+1

⎫⎪⎬
⎪⎭

{
ej,−(j−1)

}

Traffic x1 > O
2

and x2 > O
2

; xj ≤
−

j−1∑
l=0

xl

n−j+1
∀j ∈ {1, ..., k}, xj ≤ ej,−(j−1) ∀j ∈ {1, ..., k},

Case x1 ≤
O
2

and x2 > O − x1; xj >

−

k∑
l=0

xl

n−k
∀j ∈ {k + 1, ..., n} xj > ej,−k ∀j ∈ {k + 1, ..., n}

x1 ≤
O
2

and x2 ≤ O − x1 where k ∈ {0, N} where k ∈ {0, N}

Nash
(

O

2
,
O

2

)
;

⎛
⎜⎝x1, ..., xk,

−

k∑
l=0

xl

n−k
, ...,

−

k∑
l=0

xl

n−k

⎞
⎟⎠ (

x1, ..., xk, ek+1, ..., en,−k

)

Equilibrium (x1, O − x1 ∼ x2); if k �= n− 1; if k �= n− 1;

(x1, x2)

(
x1, ..., xn−1,−

n−1∑
l=0

xl ∼ xn

) (
x1, ..., xn−1, en,−(n−1) ∼ xn

)
if k = n− 1 if k = n− 1

Recall that we have assumed the max traffic requirements are such that {pi (xi)} is

arranged in decreasing order. In the two-same-budget-player game, we see there are two
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traffic thresholds,
O

2
and O = x1. Accordingly, the traffic can be categorized into three

cases: x1 >
O

2
and x2 >

O

2
; x1 ≤

O

2
and x2 > O − x1; x1 ≤

O

2
and x2 ≤ O − x1. The

corresponding Nash equilibrium is
(

O

2
,
O

2

)
, (x1, O − x1 ∼ x2), and (x1, x2).

Extended from the two-same-budget-player game, it is reasonably to guess the n-

same-budget-player game has the set of n traffic thresholds,

⎧⎨
⎩
−

j−1∑
l=0

xl

n−j+1

⎫⎬
⎭, where x0 = −O.

Accordingly, we can categorize the traffic into (n + 1) cases. The (k + 1)-th case, k ∈

{0, N}, is xj ≤
−

j−1∑
l=0

xl

n−j+1
∀j ∈ {1, ..., k} and xj >

−
k∑

l=0
xl

n−k
∀j ∈ {k + 1, ..., n}. The Nash

equilibrium is

⎛
⎝x1, ..., xk,

−
k∑

l=0
xl

n−k
, ...,

−
k∑

l=0
xl

n−k

⎞
⎠ if k �= n−1 and

(
x1, ..., xn−1,−

n−1∑
l=0

xl ∼ xn

)
if k = n−1. By substituting 2 for n, we can check that the n-same-budget-player game really

reduces to the two-same-budget-player game.

To further extend to the n-different-budget-player game, we must know what plays the

same role as
−

k∑
l=0

xl

n−k
in the n-same-budget-player game.

Definition 5.1. For Game G, we define, with O denoted as −x0,

ej,−k ≡
Bj

1
n−k

n∑
l=k+1

Bl

⎛
⎜⎜⎜⎝
−

k∑
l=0

xl

n − k

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝ Bj

1
n−k

n∑
l=k+1

Bl

− 1

⎞
⎟⎟⎠T

∀j ∈ {k + 1, ..., n} and ∀k ∈ {0, N}

ej,−k can be interpreted as weighted and translated
−

k∑
l=0

xl

n−k
with the weight Bj

1
n−k

n∑
l=k+1

Bl

. The

term −k in the subscript indicates that player i, i ∈ {1, ..., k}, which has already acquired xi

from O, is excluded. When k = 0, ej,−0 is denoted as ej for short. Following the definition,

there is a corollary stating some properties of ej,−k.

Corollary 5.1. For Game G, the following statements about ej,−k are always true:

1. pj (ej,−k) =

1
n−k

n∑
l=k+1

Bl

T +
−

k∑
l=0

xl

n−k

∀j ∈ {k + 1, ..., n}.
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2.
k∑

j=1

xj +
n∑

j=k+1

ej,−k = min

(
O,

n∑
j=1

xj

)
∀k ∈ {0, N}.

3. xk ≤ ek,−(k−1) ⇔ xj ≤ ej,−(j−1) ∀j ∈ {1, ..., k}.

4. xk+1 > ek+1,−k ⇔ xj > ej,−k ∀j ∈ {k + 1, ..., n}.

5. xk ≤ ek,−(k−1) ⇒ pk(ek,−(k−1)) ≥ pj(ej,−k) ∀j ∈ {k + 1, ..., n}.

Proof. See Appendix B.

Corollary 5.1.1 says that the strategies ei,−k and ej,−k ∀i, j ∈ {k + 1, ..., n} are equal-

price, i.e. they result in the same price. Besides, player j who plays yj = ej,−k can

be viewed similar to the player having the average credit token budget 1
n−k

n∑
l=k+1

Bl and

playing the strategy
−

k∑
l=0

xl

n−k
. In Corollary 5.1.2, when k �= n,

k∑
j=1

xj +
n∑

j=k+1

ej,−k = O.

It can be equivalently represented as
n∑

j=k+1

ej,−k = −
k∑

l=1

xl. Therefore the strategy profile,

(ek+1,−k, ..., en,−k), is called the the sum-
(
−

k∑
l=1

xl

)
equal-price strategy profile. Especially

when k = 0, the strategy profile, (e1, ..., en), is called the sum-O equal-price strategy profile.

When Bi = Bj ∀i, j ∈ N , the weights for all ej,−k become 1 and ej,−k reduces to
−

k∑
l=0

xl

n−k
.

It is intuitively to believe that ej,−k play the same roles as
−

k∑
l=0

xl

n−k
in the same-budget case.

Hence Game G should have the set of n traffic thresholds,
{
ej,−(j−1)

}
. Besides, we can

classify the traffic into (n + 1) cases where the (k + 1)-th case, k ∈ {0, N}, is xk ≤ ek,−(k−1)

and xk+1 > ek+1,−k. From Corollary 5.1.3 and 5.1.4, the (k + 1)-th case can equivalently

represented as xj ≤ ej,−(j−1) ∀j ∈ {1, ..., k} and xj > ej,−k ∀j ∈ {k + 1, ..., n}.

Definition 5.2. For Game G and ∀k ∈ {0, N}, we define

Traffick ≡ xj ≤ ej,−(j−1) ∀j ∈ {1, ..., k} and xj > ej,−k ∀j ∈ {k + 1, ..., n}

The Nash equilibrium under Traffick should be (x1, ..., xk, ek+1, ..., en,−k) if k �= n − 1

and
(
x1, ..., xn−1, en,−(n−1) ∼ xn

)
if k = n− 1. Finally, by letting all credit token budgets be

the same, we check the n-different-budget-player game becomes the n-same-budget-player

game.
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5.2 n-Player Game

The game model for n different-budget players, Game G, is illustrated in Table 3.1. Before

starting, we should mention that we will use ui and ti to express ui (y) and ti (y) at any

given strategy profile y for short. If we need to compare the results between two different

strategy profiles, say (yi, y−i) and (y′i, y−i), we will distinguish by using u′i and t′i to express

ui (y
′
i, y−i) and ti (y

′
i, y−i).

First, let us examine the increasing property of utility functions with respect to strategies.

Lemma 5.1. For Game G under Traffick, k ∈ {0, N}, the following statements are always

true:

1. ui = yi ∀i ∈ {1, ..., k}.

2. if yi ≤ ei,−k for some i ∈ {k + 1, ..., n}, ui = yi.

Proof. From Corollary 5.1.2, we know
k∑

j=1

ej,−(j−1)+
n∑

j=k+1

ej,−k = min

(
O,−

n∑
j=1

xi

)
≤ O.

The derivation below is suitable for both 1) and 2). For player i, we have

O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

≥
k∑

j=1

ej,−(j−1) +
n∑

j=k+1

ej,−k +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

=
∑

j;pj=pi

[yj]
+ +

∑
j≤k;pj≥pi

(
ej,−(j−1) − yj

)
+

∑
j>k;pj≥pi

(ej,−k − yj)

+
∑

j≤k;pj<pi

(
ej,−(j−1) + T

)
+

∑
j>k;pj<pi

(ej,−k + T ) ≥
∑

j;pj=pi

[yj]
+ ≥ 0 (5.1)

Following Equation (5.1), if yi > 0, we have

ti =
[yi]

+∑
j;pj=pi

[yj ]
+

⎡
⎣O +

∑
j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

⎤
⎦

+

≥
yi∑

j;pj=pi

[yj ]
+

⎛
⎝ ∑

j;pj=pi

[yj]
+

⎞
⎠ = yi (5.2)
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If yi ≤ 0, we have

ti = −T

+

⎡
⎣(T − [−yi]

+)− T−[−yi]
+∑

j;pj=pi

(T−[−yj ]
+)

[
−O −

∑
j;pj=pi

[yj]
+ +

∑
j;pj≥pi

yj −
∑

j;pj<pi

T

]+
⎤
⎦

+

= −T + (T + yi) = yi (5.3)

Equation (5.2) and (5.3) reveals that ti ≥ yi and consequently ui = min(yi, ti) = yi.

Lemma 5.1.1 shows that ui, i ∈ {1, ..., k}, is an increasing function of yi under Traffick.

The condition for unique dominant strategies is then implied.

Theorem 5.1. For Game G under Traffick, k ∈ {0, N}, player i, i ∈ {1, ..., k}, plays the

unique dominant strategy, yi = xi.

Proof. It is shown in Lemma 5.1.1 that under Traffick, ui = yi ∀i ∈ {1, ..., k}. Player i’s

utility is an increasing function of yi and uniquely reaches its maximum at yi = xi. Therefore

player i can always play yi = xi to get the highest utility. In words, player i, i ∈ {1, ..., k},

plays the unique dominant strategy, yi = xi.

Recall we have guessed the Nash equilibrium under Traffick is (x1, ..., xk, ek+1, ..., en,−k)

if k �= n − 1 and
(
x1, ..., xn−1, en,−(n−1) ∼ xn

)
if k = n − 1. To verify our guess is correct,

we prove that all other strategy profiles cannot be a Nash equilibrium. The proof is taken into

two parts. The first part is to prove that yi < xi for any i ∈ {1, ..., k} or yi < ei,−k for any

i ∈ {k + 1, ..., n} is not in any Nash equilibrium. The second part is to prove that yi > ei,−k

for any i ∈ {k + 1, ..., n} is not in any Nash equilibrium.

Lemma 5.2. For Game G under Traffick, k ∈ {0, N}, yi < xi for any i ∈ {1, ..., k} or

yi < ei,−k for any i ∈ {k + 1, ..., n} is not in any Nash equilibrium.

Proof. Since Theorem 5.1 reveals that yi = xi is the unique dominant strategy for player i

∀i ∈ {1, ..., k}, yi < xi for any i ∈ {1, ..., k} is not in any Nash equilibrium. Also, from

Lemma 5.1.2, we know ui = yi if yi ≤ ei,−k for any i ∈ {k + 1, ..., n}. It means when

21



playing yi < ei,−k, player i can always play y′i = ei,−k to get higher utility. Therefore

yi < ei,−k for any i ∈ {k + 1, ..., n}, is not in any Nash equilibrium either.

Lemma 5.3. For Game G under Traffick, k ∈ {0, N} and k �= n − 1, yi > ei,−k for any

i ∈ {k + 1, ..., n} is not in any Nash equilibrium.

Proof. From Theorem 5.1 and Lemma 5.2, we know a Nash equilibrium exists only if yi =

ei,−(i−1) ∀i ∈ {1, ..., k} and yi ≥ ei,−k for ∀i ∈ {k + 1, ..., n}. Because
n∑

i=1

ui ≤

min

(
O,

n∑
i=1

xi

)
, if ul > el,−k for some l ∈ {k + 1, ..., n}, there must exist some other

m ∈ {k + 1, ..., n} having um < em,−k. Then player m can play y′m = em,−k to make

u′m = em,−k > um which means a Nash equilibrium does not exist. Therefore a Nash

equilibrium exists only if yi ≥ ei,−k and ui = ei,−k ∀i ∈ {k + 1, .., n}.

Given this necessary condition for the existence of a Nash equilibrium, we let Nequal and

Nsmallest respectively denote the set of player i having yi = ei,−k and the set of player i

having yi > ei,−k with the smallest price where i ∈ {k + 1, ..., n}. When Nequal = ∅ or

Nsmallest �= ∅, any player m in Nsmallest or Nequal can play y′m = e+
m,−k to get higher utility

since

O + [y′m]
+
−
∑

j;pj≥p′m

yj +
∑

j;pj<p′m

T

≥
k∑

j=1

ej,−(j−1) +
n∑

j=k+1

ej,−k + [y′m]
+
−
∑

j;pj≥p′m

yj +
∑

j;pj<p′m

T

= [y′m]
+
− y′m + em,−k +

∑
j;pj<p′m

(ej,−k + T ) > [y′m]
+
− y′m + em,−k (5.4)

From Equation (5.4), if y′m > 0, we have

t′m =

⎡
⎣O + [y′m]

+
−
∑

j;pj≥p′m

yj +
∑

j;pj<p′m

T

⎤
⎦

+

> [em,−k]
+ ≥ em,−k (5.5)

If y′m ≤ 0, we have

t′m > −T + [(T + y′m) − (y′m − em,−k)]
+

= −T + (T + em,−k) = em,−k (5.6)
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Therefore u′m = min(y′m, t′m) > em,−k = um. Consequently, a Nash equilibrium does

not exist when Nequal = ∅ or Nsmallest �= ∅. In words, yi > ei,−k for any i ∈ {k + 1, ..., n} is

not in any Nash equilibrium.

Combing Lemma 5.2 and Lemma 5.3, we have verified that under Traffick, any strategy

profile other than (x1, ..., xk, ek+1, ..., en,−k) if k �= n − 1 and
(
x1, ..., xn−1, en,−(n−1) ∼ xn

)
if k = n − 1 cannot be a Nash equilibrium. In words, only (x1, ..., xk, ek+1, ..., en,−k) if

k �= n − 1 and
(
x1, ..., xn−1, en,−(n−1) ∼ xn

)
if k = n − 1 can be a Nash equilibrium. We

therefore check its property and find it a Nash equilibrium.

Theorem 5.2. For Game G under Traffick, k ∈ {0, N} and k �= n − 1, it has the unique

Nash equilibrium, NE k = (x1, ..., xk, ek+1,−k, ..., en,−k).

Proof. Assume Game G under Traffick is at the strategy profile, (x1, ..., xk, ek+1,−k, ..., en,−k).

The corresponding utility profile is also (x1, ..., xk, ek+1,−k, ..., en,−k). For player i, i ∈

{1, ..., k}, if it plays y′i < xi, then u′i = y′i < ui. For player i, i ∈ {k + 1, ..., n}, if

it plays y′i < ei,−k, u′i = y′i < ui; if it plays, y′i > ei,−k, u′i = ei,−k. Consequently,

(x1, ..., xk, ek+1,−k, ..., en,−k) meets the definition of Nash equilibrium. Since there is no other

possible Nash equilibrium, Game G under Traffick, k ∈ {0, N} and k �= n−1, has the unique

Nash equilibrium (x1, ..., xk, ek+1,−k, ..., en,−k).

Theorem 5.3. For Game G under Trafficn−1, it has multiple Nash equilibria,

NEn−1 =
(
x1, ..., xn−1, en,−(n−1) � xn

)
.

Proof. When k = n − 1, it is proved in Theorem 5.1 that player i, i ∈ {1, ..., n − 1},

plays the unique dominant strategy yi = xi. For player n, it is like to play a single-

player game with −
n−1∑
j=1

xj , equivalently en,−(n−1), offered. Player n can play en,−(n−1) ≤

yn ≤ xn such that un = en,−(n−1). Hence G has multiple Nash equilibria, NEn−1 =(
x1, ..., xn−1, en,−(n−1) � xn

)
.

After deriving the Nash equilibrium, we can easily verify that the utility profile at the

Nash equilibrium is always unique.
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Theorem 5.4. For Game G under Traffick, k ∈ {0, N}, it has the unique utility profile,

U ∗
k = (x1, ..., xk, ek+1,−k, ..., en,−k), at the Nash equilibrium NE k.

Proof. It is drawn by substituting all NE ks into the utility functions.

Recall we have set spectrum as utilities for all BSs. In system meaning, the utility

profile at the Nash equilibrium represents the spectrum allocation at the Nash equilibrium.

Theorem 5.4, in words, reveals that our spectrum sharing algorithm always results in the

unique traffic-dependent spectrum allocation at the Nash equilibrium, AR∗ = U ∗
k given

Traffick, k ∈ {0, N}.
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Chapter 6

Properties Attained at Nash Equilibrium

After deriving the Nash equilibrium, we prove that several desirable properties, including

allocative efficiency, Pareto optimality, weighted max-min fairness, and weighted proportional

fairness, are attained at the Nash Equilibrium. Correspondingly, the spectrum allocation,

AR∗, at the Nash equilibrium possesses these properties as well. In the following, we briefly

introduce these properties and give their mathematical definitions in game theory. To conform

with the expressions in our game, we use y and Y instead of s and S to represent the strategy

profile and the strategy space respectively.

Efficiency is one of the key system design issues. Allocative efficiency [12, 13] is an

efficient resource allocation in the sense of maximizing total utilities over all players. It is

regarded as the most optimality since no other allocations can achieve greater social welfare.

Another efficiency named Pareto optimality [12, 14] is defined as an allocation upon which

no player can be made happier (in utility) without making at least one other player less

happy. It is always true that allocative efficiency implies Perato optimality. The mathematical

definitions of allocative efficiency and Pareto optimality are given as below.

Definition 6.1. A resource allocation game is allocatively efficient if the Nash equilibrium is

a solution to the optimization problem

max

n∑
i=1

ui(y) s.t. y ∈ Y
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Definition 6.2. A resource allocation game is Pareto optimal if, y∗ is the Nash equilibrium,

∃y′ �= y
∗, ui(y

′) > ui(y
∗) ⇒ ∃j ∈ N, uj(y

′) < uj(y
∗)

Fairness is another key system design issue. Two kinds of fairness definitions are

considered here. First, we say an allocation satisfies weighted max-min fairness [15, 16] if

it is not possible to increase one player’s weighted utility without simultaneously decreasing

another player’s weighted utility which is already smaller. We say an allocation exhibits

weighted proportional fairness [15, 17] if it maximizes the weighted sum of logarithmic

utilities of all players, or equivalently, it maximizes the product of all players’ utilities with

weights in exponents.

Definition 6.3. A resource allocation game is weighted max-min fair with the weights {wi},

if the Nash equilibrium is a solution to the optimization problem

max min

(
u1(y)

w1
, ...,

un(y)

wn

)
s.t. y ∈ Y

Definition 6.4. A resource allocation game is weighted proportional fair with the weights

{wi}, if the Nash equilibrium is a solution to the optimization problem

max

n∏
i=1

ui(y)wi s.t. y ∈ Y

Remember that we ignore the constant term T for the sake of convenience when setting

spectrum as utilities. Upon the later derivations of weighted max-min fairness and weighted

proportional fairness, we shall replace ui with (T + ui) ∀i ∈ N ; otherwise, the objective

functions will not be correctly characterized.

Deciding the weights is another important issue. It is reasonably to believe that the weight

for each player i is positively proportional to Bi. This is because Bi of player i, mainly

influencing the unit acquisition and protection price and determining the priority to acquire

and to protect the spectrum in system meaning, is the power to increase its utility. We choose
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B̂i = Bi

1
n

n∑
j=1

Bj

, the normalized Bi, to be the weight for player i.

Lastly, according to Lemma 6.1 which shows the range of utility functions, we can

transform the above property-related optimization problems from strategy domain into utility

domain. Consequently, we can prove the properties by verifying that the utility profile at the

Nash equilibrium is a solution to the corresponding optimization problems.

Lemma 6.1. For game G and ∀y ∈ Y , the following statements about utility functions are

always true:

1. −T ≤ ui (y) ≤ xi ∀i ∈ N .

2. −nT ≤
n∑

i=1

ui (y) ≤ min

(
O,

n∑
i=1

xi

)
.

Proof. See Apendix C

6.1 Allocative Efficiency

Theorem 6.1. Game G is allocatively efficient. Equivalently, the utility profile at the Nash

equilibrium is a solution to the optimization problem,

max

n∑
i=1

ui s.t. − T ≤ ui ≤ xi ∀i ∈ N and − nT ≤
n∑

i=1

ui ≤ min

(
O,

n∑
i=1

xi

)

Proof. Recall in Theorem 5.4 that the utility profile under Traffick, k ∈ {0, N}, is U ∗
k =

(x1, ..., xk, ek+1,−k, ..., en,−k). Also, Corollary 5.1.2 shows
k∑

i=1

xi +
n∑

i=k+1

ei,−k =

min

(
O,

n∑
i=1

xi

)
∀k ∈ {0, N}. Therefore we know

n∑
i=1

ui is maximized by U ∗
k ∀k ∈ {0, N}.

Game G is allocatively efficient.

6.2 Pareto Optimality

Theorem 6.2. Game G is Pareto optimal. Equivalently, if, y∗ is the Nash equilibrium,

∃ (u′1, ..., u
′
n) �= (u1(y

∗), ..., un(y∗)) , u′i > ui(y
∗) ⇒ ∃j ∈ N, u′j < uj(y

∗)
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Proof. Since allocative efficiency implies Pareto optimality and Game G is allocatively

efficient, it is Pareto optimal as well.

6.3 Weighted Max-Min Fairness

Theorem 6.3. Game G is weighted max-min fair with the weights
{
B̂i

}
. Equivalently, the

utility profile at the Nash equilibrium is a solution to the optimization problem,

max min

(
T + u1

B̂1

, ...
T + un

B̂n

)

s.t. − T ≤ ui ≤ xi ∀i ∈ N and − nT ≤
n∑

i=1

ui ≤ min

(
O,

n∑
i=1

xi

)

Proof. When Game G is under Traffic0, by substituting U ∗
0 into the objective function and

using Corollary 5.1.1, we derive

T + ui

B̂i

=
T + ei

B̂i

=
T + O

n

1
n

n∑
l=1

Bl

(
1

n

n∑
l=1

Bl

)
= T +

O

n
∀i ∈ N (6.1)

min

(
T + u1

B̂1

, ...,
T + un

B̂n

)
= min

(
T + e1

B̂1

, ...,
T + en

B̂n

)

= min

(
T + u1

B̂1

, ...,
T + un

B̂n

)
= min

(
T +

O

n
, ..., T +

O

n

)
= T +

O

n
(6.2)

Because
n∑

i=1

ei = O, if uj = ej + δj for some player j with δj > 0, there must be some

player m having um = em − δm with δm > 0. Therefore we have

min

(
T + u1

B̂1

, ...
T + un

B̂n

)
= min

(
...,

T + ej + δj

B̂j

, ...,
T + em − δm

B̂m

, ...

)

= min

(
..., T +

O

n
+

δj

B̂j

, ..., T +
O

n
−

δm

B̂m

, ...

)
≤ T +

O

n
−

δm

B̂m

< T +
O

n
(6.3)

Equation (6.3) tells that min

(
T + u1

B̂1

, ...,
T + un

B̂n

)
is maximized by U ∗

0 .
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When Game G is under Traffick where k �= 0, we know, from Corollary 5.1.5,

pk(ek,−(k−1))≥ pj(ej,−k) ∀j ∈ {k + 1, ..., n}. Then p1(x1) ≥ ... ≥ pk(xk) ≥ pk(ek,−(k−1)) ≥

pj(ej,−k) ∀j ∈ {k + 1, ..., n}. It is equivalent to

T + x1

B̂1

≤ ... ≤
T + xk

B̂k

≤
T + ek,−(k−1)

B̂k

≤
T + ej,−k

B̂j

∀j ∈ {k + 1, ..., n} (6.4)

Equation (6.4) reveals that the max value of min(
T + u1

B̂1

, ...,
T + un

B̂n

) is
T + x1

B̂1

and is

reached at u1 = x1. Since u1 = x1 is implied by U ∗
k , k �= 0, min(

T + u1

B̂1

, ...,
T + un

B̂n

) is

maximized by U ∗
k where k �= 0.

In summary, min

(
T + u1

B̂1

, ...
T + un

B̂n

)
is maximized by the utility profile at the Nash

equilibrium and hence Game G is weighted max-min fair.

6.4 Weighted Proportional Fairness

Theorem 6.4. Game G is weighted proportional fair with the weights
{
B̂i

}
. Equivalently,

the utility profile at the Nash equilibrium is a solution to the optimization problem,

max

n∏
i=1

(T + ui)
B̂i s.t. − T ≤ ui ≤ xi ∀i ∈ N and − nT ≤

n∑
i=1

ui ≤ min

(
O,

n∑
i=1

xi

)

Proof. When Game G is under Traffic0, we have, from A.M. ≥ G.M.,

n∏
i=1

(T + ui)
B̂i =

n∏
i=1

(
T + ui

B̂i

)B̂i n∏
i=1

B̂i

B̂i

≤

⎡
⎢⎢⎣

n∑
i=1

B̂i

(
T+ui

B̂i

)
n∑

i=1

B̂i

⎤
⎥⎥⎦

n∑
i=1

B̂i

n∏
i=1

B̂i

B̂i

=

[
1

n

n∑
i=1

(T + ui)

]n n∏
i=1

B̂i

B̂i

=

(
T +

1

n

n∑
i=1

ui

)n n∏
i=1

B̂i

B̂i

≤

(
T +

O

n

)n n∏
i=1

B̂i

B̂i (6.5)

The equality holds iff
T + ui

B̂i

=
T + uj

B̂j

∀i, j ∈ N and
n∑

i=1

ui = O for which U ∗
0 is the
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unique solution. Thus
n∏

i=1

(T + ui)
B̂i is maximized by U ∗

0 .

When Game G is under Traffick, k �= 0, by applying A.M. ≥ G.M. to the term
n∏

i=k+1

(T + ui)
B̂i , we have

n∏
i=1

(T + ui)
B̂i ≤

⎛
⎜⎜⎜⎝T +

O−
k∑

i=1
ui

n−k

1
n−k

n∑
i=k+1

B̂i

⎞
⎟⎟⎟⎠

n∑
i=k+1

B̂i

k∏
i=1

(
T + ui

B̂i

)B̂i n∏
i=1

B̂i

B̂i (6.6)

The equality holds iff
T + ui

B̂i

=
T +

O−
k∑

j=1
uj

n−k

1
n−k

n∑
j=k+1

B̂j

for i ∈ {k + 1, ..., n}.

We denote the right-hand-side term in Equation (6.6) as H (u1, ..., uk) for short. By

differentiating H by uk and rearranging it, we have

∂H

∂uk

=

n∑
i=k

B̂i

n∑
i=k+1

B̂i

⎛
⎜⎜⎜⎝T +

O−
k−1∑
i=1

ui

n−k+1

1
n−k+1

n∑
i=k

B̂i

−
T + uk

B̂k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝T +

O−
k∑

i=1
ui

n−k

1
n−k

n∑
i=k+1

B̂i

⎞
⎟⎟⎟⎠

(
n∑

i=k+1
B̂i−1

)

·

(
T + uk

B̂k

)(B̂k−1) k−1∏
i=1

(
T + ui

B̂i

)B̂i n∏
i=1

B̂i

B̂i (6.7)

From Equation (6.7), we know
∂H

∂uk

|

uk:
T+uk

B̂k
≤

T+

O−
k−1∑
j=1

uj

n−k+1

1
n−k+1

n∑
j=k

B̂j

≥ 0. Therefore H is a non-

decreasing function of uk iff
T + uk

B̂k

≤
T+

O−
k−1∑
j=1

uj

n−k+1

1
n−k+1

n∑
j=k

B̂j

. We continue differentiating H by uk−1

and apply the condition for that H is a non-decreasing function of uk. We can derive H

is a non-decreasing function of uk−1 and uk iff
T + uk−1

ˆBk−1

≤
T+

O−
k−2∑
j=1

uj

n−k+2

1
n−k+2

n∑
j=k−1

B̂j

and
T + uk

B̂k

≤

T+

O−
k−1∑
j=1

uj

n−k+1

1
n−k+1

n∑
j=k

B̂j

. By applying the same procedure iteratively to uk−2, ..., and u1, we can derive H
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is a non-decreasing function of ui ∀i ∈ {1, ..., k} iff
T + ui

B̂i

≤
T+

O−
i−1∑
j=1

uj

n−i+1

1
n−i+1

n∑
j=i

B̂j

∀i ∈ {1, ..., k}.

Then Equation (6.6) along with the above analysis on H becomes

n∏
i=1

(T + ui)
B̂i ≤

⎛
⎜⎜⎜⎝T +

O−
k∑

i=1
ui

n−k

1
n−k

n∑
i=k+1

B̂i

⎞
⎟⎟⎟⎠

n∑
i=k+1

B̂i

k∏
i=1

(
T + ui

B̂i

)B̂i n∏
i=1

B̂i

B̂i

≤

⎛
⎜⎜⎜⎝ T +

−
k∑

i=0
xi

n−k

1
n−k

n∑
i=k+1

B̂i

⎞
⎟⎟⎟⎠

n∑
i=k+1

B̂i

k∏
i=1

(
T + xi

B̂i

)B̂i n∏
i=1

B̂i

B̂i (6.8)

The equality holds iff
T + ui

B̂i

=
T + xi

B̂i

≤
T+

−

i−1∑
j=0

xj

n−i+1

1
n−i+1

n∑
j=i

B̂j

∀i ∈ {1, ..., k} and
T + ui

B̂i

=

T +
−

k∑
j=0

xj

n−k

1
n−k

n∑
j=k+1

B̂j

<
T + xi

B̂i

∀i ∈ {k + 1, ..., n}. Equivalently, the equality holds iff ui =

xi ≤ ei,−(−1) ∀i ∈ {1, ..., k} and ui = ei,−k < xi ∀i ∈ {k + 1, ..., n}, i.e. U ∗
k . Therefore

n∏
i=1

(T + ui)
B̂i is maximized by U ∗

k where k �= n.

In summary,
n∏

i=1

(T + ui)
B̂i is maximized by the utility profile at the Nash equilibrium.

Game G is weighted proportional fair.
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Chapter 7

Strategy-Proof Mechanism - Max Traffic

Declaration

In the previous content, we have derived the Nash equilibrium, the spectrum allocation result,

(i.e. the utility profile at the Nash equilibrium,) and the corresponding properties. If we

omit the process of players’ making acquisition/offering requests but directly adopt the final

spectrum allocation result, the proposed spectrum sharing algorithm can be simplified as the

following spectrum allocation rule with the same pricing (credit-token-frozen) rule.

Definition 7.1. Given the spectrumO of AgentA, the spectrum T , the credit token budgetBi,

and the max traffic requirement xi of each player i as public information, and assuming that

{pi (xi)} is arranged in decreasing order without losing generality, the spectrum allocation

is AR∗ = (x1, ..., xk, ek+1,−k, ..., en,−k) under Traffick, k ∈ {0, N}.

According to this spectrum allocation rule, we design a mechanism M which can be

adopted in the more general case that all players’ max traffic requirements are private

information. In Mechanism M , each player i declares its max traffic requirement, x′i, which

may be different from the true max traffic requirement xi. Given all players’ declarations,

Mechanism M applies the spectrum allocation rule to allocate spectrum. Since now each

player possibly gains more spectrum than its true max traffic requirement, it is reasonable

to add the assumption that when having reached its true max traffic requirement, a player’s

utility is the true max traffic.

32



Mechanism M possesses the property of strategy-proofness [12, 18], that is the truth-

revelation of the max traffic is a dominant-strategy equilibrium.

Definition 7.2. A mechanism is strategy-proof if truth-revelation is a dominant-strategy

equilibrium.

Theorem 7.1. MechanismM is strategy-proof. Equivalently, the strategy profile, (x1, ..., xn),

is a dominant-strategy equilibrium.

Proof. Given any x′−i, we want to prove x′i = xi always results in the highest utility for every

player i under all traffic cases.

Let N = {i} be the sorted player set N such that
{
pi

(
x′i
)}

is in decreasing order. Let

ej,−k, ∀k ∈ {0, N} and ∀j ∈ {k + 1, ..., n}, be the same as ej,−k in Definition 5.1 with {xi}

replaced by
{
x′i
}

. Also, let Traffick, k ∈ {0, N}, denote x′j ≤ ej,−(j−1) ∀j ∈ {1, ..., k} and

x′j > ej,−k ∀j ∈ {k + 1, ..., n}.

Assume that player i now plays x′i = xi and has the m-th priority, i.e. i = m and xi = x′m.

When m ≤ k, we have xi = x′m ≤ em,−(m−1). Correspondingly, ui = xi which is the highest

utility player i can obtain. When m > k, we have xi = x′m > em,−k and ui = em,−k. If player

i plays x′i < em,−k, then u′i = x′i < em,−k = ui; if player i plays x′i ≥ em,−k, then u′i = em,−k.

In words, no other strategy results in higher utility. From the above, x′i = xi results in the

highest utility under all traffic cases and therefore is a dominant strategy of player i.

Because the derivation above is applicable ∀i ∈ N , x′i = xi is a dominant strategy of

every player i and the strategy profile, (x1, ..., xn), is a dominant-strategy equilibrium.

Having Mechanism M be at (x1, ..., xn), the spectrum allocation result is the same as

previous. Thus efficiency and fairness hold. Such a dominant-strategy equilibrium is

nevertheless not unique. In fact, any (x′1, ..., x
′
n) where x′i ≥ xi ∀i ∈ N is also a dominant-

strategy equilibrium. (This is implied in the proof of Theorem 7.1.) Given that Mechanism

M is at any dominant-strategy equilibrium other than (x1, ..., xn), weighted max-min fairness

is the only property attained.

Lastly, the worst performance of Mechanism M is attained when x′i = ∞ ∀i ∈ N , i.e.

each player untruthfully declares that its max traffic is infinity. The corresponding utility
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profile is (min(x1, e1), ..., min(xn, en)).

Theorem 7.2. In MechanismM , (min(x1, e1), ..., min(xn, en)) is the worst utility profile for

all players.

Proof. We continue using the notations in Theorem 7.1. Given
(
x′1, ..., x

′
n

)
is any dominant-

strategy equilibrium, we must have x′i ≥ xi ∀i ∈ N . Assume that
(
x′1, ..., x

′
n

)
is such that

Mechanism M is under Traffick, k �= 0. The allocation is
(
x′1, ..., x

′
k, ek+1,−k, ..., en,−k

)
and

the utility profile is
(
min(x1, x

′
1), ..., min(xk, x

′
k), min(xk+1, ek+1,−k), ..., min(xn, en,−k)

)
.

We notice min(xi, x
′
i) = xi ∀i ∈ {1, ..., k} . Besides, by applying Corollary 5.1.5 to ei,−k

∀i ∈ {k + 1, ..., n}, we have pi(ei) ≥ pi(ei,−1) ≥ ... ≥ pi(ei,−k), or equivalently ei ≤ ... ≤

ei,−k. Thus min(xi, ei) ≤ min(xi, ei,−k) ∀i ∈ {k + 1, ..., n}.

Summing up the above, we derive, ∀k �= 0, (min(x1, e1), ..., min(xn, en)) ≤(
min(x1, x

′
1), ..., min(xk, x

′
k), min(xk+1, ek+1,−k), ..., min(xn, en,−k)

)
. In other words,

(min(x1, e1), ..., min(xn, en)), or equivalently (min(x1, e1), ..., min(xn, en)), is the worst

utility profile.
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Chapter 8

Conclusions

IEEE 802.22 is the first cognitive-radio-based wireless standard. IEEE 802.22 systems,

operating over the licensed TV bands, utilize the spectrum sensing technique and the inter-BS

coexistence mechanism to achieve an effective radio resource sharing with licensed users and

other coexistent IEEE 802.22 devices as well.

We propose an efficient and fair spectrum sharing scheme for dynamic resource renting

and offering (DRRO) and adaptive on demand channel contention (AODCC) in the IEEE

802.22 inter-BS coexistence mechanism. In our spectrum sharing game, all BSs always

reach a Nash equilibrium where the spectrum allocation result is uniquely determined. The

spectrum sharing algorithm is desirable because it achieves efficiency and fairness among all

BSs. The allocation is efficient as allocative efficiency and Pareto optimality are achieved. It

also meets both weighted max-min fair and weighted proportional fair criteria. By adopting

this spectrum allocation result, a strategy-proof mechanism, ensuring efficiency and fairness

at the truth-revealing dominant-strategy equilibrium, is designed to be applied in the more

general case that max traffic requirements are private information.

To further enhance our research, there are still some aspects we need to work on. While

setting the system model, we assume all information is available. Although a solution has

been given for the extended case that the max traffic demands are private information, the

assumption that BSs’ credit token budgets are known by each other may seem a little impractical

yet. It will be our future work to design incentives for BSs to declare their budgets truthfully.
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We also assume every unit of spectrum is equally important for every BS and the credit token

budget is fairly allocated. Accordingly, the utility function of every BS is piecewise linear.

We will try to generalize this assumption by adopting different forms of utility functions,

e.g. an exponential form or a convex form. Furthermore, a common marketplace for all

BSs is considered for simplicity in our work. In order to meet the wide-area purpose of

IEEE 802.22, we can design a multi-market scenario where each BS can choose to join

one or more markets. This will be a very interesting extension. Finally, instead of using

credit tokens, we aim to investigate a monetary-based spectrum allocation mechanism, in

accordance with the proposed efficient and fair spectrum allocation, to apply in more different

resource sharing schemes. With monetary transfer included in utility functions, a unique

truth-revealing dominant-strategy equilibrium is possibly drawn.
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Appendix A

Proof of Lemma 2.1

Proof. Assume that player k is the one satisfying Equation (A.1) with smallest price.

O +

n∑
j=1

[−yj]
+ −

∑
j;pj>pk

[yj]
+

> 0 (A.1)

1) ∀i s.t. pi > pk, we can derive from Equation (A.1) that

O +
n∑

j=1

[−yj ]
+ −

∑
j;pj>pi

[yj]
+ = O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ +

∑
j;pi≥pj>pk

[yj]
+

>
∑

j;pj=pi

[yj]
+ (A.2)

Hence ri ≥ yi, min(yi, ri) = yi, and [yi − ri]
+ = 0. Besides, we also have

∑
j;pj<pi

(
T − [−yj ]

+)− ∑
j;pj>pi

[yj − rj ]
+ =

∑
j;pj<pi

(
T − [−yj ]

+) ≥ 0 (A.3)

O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

= O +
n∑

j=1

[−yj]
+ −

∑
j;pj>pi

[yj ]
+ +

∑
j;pj<pi

(
T − [−yj ]

+)
>
∑

j;pj=pi

[yj]
+ (A.4)

Therefore ci ≥ 0, min([yi − ri]
+

, ci) = 0, ti ≥ yi, and min(yi, ti) = yi. Consequently,

min(yi, ri) + min([yi − ri]
+

, ci) = yi = min(yi, ti) ∀i s.t. pi > pk.
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2) For player k, Equation (A.2) implies that Equation (A.1) has the upper constraint∑
j;pj=pk

[yj]
+, i.e.

∑
j;pj=pk

[yj]
+ ≥ O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+

> 0 (A.5)

From Equation (A.5),

rk =
[yk]

+∑
j;pj=pk

[yj]
+

⎛
⎝O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+

⎞
⎠ (A.6)

[yk − rk]
+ = −

[yk]
+∑

j;pj=pk

[yj]
+

⎛
⎝O +

n∑
j=1

[−yj ]
+ −

∑
j;pj≥pk

[yj]
+

⎞
⎠ (A.7)

ck =
[yk − rk]

+∑
j;pj=pk

[yj − rj ]
+

⎛
⎝ ∑

j;pj<pk

(
T − [−yj ]

+)− ∑
j;pj>pk

[yj − rj ]
+

⎞
⎠

=
[yk − rk]

+∑
j;pj=pk

[yj − rj ]
+

∑
j;pj<pk

(
T − [−yj]

+)

=
[yk]

+∑
j;pj=pk

[yj ]
+

∑
j;pj<pk

(
T − [−yj]

+) (A.8)

If
∑

j;pj<pk

(
T − [−yj]

+)
>

∑
j;pj=pk

[yj − rj]
+, then ck > [yk − rk]

+. and min(yk, rk) +

min([yk − rk]
+

, ck) = yk − [yk − rk]
+ + [yk − rk]

+ = yk. Furthermore, by appplying

Equation (A.7), we can derive that
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O +
∑

j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T

= O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ +

∑
j;pj<pk

(
T − [−yj ]

+)

> O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ +

∑
j;pj=pk

[yj − rj ]
+

= O +
n∑

j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ − O −

n∑
j=1

[−yj ]
+ +

∑
j;pj≥pk

[yj ]
+

=
∑

j;pj=pk

[yj]
+ (A.9)

Consequently, tk ≥ yk and min(yk, rk) + min([yk − rk]
+

, ck) = yk = min(yk, tk)

If
∑

j;pj<pk

(
T − [−yj]

+) ≤ ∑
j;pj=pk

[yj − rj]
+, we have ck ≤ [yk − rk]

+ and

0 < O +
∑

j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T

= O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ +

∑
j;pj<pk

(
T − [−yj]

+)

≤ O +

n∑
j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ +

∑
j;pj=pk

[yj − rj ]
+

= O +
n∑

j=1

[−yj ]
+ −

∑
j;pj>pk

[yj]
+ − O −

n∑
j=1

[−yj]
+ +

∑
j;pj≥pk

[yj]
+

=
∑

j;pj=pk

[yj ]
+ (A.10)

Equation (A.10) tells that tk ≤ yk and min(yk, tk) = tk. Also, from Equation (A.7) and

(A.8),
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min(yk, rk) + min([yk − rk]
+

, ck) = yk − [yk − rk]
+ + ck

= yk +
[yk]

+∑
j;pj=pk

[yj]
+

⎛
⎝O +

n∑
j=1

[−yj ]
+ −

∑
j;pj≥pk

[yj]
+

⎞
⎠+

[yk]
+∑

j;pj=pk

[yj]
+

∑
j;pj<pk

(
T − [−yj]

+)

=
[yk]

+∑
j;pj=pk

[yj]
+

⎛
⎝O +

n∑
j=1

[−yj]
+ −

∑
j;pj>pk

[yj ]
+ +

∑
j;pj<pk

(
T − [−yj ]

+)
⎞
⎠− [−yk]

+

=
[yk]

+∑
j;pj=pk

[yj]
+

⎛
⎝O +

∑
j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T

⎞
⎠− [−yk]

+

= tk = min(yk, tk) (A.11)

From the above, min(yk, rk) + min([yk − rk]
+

, ck) = yk = min(yk, tk).

3) ∀i s.t. pi < pk, we have ri = 0 and [yi − ri]
+ = [yi]

+. Equation (A.7) along with

[yi − ri]
+ = [yi]

+ reveals that

∑
j;pj<pi

(
T − [−yj]

+)− ∑
j;pj>pi

[yj − rj ]
+

=
∑

j;pj<pi

(
T − [−yj]

+)− ∑
j;pk>pj>pi

[yj]
+ −

∑
j;pj=pk

[yj − rj]
+

= O +
n∑

j=1

[−yj ]
+ +

∑
j;pj<pi

(
T − [−yj]

+)− ∑
j;pj>pi

[yj]
+

= O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T (A.12)

Thus ci = ti + [−yi]
+ and

min(yi, ri) + min([yi − ri]
+

, ci) = min(yi, 0) + min([yi]
+

, ti + [−yi]
+)

= − [−yi]
+ + [yi]

+ −
[
[yi]

+ − [−yi]
+ − ti

]+
= yi − [yi − ti]

+

= min(yi, ti) (A.13)

Summing up 1), 2), and 3), min(yi, ri) + min([yi − ri]
+

, ci) = min(yi, ti) ∀i ∈ N .
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Appendix B

Proof of Corollary 5.1

Proof. 1) Starting from Definition 5.1, ∀j ∈ {k + 1, ..., n}

ej,−k =
Bj

1
n−k

n∑
l=k+1

Bl

⎛
⎜⎜⎜⎝
−

k∑
l=0

xl

n − k

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝ Bj

1
n−k

n∑
l=k+1

Bl

− 1

⎞
⎟⎟⎠T

⇔ T + ej,−k =
Bj

1
n−k

n∑
l=k+1

Bl

⎛
⎜⎜⎜⎝T +

−
k∑

l=0

xl

n − k

⎞
⎟⎟⎟⎠

⇔
T + ej,−k

Bj

=
T +

−
k∑

l=0
xl

n−k

1
n−k

n∑
l=k+1

Bl

⇔ pj (ej,−k) =
Bj

T + ej,−k

=

1
n−k

n∑
l=k+1

Bl

T +
−

k∑
l=0

xl

n−k

(B.1)
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2) ∀k ∈ {0, N},

n∑
j=k+1

ej,−k =

n∑
j=k+1

Bj

1
n−k

n∑
l=k+1

Bl

⎛
⎜⎜⎜⎝
−

k∑
l=0

xl

n − k

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝

n∑
j=k+1

Bj

1
n−k

n∑
l=k+1

Bl

− (n − k)

⎞
⎟⎟⎠T

= (n − k)

⎛
⎜⎜⎜⎝
−

k∑
l=0

xl

n − k

⎞
⎟⎟⎟⎠+ [(n − k) − (n − k)]T = −

k∑
l=0

xl (B.2)

Hence
k∑

j=1

xj +

n∑
j=k+1

ej,−k = min

(
O,

n∑
j=1

xj

)
(B.3)

3) xj ≤ ej,−(j−1) is equivalent to

Bj

T + xj

≥
Bj

T + ej,−(j−1)
=

1
n−j+1

n∑
l=j

Bl

T +
−

j−1∑
l=0

xl

n−j+1

(B.4)

From
Bj−1

T + xj−1

≥
Bj

T + xj

and Equation (B.4),

Bj−1

T + xj−1
≥

1
n−j+1

n∑
l=j

Bl

T +
−

j−1∑
l=0

xl

n−j+1

(B.5)

By using the fact that
E

F
≥

G

H
⇒

E

F
≥

E + mG

F + mH
∀F, H and F +mH > 0, we substitute

Bj−1 for E, (T + xj−1) for F , 1
n−j+1

n∑
l=j

Bl for G,

⎛
⎝T +

−
j−1∑
l=0

xl

n−j+1

⎞
⎠ for H and (n− j + 1) for

m and obtain
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Bj−1

T + xj−1

≥

Bj−1 +
n∑

l=j

Bl

T + xj−1 + (n − j + 1)T −
j−1∑
l=0

xl

=

n∑
l=j−1

Bl

(n − j + 2)T −
j−2∑
l=0

xl

=

1
n−j+2

n∑
l=j−1

Bl

T −

j−2∑
l=0

xl

(n−j+2)

(B.6)

It is equivalent to

xj−1 ≤ ej−1,−(j−2) (B.7)

Equation (B.7) holds ∀j ∈ N and therefore implies that xk ≤ ek,−(k−1) ⇔ xj ≤ ej,−(j−1)

∀j ∈ {1, ..., k} and ∀k ∈ N .

4) xk+1 > ek+1,−k is equivalent to

Bk+1

T + xk+1

<
Bk+1

T + ek+1,−k

(B.8)

By using
Bn

T + xn

≤ ... ≤
Bk+2

T + xk+2

≤
Bk+1

T + xk+1

and
Bk+1

T + ek+1,−k

=
Bk+2

T + ek+2,−k

=

...
Bn

T + en,−k

, Equation (B.8) can be extened as

Bn

T + xn

≤ ... ≤
Bk+2

T + xk+2
≤

Bk+1

T + xk+1
<

Bk+1

T + ek+1,−k

=
Bk+2

T + ek+2,−k

= ...
Bn

T + en,−k

(B.9)

Therefore
Bk+1

T + xk+1
<

Bk+1

T + ek+2,−k

, ..., and
Bn

T + xn

<
Bn

T + en,−k

. Equivalently, xj >

ej,−k ∀j ∈ {k + 1, ..., n}.

5) xk ≤ ek,−(k−1) is equivalent to

Bk

T + xk

≥
Bk

T + ek,−(k−1)

=

1
n−k+1

n∑
l=k

Bl

T +
−

k−1∑
l=0

xl

n−k+1

(B.10)

By using the fact that
E

F
≥

G

H
⇒

G

H
≥

mG − E

mH − F
∀F, H and mH−F > 0 , we subtitute
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Bk for E, (T + xk) for F , 1
n−k+1

n∑
l=k

Bl for G,

⎛
⎝T +

−
k−1∑
l=0

xl

n−k+1

⎞
⎠ for H , and (n − k + 1) for m

and obtain that

1
n−k+1

n∑
l=k

Bl

T +
−

k−1∑
l=0

n−k+1

≥

n∑
l=k

Bl − Bk

(n − k + 1)T −
k−1∑
l=0

xl − T − xk

=

n∑
l=k−1

Bl

(n − k)T −
k∑

l=0

xl

=

1
n−k

n∑
l=k−1

Bl

T − 1
n−k

k∑
l=0

xl

(B.11)

In words, pk(ek,−(k−1)) ≥ pj(ej,−k) ∀j ∈ {k + 1, ..., n}.
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Appendix C

Proof of Lemma 6.1

Proof. 1) It is the result directly from the setting of utility functions.

2) Notice that −nT ≤
n∑

i=1

yi ≤
n∑

i=1

xi. If
n∑

i=1

yi ≤ min

(
O,

n∑
i=1

xi

)
, then ∀i ∈ N ,

O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

= O +
∑

j;pj=pi

[yj]
+ −

n∑
j=1

yj +
∑

j;pj<pi

(T + yj) ≥
∑

j;pj=pi

[yj]
+ (C.1)

Equation (C.1) implies that ti ≥ yi ∀i ∈ N . Therefore

−nT ≤
n∑

i=1

ui =
n∑

i=1

min(yi, ti) =
n∑

i=1

yi ≤ min

(
O,

n∑
i=1

xi

)
. (C.2)

If O <
n∑

i=1

yi ≤
n∑

i=1

xi, we let player k be the one satisfying Equation (C.3) with smallest

price.

O +
∑

j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T > −
∑

j;pj=pk

(
T − [−yj]

+)
⇔ O + −

∑
j;pj=pk

(
T − [−yj ]

+)− ∑
j;pj>pk

yj +
∑

j;pj≤pk

T > −
∑

j;pj=pk

(
T − [−yj ]

+)
⇔ O + −

∑
j;pj>pk

yj +
∑

j;pj≤pk

T > 0 (C.3)

In the following, we want to derive the relationship between ti and yi ∀i ∈ N . First, we
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easily know ti = −T ∀i s.t. pi < pk. Besides, derived from Equation (C.3), ∀i s.t. pi > pk,

O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj≥pi

yj +
∑

j;pj<pi

T

= O +
∑

j;pj=pi

[yj]
+ −

∑
j;pj>pk

yj +
∑

j;pj≤pk

T +
∑

j;pi>pj>pk

(T + yj) >
∑

j;pj=pi

[yj]
+ (C.4)

Therefore ti ≥ yi ∀i s.t. pi > pk. We turn back to derive tk for player k. If
∑

j;pj=pk

[yj]
+ ≥

O +
∑

j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T > 0 (the left sign of the inequality is implied by the

lower constraint of Equation (C.4),)

tk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk∑
j;pj=pk

[yj ]
+

(
O +

∑
j;pj=pk

[yj]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T

)
≤ yk if yk > 0

yk if yk ≤ 0

(C.5)

If 0 ≥ O +
∑

j;pj=pk

[yj ]
+ −

∑
j;pj≥pk

yj +
∑

j;pj<pk

T > −
∑

j;pj=pk

(
T − [−yj ]

+),

tk = − [−yk]
+ − T−[−yk]+∑

j;pj=pk

(T−[−yj ]
+)

(
−O −

∑
j;pj=pk

[yj]
+ +

∑
j;pj≥pk

yj −
∑

j;pj<pk

T

)
≤ yk

(C.6)

From Equation (C.5) and (C.6), we know tk ≤ yk and

∑
i;pi=pk

ti = O −
∑

i;pi>pk

yi +
∑

i;pi<pk

T (C.7)

Finally, from ti = −T ∀i s.t. pi < pk, ti ≥ yi ∀i s.t. pi > pk, tk ≤ yk, and Equation (C.7),

n∑
i=1

ui =

n∑
i=1

min(yi, ti) =
∑

i;pi>pk

yi +
∑

i;pi=pk

ti −
∑

i;pi<pk

T

=
∑

i;pi>pk

yi + O −
∑

i;pi>pk

yi +
∑

i;pi<pk

T −
∑

i;pi<pk

T = O = min

(
O,

n∑
i=1

xi

)
(C.8)

In summary, −nT ≤
n∑

i=1

ui ≤ min

(
O,

n∑
i=1

xi

)
.
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