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Abstract

Linearity is one of the most important characteristics for evaluation of the accuracy in
assay validation. The current estimation method for evaluation of the linearity
recommended by the Clinical Laboratory Standard Institute (CLSI) guideline EP6-A
(Tholen et al., 2003) directly compares the point estimates with the pre-specified
allowable limit and completely ignores the sampling error of the point estimates. An
alternative method for evaluation of linearity proposed by Kroll, et al. (Kroll, 2000)
considers the statistical testing procedure based on the average deviation from linearity
(ADL). However this procedure is based on the inappropriate formulation of hypothesis
for evaluation of the linearity. ansequently,.' thg‘ type 1 error rates of both current
methods may be inflated for<inference, of _,l.inearity. ‘Therefore, we propose a two

Ry

one-sided test (TOST) procedure and ;ﬂéb"'rrected Kroll’s procedure as the more
appropriate procedure for assessﬁ_;e_:nt ;o% liﬁé-érity; On‘tﬂe other hand, for the purpose to
overcome the issue raised by the unknown. nuisa;ce parameters of the distribution of
ADL, the GPQ-based ADL procedure is also proposed.

In addition, we introduced two new alternative measures SSDL and CVDL which are
defined as the sum of square of deviations from linearity and the deviations scaled by
the variability, respectively, as the aggregate criteria for assessment of linearity. Unlike
ADL and SSDL, CVDL can consider linearity and repeatability of an assay method
simultaneously. The relationship among the dofferent aggregate criteria is discussed.
The simulation studies are conducted to empirically investigate the size and power

among the current and proposed methods. The simulation results show that all proposed

methods can adequately control size better than the current methods. Numerical
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examples are also used to illustrate the application of the proposed methods.

Keyword: Allowable Limit, Linearity, Quantitative analytical laboratory methods,

Generalized Pivotal Quantity.
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Chapter 1

Introduction

In validation of quantitative analytical laboratory procedures, one of the most
important characteristics of the accuracy is the linearity. The ICH Q2A guideline (ICH
Expert Working Group, 1995), defines the linearity of an analytical method as its ability
(within a given range) to obtain the test results, which are directly proportional to the
concentration (amount) of the analyte in the test sample. The objective for evaluation of
linearity is to validate existence of a n_lathemat.ically verified straight-line relationship
between the observed values and the fr&éﬁ;@éﬁcentrations or activities of the analyte.
Linearity represents the simplest mathémaf‘i‘cal relationship and it also permits simple
and easy interpolations of resuité _f(:)r clinica_l practitioners. The approved Clinical
Laboratory Standard Institute (CLSI) ‘guideline EP6-A (Tholen et al.,, 2003)
recommends that at least five solutions of different concentration levels across the
anticipated range be included in an experiment for evaluation of linearity. At each
concentration level, two to 4 replicates should be run. With respect to EP6-A, if the
difference between the best-fit nonlinear polynomial curve and simple linear regression
equation at each concentration is smaller than some pre-defined allowable bias &, the
linearity then can be claimed. For instance, in Figure 1.1, it shows that the linearity is
claimed because the magnitude of deviation from linear regression at all concentrations
for the best-fitted model, i.e., the quadratic model in the figure, are less than J, while

the linearity cannot be claimed in Figure 1.2 since the magnitude of deviation from



linear regression at concentration S2, S3 and S4 for the best-fitted model are greater
than . On the other hand, Kroll, et al. (Kroll, 2000) proposes a statistical testing
procedure based on the average deviation from linearity (ADL) which is defined as the
square root of the average squared distances between the fitted concentrations of the
best fit polynomial curve and the simple regression equation at each solution level,
standardized by mean concentration. The linearity is concluded at the oo nominal level if
the observed value of the ADL is smaller than the upper o quantile of the sampling
distribution of the observed ADL.

However, the procedure for assessment of linearity based on ADL proposed by Kroll,
et al. (Kroll, 2000) is derived from formulating of the hypothesis for proving the
linearity as the null hypothesis. On the other h;ﬁd, the method for evaluation of linearity
recommended by EP6-A directly Compares the point.estimates with the pre-specified
allowable limit and completely ignor_e§ t;";'g-s'-émpling errg of the point estimates. As
results, the type I error rate may .b_e_ inﬂaited-a:l-nd tIHe pr'obébility of the incorrect claims of

linearity is not
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adequately controlled at the nominal level. Therefore, in our research, we propose a two
one-sided test (TOST) procedure and a corrected Kroll’s procedure for assessing the
linearity in validation of quantitative analytical laboratory procedures for solving these
shortcomings of assessment procedures proposed by CLSI guideline EP6-A and Kroll’s
ADL method, respectively.

In addition to the inappropriate statistical hypothesis, the sampling distribution of the
observed ADL of the Kroll’s method is a function of a non-central chi-square
distribution. It follows that the Kroll’s method suggests using the estimate of the
unknown non-centrality parameter as the true parameter. Hence, the wvariability
associated with the estimated non-centrality parameter is completely ignored in the
Kroll’s procedure. Tsui and Weerahandi (Wéérahandi, 1993) propose the generalized
confidence interval based on the/generalized. pivetal, quantity (GPQ) for the exact
statistical inference. The method propéimd by Tsui and Weerahandi (Tsui and
Weerahandi, 1989; Weerahand.i,f _1 99:3i) can e_liminaté the unknown parameters by
replacing them using the appropriate random Variaiﬂes. As a result, we propose to apply
the concept of generalized confidence interval based on the generalized pivotal quantity
to overcome the issue of unknown non-centrality parameter of the distribution of ADL.
The linearity in assay validation can be concluded if the 100(1 - o) % upper generalized
confidence limit of ADL is less than pre-specified limit.

In addition, we also propose two new measures for assessment of linearity in assay
validation. As mentioned above, the approved CLSI EP6-A recommends that for
proving the linearity, the deviations from linearity, defined as the difference between the

best-fitted nonlinear polynomial curve and simple linear regression equation, be smaller

than some pre-defined allowable bias, say J, at all concentrations. Therefore, we



propose the sum of squares of deviations from linearity (SSDL) which is formulated
based on the nature of the criterion proposed by CLSI EP6-A guideline as an alternative
metric for evaluation of the linearity in assay validation. On the other hand, the
repeatability is also a important characteristic which stands for reliability of an assay
method which is defined as the ability of a measuring system/instrument to provide
closely similar indications for repeated applications of the same measurand under the
same conditions of measurement. However, both ADL and SSDL do not take the
experimental variability into consideration. Therefore, we proposed the coefficient of
variation of the deviations from linearity (CVDL) which is the scaled deviation scaled
by the variability of the best-fitted model as an alternative measure for assessment of
linearity.

In the next chapter, the experiment designs for cvaluation of linearity and assessment
procedure recommended by the approve’d..é'f:-s.'l. guideline EP6-A (Tholen et al., 2003) is
introduced first. The assessmert p_roc:ecliure';:prqf)osed By the EP6-A guideline (Tholen
et al., 2003) and Kroll et al. (Kroll; 20_00).a£e then reviewed, respectively. The
shortcomings of these two methods are highlighted. Various measures for assessing
linearity based on disaggregate criterion and aggregate criterion are introduced in
Chapter 3. Their corresponding statistical hypotheses are also provided. In Chapter 4,
the proposed TOST and corrected Kroll’s method to overcome the shortcomings of
CLSI EP6-A and the current Kroll’s method are introduced. The concept of GPQ and
generalized confidence interval developed by Tsui and Weerahandi (Tsui and
Weerahandi, 1989; Weerahandi, 1993) is introduced in Chapter 5. The GPQ-based ADL
approach derived from the method of Tsui and Weerahandi (Tsui and Weerahandi, 1989;
Weerahandi, 1993) for overcoming the issue of the unknown parameter of the
distribution of ADL is then proposed. In Chapter 6 and 7, we propose two new

6



measures of SSDL and CVDL for assessment of linearity. The relationship and
comparison among the introduced aggregate criteria are addressed in Chapter 8.

The results of the simulation studies to compare the empirical size and power
between the current methods and proposed methods are summarized in each chapter.
All simulation programs were written by Compaq Visual Fortran Professional Edition
6.6.0 under Microsoft Window operation system of the IBM compatible personal
computer. The numerical examples are also provided to introduce the implementation of

each proposed method. The final concluding remarks are provided in Chapter 9.
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Chapter 2

Literature Review

2.1 Experiment Design

The approved CLSI guideline EP6-A (Tholen et al., 2003) recommends that the
experiment for linearity assessment should be conducted at least five solutions of
different concentrations run at least in duplicates. Let Y;; be the test result of replicate j
at concentration X;, where j =.1,..5R; i=1,...,£. The ‘approved CLSI guideline EP6-A

considers the following linear, “quadratic, and cubic models fitting the data obtained

1

from the experiment:

- = I-.;HE

Linear (First order) % A\ },LLi. =q A BiX;

Quadratic (Second-order polynomial). uQi. =0+ B,X, +B,X;

or (2.1.1)
Cubic (Third-order polynomial) e =o +B X, + BX + BX;

where Upi, Moi, and ¢ are the predicted mean of the corresponding models and
o, (xm;B'l, B;, [31,[32, [32, and [33 are the intercepts, regression coefficients for the
corresponding models in (2.1.1). In what follows all assumptions for fitting the
best-fitted model specified in the approved CLSI guideline EP6-A are satisfied and we

use the definition of the best-fitted model recommended by the EP6-A (Tholen et al.,

2003). The best-fit model is the model such that lack-of-fit is not statistically significant



and the repeatability meets the manufacturer’s claim. In addition, for the purpose of
illustration, we also assume the random error is assumed to be approximately constant
rather proportional in the range of concentrations considered in the experiment.

The spirit of the EP6-A guideline (Tholen et al., 2003) is to determine the
concentrations(s) where an assay method is not linear and the extent of the nonlinearity
at that level. As addressed in the guideline “The guideline emphasizes the necessity that
each user establishes his or her requirements for linearity, or the allowable error due to
nonlinearity. It also places less importance on global tests such as lack-of-fit test for
linearity across the tested range. Global tests merely indicate that statistically significant
nonlinearity exists; they do not show where that nonlinearity is, nor do they show the
magnitude of the error.”, therefore, even if the:best-fitted model is a nonlinear model, it
does not necessarily imply thatithe assay can.not'be concluded linear. Based on the
above concept, the guideline proposes ’tl..lg;foll.owing rule in instead of global test for
assessing linearity: if the best-ﬁttfe_d m(l)delji:s the lineaf model over the some range of
concentrations employed in the experiment, then tile assay method can be concluded to
be linear over the some range of concentrations. However, if the best-fitted model is not
linear, the linearity of the analytical procedure can still be claimed if the magnitude of
deviations from the linearity at each concentration is within some pre-specified

allowable limit of &y as showed in Figure 1.1.

2.2 Evaluation Procedure of CLSI Guideline EP6-A

Based on the suggested experiment design in Section 2.1, CLSI guideline EP6-A
(Tholen et al., 2003) proposes the following procedure for assessment of the linearity in

assay validation. Let the difference in predicted means between the best-fit nonlinear



and linear model Up; - pri which represents a measure for the degree of the deviation
from linearity at each concentration level. The hypothesis for evaluation of linearity can

be formulated as

H,: |ul,i - p,tu| > 0, vs. H:: |ul,i - ].lLi| <39,, foralli=1,...,L. (2.2.1)

Let Yr and Yu be the least squared (LS) estimators of the predicted mean of the

best-fit and linear models, respectively, where

Yi=a+bX, and

Pi =

~ a +b,X, +b,X’, if the best-fitted model is quadratic,
a’ +b, X, +b,X’ +b,X, if the best-fitted model is cubic;

and a,a’,a ;b,b,b ;b,,b,,and . b,are-the' LS estimators of the intercepts,

regression coefficients for the corresponding models, in(2.1.1).

According to the approved CLSI EP6-A gé'gielme (Tholen et al., 2003), the linearity of

I

the proposed analytical method ¢can be coneluded if

‘S?Pi ~ Yu|<s, ,fori=1,.. Lo T ) (2.2.2)

This method is referred to as the estimation method because it only considers the
estimators for evaluation of linearity. The estimation method completely ignores the
variability and distribution associated with the estimators. Therefore, it also may inflate

the type I error rate in assessment of linearity.

2.3 Uncorrected Kroll’s Procedure

Kroll, et al. (Kroll, 2000) considers the average deviation from linearity (ADL) for

assessment of linearity. The ADL is defined as

10



L
\/Z(Hpi - I’LLi)z/L
0=ADL = 1! , (2.3.1)
1)

where U is the population mean concentration for all solutions of the assay.

Since ADL is a function of standardized sum of squares of the differences in the
predicted means between the best-fitted and linear models, it is an aggregate criterion.
Therefore, the hypothesis for evaluation of linearity based on ADL proposed by Kroll, et
al. (Kroll, 2000) is given as

Hy: 8 <0p vs. Ha: 6> 6, (2.3.2)
where 0y is the maximum allowable average deviation from linearity. 0y is usually
presented as percent. Kroll, et al. (Kiroll, 2000).refer.it to as percent bound and suggest
5% as a reasonable cutoff for most r\elevant clinieal.applications.

An estimator of ADL suggested by Kroll,"érﬁ!.f_ (Kroll,|2000) is given as

il

R . H
\/Z(YPi -Yu)’/L 4 || .

o= Y , S “& 233
Y : o (23.3)

where X is the observed mean concentration for all solutions of the assay.

L ~ ~
At 6 = 0, Z(YPi - Y1)’ follows a non-central chi-square distribution with degrees
i=1

of freedom d -1, and non-centrality parameter LJ0;/(c/n)*, where d is the degrees of

freedom for regression of the best-fitted model and 67 is the variance of residuals under
the best-fitted model. The decision rule for concluding that the assay is linear at the 5%

significance level if

6 <2 [doos (2.3.4)
pvV LI

where qg s is the 95t percentile of a non-central chi-square distribution with degrees of

11



freedom d -1 and non-centrality parameter LJ0/(c/n)*. We refer this method to as the

uncorrected Kroll method.

The method proposed by Kroll, et al. (Kroll, 2000) has two shortcomings. The
hypothesis for proving linearity is formulated as the null hypothesis. When Equation
(2.3.4) is satisfied, the only conclusion is that the null hypothesis is not rejected and this
does not imply that the linearity of the assay is proved. On the other hand, the critical

value in (2.3.4) contains the unknown parameters L and ¢ that need to be estimated

from the data. Kroll, et al. (Kroll, 2000) suggested to estimate |l by i, the observed
mean concentration for all solutions of the assay and ¢ by the square root of residual
mean square obtained the best-fitted model.. Consequently, the variability associated
with residual mean square is not considered iﬁ ¢valuation of linearity by Eq. (2.3.4).
Because of these two shortcomings, thé.,rrjl_e}_h_dd.based on ADL proposed by Kroll, et al.

may not adequately control the type I err(;t"_rate_at the.nominal level for evaluation of

linearity.

2.4 Summary

As we introduced as above, both the current estimation method of CLSI EP6-A
guideline and uncorrected Kroll’s method for linearity assessment in assay validation
will inflate the type I error. In particular, the uncorrected Kroll method will also
conclude the linearity incorrectly because of the formulation of the incorrect hypothesis
and corresponding rejection rule. In Chapter 3, we will introduce various measures for
assessing linearity based on the aggregate criterion and disaggregate criterion which
will be discussed and compared in our research. In addition to the statistical testing
procedures corresponded to the new proposed measures, the two new methods for

12



improving the shortcoming of the current methods in this chapter will also be proposed
in Chapter 3. The comparison of their performances in empirical sizes and powers are

made by the simulation study.

13



Chapter 3

Criterion for Assessing Linearity

In this chapter, we summarize the measures for assessing linearity based on the
disaggregate criterion and aggregate criterion which are reviewed and proposed in our
research. Their corresponding statistical hypotheses are also introduced. In addition, the
discussion for difference of the disaggregate criterion and aggregate criterion on the

impact of their performance of assessmentlinearity are also addressed .

3.1 Disaggregate Criterion\. /-

—

As we introduced in Section 2.2 of Chaptef"2, following the experiment recommended
by EP6-A (Tholen et al., 2003), tfh.e gﬁidelir}e proposes that even though the best-fitted
model is not linear, the linearity of the analytical procedure can be claimed if the
magnitude of deviations from the linearity at each concentration is within some

pre-specified allowable limit of 6,. The hypothesis corresponded to the proposed

evaluation rule can be formulated as

H,: |ul,i - uLi| > 0, vs. H:: |ul,i - uLi| <9,, foralli=1,...,L. (3.1.1)

14



where the difference in predicted means between the best-fit nonlinear and linear model

Wy — W, represents a measure for the degree of the deviation from linearity at each

concentration level. Since hypothesis (3.1.1) requires all differences in the predicted
means between the best-fitting and linear models be within the pre-specified allowable

limit, it is a disaggregate criterion.

3.2 Aggregate Criterion

3.2.1 Average Deviation from Linearity (ADL)

Recall the definition of ADL propesed by Kroll et al. (Kroll, 2000) defined as the

following:

L : # -.l‘l:’. d .
T A
0=ADL = i=1 B [ ’E | . oL

7)

where U is the population mean concenttation for ail solutions of the assay.
ADL is a scaled deviation defined as the square root of sum of squares of the difference
in predicted means between the best-fitted and linear models. The correct hypothesis for
evaluation of linearity based on ADL proposed by Kroll, et al. (Kroll, 2000) is given as
Ho: 6 >0 vs. Ha: 6 <0, (3.2.1.2)
where 0y is the maximum allowable average deviation from linearity.

Unlike the evaluation rule of EP6-A which requires p,, —p,, be within some
pre-specified allowable limit of 6, at all concentration levels, Hypothesis (3.2.1.2)

only requires an summarized measure ADL be less than §,. Since ADL is a function of

standardized sum of squares of the differences in the predicted means between the

15



best-fitted and linear models, it is an aggregate criterion.

3.2.2 Sum of Squares of Deviations from Linearity (SSDL)

According to the approved CLSI guideline EP6-A (Tholen et al., 2003), the linearity
of the proposed analytical method can be concluded if the deviation from linearity is

smaller than some pre-specified limit &y at all concentrations:
M — M| <8 ,fori=1,..., L.

As a result, a natural aggregate metric for assessment of assay linearity is the sum of

squares of deviations from linearity (SSDL) denoted by t defined as

L
1= (Mp- 1) (3.2.2.1)
i=1 i

It follows that the hypotheses for/proving the assay linearity can be formulated based on

[ =
"
2
3

SSDL as follows:

) |
Hy: D (pi- 1y)” 2 L35 vs. Hg Z(upl uh) <L (3.2.2.2)
=1

is] v

or equivalently

L L
Hy: Z(Hpi' ) /L 2 85 vs. Hy: Z(Hpi' ) /L <8

i=1 i=1
Similar to ADL, SSDL is an aggregate criterion but formulated directly by the nature of
disaggregate criterion proposed by CLSI guideline as the form of model-by-dilution
interaction. However, the corresponding statistical hypothesis is not to detect existence
of the model-by-dilution interaction but rather to verify whether the model-by-dilution

interaction is within some pre-specified allowable upper limit.

3.2.3 Coefficient of Variation of the Deviations from Linearity (CVDL)

16



The CVDL is the scaled deviations scaled by o, the variability or repeatability of the
best-fitted model for assessment of linearity defined as the square root of the average

sum of squares of the scaled deviations by o:

L L
\/Z (Kp; - HLi)Z/L \/Z (Kp; - HLi)z/L
n=CVDL = 1 =t . (3.2.3.1)

c Jo?

The hypotheses for evaluation of linearity is given for CVDL as:

Ho: 1 =1 vs. Ha: M <Mo. (3.2.3.2)

where 1 is the allowable limit of CVDL.
L

As Z(“Pi - uLi)2 is also the component of CVDL for assessment of linearity, CVDL
i=1

is an aggregate criterion. Moreover; € VDL cofitains-not only the information of the

deviation from the linearity but also thé ',relpga_tat;ility expressed by the residual mean

[ =
= =

square obtained from the best-fitted moq_ielﬁg'__ ;

3.3 Summary

As we introduced, the disaggregate criterion proposed by CLSI EP6-A guideline

(Tholen et al., 2003) requires W, —,; to be within some pre-specified allowable limit

at all concentration levels, while the aggregate criteria of ADL, SSDL and CVDL only

L
require a summary measure of Z(“Pi - ;,LLi)2 either scaled by ¢, p or to be within
i=1

their corresponding allowable limit. As a result, the evaluation based a disaggregate

criterion is more conservative than an aggregate criterion since it requires an

L
intersection-union test. In addition, Z(“Pi - HLi)Z is actually the model-by-dilution
i=1

17



interaction. However, unlike the traditional hypothesis to test the existence of the
interaction, our goal is to test if the magnitude of the interaction is within the allowable
bound. In the next few chapters, the statistical testing procedures will be proposed for
assessing linearity based on the disaggregate criterion and aggregate criterion
introduced in this chapter. The comparison of the proposed methods and current

methods will also be performed via the simulation studies and numerical examples.
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Chapter 4
TOST Procedure and Corrected

Kroll’s Method

In this chapter, we propose the an one-sided tests procedure (TOST) and the corrected
Kroll’s method which are more suitable methods for assessment of linearity by
improving the shortcomings of the current methods. The proposed TOST procedure is
the method correspondeding to the/ estimation.method of EP6-A (Tholen et al., 2003)

which ignore the variability of the estimatots; while the corrected Kroll’s method is

o~y

used to correct the inappropriate statistical’hypothesis of the uncorrected Kroll method

proposed by Kroll et al. (Kroll, 2000)."

4.1 Two One-sided Test Procedure

With respect to the interval hypothesis in (2.2.1), it can also be decomposed into two
sets of one-sided hypotheses as,
Hop: Mp - My < -8, vs. Hyyp iy - 1y > -9, foralli=1,..., L,
and (4.1.1)

Hoio: Bpi - 1y >0, vs. Hypt by - 1y <9, foralli=1,..., L.

An unbiased estimator of Lp; - LL; is the LS estimator ?Pi - ?Li ,1=1,..,L. Define
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X, =(1,X),
_|(,X,X,), if the best-fitted model is quadratic, and
X, X,,X,), if the best-fitted model is cubic,

P

where 1 is LIx1 vector of 1s, X =(X;), Xo=(X’), and X3=( X} ), and J is the number of
replicates.

An unbiased estimator of the variance of Yr - Y is given as

~2 ~2
Gdi = W, Oe,

~2
where w is the ith diagonal element of matrix WW’, Ge is the residual mean
square obtained from the best-fited model with degrees of freedom LJ-d-1,
W=W,-W, , W, and W, are the projection matrices corresponding to the column

spaces spanned by the design matriées of the best—fitted and linear models, respectively,
ie, W, =X,(X;X;) "' X, and | W, f ﬁggz_&j;xL)l X .

It follows that the 100(1 - 20t)% 'conﬁdénceéhteﬁal for .]vlpi - Wi is given as

(Yei—Yi) £ t, 0,00, =1,....Lp 3 (4.1.2)
where t, ;. 1s the upper o percentile of a central distribution with degree of freedom
of LJ-d-1.

The linearity of an analytical method can be concluded at the o significance level if the
100(1-20)% confidence interval for pp; - Ui is completely contained within the
pre-specified allowable limit of &, at each concentration level, I=1,...,L. This method is
referred to as the two one-sided tests (TOST) procedure which the statistical testing

procedure is proposed instead f the estimation method of EP6-A.
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4.2 Corrected Kroll’s Method

The main drawback of the method for evaluation of linearity proposed by Kroll, et al.
(Kroll, 2000) is the incorrect formulation of the hypotheses. We suggest the hypothesis
for assessment of linearity based on ADL should be formulated as follows:

Ho: 6> 0¢ vs. H,: 6 < 0,. (4.2.1)
where 0 is the allowable margin of ADL for linearity.
Consequently, the linearity of an analytical procedure is concluded at the 5%

significance level if

6< 2, [Qoos (4.2.2)
p\V L)

where g5 is the 5t percentile’ of 4 nen-centralichi-square distribution with degrees of

freedom d-1 and non-centrality paraméteﬁ,.Ljeé/(G/i)z. This method is referred to as

a4
| |

the corrected Kroll method.

4.3 Simulation Study

We conduct a simulation study to compare the empirical sizes and powers of the
uncorrected Kroll method, the corrected Kroll method, the estimation method of EP6-A
and two one-sided tests procedures. Following the specification of the experiment
designs for evaluation of linearity, the number of solutions (or dilutions) of different
concentrations is set to be 5 or 7 and the number of replications at each concentration is
2,3, or4.

Throughout the simulation, the allowable margin of linearity based on ADL, 0y, is

specified as 0.05 while the margin for the estimation and TOST procedures, d, is
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specified as 0.2. There are two types of comparison of size. The first type is to compare
the size between the uncorrected Kroll with corrected Kroll methods for which the data
were generated at the value of 0.05 for ADL as recommended by Kroll, et al. (Kroll,
2000). The second type is to compare the size between the estimation method suggested
in the approved CLSI guideline and the TOST procedure for which the data were
generated with the true difference, ip; - [Lc; at some solutions being either 0.2 or -0.2. In
addition, standard deviation of normal random error was specified as 0.1 and 0.2. Table
4.3.1 provides the specifications of the values of parameters in the simulation for
evaluation of size. For each of 12 combinations, five thousand (5,000) random samples
are generated. For the 5% nominal significance level, a simulation study with 5,000
random samples implies that 95 percent of the empirical sizes evaluated at the
equivalence limits will be within /0.04396 and, 0.05604 if the proposed methods can
adequately control the size at the nominal.. ];%/el 0f 0.05. In addition, the specifications of
parameters for investigation of ﬁqyyer are glven Tﬁble 4..3.2.

Table 4.3.3 presents the results of the émpirieal é:izes. For the comparison between the
uncorrected Kroll and the correct Kroll methods, all empirical sizes of the uncorrected
Kroll method are above 0.92. On the other hand, the empirical size of the corrected
Kroll method ranges from 0.0516 to 0.0780. Only 8.33% (1/12) of the empirical sizes of
the corrected Kroll method are within 0.04395 and 0.05604. The reason for the
extremely high empirical size of the uncorrected Kroll method is from incorrect
formulation of hypothesis for proving the linearity of the analytical methods. The type I
error with respect to proving the linearity is the error that the analytical method is
claimed to be linear but in fact it is not. Therefore, the empirical size of the uncorrected

Kroll method at the 5% nominal level should be close to 95%. On the contrary, the
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empirical size of the corrected Kroll method should be close to 5% at the 5% nominal
level. However, one needs to estimate the non-central parameters for non-central 7’
distribution of the observed ADL. In addition, the critical value in Eq. (4.2.2) also
contains an estimator X . Therefore, both the uncorrected and corrected Kroll methods
ignore the variability of the estimators in the non-central parameters and critical value.
As a result, although the empirical size of the corrected Kroll method is close to 0.05, it
is still inflated. The empirical sizes of the estimation method and TOST procedure for
the same specifications are also provided in Table 4.3.3. From Table 4.3.1, when the true
ADL is 0.05, upi - Uci at some solutions is either greater than 0.2 or smaller -0.2. It
follows that all empirical sizes of the TOST procedure are less than 0.02. However, on
the contrary, the empirical size of estimation.r.'nethod suggested in the approved CLSI
guideline EP6-A can reach as high/as 0:30 ever_l-when the differences in means between
the best fitted curve and the linear regres;%ﬁ -"equation are outside the margin of (-0.2,
0.2) at three of the five solutioné. R : |

For the comparison between the estimation me;t.hod in the approved CLSI guideline
EP6-A and TOST procedure, the empirical sizes of the TOST procedure ranges from
0.0440 to 0.0564. Only 8.33% of the empirical sizes (1/12) are not included in (0.04395,
0.05604). The one outside (0.04396, 0.05604) has the empirical size of 0.0564, which is
just 0.0036 above 0.05604. However, the range of the empirical sizes of the estimation
method is from 0.4930 to 0.5066. Recall that the estimation method suggested in the
approved CLSI guideline EP6-A (Tholen et al., 2003) ignores the variation of the
estimates of Up; - L. When pj - Uciis equal to either 0.2 or -0.2 at some solutions, and
then under the normal assumption, the size should be equal to 0.5 as confirmed by the

empirical sizes of the simulation.
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Table 4.3.1 Specifications of parameters for size (Uncorrected Kroll vs. Corrected

Kroll and Estimation Method vs. TOST)

No. of
Type of Solution True Solution
Comparisons Levels ADL Level Hpi - My

True

Uncorrected Kroll vs.
Corrected Kroll
5 0.05 -0.23905
0.11952
0.23905
0.11952
-0.23905
-0.28868
0.00000
0.17321
0.23094
0.17321
-0.00000
-0.28868

7 0.05

N NN R WD~ OB R WD —

Estimation Method vs. -\ 1Y
5|5 001656

-0.20000
0.10000
0.20000
0.10000

-0.20000

-0.20000
0.00000
0.12000
0.16000
0.12000

-0.00000

-0.20000

7 0.01017

NN N R WD~ OB W —
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Table 4.3.2 Specifications of parameters for power (Uncorrected Kroll vs. Corrected
Kroll and Estimation Method vs. TOST)

No. of
Solution True Solution
Levels ADL Level Mpp = My

True

5 0.00151 1 -0.02
2 0.01
3 0.02
4 0.01
5 -0.02
7 0.00494 1 -0.10
2 0.00
3 0.06
4 0.08
5 0.06
0.00

-0.10
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Table 4.3.4 presents the results of the empirical powers. For the simulation, the true
ADL is specified as 0.00151 or 0.00494 when the number of solutions is 5 or 7,
respectively. Therefore, with an allowable margin of 5%, the 91.67% of the empirical
powers of the uncorrected and corrected Kroll methods reach 1. On the other hand, the
empirical powers of the estimation method and TOST procedures are smaller than those
of the uncorrected and corrected Kroll methods. In addition, the empirical powers of the
estimation method suggested in the approved CLSI guideline EP6-A (Tholen et al.,
2003) and TOST procedures increase as the number of replicates increases or the
standard deviation decreases. The results in Table 4.3.4 show that the empirical power
of the estimation method is greater than that of TOST procedure. However, from Table
4.3.3, the uncorrected and corrected Kroll mefh-ods, and the estimation procedure fail to
control the size at the nominal; level.-Therefore, the. advantage of power by these
methods comes at the expense-of inﬂat’i(.);f;!;)-f?‘;ype I error rate. From the results of the
simulation in Table 4.3.4, the po.vx{eir of ';he TOST procedure is greater than 0.9 when the

standard deviation is 0.1 and number of feplicates is at Teast 3.

4.4 Numerical Example

We consider a hypothetical experiment for evaluation of the linearity of a new
analytical procedure for determination of B-HCG (B-Human Chorionic Gonadotropic,
mlU/mL). The design consists of 5 dilutions with two replicates at each dilution of
concentrations. Table 4.4.1 presents a set of hypothetic measurements under the design

described above. For the purpose | of the illustration, the allowable margin

Pi Li |

of percent bound for ADL is set as 0.05 for uncorrected and corrected Kroll’s methods.

On the other hand, the allowable limit of is set as 0.4 for the estimation method
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Table 4.3.3 Results of empirical sizes (Uncorrected Kroll vs. Corrected Kroll and
Estimation Method vs. TOST)

Type of No. of No. of Kroll’s Method
Comparisons Sol. Rep. SD  Uncorr. Corr. EP6-A  TOST
Kroll — 5 2 0.1 0.9232  0.0662 0.1590  0.0056
uncorr. Vs. corr. 0.2 0.9292  0.0780  0.3030 0.0166
3 0.1 0.9328  0.0636  0.1050  0.0010
0.2 0.9332  0.0646 0.2632 0.0114
4 0.1 0.9420  0.0624 0.0768  0.0006
0.2 0.9328  0.0608 0.2296  0.0074
7 2 0.1 0.9328  0.0622  0.0110  0.0000
0.2 0.9332  0.0606 0.1328  0.0028
3 0.1 0.9418  0.0604 0.0024  0.0000
0.2 0.9458  0.0576  0.0754  0.0012
4 0.1 0.9438  0.0516  0.0002  0.0000
0.2 0.9424  0.0586 0.0544  0.0008
Estimation 5 2 0.1 ~1:0000 1.0000 0.4984 0.0522
vs. TOST. 02 0.9998  1.0000 0.5050 0.0564
377 400.1 1:0000 © . 1.0000 0.4930 0.0440
0.2 -1.0000 . 1.0000 0.5050 0.0486
4 0.1 /~1.0000 1.0000 0.5048  0.0490
0.2== 1.0000 * 1.0000 0.5066 0.0560
7 200 11010 0.9998. 10.9998  0.4972  0.0512
110.27 1,0000. 1.0000 0.5024  0.0484
37 el 0:9998 - 0.9998  0.4978  0.0478
0:2_ =1.00000 1.0000 0.4946 0.0504
4 0.1 1:0000  1.0000 0.5044 0.0504
0.2 1.0000  1.0000  0.5066  0.0494

Sol.: Solution; Rep.: Replications; Uncorr.: Uncorrected; Corr.: Correction.
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Table 4.3.4 Results of empirical powers (Uncorrected Kroll vs. Corrected Kroll and
Estimation Method vs. TOST)

No. of No. of Kroll’s Method
Sol. Rep. SD Uncorr.  Corr. EP6-A  TOST

5 2 0.1 1.0000 1.0000  0.9954 0.7616
0.2 1.0000 1.0000  0.9052  0.2976

3 0.1 1.0000 1.0000  0.9998  0.9232

0.2 1.0000 1.0000  0.9470  0.4452

4 0.1 1.0000 1.0000  0.9998  0.9754

0.2 1.0000 1.0000 0.9664  0.5518

7 2 0.1 1.0000 1.0000  0.9954  0.7754
0.2 1.0000 1.0000 0.9014 0.3168

3 0.1 0.9998 0.9998 0.9994 0.9164

0.2 1.0000 1.0000  0.9450  0.4468

4 0.1 1.0000 1.0000  1.0000  0.9704

0.2 1.0000 1.0000  0.9660  0.5570
Sol.: Solution; Rep.: Replications; Uncorr. Uncorrected: Corr.:
Correction.

< ALY
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suggested in the approved CLSI guideline EP6-A, and for the TOST procedure.
Table4.4.2 provides the results of regression analyses for the linear, quadratic and
cubic linear regression models. The results of the regression analyses presented in Table
4.4.2 demonstrates that all estimates of the regression coefficients of the cubic model
are significantly different from 0 at the 5% level. (to.025, 6 = 2.4469) In addition, the
standard error of the residuals from the estimated cubic regression equation is 0.1799
that is at least 40% smaller than those from the linear or the quadratic models.
Furthermore, the coefficient of determination, R?, is also above 0.99. As a result, the
cubic model is the best-fitted model among the three models recommended by the
approved CLSI guideline EP6-A. Figure 4.4.1 presents the fitted the cubic, linear
regression equations and the means at each of the five:dilution. It clearly shows that the
relationship between the dilutions™ of- concentrations, and the analytical results is
nonlinear and the cubic model is a bette£ ﬂf"ﬂian the simple linear regression model.
Table 4.4.3 gives the predicte.dfr_nea:nls frcffh thé cubié and linear regression models at
each of the five dilutions as well as their c_orresp(;nding differences, while Table 4.4.4
present summarized results of linearity by the four methods. From these differences and
observed mean concentration, the observed ADL yields a value of 0.0842. With respect
to the hypothesis in Eq. (2.3.2) and a margin of percent bound of 5%, the critical value
in Eq. (2.3.3) is 0.0851 which is greater than the observed ADL of 0.0842, According to
the decision rule of the uncorrected Kroll method, the analytical method can be
concluded linear at the 5% significance level. However, it should be noted that for this
example, even though the observed ADL of 0.0842 is already greater than the allowable
percent bound of 0.05, the linearity of the analytical method still can be claimed by the
uncorrected Kroll method. On the other hand, with respect to hypothesis in Eq. (4.2.1)
for the corrected Kroll method, the critical value with an allowable margin of 5% in Eq.
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Table 4.4.1 Measurement of f-HCG (mIU/mL)

Dilution Replicatel  Replicate 2

1 1.00 0.99
2 1.60 1.59
3 2.50 2.60
4 4.36 4.39
5 5.10 5.00
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Table 4.4.2 Summary of results of regression analyses of B-HCG

Std err Degrees
Order Coefficient Value SE t-test Syx freedom
Linear o -0.354 0.234 -1.51
B, 1.089 0.071 15.44 0.3154 8
Quadratic o 0.156 0.461 0.34
B, 0.652 0.351 1.85
B, 0.073 0.058 1.27 0.3041 7
Cubic o 2.263 0.626 3.62
B, 2.308 0.818 -2.82
B, 1.202 0.304 3.96
Bs -0.125 0.034 -3.74 0.1799 6
=
M
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(4.2.2) 1s 0.0237. Since the observed ADL of 0.0842 is greater than 0.0237, we cannot
reject the null hypothesis and cannot concluded the linearity of the analytical method at
the 5% significance level. Unlike the uncorrected Kroll method, the conclusion of the
corrected Kroll method is consistent with the evidence for which the observed ADL is
0.0842, which is greater than the allowable percent bound of 0.05.

With respect to the estimation method suggested in the approved CLSI guideline
EP6-A, the observed differences in the predicted means between the cubic and linear
regression models at all dilutions are within the allowable margin of £0.4. As a result,
the linearity is claimed by the estimation method. On the other hand, the results of the
TOST procedure show that the 95% confidence intervals for pp; - [ic; at the first two
dilutions are not contained within (0.4, 0.4). With respect to hypotheses in Eq. (4.1.1),
the analytical method cannot be/concluded linéar at'the:5% significance level. Because
the estimation method completely ign_()reg%l?i-ée:’variability in the observed differences in
the predicted means, its conclusiqn is ;madé‘::with.out anil statement of the probability of

type I error. However, in fact, as demonstrated by the simulation, the probability of type

I error of the estimation method far exceeds its nominal significance level.

4.5 Summary

With respect to the disaggregate criterion, the estimation method suggested by the
approved CLSI guideline ignores the variation of the estimates of the differences in the
predicted means and is not a formal statistical inference procedure. On the other hand,
the procedure based on the aggregate criterion of ADL proposed by Kroll et al. (Kroll,
2000) incorrectly formulated the hypothesis for proving linearity as the null hypothesis.

As a result, the uncorrected Kroll method cannot control the type I error in
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Table 4.4.3 Mean differences between the best-fitted curve and simple linear regression
equation of B-HCG

Predicted Predicted
Result Mean (Linear) (Cubic) Difference % Difference
0.995 0.735 1.031 0.296 28.7
1.595 1.824 1.450 -0.374 25.8
2.550 2913 2.767 -0.146 53
4.375 4.002 4.230 0.228 5.4
5.050 5.091 5.086 -0.005 0.1
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Table 4.4.4 Results of the linearity by four different methods of B-HCG

Kroll TOST Estimation Method
Un-
corrected Corrected 90%fC'I‘ Result Result
o __nesult __nesult
Sample Critical Critical Dil. Ove- ~ Ove-
ADL Value Result Value Result (1) Hei = Hui Ind rall Yri — Yu Ind. rall
0.0842 0.0851 L 0.0237 NL 1 (0.064,0.529) NL NL 0.296 L L
2 (-0.524,-0.223) NL -0.374 L
3 (-0.318,0.027) L -0.146 L
4 (0.078,0.379) L 0.228 L
5 (-0.237,0.228) L -0.005 L

Dil. : Dilution level
Ind. : Individual dilutions
Overall : Overall conclusion

NL: Conclusion of nonlinearity at the 5% nominal level

L: Conclusion of linearity at the 5% nominal level
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decision-making of conclusion for linearity. Therefore, we proposed the TOST
procedure for the disaggregate criterion and the corrected Kroll method for the
aggregate criterion based on ADL by formulating the hypothesis for proving linearity as
the alternative hypothesis. Simulation results and the numerical example described
above demonstrate that the proposed TOST and the correct Kroll method not only can
adequately control the type I error rate but also reach the conclusion consistent with the
data.

Since TOST procedure is constructed based on a disaggregate criterion which
requires all differences in the predicted means between the best-fitting and linear
models be within the pre-specified allowable limit, the method is more conservative
than the corrected Kroll’s methed yvhich is based_on-an aggregate criterion and only

requires ADL, a function of standardized sum of squares of the differences in the

predicted means between the best-fitted ai?ffe_l-'.l-inear models to be controlled within the

s 4

[ ]

pre-specified allowable percent. bQunQ; Hc';\'&ev_ér, as Iﬁentioned before, the inference
based on ADL involves the estimation of‘the unknbwn non-centrality parameter and the
average population mean concentration. When these estimates are assumed fixed
constants for the inference based on ADL, the simulation study shows that the empirical
size can be inflated up to 0.078 at the 0.05 significance level. In the next chapter, we
will propose GPQ-based ADL statistical testing procedure to overcome the issue of the

unknown parameter of the distribution of ADL.
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Chapter 5

General Pivotal Quantity Approach of

ADL

In Chapter 4, we introduced the corrected Kroll’s method which reformulates the
inappropriate statistical hypothesis of the uncorrected Kroll’s method. However, as we
observed in the simulation results'of the-propesed corrected Kroll’s method, the type I
error still inflates up due to Variabilit}/ in_estimation. of unknown non-centrality
parameter of the chi-square distribution. i%&;soive this issue, in this chapter we propose

an alternative statistical testing procedure based on ADL by applying the generalized

pivotal quantity approach introduced by-Tsui and Weerahandi (Weerahandi, 1993).

5.1 General Pivotal Quantity (GPQ)

Weerahandi (Tsui and Weerahandi, 1989) used a generalized p-value for comparing
parameters of two regressions with unequal variances. Motivated by that application,
Tsui and Weerahandi (Tsui and Weerahandi, 1989) gave the explicit definition of
generalized p-values, and showed that it is an exact probability of a extreme region.
Their proposed method has been successfully used to provide small sample solution for
many hypothesis testing problems when nuisance parameters are present and frequentist

testing procedures are difficult to obtain, even nonexistent. Furthermore, Weerahandi
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(Weerahandi, 1993) extended the concept of generalized p-values, and presented the
generalized confidence interval (GCI) to construct an exact interval estimation.

Suppose that V is a random variable whose distribution depends on a vector of
unknown parameters {=(0, 1), where 0 is a parameter of interest and n is a vector of
nuisance parameter. Let V be a random sample from V and v be the observed value of V.
Also let R=R(V; v, {) be a function of V, v and {. The random quantity R is said to be
a GPQ if satisfies the following two conditions:

(a) The distribution of R does not depend on any unknown parameters.

(b) The observed value of R, say r= R(v; v, (), is free of the vector of nuisance
parameters 1. In other words, the value of R at V = v should be a function only of (v,
0).

Specifically, if the observed quantity-r = 6, then<the GPQ is called the fiduical

generalized pivotal quantity (FGPQ) and generahzed confidence interval (GCI) based

on FGPQ are proven to have asymptotlcally correet frequent coverage probability in

Hanning et al (Hanning et al., 2006). In C(_)nsequence, an upper 100(1-a)th percentile

GClfor 6 is givenby R ,where R are the 100(1-a)th percentile of the distribution

of R. The percentile of R can be estimated using Monte-Carlo algorithms.

5.2 Generalized Pivotal Quantity of ADL

Following the regression models in Eq. (2.1.1), we adopt the same expression of its

matrix form in Chapter 4 as follows:
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Y =the LJx1 vector of observations,
X, =(1,X),
| 1,X,X,),if the best - fitted model is quadratic, and
P {(I,X, X,,X,), if the best - fitted model is cubic,

p, = the LJx1 predicted mean vector of best - fitted polynomial model, and

p, = the LJx1predicted mean vector of linear model,

where 1 is LIx1 vector of 1s, X =(X;), Xo=(X?), and X3=(X}). L and J are the number
of concentrations and number of replicates, respectively.

We have YP =W,Y and SA(L =W, Y as the LS estimators of the predicted mean
vectors of the best-fit and linear models, where W, =X,(X,X;)"'X, and
W, =X (X; X)X, and W = (W, -W, )=As‘aresult, the unbiased and sufficient

estimator of p, —p, and its,covariance matrix, X4 are given as respectively:

=W

R — i :§P_YL =WY

y o (5.2.1)
£Cov(Y, - Y, )= SWW’

where S’ is the residual mean square obtained from the best-fitted polynomial model
with degree of freedom LJ-d-1. Under the assumption that random errors in the above

regression model are identically and independently distributed as normal distribution

with mean of zero and variance of ©°, Y, -Y, is distributed as a multinormal

distribution with mean p,—p, and variance X which is equal to G°WW' . In

addition, Y can be expressed as 1"Y/LJ which is distributed as an univariate normal

distribution with mean p and variance o°/LJ.

It is easy to verify that the estimators WY, S’ and Y are associated with pivotal

quantities Z, U and Z, which are independent with the following distributions:
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Z=x""[WY- (e -py )1~ N, (0.T)

LJ-d-1)S*
U = % o (5.2.2)
(¢}
Y-p
2,=E-N(oy)
Ly

where matrix A"’ denotes the positive definite square root of a positive definite
matrix A and AT?=(A"2)" . N, , xi,., and N(0,1) denote the
multivariate standard normal distribution with LJx1 random vector, the chi-square
random variable with LJ-d-1 degrees. and wunivariate standard normal distribution,

respectively.

Recall that the definition of ADL denotqd ﬁﬁtzé as the following:

L e
\/Z(Hpi - HLi)Z/L
0=ADL= 1=

i

To obtain a GPQ for ADL, we can start the work by deriving GPQs for p, —p, and p,
respectively. According to the first equation in (5.2.2), p, —p, can be expressed as:

pe —1, =WY-X"Z
2 AL/2
=WY-(c’WW') " Z (5.2.3)

(Li-d-1)s* "
=WY | T WW | Z

Let y and S’ be the observed values of Y and S’, respectively, a GPQ for

B, —n, is given by
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(Lid-1)s "
Ry =WY—|—(—WW | Z (5.2.4)

s'o’
SZ

:Wy—( ww'j > IWY - (pp )] (5.2.5)

From (5.2.4), R, has distribution that is free of parameters and thus does not

depend on any unknown parameters. When Y and S’ are substituted by their

observed values y and S* in (5.2.5), the observed value of R, denoted by

— 1s obtained as:
3262 1/2 : .
' -172 ‘
- :Wy_[ & Ww ] > I:Wy_(uP_"L):I
=Wy —[Wy—(p, -, ) | =i
i

=Hp 1y . '

which is equal to p, —p, and free of the. nuisance parameters. Hence, it fulfills the

requirements of (a) and (b) for being a GPQ for p,—p, . Moreover,

since\/ZL:(u,Pi -u;)* /L :\/(§P‘§L),(§P'§L)/LJ, a GPQ of \/ZL:(pPi -, /L
i=1 i=1

denoted by & can then be obtained as :

1 ’

R (Ruaw) (R (5.26)

where R, _ = isdefined as (5.2.4).

In addition, a GPQ for p can be obtained as:
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(5.2.7)

R —y-L / LJ-d-1)s
R =y \/_

From (5.2.7), R, has distribution that is free of parameters. In addition, when
in (5.2.8), then the

(5.2.8)

Y

and S’ are substituted by their observed values y and S

observed value of R, denoted by r, is obtained as

> A

which is equal to p and fice of the rﬁiisanée pafameters Hence, it fulfills the

requirements of (a) and (b) for being a GPQ for:

A GPQ for ADL can be obtained:
(5.2.9)

where R and R, are defined as (5.2.4) and (5.2.7), respectively.

5.3 Generalized Confidence Interval of ADL

An upper 100(1-a)th percentile GCI for ADL can be obtained from the following
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Monte-Carlo algorithm:

Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through
K, carry out the following two steps.
Step 2: Generate LRx1 standard normal random vector Z, univariate standard normal

variable Z , and central chi-square random variables U with degree of
freedom LJ-d-1.

Step 3: For the realized values of Y and S*, compute Ry« defined in (5.2.9).

The required upper 100(1-a)th percentiles of the distribution of GPQ for ADL, which is

also the upper 100(1-a)th generalized confidence limit for ADL, is then estimated by the

100(1-a)th sample percentiles .of thecollection ‘of K=10,000 realizations R, >

A I-.;'Iis -l'l

5.4 Statistical Testing Prbcé‘dure

With respect to the hypothesis of IHO: 0 > 6p.vs. H.: 6 < 0y based on the ADL, the
upper 100(1-a)% generalized confidence limit for ADL based on GPQ can be used to
test the statistical hypothesis for assessment of linearity. The null hypothesis is rejected

and the linearity of a analytical method is concluded at the o significance level if the

upper 100(1-a)% generalized confidence limit for ADL is less than 6.

5.5 Simulation Study

A simulation study is performed to compare the empirical sizes and powers of the
corrected Kroll’s and GPQ-based ADL methods. The specifications of the simulation
study are given as follows: The number of solutions (or dilutions) of different
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concentrations is set to be 5 or 7 and the number of replications at each concentration is
2, 3, or 4. Throughout the simulation, mean concentration [ is assumed to be 4. If
follows that the allowable margin of linearity based on ADL, 0y, is specified as 0.05 as
recommended by Kroll et al. (Kroll, 2000). For each of 12 combinations, ten thousand
(10,000) random samples are generated. For the 5% nominal significance level, a
simulation study with 10,000 random samples implies that 95 percent of the empirical
sizes evaluated at the allowable margins will be within 0.0457 and 0.0543 if the
proposed methods can adequately control the size at the nominal level of 0.05.

The results of the empirical sizes are provided in Table 4.5.1. All empirical sizes of
the corrected Kroll’s method are larger than 0.0543. This indicates that the corrected
Kroll’s method inflates the size'and is quite.i'iberal in_concluding the linearity of an
analytical procedure. On the other hand, all, Qf empirical sizes of the GPQ methods
based on ADL are within the range beftwé%‘-'(.)".0457 and 0.0543. The simulation results
reveal that the GPQ-based met.h_,o_ds for ADL .éan adéquately control the size at the
nominal level. The reason for a better performance; of the GPQ-based methods for ADL
may be that the distributions of GPQs are free of their respective nuisance parameters.
On the other hand, the corrected Kroll’s method fails to take into account the variability
in estimator of the non-centrality parameter of the non-central chi-square distribution.

The results of the empirical powers are presented in Table 5.5.2. In Table 5.5.2, the
true value of ADL is assumed to be 0.005 for both number of solutions of 5 and 7. The
results in Table 5.5.2 also show that the empirical power is an increasing function of the
number of replicates and number of solutions. Although the empirical power of the
corrected Kroll’s method is larger than the GPQ-based ADL methods, its better

performance on the empirical power results from inflation of the size above the nominal
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Table 5.5.1 Empirical sizes (Corrected Kroll’s method vs. GPQ-based ADL method)

No. of No. of Standard ~ Corrected GPQ-based

Solutions  Replicates Deviation Kroll ADL

5 2 0.1 0.0702 0.0467
0.2 0.0763 0.0517
3 0.1 0.0623 0.0502
0.2 0.0655 0.0517
4 0.1 0.0594 0.0505
0.2 0.0595 0.0508
7 2 0.1 0.0655 0.0501
0.2 0.0635 0.0494
3 0.1 0.0592 0.0509
0.2 0.0583 0.0498
4 0.1 0.0562 0.0498
0.2 0.0571 0.0510

=

i
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Table 5.5.2 Empirical powers with the true ADL=0.005 (Corrected Kroll’s method vs.
GPQ-based ADL method)

No. of No. of Standard  Corrected GPQ-based

Solutions  Replicates Deviation Kroll ADL

5 2 0.1 1.0000 1.0000
0.2 0.9670 0.9331
3 0.1 1.0000 1.0000
0.2 0.9965 0.9942
4 0.1 1.0000 1.0000
0.2 0.9996 0.9995
7 2 0.1 1.0000 1.0000
0.2 0.9923 0.9888
3 0.1 1.0000 1.0000
0.2 0.9996 0.9994
4 0.1 1.0000 1.0000
0.2 1.0000 1.0000

M= J,ﬁ '

| =
1l &
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level. Figure 5.5.1 and 5.5.2 present the empirical powers when ¢ are 0.1 and 0.2,
respectively with number of solutions is 5, number of replicates is 3. The true values of
ADL are ranged from 0 to 0.08. A comparison of Figure 5.5.1 and Figure 5.5.2 reveals
that the power of both methods is a deceasing function of ¢. In Figure 5.5.1, when the
ADL = 0.05, the empirical size for the corrected Kroll’s and the GPQ-based methods
are 0.0623 and 0.0502 for ADL respectively. Similar findings are observed in Figure
5.5.2. Again these results show that the corrected Kroll’s method inflate the size above
the 0.05 level while the GPQ-based procedure can adequately control the size at the

nominal level of 5%.

5.6 Numerical Example

Table 5.6.1 presents the duplicate deter@n@tions at|the first five concentrations given
in Example 2 of CLSI guideline EP6-A (Tf‘aplen-et al.;;:2003) to illustrate the proposed

testing procedures in evaluation .of. :linearity éf san _analytical procedure. Following
EP6-A (Tholen et al., 2003), the criterion of |p,LPi —].Lu| for linearity is set as 0.2 mg/dL
for all 5 concentrations. In this example, the allowable margin of percent bound for
ADL is set as 0.05 for all methods based on ADL as suggested by Kroll, et al. (Kroll,

2000). The results of regression analyses for the linear, quadratic and cubic linear

regression models are given in Table 5.6.2. From Table 5.6.2, the estimates of the
regression coefficient B, of the quadratic model are statistically significantly different

from 0 at the 5% level (to02s,7 = 2.4469) while none of them is significantly different
from O for the cubic model. In addition, the standard error of the residuals from the

estimated quadratic regression equation is 0.124 which is smaller than the 0.2 set by the
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Figure 5.5.1 Empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of replicates is
3 (Corrected Kroll’s method vs. GPQ-based ADL method)
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Figure 5.5.2 Empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of replicates is
3 (Corrected Kroll’s method vs. GPQ-based ADL method)
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manufacturer. Furthermore, R? is also above 0.99. As a result, the quadratic model is the
best-fitted model among the three models recommended by the approved CLSI
guideline EP6-A (Tholen et al., 2003).

The observed predicted means from the quadratic and linear regression models at
each of the five dilutions as well as their corresponding differences are given in Table
5.6.3. The results of the corrected Kroll’s and the GPQ-based ADL methods are
provided in Table 5.6.4. From the differences in the observed predicted means between
the quadratic and linear regression models and the observed mean concentrations, the
observed ADL yields a value of 0.0146. With respect to a margin of percent bound of
5%, the critical value is 0.0437 which is greater than the observed ADL of 0.0146,
According to the decision rule of th; corrected Kroll method, the analytical method can
be concluded linear at the 5% significance level. The 95% upper confidence limit for
the ADL computed by the GPQ-based A]Il}l:f%._'l-ﬁe.thod is 0:0218 which is smaller than the
allowable upper limit of 0.05. H§pce? Ithe %nea_ﬁty of .the analytical procedure can be

concluded at the 5% significance level by:the GPQI:-based ADL procedure.

5.7 Summary

The ADL proposed by Kroll et al. (Kroll, 2000) is an aggregate criterion constructed
from the deviations from linearity scaled by the mean concentrations. However, the
sampling distribution of the observed ADL involves unknown nuisance parameters Ll
and 6. On the other hand, the observed values of GPQs are free of the nuisance
parameters. As a result, we apply the GPQ method to the inference of evaluation of
linearity based ADL. The simulation results presented above show that the corrected
Kroll’s method inflates the type I error rate and the GPQ-based ADL method can control
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Table 5.6.1 Measurement of calcium (mg/dL)

Dilution Replicate 1 Replicate 2
1 4.7 4.6
2 7.8 7.6
3 10.4 10.2
4 13.0 13.1
5 15.5 153

Source : The approved CLSI guideline EP6-A (2003)
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Table 5.6.2 Summary of results of regression analyses for the example of calcium

LS SE Degrees
Order Coefficient Estimates SE t-test Syx freedom
Linear o 2.16 0.15 14.3
B, 2.68 0.05 59.0 0.204 8
Quadratic o 1.54 0.19 8.2
B, 3.22 0.14 22.4
B, -0.09 0.02 3.8 0.124 7
Cubic o 1.47 0.47 3.15
B, 3.32 0.61 5.45
B, -0.13 0.23 -0.56
B, 0.004 0.02 0.17 0.134 6

Source : The approved CLSI guideline EP6-A (2003)

il
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the size at the nominal level. On the other hand, the GPQ-based ADL procedure not
only adequately control the type I error rate but also has the similar performance of the
power as the corrected Kroll’s method. Therefore, we conclude the GPQ-based ADL

procedure is better than the correct Kroll’s method for evaluating the linearity in assay

validation.
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Table 5.6.3 Mean differences between the best-fitted curve and simple linear regression
equation for the example of calcium

Predicted Predicted
Result Mean (Linear) (Quadratic) Difference % Difference
4.65 4.85 4.67 -0.18 -3.9
7.70 7.54 7.62 0.08 1.0
10.30 10.22 10.40 0.18 1.8
13.05 12.90 12.99 0.09 0.7
15.40 15.59 15.41 -0.18 -1.2

Source : The approved CLSI guideline EP6-A (2003)

< ALY
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Table 5.6.4 Results of the linearity evaluation for the example of calcium by corrected
Kroll’s and GPQ-based ADL methods

Sample Statistic /

Method Critical Value or Allowable Bound  Conclusion
Corrected Kroll Sample ADL 0.0146
Critical Value 0.0437 Linear
GPQ-based ADL Upper 95% C.L. 0.0218
Allowable Upper Bound 0.05 Linear

95% C.L. : Upper 95% Confidence limit

< ALY
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Chapter 6

Alternative Aggregate Criterion -

Sum of Square of the Deviation from

Linearity (SSDL)

In this chapter, we propose a new- measure df the assessment of linearity named Sum
of Square of the Deviation from Llnearlty (SSDL): As mentioned in Section 3.2.1 of
Chapter 3, SSDL is formulated ditectly by fhe nature/of disaggregate criterion proposed
by CLSI guideline as the form" of model-by-dllutlon interaction. However, its
corresponding statistical hypothesis and testing pfocedure is not to detect existence of
the model-by-dilution interaction but rather to verify whether the model-by-dilution

interaction is within some pre-specified allowable upper limit.

6.1 SSDL and Statistical Hypothesis

Recall our introduction for SSDL in Chapter 3, a natural aggregate metric for
assessment of assay linearity is the sum of squares of deviations from linearity (SSDL)

denoted by t defined as

o= 2 )’ (6.1.1)
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The hypotheses for proving the assay linearity in then formulated as follows:

L L
Hy: Z(upi' “Li)z = LB% vs. Hy: Z(Hpi' HLi)z < LS% (6.1.2)
P

i=1

or equivalently

L L
Hy: Z(Hpi‘ )L > 8 vs. H: Z(Hpi‘ )L <3

p )
where 9, is the allowable limit of p,-p,; for evaluation procedure suggested by
EP6-A guideline (Tholen et al., 2003). The generalized pivotal quantity approach to
hypothesis (6.1.2) of evaluation for linearity of assay validation based on the SSDL is

provided in the following subsequent subsections.

6.2. Generalized Pivotal Quantity of SSDL

e

Most of work for deriving a GPQ.of SSDL éctually has been carried out in Chapter 5
for deriving a GPQ of ADL. According to the definition of SSDL in Eq. (6.1.1), a GPQ

of SSDL can be obtained as:

R=7(Ryn) (Ry) (62.1)

where R, =~ was derived as Eq. (5.2.4) in Section 5.2 of Chapter 5.

6.3 Generalized Confidence Interval of SSDL

An upper 100(1-a)th percentile GCI for SSDL can be obtained from the following
Monte-Carlo algorithm:
Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through

K, carry out the following two steps.
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Step 2: Generate LRx1 standard normal random vector Z and central chi-square

random variable U with degree of freedom LJ-d-1.

Step 3: For the realized values of Yand S, compute R defined in Eq. (6.2.1).

The required upper 100(1-a)th percentiles of the distribution of GPQ for SSDL, which
is also the upper 100(1-a)th generalized confidence limit for SSDL, is then estimated by

the 100(1-a)th sample percentiles of the collection of K=10,000 realizations R, ,

6.4 Statistical Testing Procedure

The upper 100(1-a)% generalized cenfidence limif for SSDL based on GPQ can be
used to test the statistical hypothesis in (6: i':’Z) for linearity. The null hypothesis in (6.1.2)

is rejected and the linearity of a analytical method is:concluded at the o significance

level if the upper 100(1-0))% generalized confidence limit for SSDL is less than L3; .

6.5 Simulation Study

We conducted a simulation study to compare the empirical sizes and powers of the
corrected Kroll’s and GPQ-based SSDL methods. Following the specification of the
experiment designs for evaluation of linearity, the number of solutions (or dilutions) of
different concentrations is set to be 5 or 7 and the number of replications at each
concentration is 2, 3, or 4. Throughout the simulation, mean concentration | is assumed
to be 4 and the allowable margin of linearity based on ADL, 0y, is specified 0.05 as

recommended by Kroll et al. (Kroll, 2000). From the relationship that SSDL = L(u6)?,
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where p and O are the mean of the concentrations, and ADL, respectively. It follows

that the margin for SSDL for 5 and 7 concentrations are 0.2 and 0.28, respectively. In
addition, standard deviation of normal random error is specified as 0.1 and 0.2. For each
of 12 combinations, ten thousand (10,000) random samples are generated. For the 5%
nominal significance level, a simulation study with 10,000 random samples implies that
95 percent of the empirical sizes evaluated at the allowable margins will be within
0.0457 and 0.0543 if the proposed methods can adequately control the size at the
nominal level of 0.05.

Table 6.5.1 presents the results of the empirical sizes. All of empirical sizes for the
corrected Kroll’s is larger than 0.0543. On. the other hand, all of empirical sizes of the
GPQ method are within the range and showed .'that it has a better ability for controlling
the size at the nominal level than-the corrected_Kroll’s method. It was introduced in the
previous chapters that the poor per_forlr:l%ﬁée for /the corrected Kroll’s method in
controlling the size results f.rc_;m the \;;riability o.f estimators of non-centrality
parameters for non-central x2 distribution of the o.‘:bserved ADL being estimated by the

square root of residual mean square obtained from best-fitted polynomial model. On the

contrary, since one requirement for GPQ is that R, = is free of nuisance parameter o,
p

the GPQ approach can control the size at the nominal level.

Table 6.5.2 presents the results of the empirical powers. For the simulation, the true
ADL is specified as 0.005 for both number of solutions of 5 and 7. The results given in
Table 6.5.2 also show that the empirical power increases as the numbers of replicates or
concentrations increases. Both the methods provide comparable powers except for the
one of the GPQ-based SSDL method is 0.6962 when number of solution is 5, number of

replicates is 2, and standard deviation of normal random error is 0.2. However, all
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Table 6.5.1 Empirical sizes (corrected Kroll’s method vs. GPQ-based SSDL method)

No. of No. of Standard  Corrected GPQ-based

Solution  Replicate  Deviation Kroll SSDL
5 2 0.1 0.0769 0.0535
0.2 0.0734 0.0503

3 0.1 0.0679 0.0523

0.2 0.0643 0.0501

4 0.1 0.0569 0.0476

0.2 0.0596 0.0504

7 2 0.1 0.0670 0.0532
0.2 0.0671 0.0532

3 0.1 0.0573 0.0502

0.2 0.0557 0.0476

4 0.1 0.0563 0.0506

0.2 0.0595 0.0529

< ALY
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empirical powers of the GPQ-based SSDL method for other combinations of parameters
are still greater than 90%. In addition, from Table 6.5.1, the corrected Kroll’s method
fails to control the size at the nominal level. Therefore, the advantage of power by the
corrected Kroll’s method comes at the expense of inflated type I error rates.

Figure 6.5.1 and 6.5.2 present the empirical powers when the standard deviations of
normal random error are 0.1 and 0.2, respectively with number of solutions is 5, number
of replicates is 3, and the true ADLs are ranged from 0 to 0.08. Figure 6.5.1 shows that
when standard deviation is 0.1, the empirical size at ADL=0.05 for the corrected Kroll’s
method is 0.0679, while the empirical size of the GPQ-based SSDL method is 0.0521. It
shows that the GPQ method can control the size better than the other methods at the
nominal level. In addition, the powers reach 0 and 1 at ADL=0.08 and 0.005,
respectively for both methods. On.the other hand, the power of the GPQ-based SSDL
method is quite competitive to+the corré&éﬂ:kroll’s method although it is little lower.
The similar results are observe.df m F1gure652 wheﬁ standard deviation of normal
random error is 0.2. The empirical sizes:for the (gorrected Kroll’s and the GPQ-based
SSDL methods at ADL=0.05 are 0.0827 and 0.0494, respectively. In addition, the

powers for both methods when the standard deviation is 0.2 are lower than those when

the standard deviation is 0.1.

6.6 Numerical Example

The same example of calcium used in Chapter 5 from Example 2 of CLSI guideline
EP6-A (Tholen et al., 2003) is used to illustrate the proposed testing procedures. In this

example, the allowable margin of percent bound for ADL is set as 0.05. As indicated in

EP6-A (ICH Expert Working Group, 1995), the criteria of | Wp; —].LU| for claiming
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Table 6.5.2 Empirical powers with the true ADL=0.005 (corrected Kroll’s method vs.

GPQ-based SSDL method)

No. of No. of Standard  Corrected

Solution  Replicate Deviation Kroll GPQ
5 2 0.1 1.0000 0.9994
0.2 0.9261 0.6962
3 0.1 1.0000 1.0000
0.2 0.9454 0.9256
4 0.1 1.0000 1.0000
0.2 0.9828 0.9781
7 2 0.1 1.0000 1.0000
0.2 0.9327 0.9078
3 0.1 1.0000 1.0000
0.2 0.9901 0.9873
4 0.1 1.0000 1.0000
02" 0.9980 0.9972

M= J,ﬁ '

| =
1l &
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Figure 6.5.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of
replicates is 3 (corrected Kroll’s method vs. GPQ-based SSDL method)
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Figure 6.5.2 The empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of

replicates is 3 (corrected Kroll’s method vs. GPQ-based SSDL method)
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linearity is set as 0.2 mg/dL, the allowable limit of SSDL is set as 0.2 which is
calculated by square of 0.2 mg/dL multiplying 5 concentrations. Table 6.6.1 presents the
results of the two testing procedures. According to the decision rule of the corrected
Kroll method, the analytical method can be concluded linear at the 5% significance
level. On the other hand, the 95% upper limit confidence limit for SSDL of the GPQ
methods is 0.2664, respectively. As a result, the GPQ-based SSDL method can not
conclude that the analytical procedure is linear at the 5% significance level. The
results presented above show the consistent results with the simulation results in Section
6.5 which the GPQ-based SSDL method is more conservative than the corrected Kroll’s
method. However, as demonstrated by the simulation, the GPQ-based SSDL method is

the procedure that can adequately control the size at the nominal level.

6.7 Summary

> NiY

The ADL is an aggregate érfiteri(;)rll pi%pos_éd by .Kroll et al. (Kroll, 2000) for
evaluating the linearity in assay validation, In th1s chapter, we propose an alternative
criterion of SSDL based on the GPQ approach to assess the linearity. Simulation results
show that the GPQ-based SSDL method not only can adequately control the type I error
rate at the nominal level better than the corrected Kroll’s method but also keep a
competitive performance of the power. The reason for the poor performance corrected

Kroll’s method in controlling the size at the nominal level is the variability of estimators
of non-central parameters for non-central ° distribution of the observed ADL being

estimated by the square root of residual mean square obtained from best-fitted
polynomial model. Therefore, we can conclude the proposed statistical hypothesis based

on the aggregate criteria SSDL in conjunction with the testing procedure derived from
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Table 6.6.1 Results of the linearity evaluation for the example of calcium by the
corrected Kroll’s and GPQ-based SSDL methods

Sample Statistic /

Method Critical Value or Allowable Bound  Conclusion
Corrected Kroll Sample ADL 0.0146
Critical Value 0.0437 Linear
GPQ-based SSDL Upper 95% C.L. 0.2664
Allowable Upper Bound 0.2  Nonlinear

95% C.L. : Upper 95% Confidence limit. of SSDL
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the GPQ method for evaluating the linearity in assay validation is better than the

corrected Kroll’s method.
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Chapter 7

Alternative Criterion - Sum of
Squares of the Deviation from
Linearity Related to the Variation

(CVDL)

~

The SSDL we introduced in_Chapter 715 .based on-the un-scaled deviations from
linearity while ADL is based on the-deviations from linearity scaled by the population
average of concentrations of all solut.ions of theassay. Both ADL and SSDL do not take
the experimental variability into consideration. As the repeatability is also the important
characteristic which stands for reliability of a assay method, Wu (Wu, 2008) propose the
coefficient of variation of the deviations from linearity (CVDL) as an alternative

measure which can be used to evaluate the linearity and repeatability simultaneously.

7.1 CVDL and Statistical Hypothesis

As introduced in Section 3.2.3 of Chapter 3, CVDL is defined as:
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CVDL contains both information of the deviation from the linearity and the

n=CVDL =

(7.1.1)

L L
repeatability in term of Z:(upi -u.,)* and o, respectively, where Z(upi -p)? s

i=1 i=1

the sum of squares for the difference in predicted values of the best-fitted model and ¢
is the residual mean square obtained from the best-fitted model as defined in the
previous chapters.

The corresponding hypothesis for assessing linearity is then given as:

Ho: M =mno vs. Ha: M <Mo. (7.1.2)
where 1 is the allowable limit of CVDLx .

An estimator of CVDL can be also eXPfés,ﬁ?,d_iD terms of SSDL as

Jz(yy P

== , &\l (7.1.3)

——— -
g—

|
7

where S is the square root of the residual mean square obtained from the best-fitted
model with degrees of freedom of LJ-d-1, and d is the degrees of freedom for regression

of the best-fitted model.

7.2 Generalized Pivotal Quantity of CVDL

As it can be found in Eq. (7.1.1) for the definition of CVDL, the term of numerator is

exactly the SSDL denoted by R we introduced in Chapter 5. In addition, a GPQ of

o’ can be obtained as
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(7.2.1)

_ (7.2.2)

where U is the same chi-square random variable with degrees of LJ-d-1 we defined in
Eq. (5.2.2).

From (7.2.1), R has distribution that is free of parameters. In addition, when S s
substituted by its observed value S in (7.2.2), then the observed value of R,
denoted by r, is equal to o’ and free of any nuisance parameter. Hence, it fulfills

the two requirements of (a) and (b) as described in Section 5.1 for being a GPQ for ¢”.

Therefore, a GPQ of CVDL can be ébtained by:

(7.2.3)

=
I
2 iﬂh

7.3 Generalized Conﬁdencé Interval of CYVDL

An upper 100(1-a)th percentile GCI for CVDL can be obtained from the following

Monte-Carlo algorithm:

Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through
K, carry out the following two steps.

Step 2: Independently generate LJx1 standard normal random vectorZ and U is the
same chi-square random variable with degrees of LJ-d-1.

Step 3: For the realized values of Y and S, compute R, asdefined in (7.2.3).

The required upper 100(1-a)th percentiles of the distribution of GPQ for CVDL is then
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estimated by the 100(1-a)th sample percentiles of the collection of K=10,000

realizations R

n12

7.4 Statistical Testing Procedure

The upper 100(1-a)% generalized confidence limit for CVDL based on GPQ can be
used to test their respective statistical hypotheses in (7.1.2) for linearity. The null
hypothesis in (7.1.2) is rejected and the linearity of a analytical method is concluded at

the o significance level if the upper 100(1-a)% generalized confidence limit for

CVDL is less than n.

7.5 Simulation Study

A simulation study is performed to é().:l:;g:ff)ére the empirical sizes and powers of the
corrected Kroll’s and GPQ II.le’ﬂ.lOd:Si bagéd Qh CVDL. The specifications of the
simulation study are given as follows: The .nu;nber of solutions (or dilutions) of
different concentrations is set to be 5 or 7 and the number of replications at each
concentration is 2, 3, or 4. Throughout the simulation, mean concentration | is assumed
to be 4. If following that the allowable margin of linearity based on ADL, 6, is
specified at 0.05 as recommended by Kroll et al. (Kroll, 2000). Using the relationship
that CVDL =\/m/0, where p is the population mean concentrations for all
solutions of the assay and 0 is ADL. The allowable limit 1 is 2 and 1 for ¢ being 0.1
and 0.2, respectively. For each of 12 combinations, ten thousand (10,000) random

samples are generated. For the 5% nominal significance level, a simulation study with

10,000 random samples implies that 95 percent of the empirical sizes evaluated at the
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allowable margins will be within 0.0457 and 0.0543 if the proposed methods can
adequately control the size at the nominal level of 0.05.

The results of the empirical sizes are provided in Table 7.5.1. All the empirical sizes
of the GPQ method based on CVDL are within the range between 0.0457 and 0.0543,
while all empirical sizes of the corrected Kroll’s method are larger than 0.0543. The
simulation results reveal that the GPQ-based CVDL method can adequately control the
size at the nominal level. The reason for a better performance of the GPQ-based CVDL
method may be that the distribution of GPQ is free of their respective nuisance
parameters. On the other hand, the corrected Kroll’s method fails to take into account
the variability in estimator of the non-centrality parameter of the non-central chi-square
distribution.

The results of the empirical powers are presented 1. Table 7.5.2. In Table 7.5.2, the
true value of ADL is assumed to be 0.0(’):3.':5"6'}..1;0th number of solutions of 5 and 7. The
results in Table 7.5.2 also shéw_ thgtl thli;: : embirical .power of both methods is an
increasing function of the number of replicates an({ number of solutions. In addition, the
empirical power of the GPQ-based CVDL method is competitive to the corrected
Kroll’s method. Although the empirical power of the corrected Kroll’s method is larger
than that of the GPQ-based CVDL method, its better performance on the empirical
power results from inflation of the size above the nominal level.

Figure 7.5.1 and 7.5.2 present the empirical powers of the four methods when G are
0.1 and 0.2, respectively with number of solutions is 5, number of replicates is 3. The
true values of ADL are ranged from 0 to 0.08. A comparison of Figure 7.5.1 and Figure
7.5.2 reveals that the power of both methods is a deceasing function of 6. The power

curve of the GPQ-based CVDL method is uniformly lower than that of the corrected
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Kroll’s method. However, the empirical power of GPQ-based CVDL method at
ADL=0.05 is 0.0511 while which for corrected Kroll’s method is 0.0623. Therefore, it
show that show that the GPQ-based CVDL method can control the size at the nominal

level while corrected Kroll’s method cannot.

7.6 Numerical Example

The same numerical data of calcium in the previous chapters is used to illustrate the

proposed testing procedures in evaluation of linearity of an analytical procedure.

Following EP6-A (Tholen et al., 2003), the criterion of |Hpi‘l~lu| for linearity is set as

0.2 mg/dL for all 5 concentrations."In this example, the allowable margin of percent
bound for ADL is set as 0.05.0On tﬁe other hand, the allowable limit of the GPQ-based
SSDL is set as 0.2 which is calcullé‘t'éiiz'h'éy square of 0.2 mg/dL multiplying 5
concentrations. We also assume that thé all?)wabl'e repeatability set by the manufacturer
1s 0.2. Therefore, the allowable Ir.;e.trgirgl of the GPQ-based CVDL is 1 which is equal to

the allowable margin of 0.2 for SSDL divided by the product of 5 (concentrations) and

square of the repeatability of 0.2, i.e., n=+/t/(Lc") . The results of the corrected Kroll’s

and the GPQ-based CVDL methods are provided in Table 7.6.1. The linearity is
concluded by corrected Kroll’s method since the observed ADL yields a value of 0.0146
is less than the critical value of 0.0437 with respect to a margin of percent bound of 5%.
On the other hand, the 95% upper confidence limits for CVDL methods is 1.9125. Its
95% upper confidence limits is larger than their respective allowable upper limits of 1.
As a result, the GPQ-based CVDL method can not conclude the linearity of the
analytical procedure at the 5% significance level. As shown in simulation results and

conservative than the corrected Kroll’s method.
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Table 7.5.1 Empirical sizes (corrected Kroll’s method vs. GPQ-based CVDL method)

No. of No. of Standard ~ Corrected GPQ-based

Solutions Replicates Deviation Kroll CVDL
5 2 0.1 0.0702 0.0540
0.2 0.0763 0.0467
3 0.1 0.0623 0.0513
0.2 0.0655 0.0511
4 0.1 0.0594 0.0489
0.2 0.0595 0.0509
7 2 0.1 0.0655 0.0490
0.2 0.0635 0.0504
3 0.1 0.0592 0.0473
0.2 0.0583 0.0504
4 0.1 0.0562 0.0529
0.2 0.0571 0.0452

=

i
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Table 7.5.2 Empirical powers with the true ADL=0.005 (corrected Kroll’s method vs.
GPQ-based CVDL method)

No. of No. of Standard  Corrected GPQ-based
Solutions Replicates Deviation Kroll CVDL

5 2 0.1 1.0000 0.9876
0.2 0.9670 0.7754

3 0.1 1.0000 0.9989

0.2 0.9965 0.9212

4 0.1 1.0000 0.9998

0.2 0.9996 0.9678

7 2 0.1 1.0000 0.9979
0.2 0.9923 0.8994

3 0.1 1.0000 0.9999

0.2 0.9996 0.9742

4 0.1 1.0000 1.0000

0.2 1.0000 0.9932
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Figure 7.5.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of
replicates is 3 (corrected Kroll’s method vs. GPQ-based CVDL method)
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Figure 7.5.2 The empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of
replicates is 3 (corrected Kroll’s method vs. GPQ-based CVDL method)
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Table 7.6.1 Results of the linearity evaluation for the example of calcium by corrected
Kroll’s and GPQ-based CVDL methods

Sample Statistic /

Method Critical Value or Allowable Bound  Conclusion
Corrected Kroll Sample ADL 0.0146
Critical Value 0.0437 Linear
GPQ-based CVDL Upper 95% C.L. 1.9125
Allowable Upper Bound 1 Nonlinear

95% C.L. : Upper 95% Confidence limit
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7.7 Summary

Both ADL and CVDL are the aggregate criterion for assessment of linearity in assay
validation. The main difference between these two criteria is the proposed CVDL is an
criterion not only contain the information of the deviations from linearity but also the
repeatability of the analytical procedure. The simulation results presented above show
that the corrected Kroll’s method inflates the type I error rate and the GPQ-based CVDL
methods can control the size at the nominal level. In addition, the GPQ-based CVDL
method also keep the good power performance. Therefore, we conclude the GPQ-based
CVDL with respect to the statistical hypothesis in (7.1.2) for evaluating the linearity in

assay validation is better than the corrected Kroll’s method.

b= o
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Chapter 8

Discussion and Summary

Various aggregate criteria including ADL, SSDL and CVDL for evaluating the
linearity in assay validation were introduced in Chapter 2 to 7. Although these criteria
are formulated by different components which provide the different characteristics,
however, the common feature of these criteria is that all of them contain the sum of
square for the deviations from linearity as the major component. In this chapter, we
discuss the relationship among: these criteria: In addition, the results of the simulation

study and numerical example are usedto ‘compare the'performances and characteristics

e

of each aggregate criterion for the assessm'é-im'(')f lingarity in assay validation.

8.1 Relationship of the'Agg'regate Criteria

Recall the definition for ADL, SSDL and CVDL are defined in the previous chapters

as follows:

L
\/Z (Mp; - uLi)z/L
0 =ADL =1

1

L
=SSDL = Z(Hpi' M)

i=1

L
Z (Wp; - uu)z/L

n=CVDL = \/i=1
Jo?
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where [, and p;, are the predicted mean of the best-fit polynomial model and linear
regression model at ith concentration with 1 = 1,.., L, respectively; p is the population

mean concentration for all solutions of the assay and o is the variance of residual
under the best-fitted model. It can be found that the SSDL is the common component

for each criterion. Their relationship can easily be constructed as the following:
T=L(u6)*=LMo) (8.1.1)

Unlike that SSDL is the unscaled deviation defined as the pure sum of square of the
deviations from the linearity, both CVDL and ADL are the scaled deviations. ADL is the

square root of the average sum of squares of the scaled deviations by p, while CVDL

is scaled by the variability or repeatability. of the best-fitted model.

8.2 Comparison by Simufl.'éiﬁ-on Study

A simulation studies was employed to compare'the empirical sizes and powers among
three GPQ-based ADL, SSDL and CVDL methods. Parts of the results from the same
simulation study were presented in Chapter 5, 7 for comparing the performance of the
corrected Kroll’s method with GPQ-based ADL and GPQ-based CVDL methods,
respectively. As described in Chapter 5 and 7, the specifications of the simulation study
are given as follows: The number of solutions (or dilutions) of different concentrations
is set to be 5 or 7 and the number of replications at each concentration is 2, 3, or 4.
Throughout the simulation, mean concentration [ is assumed to be 4. The allowable
margin of linearity based on ADL, 0y, is specified at 0.05. From the relationship of T =
L(u8)* = L(o)” in Eq. (8.1.1), it follows that the margin for SSDL are 0.2 and 0.28 for

5 and 7 concentrations, respectively. In addition, under the specification of standard
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deviation of normal random error is specified as 0.1 and 0.2, the allowable limit ng is 2
and 1 for ¢ being 0.1 and 0.2, respectively. For each of 12 combinations, ten thousand
(10,000) random samples are generated. For the 5% nominal significance level, a
simulation study with 10,000 random samples implies that 95 percent of the empirical
sizes evaluated at the allowable margins will be within 0.0457 and 0.0543 if the
proposed methods can adequately control the size at the nominal level of 0.05.

The results of the empirical sizes are provided in Table 8.2.1. All of empirical sizes of
the GPQ methods based on ADL, SSDL and CVDL are within the range between
0.0457 and 0.0543. The simulation results reveal that the GPQ-based methods for SSDL,
ADL, and CVDL can adequately control the size at the nominal level. On the other hand,
according to the empirical powers of three GPQ-based methods presented in Table 8.2.2,
the empirical power of the GPQ-based ADL method is larger than that of the
GPQ-based SSDL which is in turn larger t}fan that of the GPQ based CVDL method.

Figure 8.2.1 and 8.2.2 present the emplrlcal powers.of the three GPQ-based methods
when gare 0.1 and 0.2, respectively with number (;f solutions is 5, number of replicates
is 3. For Figure 8.2.1, when the ADL = 0.05, the empirical size for the three GPQ-based
methods are 0.0499, 0.0513, and 0.0502 for SSDL, CVDL, and ADL respectively.
Similar findings are observed in Figure 8.2.2. Again these results show that the three
GPQ-based procedures can adequately control the size at the nominal level of 5%.
Moreover, Both figures demonstrate that the GPQ-based ADL procedure is uniformly
more powerful than the GPQ-based SSDL method which is in turn uniformly more
powerful than the GPQ-based CVDL method. For example, in Figure 8.2.1 when ADL
is 0.03, the empirical powers are 0.9426, 0.7803, and 0.5337, respectively for the

GPQ-based ADL, SSDL, and CVDL methods. In other words, the GPQ-based ADL
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Table 8.2.1 Empirical sizes (GPQ-based SSDL vs. GPQ-based CVDL vs. GPQ-based

ADL methods)

No. of No.of  Standard GPQ-based GPQ-based GPQ-based
Solutions Replicates Deviation SSDL CVDL ADL
5 2 0.1 0.0462 0.0540 0.0467
0.2 0.0523 0.0467 0.0517

3 0.1 0.0499 0.0513 0.0502

0.2 0.0522 0.0511 0.0517

4 0.1 0.0498 0.0489 0.0505

0.2 0.0504 0.0509 0.0508

7 2 0.1 0.0504 0.0490 0.0501
0.2 0.0495 0.0504 0.0494

3 0.1 0.0505 0.0473 0.0509

0.2 0.0495 0.0504 0.0498

4 0.1 0.0498 0.0529 0.0498

0.2 0.0498 0.0452 0.0510
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Table 8.2.2 Empirical powers with the true ADL=0.005 (GPQ-based SSDL vs.
GPQ-based CVDL vs. GPQ-based ADL methods)

No. of No. of Standard GPQ-based GPQ-based GPQ-based

Solutions  Replicates Deviation SSDL CVDL ADL

5 2 0.1 0.9995 0.9876 1.0000
0.2 0.6976 0.7754 0.9331

3 0.1 1.0000 0.9989 1.0000

0.2 0.9326 0.9212 0.9942

4 0.1 1.0000 0.9998 1.0000

0.2 0.9814 0.9678 0.9995

7 2 0.1 1.0000 0.9979 1.0000
0.2 0.9123 0.8994 0.9888

3 0.1 1.0000 0.9999 1.0000

0.2 0.9850 0.9742 0.9994

4 0.1 1.0000 1.0000 1.0000

0.2 0.9981 0.9932 1.0000
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Figure 8.2.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of
replicates is 3 (GPQ-based SSDL vs. GPQ-based CVDL vs. GPQ-based ADL methods)
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procedure is 40% more powerful than the GPQ-based CVDL method and is 16% more
powerful than the GPQ-based SSDL method at the ADL of 0.03. Therefore, the
improvement of the power provided by the GPQ-based ADL method is impressively

substantial.

8.3 Numerical Example

The previous example of calcium is used to illustrate the proposed testing procedures

in evaluation of linearity of an analytical procedure. Under the criteria of | Wp; 'Hu| for

linearity and repeatability are 0.2mg/dL.and.0.2mg/dL, respectively, and the allowable
margin of percent bound for ADL 1s-set as 0.05; the corresponding criteria and results of
three GPQ-based ADL, SSDL“and CVPL methods'are presented in Table 8.3.1. The
results show that the 95% upper conﬁcllerli?gjé“'l:imit for the ADL computed by the GPQ
method is 0.0218 which is smaller than th-e:- allowable  upper limit of 0.05. Hence, the
linearity of the analytical procedure.can be concl;lded at the 5% significance level by
the GPQ-based ADL procedure. On the other hand, the 95% upper confidence limits for
SSDL of the GPQ-based SSDL and CVDL methods are 0.2471 and 1.9125, respectively.
Both 95% upper confidence limits are larger than their respective allowable upper limits
of 0.2 and 1. As a result, both methods can not conclude the linearity of the analytical
procedure at the 5% significance level. The results presented above show the different
conclusions between the GPQ-based methods. As shown in simulation results, all three
GPQ-based methods can control the size at the nominal size of 0.05, the GPQ-based
ADL method is uniformly more powerful than the other two GPQ-based methods.

This might be one of the reasons why the linearity can be claimed by the GPQ-based
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Table 8.3.1 Results of the linearity evaluation by three different methods

Sample Statistic /

Method Critical Value or Allowable Bound  Conclusion
GPQ-based SSDL Upper 95% C.L. 0.2471
Allowable Upper Bound 0.2 Nonlinear
GPQ-based CVDL Upper 95% C.L. 1.9125
Allowable Upper Bound 1 Nolinear
GPQ-based ADL Upper 95% C.L. 0.0218
Allowable Upper Bound 0.05 Linear

95% C.L. : Upper 95% Confidence limit
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ADL method.

8.4 Summary

In this chapter, we discuss the relationship among three different aggregate criteria of
ADL, SSDL and CVDL. As we mentioned in Section 8.1, the SSDL, i.e., the sum of
square of the deviation from the linearity is the basis of three criteria. On the other hand,
ADL and CVDL are the scale measures scaled by the average concentration and
repeatability, respectively. As the demonstrated by the simulation results, all three
GPQ-based ADL, SSDL, CVDL methods can control the size at the nominal level.
Moreover, simulation results reveal that the GPQ-based ADL procedure is uniformly
more powerful than the GPQ-based SSDL and CVDL methods. In addition, CVDL
method is the most conservative;procedure among allithree GPQ-methods. This may be
due to the reason that it is scaled/by the repeatablhty and it requires both the predicted
means and repeatability of the best ﬁtted model to meet the allowable limits. On the
other hand, the GPQ-based ADL procedure _not.only adequately control the type I error
rate but also is uniformly more powerful than the other GPQ-based method. Therefore,
the GPQ-based ADL procedure will be recommended to be the better procedure for
evaluating the linearity in assay validation among the three GPQ-based methods.
However, as the GPQ-based CVDL procedure considers linearity and repeatability
simultaneously in one measure, one may consider using CVDL as the criterion for assay

validation if he/she would like to evaluate accuracy and reliability simultaneously.
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Chapter 9

Concluding Remarks

9.1 Conclusion

One of the most important characteristics for evaluation of accuracy and precision in
assay validation is linearity. Even though the best-fitted model is not linear, linearity of
the analytical procedure can still be elaimed ifithe difference in the predicted means
between the best-fitted and linear models is srﬁaller than some pre-specified allowable
limit at all concentrations employed| in, \the' V.alidation experiment. As a result, the

deviation from linearity is the fundamental/init/forfassessment of bias for evaluation of

linearity.

With respect to the disaggregate criterlion, the approved CLSI EP6-A guideline
proposes the estimation method by comparing the estimates of the differences in the
predicted means with the pre-specified allowable limit directly without the formal
statistical inference procedure. The method completely ignores the variation of the
estimate and inflates the type I error of the results of the evaluation. On the hand, the
ADL proposed by Kroll et al. (Kroll, 2000) is an aggregate criterion constructed by the
sum of square of from the deviations from linearity scaled by the mean concentrations.
However, the statistical testing procedure proposed by Kroll et al. (Kroll, 2000) not only
incorrectly formulates the hypothesis for proving linearity but also contained the

unknown nuisance parameters in the distribution of ADL which causes the problem for
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controlling the size at the nominal level. Therefore, we propose the TOST procedure
and corrected Kroll’s method to improve the shortcomings of the above two methods by
providing the formal statistical testing procedure instead of the estimation method and
reformulating the correct hypothesis for the uncorrected Korll’s method, respectively.
The simulation results show the proposed methods can control the size better than the
two current methods. On the other hand, to overcome the issue raised by the unknown
nuisance parameters of the distribution of ADL, we propose the GPQ-based ADL
method for eliminating the unknown parameter in the distribution by applying the
concept of generalized confidence interval proposed by Weerahadi (Weerahandi, 1993).
The proposed GPQ method not only can control the size at the nominal level better than
the corrected Kroll’s method but glso keep the good performance of the power for

assessment of linearity in assay validation.

In addition to ADL proposed by Krc_)lll e{g-i‘lf -"(Kroll, 2000), we also introduce two new
alternative criteria SSDL and C\./_DL. SSSI;:-is an un-scaled measure which is formulate
by the sums of the square of the deviation fr’on; linearity, while CVDL is a scaled
measure which is scaled by the variability of the best-fitted model for assessment of
linearity. The major difference of CVDL with other two aggregate criteria is that CVDL
considers both accuracy and reliability with respect to an analytical method into one
measure simultaneously. With respect to SSDL, one may consider the following test

statistic for evaluating linearity using F-test:
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L
Under the null hypothesis of hypothesis (3.2.2.2), i.e., Z(upi- u,)’=Ls;, v is
i=1

distributed as an non-central Fg, ., distribution with non-centrality parameter of

i?tz). However, there is still unknown parameter o° in the non-centrality parameter of
(&)

the distribution. If the statistical testing is performed based on ¥ with non-central

FiiL distribution by substituting o’ using its estimates, the type-I error may still

be inflated due to the variability of estimates of o”. Therefore, the GPQ approach is
proposed to solve the issue of the unknown parameters in the distribution of the
estimators of each aggregate criterion. Our simulation results show all three GPQ-based
ADL, SSDL and CVDL method ¢an not only control the size better than corrected
Kroll’s method but also maintain thé gopd performance of the power. On the other hand,

it also show the GPQ-based ADL prbéé:tiu_ré is uniformly more powerful than the

GPQ-based SSDL and CVDL methads. |

In addition to the proposed. GPQ approach: a bootstrap procedure may be a
reasonable approach to evaluation of linearity for the proposed aggregate criteria.
However, bootstrap procedures may suffer a disadvantage that the sampling
distributions of the observed ADL, SSDL and CVDL involve unknown nuisance
parameters which need to be substituted by their estimates when generating the
bootstrap samples. Bootstrap procedures will still inflate type I error rate due to
variability of estimates of unknown parameters. On the other hand, derivation of
generalized pivotal quantities is based on the sampling distribution of the sample mean,
the mean square of the best-fitted model. As result, our proposed GPQ procedures do
incorporate the sampling variability of the estimated parameters. In addition, the

observed GPQ is free of the nuisance parameters. This is another novelty of our
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proposed procedure which applies the technique of GPQ to resolve the issue of nuisance
parameters for the inference of the proposed aggregate criteria on evaluation of

linearity.

The other issue needs to be noted is about the design of experiment for evaluation of
linearity. As it has already known that the variability of the predicted values of the fitted
regression models will become larger at the concentration levels which are close to the
start and end points of the range of selected concentration levels. Therefore, the optimal
design with the selection of appropriate concentration levels including the number of
concentration levels, the value of concentration levels and the number of samples at
each concentration levels by considering.the.change of the variability for the predicted
values at different concentration levels needs .t.b be-considered. As one of the purposes
for the evaluation of linearity is'to decide_ the range of concentration levels with linearity,
after selecting out the concentration leylels,:%gﬁthout nonlinearity according to the criteria
of EP6-A guideline (Tholen et al;; 2003), an equal space design, i.e., equal difference
between each two neighbor concentration le’veis, which is the design with most

efficiency is recommend.

In our research, we introduce the TOST procedure for the disaggregate criterion as
well as the GPQ-based procedure for the different aggregate criteria. All of the proposed
procedures show the good performance in controlling the size and power for assessment
of linearity in assay validation. In addition, the evaluation procedure based on the
disaggregate criterion is more conservative than which based on the aggregate criterion
because it requires that the differences in predicted means between the best-fitted model
and linear models for all solutions be within the pre-specified limit, while the aggregate

criterion only requires the magnitude of sum of deviations from linearity be controlled
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within a aggregate limit. The choice of the disaggregate-based procedure and aggregate
based procedure may depend on how accuracy the assay method is required. In addition,
although the GPQ-based ADL procedure is recommended to be used for assessment of
linearity in assay validation since it is the uniformly more powerful than the other two
GPQ-based methods. However, one may consider using CVDL as the criterion for assay

validation if he/she would like to evaluate accuracy and reliability simultaneously.

9.2 Other Application and Future Research

As we introduced in Chapter 5 that SSDL is an aggregate criterion formulated by the
nature of disaggregate criterion proposed: by the CLSI EP6-A guideline (Tholen et al.,
2003) as the form of model—by—dilﬁtion interaction. The similar concept for aggregate
criterion of model-by-dilution inte?éét}iﬁg}_:'_: for assessing linearity can also be
implemented to the area of investigaﬁrig tﬁe consistency of treatment differences of a
pharmaceutical product among differf::nt populétions. For instance, the pharmaceutical
companies conduct the bridging study as a. supplementary study in the new region to
provide pharmacodynamic or clinical data on efficacy, safety, dosage and dose regimen
to allow extrapolation of the foreign clinical data to the population of the new region for
getting the drug approval in the new region. The interest of the center effect is also for a
multi-center clinical trial to evaluate consistence of the drug effect among study centers.
In addition, scientists or medical expert may have interest in evaluating the similar
effect of the pharmaceutical product can be obtained for adults and children. The
treatment-by-population interaction can be considered as a measure for evaluating if the
effects of a pharmaceutical product are consistent among populations based on the

aggregate criteria, where population can be the region, center or age group according to
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the application. However, our aim 1is not to detect existence of the
treatment-by-population  interaction  but rather to verify = whether the
treatment-by-population interaction is within some pre-specified allowable upper limit.

Therefore one of possible hypothesis can be formulated as follows:

ZL:(HAk MA) ZL:(“Ak HA)

Hy: A= - >0 vs. H & - <6;

where p, and E are the treatment difference in population k and overall mean

treatment difference among L populations, respectively, between investigational and

control products. 6, is the allowable upper bound of treatment difference for each of L

populations. The research for this applicatidh has already been investigated as the

separate topic.

With respect to the further ‘research, tﬁ;ETe are some topics related to our current
research which can be considere.dfa_s th:ej foligwing:

(1) As both accuracy and reliability are importa;lt for an assay method, the proposed
CVDL is proposed as a criterion for not only assessing accuracy but also
evaluating reliability simultaneously. The alternative approach for evaluating
accuracy and reliability simultaneously is to perform a multiple comparison by
conducting two statistical testing procedures for assessment of linearity and
repeatability, respectively.

(2) CVDL is actually an aggregate criterion for aggregating the measures of accuracy
and reliability by their ratio. In some situation, the different importance of

accuracy and reliability for some specific assay method may be considered. The

weighted sum of the measures for accuracy and reliability probably can be
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)

considered as an alternative aggregate criterion for this type of evaluation.

CLSI EP6-A guideline (Tholen et al., 2003) suggests an experiment with 5 to 7
concentration levels and at least two replicates of samples should be employed for
evaluation of linearity. However, the determination of sample size in experiment
should not be fixed but based on the consideration of the magnitude of the
allowable limit of evaluation criterion. Therefore, the selection the appropriate
sample size with desired power and significant level under the pre-specified

allowable limit of the evaluation criterion is one of the topics for future research.

< ALY
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Appendix

Instruction for Using the Fortran Program for Linearity Evaluation of Assay Validation

Introduction:
The program is developed based on the statistical methods presented in the published paper entitled “Statistical Methods for Evaluating
the Linearity in Assay Validation” (Eric Hsieh, and Chin-fu Hsiao, Jen-pei Liu, 2008).

System Requirement
Fortran Version: Compaq Visual Fortran 6.6 with IMSL ‘Library-,

l—

-
—

Instruction
The program includes the following functions:

1. Input Data:
There is the user friendly interface which allows users can input the following information based on their experiment design:
(1) Desired statistical significant level
(2) Desired allowable limit for different of predicted values between linear and polynomial models
(3) Number of Solutions
(4) Number of Replicates
(5) Measures obtained from their experiments

2. Output
There are two types of output provided in the applications
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(1) Output on the screen
The output on the screen provides the basic information of the design and results of the linearity evaluation by each statistical
procedure in the paper.
(2) Output to the text file
The application allows user to specify the desired path and file name to save the detail results of the evaluation including:
® [nputted measures obtained from the experiment
® Summary of Regression Analysis
® Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation
® Results of the linearity evaluation by each statistical procedure

3. Demo of the Operation
Please refer to the Fig 1 and 2 for demo of the operation.

4. Sample Content in the Output File for Detail Results ; o~
Please refer to the output in Example.txt for sample detail Results./~

L f\‘g.ia !
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« "C:\Date Folder\Drive d - at Duke\Wait for Integration\NTU Related\Ph.D P.rogram\Ph.D Paper Writing\Linearity on GPO\Simluation\Prog

b Yelcome the Application for Linearity Evaluation of Assay Ualidation sees

Please Input the significant level of statistical Testing :
B._85

the allowable Limit of Linearity :

the Humber of Solutions of Your Experiment :

the Number of Replicates of Your Experiment :

the ohservations at each Solution
Level= 1 Replicate Mo= 1

the ohservations at each Solution
Level= 1 Replicate No= 2

Please Input the ohservations at each Solution
==» Solution Level= 2 Replicate Ho= 1
7.8

Please Input the ohservations at each Solution
==» Solution Level= 2 Replicate No= 2
7.6

Please Input the ohservations at each Solution
==» Solution Level= 3 Replicate Ho= 1
10.4

the ohservations at each Solution
Level= 3 Replicate Mo= 2

the ohservations at each Solution
Level= 4 Replicate No= 1




o "C:\Date Folder\Drive d - at Duke\Wait for Integration\NTU Related\Ph.D Program\Ph.D Paper Writing\Linearity on GPO\Simluation\Prog

Please Input the ohservations at each Solution Level :
==» Solution Level= & Replicate No= 1
5.5

Please Input the ohservations at each Solution Level :
==» Solution Level= & Replicate Ho= 2
15.3

Please sepficy the path and file name (e.g. c:“assay‘result.txt) for the
output for results with maximum lenght of 58 or 'N* or *n’ for no output file:

C:~Example . txt

Results

Btiatistical Significant Level

Percent Bound for Corrected Kroll's Method

Allowable Limit of Mu(PF>-MudL> for S8DL’'s Method

Mumber of Solutions 5
Mumber of Replicates 2
The Best Polynomial Model Quadratic
[EP6A Monlinear
Corrected Kroll's Method : Bample ADL A.081462
Corrected Kroll’s Method : Critical Ualue A.84367
Corrected Kroll’s Method : ConlusionUalue Linear
SSDL’s Method{Bootstraping? : Upper 95% CI a.22722
S5DL’s Method{(Bootstraping? : Conclusion Monlinear
5SDL’s Method{GFQ> : Upper 952 CI 8.25817
SSDL' s Method{GPQ> : Result = Monlinear

Do You want a new copmutation <Y¥/y to continue or any other for escaped?
n

b Thanks and Good Bye oo

Press any key to continue




Sample Output in Example.txt

Statistical Methods for Evaluating the Linearity in Assay Validation

= Eric Hsiehl and Chin-fu Hsiao, Jen-pei Liu (2008)
= Jounral of Chemometrics

=== Measurement ===
Solution Replicate Result
1 1 4.70000 : Il M
1 2 4.60000 | 98
2 1 7.80000
2 2 7.60000
3 1 10.40000
3 2 10.20000
4 1 13.00000
4 2 13.10000
5 1 15.50000
5 2 15.30000
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=== Summary of Regression Analysis ===

Order Coefficient Value SE t-test Signi- Std err D.F.
ficant Sy.x

Linear b0 2.16500 0.15097 14.341

bl 2.68500 0.04552 58.988 0.20356 8
Quadratic b0 1.54000 0.18863 8.164
bl 3.22071 0.14375 22.406

b2 -0.08929 0.02350 -3.799 0.12438 7
Cubic b0 1.47000 0.46623+ e,
bl 3.31905 0.60943 ~\ 15446
b2 -0.12679 0.22620 - ==0.561

b3 0.00417 0.02498 [ 0169 0.13403 6
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=== Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation ===

Result Predicted Predicted Difference %Difference
Mean (Linear) (Quadratic)

4.65000 4.85000 4.67143 -0.17857 -3.82263
7.70000 7.53500 7.62429 0.08929 1.17107
10.30000 10.22000 10.39857 0.17857 1.71727
13.05000 12.90500 12.99429 _ 0.08929 0.68712
15.40000 15.59000 15.41143 : -0.17857 -1.15869

o AT
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= Results

Stiatistical Significant Level

Percent Bound for Corrected Kroll's Method
Allowable Limit of Mu(P)-Mu(L) for SSDL's Method
Number of Solutions

Number of Replicates

The Best Polynomial Model

EP6A

Corrected Kroll's Method : Sample ADL
Corrected Kroll's Method : Critical Value
Corrected Kroll's Method : ConlusionValue
SSDL's Method(Bootstraping) : Upper 95% CI
SSDL's Method(Bootstraping) : Conclusion
SSDL's Method(GPQ) : Upper 95% CI
SSDL's Method(GPQ) : Result

0.050
0.050
0.020
5
2
Quadratic
Nonlinear
0.01462
. 0.04367
~\_Linear
022722
' | Nonlinear
025017
Nonlinear.
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= Statistical Methods for Evaluating the Linearity in Assay Validation

I= Eric Hsiehl and Chin-fu Hsiao, Jen-pei Liu (2008) =
Jounral of Chemometrics

program LinearEval

use IMSL

USE DFPORT

implicit none

character*8 char time 2 et I~
'E

Parameter Setting : I L | .
integer, parameter :: nomonte=10000, noboot=3000 ! Simulatio time for Monte-Carlo and Bootstrap

IStatistics : .
real(kind=8), allocatable :: mu_p_hat(:), mu_1 hat(:), diffpl(:),! Working vectors of estimates of Mu(Pi),Mu(L1i) and their difference

real(kind=8) :: diffsrm !Sum of square of Mu(P1)-Mu(L1)

real(kind=8) :: ADL,crikroll,parmp2,cgpq !Sample Statistic

real(kind=8) :: Mu_y !Mean of y

real(kind=8) :: MSEP !MSE of the models i.e. estimate of Sigma”2

real(kind=8), allocatable :: presid(:), Iresid(:) !residuals for polynominal model by original LSE and bootstrap sampling,respectively

'Data
real(kind=8), allocatable :: obs_y(:) !Working vector of y

IResult

106



character(len=12) :: EP6A,Cr_Kroll,Pbootstp2,GPQ

'Working Variable

integer :: IMonte, lrep, Isol, Iboot, Igpq  !loop indexes

integer :: noobs_y !Working number of observation of y

real(kind=8), allocatable :: betaw(:) ! Working vector for model coefficient

integer :: error=0 !Status check for memory allocation

real(kind=8), allocatable :: pbdiffsrm(:), psbdiffsrm(:)! Arrays conating sum of square of Mu(Pi)-Mu(Li) generated by bootstrap
sampling before and after sorting

integer :: 1,j,k,m !Temporary working variables

real(kind=8), allocatable :: GZ(:) !Standard normal randomysample for GPQ

real(kind=8) :: GU(1) !Chi-square random sample with df LR=d-1 for GPQ

real(kind=8), allocatable :: Gdiftpl2(:), SGdiffpl2(:) ! Arraysi€onatingGPQ of (Mu(Pi)-Mu(Li))"2 generated by GPQ method before
and after sorting . ) _

real(kind=8), allocatable :: GSIGMA12(:,:) !Sigma”1/2 generated by Spectral Decomposition Method for GPQ sampling

real(kind=8), allocatable :: RSIG(:,:) Upper triangularimatrix dé‘eornposed by Cholesky factorization

integer :: IRANK !Returned parameter for

real(kind=8), allocatable :: Mnormpl(:,:) !'Random sample generated by Multmormal distribution of Mu(Pi)-Mu(L1)

real(kind=8), parameter :: TOL=2.220446049250313E-14 Tolerance limit for DCHFAC function of IMSL

character(len=1) :: Start :

real(kind=8) :: delta, alpha

integer :: nosol, norep

real(kind=8), allocatable :: dm_d1(:,:),dm_d2(:,:),dm_d3(:,:),dm_dp(:,:) !working design matrix for model

real(kind=8), allocatable :: WP(:,:),WL(:,:),WP2(:,:), WP3(:,:) !Working information matrix for polynomial model

real(kind=8), allocatable :: mu_P2 hat(:),mu_P3 hat(:),p2resid(:),p3resid(:) ! Working predict vector

real(kind=8), allocatable :: W(:,:),IW(:,:) !Difference of working information matrixs between 1st and polynomial models

real(kind=8) :: IT_WL(2,2),IT WP2(3,3),IT WP3(4,4)

real(kind=8) :: betal._hat(2),betaP2 hat(3),betaP3 hat(4),betalSE(2),betaP2 SE(3),betaP3 SE(4)

real(kind=8) :: betalL_tv(2),betaP2 tv(3),betaP3 tv(4)

real(kind=8) :: LSEYX,P2SEY X,P3SEY X,Ldf,P2df,P3df, MSEL,MSEP2, MSEP3 porder

character(len=1) :: Lsigl,Lsig2,P2sigl,P2sig2,P2sig3,P3sigl,P3sig2,P3sig3,P3sig4
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character(len=50) :: flname

! Initial Setting !!!

allocate(pbdiffsrm(noboot),stat=error)

allocate(psbdiffsrm(noboot),stat=error)

allocate(Gdiffpl2(nomonte),stat=error)

allocate(SGdiffpl2(nomonte),stat=error)

Start="Y"

do while (start=="Y" .OR. start=="y")
write(*,"(A76)") "*** Welcome the Application for Linearity. Evaluatlon of Assay Validation ***"
write(*,*) " "
write(*,"(A76)") "Please Input the significant level of statlstlcal Testlng
read(*,*) alpha >
write(*,*) " " Il M
write(*,"(A76)") "Please Input the allowable Limit of Lmearlty
read(*,*) delta
write(*,*) " "
write(*,"(A76)") "Please Input the Number of Solutions of Your Experlment
read(*,*) nosol
write(*,*) " "
write(*,"(A76)") "Please Input the Number of Replicates of Your Experiment :
read(*,*) norep
write(*,*) " "
noobs_y=nosol*norep !number of observation of y
allocate(dm_d1(noobs_y,2),stat=error)
allocate(dm_dp(noobs_y,4),stat=error)
allocate(dm_d2(noobs_y,3),stat=error)
allocate(dm_d3(noobs_y,4),stat=error)

"

108



allocate(obs_y(noobs_y),stat=error)
allocate(presid(noobs_y),stat=error)
allocate(p2resid(noobs_y),stat=error)
allocate(p3resid(noobs_y),stat=error)
allocate(Iresid(noobs_y),stat=error)
allocate(mu_p_hat(noobs_y),stat=error)
allocate(mu_p2_hat(noobs_y),stat=error)
allocate(mu_p3_hat(noobs_y),stat=error)
allocate(mu_1 hat(noobs_y),stat=error)
allocate(WP(noobs_y,noobs_y),stat=error)
allocate(WP2(noobs_y,noobs_y),stat=error)
allocate(WP3(noobs_y,noobs_y),stat=error)
allocate(WL(noobs_y,noobs_y),stat=error)
allocate(IW(noobs_y,noobs_y),stat=error)
allocate(diffpl(noobs_y),stat=error)
allocate(RSIG(noobs_y,noobs_y),stat=error)
allocate(Mnormpl(noboot,noobs_y),stat=error)
allocate(GZ(noobs_y),stat=error)
allocate(GSIGMA 12(noobs_y,noobs_y),stat=error)

do Isol=1,nosol
do Irep=1,norep

L AT

write(*,"(A76)") "Please Input the observations at each Solution Level :

write(*,"(A19,13,A19,I13)") "==> Solution Level=", Isol, "
read(*,*) obs_y((Isol-1)*norep+lrep)
write(*,*) ""
end do !lrep
end do !lsol

do Isol=1,nosol
do Irep=1,norep
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dm_d1((Isol-1)*norep+irep,1)=1
dm_dI((Isol-1)*norep+lrep,2)=Isol
dm_dp((Isol-1)*norep+lrep,1)=1
dm_dp((Isol-1)*norep+lrep,2)=Isol
dm_dp((Isol-1)*norep+irep,3)=lsol*1sol
dm_dp((Isol-1)*norep+lrep,4)=lsol*Isol*1Isol
end do !lrep
end do !lsol

dm_d2=dm_dp(:,1:3)

dm_d3=dm_dp

IT WL=.i. (dm_dI .tx. dm _d1l)

IT_ WP2=.i. (dm_d2 .tx. dm_d2)

IT WP3=.i. (dm_d3 .tx. dm d3)

WL=dm_dI x.IT WL .xt. dm_dl AL Jr

WP2=dm d2 .x. IT WP2 .xt. dm d2 =

WP3=dm d3 x. IT WP3 xt. dm_d3 : Il A

mu_L hat=WL .x. obs_y !Compute the estimate of Mu(L1), |

mu_P2 hat=WP2 .x. obs_y !Compute the estimate of Mu(P1)"

mu_P3 hat=WP3 x. obs_y !Compute the estimate of Mu(P1)

Iresid=obs_y-mu_L _hat !Residuals for linear model

p2resid=obs_y-mu_p2 hat !Residuals for polynomial model

p3resid=obs_y-mu_p3 hat !Residuals for polynomial model
MSEL=norm(Lresid,2)**2/(noobs_y-1.0-1.0) IMSE of polynominal model i.e. estimate of Sigma”2
MSEP2=norm(p2resid,2)**2/(noobs_y-2.0-1.0) IMSE of polynominal model i.e. estimate of Sigma”2
MSEP3=norm(p3resid,2)**2/(noobs_y-3.0-1.0) IMSE of polynominal model i.e. estimate of Sigma”2
IT WL=.i. (dm_dl .tx. dm_d1)

IT WP2=.i. (dm_d2 .tx. dm_d2)

IT WP3=.i. (dm d3 .tx. dm d3)

betal._hat=(IT_WL .xt. dm_dl1) .x. obs_y

betaP2 hat=(IT _WP2 .xt. dm d2) .x. obs y
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betaP3 hat=(IT_WP3 xt. dm d3) .x. obs y
doi=1,2
betal. SE(i)= dsqrt(IT_WL(i,i))*MSEL)
end do
doi=1,3
betaP2 SE(i)= dsqrt(IT_WP2(i,i))*MSEP2)
end do
doi=1,4
betaP3 SE(i)= dsqrt(IT_WP3(i,i)*MSEP3)
end do
betal. tv=betal. hat/betal. SE
betaP2 tv=betaP2 hat/betaP2 SE
betaP3 tv=betaP3 hat/betaP3 SE
LSEYX=dsqrt(MSEL)
P2SEY X=dsqrt(MSEP2)
P3SEY X=dsqrt(MSEP3)
Ldf=noobs_y-1.0-1.0
P2df=noobs_y-2.0-1.0
P3df=noobs_y-3.0-1.0
if (dabs(betal._tv(1)) >dtin(1.0-alpha/2.0,Ldf)) then
Lsigl="*"
else
Lsigl=""
end if
if (dabs(betal._tv(2)) > dtin(1.0-alpha/2.0,Ldf)) then
Lsig2="*"
else
Lsig2=""
end if
if (dabs(betaP2 tv(1)) > dtin(1.0-alpha/2.0,P2df)) then
P2sigl="*"

L AT
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else
P2sigl=""

end if

if (dabs(betaP2 tv(2)) > dtin(1.0-alpha/2.0,P2df)) then
P2sig2="*"

else
P2sig2=""

end if

if (dabs(betaP2 tv(3)) > dtin(1.0-alpha/2.0,P2df)) then
P2sig3="*"

else
P2sig3=""

end if

if (dabs(betaP3 tv(1)) > dtin(1.0-alpha/2.0,P3df)) then
P3sigl="*"

else
P3sigl=""

end if

if (dabs(betaP3_tv(2)) > dtin(1.0-alpha/2.0,P3df)) then
P3sig2="*"

else
P3sig2=""

end if

if (dabs(betaP3_tv(3)) > dtin(1.0-alpha/2.0,P3df)) then
P3sig3="*"

else
P3sig3=""

end if

if (dabs(betaP3_tv(4)) > dtin(1.0-alpha/2.0,P3df)) then
P3sig4="*"

else
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P3sig4d=""
end if
porder=0.0

if (P3Sigd=="*") .AND. (P3SEYX <= P2SEYX)) then
porder=3.0
WP=WP3
mu_p_hat=mu_p3 hat
MSEP=MSEP3
else if ((P2Sig3=="*") .AND. (P2SEYX <= LSEYX)) then
porder=2.0
WP=WP2
mu_p hat=mu p2 hat
MSEP=MSEP2
else if (LSig2=="*") then
porder=1.0
else
porder=0.0
end if

IW=(WP-WL) .xt. (WP-WL)

L AT

diffpl=mu_p hat-mu 1 hat !Compute the Vector of Mu(Pi)-Mu(L1i)
diffsrm=norm(diffpl,2)**2 |Compute sum of square for Mu(Pi)-Mu(Li)

mu_y=sum(obs_y)/noobs_y !Mean of y

if (porder == 0.0) then
write(*,"(A1)")
write(*,"(A1)")

RN R R R R AR AR AR AR AR AR RN
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write(*,"(A64)")
write(*,"(A64)")
write(*,"(A64)")
write(*,*) " "

write(*,"(A64)")
write(*,*) " "

write(*,"(A64)")
write(*,"(A64)")

else if (porder == 1.0) then

write(*,"(A1)")
write(*,"(A1)")
write(*,"(A64)")
write(*,"(A64)")
write(*,"(A64)")
write(*,"(A1)")
write(*,"(A64)")
write(*,"(A1)")
write(*,"(A64)")
write(*,"(A64)")

else

"= Results ="

"

"Neither one of linear, quadratic or cubic model fitted

"= ’ Results ="

"The linear model has already beé:ﬁ'i;thé best model. "
1l M

n !

n . o

rn EP6A method NI
if (maxval(abs(diffpl)) < delta) then

EP6A="
else

EP6A="  Nonlinear"

end if

ADL=dsqrt(diffsrm/noobs_y)/(mu_y)
CriKroll=(dsqrt(MSEP)/mu_y)*dsqrt(DCSNIN(alpha, porder-1.0, noobs_y*(0.05**2)/(MSEP/(mu_y**2)))/noobs_y)
if (ADL < crikroll ) then
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Cr_Kroll=" Linear"
else

Cr _Kroll="  Nonlinear"
end if

rrnn Parametric Bootstratp TN
CALL DCHFAC(noobs_y, MSEP*IW, noobs_y, TOL, IRANK, RSIG, noobs_y)
CALL DRNMVN(noboot, noobs_y, RSIG, noobs_y, Mnormpl, noboot)
do i=1,noboot
pbdiffsrm(i)= norm((diffpl + Mnormpl(i,:)),2)**2
end do
call DSVRGN(noboot, pbdiffsrm , psbdiffsrm)
parmp2=psbdiffsrm(noboot+1- floor(alpha*noboot))/morep
if ( psbdiffsrm(noboot+1- floor(alpha*noboot)) < (noobs y*(delta**2)) )ithen

Pbootstp2=" Linear" Ve S
else =
Pbootstp2="  Nonlinear" ; Il M
end if | B

et GPQ method !N

do Igpg=1,nomonte
CALL DRNNOR (noobs_y, GZ)
call DRNCHI(1,noobs_y-porder-1.0, GU)
call CPSIGMA(((noobs_y-porder-1.0)*MSEP/GU(1))*IW, noobs_y, GSIGMA12)
Gdiftpl2(Igpq)=norm(diftfpl-(GSIGMA12 x. GZ),2)**2 !/norep

end do

call DSVRGN(nomonte,Gdiftpl2,sGdiffpl2)

CGPQ=sGdiffpl2(nomonte - floor(alpha*nomonte))/norep

if ( sGdiffpl2(nomonte - floor(alpha*nomonte)) < (noobs_y*(delta**2)) ) then
GPQ=" Linear"

else
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GPQ="  Nonlinear"
end if
erte(*,"(AI)H) nn

write(*,"(A78)") "Please sepficy the path and file name (e.g. c:\assay\result.txt) for the

n

write(*,"(A78)") "output for results with maximum lenght of 50 or 'N' or 'n' for no output file:"

read(*,*) flname

if ((trim(flname) .NE. "n") .OR. (trim(flname) .NE. "N")) then
OPEN(unit = 111, file = flname, status = "replace", action ="write")

end if

write(111,"(A1)") " "

write(111,"(A76)") "

write(111,"(A76)") "= Statistical Methods for Evaluatingthe Lineasity in Assay Validation ="
write(111,"(A76)") "= % 4 _ ="
write(111,"(A76)") "= Eric Hsiehl and Chin-fu Hsiao, Jen-pei Liu (2008) ="
write(111,"(A76)") "= Jounral of €Chemometrics ="

F "

write(111,"(A76)") "
write(111,"(A1)") " "

write(111,"(A1)") " "

write(111,"(A1)") " "

write(111,"(A32)") "=== Measurement ===
write(111,"(AT)") " "

write(111,"(A46)") " Solution Replcaite
write(111,"(A46)") "

write(111,"(A1)") " "
do Isol=1,nosol
do Irep=1,norep
write(111,"(A5,15,A10,15,A6,F12.5)") " " Isol,"
end do
end do
write(111,"(A1)") " "

n

=

Result "

"lrep," ".obs_y((Isol-1)*norep+lrep)
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write(111,"(A46)") " "
write(111,"(A1)") " "
write(111,"(A1)") " "
write(111,"(A1)") " "

write(111,"(AS57)") "=== Summary of Regression Analysis === "

write(111,"(A1)") " "

write(111,"(A106)") " Order Coefficient Value SE t-test Signi- Std err
D.E"

write(111,"(A106)") " ficant
Sy.x "

write(111,"(A106)") " : "
write(111,"(A1)") " " =
write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " Lineat b0 "betal._hat(1),betal._SE(1),betal._tv(1),"

H’Lsigl - S~ :

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,15)") | ~\_ |~ bl "betal._hat(2),betal.SE(2),betal._tv(2),"
" Lsig2, LSEYX," " ceiling(Ldf) >

write(111,"(A1)") " " : Il m 1) :

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " Quadratic | ~ b0 "betaP2 hat(1),betaP2 SE(1),betaP2 tv(1),"
",P2sigl T .

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " - bl "betaP2 hat(2),betaP2 SE(2),betaP2 tv(2),"
" P2sig2

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,15)") " b2
"betaP2 hat(3),betaP2 SE(3),betaP2_tv(3)," ",P2sig3,P2SEYX," " ceiling(P2df)

write(111,"(A1)") " "

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " Cubic b0 ")betaP3 hat(1),betaP3 SE(1),betaP3 tv(1),"
" .P3sigl

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " bl "betaP3 hat(2),betaP3 SE(2),betaP3 tv(2),"
".P3sig2

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") " b2 "betaP3 hat(3),betaP3 SE(3),betaP3 tv(3),"
" .P3sig3

write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,15)") " b3
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" betaP3 hat(4),betaP3 SE(4),betaP3 tv(4)," " P3sig4,P3SEYX." " ceiling(P3df)
write(111,"(A1)") " "
write(111,"(A105)") " "
write(111,"(A1)") " "
write(111,"(A1)") " "
write(111,"(AT)") " "
write(111,"(A92)") "=== Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation ==="
write(111,"(A1)") " "
write(111,"(A102)") " Result Predicted Predicted Difference
%Difference "
if (porder==2.0) then ;
write(111,"(A102)") " Mean (L1inear) = (Quadratic)

else if (porder==3.0) then . 4 _
write(111,"(A102)") " Mean (Linear),\ I (Cubic)
end if : | A || :
write(111,"(A102)") " i "
write(111,"(A1)")" " T o -
do Isol=1,nosol
if (porder==2.0) then
write(111,"(F11.5,F20.5,F21.5,F23.5,F23.5)"),sum(obs_y((Isol-1)*norep+1:(Isol-1)*norep+norep))/norep/1.0,
mu_1 hat((Isol-1)*norep+1),&

mu_p2_hat((Isol-1)*norep+1),mu_p2 hat((Isol-1)*norep+1)-mu_1 hat((Isol-1)*norep+1),&

(mu_p2 hat((Isol-1)*norep+1)-mu_1 hat((Isol-1)*norep+1))/mu_p2 hat((Isol-1)*norep+1)*100
else if (porder==3.0) then
write(111,"(F11.5,F20.5,F21.5,F23.5,F23.5)"),sum(obs_y((Isol-1)*norep+1:(Isol-1)*norep+norep))/norep/1.0,
mu_1 hat((Isol-1)*norep+1),&
mu_p3_hat((Isol-1)*norep+1),mu_p3 hat((Isol-1)*norep+1)-mu_1 hat((Isol-1)*norep+1),&
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(mu_p3 hat((Isol-1)*norep+1)-mu_1 hat((Isol-1)*norep+1))/mu_p3 hat((Isol-1)*norep+1)*100

end if
end do
write(111,"(A1)") " "

write(111,"(A102)") "
write(111,"(A1)") " "
write(111,"(A1)")" "
write(111,"(A1)") " "
write(111,"(A64)")
write(111,"(A64)")
write(111,"(A64)")
write(111,"(A1)")
write(111,"(A52,F12.3)")
write(111,"(A52,F12.3)")
write(111,"(A52,F12.3)")
write(111,"(A52,112)")
write(111,"(A52,112)")
if (porder==2.0) then
write(111,"(A64)")
else if (porder==3.0) then
write(111,"(A64)")
end if
write(111,"(A52,A12)")
write(111,"(A52,F12.5)")
write(111,"(A52,F12.5)")
write(111,"(A52,A12)")
write(111,"(A52,F12.5)")
write(111,"(A52,A12)")
write(111,"(A52,F12.5)")
write(111,"(A52,A12)")
write(111,"(A1)")

"= Results

"Stiatistical Significant Level
"Percent Bound for Correeted Kroll's Method

"Allowable Limit of Mu(P)- Mu(L) for SSDL's Method

"Number of Solutions = -
"Number of Replicates | | '; \

"The Best Polynomial Modéi

"The Best Polynomial Model

"EP6A
"Corrected Kroll's Method : Sample ADL
"Corrected Kroll's Method : Critical Value
"Corrected Kroll's Method : ConlusionValue

"SSDL's Method(Bootstraping) : Upper 95% CI
"SSDL's Method(Bootstraping) : Conclusion

"SSDL's Method(GPQ) : Upper 95% CI
"SSDL's Method(GPQ) : Result
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=", alpha

="0.05
=" delta
=" nosol
=", norep

= Quadratic"
= Cubic"

—" EPGA
=" ADL

=", Crikroll

=", Cr_Kroll
=", parmp2
=", Pbootstp2

=", cgpq
=" GPQ



write(111,"(A64)")
write(111,"(A64)")

n

n

RN R R R RN RN AN

write(*,"(A1)")
write(*,"(A1)")
write(*,"(A64)")
write(*,"(A64)")
write(*,"(A64)")
write(*,"(A1)")
write(*,"(A52,F12.3)")
write(*,"(A52,F12.3)")
write(*,"(A52,F12.3)")
write(*,"(A52,112)")
write(*,"(A52,112)")
if (porder==2.0) then
write(*,"(A64)")
else if (porder==3.0) then
write(*,"(A64)")
end if
write(*,"(A52,A12)")
write(*,"(A52,F12.5)")
write(*,"(A52,F12.5)")
write(*,"(A52,A12)")
write(*,"(A52,F12.5)")
write(*,"(A52,A12)")
write(*,"(A52,F12.5)")
write(*,"(A52,A12)")
write(*,"(A1)")
write(*,"(A64)")

n— Results

"Stiatistical Significant Level
"Percent Bound for Corrected Kroll's Method

"Allowable Limit of Mu(P)- Mu(L) for SSDL‘S Method

"Number of Solutions L
"Number of Replicates >

i |

"The Best Polynomial Model 1

"The Best Polynomial Model

"EP6A
"Corrected Kroll's Method : Sample ADL
"Corrected Kroll's Method : Critical Value
"Corrected Kroll's Method : ConlusionValue

"SSDL's Method(Bootstraping) : Upper 95% CI
"SSDL's Method(Bootstraping) : Conclusion

"SSDL's Method(GPQ) : Upper 95% CI
"SSDL's Method(GPQ) : Result

"

=", alpha
=",0.05
=", delta
=" nosol
=", norep

Quadratic"

Cubic"

=", EP6A
=", ADL
=", Crikroll
=", Cr_Kroll
=", parmp2
=", Pbootstp2

=", cgpq
:u’ GPQ
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write(*,"(A64)") "

end if

deallocate(dm_d1)
deallocate(dm_dp)
deallocate(dm_d2)
deallocate(dm_d3)
deallocate(obs_y)
deallocate(presid)
deallocate(p2resid)
deallocate(p3resid)
deallocate(lresid)
deallocate(mu_p_hat)
deallocate(mu_p2 hat)
deallocate(mu_p3 hat)
deallocate(mu_ 1 hat)
deallocate(WP)
deallocate(WP2)
deallocate(WP3)
deallocate(WL)
deallocate(IW)
deallocate(diffpl)
deallocate(RSIG)
deallocate(Mnormpl)
deallocate(GZ)
deallocate(GSIGMA12)

write(*,"(A1)")
Write(*,"(A72)") "Do You want a new copmutation (Y/y to continue or any other for escape)?"
read(*,*) Start
if (Start NE. "Y" .AND. Start .NE. "y") then

write(*,"(A1)")

= AT
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write(*,"(A31)") "****  Thanks and Good Bye ****"
write(*,"(AD)") " "
Write(*,"(A71)”) 10 sfe sk s st s ske sk sk sk ke sie sk sk sk sk sk sie sk sk sk sk sie sk ske sk sk sk sie sk sk sk sk sie sk ske sk sk sk sie sk ske sk sk sk sie sk ske sk sk sk sie sk sk sk sk sie st sk sk skeoskeosieoske sk sk skoskoskesk sk sk
else
write(*,"(A1)")
write(*,*) ""
end if
end do

deallocate(pbdiffsrm)
deallocate(psbdiffsrm)
deallocate(Gdiftpl2)
deallocate(SGdiffpl2)
write(111,%) " "

call TIME(char_time)
stop

end

= T‘iﬂ.s I

subroutine CPSIGMA(SW,SDIMEN,CGSIGMA12)

use IMSL

implicit none

integer ,SDIMEN

REAL(kind=8) SW(SDIMEN,SDIMEN),B(SDIMEN,SDIMEN), eval(SDIMEN),
evec(SDIMEN,SDIMEN),K (SDIMEN+1,SDIMEN), X(SDIMEN+1,SDIMEN),E(SDIMEN,SDIMEN), LAMDA 12(SDIMEN,SDIMEN),SI
GMA12(SDIMEN,SDIMEN),CGSIGMA12(SDIMEN,SDIMEN)

INTEGER IRANK

INTEGER, PARAMETER ::NKEY=1

INTEGER NCX,NRX,LDX

INTEGER ICOMP, INDKEY(NKEY), IORDR, IRET, NGROUP

DATA INDKEY/1/

integer, allocatable :: IPERM(:), NI(:)
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integer :: error=0

NCX=SDIMEN
NRX=SDIMEN-+1
LDX=NRX
allocate(IPERM(NCX),stat=error)
allocate(NI(NCX),stat=error)
B=SW
CALL DEVCSF(SDIMEN, B, SDIMEN, EVAL, EVEC, SDIMEN)
do i=1,SDIMEN

if (eval(i) .LE. 0.0) then

eval(i)=0

end if
end do
k(1,:)=eval
k(2:SDIMEN+1,:)=evec
X=K
ICOMP =0
IORDR =1 '
IRET =0 : g
CALL DSCOLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET; NKEY,; INDKEY,IPERM, NGROUP, NI)
E=X(2:SDIMEN,:)
LAMDA12=0
do I=1,SDIMEN

LAMDAT12(i,1)=dsqrt(X(1,1))
end do
SIGMA12=E .x. LAMDAI12
CGSIGMA12=SIGMAI12 xt. E
deallocate(IPERM)
deallocate(NI)

end

= T‘iﬂ.s I
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