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摘要 

 

在檢定確效性的評估中，線性是最重要的特性之ㄧ。目前，評估線性的統計方

法是由 Clinical Laboratory Standard Institute (CLSI) EP6-A 準則 所提出。這個方法直

接比較點估計值和允許區間並且完全忽略點估計值的抽樣誤差。另一個評估線性的

方法是由 Kroll, et al. (2000) 所提出，他使用了線性平均離散程度 (ADL) 當作統計

檢定方法，但是卻使用了不正確的統計假設與對應之統計檢定方法。因此，現有兩

個方法的型一誤差可能會因而變大而無法做出正確評估。我們提出了雙尾檢定方法

與 corrected Kroll’s 方法來改善現有方法之缺點。另一方面，我們亦建議了一個以廣

義樞紐量(Generalized Pivotal Quantity, GPQ) 為基礎的 ADL 方法來克服由於 ADL

的機率分布存在未知之參數 (nuisance parameter)，而使得型一誤差受到未知之參數干

擾的問題。 

   此外，我們亦建議了兩個新的用來評估線性程度的聚合型測度  (aggregate 

measure)。其中 SSDL 代表線性離散程度平方和。另一方面，CVDL 則同時考量了

變異程度的影響，而定義為相對於變異之線性平均離散程度平方和。經由模擬研究

結果顯示，我們所提出各個方法皆比現有由 CLSI EP6-A 準則 與 Kroll et al. 所提

出之方法不僅能有效控制型一誤差並且達到一定水準的檢定力。最後，針對我們提

出的方法，也利用了數個例子進行資料分析與方法間之比較。 

 

關鍵字：允許區間，線性，量化分析的實驗方法、廣義樞紐量。 
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Abstract 
 

Linearity is one of the most important characteristics for evaluation of the accuracy in 

assay validation. The current estimation method for evaluation of the linearity 

recommended by the Clinical Laboratory Standard Institute (CLSI) guideline EP6-A 

(Tholen et al., 2003) directly compares the point estimates with the pre-specified 

allowable limit and completely ignores the sampling error of the point estimates. An 

alternative method for evaluation of linearity proposed by Kroll, et al. (Kroll, 2000) 

considers the statistical testing procedure based on the average deviation from linearity 

(ADL). However this procedure is based on the inappropriate formulation of hypothesis 

for evaluation of the linearity. Consequently, the type I error rates of both current 

methods may be inflated for inference of linearity. Therefore, we propose a two 

one-sided test (TOST) procedure and a corrected Kroll’s procedure as the more 

appropriate procedure for assessment of linearity. On the other hand, for the purpose to 

overcome the issue raised by the unknown nuisance parameters of the distribution of 

ADL, the GPQ-based ADL procedure is also proposed. 

In addition, we introduced two new alternative measures SSDL and CVDL which are 

defined as the sum of square of deviations from linearity and the deviations scaled by 

the variability, respectively, as the aggregate criteria for assessment of linearity. Unlike 

ADL and SSDL, CVDL can consider linearity and repeatability of an assay method 

simultaneously. The relationship among the dofferent aggregate criteria is discussed. 

The simulation studies are conducted to empirically investigate the size and power 

among the current and proposed methods. The simulation results show that all proposed 

methods can adequately control size better than the current methods. Numerical 
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examples are also used to illustrate the application of the proposed methods.  

 

Keyword: Allowable Limit, Linearity, Quantitative analytical laboratory methods, 

Generalized Pivotal Quantity. 
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Chapter 1 

Introduction 

In validation of quantitative analytical laboratory procedures, one of the most 

important characteristics of the accuracy is the linearity. The ICH Q2A guideline (ICH 

Expert Working Group, 1995), defines the linearity of an analytical method as its ability 

(within a given range) to obtain the test results, which are directly proportional to the 

concentration (amount) of the analyte in the test sample. The objective for evaluation of 

linearity is to validate existence of a mathematically verified straight-line relationship 

between the observed values and the true concentrations or activities of the analyte. 

Linearity represents the simplest mathematical relationship and it also permits simple 

and easy interpolations of results for clinical practitioners. The approved Clinical 

Laboratory Standard Institute (CLSI) guideline EP6-A (Tholen et al., 2003) 

recommends that at least five solutions of different concentration levels across the 

anticipated range be included in an experiment for evaluation of linearity. At each 

concentration level, two to 4 replicates should be run. With respect to EP6-A, if the 

difference between the best-fit nonlinear polynomial curve and simple linear regression 

equation at each concentration is smaller than some pre-defined allowable bias δ0, the 

linearity then can be claimed. For instance, in Figure 1.1, it shows that the linearity is 

claimed because the magnitude of deviation from linear regression at all concentrations 

for the best-fitted model, i.e., the quadratic model in the figure, are less than δ0, while 

the linearity cannot be claimed in Figure 1.2 since the magnitude of deviation from 
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linear regression at concentration S2, S3 and S4 for the best-fitted model are greater 

than δ0. On the other hand, Kroll, et al. (Kroll, 2000) proposes a statistical testing 

procedure based on the average deviation from linearity (ADL) which is defined as the 

square root of the average squared distances between the fitted concentrations of the 

best fit polynomial curve and the simple regression equation at each solution level, 

standardized by mean concentration. The linearity is concluded at the α nominal level if 

the observed value of the ADL is smaller than the upper α quantile of the sampling 

distribution of the observed ADL. 

However, the procedure for assessment of linearity based on ADL proposed by Kroll, 

et al. (Kroll, 2000) is derived from formulating of the hypothesis for proving the 

linearity as the null hypothesis. On the other hand, the method for evaluation of linearity 

recommended by EP6-A directly compares the point estimates with the pre-specified 

allowable limit and completely ignores the sampling error of the point estimates. As 

results, the type I error rate may be inflated and the probability of the incorrect claims of 

linearity is not 
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Figure 1.1 Acceptance of linearity by CLSI EP6-A guideline 
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Figure 1.2 Un-acceptance of linearity by CLSI EP6-A guideline 
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adequately controlled at the nominal level. Therefore, in our research, we propose a two 

one-sided test (TOST) procedure and a corrected Kroll’s procedure for assessing the 

linearity in validation of quantitative analytical laboratory procedures for solving these 

shortcomings of assessment procedures proposed by CLSI guideline EP6-A and Kroll’s 

ADL method, respectively. 

In addition to the inappropriate statistical hypothesis, the sampling distribution of the 

observed ADL of the Kroll’s method is a function of a non-central chi-square 

distribution. It follows that the Kroll’s method suggests using the estimate of the 

unknown non-centrality parameter as the true parameter. Hence, the variability 

associated with the estimated non-centrality parameter is completely ignored in the 

Kroll’s procedure. Tsui and Weerahandi (Weerahandi, 1993) propose the generalized 

confidence interval based on the generalized pivotal quantity (GPQ) for the exact 

statistical inference. The method proposed by Tsui and Weerahandi (Tsui and 

Weerahandi, 1989; Weerahandi, 1993) can eliminate the unknown parameters by 

replacing them using the appropriate random variables. As a result, we propose to apply 

the concept of generalized confidence interval based on the generalized pivotal quantity 

to overcome the issue of unknown non-centrality parameter of the distribution of ADL. 

The linearity in assay validation can be concluded if the 100(1 - α) % upper generalized 

confidence limit of ADL is less than pre-specified limit. 

In addition, we also propose two new measures for assessment of linearity in assay 

validation. As mentioned above, the approved CLSI EP6-A recommends that for 

proving the linearity, the deviations from linearity, defined as the difference between the 

best-fitted nonlinear polynomial curve and simple linear regression equation, be smaller 

than some pre-defined allowable bias, say δ0, at all concentrations. Therefore, we 
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propose the sum of squares of deviations from linearity (SSDL) which is formulated 

based on the nature of the criterion proposed by CLSI EP6-A guideline as an alternative 

metric for evaluation of the linearity in assay validation. On the other hand, the 

repeatability is also a important characteristic which stands for reliability of an assay 

method which is defined as the ability of a measuring system/instrument to provide 

closely similar indications for repeated applications of the same measurand under the 

same conditions of measurement. However, both ADL and SSDL do not take the 

experimental variability into consideration. Therefore, we proposed the coefficient of 

variation of the deviations from linearity (CVDL) which is the scaled deviation scaled 

by the variability of the best-fitted model as an alternative measure for assessment of 

linearity. 

In the next chapter, the experiment designs for evaluation of linearity and assessment 

procedure recommended by the approved CLSI guideline EP6-A (Tholen et al., 2003) is 

introduced first. The assessment procedures proposed by the EP6-A guideline (Tholen 

et al., 2003) and Kroll et al. (Kroll, 2000) are then reviewed, respectively. The 

shortcomings of these two methods are highlighted. Various measures for assessing 

linearity based on disaggregate criterion and aggregate criterion are introduced in 

Chapter 3. Their corresponding statistical hypotheses are also  provided. In Chapter 4, 

the proposed TOST and corrected Kroll’s method to overcome the shortcomings of 

CLSI EP6-A and the current Kroll’s method are introduced. The concept of GPQ and 

generalized confidence interval developed by Tsui and Weerahandi (Tsui and 

Weerahandi, 1989; Weerahandi, 1993) is introduced in Chapter 5. The GPQ-based ADL 

approach derived from the method of Tsui and Weerahandi (Tsui and Weerahandi, 1989; 

Weerahandi, 1993) for overcoming the issue of the unknown parameter of the 

distribution of ADL is then proposed. In Chapter 6 and 7, we propose two new 
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measures of SSDL and CVDL for assessment of linearity. The relationship and 

comparison among the introduced aggregate criteria are addressed in Chapter 8.  

The results of the simulation studies to compare the empirical size and power 

between the current methods and proposed methods are summarized in each chapter. 

All simulation programs were written by Compaq Visual Fortran Professional Edition 

6.6.0 under Microsoft Window operation system of the IBM compatible personal 

computer. The numerical examples are also provided to introduce the implementation of 

each proposed method. The final concluding remarks are provided in Chapter 9. 
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Chapter 2 

Literature Review 

2.1  Experiment Design 

The approved CLSI guideline EP6-A (Tholen et al., 2003) recommends that the 

experiment for linearity assessment should be conducted at least five solutions of 

different concentrations run at least in duplicates. Let Yij be the test result of replicate j 

at concentration Xi, where j = 1,...,R; i=1,…,L. The approved CLSI guideline EP6-A 

considers the following linear, quadratic, and cubic models fitting the data obtained 

from the experiment: 

Linear (First order)      ' '
1Li iμ  = α  + β X   

Quadratic (Second-order polynomial)   '' '' '' 2
Qi 1 i 2 iμ  = α  + β X  + β X  

or                (2.1.1) 

Cubic (Third-order polynomial)        ''' ''' ''' 2 ''' 3
1 2 3Ci i i iμ  = α  + β X   β X   β X+ +  

where μLi, μQi, and μCi are the predicted mean of the corresponding models and 

' '' '''α , α , α ; ' '' '''
1 1 1β , β , β ; '' '''

2 2β , β , and '''
3β are the intercepts, regression coefficients for the 

corresponding models in (2.1.1). In what follows all assumptions for fitting the 

best-fitted model specified in the approved CLSI guideline EP6-A are satisfied and we 

use the definition of the best-fitted model recommended by the EP6-A (Tholen et al., 

2003). The best-fit model is the model such that lack-of-fit is not statistically significant 
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and the repeatability meets the manufacturer’s claim. In addition, for the purpose of 

illustration, we also assume the random error is assumed to be approximately constant 

rather proportional in the range of concentrations considered in the experiment.  

The spirit of the EP6-A guideline (Tholen et al., 2003) is to determine the 

concentrations(s) where an assay method is not linear and the extent of the nonlinearity 

at that level. As addressed in the guideline “The guideline emphasizes the necessity that 

each user establishes his or her requirements for linearity, or the allowable error due to 

nonlinearity. It also places less importance on global tests such as lack-of-fit test for 

linearity across the tested range. Global tests merely indicate that statistically significant 

nonlinearity exists; they do not show where that nonlinearity is, nor do they show the 

magnitude of the error.”, therefore, even if the best-fitted model is a nonlinear model, it 

does not necessarily imply that the assay can not be concluded linear. Based on the 

above concept, the guideline proposes the following rule in instead of global test for 

assessing linearity: if the best-fitted model is the linear model over the some range of 

concentrations employed in the experiment, then the assay method can be concluded to 

be linear over the some range of concentrations. However, if the best-fitted model is not 

linear, the linearity of the analytical procedure can still be claimed if the magnitude of 

deviations from the linearity at each concentration is within some pre-specified 

allowable limit of δ0 as showed in Figure 1.1.  

 

2.2  Evaluation Procedure of CLSI Guideline EP6-A 

Based on the suggested experiment design in Section 2.1, CLSI guideline EP6-A 

(Tholen et al., 2003) proposes the following procedure for assessment of the linearity in 

assay validation. Let the difference in predicted means between the best-fit nonlinear 
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and linear model μPi - μLi which represents a measure for the degree of the deviation 

from linearity at each concentration level. The hypothesis for evaluation of linearity can 

be formulated as  

0i Pi Li 0 ai Pi Li 0H : μ  - μ   δ  vs. H : μ  - μ  < δ , for all i=1 ,..., L≥ .           (2.2.1) 

Let PiY  and LiY  be the least squared (LS) estimators of the predicted mean of the 

best-fit and linear models, respectively, where  

' '
Li 1 iY  = a b X ,+  and  

" '' '' 2
1 i 2 i

Pi
"' ''' ''' 2 ''' 3

1 i 2 i 3 i

a  + b X  + b X , if the best-fitted model is quadratic,
Y

a  + b X + b X  + b X , if the best-fitted model is cubic;

⎧⎪=⎨
⎪⎩

 

and ' '' '''a , a , a ; ' '' '''
1 1 1b , b , b ; '' '''

2 2b , b , and '''
3b are the LS estimators of the intercepts, 

regression coefficients for the corresponding models in (2.1.1). 

According to the approved CLSI EP6-A guideline (Tholen et al., 2003), the linearity of 

the proposed analytical method can be concluded if  

Pi Li 0Y   Y  < δ  − , for i = 1,…, L.                                          (2.2.2) 

This method is referred to as the estimation method because it only considers the 

estimators for evaluation of linearity. The estimation method completely ignores the 

variability and distribution associated with the estimators. Therefore, it also may inflate 

the type I error rate in assessment of linearity. 

 

2.3  Uncorrected Kroll’s Procedure 

Kroll, et al. (Kroll, 2000) considers the average deviation from linearity (ADL) for 

assessment of linearity. The ADL is defined as  



 

          
                11

L
2

Pi Li
i=1

(μ  - μ ) /L
θ = ADL = 

μ

∑
,                                                                (2.3.1) 

where μ is the population mean concentration for all solutions of the assay. 

Since ADL is a function of standardized sum of squares of the differences in the 

predicted means between the best-fitted and linear models, it is an aggregate criterion. 

Therefore, the hypothesis for evaluation of linearity based on ADL proposed by Kroll, et 

al. (Kroll, 2000) is given as  

H0: θ ≤ θ0 vs. Ha: θ > θ0,                                                    (2.3.2) 

where θ0 is the maximum allowable average deviation from linearity. θ0 is usually 

presented as percent. Kroll, et al. (Kroll, 2000) refer it to as percent bound and suggest 

5% as a reasonable cutoff for most relevant clinical applications. 

An estimator of ADL suggested by Kroll, et al. (Kroll, 2000) is given as  

L
2

Pi Li
i=1

(Y  - Y ) / L
θ =  

Y

∑
,                  (2.3.3) 

where X  is the observed mean concentration for all solutions of the assay. 

At θ = θ0, 
L

2
Pi Li

i=1
(Y  - Y )∑ follows a non-central chi-square distribution with degrees 

of freedom d -1, and non-centrality parameter 2 2
0LJθ /(σ/μ) , where d is the degrees of 

freedom for regression of the best-fitted model and σ2 is the variance of residuals under 

the best-fitted model. The decision rule for concluding that the assay is linear at the 5% 

significance level if  

0.95qσθ < 
μ LJ

,                                              (2.3.4) 

where q0.95 is the 95th percentile of a non-central chi-square distribution with degrees of 
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freedom d -1 and non-centrality parameter 2 2
0LJθ /(σ/μ) . We refer this method to as the 

uncorrected Kroll method. 

The method proposed by Kroll, et al. (Kroll, 2000) has two shortcomings. The 

hypothesis for proving linearity is formulated as the null hypothesis. When Equation 

(2.3.4) is satisfied, the only conclusion is that the null hypothesis is not rejected and this 

does not imply that the linearity of the assay is proved. On the other hand, the critical 

value in (2.3.4) contains the unknown parameters μ and σ that need to be estimated 

from the data. Kroll, et al. (Kroll, 2000) suggested to estimate μ by X , the observed 

mean concentration for all solutions of the assay and σ by the square root of residual 

mean square obtained the best-fitted model. Consequently, the variability associated 

with residual mean square is not considered in evaluation of linearity by Eq. (2.3.4). 

Because of these two shortcomings, the method based on ADL proposed by Kroll, et al. 

may not adequately control the type I error rate at the nominal level for evaluation of 

linearity. 

 

2.4  Summary 

  As we introduced as above, both the current estimation method of CLSI EP6-A 

guideline and uncorrected Kroll’s method for linearity assessment in assay validation 

will inflate the type I error. In particular, the uncorrected Kroll method will also 

conclude the linearity incorrectly because of the formulation of the incorrect hypothesis 

and corresponding rejection rule. In Chapter 3, we will introduce various measures for 

assessing linearity based on the aggregate criterion and disaggregate criterion which 

will be discussed and compared in our research. In addition to the statistical testing 

procedures corresponded to the new proposed measures, the two new methods for 
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improving the shortcoming of the current methods in this chapter will also be proposed 

in Chapter 3. The comparison of their performances in empirical sizes and powers are 

made by the simulation study. 
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Chapter 3 

Criterion for Assessing Linearity 

In this chapter, we summarize the measures for assessing linearity based on the 

disaggregate criterion and aggregate criterion which are reviewed and proposed in our 

research. Their corresponding statistical hypotheses are also introduced. In addition, the 

discussion for difference of the disaggregate criterion and aggregate criterion on the 

impact of their performance of assessment linearity are also addressed . 

 

3.1 Disaggregate Criterion 

As we introduced in Section 2.2 of Chapter 2, following the experiment recommended 

by EP6-A (Tholen et al., 2003), the guideline proposes that even though the best-fitted 

model is not linear, the linearity of the analytical procedure can be claimed if the 

magnitude of deviations from the linearity at each concentration is within some 

pre-specified allowable limit of 0δ . The hypothesis corresponded to the proposed 

evaluation rule can be formulated as 

0i Pi Li 0 ai Pi Li 0H : μ  - μ   δ  vs. H : μ  - μ  < δ , for all i=1 ,..., L≥ .             (3.1.1) 
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where the difference in predicted means between the best-fit nonlinear and linear model 

Pi Liμ μ− represents a measure for the degree of the deviation from linearity at each 

concentration level. Since hypothesis (3.1.1) requires all differences in the predicted 

means between the best-fitting and linear models be within the pre-specified allowable 

limit, it is a disaggregate criterion. 

 

3.2 Aggregate Criterion 

3.2.1 Average Deviation from Linearity (ADL) 

Recall the definition of ADL proposed by Kroll et al. (Kroll, 2000) defined as the 

following: 
L

2
Pi Li

i=1
(μ  - μ ) /L

θ = ADL = 
μ

∑
,                                                                               (3.2.1.1) 

where μ is the population mean concentration for all solutions of the assay. 

ADL is a scaled deviation defined as the square root of sum of squares of the difference 

in predicted means between the best-fitted and linear models. The correct hypothesis for 

evaluation of linearity based on ADL proposed by Kroll, et al. (Kroll, 2000) is given as 

H0: θ ≥ θ0 vs. Ha: θ < θ0,                                                                  (3.2.1.2) 

where θ0 is the maximum allowable average deviation from linearity.  

Unlike the evaluation rule of EP6-A which requires Pi Liμ μ− be within some 

pre-specified allowable limit of 0δ  at all concentration levels, Hypothesis (3.2.1.2) 

only requires an summarized measure ADL be less than 0δ . Since ADL is a function of 

standardized sum of squares of the differences in the predicted means between the 
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best-fitted and linear models, it is an aggregate criterion.  

 

3.2.2 Sum of Squares of Deviations from Linearity (SSDL) 

According to the approved CLSI guideline EP6-A (Tholen et al., 2003), the linearity 

of the proposed analytical method can be concluded if the deviation from linearity is 

smaller than some pre-specified limit δ0 at all concentrations: 

Pi Li 0μ   μ  < δ  − , for i = 1,…, L.           

As a result, a natural aggregate metric for assessment of assay linearity is the sum of 

squares of deviations from linearity (SSDL) denoted by τ  defined as  

L
2

Pi Li
i=1

τ = (μ - μ ) . ∑                                                                                                          (3.2.2.1) 

It follows that the hypotheses for proving the assay linearity can be formulated based on 

SSDL as follows: 

L L
2 2 2 2

0 Pi Li 0 0 Pi Li 0
i=1 i=1

H : (μ - μ )   Lδ  vs. H : (μ - μ )  < Lδ≥∑ ∑                                                                    (3.2.2.2) 

or equivalently 

L L
2 2 2 2

0 Pi Li 0 0 Pi Li 0
i=1 i=1

H : (μ - μ ) /L  δ  vs. H : (μ - μ ) /L < δ≥∑ ∑  

Similar to ADL, SSDL is an aggregate criterion but formulated directly by the nature of 

disaggregate criterion proposed by CLSI guideline as the form of model-by-dilution 

interaction. However, the corresponding statistical hypothesis is not to detect existence 

of the model-by-dilution interaction but rather to verify whether the model-by-dilution 

interaction is within some pre-specified allowable upper limit. 

 

3.2.3 Coefficient of Variation of the Deviations from Linearity (CVDL) 
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The CVDL is the scaled deviations scaled by σ , the variability or repeatability of the 

best-fitted model for assessment of linearity defined as the square root of the average 

sum of squares of the scaled deviations by σ : 

2

L L
2 2

Pi Li Pi Li
i=1 i=1

σ

(μ  - μ ) /L (μ  - μ ) /L
η = CVDL = 

σ
=

∑ ∑
.                      (3.2.3.1) 

The hypotheses for evaluation of linearity is given for CVDL as: 

H0: η ≥ η0 vs. Ha: η < η0.                                                                                                       (3.2.3.2) 

where η0 is the allowable limit of CVDL. 

As 
L

2
Pi Li

i=1
(μ  - μ )∑  is also the component of CVDL for assessment of linearity, CVDL 

is an aggregate criterion. Moreover, CVDL contains not only the information of the 

deviation from the linearity but also the repeatability expressed by the residual mean 

square obtained from the best-fitted model. 

 

3.3 Summary 

As we introduced, the disaggregate criterion proposed by CLSI EP6-A guideline 

(Tholen et al., 2003) requires Pi Liμ μ−  to be within some pre-specified allowable limit 

at all concentration levels, while the aggregate criteria of ADL, SSDL and CVDL only 

require a summary measure of 
L

2
Pi Li

i=1
(μ  - μ )∑  either scaled by σ , μ  or to be within 

their corresponding allowable limit. As a result, the evaluation based a disaggregate 

criterion is more conservative than an aggregate criterion since it requires an 

intersection-union test. In addition, 
L

2
Pi Li

i=1
(μ  - μ )∑  is actually the model-by-dilution 
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interaction. However, unlike the  traditional hypothesis to test the existence of the 

interaction, our goal is to test if the magnitude of the interaction is within the allowable 

bound. In the next few chapters, the statistical testing procedures will be proposed for 

assessing linearity based on the disaggregate criterion and aggregate criterion 

introduced in this chapter. The comparison of the proposed methods and current 

methods will also be performed via the simulation studies and numerical examples.



 

          
                19

 

Chapter 4 

TOST Procedure and Corrected 

Kroll’s Method 

In this chapter, we propose the an one-sided tests procedure (TOST) and the corrected 

Kroll’s method which are more suitable methods for assessment of linearity by 

improving the shortcomings of the current methods. The proposed TOST procedure is 

the method correspondeding to the estimation method of EP6-A (Tholen et al., 2003) 

which ignore the variability of the estimators, while the corrected Kroll’s method is 

used to correct the inappropriate statistical hypothesis of the uncorrected Kroll method 

proposed by Kroll et al. (Kroll, 2000). 

 

4.1  Two One-sided Test Procedure 

With respect to the interval hypothesis in (2.2.1), it can also be decomposed into two 

sets of one-sided hypotheses as, 

 0 00iL Pi Li aiL Pi LiH : μ  - μ   -δ  vs. H : μ  - μ  > -δ , for all i=1 ,..., L≤ , 

and                          (4.1.1) 

 0 00iU Pi Li aiU Pi LiH : μ  - μ  > δ  vs. H : μ  - μ  < δ , for all i=1 ,..., L . 

An unbiased estimator of μPi - μLi is the LS estimator PiY  - LiY , i=1,..,L. Define  
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L

2
P

2 3

( , ),
( , , ),  if the best-fitted model is quadratic, and  
( , , , ),  if the best-fitted model is cubic,
⎧
⎨
⎩

=

=

X 1 X
1 X X

X
1 X X X

 

where 1 is LJx1 vector of 1s, X =(Xi), X2=( 2
iX ), and X3=( 3

iX ), and J is the number of 

replicates. 

An unbiased estimator of the variance of PiY  - LiY  is given as 

ii

2 2
di ewσ  = σ ,  

where iiw  is the ith diagonal element of matrix ′WW , 
2
eσ  is the residual mean 

square obtained from the best-fitted model with degrees of freedom LJ-d-1, 

P L -  = W W W , P L and W W  are the projection matrices corresponding to the column 

spaces spanned by the design matrices of the best–fitted and linear models, respectively, 

i.e., 1' '
P P P P P( )−=W X X X X  and ' 1 '

L L L L L( )−=W X X X X . 

It follows that the 100(1 - 2α)% confidence interval for μPi - μLi is given as  

Pi Li diα, LJ-d-1(Y Y )  t σ ,− ±  i=1,…,L,                               (4.1.2) 

where α,LJ-d-1t  is the upper α percentile of a central distribution with degree of freedom 

of LJ-d-1. 

The linearity of an analytical method can be concluded at the α significance level if the 

100(1-2α)% confidence interval for μPi - μLi is completely contained within the 

pre-specified allowable limit of δ0 at each concentration level, I=1,...,L. This method is 

referred to as the two one-sided tests (TOST) procedure which the statistical testing 

procedure is proposed instead f the estimation method of EP6-A. 
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4.2  Corrected Kroll’s Method 

The main drawback of the method for evaluation of linearity proposed by Kroll, et al. 

(Kroll, 2000) is the incorrect formulation of the hypotheses. We suggest the hypothesis 

for assessment of linearity based on ADL should be formulated as follows: 

H0: θ ≥ θ0 vs. Ha: θ < θ0.                                                    (4.2.1) 

where θ0 is the allowable margin of ADL for linearity. 

Consequently, the linearity of an analytical procedure is concluded at the 5% 

significance level if  

0.05qσθ < 
μ LJ

,                                                             (4.2.2) 

where q0.05 is the 5th percentile of a non-central chi-square distribution with degrees of 

freedom d-1 and non-centrality parameter 2 2
0LJθ /(σ/X) . This method is referred to as 

the corrected Kroll method. 

 

4.3  Simulation Study 

We conduct a simulation study to compare the empirical sizes and powers of the 

uncorrected Kroll method, the corrected Kroll method, the estimation method of EP6-A 

and two one-sided tests procedures. Following the specification of the experiment 

designs for evaluation of linearity, the number of solutions (or dilutions) of different 

concentrations is set to be 5 or 7 and the number of replications at each concentration is 

2, 3, or 4.  

Throughout the simulation, the allowable margin of linearity based on ADL, θ0, is 

specified as 0.05 while the margin for the estimation and TOST procedures, δ0, is 
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specified as 0.2. There are two types of comparison of size. The first type is to compare 

the size between the uncorrected Kroll with corrected Kroll methods for which the data 

were generated at the value of 0.05 for ADL as recommended by Kroll, et al. (Kroll, 

2000). The second type is to compare the size between the estimation method suggested 

in the approved CLSI guideline and the TOST procedure for which the data were 

generated with the true difference, μPi - μCi at some solutions being either 0.2 or -0.2. In 

addition, standard deviation of normal random error was specified as 0.1 and 0.2. Table 

4.3.1 provides the specifications of the values of parameters in the simulation for 

evaluation of size. For each of 12 combinations, five thousand (5,000) random samples 

are generated. For the 5% nominal significance level, a simulation study with 5,000 

random samples implies that 95 percent of the empirical sizes evaluated at the 

equivalence limits will be within 0.04396 and 0.05604 if the proposed methods can 

adequately control the size at the nominal level of 0.05. In addition, the specifications of 

parameters for investigation of power are given Table 4.3.2. 

Table 4.3.3 presents the results of the empirical sizes. For the comparison between the 

uncorrected Kroll and the correct Kroll methods, all empirical sizes of the uncorrected 

Kroll method are above 0.92. On the other hand, the empirical size of the corrected 

Kroll method ranges from 0.0516 to 0.0780. Only 8.33% (1/12) of the empirical sizes of 

the corrected Kroll method are within 0.04395 and 0.05604. The reason for the 

extremely high empirical size of the uncorrected Kroll method is from incorrect 

formulation of hypothesis for proving the linearity of the analytical methods. The type I 

error with respect to proving the linearity is the error that the analytical method is 

claimed to be linear but in fact it is not. Therefore, the empirical size of the uncorrected 

Kroll method at the 5% nominal level should be close to 95%. On the contrary, the 
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empirical size of the corrected Kroll method should be close to 5% at the 5% nominal 

level. However, one needs to estimate the non-central parameters for non-central χ2 

distribution of the observed ADL. In addition, the critical value in Eq. (4.2.2) also 

contains an estimator X . Therefore, both the uncorrected and corrected Kroll methods 

ignore the variability of the estimators in the non-central parameters and critical value. 

As a result, although the empirical size of the corrected Kroll method is close to 0.05, it 

is still inflated. The empirical sizes of the estimation method and TOST procedure for 

the same specifications are also provided in Table 4.3.3. From Table 4.3.1, when the true 

ADL is 0.05, μPi - μCi at some solutions is either greater than 0.2 or smaller -0.2. It 

follows that all empirical sizes of the TOST procedure are less than 0.02. However, on 

the contrary, the empirical size of estimation method suggested in the approved CLSI 

guideline EP6-A can reach as high as 0.30 even when the differences in means between 

the best fitted curve and the linear regression equation are outside the margin of (-0.2, 

0.2) at three of the five solutions. 

For the comparison between the estimation method in the approved CLSI guideline 

EP6-A and TOST procedure, the empirical sizes of the TOST procedure ranges from 

0.0440 to 0.0564. Only 8.33% of the empirical sizes (1/12) are not included in (0.04395, 

0.05604). The one outside (0.04396, 0.05604) has the empirical size of 0.0564, which is 

just 0.0036 above 0.05604. However, the range of the empirical sizes of the estimation 

method is from 0.4930 to 0.5066. Recall that the estimation method suggested in the 

approved CLSI guideline EP6-A (Tholen et al., 2003) ignores the variation of the 

estimates of μPi - μCi. When μPi - μCi is equal to either 0.2 or -0.2 at some solutions, and 

then under the normal assumption, the size should be equal to 0.5 as confirmed by the 

empirical sizes of the simulation.   
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Table 4.3.1 Specifications of parameters for size (Uncorrected Kroll vs. Corrected 

Kroll and Estimation Method vs. TOST) 

 

Type of 
Comparisons 

No. of 
Solution 
Levels 

True 
ADL 

Solution
Level 

True 
Pi Liμ  - μ  

     

Uncorrected Kroll vs. 
Corrected Kroll 

    

 5 0.05 1 -0.23905 
   2 0.11952 
   3 0.23905 
   4 0.11952 
   5 -0.23905 
 7 0.05 1 -0.28868 
   2 0.00000 
   3 0.17321 
   4 0.23094 
   5 0.17321 
   6 -0.00000 
   7 -0.28868 
Estimation Method vs. 
TOST 

    

 5 0.01656 1 -0.20000 
   2 0.10000 
   3 0.20000 
   4 0.10000 
   5 -0.20000 
 7 0.01017 1 -0.20000 
   2 0.00000 
   3 0.12000 
   4 0.16000 
   5 0.12000 
   6 -0.00000 
   7 -0.20000 
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Table 4.3.2 Specifications of parameters for power (Uncorrected Kroll vs. Corrected 

Kroll and Estimation Method vs. TOST) 
 

No. of 
Solution 
Levels 

True 
ADL 

Solution
Level 

True 
Pi Liμ  - μ  

    
5 0.00151 1 -0.02 
  2 0.01 
  3 0.02 
  4 0.01 
  5 -0.02 
7 0.00494 1 -0.10 
  2 0.00 
  3 0.06 
  4 0.08 
  5 0.06 
  6 0.00 
  7 -0.10 
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Table 4.3.4 presents the results of the empirical powers. For the simulation, the true 

ADL is specified as 0.00151 or 0.00494 when the number of solutions is 5 or 7, 

respectively. Therefore, with an allowable margin of 5%, the 91.67% of the empirical 

powers of the uncorrected and corrected Kroll methods reach 1. On the other hand, the 

empirical powers of the estimation method and TOST procedures are smaller than those 

of the uncorrected and corrected Kroll methods. In addition, the empirical powers of the 

estimation method suggested in the approved CLSI guideline EP6-A (Tholen et al., 

2003) and TOST procedures increase as the number of replicates increases or the 

standard deviation decreases. The results in Table 4.3.4 show that the empirical power 

of the estimation method is greater than that of TOST procedure. However, from Table 

4.3.3, the uncorrected and corrected Kroll methods, and the estimation procedure fail to 

control the size at the nominal level. Therefore, the advantage of power by these 

methods comes at the expense of inflation of type I error rate. From the results of the 

simulation in Table 4.3.4, the power of the TOST procedure is greater than 0.9 when the 

standard deviation is 0.1 and number of replicates is at least 3. 

 

4.4  Numerical Example 

We consider a hypothetical experiment for evaluation of the linearity of a new 

analytical procedure for determination of β-HCG (β-Human Chorionic Gonadotropic, 

mIU/mL). The design consists of 5 dilutions with two replicates at each dilution of 

concentrations. Table 4.4.1 presents a set of hypothetic measurements under the design 

described above. For the purpose of the illustration, the allowable margin 

of percent bound for ADL is set as 0.05 for uncorrected and corrected Kroll’s methods. 

On the other hand, the allowable limit of is set as 0.4 for the estimation method  

Pi Liμ  - μ
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Table 4.3.3 Results of empirical sizes (Uncorrected Kroll vs. Corrected Kroll and 
Estimation Method vs. TOST) 

 
Kroll’s Method Type of 

Comparisons 
No. of 
Sol. 

No. of 
Rep. SD Uncorr. Corr. EP6-A TOST 

        
5 2 0.1 0.9232 0.0662 0.1590 0.0056
  0.2 0.9292 0.0780 0.3030 0.0166
 3 0.1 0.9328 0.0636 0.1050 0.0010
  0.2 0.9332 0.0646 0.2632 0.0114
 4 0.1 0.9420 0.0624 0.0768 0.0006
  0.2 0.9328 0.0608 0.2296 0.0074
7 2 0.1 0.9328 0.0622 0.0110 0.0000
  0.2 0.9332 0.0606 0.1328 0.0028
 3 0.1 0.9418 0.0604 0.0024 0.0000
  0.2 0.9458 0.0576 0.0754 0.0012
 4 0.1 0.9438 0.0516 0.0002 0.0000

Kroll –  
uncorr. Vs. corr. 

  0.2 0.9424 0.0586 0.0544 0.0008
        

5 2 0.1 1.0000 1.0000 0.4984 0.0522
  0.2 0.9998 1.0000 0.5050 0.0564
 3 0.1 1.0000 1.0000 0.4930 0.0440
  0.2 1.0000 1.0000 0.5050 0.0486
 4 0.1 1.0000 1.0000 0.5048 0.0490
  0.2 1.0000 1.0000 0.5066 0.0560
7 2 0.1 0.9998 0.9998 0.4972 0.0512
  0.2 1.0000 1.0000 0.5024 0.0484
 3 0.1 0.9998 0.9998 0.4978 0.0478
  0.2 1.0000 1.0000 0.4946 0.0504
 4 0.1 1.0000 1.0000 0.5044 0.0504

Estimation 
vs. TOST. 

  0.2 1.0000 1.0000 0.5066 0.0494
Sol.: Solution; Rep.: Replications; Uncorr.: Uncorrected; Corr.: Correction. 
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Table 4.3.4 Results of empirical powers (Uncorrected Kroll vs. Corrected Kroll and 
Estimation Method vs. TOST) 

 
Kroll’s Method No. of 

Sol. 
No. of 
Rep. SD Uncorr. Corr. EP6-A TOST 

       
5 2 0.1 1.0000 1.0000 0.9954 0.7616 
  0.2 1.0000 1.0000 0.9052 0.2976 
 3 0.1 1.0000 1.0000 0.9998 0.9232 
  0.2 1.0000 1.0000 0.9470 0.4452 
 4 0.1 1.0000 1.0000 0.9998 0.9754 
  0.2 1.0000 1.0000 0.9664 0.5518 
7 2 0.1 1.0000 1.0000 0.9954 0.7754 
  0.2 1.0000 1.0000 0.9014 0.3168 
 3 0.1 0.9998 0.9998 0.9994 0.9164 
  0.2 1.0000 1.0000 0.9450 0.4468 
 4 0.1 1.0000 1.0000 1.0000 0.9704 
  0.2 1.0000 1.0000 0.9660 0.5570 
Sol.: Solution; Rep.: Replications; Uncorr. Uncorrected: Corr.: 
Correction. 
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suggested in the approved CLSI guideline EP6-A, and for the TOST procedure. 

Table4.4.2 provides the results of regression analyses for the linear, quadratic and 

cubic linear regression models. The results of the regression analyses presented in Table 

4.4.2 demonstrates that all estimates of the regression coefficients of the cubic model 

are significantly different from 0 at the 5% level. (t0.025, 6 = 2.4469) In addition, the 

standard error of the residuals from the estimated cubic regression equation is 0.1799 

that is at least 40% smaller than those from the linear or the quadratic models. 

Furthermore, the coefficient of determination, R2, is also above 0.99. As a result, the 

cubic model is the best-fitted model among the three models recommended by the 

approved CLSI guideline EP6-A. Figure 4.4.1 presents the fitted the cubic, linear 

regression equations and the means at each of the five dilution. It clearly shows that the 

relationship between the dilutions of concentrations and the analytical results is 

nonlinear and the cubic model is a better fit than the simple linear regression model.  

Table 4.4.3 gives the predicted means from the cubic and linear regression models at 

each of the five dilutions as well as their corresponding differences, while Table 4.4.4 

present summarized results of linearity by the four methods. From these differences and 

observed mean concentration, the observed ADL yields a value of 0.0842. With respect 

to the hypothesis in Eq. (2.3.2) and a margin of percent bound of 5%, the critical value 

in Eq. (2.3.3) is 0.0851 which is greater than the observed ADL of 0.0842, According to 

the decision rule of the uncorrected Kroll method, the analytical method can be 

concluded linear at the 5% significance level. However, it should be noted that for this 

example, even though the observed ADL of 0.0842 is already greater than the allowable 

percent bound of 0.05, the linearity of the analytical method still can be claimed by the 

uncorrected Kroll method. On the other hand, with respect to hypothesis in Eq. (4.2.1) 

for the corrected Kroll method, the critical value with an allowable margin of 5% in Eq.  
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Table 4.4.1 Measurement of β-HCG (mIU/mL) 
 

Dilution Replicate1 Replicate 2 
   

1 1.00 0.99 
2 1.60 1.59 
3 2.50 2.60 
4 4.36 4.39 
5 5.10 5.00 
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Table 4.4.2 Summary of results of regression analyses of β-HCG 
 

Order Coefficient Value SE t-test 
Std err 

Sy.x 

Degrees 
freedom 

       

Linear 'α  -0.354 0.234 -1.51   
 '

1β  1.089 0.071 15.44 0.3154 8 
       
Quadratic ''α  0.156 0.461 0.34   
 

''
1β  0.652 0.351 1.85   

 
''
2β  0.073 0.058 1.27 0.3041 7 

       
Cubic '''α  2.263 0.626 3.62   

 
'''
1β  -2.308 0.818 -2.82   

 
'''
2β  1.202 0.304 3.96   

 
'''
3β  -0.125 0.034 -3.74 0.1799 6 
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Figure 4.4.1 Regression curves for cubic versus linear models of β-HCG 
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(4.2.2) is 0.0237. Since the observed ADL of 0.0842 is greater than 0.0237, we cannot 

reject the null hypothesis and cannot concluded the linearity of the analytical method at 

the 5% significance level. Unlike the uncorrected Kroll method, the conclusion of the 

corrected Kroll method is consistent with the evidence for which the observed ADL is 

0.0842, which is greater than the allowable percent bound of 0.05. 

With respect to the estimation method suggested in the approved CLSI guideline 

EP6-A, the observed differences in the predicted means between the cubic and linear 

regression models at all dilutions are within the allowable margin of ±0.4. As a result, 

the linearity is claimed by the estimation method. On the other hand, the results of the 

TOST procedure show that the 95% confidence intervals for μPi - μCi at the first two 

dilutions are not contained within (-0.4, 0.4). With respect to hypotheses in Eq. (4.1.1), 

the analytical method cannot be concluded linear at the 5% significance level. Because 

the estimation method completely ignores the variability in the observed differences in 

the predicted means, its conclusion is made without any statement of the probability of 

type I error. However, in fact, as demonstrated by the simulation, the probability of type 

I error of the estimation method far exceeds its nominal significance level. 

 

4.5  Summary 

With respect to the disaggregate criterion, the estimation method suggested by the 

approved CLSI guideline ignores the variation of the estimates of the differences in the 

predicted means and is not a formal statistical inference procedure. On the other hand, 

the procedure based on the aggregate criterion of ADL proposed by Kroll et al. (Kroll, 

2000) incorrectly formulated the hypothesis for proving linearity as the null hypothesis. 

As a result, the uncorrected Kroll method cannot control the type I error in  
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Table 4.4.3 Mean differences between the best-fitted curve and simple linear regression 
equation of β-HCG 

 

Result Mean 
Predicted 
(Linear) 

Predicted  
(Cubic) Difference % Difference 

     

0.995 0.735 1.031 0.296 28.7 
1.595 1.824 1.450 -0.374 25.8 
2.550 2.913 2.767 -0.146 5.3 
4.375 4.002 4.230 0.228 5.4 
5.050 5.091 5.086 -0.005 0.1 
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Table 4.4.4 Results of the linearity by four different methods of β-HCG 

  
Kroll TOST Estimation Method 

Un- 
corrected Corrected Result Result 

Sample 
ADL 

Critical 
Value Result

Critical 
Value Result

Dil.
(i)

90% C.I. 
of 

Pi Liμ   μ−  Ind.
Ove-
rall Pi LiY   Y−  Ind.

Ove-
rall

            
1 ( 0.064,0.529) NL 0.296 L
2 (-0.524,-0.223) NL -0.374 L
3 (-0.318, 0.027) L -0.146 L
4 ( 0.078,0.379) L 0.228 L

0.0842 0.0851 L 0.0237 NL 

5 (-0.237, 0.228) L

NL

-0.005 L

L 

Dil. : Dilution level 
Ind. : Individual dilutions 
Overall : Overall conclusion 
NL: Conclusion of nonlinearity at the 5% nominal level 
L: Conclusion of linearity at the 5% nominal level 
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decision-making of conclusion for linearity. Therefore, we proposed the TOST 

procedure for the disaggregate criterion and the corrected Kroll method for the 

aggregate criterion based on ADL by formulating the hypothesis for proving linearity as 

the alternative hypothesis. Simulation results and the numerical example described 

above demonstrate that the proposed TOST and the correct Kroll method not only can 

adequately control the type I error rate but also reach the conclusion consistent with the 

data.  

Since TOST procedure is constructed based on a disaggregate criterion which 

requires all differences in the predicted means between the best-fitting and linear 

models be within the pre-specified allowable limit, the method is more conservative 

than the corrected Kroll’s method which is based on an aggregate criterion and only 

requires ADL, a function of standardized sum of squares of the differences in the 

predicted means between the best-fitted and linear models to be controlled within the 

pre-specified allowable percent bound, However, as mentioned before, the inference 

based on ADL involves the estimation of the unknown non-centrality parameter and the 

average population mean concentration. When these estimates are assumed fixed 

constants for the inference based on ADL, the simulation study shows that the empirical 

size can be inflated up to 0.078 at the 0.05 significance level. In the next chapter, we 

will propose GPQ-based ADL statistical testing procedure to overcome the issue of the 

unknown parameter of the distribution of ADL. 
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Chapter 5 

General Pivotal Quantity Approach of 

ADL 

In Chapter 4, we introduced the corrected Kroll’s method which reformulates the 

inappropriate statistical hypothesis of the uncorrected Kroll’s method. However, as we 

observed in the simulation results of the proposed corrected Kroll’s method, the type I 

error still inflates up due to variability in estimation of unknown non-centrality 

parameter of the chi-square distribution. To solve this issue, in this chapter we propose 

an alternative statistical testing procedure based on ADL by applying the generalized 

pivotal quantity approach introduced by Tsui and Weerahandi (Weerahandi, 1993). 

 

5.1  General Pivotal Quantity (GPQ) 

Weerahandi (Tsui and Weerahandi, 1989) used a generalized p-value for comparing 

parameters of two regressions with unequal variances. Motivated by that application, 

Tsui and Weerahandi (Tsui and Weerahandi, 1989) gave the explicit definition of 

generalized p-values, and showed that it is an exact probability of a extreme region. 

Their proposed method has been successfully used to provide small sample solution for 

many hypothesis testing problems when nuisance parameters are present and frequentist 

testing procedures are difficult to obtain, even nonexistent. Furthermore, Weerahandi 
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(Weerahandi, 1993) extended the concept of generalized p-values, and presented the 

generalized confidence interval (GCI) to construct an exact interval estimation. 

Suppose that V is a random variable whose distribution depends on a vector of 

unknown parameters ζ=(θ, η), where θ is a parameter of interest and η is a vector of 

nuisance parameter. Let V be a random sample from V and v be the observed value of V. 

Also let R=R(V; v, ζ) be a function of V, v and ζ.  The random quantity R is said to be 

a GPQ if satisfies the following two conditions:  

(a) The distribution of R does not depend on any unknown parameters. 

(b) The observed value of R, say r= R(v; v, ζ), is free of the vector of nuisance 

parameters η. In other words, the value of R at V = v should be a function only of (v, 

θ). 

Specifically, if the observed quantity r = θ, then the GPQ is called the fiduical 

generalized pivotal quantity (FGPQ) and generalized confidence interval (GCI) based 

on FGPQ are proven to have asymptotically correct frequent coverage probability in 

Hanning et al (Hanning et al., 2006). In consequence, an upper 100(1-α)th percentile 

GCI for θ is given by 
1

R
α−

, where 
1

R
α−

 are the 100(1-α)th percentile of the distribution 

of R. The percentile of R can be estimated using Monte-Carlo algorithms.    

 

5.2  Generalized Pivotal Quantity of ADL 

Following the regression models in Eq. (2.1.1), we adopt the same expression of its 

matrix form in Chapter 4 as follows: 
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 the LJx1 vector of  observations,

= the LJx1 predicted mean vector of  best - fitte

  =
= ( ),

( ), if  the best - fitted model is quadratic, and  
=

( ), if  the best - fitted model is cubic,
⎧
⎨
⎩

L

2
P

2 3

Pμ

Y
X 1, X

1, X, X
X

1, X, X , X
d polynomial model, and

= the LJx1 predicted mean vector of  linear model,Lμ

 

where 1 is LJx1 vector of 1s, X =(Xi), X2=( 2
iX ), and X3=( 3

iX ). L and J are the number 

of concentrations and number of replicates, respectively. 

We have  YWY PP =ˆ  and YWY LL =ˆ  as the LS estimators of the predicted mean 

vectors of the best-fit and linear models, where 1' '
P P P P P( )−=W X X X X  and 

' 1 '
L L L L L( )−=W X X X X  and ( )P L -  = W WW . As a result, the unbiased and sufficient 

estimator of −P Lμ μ  and its covariance matrix, Σ , are given as respectively: 

( ) WWYYCovΣ

WYYYμμ

LP

LPLP

′=−

=−=−
2ˆˆˆ

ˆˆˆˆ

S
                                                                                                                                    (5.2.1) 

where 2S  is the residual mean square obtained from the best-fitted polynomial model 

with degree of freedom LJ-d-1. Under the assumption that random errors in the above 

regression model are identically and independently distributed as normal distribution 

with mean of zero and variance of 2σ , LP YY ˆˆ −  is distributed as a multinormal 

distribution with mean −P Lμ μ  and variance Σ  which is equal to 2σ 'WW . In 

addition, Y  can be expressed as /LJ′1 Y  which is distributed as an univariate normal 

distribution with mean μ  and variance 2σ /LJ .  

It is easy to verify that the estimators WY , 2S  and Y are associated with pivotal 

quantities Z , U  and μZ which are independent with the following distributions:    
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( )1/ 2
LJ[ ] ( , )−

P LZ = Σ WY - μ -μ ~ N 0 I                                                                  

( ) 2
2
LJ-d-12

LJ-d-1 S
 =  ~ χ

σ
U                    (5.2.2) 

( )μ 2

Y μ ~ 0,1
σ
LJ

Z N−=    

where matrix 1/ 2Λ  denotes the positive definite square root of a positive definite 

matrix Λ  and 1/ 2 1/ 2 1( )− −=Λ Λ . LJ ( , )N 0 I , 2
LJ-d-1χ  and ( )0,1N  denote the 

multivariate standard normal distribution with LJ×1 random vector, the chi-square 

random variable with LJ-d-1 degrees and univariate standard normal distribution, 

respectively.  

Recall that the definition of ADL denoted by θ  as the following: 

L
2

Pi Li
i=1

(μ  - μ ) /L
θ = ADL = 

μ

∑
 

To obtain a GPQ for ADL, we can start the work by deriving GPQs for −P Lμ μ  and μ, 

respectively. According to the first equation in (5.2.2), −P Lμ μ  can be expressed as:  

( )
( )

1/ 22

1/ 22

             σ

LJ d 1
             

S
U

− = −

′= −

⎛ ⎞− −
′= − ⎜ ⎟

⎝ ⎠

1/2
P Lμ μ WY Σ Z

WY WW Z

WY WW Z

                                                                                                                                                                              (5.2.3) 

Let y  and 2s  be the observed values of Y  and 2S , respectively, a GPQ for 

−P Lμ μ  is given by 



 

          
                41

( ) 1/ 22LJ-d-1 s
U−

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
P L

'
μ μ Wy WW ZR                                                                                             (5.2.4) 

( )
1/ 22 2

1/ 2
2          s

S
−⎛ ⎞σ= − − −⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
Σ'

P LWy WW WY μ μ                                    (5.2.5) 

From (5.2.4), −P Lμ μR  has distribution that is free of parameters and thus does not 

depend on any unknown parameters. When Y and 2S  are substituted by their 

observed values y  and 2s  in (5.2.5), the observed value of −P Lμ μR  denoted by 

−P Lμ μr  is obtained as: 

( )

( )

1/ 22 2
1/ 2

2 

          

          

s
s

−
−

⎛ ⎞σ= − − −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

= − − −⎡ ⎤⎣ ⎦
= −

ΣP L

'
μ μ P L

P L

P L

Wy WW Wy μ μ

Wy Wy μ μ

μ μ

r

 

which is equal to −P Lμ μ  and free of the nuisance parameters. Hence, it fulfills the 

requirements of (a) and (b) for being a GPQ for −P Lμ μ . Moreover, 

since ( ) ( )
L

2
Pi Li

i=1
/ L / LJ(μ  - μ ) ′=∑ P L P LY - Y Y - Y , a GPQ of 

L
2

Pi Li
i=1

/ L(μ  - μ )∑  

denoted by ξ  can then be obtained as : 

( ) ( )1=
LJ

Rξ − −
′

P L P Lμ μ μ μR R                                                                                                                             (5.2.6) 

where −P Lμ μR  is defined as (5.2.4). 

In addition, a GPQ for μ can be obtained as: 
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( ) 2

μ μ

LJ-d-11y
n

s
R Z

U
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

                                                                                                                                     (5.2.7) 

( )2 2

2 2

Y μ1 σ     = y
n σ

n

s
S

−⎛ ⎞
− ⎜ ⎟

⎝ ⎠
                                                                                                                                                           (5.2.8) 

From (5.2.7), μR  has distribution that is free of parameters. In addition, when  Y  

and 2S  are substituted by their observed values y  and 2s  in (5.2.8), then the 

observed value of μR  denoted by μr  is obtained as: 

( ) ( )
2 2

μ 2 2

y μ1 σ= y = y y μ = μ
n σ

n

sR
s

−⎛ ⎞
− − −⎜ ⎟

⎝ ⎠
 

which is equal to μ  and free of the nuisance parameters. Hence, it fulfills the 

requirements of (a) and (b) for being a GPQ for μ . 

A GPQ for ADL can be obtained: 

θ
μ

R
R

R
ξ=                                                                                                                                                                                       (5.2.9) 

where Rξ  and μR  are defined as (5.2.4) and (5.2.7), respectively. 

 

5.3  Generalized Confidence Interval of ADL 

An upper 100(1-α)th percentile GCI for ADL can be obtained from the following 
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Monte-Carlo algorithm:  

Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through 

K, carry out the following two steps. 

Step 2: Generate LRx1 standard normal random vector Z , univariate standard normal 

variable μZ , and central chi-square random variables U  with degree of 

freedom LJ-d-1. 

Step 3: For the realized values of Y and 2S , compute ,kRθ  defined in (5.2.9). 

The required upper 100(1-α)th percentiles of the distribution of GPQ for ADL, which is 

also the upper 100(1-α)th generalized confidence limit for ADL, is then estimated by the 

100(1-α)th sample percentiles of the collection of K=10,000 realizations ,1Rθ  , 

,2Rθ …….., ,10000Rθ . 

 
5.4  Statistical Testing Procedure 

With respect to the hypothesis of H0: θ ≥ θ0 vs. Ha: θ < θ0 based on the ADL, the 

upper 100(1-α)% generalized confidence limit for ADL based on GPQ can be used to 

test the statistical hypothesis for assessment of linearity. The null hypothesis is rejected 

and the linearity of a analytical method is concluded at the α significance level if the 

upper 100(1-α)% generalized confidence limit for ADL is less than θ0. 

 

5.5  Simulation Study 

A simulation study is performed to compare the empirical sizes and powers of the 

corrected Kroll’s and GPQ-based ADL methods. The specifications of the simulation 

study are given as follows: The number of solutions (or dilutions) of different 
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concentrations is set to be 5 or 7 and the number of replications at each concentration is 

2, 3, or 4. Throughout the simulation, mean concentration μ is assumed to be 4. If 

follows that the allowable margin of linearity based on ADL, θ0, is specified as 0.05 as 

recommended by Kroll et al. (Kroll, 2000). For each of 12 combinations, ten thousand 

(10,000) random samples are generated. For the 5% nominal significance level, a 

simulation study with 10,000 random samples implies that 95 percent of the empirical 

sizes evaluated at the allowable margins will be within 0.0457 and 0.0543 if the 

proposed methods can adequately control the size at the nominal level of 0.05.  

The results of the empirical sizes are provided in Table 4.5.1. All empirical sizes of 

the corrected Kroll’s method are larger than 0.0543. This indicates that the corrected 

Kroll’s method inflates the size and is quite liberal in concluding the linearity of an 

analytical procedure. On the other hand, all of empirical sizes of the GPQ methods 

based on ADL are within the range between 0.0457 and 0.0543. The simulation results 

reveal that the GPQ-based methods for ADL can adequately control the size at the 

nominal level. The reason for a better performance of the GPQ-based methods for ADL 

may be that the distributions of GPQs are free of their respective nuisance parameters. 

On the other hand, the corrected Kroll’s method fails to take into account the variability 

in estimator of the non-centrality parameter of the non-central chi-square distribution.  

The results of the empirical powers are presented in Table 5.5.2. In Table 5.5.2, the 

true value of ADL is assumed to be 0.005 for both number of solutions of 5 and 7. The 

results in Table 5.5.2 also show that the empirical power is an increasing function of the 

number of replicates and number of solutions. Although the empirical power of the 

corrected Kroll’s method is larger than the GPQ-based ADL methods, its better 

performance on the empirical power results from inflation of the size above the nominal  
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Table 5.5.1 Empirical sizes (Corrected Kroll’s method vs. GPQ-based ADL method) 
 

No. of 
Solutions 

No. of 
Replicates

Standard 
Deviation

Corrected
Kroll 

GPQ-based 
ADL 

     
5 2 0.1 0.0702 0.0467 
  0.2 0.0763 0.0517 
 3 0.1 0.0623 0.0502 
  0.2 0.0655 0.0517 
 4 0.1 0.0594 0.0505 
  0.2 0.0595 0.0508 
7 2 0.1 0.0655 0.0501 
  0.2 0.0635 0.0494 
 3 0.1 0.0592 0.0509 
  0.2 0.0583 0.0498 
 4 0.1 0.0562 0.0498 
  0.2 0.0571 0.0510 
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Table 5.5.2 Empirical powers with the true ADL=0.005 (Corrected Kroll’s method vs. 
GPQ-based ADL method) 

 
No. of 

Solutions 
No. of 

Replicates
Standard 
Deviation

Corrected
Kroll 

GPQ-based 
ADL 

     
5 2 0.1 1.0000 1.0000 
  0.2 0.9670 0.9331 
 3 0.1 1.0000 1.0000 
  0.2 0.9965 0.9942 
 4 0.1 1.0000 1.0000 
  0.2 0.9996 0.9995 
7 2 0.1 1.0000 1.0000 
  0.2 0.9923 0.9888 
 3 0.1 1.0000 1.0000 
  0.2 0.9996 0.9994 
 4 0.1 1.0000 1.0000 
  0.2 1.0000 1.0000 
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level. Figure 5.5.1 and 5.5.2 present the empirical powers when σ are 0.1 and 0.2,  

respectively with number of solutions is 5, number of replicates is 3. The true values of 

ADL are ranged from 0 to 0.08. A comparison of Figure 5.5.1 and Figure 5.5.2 reveals 

that the power of both methods is a deceasing function of σ. In Figure 5.5.1, when the 

ADL = 0.05, the empirical size for the corrected Kroll’s and the GPQ-based methods 

are 0.0623 and 0.0502 for ADL respectively. Similar findings are observed in Figure 

5.5.2. Again these results show that the corrected Kroll’s method inflate the size above 

the 0.05 level while the GPQ-based procedure can adequately control the size at the 

nominal level of 5%.  

 

5.6  Numerical Example 

Table 5.6.1 presents the duplicate determinations at the first five concentrations given 

in Example 2 of CLSI guideline EP6-A (Tholen et al., 2003) to illustrate the proposed 

testing procedures in evaluation of linearity of an analytical procedure. Following 

EP6-A (Tholen et al., 2003), the criterion of Pi Liμ -μ  for linearity is set as 0.2 mg/dL 

for all 5 concentrations. In this example, the allowable margin of percent bound for 

ADL is set as 0.05 for all methods based on ADL as suggested by Kroll, et al. (Kroll, 

2000). The results of regression analyses for the linear, quadratic and cubic linear 

regression models are given in Table 5.6.2. From Table 5.6.2, the estimates of the 

regression coefficient ''
2β  of the quadratic model are statistically significantly different 

from 0 at the 5% level (t0.025, 7 = 2.4469) while none of them is significantly different 

from 0 for the cubic model. In addition, the standard error of the residuals from the 

estimated quadratic regression equation is 0.124 which is smaller than the 0.2 set by the 
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Figure 5.5.1 Empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of replicates is 

3  (Corrected Kroll’s method vs. GPQ-based ADL method) 
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Figure 5.5.2 Empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of replicates is 

3  (Corrected Kroll’s method vs. GPQ-based ADL method) 
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manufacturer. Furthermore, R2 is also above 0.99. As a result, the quadratic model is the 

best-fitted model among the three models recommended by the approved CLSI 

guideline EP6-A (Tholen et al., 2003).  

The observed predicted means from the quadratic and linear regression models at 

each of the five dilutions as well as their corresponding differences are given in Table 

5.6.3. The results of the corrected Kroll’s and the GPQ-based ADL methods are 

provided in Table 5.6.4. From the differences in the observed predicted means between 

the quadratic and linear regression models and the observed mean concentrations, the 

observed ADL yields a value of 0.0146. With respect to a margin of percent bound of 

5%, the critical value is 0.0437 which is greater than the observed ADL of 0.0146, 

According to the decision rule of the corrected Kroll method, the analytical method can 

be concluded linear at the 5% significance level. The 95% upper confidence limit for 

the ADL computed by the GPQ-based ADL method is 0.0218 which is smaller than the 

allowable upper limit of 0.05. Hence, the linearity of the analytical procedure can be 

concluded at the 5% significance level by the GPQ-based ADL procedure. 

 

5.7  Summary 

The ADL proposed by Kroll et al. (Kroll, 2000) is an aggregate criterion constructed 

from the deviations from linearity scaled by the mean concentrations. However, the 

sampling distribution of the observed ADL involves unknown nuisance parameters μ 

and σ. On the other hand, the observed values of GPQs are free of the nuisance 

parameters. As a result, we apply the GPQ method to the inference of evaluation of 

linearity based ADL. The simulation results presented above show that the corrected 

Kroll’s method inflates the type I error rate and the GPQ-based ADL method can control 
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Table 5.6.1 Measurement of calcium (mg/dL) 
 

Dilution Replicate 1 Replicate 2 
   
1 4.7 4.6 
2 7.8 7.6 
3 10.4 10.2 
4 13.0 13.1 
5 15.5 15.3 

Source : The approved CLSI guideline EP6-A (2003) 
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Table 5.6.2 Summary of results of regression analyses for the example of calcium 
 

Order Coefficient 
LS 

Estimates SE t-test 
SE 
Sy.x 

Degrees 
freedom 

       
Linear 'α  2.16 0.15 14.3   
 '

1β  2.68 0.05 59.0 0.204 8 
       
Quadratic ''α  1.54 0.19  8.2   
 ''

1β  3.22 0.14 22.4   
 ''

2β  -0.09 0.02   -3.8 0.124 7 
       
Cubic '''α  1.47 0.47  3.15   

 
'''
1β  3.32 0.61  5.45   

 
'''
2β  -0.13 0.23 -0.56   

 
'''
3β  0.004 0.02  0.17 0.134 6 

Source : The approved CLSI guideline EP6-A (2003) 
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the size at the nominal level. On the other hand, the GPQ-based ADL procedure not 

only adequately control the type I error rate but also has the similar performance of the 

power as the corrected Kroll’s method. Therefore, we conclude the GPQ-based ADL 

procedure is better than the correct Kroll’s method for evaluating the linearity in assay 

validation.
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Table 5.6.3 Mean differences between the best-fitted curve and simple linear regression 
equation for the example of calcium 

 

Result Mean 
Predicted 
(Linear) 

Predicted  
(Quadratic) Difference % Difference 

     
4.65 4.85 4.67 -0.18 -3.9 
7.70 7.54 7.62 0.08 1.0 

10.30 10.22 10.40 0.18 1.8 
13.05 12.90 12.99 0.09 0.7 
15.40 15.59 15.41 -0.18 -1.2 

Source : The approved CLSI guideline EP6-A (2003) 
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Table 5.6.4 Results of the linearity evaluation for the example of calcium by corrected 
Kroll’s and GPQ-based ADL methods 

 

Method 
Sample Statistic / 

Critical Value or Allowable Bound  Conclusion
     

Sample ADL 0.0146  Corrected Kroll  
Critical Value 0.0437 

 
Linear 

Upper 95% C.L.  0.0218  GPQ-based ADL  
Allowable Upper Bound 0.05 

 
Linear 

95% C.L. : Upper 95% Confidence limit 
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Chapter 6 

Alternative Aggregate Criterion - 

Sum of Square of the Deviation from 

Linearity (SSDL) 

In this chapter, we propose a new measure of the assessment of linearity named Sum 

of Square of the Deviation from Linearity (SSDL). As mentioned in Section 3.2.1 of 

Chapter 3, SSDL is formulated directly by the nature of disaggregate criterion proposed 

by CLSI guideline as the form of model-by-dilution interaction. However, its 

corresponding statistical hypothesis and testing procedure is not to detect existence of 

the model-by-dilution interaction but rather to verify whether the model-by-dilution 

interaction is within some pre-specified allowable upper limit. 

 

6.1  SSDL and Statistical Hypothesis 

  Recall our introduction for SSDL in Chapter 3, a natural aggregate metric for 

assessment of assay linearity is the sum of squares of deviations from linearity (SSDL) 

denoted by τ  defined as  

L
2

Pi Li
i=1

τ = (μ - μ ) . ∑                                                                                                          ( 6 . 1 . 1 ) 
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The hypotheses for proving the assay linearity in then formulated as follows: 

L L
2 2 2 2

0 Pi Li 0 0 Pi Li 0
i=1 i=1

H : (μ - μ )   Lδ  vs. H : (μ - μ )  < Lδ≥∑ ∑                                                                    ( 6 . 1 . 2 ) 

or equivalently 

L L
2 2 2 2

0 Pi Li 0 0 Pi Li 0
i=1 i=1

H : (μ - μ ) /L  δ  vs. H : (μ - μ ) /L < δ≥∑ ∑  

where 0δ  is the allowable limit of Pi Li μ -μ  for evaluation procedure suggested by 

EP6-A guideline (Tholen et al., 2003). The generalized pivotal quantity approach to 

hypothesis (6.1.2) of evaluation for linearity of assay validation based on the SSDL is 

provided in the following subsequent subsections. 

 

6.2 . Generalized Pivotal Quantity of SSDL 

Most of work for deriving a GPQ of SSDL actually has been carried out in Chapter 5 

for deriving a GPQ of ADL. According to the definition of SSDL in Eq. (6.1.1), a GPQ 

of SSDL can be obtained as: 

( ) ( )τ
1=
J

R − −
′

P L P Lμ μ μ μR R                                                                                                                                                                           (6.2.1) 

where −P Lμ μR  was derived as Eq. (5.2.4) in Section 5.2 of Chapter 5. 

 

6.3  Generalized Confidence Interval of SSDL 

An upper 100(1-α)th percentile GCI for SSDL can be obtained from the following 

Monte-Carlo algorithm:  

Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through 

K, carry out the following two steps. 
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Step 2: Generate LRx1 standard normal random vector Z  and central chi-square 

random variable U  with degree of freedom LJ-d-1. 

Step 3: For the realized values of Y and 2S , compute τ,kR  defined in Eq. (6.2.1). 

 

The required upper 100(1-α)th percentiles of the distribution of GPQ for SSDL, which 

is also the upper 100(1-α)th generalized confidence limit for SSDL, is then estimated by 

the 100(1-α)th sample percentiles of the collection of K=10,000 realizations τ,1R  , 

τ,2R …….., τ,10000R . 

 

6.4  Statistical Testing Procedure 

The upper 100(1-α)% generalized confidence limit for SSDL based on GPQ can be 

used to test the statistical hypothesis in (6.1.2) for linearity. The null hypothesis in (6.1.2) 

is rejected and the linearity of a analytical method is concluded at the α significance 

level if the upper 100(1-α)% generalized confidence limit for SSDL is less than 2
0Lδ . 

 

6.5  Simulation Study 

We conducted a simulation study to compare the empirical sizes and powers of the 

corrected Kroll’s and GPQ-based SSDL methods. Following the specification of the 

experiment designs for evaluation of linearity, the number of solutions (or dilutions) of 

different concentrations is set to be 5 or 7 and the number of replications at each 

concentration is 2, 3, or 4. Throughout the simulation, mean concentration μ is assumed 

to be 4 and the allowable margin of linearity based on ADL, θ0, is specified 0.05 as 

recommended by Kroll et al. (Kroll, 2000). From the relationship that SSDL = L(μθ)2, 
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where μ  and θ are the mean of the concentrations, and ADL, respectively. It follows 

that the margin for SSDL for 5 and 7 concentrations are 0.2 and 0.28, respectively. In 

addition, standard deviation of normal random error is specified as 0.1 and 0.2. For each 

of 12 combinations, ten thousand (10,000) random samples are generated. For the 5% 

nominal significance level, a simulation study with 10,000 random samples implies that 

95 percent of the empirical sizes evaluated at the allowable margins will be within 

0.0457 and 0.0543 if the proposed methods can adequately control the size at the 

nominal level of 0.05.  

Table 6.5.1 presents the results of the empirical sizes. All of empirical sizes for the 

corrected Kroll’s is larger than 0.0543. On the other hand, all of empirical sizes of the 

GPQ method are within the range and showed that it has a better ability for controlling 

the size at the nominal level than the corrected Kroll’s method. It was introduced in the 

previous chapters that the poor performance for the corrected Kroll’s method in 

controlling the size results from the variability of estimators of non-centrality 

parameters for non-central χ2 distribution of the observed ADL being estimated by the 

square root of residual mean square obtained from best-fitted polynomial model. On the 

contrary, since one requirement for GPQ is that 
p L

Rμ -μ  is free of nuisance parameter σ , 

the GPQ approach can control the size at the nominal level. 

Table 6.5.2 presents the results of the empirical powers. For the simulation, the true 

ADL is specified as 0.005 for both number of solutions of 5 and 7. The results given in 

Table 6.5.2 also show that the empirical power increases as the numbers of replicates or 

concentrations increases. Both the methods provide comparable powers except for the 

one of the GPQ-based SSDL method is 0.6962 when number of solution is 5, number of 

replicates is 2, and standard deviation of normal random error is 0.2. However, all  
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Table 6.5.1 Empirical sizes (corrected Kroll’s method vs. GPQ-based SSDL method) 
 

No. of 
Solution 

No. of 
Replicate

Standard 
Deviation

Corrected
 Kroll 

GPQ-based 
SSDL 

     
5 2 0.1 0.0769 0.0535 
  0.2 0.0734 0.0503 
 3 0.1 0.0679 0.0523 
  0.2 0.0643 0.0501 
 4 0.1 0.0569 0.0476 
  0.2 0.0596 0.0504 
7 2 0.1 0.0670 0.0532 
  0.2 0.0671 0.0532 
 3 0.1 0.0573 0.0502 
  0.2 0.0557 0.0476 
 4 0.1 0.0563 0.0506 
  0.2 0.0595 0.0529 
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empirical powers of the GPQ-based SSDL method for other combinations of parameters 

are still greater than 90%. In addition, from Table 6.5.1, the corrected Kroll’s method 

fails to control the size at the nominal level. Therefore, the advantage of power by the 

corrected Kroll’s method comes at the expense of inflated type I error rates. 

Figure 6.5.1 and 6.5.2 present the empirical powers when the standard deviations of 

normal random error are 0.1 and 0.2, respectively with number of solutions is 5, number 

of replicates is 3, and the true ADLs are ranged from 0 to 0.08. Figure 6.5.1 shows that 

when standard deviation is 0.1, the empirical size at ADL=0.05 for the corrected Kroll’s 

method is 0.0679, while the empirical size of the GPQ-based SSDL method is 0.0521. It 

shows that the GPQ method can control the size better than the other methods at the 

nominal level. In addition, the powers reach 0 and 1 at ADL=0.08 and 0.005, 

respectively for both methods. On the other hand, the power of the GPQ-based SSDL 

method is quite competitive to the corrected Kroll’s method although it is little lower. 

The similar results are observed in Figure 6.5.2 when standard deviation of normal 

random error is 0.2. The empirical sizes for the corrected Kroll’s and the GPQ-based 

SSDL methods at ADL=0.05 are 0.0827 and 0.0494, respectively. In addition, the 

powers for both methods when the standard deviation is 0.2 are lower than those when 

the standard deviation is 0.1. 

 

6.6  Numerical Example 

The same example of calcium used in Chapter 5 from Example 2 of CLSI guideline 

EP6-A (Tholen et al., 2003) is used to illustrate the proposed testing procedures. In this 

example, the allowable margin of percent bound for ADL is set as 0.05. As indicated in 

EP6-A (ICH Expert Working Group, 1995), the criteria of Pi Liμ -μ  for claiming 
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Table 6.5.2 Empirical powers with the true ADL=0.005 (corrected Kroll’s method vs. 

GPQ-based SSDL method) 

 
No. of 

Solution 
No. of 

Replicate
Standard 
Deviation

Corrected
 Kroll GPQ 

     
5 2 0.1 1.0000 0.9994 
  0.2 0.9261 0.6962 
 3 0.1 1.0000 1.0000 
  0.2 0.9454 0.9256 
 4 0.1 1.0000 1.0000 
  0.2 0.9828 0.9781 
7 2 0.1 1.0000 1.0000 
  0.2 0.9327 0.9078 
 3 0.1 1.0000 1.0000 
  0.2 0.9901 0.9873 
 4 0.1 1.0000 1.0000 
  0.2 0.9980 0.9972 
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Figure 6.5.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of 

replicates is 3  (corrected Kroll’s method vs. GPQ-based SSDL method) 
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Figure 6.5.2 The empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of 

replicates is 3  (corrected Kroll’s method vs. GPQ-based SSDL method) 
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linearity is set as 0.2 mg/dL, the allowable limit of SSDL is set as 0.2 which is 

calculated by square of 0.2 mg/dL multiplying 5 concentrations. Table 6.6.1 presents the 

results of the two testing procedures. According to the decision rule of the corrected 

Kroll method, the analytical method can be concluded linear at the 5% significance 

level. On the other hand, the 95% upper limit confidence limit for SSDL of the GPQ 

methods is 0.2664, respectively. As a result, the GPQ-based SSDL method can not 

conclude that the analytical procedure is linear at the 5% significance level.  The 

results presented above show the consistent results with the simulation results in Section 

6.5 which the GPQ-based SSDL method is more conservative than the corrected Kroll’s 

method. However, as demonstrated by the simulation, the GPQ-based SSDL method is 

the procedure that can adequately control the size at the nominal level. 

 
6.7  Summary 

The ADL is an aggregate criterion proposed by Kroll et al. (Kroll, 2000) for 

evaluating the linearity in assay validation. In this chapter, we propose an alternative 

criterion of SSDL based on the GPQ approach to assess the linearity. Simulation results 

show that the GPQ-based SSDL method not only can adequately control the type I error 

rate at the nominal level better than the corrected Kroll’s method but also keep a 

competitive performance of the power. The reason for the poor performance corrected 

Kroll’s method in controlling the size at the nominal level is the variability of estimators 

of non-central parameters for non-central 2χ  distribution of the observed ADL being 

estimated by the square root of residual mean square obtained from best-fitted 

polynomial model. Therefore, we can conclude the proposed statistical hypothesis based 

on the aggregate criteria SSDL in conjunction with the testing procedure derived from 
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Table 6.6.1 Results of the linearity evaluation for the example of calcium by the 
corrected Kroll’s and GPQ-based SSDL methods 

 

 Method 
Sample Statistic / 

Critical Value or Allowable Bound  Conclusion
    

Sample ADL 0.0146  Corrected Kroll 
Critical Value 0.0437 

 
Linear 

Upper 95% C.L.  0.2664  GPQ-based SSDL 
Allowable Upper Bound 0.2 

 
Nonlinear

95% C.L. : Upper 95% Confidence limit. of SSDL 
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the GPQ method for evaluating the linearity in assay validation is better than the 

corrected Kroll’s method. 



 

          
                68

 

Chapter 7 

Alternative Criterion - Sum of 

Squares of the Deviation from 

Linearity Related to the Variation 

(CVDL) 

The SSDL we introduced in Chapter 7 is based on the un-scaled deviations from 

linearity while ADL is based on the deviations from linearity scaled by the population 

average of concentrations of all solutions of the assay. Both ADL and SSDL do not take 

the experimental variability into consideration. As the repeatability is also the important 

characteristic which stands for reliability of a assay method, Wu (Wu, 2008) propose the 

coefficient of variation of the deviations from linearity (CVDL) as an alternative 

measure which can be used to evaluate the linearity and repeatability simultaneously. 

 

7.1  CVDL and Statistical Hypothesis 

As introduced in Section 3.2.3 of Chapter 3, CVDL is defined as: 
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2

L L
2 2

Pi Li Pi Li
i=1 i=1

σ

(μ  - μ ) /L (μ  - μ ) /L
η = CVDL = 

σ
=

∑ ∑
.                      (7.1.1) 

CVDL contains both information of the deviation from the linearity and the 

repeatability in term of 
L

2
Pi Li

i=1
(μ  - μ )∑  and σ , respectively, where 

L
2

Pi Li
i=1

(μ  - μ )∑  is 

the sum of squares for the difference in predicted values of the best-fitted model andσ  

is the residual mean square obtained from the best-fitted model as defined in the 

previous chapters. 

The corresponding hypothesis for assessing linearity is then given as: 

H0: η ≥ η0 vs. Ha: η < η0.                                                                                                       ( 7 . 1 . 2 ) 

where η0 is the allowable limit of CVDL. 

An estimator of CVDL can be also expressed in terms of SSDL as 

( )
L 2

Pi Li
i=1

ˆ ˆY -Y /L
η =  

s

∑
,                                                                 ( 7 . 1 . 3 ) 

where s is the square root of the residual mean square obtained from the best-fitted 

model with degrees of freedom of LJ-d-1, and d is the degrees of freedom for regression 

of the best-fitted model. 

 

7.2  Generalized Pivotal Quantity of CVDL 

As it can be found in Eq. (7.1.1) for the definition of CVDL, the term of numerator is 

exactly the SSDL denoted by τR  we introduced in Chapter 5. In addition, a GPQ of 

2σ  can be obtained as  
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2

2

σ

(LJ-d-1)R = s
U

                                                                 ( 7 . 2 . 1 ) 

2 2

2

σ      = s
S

                                                                                         (7.2.2) 

where U  is the same chi-square random variable with degrees of LJ-d-1 we defined in 

Eq. (5.2.2).  

From (7.2.1), 2σ
R  has distribution that is free of parameters. In addition, when 2S  is 

substituted by its observed value 2s  in (7.2.2), then the observed value of 2σ
R  

denoted by 2σ
r  is equal to 2σ  and free of any nuisance parameter. Hence, it fulfills 

the two requirements of (a) and (b) as described in Section 5.1 for being a GPQ for 2σ . 

Therefore, a GPQ of CVDL can be obtained by: 

2

τ
η

σ

RR  = 
R

                                                                                         (7.2.3) 

 

7.3  Generalized Confidence Interval of CVDL 

An upper 100(1-α)th percentile GCI for CVDL can be obtained from the following 

Monte-Carlo algorithm:  

Step 1: Choose a large simulation sample size, say K=10,000. For k equal to 1 through 

K, carry out the following two steps. 

Step 2: Independently generate LJx1 standard normal random vector Z  and U  is the 

same chi-square random variable with degrees of LJ-d-1. 

Step 3: For the realized values of Y and S2, compute ηR  as defined in (7.2.3).  

The required upper 100(1-α)th percentiles of the distribution of GPQ for CVDL is then 
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estimated by the 100(1-α)th sample percentiles of the collection of K=10,000 

realizations η,1R , η,2R ,…….., η,10000R . 

7.4  Statistical Testing Procedure 

The upper 100(1-α)% generalized confidence limit for CVDL based on GPQ can be 

used to test their respective statistical hypotheses in (7.1.2) for linearity. The null 

hypothesis in (7.1.2) is rejected and the linearity of a analytical method is concluded at 

the α significance level if the upper 100(1-α)% generalized confidence limit for  

CVDL is less than η0. 

 

7.5  Simulation Study 

A simulation study is performed to compare the empirical sizes and powers of the 

corrected Kroll’s and GPQ methods based on CVDL. The specifications of the 

simulation study are given as follows: The number of solutions (or dilutions) of 

different concentrations is set to be 5 or 7 and the number of replications at each 

concentration is 2, 3, or 4. Throughout the simulation, mean concentration μ is assumed 

to be 4. If following that the allowable margin of linearity based on ADL, θ0, is 

specified at 0.05 as recommended by Kroll et al. (Kroll, 2000). Using the relationship 

that CVDL =  θ L /σ× ×μ , where μ  is the population mean concentrations for all 

solutions of the assay and θ is ADL. The allowable limit η0 is 2 and 1 for σ being 0.1 

and 0.2, respectively. For each of 12 combinations, ten thousand (10,000) random 

samples are generated. For the 5% nominal significance level, a simulation study with 

10,000 random samples implies that 95 percent of the empirical sizes evaluated at the 
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allowable margins will be within 0.0457 and 0.0543 if the proposed methods can 

adequately control the size at the nominal level of 0.05.  

The results of the empirical sizes are provided in Table 7.5.1. All the empirical sizes 

of the GPQ method based on CVDL are within the range between 0.0457 and 0.0543, 

while all empirical sizes of the corrected Kroll’s method are larger than 0.0543. The 

simulation results reveal that the GPQ-based CVDL method can adequately control the 

size at the nominal level. The reason for a better performance of the GPQ-based CVDL 

method may be that the distribution of GPQ is free of their respective nuisance 

parameters. On the other hand, the corrected Kroll’s method fails to take into account 

the variability in estimator of the non-centrality parameter of the non-central chi-square 

distribution.  

The results of the empirical powers are presented in Table 7.5.2. In Table 7.5.2, the 

true value of ADL is assumed to be 0.005 for both number of solutions of 5 and 7. The 

results in Table 7.5.2 also show that the empirical power of both methods is an 

increasing function of the number of replicates and number of solutions. In addition, the 

empirical power of the GPQ-based CVDL method is competitive to the corrected 

Kroll’s method. Although the empirical power of the corrected Kroll’s method is larger 

than that of the GPQ-based CVDL method, its better performance on the empirical 

power results from inflation of the size above the nominal level. 

Figure 7.5.1 and 7.5.2 present the empirical powers of the four methods when σ are 

0.1 and 0.2, respectively with number of solutions is 5, number of replicates is 3. The 

true values of ADL are ranged from 0 to 0.08. A comparison of Figure 7.5.1 and Figure 

7.5.2 reveals that the power of both methods is a deceasing function of σ. The power 

curve of the GPQ-based CVDL method is uniformly lower than that of the corrected 
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Kroll’s method. However, the empirical power of GPQ-based CVDL method at 

ADL=0.05 is 0.0511 while which for corrected Kroll’s method is 0.0623. Therefore, it 

show that show that the GPQ-based CVDL method can control the size at the nominal 

level while corrected Kroll’s method cannot. 

 

7.6  Numerical Example 

The same numerical data of calcium in the previous chapters is used to illustrate the 

proposed testing procedures in evaluation of linearity of an analytical procedure. 

Following EP6-A (Tholen et al., 2003), the criterion of Pi Liμ -μ  for linearity is set as 

0.2 mg/dL for all 5 concentrations. In this example, the allowable margin of percent 

bound for ADL is set as 0.05. On the other hand, the allowable limit of the GPQ-based 

SSDL is set as 0.2 which is calculated by square of 0.2 mg/dL multiplying 5 

concentrations. We also assume that the allowable repeatability set by the manufacturer 

is 0.2. Therefore, the allowable margin of the GPQ-based CVDL is 1 which is equal to 

the allowable margin of 0.2 for SSDL divided by the product of 5 (concentrations) and 

square of the repeatability of 0.2, i.e., 2η= τ/(Lσ ) . The results of the corrected Kroll’s 

and the GPQ-based CVDL methods are provided in Table 7.6.1. The linearity is 

concluded by corrected Kroll’s method since the observed ADL yields a value of 0.0146 

is less than the critical value of 0.0437 with respect to a margin of percent bound of 5%. 

On the other hand, the 95% upper confidence limits for CVDL methods is 1.9125. Its 

95% upper confidence limits is larger than their respective allowable upper limits of 1. 

As a result, the GPQ-based CVDL method can not conclude the linearity of the 

analytical procedure at the 5% significance level. As shown in simulation results and 

conservative than the corrected Kroll’s method. 
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Table 7.5.1 Empirical sizes (corrected Kroll’s method vs. GPQ-based CVDL method) 

 
No. of 

Solutions 
No. of 

Replicates
Standard 
Deviation

Corrected
 Kroll 

GPQ-based 
CVDL 

     
5 2 0.1 0.0702 0.0540 
  0.2 0.0763 0.0467 
 3 0.1 0.0623 0.0513 
  0.2 0.0655 0.0511 
 4 0.1 0.0594 0.0489 
  0.2 0.0595 0.0509 
7 2 0.1 0.0655 0.0490 
  0.2 0.0635 0.0504 
 3 0.1 0.0592 0.0473 
  0.2 0.0583 0.0504 
 4 0.1 0.0562 0.0529 
  0.2 0.0571 0.0452 
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Table 7.5.2 Empirical powers with the true ADL=0.005 (corrected Kroll’s method vs. 
GPQ-based CVDL method) 

 
No. of 

Solutions 
No. of 

Replicates
Standard 
Deviation

Corrected
 Kroll 

GPQ-based 
CVDL 

     
5 2 0.1 1.0000 0.9876  
  0.2 0.9670 0.7754  
 3 0.1 1.0000 0.9989  
  0.2 0.9965 0.9212  
 4 0.1 1.0000 0.9998  
  0.2 0.9996 0.9678  
7 2 0.1 1.0000 0.9979  
  0.2 0.9923 0.8994  
 3 0.1 1.0000 0.9999  
  0.2 0.9996 0.9742  
 4 0.1 1.0000 1.0000  
  0.2 1.0000 0.9932  
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Figure 7.5.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of 
replicates is 3 (corrected Kroll’s method vs. GPQ-based CVDL method) 

 



 

          
                  

77

0.00 0.02 0.04 0.06 0.08

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

ADL

p
o
w

er

Corrected Kroll
GPQ-based CVDL   

 
 

Figure 7.5.2 The empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of 
replicates is 3 (corrected Kroll’s method vs. GPQ-based CVDL method) 
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Table 7.6.1 Results of the linearity evaluation for the example of calcium by corrected 
Kroll’s and GPQ-based CVDL methods 

 

 Method 
Sample Statistic / 

Critical Value or Allowable Bound  Conclusion
    

Sample ADL 0.0146  Corrected Kroll  
Critical Value 0.0437 

 
Linear 

Upper 95% C.L.  1.9125  GPQ-based CVDL  
Allowable Upper Bound 1 

 
Nonlinear

95% C.L. : Upper 95% Confidence limit 
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7.7  Summary 

Both ADL and CVDL are the aggregate criterion for assessment of linearity in assay 

validation. The main difference between these two criteria is the proposed CVDL is an 

criterion not only contain the information of the deviations from linearity but also the 

repeatability of the analytical procedure. The simulation results presented above show 

that the corrected Kroll’s method inflates the type I error rate and the GPQ-based CVDL 

methods can control the size at the nominal level.  In addition, the GPQ-based CVDL 

method also keep the good power performance. Therefore, we conclude the GPQ-based 

CVDL with respect to the statistical hypothesis in (7.1.2) for evaluating the linearity in 

assay validation is better than the corrected Kroll’s method. 
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Chapter 8 

Discussion and Summary 

  Various aggregate criteria including ADL, SSDL and CVDL for evaluating the 

linearity in assay validation were introduced in Chapter 2 to 7. Although these criteria 

are formulated by different components which provide the different characteristics, 

however, the common feature of these criteria is that all of them contain the sum of 

square for the deviations from linearity as the major component. In this chapter, we 

discuss the relationship among these criteria. In addition, the results of the simulation 

study and numerical example are used to compare the performances and characteristics 

of each aggregate criterion for the assessment of linearity in assay validation. 

 

8.1  Relationship of the Aggregate Criteria 

Recall the definition for ADL, SSDL and CVDL are defined in the previous chapters 

as follows: 

L
2

Pi Li
i=1

(μ  - μ ) /L
θ = ADL = 

μ

∑
 

L
2

Pi Li
i=1

τ=SSDL = (μ - μ ) . ∑  

2

L
2

Pi Li
i=1

σ

(μ  - μ ) /L
η = CVDL = 

∑
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where Piμ  and Liμ  are the predicted mean of the best-fit polynomial model and linear 

regression model at ith concentration with i = 1,.., L, respectively; μ  is the population 

mean concentration for all solutions of the assay and 2σ  is the variance of residual 

under the best-fitted model. It can be found that the SSDL is the common component 

for each criterion. Their relationship can easily be constructed as the following:  

τ = L(μθ)2 = L(ησ)2                                  ( 8 . 1 . 1 ) 

Unlike that SSDL is the unscaled deviation defined as the pure sum of square of the 

deviations from the linearity, both CVDL and ADL are the scaled deviations. ADL is the 

square root of the average sum of squares of the scaled deviations by μ , while CVDL 

is scaled by the variability or repeatability of the best-fitted model. 

 

8.2  Comparison by Simulation Study 

A simulation studies was employed to compare the empirical sizes and powers among 

three GPQ-based ADL, SSDL and CVDL methods. Parts of the results from the same 

simulation study were presented in Chapter 5, 7 for comparing the performance of the 

corrected Kroll’s method with GPQ-based ADL and GPQ-based CVDL methods, 

respectively. As described in Chapter 5 and 7, the specifications of the simulation study 

are given as follows: The number of solutions (or dilutions) of different concentrations 

is set to be 5 or 7 and the number of replications at each concentration is 2, 3, or 4. 

Throughout the simulation, mean concentration μ is assumed to be 4. The allowable 

margin of linearity based on ADL, θ0, is specified at 0.05. From the relationship of τ = 

L(μθ)2 = L(ησ)2 in Eq. (8.1.1), it follows that the margin for SSDL are 0.2 and 0.28 for 

5 and 7 concentrations, respectively. In addition, under the specification of standard 
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deviation of normal random error is specified as 0.1 and 0.2, the allowable limit η0 is 2 

and 1 for σ being 0.1 and 0.2, respectively. For each of 12 combinations, ten thousand 

(10,000) random samples are generated. For the 5% nominal significance level, a 

simulation study with 10,000 random samples implies that 95 percent of the empirical 

sizes evaluated at the allowable margins will be within 0.0457 and 0.0543 if the 

proposed methods can adequately control the size at the nominal level of 0.05.  

The results of the empirical sizes are provided in Table 8.2.1. All of empirical sizes of 

the GPQ methods based on ADL, SSDL and CVDL are within the range between 

0.0457 and 0.0543. The simulation results reveal that the GPQ-based methods for SSDL, 

ADL, and CVDL can adequately control the size at the nominal level. On the other hand, 

according to the empirical powers of three GPQ-based methods presented in Table 8.2.2, 

the empirical power of the GPQ-based ADL method is larger than that of the 

GPQ-based SSDL which is in turn larger than that of the GPQ-based CVDL method.  

Figure 8.2.1 and 8.2.2 present the empirical powers of the three GPQ-based methods 

when σ are 0.1 and 0.2, respectively with number of solutions is 5, number of replicates 

is 3. For Figure 8.2.1, when the ADL = 0.05, the empirical size for the three GPQ-based 

methods are 0.0499, 0.0513, and 0.0502 for SSDL, CVDL, and ADL respectively. 

Similar findings are observed in Figure 8.2.2. Again these results show that the three 

GPQ-based procedures can adequately control the size at the nominal level of 5%. 

Moreover, Both figures demonstrate that the GPQ-based ADL procedure is uniformly 

more powerful than the GPQ-based SSDL method which is in turn uniformly more 

powerful than the GPQ-based CVDL method. For example, in Figure 8.2.1 when ADL 

is 0.03, the empirical powers are 0.9426, 0.7803, and 0.5337, respectively for the 

GPQ-based ADL, SSDL, and CVDL methods. In other words, the GPQ-based ADL  
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Table 8.2.1 Empirical sizes (GPQ-based SSDL vs. GPQ-based CVDL vs. GPQ-based 
ADL methods) 

 
No. of 

Solutions 
No. of 

Replicates 
Standard 
Deviation

GPQ-based
SSDL 

GPQ-based 
CVDL 

GPQ-based 
ADL 

      
5 2 0.1 0.0462 0.0540 0.0467 
  0.2 0.0523 0.0467 0.0517 
 3 0.1 0.0499 0.0513 0.0502 
  0.2 0.0522 0.0511 0.0517 
 4 0.1 0.0498 0.0489 0.0505 
  0.2 0.0504 0.0509 0.0508 
7 2 0.1 0.0504 0.0490 0.0501 
  0.2 0.0495 0.0504 0.0494 
 3 0.1 0.0505 0.0473 0.0509 
  0.2 0.0495 0.0504 0.0498 
 4 0.1 0.0498 0.0529 0.0498 
  0.2 0.0498 0.0452 0.0510 
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Table 8.2.2 Empirical powers with the true ADL=0.005 (GPQ-based SSDL vs. 
GPQ-based CVDL vs. GPQ-based ADL methods) 

 
No. of 

Solutions 
No. of 

Replicates 
Standard 
Deviation

GPQ-based
SSDL 

GPQ-based 
CVDL 

GPQ-based 
ADL 

      
5 2 0.1 0.9995 0.9876 1.0000 
  0.2 0.6976 0.7754 0.9331 
 3 0.1 1.0000 0.9989 1.0000 
  0.2 0.9326 0.9212 0.9942 
 4 0.1 1.0000 0.9998 1.0000 
  0.2 0.9814 0.9678 0.9995 
7 2 0.1 1.0000 0.9979 1.0000 
  0.2 0.9123 0.8994 0.9888 
 3 0.1 1.0000 0.9999 1.0000 
  0.2 0.9850 0.9742 0.9994 
 4 0.1 1.0000 1.0000 1.0000 
  0.2 0.9981 0.9932 1.0000 
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Figure 8.2.1 The empirical powers when standard deviation of normal random error is 0.1, number of solutions is 5, and number of 
replicates is 3  (GPQ-based SSDL vs. GPQ-based CVDL vs. GPQ-based ADL methods) 
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Figure 8.2.2 The empirical powers when standard deviation of normal random error is 0.2, number of solutions is 5, and number of 
replicates is 3  (GPQ-based SSDL vs. GPQ-based CVDL vs. GPQ-based ADL methods) 
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procedure is 40% more powerful than the GPQ-based CVDL method and is 16% more 

powerful than the GPQ-based SSDL method at the ADL of 0.03. Therefore, the 

improvement of the power provided by the GPQ-based ADL method is impressively 

substantial. 

  

8.3 Numerical Example 

The previous example of calcium is used to illustrate the proposed testing procedures 

in evaluation of linearity of an analytical procedure. Under the criteria of Pi Liμ -μ  for 

linearity and repeatability are 0.2mg/dL and 0.2mg/dL, respectively, and the allowable 

margin of percent bound for ADL is set as 0.05, the corresponding criteria and results of 

three GPQ-based ADL, SSDL and CVDL methods are presented in Table 8.3.1. The 

results show that the 95% upper confidence limit for the ADL computed by the GPQ 

method is 0.0218 which is smaller than the allowable upper limit of 0.05. Hence, the 

linearity of the analytical procedure can be concluded at the 5% significance level by 

the GPQ-based ADL procedure. On the other hand, the 95% upper confidence limits for 

SSDL of the GPQ-based SSDL and CVDL methods are 0.2471 and 1.9125, respectively. 

Both 95% upper confidence limits are larger than their respective allowable upper limits 

of 0.2 and 1. As a result, both methods can not conclude the linearity of the analytical 

procedure at the 5% significance level. The results presented above show the different 

conclusions between the GPQ-based methods. As shown in simulation results, all three 

GPQ-based methods can control the size at the nominal size of 0.05, the GPQ-based 

ADL method is uniformly more powerful than the other two GPQ-based methods.  

This might be one of the reasons why the linearity can be claimed by the GPQ-based  
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Table 8.3.1 Results of the linearity evaluation by three different methods 
 

Method 
Sample Statistic / 

Critical Value or Allowable Bound  Conclusion
     

Upper 95% C.L. 0.2471  GPQ-based SSDL  
Allowable Upper Bound 0.2 

 
Nonlinear

Upper 95% C.L.  1.9125  GPQ-based CVDL  
Allowable Upper Bound 1 

 
Nolinear 

Upper 95% C.L.  0.0218  GPQ-based ADL  
Allowable Upper Bound 0.05 

 
Linear 

95% C.L. : Upper 95% Confidence limit 
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ADL method.  

 
8.4  Summary 

In this chapter, we discuss the relationship among three different aggregate criteria of 

ADL, SSDL and CVDL. As we mentioned in Section 8.1, the SSDL, i.e., the sum of 

square of the deviation from the linearity is the basis of three criteria. On the other hand, 

ADL and CVDL are the scale measures scaled by the average concentration and 

repeatability, respectively. As the demonstrated by the simulation results, all three 

GPQ-based ADL, SSDL, CVDL methods can control the size at the nominal level. 

Moreover, simulation results reveal that the GPQ-based ADL procedure is uniformly 

more powerful than the GPQ-based SSDL and CVDL methods. In addition, CVDL 

method is the most conservative procedure among all three GPQ-methods. This may be 

due to the reason that it is scaled by the repeatability and it requires both the predicted 

means and repeatability of the best-fitted model to meet the allowable limits. On the 

other hand, the GPQ-based ADL procedure not only adequately control the type I error 

rate but also is uniformly more powerful than the other GPQ-based method.  Therefore, 

the GPQ-based ADL procedure will be recommended to be the better procedure for 

evaluating the linearity in assay validation among the three GPQ-based methods. 

However, as the GPQ-based CVDL procedure considers linearity and repeatability 

simultaneously in one measure, one may consider using CVDL as the criterion for assay 

validation if he/she would like to evaluate accuracy and reliability simultaneously. 
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Chapter 9 

Concluding Remarks 

9.1 Conclusion 

One of the most important characteristics for evaluation of accuracy and precision in 

assay validation is linearity. Even though the best-fitted model is not linear, linearity of 

the analytical procedure can still be claimed if the difference in the predicted means 

between the best-fitted and linear models is smaller than some pre-specified allowable 

limit at all concentrations employed in the validation experiment. As a result, the 

deviation from linearity is the fundamental unit for assessment of bias for evaluation of 

linearity. 

With respect to the disaggregate criterion, the approved CLSI EP6-A guideline 

proposes the estimation method by comparing the estimates of the differences in the 

predicted means with the pre-specified allowable limit directly without the formal 

statistical inference procedure. The method completely ignores the variation of the 

estimate and inflates the type I error of the results of the evaluation. On the hand, the 

ADL proposed by Kroll et al. (Kroll, 2000) is an aggregate criterion constructed by the 

sum of square of from the deviations from linearity scaled by the mean concentrations. 

However, the statistical testing procedure proposed by Kroll et al. (Kroll, 2000) not only 

incorrectly formulates the hypothesis for proving linearity but also contained the 

unknown nuisance parameters in the distribution of ADL which causes the problem for 
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controlling the size at the nominal level. Therefore, we propose the TOST procedure 

and corrected Kroll’s method to improve the shortcomings of the above two methods by 

providing the formal statistical testing procedure instead of the estimation method and 

reformulating the correct hypothesis for the uncorrected Korll’s method, respectively. 

The simulation results show the proposed methods can control the size better than the 

two current methods. On the other hand, to overcome the issue raised by the unknown 

nuisance parameters of the distribution of ADL, we propose the GPQ-based ADL 

method for eliminating the unknown parameter in the distribution by applying the 

concept of generalized confidence interval proposed by Weerahadi (Weerahandi, 1993). 

The proposed GPQ method not only can control the size at the nominal level better than 

the corrected Kroll’s method but also keep the good performance of the power for 

assessment of linearity in assay validation. 

In addition to ADL proposed by Kroll et al. (Kroll, 2000), we also introduce two new 

alternative criteria SSDL and CVDL. SSSL is an un-scaled measure which is formulate 

by the sums of the square of the deviation from linearity, while CVDL is a scaled 

measure which is scaled by the variability of the best-fitted model for assessment of 

linearity. The major difference of CVDL with other two aggregate criteria is that CVDL 

considers both accuracy and reliability with respect to an analytical method into one 

measure simultaneously. With respect to SSDL, one may consider the following test 

statistic for evaluating linearity using F-test: 

( ) ( )

( ) ( )

Pi Li

Pi

L J 2

i=1 j 1
L J 2

ij
i=1 j=1

μ μ / d-1

Y μ / LJ-d-1
ψ =

−
=

−

∑∑

∑∑
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Under the null hypothesis of hypothesis (3.2.2.2), i.e., 
L

2 2
Pi Li 0

i=1

(μ - μ ) =Lδ∑ , ψ  is 

distributed as an non-central d-1,LJ-d-1F  distribution with non-centrality parameter of 

2
0

2

LJδ
σ

. However, there is still unknown parameter 2σ  in the non-centrality parameter of 

the distribution. If the statistical testing is performed based on ψ  with non-central 

d-1,LJ-d-1F  distribution by substituting 2σ  using its estimates, the type-I error may still 

be inflated due to the variability of estimates of 2σ . Therefore, the GPQ approach is 

proposed to solve the issue of the unknown parameters in the distribution of the 

estimators of each aggregate criterion. Our simulation results show all three GPQ-based 

ADL, SSDL and CVDL method can not only control the size better than corrected 

Kroll’s method but also maintain the good performance of the power. On the other hand, 

it also show the GPQ-based ADL procedure is uniformly more powerful than the 

GPQ-based SSDL and CVDL methods. 

In addition to the proposed GPQ approach, a bootstrap procedure may be a 

reasonable approach to evaluation of linearity for the proposed aggregate criteria. 

However, bootstrap procedures may suffer a disadvantage that the sampling 

distributions of the observed ADL, SSDL and CVDL involve unknown nuisance 

parameters which need to be substituted by their estimates when generating the 

bootstrap samples. Bootstrap procedures will still inflate type I error rate due to 

variability of estimates of unknown parameters. On the other hand, derivation of 

generalized pivotal quantities is based on the sampling distribution of the sample mean, 

the mean square of the best-fitted model. As result, our proposed GPQ procedures do 

incorporate the sampling variability of the estimated parameters. In addition, the 

observed GPQ is free of the nuisance parameters. This is another novelty of our 
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proposed procedure which applies the technique of GPQ to resolve the issue of nuisance 

parameters for the inference of the proposed aggregate criteria on evaluation of 

linearity. 

The other issue needs to be noted is about the design of experiment for evaluation of 

linearity. As it has already known that the variability of the predicted values of the fitted 

regression models will become larger at the concentration levels which are close to the 

start and end points of the range of selected concentration levels. Therefore, the optimal 

design with the selection of appropriate concentration levels including the number of 

concentration levels, the value of concentration levels and the number of samples at 

each concentration levels by considering the change of the variability for the predicted 

values at different concentration levels needs to be considered. As one of the purposes 

for the evaluation of linearity is to decide the range of concentration levels with linearity, 

after selecting out the concentration levels without nonlinearity according to the criteria 

of EP6-A guideline (Tholen et al., 2003), an equal space design, i.e., equal difference 

between each two neighbor concentration levels, which is the design with most 

efficiency is recommend. 

In our research, we introduce the TOST procedure for the disaggregate criterion as 

well as the GPQ-based procedure for the different aggregate criteria. All of the proposed 

procedures show the good performance in controlling the size and power for assessment 

of linearity in assay validation. In addition, the evaluation procedure based on the 

disaggregate criterion is more conservative than which based on the aggregate criterion 

because it requires that the differences in predicted means between the best-fitted model 

and linear models for all solutions be within the pre-specified limit, while the aggregate 

criterion only requires the magnitude of sum of deviations from linearity be controlled 
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within a aggregate limit. The choice of the disaggregate-based procedure and aggregate 

based procedure may depend on how accuracy the assay method is required. In addition, 

although the GPQ-based ADL procedure is recommended to be used for assessment of 

linearity in assay validation since it is the uniformly more powerful than the other two 

GPQ-based methods. However, one may consider using CVDL as the criterion for assay 

validation if he/she would like to evaluate accuracy and reliability simultaneously. 

 

9.2  Other Application and Future Research 

As we introduced in Chapter 5 that SSDL is an aggregate criterion formulated by the 

nature of disaggregate criterion proposed by the CLSI EP6-A guideline (Tholen et al., 

2003) as the form of model-by-dilution interaction. The similar concept for aggregate 

criterion of model-by-dilution interaction for assessing linearity can also be 

implemented to the area of investigating the consistency of treatment differences of a 

pharmaceutical product among different populations. For instance, the pharmaceutical 

companies conduct the bridging study as a supplementary study in the new region to 

provide pharmacodynamic or clinical data on efficacy, safety, dosage and dose regimen 

to allow extrapolation of the foreign clinical data to the population of the new region for 

getting the drug approval in the new region. The interest of the center effect is also for a 

multi-center clinical trial to evaluate consistence of the drug effect among study centers. 

In addition, scientists or medical expert may have interest in evaluating the similar 

effect of the pharmaceutical product can be obtained for adults and children. The 

treatment-by-population interaction can be considered as a measure for evaluating if the 

effects of a pharmaceutical product are consistent among populations based on the 

aggregate criteria, where population can be the region, center or age group according to 
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the application. However, our aim is not to detect existence of the 

treatment-by-population interaction but rather to verify whether the 

treatment-by-population interaction is within some pre-specified allowable upper limit. 

Therefore one of possible hypothesis can be formulated as follows: 

( ) ( )
L L2 2

k k
k 1 k 1

0 a

μ -μ μ -μ
H :   vs.  H :

L L

Δ Δ Δ Δ
2 2= =
0 0≥ θ < θ

∑ ∑
 

where kμΔ  and μΔ  are the treatment difference in population k and overall mean 

treatment difference among L populations, respectively, between investigational and 

control products. 0θ  is the allowable upper bound of treatment difference for each of L 

populations. The research for this application has already been investigated as the 

separate topic. 

With respect to the further research, there are some topics related to our current 

research which can be considered as the following: 

(1) As both accuracy and reliability are important for an assay method, the proposed 

CVDL is proposed as a criterion for not only assessing accuracy but also 

evaluating reliability simultaneously. The alternative approach for evaluating 

accuracy and reliability simultaneously is to perform a multiple comparison by 

conducting two statistical testing procedures for assessment of linearity and 

repeatability, respectively. 

(2) CVDL is actually an aggregate criterion for aggregating the measures of accuracy 

and reliability by their ratio. In some situation, the different importance of 

accuracy and reliability for some specific assay method may be considered. The 

weighted sum of the measures for accuracy and reliability probably can be 
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considered as an alternative aggregate criterion for this type of evaluation. 

(3) CLSI EP6-A guideline (Tholen et al., 2003) suggests an experiment with 5 to 7 

concentration levels and at least two replicates of samples should be employed for 

evaluation of linearity. However, the determination of sample size in experiment 

should not be fixed but based on the consideration of the magnitude of the 

allowable limit of evaluation criterion. Therefore, the selection the appropriate 

sample size with desired power and significant level under the pre-specified 

allowable limit of the evaluation criterion is one of the topics for future research. 
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Appendix 
 

 
Instruction for Using the Fortran Program for Linearity Evaluation of Assay Validation 

 
Introduction: 
  The program is developed based on the statistical methods presented in the published paper entitled “Statistical Methods for Evaluating 
the Linearity in Assay Validation” (Eric Hsieh, and Chin-fu Hsiao, Jen-pei Liu, 2008).  
 
System Requirement 

Fortran Version: Compaq Visual Fortran 6.6 with IMSL Library 
 
 
Instruction 
 

The program includes the following functions: 
 
1. Input Data: 

There is the user friendly interface which allows users can input the following information based on their experiment design: 
(1) Desired statistical significant level 
(2) Desired allowable limit for different of predicted values between linear and polynomial models 
(3) Number of Solutions 
(4) Number of Replicates 
(5) Measures obtained from their experiments 

 
2. Output 

There are two types of output provided in the applications  
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(1) Output on the screen 
The output on the screen provides the basic information of the design and results of the linearity evaluation by each statistical 
procedure in the paper. 

(2) Output to the text file 
The application allows user to specify the desired path and file name to save the detail results of the evaluation including: 

 Inputted measures obtained from the experiment 
 Summary of Regression Analysis 
 Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation 
 Results of the linearity evaluation by each statistical procedure 

 
3. Demo of the Operation 

Please refer to the Fig 1 and 2 for demo of the operation. 
 
4. Sample Content in the Output File for Detail Results 

Please refer to the output in Example.txt for sample detail Results. 
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Figure- 1 
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Figure 2 

 



 

 102

Sample Output in Example.txt 
 
============================================================================ 
=   Statistical Methods for Evaluating the Linearity in Assay Validation         = 
=                                                                             = 
=               Eric Hsieh1 and Chin-fu Hsiao, Jen-pei Liu (2008)               = 
=                          Jounral of Chemometrics                            = 
============================================================================ 
  
  
  
=== Measurement ===              
  
     Solution         Replicate        Result     
---------------------------------------------------------------- 
  
         1              1           4.70000 
         1              2           4.60000 
         2              1           7.80000 
         2              2           7.60000 
         3              1          10.40000 
         3              2          10.20000 
         4              1          13.00000 
         4              2          13.10000 
         5              1          15.50000 
         5              2          15.30000 
  
---------------------------------------------------------------- 
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 === Summary of Regression Analysis === 
  
    Order    Coefficient        Value           SE           t-test       Signi-        Std err       D.F. 
                                                                     ficant          Sy.x             
---------------------------------------------------------------------------------------------------------------------------------------------------- 
 Linear    b0   2.16500        0.15097        14.341   * 
                b1   2.68500        0.04552        58.988   *   0.20356        8 
  
Quadratic   b0   1.54000        0.18863         8.164   * 
                b1   3.22071        0.14375        22.406   * 
     b2       -0.08929        0.02350        -3.799   *   0.12438        7 
  
Cubic   b0   1.47000        0.46623         3.153   * 
                b1   3.31905        0.60943         5.446   * 
                b2      -0.12679        0.22620        -0.561           
                b3   0.00417        0.02498         0.167     0.13403        6 
 ---------------------------------------------------------------------------------------------------------------------------------------------------- 
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=== Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation === 
  
    Result             Predicted              Predicted             Difference            %Difference     
    Mean              (Linear)             (Quadratic)                                                  
---------------------------------------------------------------------------------------------------------------------------------------------------- 
  
    4.65000             4.85000              4.67143               -0.17857               -3.82263 
    7.70000             7.53500              7.62429                    0.08929                1.17107 
   10.30000            10.22000             10.39857                    0.17857                1.71727 
   13.05000            12.90500             12.99429                    0.08929                0.68712 
   15.40000            15.59000             15.41143               -0.17857               -1.15869 
  
------------------------------------------------------------------------------------------------------------------------------------------------------ 
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================================================================ 
=                           Results                            = 
================================================================ 
 
Stiatistical Significant Level                       =       0.050 
Percent Bound for Corrected Kroll's Method          =       0.050 
Allowable Limit of Mu(P)-Mu(L) for SSDL's Method    =       0.020 
Number of Solutions                                =           5 
Number of Replicates                               =           2 
The Best Polynomial Model                          =                Quadratic 
EP6A                                            =               Nonlinear 
Corrected Kroll's Method    : Sample ADL            =           0.01462 
Corrected Kroll's Method    : Critical Value         =           0.04367 
Corrected Kroll's Method    : ConlusionValue        =                 Linear 
SSDL's Method(Bootstraping) : Upper 95% CI          =           0.22722 
SSDL's Method(Bootstraping) : Conclusion            =                Nonlinear 
SSDL's Method(GPQ)          : Upper 95% CI       =             0.25017 
SSDL's Method(GPQ)          : Result             =                  Nonlinear 
 
================================================================ 
================================================================ 
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!============================================================================  
!=   Statistical Methods for Evaluating the Linearity in Assay Validation                          =  
!=                                                                                   = 
!=               Eric Hsieh1 and Chin-fu Hsiao, Jen-pei Liu (2008)                           = 
!=                          Jounral of Chemometrics                                     = 
!============================================================================ 
 
 
program LinearEval 
    use IMSL  
 USE DFPORT                                                                                                       
  implicit none 
 
    character*8 char_time 
 
!Parameter Setting 
 integer, parameter :: nomonte=10000, noboot=3000 ! Simulatio time for Monte-Carlo and Bootstrap  
 
!Statistics 
    real(kind=8), allocatable :: mu_p_hat(:), mu_l_hat(:), diffpl(:) !Working vectors of estimates of Mu(Pi),Mu(Li) and their difference 
    real(kind=8) :: diffsrm !Sum of square of Mu(Pi)-Mu(Li) 
    real(kind=8) :: ADL,crikroll,parmp2,cgpq !Sample Statistic 
 real(kind=8) :: Mu_y !Mean of y 
 real(kind=8) :: MSEP !MSE of the models i.e. estimate of Sigma^2  
 real(kind=8), allocatable :: presid(:), lresid(:) !residuals  for polynominal model by original LSE and bootstrap sampling,respectively 
      
!Data 
 real(kind=8), allocatable :: obs_y(:) !Working vector of y 
 
!Result 
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    character(len=12) :: EP6A,Cr_Kroll,Pbootstp2,GPQ 
 
!Working Variable     
    integer :: lMonte, lrep, lsol, lboot, lgpq   !loop indexes 
 integer :: noobs_y !Working number of observation of y 
 real(kind=8), allocatable :: betaw(:) !Working vector for model coefficient 
 integer :: error=0 !Status check for memory allocation 
 real(kind=8), allocatable :: pbdiffsrm(:), psbdiffsrm(:)!Arrays conating sum of square of Mu(Pi)-Mu(Li) generated by bootstrap 
sampling before and after sorting 
 integer :: i,j,k,m !Temporary working variables 
 real(kind=8), allocatable :: GZ(:) !Standard normal random sample for GPQ 
 real(kind=8) :: GU(1) !Chi-square random sample with df LR-d-1 for GPQ 
 real(kind=8), allocatable :: Gdiffpl2(:), SGdiffpl2(:) !Arrays conating GPQ of (Mu(Pi)-Mu(Li))^2 generated by GPQ method before 
and after sorting 
    real(kind=8), allocatable :: GSIGMA12(:,:) !Sigma^1/2 generated by Spectral Decomposition Method for GPQ sampling 
    real(kind=8), allocatable :: RSIG(:,:) !Upper triangular matrix decomposed by Cholesky factorization 
    integer  :: IRANK !Returned parameter for  
 real(kind=8), allocatable :: Mnormpl(:,:) !Random sample generated by Multinormal distribution of Mu(Pi)-Mu(Li)  
    real(kind=8), parameter :: TOL=2.220446049250313E-14 !Tolerance limit for DCHFAC function of IMSL 
    character(len=1) :: Start 
 real(kind=8) :: delta, alpha 
    integer :: nosol, norep 
 real(kind=8), allocatable :: dm_d1(:,:),dm_d2(:,:),dm_d3(:,:),dm_dp(:,:) !working design matrix for model 
 real(kind=8), allocatable :: WP(:,:),WL(:,:),WP2(:,:), WP3(:,:) !Working information matrix for polynomial model 
 real(kind=8), allocatable :: mu_P2_hat(:),mu_P3_hat(:),p2resid(:),p3resid(:) !Working predict vector 
 real(kind=8), allocatable :: W(:,:),IW(:,:) !Difference of working information matrixs between 1st and polynomial models 
 real(kind=8) :: IT_WL(2,2),IT_WP2(3,3),IT_WP3(4,4) 
 real(kind=8) :: betaL_hat(2),betaP2_hat(3),betaP3_hat(4),betaL_SE(2),betaP2_SE(3),betaP3_SE(4) 
 real(kind=8) :: betaL_tv(2),betaP2_tv(3),betaP3_tv(4) 
 real(kind=8) :: LSEYX,P2SEYX,P3SEYX,Ldf,P2df,P3df, MSEL,MSEP2, MSEP3,porder 
    character(len=1) :: Lsig1,Lsig2,P2sig1,P2sig2,P2sig3,P3sig1,P3sig2,P3sig3,P3sig4 
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 character(len=50) :: flname 
 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Start of Code !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!! Initial Setting !!! 
allocate(pbdiffsrm(noboot),stat=error) 
allocate(psbdiffsrm(noboot),stat=error) 
allocate(Gdiffpl2(nomonte),stat=error) 
allocate(SGdiffpl2(nomonte),stat=error) 
Start="Y" 
do while (start=="Y" .OR. start=="y") 
  write(*,"(A76)") "*** Welcome the Application for Linearity Evaluation of Assay Validation ***" 
  write(*,*) " " 
  write(*,"(A76)") "Please Input the significant level of statistical Testing :                 " 
  read(*,*) alpha 
  write(*,*) " " 
  write(*,"(A76)") "Please Input the allowable Limit of Linearity :                             " 
  read(*,*) delta 
  write(*,*) " " 
  write(*,"(A76)") "Please Input the Number of Solutions of Your Experiment :                   " 
  read(*,*) nosol 
  write(*,*) " " 
  write(*,"(A76)") "Please Input the Number of Replicates of Your Experiment :                  " 
  read(*,*) norep 
  write(*,*) " " 
  noobs_y=nosol*norep !number of observation of y 
  allocate(dm_d1(noobs_y,2),stat=error) 
  allocate(dm_dp(noobs_y,4),stat=error) 
  allocate(dm_d2(noobs_y,3),stat=error) 
  allocate(dm_d3(noobs_y,4),stat=error) 
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  allocate(obs_y(noobs_y),stat=error) 
  allocate(presid(noobs_y),stat=error) 
  allocate(p2resid(noobs_y),stat=error) 
  allocate(p3resid(noobs_y),stat=error) 
  allocate(lresid(noobs_y),stat=error) 
  allocate(mu_p_hat(noobs_y),stat=error) 
  allocate(mu_p2_hat(noobs_y),stat=error) 
  allocate(mu_p3_hat(noobs_y),stat=error) 
  allocate(mu_l_hat(noobs_y),stat=error) 
  allocate(WP(noobs_y,noobs_y),stat=error) 
  allocate(WP2(noobs_y,noobs_y),stat=error) 
  allocate(WP3(noobs_y,noobs_y),stat=error) 
  allocate(WL(noobs_y,noobs_y),stat=error) 
  allocate(IW(noobs_y,noobs_y),stat=error) 
  allocate(diffpl(noobs_y),stat=error) 
  allocate(RSIG(noobs_y,noobs_y),stat=error) 
  allocate(Mnormpl(noboot,noobs_y),stat=error) 
  allocate(GZ(noobs_y),stat=error) 
  allocate(GSIGMA12(noobs_y,noobs_y),stat=error) 
 
  do lsol=1,nosol  
    do lrep=1,norep  
      write(*,"(A76)") "Please Input the observations at each Solution Level :                      " 
   write(*,"(A19,I3,A19,I3)") "==> Solution Level=", lsol, "      Replicate No=", lrep 
      read(*,*) obs_y((lsol-1)*norep+lrep) 
   write(*,*) "" 
    end do !lrep 
  end do !lsol 
 
  do lsol=1,nosol 
    do lrep=1,norep 
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      dm_d1((lsol-1)*norep+lrep,1)=1 
   dm_d1((lsol-1)*norep+lrep,2)=lsol 
   dm_dp((lsol-1)*norep+lrep,1)=1 
   dm_dp((lsol-1)*norep+lrep,2)=lsol 
   dm_dp((lsol-1)*norep+lrep,3)=lsol*lsol 
   dm_dp((lsol-1)*norep+lrep,4)=lsol*lsol*lsol 
    end do !lrep 
  end do !lsol 
 
  dm_d2=dm_dp(:,1:3) 
  dm_d3=dm_dp 
  IT_WL= .i. (dm_d1 .tx. dm_d1) 
  IT_WP2=.i. (dm_d2 .tx. dm_d2) 
  IT_WP3=.i. (dm_d3 .tx. dm_d3) 
  WL=dm_d1 .x. IT_WL .xt. dm_d1 
  WP2=dm_d2 .x. IT_WP2 .xt. dm_d2 
  WP3=dm_d3 .x. IT_WP3 .xt. dm_d3 
  mu_L_hat=WL .x. obs_y !Compute the estimate of Mu(Li) 
  mu_P2_hat=WP2 .x. obs_y !Compute the estimate of Mu(Pi) 
  mu_P3_hat=WP3 .x. obs_y !Compute the estimate of Mu(Pi) 
  lresid=obs_y-mu_L_hat !Residuals for linear model 
  p2resid=obs_y-mu_p2_hat !Residuals for polynomial model 
  p3resid=obs_y-mu_p3_hat !Residuals for polynomial model 
  MSEL=norm(Lresid,2)**2/(noobs_y-1.0-1.0) !MSE of polynominal model i.e. estimate of Sigma^2  
  MSEP2=norm(p2resid,2)**2/(noobs_y-2.0-1.0) !MSE of polynominal model i.e. estimate of Sigma^2  
  MSEP3=norm(p3resid,2)**2/(noobs_y-3.0-1.0) !MSE of polynominal model i.e. estimate of Sigma^2  
  IT_WL= .i. (dm_d1 .tx. dm_d1) 
  IT_WP2=.i. (dm_d2 .tx. dm_d2) 
  IT_WP3=.i. (dm_d3 .tx. dm_d3) 
  betaL_hat= (IT_WL .xt. dm_d1) .x. obs_y 
  betaP2_hat= (IT_WP2 .xt. dm_d2) .x. obs_y 
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  betaP3_hat= (IT_WP3 .xt. dm_d3) .x. obs_y 
  do i=1,2 
    betaL_SE(i)= dsqrt(IT_WL(i,i)*MSEL) 
  end do 
  do i=1,3 
    betaP2_SE(i)= dsqrt(IT_WP2(i,i)*MSEP2)  
  end do 
  do i=1,4      
    betaP3_SE(i)= dsqrt(IT_WP3(i,i)*MSEP3)       
  end do 
  betaL_tv=betaL_hat/betaL_SE 
  betaP2_tv=betaP2_hat/betaP2_SE 
  betaP3_tv=betaP3_hat/betaP3_SE 
  LSEYX=dsqrt(MSEL) 
  P2SEYX=dsqrt(MSEP2) 
  P3SEYX=dsqrt(MSEP3) 
  Ldf=noobs_y-1.0-1.0 
  P2df=noobs_y-2.0-1.0 
  P3df=noobs_y-3.0-1.0 
  if (dabs(betaL_tv(1)) >dtin(1.0-alpha/2.0,Ldf)) then 
    Lsig1="*" 
  else 
    Lsig1=" " 
  end if 
  if (dabs(betaL_tv(2)) > dtin(1.0-alpha/2.0,Ldf)) then 
    Lsig2="*" 
  else 
    Lsig2=" " 
  end if 
  if (dabs(betaP2_tv(1)) > dtin(1.0-alpha/2.0,P2df)) then 
    P2sig1="*" 
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  else 
    P2sig1=" " 
  end if 
  if (dabs(betaP2_tv(2)) > dtin(1.0-alpha/2.0,P2df)) then 
    P2sig2="*" 
  else 
    P2sig2=" " 
  end if 
  if (dabs(betaP2_tv(3)) > dtin(1.0-alpha/2.0,P2df)) then 
    P2sig3="*" 
  else 
    P2sig3=" " 
  end if 
  if (dabs(betaP3_tv(1)) > dtin(1.0-alpha/2.0,P3df)) then 
    P3sig1="*" 
  else 
    P3sig1=" " 
  end if 
  if (dabs(betaP3_tv(2)) > dtin(1.0-alpha/2.0,P3df)) then 
    P3sig2="*" 
  else 
    P3sig2=" " 
  end if 
  if (dabs(betaP3_tv(3)) > dtin(1.0-alpha/2.0,P3df)) then 
    P3sig3="*" 
  else 
    P3sig3=" " 
  end if 
  if (dabs(betaP3_tv(4)) > dtin(1.0-alpha/2.0,P3df)) then 
    P3sig4="*" 
  else 
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    P3sig4=" " 
  end if 
  porder=0.0 
 
  if ((P3Sig4=="*") .AND. (P3SEYX <= P2SEYX)) then 
    porder=3.0 
    WP=WP3 
    mu_p_hat=mu_p3_hat 
    MSEP=MSEP3 
  else if ((P2Sig3=="*") .AND. (P2SEYX <= LSEYX)) then 
    porder=2.0 
    WP=WP2 
    mu_p_hat=mu_p2_hat 
 MSEP=MSEP2 
  else if (LSig2=="*") then 
    porder=1.0 
  else 
    porder=0.0 
  end if    
 
 
  IW=(WP-WL) .xt. (WP-WL) 
  diffpl=mu_p_hat-mu_l_hat !Compute the Vector of Mu(Pi)-Mu(Li) 
  diffsrm=norm(diffpl,2)**2 !Compute sum of square for Mu(Pi)-Mu(Li) 
  mu_y=sum(obs_y)/noobs_y !Mean of y 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
  if (porder == 0.0) then 
    write(*,"(A1)") 
    write(*,"(A1)") 
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    write(*,"(A64)")          "================================================================" 
    write(*,"(A64)")          "=                           Results                            =" 
    write(*,"(A64)")          "================================================================" 
    write(*,*) " " 
    write(*,"(A64)")          "Neither one of linear, quadratic or cubic model fitted          " 
 write(*,*) " " 
 write(*,"(A64)")          "================================================================" 
 write(*,"(A64)")          "================================================================" 
  else if (porder == 1.0) then 
    write(*,"(A1)") 
    write(*,"(A1)") 
    write(*,"(A64)")          "================================================================" 
    write(*,"(A64)")          "=                           Results                            =" 
    write(*,"(A64)")          "================================================================" 
    write(*,"(A1)") 
    write(*,"(A64)")          "The linear model has already been the best model.               " 
    write(*,"(A1)") 
 write(*,"(A64)")          "================================================================" 
 write(*,"(A64)")          "================================================================" 
  else 
    !!!!!!!!!!!!!  EP6A method !!!!!!!!!!!!!!! 
 if (maxval(abs(diffpl)) < delta) then 
      EP6A="      Linear" 
   else 
   EP6A="   Nonlinear" 
 end if  
   
    !!!!!!!!!!!!! Corrected- Kroll method !!!!!!!!!!!!!!!! 
 ADL=dsqrt(diffsrm/noobs_y)/(mu_y) 
    CriKroll=(dsqrt(MSEP)/mu_y)*dsqrt(DCSNIN(alpha, porder-1.0, noobs_y*(0.05**2)/(MSEP/(mu_y**2)))/noobs_y) 
 if ( ADL < crikroll ) then 
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   Cr_Kroll="      Linear" 
 else 
   Cr_Kroll="   Nonlinear" 
 end if 
 
    !!!!!!!!!!!!!   Parametric Bootstratp   !!!!!!!!!!!!!! 
 CALL DCHFAC(noobs_y, MSEP*IW, noobs_y, TOL, IRANK, RSIG, noobs_y) 
    CALL DRNMVN(noboot, noobs_y, RSIG, noobs_y, Mnormpl, noboot) 
    do i=1,noboot  
   pbdiffsrm(i)= norm((diffpl + Mnormpl(i,:)),2)**2 
 end do 
 call DSVRGN(noboot, pbdiffsrm , psbdiffsrm) 
 parmp2=psbdiffsrm(noboot+1- floor(alpha*noboot))/norep 
 if ( psbdiffsrm(noboot+1- floor(alpha*noboot)) < (noobs_y*(delta**2)) ) then 
   Pbootstp2="      Linear" 
 else 
   Pbootstp2="   Nonlinear" 
 end if 
 
 !!!!!!!!!!!!!   GPQ method   !!!!!!!!!!!!! 
 do lgpq=1,nomonte 
   CALL DRNNOR (noobs_y, GZ) 
      call DRNCHI(1,noobs_y-porder-1.0, GU) 
   call CPSIGMA(((noobs_y-porder-1.0)*MSEP/GU(1))*IW, noobs_y, GSIGMA12) 
      Gdiffpl2(lgpq)=norm(diffpl-(GSIGMA12 .x. GZ),2)**2 !/norep 
 end do 
 call DSVRGN(nomonte,Gdiffpl2,sGdiffpl2) 
    CGPQ=sGdiffpl2(nomonte - floor(alpha*nomonte))/norep 
 if ( sGdiffpl2(nomonte - floor(alpha*nomonte)) < (noobs_y*(delta**2)) ) then 
   GPQ="      Linear" 
    else 
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   GPQ="   Nonlinear" 
 end if 
 write(*,"(A1)") " " 
 write(*,"(A78)") "Please sepficy the path and file name (e.g. c:\assay\result.txt) for the      " 
 write(*,"(A78)") "output for results with maximum lenght of 50 or 'N' or 'n' for no output file:" 
    read(*,*) flname 
 if ((trim(flname) .NE. "n") .OR. (trim(flname) .NE. "N")) then 
   OPEN(unit = 111, file = flname, status = "replace", action ="write") 
  end if  
 
    write(111,"(A1)") " " 
    write(111,"(A76)") "============================================================================"  
    write(111,"(A76)") "=   Statistical Methods for Evaluating the Linearity in Assay Validation   ="  
    write(111,"(A76)") "=                                                                          =" 
    write(111,"(A76)") "=               Eric Hsieh1 and Chin-fu Hsiao, Jen-pei Liu (2008)          =" 
    write(111,"(A76)") "=                          Jounral of Chemometrics                         =" 
 write(111,"(A76)") "============================================================================" 
    write(111,"(A1)") " " 
    write(111,"(A1)") " " 
    write(111,"(A1)") " " 
    write(111,"(A32)") "=== Measurement ===              "  
    write(111,"(A1)") " " 
 write(111,"(A46)") "    Solution       Replcaite        Result     " 
    write(111,"(A46)") "-----------------------------------------------" 
 write(111,"(A1)") " " 
 do lsol=1,nosol 
   do lrep=1,norep 
        write(111,"(A5,I5,A10,I5,A6,F12.5)") "     ",lsol,"          ",lrep,"       ",obs_y((lsol-1)*norep+lrep)  
      end do  
 end do 
    write(111,"(A1)") " " 
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    write(111,"(A46)")  "-----------------------------------------------" 
 write(111,"(A1)") " " 
    write(111,"(A1)") " " 
    write(111,"(A1)") " " 
    write(111,"(A57)") "=== Summary of Regression Analysis ===                   "  
    write(111,"(A1)") " " 
 write(111,"(A106)") "    Order    Coefficient        Value           SE           t-test       Signi-        Std err       
D.F." 
 write(111,"(A106)") "                                                                          ficant          
Sy.x            " 
    write(111,"(A106)") "----------------------------------------------------------------------------------------------------------" 
 write(111,"(A1)") " " 
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "    Linear       b0       ",betaL_hat(1),betaL_SE(1),betaL_tv(1),"        
",Lsig1           
 write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,I5)") "                 b1       ",betaL_hat(2),betaL_SE(2),betaL_tv(2),"        
",Lsig2,LSEYX,"    ",ceiling(Ldf) 
    write(111,"(A1)") " " 
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "  Quadratic      b0       ",betaP2_hat(1),betaP2_SE(1),betaP2_tv(1),"        
",P2sig1   
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "                 b1       ",betaP2_hat(2),betaP2_SE(2),betaP2_tv(2),"        
",P2sig2      
 write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,I5)") "                 b2       
",betaP2_hat(3),betaP2_SE(3),betaP2_tv(3),"         ",P2sig3,P2SEYX,"    ",ceiling(P2df) 
    write(111,"(A1)") " " 
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "    Cubic        b0       ",betaP3_hat(1),betaP3_SE(1),betaP3_tv(1),"        
",P3sig1   
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "                 b1       ",betaP3_hat(2),betaP3_SE(2),betaP3_tv(2),"        
",P3sig2      
    write(111,"(A26,F12.5,F15.5,F14.3,A9,A1)") "                 b2       ",betaP3_hat(3),betaP3_SE(3),betaP3_tv(3),"        
",P3sig3      
 write(111,"(A26,F12.5,F15.5,F14.3,A9,A1,F18.5,A4,I5)") "                 b3       
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",betaP3_hat(4),betaP3_SE(4),betaP3_tv(4),"         ",P3sig4,P3SEYX,"    ",ceiling(P3df) 
    write(111,"(A1)") " " 
    write(111,"(A105)")  "---------------------------------------------------------------------------------------------------------" 
 write(111,"(A1)") " " 
 write(111,"(A1)") " " 
    write(111,"(A1)") " " 
    write(111,"(A92)") "=== Mean Differences between the Best-fitted Curve and Simple Linear Regression Equation ==="  
    write(111,"(A1)") " " 
 write(111,"(A102)")   "    Result            Predicted            Predicted             Difference            
%Difference    " 
 if (porder==2.0) then 
   write(111,"(A102)") "     Mean              (Linear)           (Quadratic)                                                 
" 
 else if (porder==3.0) then 
   write(111,"(A102)") "     Mean              (Linear)             (Cubic)                                                   
" 
    end if 
 write(111,"(A102)")   "------------------------------------------------------------------------------------------------------" 
 write(111,"(A1)") " " 
 do lsol=1,nosol 
      if (porder==2.0) then 
      write(111,"(F11.5,F20.5,F21.5,F23.5,F23.5)"),sum(obs_y((lsol-1)*norep+1:(lsol-1)*norep+norep))/norep/1.0, 
mu_l_hat((lsol-1)*norep+1),& 
                              mu_p2_hat((lsol-1)*norep+1),mu_p2_hat((lsol-1)*norep+1)-mu_l_hat((lsol-1)*norep+1),& 
        
 (mu_p2_hat((lsol-1)*norep+1)-mu_l_hat((lsol-1)*norep+1))/mu_p2_hat((lsol-1)*norep+1)*100 
      else if (porder==3.0) then 
      write(111,"(F11.5,F20.5,F21.5,F23.5,F23.5)"),sum(obs_y((lsol-1)*norep+1:(lsol-1)*norep+norep))/norep/1.0, 
mu_l_hat((lsol-1)*norep+1),& 
                              mu_p3_hat((lsol-1)*norep+1),mu_p3_hat((lsol-1)*norep+1)-mu_l_hat((lsol-1)*norep+1),& 
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 (mu_p3_hat((lsol-1)*norep+1)-mu_l_hat((lsol-1)*norep+1))/mu_p3_hat((lsol-1)*norep+1)*100 
   end if 
 end do 
    write(111,"(A1)") " " 
    write(111,"(A102)")   "------------------------------------------------------------------------------------------------------" 
 write(111,"(A1)") " " 
 write(111,"(A1)") " " 
    write(111,"(A1)") " " 
 write(111,"(A64)")          "================================================================" 
    write(111,"(A64)")          "=                           Results                            =" 
    write(111,"(A64)")          "================================================================" 
    write(111,"(A1)") 
 write(111,"(A52,F12.3)")    "Stiatistical Significant Level                     =", alpha  
    write(111,"(A52,F12.3)")    "Percent Bound for Corrected Kroll's Method         =", 0.05  
    write(111,"(A52,F12.3)")    "Allowable Limit of Mu(P)-Mu(L) for SSDL's Method   =", delta  
 write(111,"(A52,I12)")      "Number of Solutions                                =", nosol  
 write(111,"(A52,I12)")      "Number of Replicates                               =", norep 
    if (porder==2.0) then 
   write(111,"(A64)")        "The Best Polynomial Model                          =   Quadratic" 
    else if (porder==3.0) then 
   write(111,"(A64)")        "The Best Polynomial Model                          =       Cubic" 
 end if 
 write(111,"(A52,A12)")      "EP6A                                               =", EP6A 
 write(111,"(A52,F12.5)")    "Corrected Kroll's Method    : Sample ADL           =", ADL      
 write(111,"(A52,F12.5)")    "Corrected Kroll's Method    : Critical Value       =", Crikroll 
 write(111,"(A52,A12)")      "Corrected Kroll's Method    : ConlusionValue       =", Cr_Kroll 
 write(111,"(A52,F12.5)")    "SSDL's Method(Bootstraping) : Upper 95% CI         =", parmp2           
 write(111,"(A52,A12)")      "SSDL's Method(Bootstraping) : Conclusion           =", Pbootstp2 
 write(111,"(A52,F12.5)")    "SSDL's Method(GPQ)          : Upper 95% CI         =", cgpq         
 write(111,"(A52,A12)")      "SSDL's Method(GPQ)          : Result               =", GPQ 
    write(111,"(A1)") 
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 write(111,"(A64)")          "================================================================" 
 write(111,"(A64)")          "================================================================" 
     
  
 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 write(*,"(A1)") 
    write(*,"(A1)") 
    write(*,"(A64)")          "================================================================" 
    write(*,"(A64)")          "=                           Results                            =" 
    write(*,"(A64)")          "================================================================" 
    write(*,"(A1)") 
 write(*,"(A52,F12.3)")    "Stiatistical Significant Level                     =", alpha  
    write(*,"(A52,F12.3)")    "Percent Bound for Corrected Kroll's Method         =", 0.05  
    write(*,"(A52,F12.3)")    "Allowable Limit of Mu(P)-Mu(L) for SSDL's Method   =", delta  
 write(*,"(A52,I12)")      "Number of Solutions                                =", nosol  
 write(*,"(A52,I12)")      "Number of Replicates                               =", norep 
    if (porder==2.0) then 
   write(*,"(A64)")        "The Best Polynomial Model                          =   Quadratic" 
    else if (porder==3.0) then 
   write(*,"(A64)")        "The Best Polynomial Model                          =       Cubic" 
 end if 
 write(*,"(A52,A12)")      "EP6A                                               =", EP6A 
 write(*,"(A52,F12.5)")    "Corrected Kroll's Method    : Sample ADL           =", ADL      
 write(*,"(A52,F12.5)")    "Corrected Kroll's Method    : Critical Value       =", Crikroll 
 write(*,"(A52,A12)")      "Corrected Kroll's Method    : ConlusionValue       =", Cr_Kroll 
 write(*,"(A52,F12.5)")    "SSDL's Method(Bootstraping) : Upper 95% CI         =", parmp2           
 write(*,"(A52,A12)")      "SSDL's Method(Bootstraping) : Conclusion           =", Pbootstp2 
 write(*,"(A52,F12.5)")    "SSDL's Method(GPQ)          : Upper 95% CI         =", cgpq         
 write(*,"(A52,A12)")      "SSDL's Method(GPQ)          : Result               =", GPQ 
    write(*,"(A1)") 
 write(*,"(A64)")          "================================================================" 
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 write(*,"(A64)")          "================================================================" 
end if 
 
  deallocate(dm_d1) 
  deallocate(dm_dp) 
  deallocate(dm_d2) 
  deallocate(dm_d3) 
  deallocate(obs_y) 
  deallocate(presid) 
  deallocate(p2resid) 
  deallocate(p3resid) 
  deallocate(lresid) 
  deallocate(mu_p_hat) 
  deallocate(mu_p2_hat) 
  deallocate(mu_p3_hat) 
  deallocate(mu_l_hat) 
  deallocate(WP) 
  deallocate(WP2) 
  deallocate(WP3) 
  deallocate(WL) 
  deallocate(IW) 
  deallocate(diffpl) 
  deallocate(RSIG) 
  deallocate(Mnormpl) 
  deallocate(GZ) 
  deallocate(GSIGMA12) 
    write(*,"(A1)") 
  Write(*,"(A72)") "Do You want a new copmutation (Y/y to continue or any other for escape)?" 
  read(*,*) Start 
  if (Start .NE. "Y" .AND. Start .NE. "y") then 
    write(*,"(A1)") 
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    write(*,"(A31)") "****  Thanks and Good Bye  ****" 
 write(*,"(A1)") " " 
    write(*,"(A71)") "***********************************************************************" 
  else 
    write(*,"(A1)") 
 write(*,*) "" 
  end if 
end do 
 
deallocate(pbdiffsrm) 
deallocate(psbdiffsrm) 
deallocate(Gdiffpl2) 
deallocate(SGdiffpl2) 
write(111,*) " " 
call TIME(char_time) 
stop 
end 
                                                                         
subroutine CPSIGMA(SW,SDIMEN,CGSIGMA12) 
  use IMSL 
  implicit none 
  integer I,SDIMEN 
  REAL(kind=8)  SW(SDIMEN,SDIMEN),B(SDIMEN,SDIMEN), eval(SDIMEN), 
evec(SDIMEN,SDIMEN),K(SDIMEN+1,SDIMEN),X(SDIMEN+1,SDIMEN),E(SDIMEN,SDIMEN),LAMDA12(SDIMEN,SDIMEN),SI
GMA12(SDIMEN,SDIMEN),CGSIGMA12(SDIMEN,SDIMEN) 
  INTEGER IRANK 
  INTEGER, PARAMETER ::NKEY=1 
  INTEGER NCX,NRX,LDX 
  INTEGER    ICOMP, INDKEY(NKEY), IORDR, IRET, NGROUP 
  DATA       INDKEY/1/ 
  integer, allocatable :: IPERM(:), NI(:) 
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  integer :: error=0 
 
  NCX=SDIMEN 
  NRX=SDIMEN+1 
  LDX=NRX 
  allocate(IPERM(NCX),stat=error) 
  allocate(NI(NCX),stat=error) 
  B=SW 
  CALL DEVCSF(SDIMEN, B, SDIMEN, EVAL, EVEC, SDIMEN) 
  do i=1,SDIMEN 
    if (eval(i) .LE. 0.0) then 
   eval(i)=0 
 end if 
  end do 
  k(1,:)=eval 
  k(2:SDIMEN+1,:)=evec 
  X=K 
  ICOMP = 0 
  IORDR = 1 
  IRET  = 0 
  CALL DSCOLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY,IPERM, NGROUP, NI) 
  E=X(2:SDIMEN,:) 
  LAMDA12=0 
  do I=1,SDIMEN 
    LAMDA12(i,i)=dsqrt(X(1,i)) 
  end do 
  SIGMA12=E .x. LAMDA12 
  CGSIGMA12=SIGMA12 .xt. E 
  deallocate(IPERM) 
  deallocate(NI) 
end 


