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Abstract

The rectilinear Steiner minimal tree (RSMT) problem has been a very important research

issue for a long time, and already provided a lot of applications in very large scale inte-

gration (VLSI) design. In VLSI design, routing tools usually use rectilinear Steiner trees

(RSTs) to route signal nets, and many interconnect optimization approaches begin with

RST constructions, and then apply wire sizing, driver sizing, and buffer insertion to meet

the performance requirements. Furthermore, at early physical design stages, the RST

construction is also employed to make interconnect estimation.

However, as the technology advances, the modern integrated circuit (IC) design in-

cludes more and more routing obstacles incurred from hard intellectual property (IP)

cores, macro blocks, and pre-routed nets. Therefore, the obstacle-avoiding RSMT (OA-

RSMT) problem has arisen as an important practical problem in the VLSI physical design,

and received dramatically increasing attention recently. Besides, since the modern routing

environment includes a number of layers, IC designs are processed layer and layer. To

deal with multiple layers, at least two important constraints should be considered: pre-

ferred directions and different routing resources. First, preferred directions are the routing

orientations on those multiple layers. Considering signal integrity and IC manufacturing,

the orientation of routing in a single layer tends to be either horizontal or vertical but not

both. Second, since the lengths of wires tend to be shorter in lower layers, the router

can weight the routing cost in lower layers higher to avoid routing long wires in lower

layers, i.e., different routing resources. As a result, the obstacle-avoiding preferred direc-

tion Steiner tree (OAPD-ST) problem needs to be formulated to catch all the mentioned

constraints.
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This dissertation attempts to make progress in the study of the OARSMT problem and

the OAPD-ST problem. This is also the first attempt to formulate the OAPD-ST problem.

The study for the OARSMT problem attempts to provide quick and accurate inter-

connect estimation at early physical design stages such as floorplanning and placement.

We progressively develop novel strategies to bring about three excellent algorithms, and

successfully achieve the best practical performance in both wirelength and run time.

Firstly, we propose an obstacle-avoiding routing graph (OARG). Compared with ex-

isting routing graphs, the OARG either contains better solutions or has higher efficiency.

Secondly, unlike previous works, we propose a path-based framework to directly generate

critical paths as solution components instead of constructing a routing graph or generating

an invalid solution. Our path-based algorithm guarantees to provide optimal solutions for

a number of specific cases, which requires O(n3) time in previous works.

Thirdly, we propose the Steiner-point based framework and the concept of Steiner

point locations to give critical insights into the OARSMT problem. This approach achieves

the best solution quality in empirical Θ(n log n) time, which was originally obtained by

applying maze routing on an Ω(n2)-space graph. More importantly, the two ideas nat-

urally contribute to the future researches on the OARSMT problem and its important

generations such the multi-layer OARSMT problem and the OAPD-ST problem.

The study for the OAPD-ST problem attempts to provide better signal net topolo-

gies at the routing stage for succeeding interconnect optimization. As the first study, we

progressively build theoretical foundations for the development of future algorithms.

Firstly, we analyze the structure of the optimal solution, and provide a way to analyze

the solution quality, which significantly helps the development of algorithms, especially

vi



for approximation ones. Secondly, we prove that an obstacle-avoiding preferred direction

minimum spanning tree (OAPD-MST) is a factor 2 approximation solution for the OAPD-

ST problem, and thus provides important features to support strong heuristics. Thirdly,

we prove the space complexity of an OAPD-MST is Ω(n2), and give a strong motivation

to develop more efficient algorithms instead of OAPD-MST construction. Fourthly, we

analyze local minimal guarantees and the essentials of an minimal terminal spanning tree

(MTST) based algorithm to develop an O(n log2 n)-time strong heuristic.

Keywords: Algorithm, Physical Design, Routing, Steiner tree, Span-

ning Tree, Obstacles, Multi-Layer.

vii



viii



Table of Contents

Acknowledgement i

Abstract (Chinese) iii

Abstract v

1 Introduction 1

1.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rectilinear Steiner Tree Construction . . . . . . . . . . . . . . . . . . . . 3

1.3 Obstacle-Avoiding Rectilinear Steiner Tree Routing . . . . . . . . . . . . 4

1.3.1 Construction-by-Correction Approach . . . . . . . . . . . . . . . 6

1.3.2 Rectilinear-Graph Based Approach . . . . . . . . . . . . . . . . 7

1.3.3 Spanning-Graph Based Approach . . . . . . . . . . . . . . . . . 9

1.3.4 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 Challenge of the OARSMT problem . . . . . . . . . . . . . . . . 11

1.4 Obstacle-Avoiding Preferred Direction Steiner Tree Routing . . . . . . . 12

1.4.1 The Preferred Direction Steiner Tree Problem . . . . . . . . . . . 13

1.4.2 The Multi-Layer OARSMT Problem . . . . . . . . . . . . . . . . 14

1.4.3 Challenge of the OAPD-ST Problem . . . . . . . . . . . . . . . . 15

ix



1.5 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Advanced Obstacle-Avoiding Spanning Graph . . . . . . . . . . 17

1.5.2 Path-Based Framework . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.3 Steiner Point Selection . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.4 Preferred Direction Evading Graph and Approximation Guarantee 19

1.5.5 Time Complexity Bottleneck and Local Minimal Heuristic . . . . 20

1.6 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 20

2 Preliminary 22

2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Fundamental Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Symbol Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Extended Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Advanced Obstacle-Avoiding Spanning Graph 28

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Step 1: OARG Construction . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Step 2: MTST-OARG Cosntruction . . . . . . . . . . . . . . . . 36

3.2.3 Step 3: OARST Transformation . . . . . . . . . . . . . . . . . . 43

3.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Path-Based Framework 54

x



4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Critical Path Generation . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 OAST Construction . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 OARST Construction . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Efficient Local Refinement . . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Steiner Point Selection 73

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Concept of Steiner Point Locations . . . . . . . . . . . . . . . . 76

5.2.3 Procedure of Algorithm . . . . . . . . . . . . . . . . . . . . . . 79

5.2.4 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 89

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Preferred Direction Evading Graph

and Approximation Guarantee 99

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Preferred Direction Evading Graph . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Procedure of PDEG Construction . . . . . . . . . . . . . . . . . 100

6.2.2 The Optimality of PDEG . . . . . . . . . . . . . . . . . . . . . . 105

xi



6.2.3 Theoretical Contribution . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Existence of OAPD-MST in PDEG . . . . . . . . . . . . . . . . 112

6.3.2 Approximation Guarantee . . . . . . . . . . . . . . . . . . . . . 113

6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Time Complexity Bottleneck and Local Minimal Heuristic 120

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Space Complexity of An OAPD-MST . . . . . . . . . . . . . . . . . . . 121

7.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 MTST-based Algorithms . . . . . . . . . . . . . . . . . . . . . . 125

7.3.2 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3.3 Vertex Generation . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.4 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.5 MTST Construction and Discussion . . . . . . . . . . . . . . . . 142

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Concluding Remarks 147

8.1 The OARSMT Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 The OAPD-ST Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

Vita 161

xii



List of Figures

1.1 Physical design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Yang et al. [47]. (a)–(c) three proposed cases of edge overlapping. (d) an

example for edge overlapping. (e) the possible overlapping removal for

(d) without the preprocessing. (f) the overlapping removal for (d) with

the preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Example rectilinear graph. (a) Escape graph [9]. (b) Track graph [15,45].

(c) global routing graph [38]. (d) extended Hanan grid [21]. . . . . . . . 8

1.4 Example spanning graph. (a) obstacle-avoiding constrained Delaunay tri-

angulation (OACDT) [8]. (b) Shen’s and Long’s obstacle-avoiding span-

ning graph (OASG) [28, 36]. (c) Lin’s OASG [22]. . . . . . . . . . . . . 9

1.5 An instance about the invalid transformation for a slant edge into pre-

ferred direction edges. (a) a slant edge. (b) illegal transformed edges. . . . 14

2.1 Obstacles and pins. (a) Any two obstacles cannot intersect with each

other (layer 1), but two obstacles could be line-touched at the boundary

or point-touched at the boundary (layer 2). corners of an obstacle. (b) a

pin-vertex cannot be inside any obstacles (layer 1), but could be located

at the corner or on the boundary of an obstacle (layer 2). . . . . . . . . . 23

xiii



2.2 Vias. (a) The endpoints of a via cannot locate inside an obstacle. (b) The

endpoints of a via could be on the boundary or at the corner of an obstacle. 23

3.1 Procedure of our 3-step algorithm . (a) a problem instance. (b) OARG

construction. (c) MTST-OARG construction. (d) OARST transformation. 30

3.2 No obstacle corners exist in the rectangle area of edge (P1, P2). . . . . . . 30

3.3 The octal regions of point P. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Illustrations of the quarter-based decision method. Circles represent ter-

minals, and squares represent obstacle corners. . . . . . . . . . . . . . . 32

3.5 An obstacle intersects an edge (P1, P2) which holds the rectangle avoid-

ance property, with no obstacle corners lying in the rectangle area of (P1,

P2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 A process sketch of MTST-H. . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 An example of the edge substitution technique in [2] . . . . . . . . . . . 43

3.8 Zhou’s observations [50]. (a) a minimum spanning tree. (b) a binary

tree derived from (a). For each two leaf nodes of (b), their least common

ancestor is the longest edge between them in the minimum spanning tree . 44

3.9 An example about the Steiner point when applying edge-substitution. . . 45

3.10 Examples for moving a CLS. (a) three nonterminals. (b) one terminal and

two nonterminals. (c) three nonterminals and one connected to other line

segment in the same direction. . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 The time ratio of [22] to ours is plotted as a function of n. . . . . . . . . . 51

4.1 (b)–(e) four phases of our algorithm. . . . . . . . . . . . . . . . . . . . . 55

xiv



4.2 Example Definition 4.1 and Lin’s OASG. (a) no path between u and v

exists in the bounding box. (b) one vertex locates inside the bounding

box. (c) Lin’s OASG for Figure 4.1(a). . . . . . . . . . . . . . . . . . . . 57

4.3 Example Definition 4.2. (a) an instance, where S = {p1, p2, p3}. (b) a

terminal forest and bridge edges of (a), where arrow segments are forest

edges and dash segments are bridge edges. (c) an MTST of (a). . . . . . . 58

4.4 Long’s MTST algorithm on Lin’s OASG. (a) a terminal forest of Fig-

ure 4.2(c). (b) terminal paths via bridge edges of (a). (c) an MTST gener-

ated by those terminal paths in (b). . . . . . . . . . . . . . . . . . . . . . 59

4.5 The critical path generation for the instance in Figure 4.1(a). (a) multi-

source shortest path trees. (b) a shortest path map. (c) critical paths rep-

resented by bridge edges (dash segments) and multi-source SPTs. . . . . 60

4.6 The overlapping of different paths. (a) no overlapping between the two

paths. (b) overlapping at (v2, p3). (c) the critical paths generated by Sec-

tion 4.2.1. (d) |SP (p1, p3)| via (v2, p3) has become 20 after update oper-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 The greedy OAST construction algorithm. . . . . . . . . . . . . . . . . . . . 65

4.8 The rectilinear transformation for slant edges. (a) an instance. (b)–(c)

transformation with edge overlapping. (d)–(e) other cases without edge

overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Refinement Patterns. (a)-(b) two cases of U-shaped patterns. (c) the up

nearest obstacle of a segment, {e3, e4}, has been changed to O2 from O1

after moving {e1, e2} right. . . . . . . . . . . . . . . . . . . . . . . . . . 68

xv



4.10 Computation of the nearest obstacles. (a) touching the corners of an ob-

stacle. (b) just touching the boundary of an obstacle. (c) the segment

dragging problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Steiner points for the RSMT problem. (a) a three-pin instance. (b) an RSMT of

(a). (c) Hanan grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Steiner points for the OARSMT problem. (a) a three-pin instance. (b) an ORSMT

of (a). (c) Escape graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 (b)–(e) four steps of our algorithms. . . . . . . . . . . . . . . . . . . . . . . 79

5.4 OAVG construction. (a) SPM construction. (b) vertex generation. (c) edge con-

nection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 P1 has been reached by source s1. The stripe region is SPR(s1,P1). (a) P2 must

not be inside SPR(s1,P1). (b) P3 must not be reached from s2. . . . . . . . . . 84

5.6 The Steiner point selection Algorithm. . . . . . . . . . . . . . . . . . . . . . 86

5.7 The Steiner point selection (Figure 5.6) on Figure 5.3(b). Arrow segments are

from vertices to their “pi”. Blue segments are boundaries of constructed SPRs. . 86

5.8 The probability of an update operation of v1 after its first extraction, where s1 is

the original source of v1. (a) v1 is updated from v2 of SPR(P1,s1). (b)–(c) P1

must be in the stripe region. (d) the area of the stripe region. . . . . . . . . . . 89

5.9 The CPU time is plotted as a function of n. . . . . . . . . . . . . . . . . . . 98

6.1 Observations for the OAPD-ST problem. (a) an OAPD-ST problem in-

stance. (b) vertex projections. (c) edge construction (primitive PDEG).

(d) the optimal solution of primitive PDEG. (e) the optimal solution of

(a). (Cv = 1 and UCi = 1, 1 ≤ i ≤ Nl.) . . . . . . . . . . . . . . . . . . 101

xvi



6.2 The Vertex-Generation algorithm. . . . . . . . . . . . . . . . . . . . . . 102

6.3 Vertex generation. (a) a problem instance. (b) possible candidates of

essential vertices. (c) the union of those vertices. (d) the vertices of PDEG. 102

6.4 The PDEG-Construction algorithm. . . . . . . . . . . . . . . . . . . . . 103

6.5 PDEG construction. (a) line segment construction. (b) via connection

construction (the resulting PDEG). . . . . . . . . . . . . . . . . . . . . . 104

6.6 An invalid movement for a via connection. (a) a maximal via connection,

i.e. v1 ∪ v2, connected to line segments with different directions. (b)

movement of (a) will increase the cost. . . . . . . . . . . . . . . . . . . . 106

6.7 An example for the definition and movement of a PDC. (a) an OAPD-ST.

(b) a horizontal PDC of (a). (c) an OAPD-ST which is generated from (a)

by moving (b) up. (UC1 = 1 and UC3 = 2.) . . . . . . . . . . . . . . . . 107

6.8 Example for the proof of Theorem 6.4. (a) an OAPD-SMT and an un-

evaded line segment l. (b) a PDC of (a) contain l. (c) another OAPD-

SMT generated from (a) by moving (b) up. (d) a PDC by extending (b) in

(c). (e) another OAPD-SMT generated from (c) by moving (d) up and an

unevaded maximal via connection t enclosed by a rectangular frame. (f)

another OAPD-SMT generated from (e) by moving t left. . . . . . . . . 108

6.9 Procedure of our approximation algorithm. (a) an instance. (b) PDEG

construction. (c) OAPD-MST construction. (UCi=1, 1≤ i≤Nl and Cv=1.) 113

7.1 Example for failure of the alignment property in preferred direction model.

(a) an OAPDSP between s and t must include (a, b). (b) an example for

the lower bound of space complexity of an OAPD-MST. . . . . . . . . . 122

xvii



7.2 Example for the path selection problem. (a) Hanan Graph for three pin-

vertices. (b) a minimum spanning tree with cost being 21. (c) another

minimum spanning tree with lower cost. . . . . . . . . . . . . . . . . . . 126

7.3 Example for Steiner points. (a) an instance. (b) projecting pin-vertices to

L. (c) the resulting visibility graph for (a). (d) a visibility graph for three

pin-vertices which has high overlap of SPs-MTST. . . . . . . . . . . . . 130

7.4 Examples for crossings. (a) a shortest path between v1 and v2 through a

crossing u2. (b) two crossings between v and o. . . . . . . . . . . . . . . 133

7.5 Examples for neighbors. (a) a shortest path between v1 and v2 through a

neighbor u1. (b) two neighbors of v. . . . . . . . . . . . . . . . . . . . . 134

7.6 The Vertex-Generation algorithm . . . . . . . . . . . . . . . . . . . . . . 135

7.7 The PDVG-Construction algorithm. . . . . . . . . . . . . . . . . . . . . 137

7.8 The Steiner-Point-Generation algorithm. . . . . . . . . . . . . . . . . . . 138

7.9 Example for Steiner point generation in preferred direction model. (a)

an instance. (b) generating siblings and crossings for vertices in vertical

layers. (c) projecting vertices in horizontal layers to a cutting plane. (d)

projecting vertices in the cutting plane to other layers. (e) connecting

vertices in the cutting plane. . . . . . . . . . . . . . . . . . . . . . . . . 139

xviii



List of Tables

2.1 Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Notations For MTST-H . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Number of CLSs for Our OARST. . . . . . . . . . . . . . . . . . . . . . 49

3.3 The Comparison On Wirelength. . . . . . . . . . . . . . . . . . . . . . . 52

3.4 The Comparison On CPU Time. . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Comparison on the Total Wirelength and the CPU Time. . . . . . . . . . 72

5.1 Comparison between Figure 5.6 and [21]. . . . . . . . . . . . . . . . . . . . 91

5.2 Comparison on the Total Wirelength. “our*(H)”: our algorithm starts at the best

pin-vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Comparison on the CPU time. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 The Comparison under the same routing resource where UCi = 1 for

1 ≤ i ≤ Nl, Cv = 3, and Nl=6. . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Experiments for the effects of different routing resources. Cv=3 and Nl=6. 118

6.3 The comparison on CPU time in second for Table 6.2. . . . . . . . . . . . 119

xix



7.1 Comparison in total cost and time where Cv=3, Nl=6, and mf = 2. “Total

cost” is Cost(MTST) for an MTST-based algorithm. . . . . . . . . . . . . 145

7.2 Comparison between PDVG and PDEG [25] where Cv=3, Nl=6, and

mf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xx



Chapter 1

Introduction

VLSI routing has been a very critical design stage for a long time since it provides impor-

tant interconnect information such as wirelength, congestion, and timing estimation, all of

which dominate the correctness and the performance of the final design. In particular, as

an intensely important step for routing, the routing tree construction plays a decisive role

for the routing results. However, as the technology advances into the nanometer era, there

are many new design challenges to make the routing tree construction much harder. In

this dissertation, we present a series of strategies to deal with the routing tree construction

considering rectilinear interconnect, a huge number of obstacles, multiple routing layers,

preferred routing directions, and different routing resources.

1.1 Design Flow

Physical design of an integrated circuit (IC) is a process to convert a circuit description

into a geometric mapping [39]. The physical design process succeeds circuit design and

precedes fabrication. As shown in Figure 1.1, the physical design cycle is divided into
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Circuit Partitioning

Floorplanning

Placement

Routing

Figure 1.1: Physical design flow.

four major tasks: circuit partitioning, floorplanning, placement, and routing.

Circuit partitioning divides a circuit design into smaller parts such that each compo-

nents falls within a prescribed range and the number of connections among those com-

ponents is minimized. Floorplanning fills each component into one room such that those

non-overlapping rooms are enveloped by a rectangle and the area of the rectangle is mini-

mized. Placement further assigns exact locations for various components on a chip and/or

determines pins locations according to appropriate cost functions. Routing routes all the

signal nets completely to meet those given constraints such as timing issues, and to mini-

mize the total costs for interconnect optimization.

Among all tasks in physical design, as the final step, routing has the most direct im-

pact on the final design performance since it determines the timing delay, timing skew, and

crosstalk of all the signal nets. Furthermore, a wrong choice made in early stages probably

makes the resulting solution very hard to be refined, and thus appropriate routing-related

schemes should be employed at the floorplanning or placement stage to estimate the in-

terconnect wirelength. In other words, routing-related operations need to function across

all the physical design flow to prevent the design failure. In particular, the routing tree

construction is an essential step of routing and plays a decisive role for the final routing
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results. As a result, it is desired to study the various routing tree construction to address

different requirements for difference purposes.

1.2 Rectilinear Steiner Tree Construction

The rectilinear Steiner minimal tree (RSMT) problem has been an important research is-

sue for a long time, and its practical implementations have provided a lot of applications

in VLSI design. Given a set of pins, an RSMT connects all the pins possibly through

some additional points (called Steiner points) using rectilinear edges with minimum total

wirelength. Many interconnect optimization approaches begin with constructing rectilin-

ear Steiner trees and then apply wire sizing, driver sizing, and buffer insertion to meet the

performance requirements. Furthermore, the rectilinear Steiner tree (RST) construction

is usually invoked at the floorplanning and placement stages to estimate the interconnect

wirelength.

The RSMT problem has been proved to be NP-complete [10], indicating that it seems

intractable to find the RSMT in polynomial time. Hwang et al. [18] provided a compre-

hensive study of various RSMT-related works. For exact RSMT algorithms, the GeoSteiner

package [42, 43] is currently the fastest implementation. Griffith et al [11] and Mandoiu

et al. [30] also proposed near-optimal algorithms. For fast heuristics, Borah et al. [2] pro-

posed an O(n2)-time edge-based approximation algorithm; Zhou [50] used the spanning

graph [51] to improve [2] to O(n log n) time, and achieved better solution quality. Re-

cently, Chu and Wong [4] developed a very fast and accurate lookup table based RSMT

algorithm called fast lookup table estimation (FLUTE). For the RSMT problem, FLUTE

can efficiently construct the optimal solution for signal nets with at most 9 pins, and thus
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has been widely used at the floorplanning and placement stages as well as the global and

detailed routing process.

However, as the technology advances, there are new challenges for the RST con-

struction. First, to cope with the increasing design complexity, IP modules are widely

reused for large-scale designs, and form a huge number of obstacles. Therefore, the RST

construction, even optimal ones, will cause inaccurate wirelength estimation at the floor-

planning and placement stages, which may lead to the design failure at the routing stage.

Second, aside from the obstacles, there are also quite a few routing constraints in modern

IC design such as multiple routing layers, different routing resources, preferred routing

directions, and via costs. As a result, the RST construction may provide wrong routing

topologies which cannot be refined to meets practical requirements. To conclude, it is

necessary to propose appropriate mechanics, frameworks, and algorithmic skills to meet

the various requirements of the routing tree construction at each stage of the physical

design flow.

1.3 Obstacle-Avoiding Rectilinear Steiner Tree Routing

To cope with the significantly increasing design complexity, IP modules are widely reused

for large-scale designs, and the interconnect complexity is also significantly increased. As

a results, there are more and more obstacles including macro cells, IP blocks, pre-routed

nets, heavily congested regions, etc.. Under these circumstances, the RST construction

without considering obstacles will make inaccurate wirelength estimation, and even leads

to the design failure. To remedy the deficiency, the obstacle-avoiding RSMT (OARSMT)

problem has become more important than ever, and received dramatically increasing at-
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tentions [8, 14, 15, 22, 28, 36–38, 44, 47]. Since the RSMT problem, even without consid-

ering the obstacles, has been proved to be NP-Complete [10], the presence of obstacles

further increases the difficulty of the obstacle-avoiding RST (OARST) construction, and

takes much more run time to obtain satisfactory solutions.

Aside from the difficulty, the large and increasing number of obstacles also raises

the requirement of efficiency (run time). For the RSMT problem, since the number of

pin-vertices is quire small in practice, an O(n3)-time algorithm is acceptable. However,

according to ITRS [19], the hard IP count per chip will be more than one thousand in the

near future, indicating that the number of obstacles will dominate the run time instead of

that of pins. In other words, an O(n2)-time algorithm will not be sufficiently efficient for

the OARST construction. Furthermore, to estimate the interconnect wirelength in early

stages, Steiner tree construction will be invoked millions of times in floorplanning and

placement phases [35]. Therefore, it is necessary to develop an O(n log n)-time approach

to handle a huge number of obstacles.

On the other hand, the effectiveness (wirelength) could not be sacrificed to increase

the efficiency. First of all, by 90nm, wiring delay dominates 75% of the overall delay [39],

and the high overall delay will cause the design failure. Second, in a modern system-on-

chip (SOC) design, there are a million number of signal nets. To increase the routability,

the wiring congestion in routing area should be minimized, and thus the wirelength should

be minimized for each net.

To conclude, as the technology advances, the OARST construction has become much

more important. Considering a huge number of obstacles, millions of signal nets, overall

timing delay, and routing congestion, the OARST construction requires both the high
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efficiency (small run time) and the high effectiveness (small wirelength).

Most existing works targeting on the OARSMT problem can be categorized into two

major categories: (1) construction-by-correction and (2) connected-graph based. The first

class of algorithms generates an initial solution without considering the obstacles, and

then legalizes the edges intersecting obstacles. The second class constructs a connected

graph embedding at least one desirable solution, and applies graph algorithms to obtain a

solution. On the whole, connected-graph based approaches usually have the global view

of the obstacles, and generate better solutions. According to the routing graph, the second

class can be further partitioned into two sub-classes: (1) rectilinear graph and (2) span-

ning graph. It will be shown latter that there exists a trade-off between rectilinear graphs

and spanning graphs in effectiveness and efficiency. Besides, there also exist hybrid ap-

proaches integrating the two categories. In the following, we introduce major existing

approaches according to the above classification.

1.3.1 Construction-by-Correction Approach

The construction-by-correction approach first constructs a Steiner tree or a spanning tree

without considering the obstacles, and then replaces the edges intersecting obstacles with

edges around the obstacles. Due to its simplicity, this approach is very efficient, and was

widely used in industry. However, since the first step does not consider the obstacles, the

resulting solution may be very hard to refined to an satisfactory one. Furthermore, with

the significant increasing of obstacles, the situation will probably become much worse.

In other words, the construction-by-correction approach may not have the global view of

the obstacles, and thus the solution quality would be limited. Similar arguments were also
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(a) (b) (c) (d) (e) (f)

Figure 1.2: Yang et al. [47]. (a)–(c) three proposed cases of edge overlapping. (d) an

example for edge overlapping. (e) the possible overlapping removal for (d) without the

preprocessing. (f) the overlapping removal for (d) with the preprocessing.

pointed out in [22, 28, 36]. Below, we introduce one example work.

Yang et al. [47] developed a four-step heuristic to remove the overlapping edges. They

proposed three cases of edge overlapping as shown in Figure 1.2(a), (b), and (c). In

accordance with the three cases, their heuristic uses a preprocessing to construct new

edges and to remove the edge overlapping. Figure 1.2(e) shows the possible result without

their preprocessing, and Figure 1.2(e) shows the result with their preprocessing, which is

much better.

1.3.2 Rectilinear-Graph Based Approach

A rectilinear graph uses rectilinear edges to connect pin-vertices, obstacle corners, and

more other desirable Steiner point candidates. Therefore, a rectilinear graph usually con-

tains better solutions and even the optimal solution, e.g., Escape graph [9] and extended

Hanan grid [21]. There are quite a few novel mechanics to derive excellent solutions from

rectilinear graphs. For example, to the best of our knowledge, the maze-routing approach

in [21] achieves the best solution quality compared with all the state-of-the-art works.

However, most rectilinear graph has Ω(n2) space, and thus significantly lower the ef-

ficiency. For example, the approach in [21] performs much slower than those in [8,28]. In

short, compared to a spanning-graph based approach, a rectilinear-graph based approach
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(a) (c)(b) (d)

Figure 1.3: Example rectilinear graph. (a) Escape graph [9]. (b) Track graph [15, 45]. (c)

global routing graph [38]. (d) extended Hanan grid [21].

has higher effectiveness (solution quality) but lower efficiency (speed performance). Four

examples of rectilinear graphs are illustrated in Figure 1.3, and the corresponding ap-

proaches are discussed below.

Ganley and Cohoon introduced a routing graph called Escape graph [shown in Fig-

ure 1.3(a)], and proved that at least one optimal solution exists in Escape graph. Based

on Escape graph, they also provided three approximation algorithms with time complex-

ity of O(n3 log n), O(n4), and O(n7) respectively. Their algorithms perform well for

smaller cases. Hu et al. proposed a nondeterministic local search heuristic, called An-

OARSMan, which mainly applies the ant colony optimization [7] on Track graph [45]

[shown in Figure 1.3(b)]. Their approach can handle small cases with complex obstacles

of both concave and convex shapes.

Shi et al [38] proposed an global routing graph (GRG) [shown in Figure 1.3(c)],

which is a uniform graph generated from Escape graph, and applied circuit simulation on

it. Their approach also performs well for obstacle-free cases. Very recently, Li and Young

developed a maze-routing scheme, and applied it on the extended Hanan grid [shown

in Figure 1.3(d)]. Li’s approach uses the maze-routing to generate desirable paths as

solution components, and then constructs a minimum spanning tree (MST) based on those
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(a) (c)(b)

Figure 1.4: Example spanning graph. (a) obstacle-avoiding constrained Delaunay trian-

gulation (OACDT) [8]. (b) Shen’s and Long’s obstacle-avoiding spanning graph (OASG)

[28, 36]. (c) Lin’s OASG [22].

components. The solution quality of Li’s approach outperforms all the state-of-the-art

works, but the speed performance is rather low.

1.3.3 Spanning-Graph Based Approach

A spanning graph often has sparse edges, and only consists of pin-vertices and obstacle

corners. Therefore, a spanning graph significantly increases the efficiency. There are a

number of efficient approaches based on spanning graphs. For example, to the best of our

knowledge, the approaches in [8, 28] achieve the best speed performance.

However, since a good Steiner point is not necessarily restricted on obstacle corners,

the corresponding solution quality may be limited compared with rectilinear-graph based

ones. For example, the solution quality of the approaches in [8, 22, 28, 36] is still worse

than that in [21]. In short, compared to a rectilinear-graph based approach, a spanning-

graph based approach has higher efficiency (speed performance) but lower effectiveness

(solution quality). Three examples of spanning graphs are illustrated in Figure 1.3; the

corresponding approaches are discussed below according to their frameworks.

Feng et al. [8] proposed an obstacle-avoiding constrained Delaunay triangulation
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(OACDT) [shown in Figure 1.4(a)], and developed a 3-step algorithm based on the OACDT.

To the best of our knowledge, Feng’s method is the first and the only one algorithm for the

obstacle-avoiding Steiner minimal tree (OASMT) problem in lambda-geometry, and has

O(n log n)-time complexity. Although Feng’s method can be applied to the OARSMT

problem, experimental results in [22] show that Feng’s method generates much larger

wirelength compared with [22, 36].

Three recent works [22, 28, 36] share a very common framework. Shen et. al [36]

proposed the common structure as follows: (1) graph construction, (2) minimal terminal

spanning tree (MTST) construction, and (3) RST construction. In this dissertation, we

denote this framework as an MTST-based framework, and an algorithm following this

framework as an MTST-based algorithm. Among existing works, the integration of an

spanning graph and an MTST-based algorithm has higher balance in efficiency and effec-

tiveness.

Zhou et al. [51] divided a plane into eight octal regions for each pin-vertex, con-

nected each pin-vertex to the closest vertex in each its octal region, and thus constructed

a spanning graph which guarantees the existence of a rectilinear minimum spanning tree

(RSMT) on an obstacle-free plane. Shen et al. [36] simplify Zhou’s eight octal regions

into four quadrant regions, and constructed an obstacle-avoiding spanning graph (OASG)

[shown in Figure 1.4(b)], which also has only O(n) edges.

Lin et al. [22] proposed a new OASG [shown in Figure 1.4(c)] which includes more

essential edges than Shen’s OASG. Lin’s OASG guarantees a rectilinear shortest path

for any two pins, and thus Lin’s method provides the optimal solution for any two-pin

nets and a number of specific multiple-pin nets. Experimental results have shown that
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the specific theoretical guarantee greatly supports better solutions. However, since Lin’s

OASG has O(n2) edges, the time complexity is O(n3) in the worst case. Long et al. [28]

proposed a faster MTST construction algorithm with time complexity of O(|E| log |V |).

Besides, they also constructed an OASG which is almost equivalent to Shen’s OASG in

another way. Since Long’s OASG has only O(n) edges, Long’s method has O(n log n)

time complexity, and achieves the best speed performance. Nevertheless, Long’s method

cannot guarantee the specific theoretical optimality in [22], and the solution quality is still

worse than that of [22].

1.3.4 Hybrid Approach

Wu et al. [44] presented a hybrid approach for the OARSMT problem. First, similar

to a construction-by-correction approach, their approach constructs a minimum spanning

tree (MST) for all the pins without considering the obstacles. Second, their approach

integrates their constructed MST, the ant-colony optimization in [15], and the OASG

in [36] to construct an obstacle-avoiding Steiner tree (OAST). Finally, their approach

transforms the constructed OAST into an OARST, and performs refinements to reduce

the redundant segments. Experimental results show that the solution quality and the speed

performance of their approach are between those in other existing approaches.

1.3.5 Challenge of the OARSMT problem

The OARSMT problem is becoming more important as the technology advances. In mod-

ern VLSI design, there are more and more obstacles, such as macro cells, IP blocks,

pre-routed nets, etc., and thus the original RST construction would provide inaccurate in-
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terconnect estimation. Since a wrong choice made in early stages potentially leads to the

design failure in the current top-down flow, the OARST construction should be employed

in early stages such as floorplanning and placement.

Under these circumstances, the OARST construction requires both the efficiency (small

run time) and the effectiveness (small wirelength). For the former, the huge number of

obstacles dominates the run time instead of pins, and the Steiner tree construction will be

invoked millions of times at the floorplanning and placement stages. For the latter, wiring

delay dominates 75% of the overall delay by 90 nm, and the wiring congestion should

be minimized to handle millions of signal nets in an SOC design. However, most exist-

ing approaches are limited in either solution quality or speed performance. Therefore,

it is desired to develop new mechanics, frameworks, and algorithmic skills to meet the

performance requirements of the OARST construction.

1.4 Obstacle-Avoiding Preferred Direction Steiner Tree

Routing

Aside from the obstacles, with the progress of IC technology, there are other new practical

constraints in the routing process. In particular, for the routing tree construction, multiple

routing layers, preferred routing directions, and different routing resources need to be

considered.

Multiple routing layers are layered metal material, and the metal material will par-

tially be the wires of signal nets. To utilize the metal material, the modern IC design

are processed layer by layer. Under these circumstances, pins are connected by rectilin-
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ear edges within layers and vias between layers. Moreover, most pins of standard cells

are located in lower layers, while many pins of macro cells are located in higher layers.

Therefore, the routing tree construction should be able to connect all the pins of a signal

net, no matter on which layers those pins are.

Preferred directions are the orientations of routing among multiple routing layers.

Considering signal integrity and IC manufacturing, the orientation of routing in a single

layer tends to be either vertical or horizontal.

Different routing resources are the different weight of routing resources in different

layers. In general, the widths of wires in lower layers are thinner than those in upper

layers. Therefore, to balance the resistance and timing delay, wires in lower layers tend

to be shorter than those in upper layers. Toward this end, the router needs to weight the

routing costs in lower layers significantly higher such that the router would route shorter

wires in lower layers.

To the best of our knowledge, none of the existing works entirely catches all the men-

tioned processing constraints at the same time. it is desired to formulate the obstacle-

avoiding preferred direction Steiner tree (OAPD-ST) problem to simultaneously deal with

the five constraints: (1) multiple routing layers, (2) obstacles, (3) preferred directions, (4)

different routing resources, and (5) via costs.

In the following subsections, we introduce two highly related works.

1.4.1 The Preferred Direction Steiner Tree Problem

Yildiz and Madden [48] discussed the preferred direction Steiner tree (PDST) problem

which reflects the current multi-layer design (allows preferred directions). Their PDST
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Figure 1.5: An instance about the invalid transformation for a slant edge into preferred

direction edges. (a) a slant edge. (b) illegal transformed edges.

problem also consider the routability by the following two strategies:

• Different routing resources: The wires are assigned different unit cost in different

layers to minimize congestion. For instance, in a more congested layer, the wires

have a higher unit cost such that the router would avoid routing nets through this

congested layer.

• Via costs: Generally speaking, vias can enhance the transmission of signal, but too

many vias will cause a waste of area, which increases the congestion. Hence, via

costs should be employed to balance the benefit and loss.

However, their PDST model does not consider the obstacles, which cannot be ignored

in modern IC design

1.4.2 The Multi-Layer OARSMT Problem

Lin et al. [24] formulate the multi-layer OARSMT (ML-OARSMT) problem to deal with

the obstacles and multiple routing layers. They extended their original method in [22]

to construct a new routing graph called multi-layer obstacle-avoiding spanning graph

(ML-OASG).

However, ML-OASG could not be suitable for the OAPD-ST problem due to its edges,
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that is, ML-OASG not only allows horizontal and vertical edges in the same layer but also

uses slant edges. In ML-OASG, slant edges are used to connect points and to reduce the

wirelength by their heuristic. In other words, slant edges are the backbone of ML-OASG.

Unfortunately, slant edges have no information about the PD constraints such that the

transformations from slant edges into preferred direction edges will cause an infeasible

solution. Figure 1.5(a) shows a slant edge, and Figure 1.5(b) shows the corresponding

invalid transformed preferred direction edges. However, if removing the slant edges and

invalid rectilinear edges, ML-OASG may not be connected such that no feasible solution

for the OAPD-ST problem can be generated.

1.4.3 Challenge of the OAPD-ST Problem

At the current routing stage, there are many new processing constraints such as obstacles,

multiple routing layers, preferred directions, and different routing resources, all of which

are important for the interconnect optimization. To prevent the design failure, the routing

tree construction should address those constraints. However, no existing works entirely

catches all the mentioned constraints since each of those constraints is hard to handle. It

is desired to formulate the OAPD-ST problem, and to develop novel techniques to attack

it. Since there is no study on the OAPD-ST problem, it is necessary to build essential

theoretical foundations such as the structure of the optimal solution and the approximation

guarantee. Those theoretical foundations usually give critical insight into an NP-complete

problem and provide a potential way to develop future algorithms.
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1.5 Overview of the Dissertation

In this dissertation, we study two increasingly important routing tree issues: the OARSMT

problem and the OAPD-ST problem. Routing is a critical step in physical design, and the

routing tree construction plays a crucial role for the routing results. As the technology

advances into nanometer era, there are much more routing constraints, such as obstacles,

multiple routing layers, preferred directions, and different routing resources. Therefore,

the original routing tree construction will make inaccurate wirelength estimation at the

floorplanning or placement stage, and may generate wrong topologies at the routing stage

which cannot be refined to meet practical interconnect constraints. All these defects prob-

ably lead to the design failure. As a result, it is necessary to address those practical con-

straints, and propose new various techniques to meet different requirements at different

stages of the physical design flow.

The study for the OARSMT problem attempts to provide quick and accurate inter-

connect estimation at early physical design stages such as floorplanning and placement.

Although more than ten recent works provide diverse approaches, none of them is able to

achieve the best efficiency and the best effectiveness at the same time. Therefore, we pro-

gressively develop a series of strategies to attack the OARSMT problem. Based on these

strategies, we develop three excellent algorithms, and successfully achieve our purposes,

i.e., the the best practical performance in both wirelength and run time.

First, since the integration of a spanning graph and an MTST-based algorithm has

better balance in efficiency and effectiveness as discussed in Section 1.3.3, we propose

an advanced OASG as well as efficient wirelength reduction approaches. Second, since

the specific theoretical optimality guarantee in [22] greatly supports better solutions, we
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propose a path-based framework to obtain the specific theoretical optimality in O(n log n)

time instead of the original O(n3). Third, since there exists a tradeoff between rectilin-

ear graphs and spanning graphs in the effectiveness and the efficiency as discussed in

Section 1.3, we analyze the essence of the OARSMT problem, and propose the idea of

Steiner point selection to integrate advantages of rectilinear graphs and spanning graphs.

The study for the OAPD-ST problem attempts to provide better tree topologies at the

routing stage for the succeeding interconnect optimization. As a first study of the OAPD-

ST problem, we want to build essential theoretical foundations for the development of

future algorithms such as the structure of the optimal solution, the approximation algo-

rithm, the bottleneck of complexity, and the local minimal heuristic. All of these are

critical in the study of Steiner tree problem [18], and significantly help the research and

the development of future algorithms. Based on these theoretical foundations, we also

develop one approximation algorithm, and one efficient heuristic.

We divide this dissertation into two parts. Part 1 studies the OARSMT problem, and

includes Chapter 3, Chapter 4, and Chapter 5. Part 2 studies the OAPD-ST problem

and includes Chapter 6 and Chapter 7. Chapter 3, Chapter 4, and Chapter 6 have been

published in [27], [26], and [25] respectively. We introduce these chapters below.

1.5.1 Advanced Obstacle-Avoiding Spanning Graph

We propose an advanced OASG called obstacle-avoiding routing graph (OARG) to de-

velop an O(n log n)-time MTST-based algorithm as well as an efficient local refinement.

Compared with the OASG in [28, 36], the OARG contains more local OARMSTs and

thus would contains better solutions. Compared with the OASG in [22], the OARG has
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fewer edge and will increase the efficiency. First of all, we utilize the rectangle-avoidance

property (Definition 3.2) to construct the OARG in O(n log n) time. Besides, based the

rectangle-avoidance property, we also integrate existing approaches reduce the wirelength

during the OARST construction. Finally, we present an O(n log n)-time local refinement

scheme to reduce the redundant segments. Extensive experimental results show that our

approach outperforms [22, 28, 36] in both run and wirelength.

1.5.2 Path-Based Framework

We presents a path-based framework to bring about an O(n log n)-time algorithm with

theoretical optimality guarantees on a number of specific cases, which required O(n3)

time in previous works. Unlike previous frameworks, the new framework directly gen-

erates critical paths as essential solution components instead of generating invalid initial

solutions or constructing connected routing graphs. We integrate computational geometry

skills to generate O(n) critical paths, and prove that those paths guarantee the existence

of the optimal for specific cases and only take O(n) space. Therefore, the new framework

provides a new way to deal with the OARSMT problem. Experimental results show that

our algorithm achieves the best speed performance, while the average wirelength of the

resulting solutions is only 1.1% longer than that of the best existing solutions.

1.5.3 Steiner Point Selection

We restudy the essence of the OARSMT problem, and propose the idea of Steiner point

selection to integrate the advantages of rectilinear graphs and spanning graphs. The idea

consists of two major components, the Steiner-point based framework and the concept
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of Steiner point locations. Unlike many previous works, the Steiner-based framework

is more focused on the usage of Steiner points instead of the handling of obstacles, and

seems closer to the essence of the OARSMT problem. The concept of Steiner point

locations reflects the nature of Steiner points from another viewpoint, and thus provides

an effective as well as efficient way to generate desirable Steiner point candidates.

We also give an informal but intuitive analysis to show that the average-case time com-

plexity of our algorithm seems O(n log n). Experimental results show that this algorithm

achieves the best solution quality in Θ(n log n) empirical time, which was originally gen-

erated by applying the maze routing on an Ω(n2)-space graph. More importantly, the idea

of Steiner point selection can be applied to the future researches on the OARSMT problem

and its generations, such as the ML-OARSMT problem and the OA-PDST problem.

1.5.4 Preferred Direction Evading Graph and Approximation Guar-

antee

We analyze the structure of the optimal solution and propose an approximation algorithm.

For the structure of the optimal solution, we propose preferred direction evading graph

(PDEG), and prove that at least one optimal solution exists in PDEG. The theoretical op-

timality proof provides a way to analyze the solution quality, which significantly help the

development of algorithms, especially for approximation ones. For the approximation al-

gorithm, based on PDEG, we prove that the approximation factor of an obstacle-avoiding

preferred direction minimum spanning tree (OAPD-MST) to the OAPD-ST problem is

2, and thus the OAPD-MST construction is a factor 2 approximation algorithm for the

OAPD-ST problem. The approximation guarantee of an OAPD-MST gives important
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features to support the development of strong heuristics, especially for MST-like heuris-

tics.

1.5.5 Time Complexity Bottleneck and Local Minimal Heuristic

We first analyze the worst-case complexity of the OAPD-MST construction, and then

develop a local minimal heuristic based on a local minimal guarantee and an MTST-

based concept. We first prove that the space complexity of an OAPD-MST is Ω(n2),

which gives a strong motivation to develop more efficient algorithms for the OAPD-ST

problem instead of the OAPD-MST construction. Then, we analyze the properties of

MTST-based algorithm and make critical inference. Based on the inference and other

computational geometry skills, we propose a routing graph, preferred direction visibility

graph (PDVG) with a local minimal guarantee, and develop an O(n log2 n)-time MTST-

based heuristic. Experimental results shows that our algorithm performs more efficiently

than OAPD-MST construction and can generate comparable solutions. Experimental re-

sults also show the high competitiveness of PDVG and justify all our claims about PDVG

and our algorithm.

1.6 Organization of the Dissertation

The reminder of this dissertation is organized as follows. Chapter 2 formulates the two

addressed problems, and gives overall definitions, assumptions, and abbreviations. Part 1

studies the OARSMT problem and consists of Chapter 3, Chapter 4, and Chapter 5. Chap-

ter 3 presents an O(n log n)-time advanced spanning-graph based algorithm. Chapter 4

develops a path-based framework to bring about an O(n log n)-time algorithm with a spe-
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cific theoretical optimality guarantee, which took O(n3) in previous works. Chapter 5

proposes an idea of Steiner-point selection including the Steiner-point based framework

and the concept of Steiner point locations, which lead to an excellent algorithm with the

best practical performance in both wirelength and run time. Part 2 studies the OAPD-ST

problem and includes Chapter 6 and Chapter 7. Chapter 6 proves the optimality guarantee

of PDEG, and proposes a factor 2 approximation algorithm for the OAPD-ST problem.

Chapter 7 analyzes the lower bound of time complexity to construct an OAPD-MST, and

develops a more efficient heuristic. Chapter 8 makes concluding remarks for this disser-

tation.
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Chapter 2

Preliminary

This chapter gives basic definitions, symbol notations and fundamental assumptions in

this dissertation. Based those definitions, notations, and assumptions, the OARSMT prob-

lem and the OAPD-ST problem are clearly formulated. This chapter also gives extended

definitions, which are widely used in this dissertation.

2.1 Basic Definitions

Definition 2.1 An obstacle is a rectilinear polygon on a plane (layer). Any two obstacles

cannot intersect with each other, but could be line touched at the corner and point-touched

at the boundary.

Definition 2.2 An pin-vertex is a point on a plane (layer) and should be connected by a

signal net. No pin-vertex can be inside any obstacle, but a pin-vertex could be located at

the corner or on the boundary of an obstacle.

Figure 2.1(a) shows two intersecting obstacles in layer 1, and three line-touched or

point-touched obstacles in layer 2. Figure 2.1(b) shows two invalid pin-vertices inside an
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Figure 2.1: Obstacles and pins. (a) Any two obstacles cannot intersect with each other

(layer 1), but two obstacles could be line-touched at the boundary or point-touched at the

boundary (layer 2). corners of an obstacle. (b) a pin-vertex cannot be inside any obstacles

(layer 1), but could be located at the corner or on the boundary of an obstacle (layer 2).

Figure 2.2: Vias. (a) The endpoints of a via cannot locate inside an obstacle. (b) The

endpoints of a via could be on the boundary or at the corner of an obstacle.

obstacle in layer 1, and three pin-vertices at the corner or on the boundary of an obstacle

in layer 2.

Definition 2.3 A via between layer z and z +1 is an edge between (x, y, z) and (x, y, z +

1). Neither of the two endpoints can locate inside an obstacle, but they could be on the

boundary or at the corner of an obstacle.

Figure 2.2(a) shows invalid vias whose endpoints locate inside an obstacle, and Fig-

ure 2.2(b) shows valid vias whose endpoints are on the boundary or at the corner of an

obstacle.

Definition 2.4 For a tree, a Seiner point is a no-pin vertex with degree of 3 or 4.
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2.2 Fundamental Assumptions

Assume that the costs of vias are the same, and the unit costs of wires in the same layer are

identical. Without loss of generality, we assume the preferred direction (PD) constraints

as follows:

• Odd layers only allow vertical edges.

• Even ones only allow horizontal edges.

All edges/paths/distances are measured by rectilinear distance (L1 metric), e.g., the

length of an edge (vi,vj), denoted as |(vi, vj)|, is |xi − xj| + |yi − yj|. For simplification,

we assume that neither an edge nor a path runs over any obstacles except their boundaries.

In preferred direction model, a path is further assumed to meet the preferred direction

constraints. For two vertices v and u, SP (v,u) represents a shortest path between v and

u, and the length of SP (v, u) is |SP (v, u)|.

2.3 Symbol Notations

Let Nl be the number of routing layers, P = {P1, P2, . . . , Pm} be a set of pin-vertices

for an m-pin net, O = {O1, O2, . . . , Ok} be a set of k obstacles, Nc be the number

of obstacle corners in O, and n be the size of P
⋃{obstacle corners in O}. Thus, we

have n ≤ m + Nc. Since Nl is a small constant in practice, let n be the input size for

this problem. Let Cv be the cost of a via, and UCi be the unit cost of wires in layer i.

Table 2.1 summarize the main symbols in this dissertation.
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Table 2.1: Symbols.

P the set of pin-vertices O the set of obstacles

Ui the unit cost of wire in layer i Cv the cost of a via

m the number of pin-vertices k the number of obstacles

Nc the number of obstacle corners Nl the number of layers

n the size of P
⋃
{obstacle corners in O}. n ≤ m + Nc. (the input size)

2.4 Problem Formulation

• The Obstacle-Avoiding Rectilinear Steiner Minimal Tree Problem:

Given a set P of pins and a set O of obstacles on a plane, construct a tree connecting

all the pins in P possibly through some additional points (called Steiner points)

using vertical or horizontal edges, such that no tree edges intersect the interior of

any obstacles in O and the total wirelength is minimized.

Hereafter, we denote an obstacle-avoiding rectilinear Steiner tree (OARST) as a solution

and an OARSMT as an optimal solution.

• The Obstacle-Avoiding Preferred Direction Steiner Tree Problem:

Given a constant Cv, a set P of pin-vertices, a set O of obstacles, Nl routing lay-

ers with their specific unit costs of wires (UCi, 1 ≤ i ≤ Nl), and PD constraints,

construct a routing tree connecting all the pin-vertices in P possibly through some

additional points (called Steiner points) such that no tree edges intersect any obsta-

cles in O or violate the PD constraints.

Throughout this paper, we denote a solution to this problem as an OAPD-ST and an opti-

mal solution whose cost is minimum as an OAPD-SMT or an optimal OAPD-ST.

Table 2.2 shows the main abbreviations in this dissertation. Most of those abbrevia-

tions will be introduced in the remaining parts of this dissertation.
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Table 2.2: Abbreviations.
OARSMT obstacle-avoiding rectilinear Steiner minimal tree

OARST obstacle-avoiding rectilinear Steiner tree

OAPD-ST obstacle-avoiding preferred direction Steiner tree

OAPD-SMT obstacle-avoiding preferred direction Steiner minimal tree

MTST minimum terminal Steiner tree

OARMST obstacle-avoiding rectilinear minimum spanning tree

OAPD-MST obstacle-avoiding preferred direction minimum spanning tree

2.5 Extended Definitions

We define a series of MST-related terms, and these terms will be widely used in this

dissertation.

Definition 2.5 Given a graph G(V,E), a minimum spanning tree (MST) is a tree con-

necting all the vertices in V with the minimum wirelength.

Below, we define a minimum terminal spanning tree in two ways. The first way is

based on virtual edges (Definition 2.6) and the same as a generalized minimum spanning

tree in [46]. The second way is based on terminal paths and was used in [28]. In fact,

the two definitions are equivalent to each other but applied in different aspects. Chapter 3

uses Definition 2.7 and Chapter 4 uses Definition 2.9

Definition 2.6 Given a graph G(V,E), a virtual edge is a shortest path between two

vertices. The length of a virtual edge is the length of the corresponding shortest path.

Definition 2.7 Given a graph G(V, E) and a terminal set S ⊆ V , an minimum terminal

spanning tree (MTST) is an MST of a new graph whose vertex set is S and whose edge

set is the corresponding virtual edges among all the vertices in S.

Definition 2.8 Given a graph G(V, E) and a terminal set S ⊆ V , a terminal path is a

path between two vertices in S without other internal vertices in S [28].
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Definition 2.9 For a graph G(V,E) and a terminal set S ⊆ V , a minimum terminal

spanning tree (MTST) connects all vertices in S using a set of terminal paths with the

minimum sum of the lengths of those terminal paths.

Based on Definition 2.5, we define an OARMST and OAPD-MST. Since there is no

edge in geometry domain, a shortest path between two pin-vertices is naturally viewed as

a edge connecting them.

Definition 2.10 Given an OARSMT problem instance, an obstacle-avoiding rectilinear

minimum spanning tree (OARMST) connects all the pin-vertices using a set of shortest

paths among those pin-vertices such that the total wirelength of those paths is minimized.

Definition 2.11 Given an OAPD-ST problem instance, an obstacle-avoiding preferred

direction minimum spanning tree (OAPD-MST) connects all the pin-vertices using a set

of obstacle-avoiding preferred direction shortest paths (OAPD-SPs) among those pin-

vertices such that the sum of costs of those OAPD-SPs is minimized.
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Chapter 3

Advanced Obstacle-Avoiding Spanning

Graph

We propose a new spanning graph called obstacle-avoiding routing graph (OARG) for

the OARSMT problem, and develop an O(n log n)-time MTST-based algorithm as well

as an efficient local refinement. Compared with the OASG in [28,36], the OARG contains

more local OARMST leading to better solution, and compared with the OASG in [22],

the OARG has fewer edge heightening the efficiency. At the first step, we utilize the

rectangle-avoidance property (Definition 3.2) to construct the OARG in O(n log n) time.

At the second step, we develop a more efficient MTST construction to generate an ini-

tial Steiner tree. At the third step, we integrate existing approaches and the rectangle-

avoidance property to construct an OARST. Finally, we present a O(n log n)-time local

refinement scheme to reduce the redundant segments. Extensive experimental results

show that our method outperforms [22, 28, 36] in both wirelength and run time.
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3.1 Motivation

As discussed in Section1.3.3, a spanning graph has the global view of obstacles and spare

edges, which leads desirable OARSMT algorithms. Also, MTST-based algorithms on

spanning graphs [22,28,36] has better balance in wirelength and run time. However, there

still exists a significant trade-off between existing spanning graphs in space and solution

quality. Shen’s OASG in [28, 36] is mainly extended from Zhou’s octal regions [51], and

Zhou’s spanning graph guarantees a rectilinear minimum spanning tree in an obstacle-free

plane. However, Shen’s OASG only considers four quadrants, and thus it may lose some

desirable edges leading to better solutions. On the other hand, Lin’s OASG [22] has more

essential edges to include better solutions, while it has O(n2) edges, which significantly

lower the efficiency. Therefore, we attempt to develop algorithmic skills to apply Zhou’s

octal regions in the presence of obstacles and to construct an O(n)-space graph with

desirable solutions. We also want to extend existing obstacle-free heuristics such as [2,50]

to further improve the solution. In this chapter, the most critical algorithmic technique is

the utilization of the rectangle avoidance property in Section 3.2.1 and Section 3.2.3.

3.2 Algorithm

Our three-step algorithm can be summarized as follows:

1. OARG Construction: In this step, an obstacle-avoiding routing graph (OARG)

shown in Figure 3.1(b) is constructed for the following obstacle-avoiding recti-

linear Steiner tree (OARST) construction. We will prove that the time and space

complexities of OARG are O(n log n) and O(n) respectively.
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(a) (b)

(c) (d)

Figure 3.1: Procedure of our 3-step algorithm . (a) a problem instance. (b) OARG con-

struction. (c) MTST-OARG construction. (d) OARST transformation.

1

2

Figure 3.2: No obstacle corners exist in the rectangle area of edge (P1, P2).

2. MTST-OARG Construction: An MTST of OARG (denoted as MTST-OARG) is con-

structed by our new MTST generation scheme (MTST-H) as shown in Figure 3.1(c).

We will prove that the corresponding time complexity is O(n log n).

3. OARST Transformation: An OARST is transformed from an MTST-OARG by a

scheme called MTST-OARG-Reduction as shown in Figure 3.1(d).

3.2.1 Step 1: OARG Construction

A full description of OARG is given below, as well as the related definitions and proofs.

In brief, OARG has three types of edges, namely k 1, k 2, and k 3.
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Figure 3.3: The octal regions of point P.

Definition 3.1 Given an edge e, we correlate e with a rectangle whose diagonal line is

e and boundaries are perpendicular to the x- or y-coordinate as shown in Figure 3.2. We

define the area formed with dashed lines as the rectangle area of e.

Definition 3.2 For an edge e, e holding the rectangle avoidance property means that

there is no obstacle corner in the rectangle area of e. An example is shown in Figure 3.2.

Note that since a rectilinear edge has no rectangle area, a rectilinear edge holds the

rectangle avoidance property if it does not intersect any obstacles.

Definition 3.3 For a graph G, G holding the rectangle avoidance property means that

all edges of G hold the rectangle avoidance property.

The k 1 edges take advantage of Zhou’s spanning graph [51] and Lin’s OASG [22].

Zhou et al. [51] divided the plane into eight octal regions for each point as shown in Fig-

ure 3.3; an edge connecting a point to its closest point in each region is a possible candi-

date edge of Zhou’s spanning graph. By this selection, Zhou’s spanning graph guarantees

at least one RMST, and has linear space and loglinear construction time. However, Zhou’s

spanning graph does not consider obstacles such that edges of Zhou’s spanning graph may

intersect obstacles. On the other hand, Lin’s OASG construction select an edge which

holds the rectangle avoidance property and does not intersect any obstacles. By their

selection, Lin’s OASG contains all rectilinear shortest paths for all pairs of pin-vertices.

31



P1

P

P2

P1

P

P2

P

P1

P2

P1

P2

P
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Figure 3.4: Illustrations of the quarter-based decision method. Circles represent terminals,

and squares represent obstacle corners.

However, for each vertex, Lin’s OASG contains O(n) edges in the worst case such that

Lin’s OASG has O(n2) edges in the worst case. As a result, Lin’s OASG construction

takes at least O(n2) run time in the worst case, which loses the efficiency.

By our edge selection strategy, our k 1 edge construction applies Zhou’s spanning

graph [51] and considers obstacles at the same time. The edge selection strategy has three

conditions as follows.

1. A possible candidate edge is an edge connecting a point with its closest point in one

of its eight regions (the same as Zhou’s spanning graph [51]).

2. A possible candidate edge will not be connected if the edge does not hold the rect-

angle avoidance property.

3. A possible candidate edge will not be connected if the edge intersects at least one

obstacle.

First, the condition 1 can be satisfied by using a sweep-line algorithm to find all possi-

ble candidate edges similar to [51]. Second, we achieve the condition 2 by applying a

quadrant-based decision method to all points and the corresponding possible candidate

edges. Take the first quarter for example. As shown in Figure 3.4, we assume the closest

points in R1 and R2 regions of a point P are P1 and P2 respectively. If neither rectangle
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1

2

Figure 3.5: An obstacle intersects an edge (P1, P2) which holds the rectangle avoidance

property, with no obstacle corners lying in the rectangle area of (P1, P2).

area of P1 nor that of P2 contains each other, both (P ,P1) and (P ,P2) are connected as

shown in Figure 3.4(a) and Figure 3.4(b). Otherwise, the edge connection depends on

whether the point contained by rectangle area of another is an obstacle corner or not. We

assume that P2 is contained by the rectangle area of P1 as shown in Figure 3.4 (c) and

(d). If P2 is not an obstacle corner, both (P ,P1) and (P ,P2) are connected as shown in

Figure 3.4 (c). Otherwise, we only connect (P ,P2) to achieve the condition 2 as shown in

Figure 3.4(d). Third, for each possible candidate edge satisfying the condition 2, we can

determine whether the edge satisfies the condition 3 in O(1) time, which will be proved

later by Lemma 3.1.

The k 2 edges consist of all obstacle boundaries. The k 3 edges are generated by

connecting each terminal with the closest obstacle boundaries in four directions via per-

pendicular (to the x- or y-coordinate) lines. Take Figure 3.1(b) for an instance, there exists

one k 3 edge starting from the topmost terminal in the down direction.

Lemma 3.1 If the closest obstacles in the four directions (up, down, right and left) for

all points are known, for an edge e which holds the rectangle avoidance property, it takes

O(1) time to determine whether e intersects obstacles or not.

Proof: We assume that e is (P1, P2), and the x-coordinate of P1 is not larger than that of

P2. We also assume that e has positive slope and e intersects at least one obstacle denoted
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as Oi. By the definition for the rectangle avoidance property, no obstacle corners of Oi

lie in the rectangle area of e as shown in Fig 3.5. If Oi is on the right side of P1, the

closest obstacle Or to P1 in the right direction must intersect e as well. Otherwise, Oi is

closer to P1 than Or such that there exists a contradiction. Similarly, if Oi is on the up

side of P1, the closest obstacle Ou to P1 in the up direction must intersect e as well. As

a result, we can determine whether e intersects obstacles or not in O(1) time since the

closest obstacles in the four directions (up, down, right and left) for all points are known.

Theorem 3.2 The time complexity of OARG-construction scheme is O(n log n).

Proof: First, we consider the k 1 edges construction. [51] proved that finding the closest

neighbors of all octal regions for all points takes O(n log n) run time. For the selection

strategy of the k 1 edges, it is sufficient to consider the determination of edges which

intersects obstacles. From Lemma 3.1, for each edge, the process takes merely O(1) run

time, once the nearest four-direction obstacles for all points are known. Shen et al. [36]

presented a scheme to figure out the nearest four-direction obstacles for all points with

O(n log n) run time complexity. Therefore, the run time complexity to generate the k 1

edges is O(n log n). It is easy to verify that generating the k 2 edges costs O(n) time. As

for the k 3 edges, by exploiting Shen’s method to find the nearest four-direction obstacles

for all points, the time complexity is limited to O(n log n). From the discussion, we

conclude that the time complexity of OARG-construction scheme is O(n log n).

According to k 1, k 2, k 3 edges, we directly have the following two lemmas.

Lemma 3.3 Both the sizes of edges and vertices of OARG are O(n).
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Lemma 3.4 OARG holds the rectangle avoidance property

Aside from the time and space complexity, OARG has high solution quality and thus

is very suitable for an MTST-based algorithm. In [51], the authors claimed that their span-

ning graph guarantees at least one RMST among input vertices. Therefore, our application

of Zhou’s spanning graph will generate local OARMSTs. Since OARG contains many lo-

cal OARMSTs, an MTST of OARG will be a good initial solution for the OARSMT

problem. Noticeably, Zhou’s spanning graph cannot handle obstacles; the correctness

and the efficiency of the application fully depends on our proposed rectangle avoidance

property and quadrant-based decision method.

Overall, OARG substantially helps the development of an efficient and effective MTST-

based algorithm for the OARSMT problem. Compared to Lin’s OASG [22], which has

O(n2) edges, the linear space of OARG significantly increases the efficiency. Although

OARG cannot guarantee an OARMST (Lin’s OASG [22] can), the solution quality of

OARG is still good since OARG contains local OARMSTs. Furthermore, using the lin-

ear space and the rectangle avoidance property, the solution quality of OARG can be very

significantly improved (Section 3.2.3 and Section 3.3) and then will be comparable to that

of [22]. Compared to the Shen’s OASG [36], which also has O(n) edges, OARG likely

contains more local OARMSTs such that the solution quality of OARG could be much

better. This is because the OARG construction applies Zhou’s Spanning Graph to divide

a plane into eight octal regions instead of four quadrant regions in [36].
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3.2.2 Step 2: MTST-OARG Cosntruction

In this step, we construct an MTST over our OARG (denoted as MTST-OARG) by

our new MTST generation scheme, namely MTST-H. The time complexity of MTST-

H is O(|E| log |E|). Since both the vertex size and edge size of OARG are O(n) (by

Lemma 3.3), our MTST-OARG construction takes O(n log n) run time by directly ap-

plying MTST-H to OARG. Mehlhorn [31] also developed the KM algorithm to construct

an MTST with O(|E| + |V | log |V |) time complexity. Although the KM algorithm has

better time complexity than the MTST-H algorithm in general cases, since |E| and |V | are

both of O(n) in OARG, the KM algorithm also takes O(n log n) time complexity for the

MTST-OARG construction. More importantly, in practice, the MTST-H algorithm proba-

bly performs more efficiently than the KM algorithm for the MTST-OARG construction.

This is because the MTST-H algorithm retrieves only possible candidates of an MTST

instead of all vertices. In general, those possible candidates of an MTST could be much

fewer than all vertices.

An example for the procedure of MTST-H is shown in Figure 3.6. The problem in-

stance is on the upper-left part of each step in Figure 3.6, where circles denote terminals

and squares denote nonterminals. Basically, MTST-H consists of the operations of two

specific heaps. Brief explanations of these heaps are as follows.

The first heap is called nonterminal reachable heap (n-heap) (the upper-right part of

each step in Figure 3.6), and it is used to find the closest terminal for each nonterminal,

by which we can generate the possible virtual edges for an MTST. For each nonterminal,

an element of n-heap (called an n-element) exists to represent the latest information about

the closest terminal of this nonterminal and the path between them. In Table 3.1, some
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Table 3.1: Notations For MTST-H
t(w) the closest terminal of w.

d(w) the length of a shortest path between w and t(w).

f(w) the vertex directly connected to w on the shortest path between w and t(w).

functions are outlined to indicate the current information mentioned above. For each

nonterminal w, the n-element is a 4-tuple < w, f(w), t(w), d(w) >, and the key of n-heap

is d(w). For example, in Figure 3.6(d), < g, f, b, 5 > indicates, at that time, b is the

closest terminal to g through a path of length 5, and g is directly connected to vertex f in

this path.

The second heap is called virtual edge heap (v-heap) (the lower-right part of each step

in Figure 3.6), and it is used to generate a minimum spanning tree over the virtual edges.

Each element of the v-heap (called a v-element) is a 5-tuple <from terminal, to terminal,

generated from vertex, generated to vertex, length>, where length serves as the key. In

Figure 3.6(e), < a, b, e, f, 16 > represents that there exists a path between terminals a and

b; this path is generated from edge < e, f >, and is of length 16.

Algorithm 1 MTST-H

1: for each nontermianl w ∈ V do
2: set (f(w), t(w), d(w)) as (Φ,Φ,∞),

3: and insert < w, f(w), t(w), d(w) > into n-heap

4: for each terminal v ∈ V do
5: for each (u, v) ∈ E do
6: if u is terminal then
7: insert < u, v, u, v, |(u, v)| > to v-heap

8: else if |u, v| < d(u) then
9: f(u) ← v

10: t(u) ← v
11: d(u) ← |(u, v)|
12: update n-heap

13: repeat
14: if MIN (v-heap) ≤ 2× MIN (n-heap) then
15: do V-Heap-EXTRACT-MIN

16: else
17: do N-Heap-EXTRACT-MIN

18: until An MTST has been constructed or the two heaps are empty
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Figure 3.6: A process sketch of MTST-H.

Algorithm 2 V-Heap-Extract-Min

1: extract the min element < f t, t t, f v, t v, l > from v-heap

2: if f t and t t are in different components then
3: Link all edges in the virtual edge

4: union the two components which contain f t and t t
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Algorithm 3 N-Heap-Extract-Min

1: extract the min element < w, f(w), t(w), d(w) > from n-heap

2: mark w
3: for each (u,w) ∈ E do
4: if u is a terminal then
5: insert < t(w), u, w, u, |(u,w)| + d(w) > to v-heap

6: else
7: if u is marked and t(u) �= t(w) then
8: set l = d(w) + d(u) + |(u,w)|
9: insert < t(w), t(u), w, u, l > to v-heap

10: else if u is unmarked and d(w) + |(u,w)| < d(u) then
11: f(u) ← w,
12: t(u) ← t(w)
13: d(u) ← d(w) + |(u,w)|
14: update n-heap

We use pseudo-codes, namely Algorithm 1, 2, and 3, to clarify the process of MTST-

H. Algorithm 1 operates n-heap and v-heap to generate an MTST. Lines 1–13 initialize n-

heap and v-heap. In details, lines 6–7 generate direct virtual edges, and lines 9–12 updates

n-elements. Lines 14–16 operate N-Heap-EXTRACT-MIN and V-Heap-EXTRACT-MIN

to generate virtual edges and connect virtual edges respectively. Algorithm 2 connects

a virtual edge when the connection will not generate a cycle. Algorithm 3 updates n-

elements and generates virtual edges. In details, line 5 and lines 8–9 generate virtual

edges; lines 11–14 update n-elements.

Line 14 of Algorithm 1, “if MIN (v-heap) ≤ 2×MIN (n-heap)”, is a very important

constraint of MTST-H algorithm. The basic idea is that assuming the length of the longest

virtual edge of an MTST is l, a possible candidate of an MTST must have a path leading

to a terminal with length smaller or equal to 	 l
2

; otherwise, the length of any virtual

edge including this vertex between terminals is larger than l, i.e., not a virtual edge of

an MTST. To implement this idea, the MTST-H algorithm never retrieves a vertex which

has a path leading to a terminal with length of l′ if there exists a virtual edge with length

39



smaller or equal to 2*l′, i.e., the constraint, “MIN (v-heap) ≤ 2×MIN (n-heap)”. The

correctness will be supported by Lemma 3.6. As a result, the MTST-H algorithm only

retrieves possible candidates of an MTST, and thus it may only retrieve a smaller subset

of all vertices, which will significantly increase the efficiency.

As illustrated in Figure 3.6(a), lines 1-3 of Algorithm 1 first initialize n-elements of

nonterminals and insert them into n-heap. As shown in Figure 3.6(b), lines 4-12 of Algo-

rithm 1 extend all edges of terminals to update elements of n-heap and add direct virtual

edges into v-heap. After that, the lines 13-18 of Algorithm 1 manipulate v-heap and n-

heap repeatedly until an MTST is generated. As shown in Figure 3.6(c), N-Heap-Extract-

Min has been executed such that lines 11-14 of Algorithm 3 update (g,f(g),t(g),d(g));

lines 8-9 of Algorithm 3 insert a virtual edge < b, a, f, a, 4 > into v-heap. After that,

Algorithm 2 will be executed. As shown in Figure 3.6(d), < b, a, f, a, 4 > is popped: two

terminals a and b are connected by the virtual edge (a, b) in the lower-left part, and the

corresponding path a ↔ f ↔ b is constructed in the upper-left part. By repeating the

above operations, an MTST forms eventually as shown in Figure 3.6(e).

Below, we will prove the time complexity and correctness of MTST-H algorithm.

Lemma 3.5 Whenever an n-element representing a nonterminal w is extracted, t(w) cor-

responds to the closest terminal to w.

Proof: If the path between w and the closest terminal to w is the edge that directly

connects them, this Lemma can be easily verified by lines 4-12 of Algorithm 1. Thus we

only need to discuss the condition in which the path between w and the closest terminal

to w includes at least one other nonterminal. Because there is no nonterminal u in an

n-element such that d(u) < d(w) when w is extracted by MTST-H. By definition there
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exist no negative-weight edges, the remaining nonterminals in the n-heap cannot generate

any paths shorter than the path w belonging to afterward. Therefore, t(w) is the closest

terminal to w while a nonterminal w is extracted.

Lemma 3.6 The N-Heap-Extract-Min cannot generate a virtual edge whose length is

smaller than 2*MIN(n-heap).

Proof: Suppose the N-Heap-Extract-Min generates a virtual edge (a, b) whose length l is

smaller than 2*MIN (n-heap). Without loss of generality, assume that (a, b) is generated

by extracting an n-element < w, f(w), t(w), d(w) >, and t(w) is a. By Lemma 3.5, it

is clear that distance(w,b) must be at least d(w); otherwise, t(w) will be b. As a result,

we have l = distance(a,w) + distance(w,b) ≥ 2*d(w) = 2*MIN (n-heap). There exists a

contradiction.

Lemma 3.7 MTST-H adds a virtual edge e to construct an MTST only if n-heap cannot

generate any virtual edges shorter than e afterward.

Proof: Directly from line 14 of Algorithm 1, Lemma 3.6, and Algorithm 2.

Lemma 3.8 A MTST can be constructed by MTST-H.

Proof: First, the sequence order of all virtual edges connected by MTST-H are labeled

ei, i = 1, 2, . . . , |T | − 1 (|T | denotes the terminal size). By Algorithm 2 and Lemma

3.7, we have ∀i ≤ j, |ei| ≤ |ej|. Second, all virtual edges of the MTST are labeled e′i,

i = 1, 2, . . . , |T | − 1 in increasing order such that ∀i ≤ j, |e′i| ≤ |e′j|. Assume there exists

a label j such that j = min(k | |ek| �= |e′k|, k ∈ 1, 2, . . . , |T | − 1). Because of the

assumption for e′j (e′j is a virtual edge of MTST in increasing order), the inequality |ej| >
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|e′j| must hold. By Lemma 3.7, a virtual edge with length of |e′j| will not be generated

by MTST-H. Without loss of generality, we assume that e′j is (1, 2). Since (1, 2) can not

be generated by MTST-H, there exists at least one nonterminal in the corresponding path

belonging to neither terminal 1 nor 2. We assume that the nonterminal is labeled 4 and

belongs to terminal 3. As a result, neither path (1, 4) nor path (2, 4) is shorter than path (3,

4) by Lemma 3.5, which implies that both the virtual edges (1, 3) and (2, 3) are smaller

than (1, 2). Based on the cycle property of a minimum spanning tree [6], (1, 2) cannot be

a virtual edge of the MTST. There exists a contradiction.

Theorem 3.9 The time complexity of MTST-H is O(|E| log |E|).

Proof: The size of virtual edges, generated by a terminal or an extracted nonterminal, is

at most the same as its degree. Thus the number of virtual edges generated by MTST-H

is O(E). Consequently, the run time complexity of v-heap operations is O(|E| log |E|).

Because there are |E| edges, the number of nonterminal updates is at most O(E). Thus the

number of n-heap operations is O(|E| log |V |). We can conclude that the time complexity

of MTST-H is O(|E| log |E|).

Combining Lemma 3.3 and Theorem 3.9, constructing an MTST-OARG takes O(n log n)

time by using MTST-H. On the other hand, Lemma 3.8 and Algorithm 1 guarantee that

MTST-H will terminate whenever an MTST is generated, which implies that MTST-H

does not always go through the entire graph. It should also be noted that MTST-H use

operations of heaps, which is well-known more efficient than operations of Fibonacci-

Heaps for practical usage. Hence, in practice, MTST-H could be more efficient than KM

algorithm for the MTST-OARG construction.
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Figure 3.7: An example of the edge substitution technique in [2]

3.2.3 Step 3: OARST Transformation

In this step, we transform an MTST-OARG into an OARST by the scheme called

MTST-OARG-Reduction. This scheme can transform an MTST-OARG to an OARST

in O(n log n) run time and reduce total wirelength at the same time. In brief, MTST-

OARG-Reduction is based on Borah’s edge-based algorithm [2], Zhou’s observations

about Borah’s method [50], and the rectangle avoidance property of OARG. Note that

neither Borah’s edge-based algorithm nor Zhou’s observations consider obstacles such

that the direct extension of their method may result in infeasible solution for the OARST

construction. As a result, the correctness and efficiency of MTST-OARG-Reduction is

based on the rectangle avoidance property and loglinear space of OARG.

Borah et al. [2] proposed a method for finding a rectilinear Steiner tree from a rectilin-

ear minimum spanning tree via an edge substitution technique. As shown in Figure 3.7(a),

node P1 will be connected to the nearest point on the rectangle area of edge e1. If we re-

move e1 and connect edges (P1, P ), (P2, P ), (P1, P3), a circuit will form. Suppose the

longest edge in this circuit is e2, then we remove e2 as shown in Figure 3.7(b). The differ-

ence between (a) and (b) is called the gain of pair < e1, P1 >. Zhou [50] observed some

problems in Borah’s scheme and provided a method to compute gains of < edge,point >

pairs efficiently. Zhou represented a minimum spanning tree (as shown in Figure 3.8 (a))
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Figure 3.8: Zhou’s observations [50]. (a) a minimum spanning tree. (b) a binary tree

derived from (a). For each two leaf nodes of (b), their least common ancestor is the

longest edge between them in the minimum spanning tree

by a binary tree (as shown in Figure 3.8(b)). The binary tree is constructed by Kruskal

Algorithm [6] which can find a minimum spanning tree efficiently, and Zhou proved that

the least common ancestor (LCA) of two leaf nodes is the longest edge between them in

the circuit which is formed by connecting these two leaf nodes.

Definition 3.4 Given a graph G(V, E), for two vertices v1 and v2 ∈ V , if (v1, v2) ∈ E,

v2 is a neighbor of v1, and vice versus.

Our scheme can handle obstacles based on the rectangle avoidance property of OARG;

the correctness of our scheme will be proved in Theorem 3.11. Furthermore, for the effi-

ciency consideration, we only consider the neighbors of each edge instead of the visible-

points defined in [2]. Theorem 3.12 will verify the efficiency of MTST-OARG-Reduction.

Basically, MTST-OARG-Reduction computes gains by finding the longest edge for

each < edge, neighbor-point > pair, where the edge belongs to MTST-OARG and the

neighbor-point is a neighbor of one endpoint of this edge on OARG. As a result, we need

to construct the binary tree representation for the MTST-OARG. We first remove the non-

terminals not in the MTST-OARG, as well as the edges connected to them, from OARG.
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Figure 3.9: An example about the Steiner point when applying edge-substitution.

After that, we re-construct a minimum spanning tree over the reduced graph via Kruskal’s

algorithm and represent this tree by Zhou’s binary tree (as shown in Figure 3.8 (b)). Then

we recursively remove nonterminals with edge degree being one. It is clear that the cost

of the resulting MTST is no larger than the cost of the MTST-OARG, the later correlates

with the worst case. Subsequently, we apply Tarjan’s off-line least-common-ancestor

algorithm [6] to this binary tree in search for the corresponding longest edge of each

< edge, neighbor-point > pair. By the results, the gains of all < edge, neighbor-point >

pairs can be computed. Finally, we sort all < edge, neighbor-point > pairs by their gains

in decreasing order, do edge-substitutions to the pairs with positive gain subsequently,

and complete the OARST transformation.

Lemma 3.10 An oblique edge e of OARG can be transformed to rectilinear edges without

intersecting any obstacles.

Proof: Since all edges of OARG hold the rectangle avoidance property, there is no

obstacle corner in the rectangle area of e. As a result. e can be replaced by two boundaries

of its rectangle area which are perpendicular to each other.

Theorem 3.11 MTST-OARG-Reduction can transform a given MTST-OARG into an obstacle-

avoiding rectilinear Steiner tree.
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Proof: There are only two cases: 1) Rectilinear edges are generated by directly trans-

forming the original edge; 2) Edge substitution is applied. First, since OARG has no

edges intersecting the obstacles, by Lemma 3.10, the rectilinear edges in Case 1 will not

intersect any obstacles. Second, for each edge e, edge substitution is applied to e and a

neighbor of e, thus the Steiner points must fall in the boundaries of the rectangle areas,

which belong to e and the edge connecting e with the neighbor in OARG, as shown in

Figure 3.9. Since all edges of OARG hold the rectangle area property, there is no obstacle

corner in those rectangle areas, which implies that the rectilinear edges in Case 2 will

not intersect any obstacles. To conclude, an MTST-OARG can be transformed into an

obstacle-avoiding rectilinear Steiner tree via MTST-OARG-Reduction.

Theorem 3.12 The time complexity of applying MTST-OARG- Reduction to MTST-OARG

is O(n log n).

Proof: Because we merely consider the < edge, neighbor > pairs and the degree of

each point is constant, the total number of queries for least common ancestors is O(n).

Since the size of the binary tree and the number of queries are both O(n), the run time

complexity of Tarjan’s off-line least-common-ancestor algorithm [6] for our queries is

O(nα(n)). Moreover, α(n) is the inverse of the Ackermann’s function and grows very

slowly, thus we can consider it as constant for all practical cases (see [2] for similar

arguments). Thus the sorting part dominates the run time, and the time complexity is

O(n log n).

46



terminal

nonterminal

(a) (b) (c)

Figure 3.10: Examples for moving a CLS. (a) three nonterminals. (b) one terminal and

two nonterminals. (c) three nonterminals and one connected to other line segment in the

same direction.

3.3 Refinement

In this section, we propose a local refinement scheme for reducing total wirelength of

an OARST. Unlike previous U-shaped pattern refinement method in [22], our refinement

scheme considers more general cases. Furthermore, we also use sorting to make our

scheme more greedy such that the wirelength may be reduced more. By using the essence

of our local refinement scheme, the local redundant wirelength of the OARST constructed

by our 3-step algorithm can be significantly reduced in O(n log n) run time. Note that we

use our refinement scheme after our 3-step algorithm.

Definition 3.5 For an OARST, a simple line segment is a line segment crossing no ver-

tices except the two endpoints, and an i-CLS is a collection of i simple line segments

whose directions are all the same.

Our scheme is based on our observation which will be described below. For a CLS of

an OARST, if the numbers of line segments connected to this CLS in opposite sides are

different, it is possible to move the CLS to reduce the total wirelength. For example, for

the vertical CLS in the left part of Figure 3.10(a), the number of left side line segments

is 1, but the number of right side line segments is 2. Hence, we can move this CLS right
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to reduce the wirelength. However, there are two notable constraints for considerations.

First, terminals of a CLS may affect the refinement. As shown in Figure 3.10(b), since

terminals can not be moved, the movement will not reduce any wirelength. Second, line

segments connected to the two endpoints of a CLS in the same direction may affect the

result, too. As shown in Figure 3.10(c), we cannot reduce the wirelength by moving the

vertical CLS.

Definition 3.6 For an OARST, the gain of a CLS is the possible reduced wirelength by

moving this CLS.

Our scheme is generated intuitively from our observation by following steps:

1. Compute gains for all CLSs of the OARST and sorts them in decreasing order.

2. Do movements in the sorting sequence and remove the related gains (whose CLSs

connected to the moved CLSs) from the sorting sequence.

3. Construct the reduced OARST finally.

Since the number of i-CLSs is at most e-i (e is the edge number of the target OARST), the

number of CLSs is
∑e−1

i=1 (e − i) = O(e2). For an i-CLS, the time to compute the gain is

O(i). As a result, the run time for computing the gains for all CLSs is
∑e−1

i=1 (e− i)O(i) =

O(e3). Then, the sorting for O(e2) CLSs takes O(e2 log e) run time. Thus, the direct

scheme costs O(e3) run time in the worst case.

However, our main concept is to construct an O(n log n) method for the OARSMT

problem such that our original scheme is not suitable. As a result, we will not consider all

CLSs for efficiency consideration.
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Table 3.2: Number of CLSs for Our OARST.
TERM # OBS # 2−CLS

1−CLS

3−CLS

1−CLS

50 250 20.9% 2.7%

100 500 21.2% 2.7%

500 2500 21.7% 2.7%

1000 5000 2.8% 2.9%

Average 21.4% 2.75%

In order to reduce the number of gain computations, we take experiments about the

number of CLSs. Each kind of testcases has 20 samples; terminals and obstacles are

randomly generated. In Table 3.2, experimental results show the number of 3-CLSs is

2.75 % of the number of 1-CLSs. As a result, it may be sufficient to consider only 1-

CLSs , 2-CLSs and 3-CLSs for efficiency issue. Since this scheme doesn’t consider all

kinds of CLSs, the time complexity is reduced drastically. The number of CLSs decreases

to O(n), and the computations of gains for CLSs scale as O(n), too. Furthermore, sorting

dominates the run time complexity and costs O(n log n).

To conclude, in this paper, we use our 3-step algorithm and our local refinement to

construct an OARST in O(n log n) run time.

3.4 Experimental Results

We implemented our algorithm in C language on a PC with 3GHz Pentium processor

and 2GB memory under Linux operation system. There are 22 benchmark circuits given

from [22] (five industrial testcases (ind1-ind5) from Synopsys, twelve testcases from [8]

(rc1-rc12), and five random testcases (rt1-rt5) from [22]).

We compared our algorithm with those presented in [8, 22, 28, 36, 44]. All the results

are directly quoted from [8, 22, 28, 44]. The results of [8] are generated by the algorithm

performed on a Unix workstation with 2.66GHz CPU and 1GB memory. The results
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of [44] are generated by the algorithm performed on a Sun Blade2000 workstation with

1200MHz CPU and 8GB memory. The results of [28] are generated by the algorithm

performed on a Redhat Linux workstation with 2.1 Dual Core CPU and 2GB memory.

The results of [36] and [22] are generated by the algorithms performed on a 2GHz AMD-

64 machine with 8GB memory under Ubuntu 6.06 operation system. It is also well-known

that the memory access performance of workstation is much better than normal PC-based

computer even the processor of PC outperforms workstation processor.

Table 3.3 shows the solution quality (wirelength) comparison of these algorithms.

“HPBB” means the half-perimeter of the bounding box of all terminals and is the lower

bound of optimal solution. “-” means that the result is not available. Considering the dif-

ferences from the HPBB, the respective average improvements on the total wirelength are

24.39%, 4.30 % , 7.01%, 6.10% and 1.47%, compared with the algorithms in [8], [44],

[36], [28], and [22]. Since HPBB is the lower bound of optimal solution for the OARSMT

problem, if we consider the difference from an optimal solution, the improvement will be

larger. Considering the percentages of the reduced wirelength (solution quality improve-

ment), our algorithm is very competitive.

Table 3.4 lists the execution time of each algorithm. Although the execution envi-

ronments of those algorithm are different, the effect on the execution time under each

environment is constant, which implies that the execution environment does not affect the

time complexity. As a result, we can use “time ratio,” the ratio of different works versus

our work on the same testcase, to analyze the difference of the time complexity.

To the best of our knowledge, [8] is the fastest method for the OARSMT problem.

Since the time ratios (between [8] and ours) in Table 3.4 does not increase with input
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Figure 3.11: The time ratio of [22] to ours is plotted as a function of n.

size, the empirical time complexity of our algorithm is similar to that of [8]. Further-

more, our wirelength improvement over [8] is 24.39%/29.48% in average and can be up

to 52.92%/55.01% (rc12), which is very significant.

To the best of our knowledge, [22] is the best work with regard to wirelength according

to the literal experimental results. The theoretical worst case run time complexity of [22]

is O(n3) while our algorithm to be O(n log n). Table 3.4 shows that the time ratios of [22]

to ours seem to increase with the input size. As shown in Figure 3.11, the time ratios

of [22] to ours are plotted as a function of the input size k. By the least squares fitting

on the log-log-axes, the respective slope of the fitting line is 0.47, which implies that

the empirical complexity of time ratios (the empirical time complexity of [22] to that

of ours) is O(n0.47). When the input size increases, the O(n0.47) difference in empirical

time complexity will make our algorithm more competitive. Despite of the empirical time

complexity, it should be noted that our solution quality is also improved by 0.86%/1.47%

on average compared with [22].

To conclude, according to the analysis of experimental results in Table 3.3 and Ta-

ble 3.4, our algorithm outperforms all state-of-the-art works in wirelength and has similar

speed to the fastest work.
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Chapter 4

Path-Based Framework

For the OARSMT problem, this chapter proposes a new framework to develop an

O(n log n)-time algorithm with the same theoretical optimality guarantee with [22], which

originally takes O(n3) time. Unlike most existing approaches discussed in Section 1.3,

the new framework directly generates essential solution components without constructing

a routing graph or generating invalid initial solutions. Through our analysis of the geome-

try mapping on previous works [22,28], the algorithm generates only O(n) critical paths,

and those critical paths still guarantee the existence of an optimal solution for a number

of specific cases. The algorithm also increases the overlapping between different paths

for improving the wirelength, and performs an O(n log n)-time dynamic local refinement

scheme. Experimental results show that compared with [21], which achieves the best so-

lution quality, our algorithm achieves 50.1 times speedup on average, while the resulting

wirelengths are only 1.1% longer on average.
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(a) (b)

(c) (d) (e)

pin-vertex

obstacle

internal vertex

Steiner point

bridge edge

SPT edge

Figure 4.1: (b)–(e) four phases of our algorithm.

4.1 Motivation

As discussed in Section 1.3.3, Lin’s OASG guarantees the existence of a shortest path for

every two pin-vertices, and thus their algorithm provides an optimal solution for any two-

pin net or every multi-pin net whose topology consists of simple paths among pin-vertices.

Experimental results in [22] have shown that the the specific optimality guarantee signif-

icantly helps the solution quality. However, under the original MTST framework, an

O(n log n)-time algorithm with the specific optimality guarantee will require a routing

graph which guarantees the existence of a shortest path for any two pin-vertices and has

only O(n) space. It is unknown if there exists such a graph and probably not. Therefore,

a new framework should be employed to resolve the bottleneck.

4.2 Algorithm

Our path-based algorithm consists of the following four phases as shown in Figure 4.1.

The first two phases generate a solution using critical paths without constructing a routing

graph or generating an invalid solution.
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1. Critical Path Generation: In this phase, critical paths are generated as solution com-

ponents [See Figure 4.1(b)]. Those critical paths guarantee the existence of desir-

able solutions.

2. Obstacle-Avoiding Steiner Tree (OAST) Construction: An OAST connecting all

pin-vertices is constructed by selecting those critical paths in Phase 1 [See Fig-

ure 4.1(c)]. A greedy path-based method is employed to reduce the wirelength.

3. OARST Construction: An OARST is constructed from the OAST in Phase 2 by

transforming slant edges into rectilinear ones [See Figure 4.1(d)].

4. Local Refinement: The wirelength of the OARST in Phase 3 is be reduce by an

O(n log n)-time dynamic refinement scheme [See Figure 4.1(e)].

4.2.1 Critical Path Generation

We generate O(n) critical paths in O(n log n) time, and claim that those critical paths

guarantee the existence of optimal solutions on a number of specific cases. Section 4.2.1.1

and Section 4.2.1.2 analyze Lin’s OASG construction [22] and Long’s MTST algorithm

[28] from our viewpoints. Section 4.2.1.3 simulates Long’s MTST algorithm on Lin’s

OASG to analyze the corresponding geometry mapping and conclude the bottleneck of

the time complexity. Section 4.2.1.4 applies shortest path map to generate critical paths,

and justifies our claim using geometry information and graph theory.

4.2.1.1 Lin’s OASG Construction

Definition 4.1 For two vertices u and v, u is immediately visible from v, if (1) there is

a path between u and v in their bounding box and (2) no other vertex in P ∪ C locates
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v

u

v

u

(a) (b) (c)

Figure 4.2: Example Definition 4.1 and Lin’s OASG. (a) no path between u and v exists

in the bounding box. (b) one vertex locates inside the bounding box. (c) Lin’s OASG for

Figure 4.1(a).

inside or on the boundary of the bounding box [33]. If u is immediately visible from v, u

is a neighbor of v [22]. For example, u is not a neighbor of v in Figure 4.2 (a)–(b). An

edge connecting two neighbors is a visible edge.

Lin et al. [22] constructed an OASG by connecting each vertex in P ∪ C to all its

neighbors in P ∪ C. Figure 4.2(c) shows Lin’s OASG for Figure 4.1(a). They proved

that their OASG guarantees the existence of a shortest path for any two vertices in P ∪C,

implying that an MTST (Definition 2.9) of Lin’s OASG is an OARSMT for any two-pin

net or multiple-pin nets where an OARSMT contains only simple paths between pin-

vertices. However, since a vertex has O(n) neighbors, Lin’s OASG has O(n2) edges.

4.2.1.2 Long’s MTST algorithm

According to Definition 2.9, Long et al [28] proposed a two-step MTST construction with

time complexity of O(|E| log |V |). Figure 4.3(c) shows an MTST of Figure 4.3(a) which

consists of two terminal paths, (p1 ↔ v1 ↔ v2 ↔ v4 ↔ p3) and (p2 ↔ v6 ↔ p3).

Definition 4.2 For a graph G(V, E) and a terminal set S ⊆ V , a terminal forest F

consists of |S| disjoint shortest path trees where each tree T of F is rooted at a terminal

s ∈ S and for each vertex v of T , s is the nearest terminal of v in G (s is called the root
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Figure 4.3: Example Definition 4.2. (a) an instance, where S = {p1, p2, p3}. (b) a terminal

forest and bridge edges of (a), where arrow segments are forest edges and dash segments

are bridge edges. (c) an MTST of (a).

terminal of v) [28]. An edge (v, u) ∈ E is a bridge edge if v and u belong to different

trees in F .

Figure 4.3(b) shows a terminal forest and bridge edges of Figure 4.3(a). v1 belongs to

the shortest path tree rooted at p1 since p1 is the nearest terminal of v1; the dash segment

connecting v2 and v4 is a bridge edge since v2 and v4 belong to different trees in the forest.

At the first step, they extended Dijkstra algorithm [6] to construct a terminal forest.

At the second step, they first generated terminal paths (Definition 2.8 via all the bridge

edges, e.g., a terminal path via a bridge edge (v2, v4) consists of

SP (p1, v2), (v2, v4), and SP (v4, p3), i.e., (p1 ↔ v1 ↔ v2 ↔ v4 ↔ p3). In other words,

a bridge edge represents a terminal path. Then, they constructed an MTST by applying

Kruskal algorithm [6] on a graph whose vertices are terminals and whose edges are those

terminal paths generated via bridge edges.

4.2.1.3 Shortest Path Trees

Since an MTST of Lin’s OASG is an OARSMT in many cases [22], we attempt to

construct an equivalent solution. However, since Lin’s OASG has O(n2) edges, for

O(n log n) time complexity, we should avoid constructing Lin’s OASG. Toward this end,

58



(a) (b) (c)

Figure 4.4: Long’s MTST algorithm on Lin’s OASG. (a) a terminal forest of Figure 4.2(c).

(b) terminal paths via bridge edges of (a). (c) an MTST generated by those terminal paths

in (b).

we simulate Long’s MTST algorithm on Lin’s OASG as shown in Figure 4.4 to analyze

the corresponding geometry mapping. Since Lin’s OASG [22] guarantees a shortest path

for any two vertices in P∪C, we study the literature about L1 shortest paths, and conclude

that it is feasible to map a terminal forest of Lin’s OASG to Definition 4.3.

Definition 4.3 Given a set P of pin-vertices and a set O of obstacles with a set C of

corners, multi-source shortest path trees (multi-source SPTs) connect all the vertices in

P ∪ C such that (1) for each vertex v in P ∪ C, v belongs to a tree rooted a pin-vertex p

in P , (2) p is the nearest pin-vertex of v, and (3) SP (v, p) of the tree is also SP (v, p) in

the plane.

Mitchell [33] proposed a wavefront-based method to construct multi-source SPTs in

O(n log2 n) time, and later improved the time complexity to O(n log n) in [32]. For each

edge (v,u) of multi-source SPTs in [33], v and u are immediately visible to each other

as the same as that of Lin’s OASG, implying that the multi-source SPTs are equivalent

to a terminal forest of Lin’s OASG. Therefore, a terminal forest of Lin’s OASG can be

constructed in O(n log n) time without constructing Lin’s OASG, and the bottleneck of

the time complexity has become the handling of those bridge edges in Figure 4.4(b), each

of which represents a terminal path.
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Figure 4.5: The critical path generation for the instance in Figure 4.1(a). (a) multi-source

shortest path trees. (b) a shortest path map. (c) critical paths represented by bridge edges

(dash segments) and multi-source SPTs.

Although the number of those bridge edges could be Ω(n2), in Figure 4.4, we observe

many redundant bridge edges which must not be in an MTST of Lin’s OASG. Therefore,

we conjecture that to obtain the equivalent solution, only O(n) bridge edges need to be

considered and can be constructed in O(n log n) time.

4.2.1.4 Shortest Path Map

To resolve the bottleneck of the time complexity and prove our conjecture, we should

reduce redundant bridge edges. In [1], for constructing a minimum spanning tree (MST) in

a plane, a Voronoi diagram can be applied to divide a plane and thus reduce the redundant

edges. Similarly, we use a shortest path map to divide a plane, consider the obstacles, and

reduce the redundant bridge edges.

Definition 4.4 Given a set P of pin-vertices and a set O of obstacles with a set C of

corners, a shortest path map (SPM) is a subdivision of plane where (1) each region

belongs to a vertex v ∈ P ∪ C (called the site of region), (2) all points in the region of v

share the same nearest pin-vertex p ∈ P , and (3) those points have the same predecessor

v (the site of the region) along their shortest path to p. Each vertex in P ∪C has only one
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region.

Figure 4.5(b) shows an SPM for Figure 4.1(a). For example, all points in the region

R6, whose site is v6, share the same nearest pin-vertex p3, and all those points have at

least one shortest path to p3 passing through v6. Noticeably, a region may have no area,

e.g., the region R5, which is represented by a red bold line segment and referred by a blue

arrow, has no area. The slopes of those slant boundaries are 1 or -1 since in L1 metric, the

slope of a bisector must be one of {−1, 1, 0 (horizontal), ∞ (vertical)}

We propose the critical path generation as follows:

1. Multi-source SPTs are constructed using the wavefront-based method in [32,33] as

shown in Figure 4.5(a).

2. An SPM is constructed using the information of the multi-source SPTs as shown in

Figure 4.5(b).

3. For each two adjacent regions, if their sites have different nearest pin-vertices and

are immediately visible to each other, a bridge edge between the two sites is con-

structed to generate a critical path. Figure 4.5(c) shows those generated critical

paths and represents them using bridges edges and multi-source SPTs. For a bridge

edge (v1, v2), assuming the nearest pin-vertices of v1 and v2 to be p1 and p2 respec-

tively, the critical path is SP (p1, v1) ↔ (v1, v2) ↔ SP (v2, p2).

We will prove that those critical paths guarantee the existence of an equivalent so-

lution to an MTST of Lin’s OASG. Since a terminal forest of Lin’s OASG is multi-

source SPTs (discussed in Section 4.2.1.3), according to Long’s MTST algorithm, we

only need to discuss those bridge edges. If the critical path generation fails the guar-
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antee, at least one essential bridge edge is not constructed. Without loss of generality,

we assume the essential bridge edge to be (v1, v2). Since (v1, v2) is not constructed by

the critical path generation, (v1, v2) should be broken by a region belonging to other ver-

tex v3. Assume the nearest pin-vertices of v1, v2, and v3 to be p1, p2, and p3 respec-

tively, and v4 to be a point on (v1, v2) in the region of v3. According to Definition 4.4,

|SP (p3, v3)|+|(v3, v4)| is smaller than |SP (p1, v1)|+|(v1, v4)| and |SP (p2, v2)|+|(v2, v4)|,

implying that |SP (p3, v3)|+|(v3, v4)|+|SP (p1, v1)|+|(v1, v4)| and |SP (p3, v3)|+|(v3, v4)|

+ |SP (p2, v2)| + |(v2, v4)| is smaller than |SP (p1, v1)|+|(v1, v4)|+|SP (p2, v2)|+|(v2, v4)|,

which is the length of the terminal path via (v1, v2). That is, at least two terminal paths for

(p1, p3) and (p2, p3) respectively are shorter than the terminal path for (p1, p2) via (v1, v2).

According to the cycle property of an MST [6], the terminal path via (v1, v2) can be safely

deleted, i.e., (v1, v2) is not essential. There exists a contradiction.

Since an MTST of Lin’s OASG is an OARSMT for any two-pin nets and multiple-pin

nets where an OARSMT consists of only simple paths between pin-vertices, we conclude

Theorem 4.1.

Theorem 4.1 Our critical path generation guarantees the existence of an OARSMT for

any two-pin net or multiple-pin nets where an OARSMT consists of only simple paths

between pin-vertices.

We analyze the time complexity of the critical path generation and the number of those

generated critical paths below. Since the multi-source SPTs construction takes O(n log n)

time in [32, 33], we only analyze step 2–3. In [33], Mitchell also claimed that an SPM,

i.e. our step 2, can be extended from multi-source SPTs in O(n log n) time. By Euler’s

formula, the number of boundaries must be linear to the number of faces for a planar
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Figure 4.6: The overlapping of different paths. (a) no overlapping between the two

paths. (b) overlapping at (v2, p3). (c) the critical paths generated by Section 4.2.1. (d)

|SP (p1, p3)| via (v2, p3) has become 20 after update operation.

subdivision. Since there are O(n) regions in an SPM (by Definition 4.4), there are O(n)

pairs of adjacent regions, implying that our critical path generation constructs O(n) bridge

edges (critical paths). To check if a bridge edge is visible can be done by searching other

vertices locating inside the bounding box of the two endpoints. The search operation

takes O(log n) time after constructing a range search tree with fractional cascading [1]

among P ∪ C, which takes O(n log n) time. Therefore, we can conclude Theorem 4.2.

Theorem 4.1 and Theorem 4.2 strongly support our conjecture in Section 4.2.1.3.

Theorem 4.2 Our critical path generation provides O(n) critical paths in O(n log n)

time.

4.2.2 OAST Construction

In this Section, we propose a greedy method to construct an obstacle-avoiding Steiner tree

(OAST) based on those critical paths in Section 4.2.1. Unlike most previous works, for

better solution quality, our greedy method attempts to increase the overlapping between

different paths, which is critical but often neglected.

Most MTST-based algorithms [22,28,36] select paths (edges) according to their lengths

without considering the overlapping between different paths, and thus may lose much po-
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tential improvement of wirelength. For example, as shown in Figure 4.6, |SP (p1, p2)|,

|SP (p2, p3)|, and |SP (p1, p3)| are 40, 45, and 45 respectively, implying that an MTST

can consist of SP (p1, p2) and SP (p1, p3). However, there are two possibilities to select

SP (p1, p3), p1 ↔ v1 ↔ p3 and p1 ↔ v2 ↔ p3, as shown in Figure 4.6(a) and Fig-

ure 4.6(b) respectively. In the former case, SP (p1, p2) and SP (p2, p3) do not overlap,

while in the latter case, SP (p1, p2) and SP (p2, p3) overlap at (p1, v2) and result in an

obviously redundant edge, which will be removed easily. After removing the redundant

edge (p1, v2), the wirelength of Figure 4.6(b) is 65, while that of Figure 4.6(a) is 85.

Thus, from our viewpoint, Figure 4.6(b) contains more potential improvement of wire-

length than Figure 4.6(a). In short, increasing the overlapping between different paths

will lower the wirelength.

Our path-based framework provides a potential way to increase the overlapping of

different paths. For example, Figure 4.6(c) shows those critical paths generated by Sec-

tion 4.2.1 and represents them using three shortest path trees and three bridge edges (dash

segments). In detail, bridge edges, (p1, v1), (v2, p2), and (v2, p3), represent p1 ↔ v1 ↔ p3,

p1 ↔ v2 ↔ p2, and p1 ↔ v2 ↔ p3, whose lengths are 45, 40, and 45, respectively. The

values adjacent to v1 and v2 are the distances from them to their nearest pin-vertices, e.g.,

|SP (p1, v2)| is 20. Since p1 ↔ v2 ↔ p2 has the lightest length, we will first select this

critical path. After the selection, as shown in Figure 4.6(d), the distance between v2 and

p1 can be viewed as 0 since any path to p1 through v2 can share the path between p1 and

v2. Then, we update bridge edges connected to v2, i.e. (v2, p3), to reduce |p1 ↔ v2 ↔ p3|

to be 25. Therefore, we will connect p1 ↔ v2 ↔ p3 instead of p1 ↔ v1 ↔ p3 to obtain

the same result with Figure 4.6(b). To conclude, by updating bridge edges connected to
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Algorithm: Greedy OAST Construction(P, C, BE, TE, E)
Input: P /* the set of pin-vertices */

C /* the set of obstacle corners */

BE /* the set of bridge edges */

TE /* the set of directed tree edges

of multi-source SPTs*/

Output: E /* the set of edges of the OAST */

1 for each directed tree edge e = (v, u) ∈ TE
2 p(u) ← v
3 for each vertex v in P ∪ C
4 w(v) ← |SP (v, np(v))|

/* np(v) is the nearest pin-vertex of v */

5 Heap Hcp ← φ
6 for each bridge edge e = (v, u) ∈ BE
7 w(cp(e)) ← w(v) + |(v, u)| + w(u)

/* cp(e) denotes the critical path via e */

8 Hcp.insert(e, w(cp(e))
9 while Hcp is nonempty
10 e(v, u) ← Hcp.extractMin()
11 if Find-Set(np(v)) �= Find-Set(np(u))
12 Set-Union( Find-Set(np(v)) , Find-Set(np(u)) )
13 E ← E ∪ {(v, u)}
14 for each vertex v′ ∈ {v, u}
15 while v′.makred = false and p(v′) �= null
16 w(v′) ← 0
17 for each bridge edge e′ = (v′, u′) ∈ BE
18 w(cp(e′)) ← w(v′) + |(v′, u′)| + w(u′)
19 Hcp.decreaseKey(e′, w(cp(e′)))
20 v′.marked ← true
21 E ← E ∪ {(v′, p(v′))}
22 v′ ← p(v′)

Figure 4.7: The greedy OAST construction algorithm.

selected critical paths, our path-based framework shares the edges of selected paths with

unselected ones, and thus increases the overlapping between different paths.

The greedy OAST construction algorithm is summarized in Figure 4.7. Lines 1–8

initialize the information representing those critical paths. Lines 1–2 assign the predeces-

sor to each vertex, Lines 3–4 assign weight to each vertex, and Lines 5–8 initial Hcp by

assigning weight to each critical path and inserting the corresponding bridge edge to Hcp.

Lines 9–22 construct an OAST, and increase the overlapping of different paths by updat-

ing bridge edges. Line 11 determines if a critical path results in a cycle in P ; Lines 13–22

recursively connect edges in the critical path and update the corresponding bridge edges.
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Figure 4.8: The rectilinear transformation for slant edges. (a) an instance. (b)–(c) trans-

formation with edge overlapping. (d)–(e) other cases without edge overlapping.

In details, Lines 16–19 update the corresponding bridge edges; Lines 20–22 connect the

edges leading to the nearest pin-vertex. It is clear that the recursive updates of bridge

edges will further take benefit of the path overlapping. In fact, the OAST construction

does not connect those obviously redundant edges.

We prove the time complexity to be O(n log n). Since multi-source SPTs are a forest

connecting all vertices in P ∪ C, |TE| is O(n), and thus Lines 1–2 take O(n) time.

Lines 3–4 can be done by traversing tree edges in TE from each root, which takes O(n)

time. Lines 5–8 take time loglinear to the size of BE, which is O(n) by Theorem 4.2.

Since Lines 14–22 trace a vertex at most once and update a bridge edge at most twice,

Lines 9–22 perform O(n) times find-set, trace-vertex, decrease-key operations. Since

each operation takes O(log n) time, Lines 9–22 take O(n log n) time.

In not considering the overlapping between different paths, we will obtain an OAST

as shown in Figure 4.4(c), while our greedy OAST construction obtains a better OAST as

shown in Figure 4.1(c).

4.2.3 OARST Construction

We construct an obstacle-avoiding rectilinear Steiner tree (OARST) from the OAST in

Section 4.2.2 by transforming all slant edges into rectilinear ones. Since all edges of the

OAST are visible we can directly transform an edge of the OAST into L-shaped rectilinear
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edges. For example, as shown in Figure 4.8(a), since no obstacle intersects the bounding

box of p1 and p2 (otherwise, (p1,p2) must not be visible), (p1, p2) can be transformed to

L-shaped rectilinear edges, (p1, v1) and (v1, p2) (or (p1, v2) and (v2, p2)).

The OARST construction also considers the overlapping between different edges.

For example, if (p1, p2) has been transformed to (p1, v1) and (v1, p2) as shown in Fig-

ure 4.8(b), (p1, p3) will be transformed to (p1, v3) and (v3, p3) to result in the edge over-

lapping (p1, v1) as shown in Figure 4.8(c), which can be directly removed to improve the

wirelength. On the other hand, if (p1, p2) has been transformed to (p1, v2) and (v2, p2),

Figure 4.8(d) or Figure 4.8(e) will occur. Nevertheless, since no obstacle intersects the

bounding boxes of (p1, p2) and (p1, p3), Figure 4.8(d) and Figure 4.8(e) can be refined to

Figure 4.8(c) by the local refinement in Section 4.2.4. It is clear that the whole OARST

construction takes O(n log n) time.

4.2.4 Efficient Local Refinement

Definition 4.5 A segment is a connected graph whose edges are arranged in the same

line, e.g., {e1, e2} in Figure 4.9(a) is a segment. For a segment s, an adjacent segment is a

segment connected to and perpendicular to s, e.g., {e1, e2} in the left part of Figure 4.9(a)

has three adjacent segments.

We attempt to perform dynamic local refinements to reduce the wirelength in O(n log n)

time. Lin et al. [22] introduced a U-shaped refinement handling the two cases in Fig-

ure 4.9(a)–(b). Based on the U-shaped refinement, we conclude that if a segment has

more adjacent segments on one side than the other side, moving this segment to the for-

mer side may reduce the wirelength. We called a segment as movable if it can be moved
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Figure 4.9: Refinement Patterns. (a)-(b) two cases of U-shaped patterns. (c) the up nearest

obstacle of a segment, {e3, e4}, has been changed to O2 from O1 after moving {e1, e2}

right.

to reduce the wirelength.

As shown in Figure 4.9(b), the moving offset of a segment may depend on the nearest

obstacle. However, the nearest obstacle of a segment cannot be pre-computed before

dynamic local refinements since the nearest obstacle may be changed. For example, in

Figure 4.9(c), the up nearest obstacle of {e3, e4} originally is O1, while the up nearest

obstacle has become O2 after moving {e1, e2} right. For O(n log n) time complexity, we

should find a way to compute the nearest obstacle for a movable segment in O(log n)

time.

The right nearest obstacle of a segment is also the first touched obstacle when moving

the segment right. As shown in Figure 4.10(a)–(b), moving a segment to touch an obsta-

cle can be divided into two cases, (1) touch the obstacle corners and (2) just touch the

obstacle boundary. In the latter case, if the nearest obstacle influences the moving offset,

the movable segment should have an adjacent segment with one endpoint locating at the

boundary of the obstacle. Therefore, the moving offset in the latter case can be computed

using those adjacent segments, and we only discuss the first case.

Chazelle [3] studied the segment dragging query problem: Given a set of n points,

pick a horizontal (vertical) segment and answer the first hit point when dragging the seg-
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Figure 4.10: Computation of the nearest obstacles. (a) touching the corners of an obstacle.

(b) just touching the boundary of an obstacle. (c) the segment dragging problem.

ment vertically (horizontally). As shown in Figure 4.10(c), dragging l up will first hit

p1, and p1 is the answer of this segment dragging query. Chazelle proposed a method to

answer the segment dragging query in O(log n) time after an O(n log n)-time preprocess-

ing. Therefore, by applying Chazelle’s method on the corner set C, we can compute the

nearest obstacle for the first case in O(log n) time.

Considering the tradeoff between efficiency and solution quality, our refinement scheme

operates each movable segment with at most 8 adjacent segments until no such segment

exists. Moving a movable segment may generate a new movable segment (e.g. merging

two segments), but in the case, the movement will remove at least one edge such as e3

in Figure 4.9(a). Since the OARST has O(n) edges, the refinement scheme will operate

O(n) movable segments. For each segment s, since s has at most 8 adjacent segments and

the nearest obstacle is computed in O(log n) time, the moving offset can be computed in

O(log n) time. Therefore, the refinement scheme takes O(n log n) time.

4.2.5 Discussion

Since each phase takes O(n log n) time, the time complexity of the whole construction is

still O(n log n). By Theorem 4.1 and the details in Section 4.2.2 to 4.2.4, our algorithm

guarantees all the optimality in Section 4.2.5 of [22]. We can conclude the following.

Theorem 4.3 Our algorithm constructs an OARST in O(n log n) time, and guarantees to
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provide an OARSMT for any two-pin nets and multiple-pin nets where the topology of an

OARSMT contains only simple paths between pin-vertices.

The output of Phase 1–2 is similar to [22] and [28], while [22] takes O(n3) time

and [28] cannot guarantee the same optimality. Long et al. [28] reduced the redundant

terminal paths in a graph, but for O(n log n) time, they omitted some essential edges to

construct an O(n)-space graph. Our framework directly reduces the redundant terminal

paths in geometry domain without constructing a graph. This is why our algorithm can

satisfy Theorem 4.1.

To conclude, compared with recent works [36]– [28], our path-based framework has a

global view of obstacles, guarantees the existence of desirable solutions, and keeps only

O(n)-space solution components. It really gives a new efficient and effective way to deal

with the OARSMT problem.

4.3 Experimental Results

We have implemented our algorithm in C. There are 22 benchmark circuits, five industrial

test cases (ind01–ind05) from Synopsys, 12 test cases used in [8] (rc01–rc12), and five

random test cases used in [22] (rt01–rt05). Our experiments were conducted on a Linux

server with two 2.4-GHz Intel processors and 8-GB memory.

We compare our algorithm with those presented in [22], [28] and [21]. To the best of

our knowledge, the approach in [28] is the most effective O(n log n)-time method, and the

method in [21] achieves the best solution quality. The results of [28] are quoted from the

paper, where the algorithm was conducted on a Redhat Linux server with two 2.1-GHz

AMD processors and 2-GB memory. The results of [22] are quoted from the paper, where
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the algorithm was conducted on a Ubuntu 6.06 server with one 2-GHz AMD-64 CPU and

8-GB memory. We have obtained the program in [21], and execute their program on our

platform.

Table 4.1 lists the total wirelengths and the CPU times of these algorithms. “speedup”

compares the run time of [21] and ours.

Compared with [28], the most effective O(n log n)-time method, our algorithm achieves

the same speed performance and further improves by 2.7% in wirelength on average,

which is significant considering the routability for millions of signal nets. The wirelength

of our algorithm is at most 7.4 % shorter than that of [28] (rc12), but at most only 0.7%

longer (rc03). Besides, our algorithm guarantees the same theoretical optimality as that

in [22], but [28] cannot. Therefore, the solution quality of our algorithm could be more

stable.

Compared with [21], which achieves the best solution quality, our algorithm runs

much faster, while the wirelengths of the resulting solutions are only 1.1% longer on

average. As shown in Table 4.1, across all the 22 benchmarks, our algorithm achieves

50.1 times speedup on average compared with [21]. For rc12, which contains 10 000

obstacles, our algorithm terminates within only one second, while that in [21] takes 192

seconds. Considering the large and increasing number of obstacles and signal nets in a

modern IC design, the advantage in the run time is very significant.

To conclude, the above analysis shows that our algorithm achieves the best speed

performance, and the solution quality is still comparable to the best previous work [21].

Our algorithm meets the requirements of the OARST construction in a modern IC design.
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Chapter 5

Steiner Point Selection

For the OARSMT problem, this chapter presents a Steiner-point based algorithm in order

to achieve the best practical performance in both wirelength and run time. Unlike most

existing works, the Steiner-based framework is more focused on the usage of Steiner

points instead of the handling of obstacles. We also proposes a new concept of Steiner

point locations, which provides an effective as well as efficient way to generate desirable

Steiner point candidates. Experimental results show that this algorithm achieves the best

solution quality in Θ(n log n) empirical time, which was originally generated by applying

the maze routing on an Ω(n2)-space graph. In other words, this algorithm achieves the

best practical performance in both wirelength and run time. More importantly, the Steiner-

point based framework and the new concept of Steiner point locations give critical insights

into the OARSMT problem, and can be naturally applied to the future researches on the

OARSMT problem and its generations, such as the ML-OARSMT problem [24] and the

OA-PDST problem [25].
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5.1 Motivation

As discussed in Section 1.3, there exists a significant trade-off between rectilinear graphs

and spanning graphs. In detail, a rectilinear graph usually has better solution quality,

and a spanning graph usually has higher efficiency. Therefore, it is desirable to balance

the trade-off to achieve the best practical performance in both the wirelength and the

run time. Toward this end, it is interesting to find a way to integrate the advantages of

spanning graphs and rectilinear graphs. Such a way very probably helps the development

of more desirable algorithms. On the other hand, from the viewpoint of practice, the

O(n log n) worst-case time complexity is not necessary, and the Θ(n log n) empirical time

complexity is sufficient. As a result, we attempt to comprehensively study the essence of

the OARSMT problem, and make essential theoretical foundations.

5.2 Algorithm

We propose a Steiner-point based algorithm for the OARSMT problem. Section 5.2.1

claims the importance of Steiner points and gives a basic idea. Section 5.2.2 proposes a

new concept of Steiner point locations to be the foundation of our algorithm. Section 5.2.3

shows the procedure of our algorithm in detail. Section 5.2.4 analyzes the time complexity

of our algorithm. Section 5.2.5 gives a discussion and makes comparisons.

5.2.1 Basic Idea

The selection of Steiner points is the most important step to solve the OARSMT problem

although many previous works mainly focus on the handling of obstacles. This is because
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the NP-completeness of the OARSMT problem probably comes from the selection of

Steiner points instead of the handling of obstacles. For example, without selecting Steiner

points, the OARSMT problem will become the obstacle-avoiding rectilinear minimum

spanning tree (OARMST) problem, which is solvable in polynomial-time [45]. From the

viewpoint of Steiner point selection, we make another definition for an OARSMT below,

which is also used in [38].

Definition 5.1 An OARSMT is an OARMST connecting all the pin-vertices and some

selected Steiner points where the total wirelength of the OARMST is minimum.

Based on Definition 5.1, the OARST construction naturally first selects desirable

Steiner points, and then constructs an OARMST to connect all the pin-vertices and those

selected Steiner points. In general, a routing graph is an efficient way to deal with obsta-

cles, and the OARMST construction has become the MTST construction (Definition 2.5)

on the routing graph. Besides, to reduce the redundant wirelength, refinement schemes

are usually employed after the initial OARST construction. As a result, our Steiner-

point based algorithm is divided into four steps: (1) graph construction, (2) Steiner point

selection, (3) MTST construction, and (4) refinement. More details will be shown in

Section 5.2.3.

As mention in Section 5.1, there is a trade-off between solution quality and speed per-

formance in the selection of rectilinear graphs and spanning graphs. Rectilinear graphs

[9, 21, 38] usually contain more desirable Steiner points and even include the optimal so-

lution, while the number of vertices is usually Ω(n2), indicating that the Steiner point se-

lection in rectilinear graphs is very time-consuming. Spanning graphs [22,28,36] mainly

use obstacle corners to contain valid solutions, while a good Steiner point is not necessar-
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ily restricted on obstacle corners, indicating that the solution quality in spanning graphs

is limited.

Since the Steiner point selection is the most critical step, we attempt to analyze the

Steiner point locations (Section 5.2.2) to develop (1) a new graph with both O(n) space

and desirable Steiner point candidates, and (2) a new Steiner point selection to find good

Steiner points. Both the new graph and the new Steiner point selection lead our algorithm

to achieve both of the best solution quality and the best speed performance.

5.2.2 Concept of Steiner Point Locations

For Steiner point locations, Hanan grid [12] (Figure 5.1(c)) and Escape graph [9] (Fig-

ure 5.2(c)) should be discussed since they contain at least one optimal solution for the

RSMT problem and the OARSMT problem, respectively. Both Hanan grid and Escape

graph generate vertices on the intersections of line segments extended from pin-vertices

or obstacle corners. However, n segments will generate up to
n∗(n−1)

2
intersections, which

are too many for the Steiner point selection. Although O(n) intersections can be gener-

ated by O(
√

n) line segments, O(
√

n) line segments cannot reflect all the n vertices of

P ∪ C. In other words, the intersection concept of Hanan grid and Escape graph will

generate too many Steiner point candidates and lower the efficiency of Steiner point se-

lection. It is necessary to propose a new concept of Steiner point locations instead of line

segment intersections, and this new concept potentially provides a more efficient way to

generate desirable Steiner point candidates.

We first consider the RSMT problem for two pin-vertices. Since an RSMT for two

pin-vertices is directly a shortest path between them, we define a shortest path region
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P1

v1

v2

v3

v4

P3

P2

P1 v2

v3

P3

P2

Figure 5.1: Steiner points for the RSMT problem. (a) a three-pin instance. (b) an RSMT of (a).

(c) Hanan grid.

(SPR) below.

Definition 5.2 For two vertices p and q on a plane, their shortest path region (SPR), de-

noted as SPR(p,q), is the union of all the shortest paths between p and q. In Figure 5.1,(a)

the bounding box of P1 and P2 is their shortest path region.

When a two-pin instance is extended to a three-pin instance, the location of the new

pin-vertex should be first determined. If the new pin-vertex is located inside the SPR of

the two original pin-vertices, the new pin-vertex is directly the best Steiner point of the

three-pin instance, i.e., there is no Steiner point for this instance. Otherwise, the best

Steiner point must be a boundary corner of one SPR among the three pin-vertices. For

example, as shown in Figure 5.1(b), the Steiner point of the RSMT is v3, which is a

boundary corner of SPR(P2,P3) in Figure 5.1(a). With the similar reasoning, we conclude

that a Steiner point of an RSMT in Hanan grid must be a boundary corner of the SPR of

two pin-vertices. In the new concept, Hanan grid is the collection of boundary corners of

SPRs among all the pin-vertices. We have the following theorem.

Theorem 5.1 For the RSMT problem, there exists at least one RSMT such that each

Steiner point of which is a boundary corner of the shortest path region of two pin-vertices.

For the OARSMT problem, obstacles will affect Steiner point locations, and the shape

of an SPR has become different. For example, in Figure 5.2(a), SPR(P1,P2) has become
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O1

P1

P3

P2

s1

c1

O1

P1

P3

P2

s1

Figure 5.2: Steiner points for the OARSMT problem. (a) a three-pin instance. (b) an ORSMT of

(a). (c) Escape graph.

a rectilinear polygon, and in Figure 5.2(b), the best Steiner point has become s1. We

return to the RSMT problem, and find that the boundary of an SPR consists of two L-

shaped paths, and a Steiner point in Hanan grid is located at one corner of L-shaped paths

between two pin-vertices. For example, in Figure 5.1(a), the boundary of SPR(P2,P3)

consists of two L-shaped paths, P2 ↔ v3 ↔ P3 and P2 ↔ v4 ↔ P3, and in Figure 5.1(b),

v3 is the best Steiner point.

From the same viewpoint, in Figure 5.2(a)–(b), s1, the Steiner point of the OARSMT,

is the corner of L-shaped path c1 ↔ s1 ↔ P2. Similarly, Escape graph can be viewed as

the collection of corners of L-shape paths among all the pin-vertices and all the obstacle

corners. We also have the following theorem.

Theorem 5.2 For the OARSMT problem, there exists at least one OARSMT such that each

Steiner point of which is a corner of the L-shaped path between one pair of vertices in

P ∪ C.

Based on the new concept (Theorem 5.2), Escape graph construction is equivalent to

considering at most Cn
2 pairs of pin-vertices and obstacle corners, i.e., O(n2) L-shaped

paths, and then generating O(n2) L-shaped path corner (vertices). If we only consider

O(n) pairs of vertices, we will have only O(n) Steiner point candidates, which is more

efficient for the Steiner point selection. Therefore, the bottleneck has become how to
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(a) (b)

(c) (d) (e)

pin-vertex

obstacle

internal vertex

Steiner point

obstacle corner

Figure 5.3: (b)–(e) four steps of our algorithms.

choose O(n) pairs of vertices to generate desirable Steiner point candidates, which is our

OAVG construction in Section 5.2.3.1.

In summary, the new concept of Steiner point locations will lead to our OAVG con-

struction, which constructs a routing graph with O(n) space and desirable Steiner point

candidates, i.e., the OAVG integrates the effectiveness and the efficiency of routing graphs.

Besides, the shortest path region also contributes to our Steiner point selection in Sec-

tion 5.2.3.2. Note that it is impossible to select O(n) Steiner point candidates in ω(n2)

time to guarantee the existence of an RSMT unless Hanan grid can be reduced to O(n)

space in ω(n2) time. In fact, although Hanan grid has been proposed for about 40 years,

there is still no such method to reduce it.

5.2.3 Procedure of Algorithm

Based on the basic idea in Section 5.2.1, our Steiner-point based algorithm consists of

following four steps.
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1. Obstacle-avoiding Voronoi graph (OAVG) construction

(Figure 5.3(b)): An OAVG is constructed to connect pin-vertices, obstacle corners,

and O(n) desirable Steiner point candidates in O(n log n) time. The effectiveness

and efficiency is supported by the new concept of Steiner point locations and novel

computational geometry techniques.

2. Steiner point selection (Figure 5.3(c)): Good Steiner points are efficiently selected

from the OAVG in step 1 based on the concept of Prim’s algorithm and our defined

SPRs.

3. Initial Obstacle-avoiding rectilinear Steiner tree (OARST) construction (Figure 5.3(d)):

An OARST is constructed in

O(n log n) time by applying an integration of Long’s MTST algorithm [28] and

Liu’s path-overlapping scheme [26] on the OAVG where all the pin-vertices and

those selected Steiner points in step 2 are specified as terminals.

4. Refinement (Figure 5.3(e)): A refinement scheme is applied on the OARST con-

struced in step 3 to reduce the redundant segments in O(n log n) time.

5.2.3.1 OAVG Construction

We attempt to construct a routing graph called obstacle-avoiding Voronoi graph (OAVG),

which contains desirable Steiner point candidates and uses only O(n) space. According

to Section 5.2.2 and Theorem 5.2, we need to choose O(n) desirable pairs of pin-vertices

and obstacle corners, and then collect L-shaped path corners of those pairs as Steiner point

candidates.
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O1

O2

R8

c8

c7

c13

R7

R13

c11

R11

P5

P2

P3

R4

P4

R3

R5

R2

O1

O2

P2

v1

v3

v2

P3

O1

O2P2v4

Figure 5.4: OAVG construction. (a) SPM construction. (b) vertex generation. (c) edge connec-

tion.

Since a rectilinear minimum spanning tree (RMST) is usually used to approximate an

RSMT, we study the RMST problem. Hwang [17] use an L1 Voronoi diagram to construct

an RMST in O(n log n) time since the dual graph of the L1 Voronoi diagram contains at

least one RMST and has only O(n) edges. Therefore, it seems a good idea to choose all

pairs of adjacent vertices in the dual graph to generate Steiner point candidates.

In the presence of obstacles, Mitchell [33] proposed a wavefront based method to

construct an L1 Voronoi diagram in O(n log2 n) time, and later improved it to O(n log n)-

time in [32]. The L1 Voronoi diagram can be partitioned into finer regions by a shortest

path map, which is defined below.

Definition 5.3 For a set P of pin-vertices and a set O of obstacles with a set C of corners,

a shortest path map (SPM) is a subdivision of plane where (1) each region belongs to a

vertex v ∈ P ∪ C (called the site of the region), (2) all points in the region of v share the

same nearest pin-vertex p ∈ P , and (3) those points have the same predecessor v (the site

of the region) along their shortest path to p [26]. Noticeably, each vertex in P ∪ C has

only one region.

Figure 5.4(a) shows an SPM for Figure 5.3(a). For example, all points in the region
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R11, whose site is c11, share the same nearest pin-vertex P3, and all those points have

at least one shortest path to P3 passing through c11. Noticeably, a region may have no

area, i.e., is a line segment or a point. For example, R8, which is the region of c8 and

represented by a blue solid circle, has no area but is adjacent to R4, R5, R7, and R13. The

slopes of those slant boundaries are 1 or -1 since in L1 metric, the slope of a bisector must

be one of {−1, 1, 0(horizontal),∞(vertical)}.

Our OAVG construction is summarized in Figure 5.4:

1. SPM construction (Figure 5.4(a)).

2. Vertex generation (Figure 5.4(b)): For each two adjacent regions Ri and Rj in the

SPM, generate Steiner point candidates for the two sites according to Theorem 5.2.

For example, v1 will be generated in Figure 5.4(b) since R2 is adjacent to R3 in

Figure 5.4(a) and v1 is the corner of the L-shaped path, P2 ↔ v1 ↔ P3. Besides,

for the connectivity of the OAVG, we also project all the vertices to their closest

obstacles in the four directions. For example, in Figure 5.4(b), v3 is a projection

from P2 to its up closest obstacle O1.

3. Edge connection (Figure 5.4(c)): Connect all the vertices in Figure 5.4(b) using

rectilinear edges.

By Euler’s formula, for a planar subdivision, the number of boundary edges must be

linear to the number of faces. As a result, since an SPM has n regions (by Definition 5.3),

there are O(n) pairs of adjacent regions, implying the number of generated Steiner point

candidates is O(n). Since a vertex has at most 4 closest obstacles, there are O(n) projec-

tion vertices. As a result, an OAVG has both O(n) vertices and edges.
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In [32,33], an SPM can be constructed in O(n log n) time. Since there are O(n) pairs

of adjacent regions, the time to generate Steiner point candidates depends on the time to

determine the existences of those L-shaped paths. For two vertices, their closest obstacles

can be used to determine if there exists an L-shaped path between them in O(1) time.

For example, in Figure 5.4(b), P2 ↔ v2 ↔ P3 is invalid since the down boundary of the

up closest obstacle of P3 (i.e. O2) is lower than P2. Besides, for a vertex, if its closet

obstacles have been known, the projection time is O(1). Shen et al. [36] proposed an

O(n log n)-time method to determine the closest obstacles for n vertices. As a result, the

vertex generation takes O(n log n) time.

For two vertically or horizontally adjacent vertices, if their closest obstacles have been

known, it takes O(1) time to determine if they should be connected. For example, in

Figure 5.4(c), since v4 and P2 have the same right closest obstacle, (v4, P2) should be

connected. Therefore, after the obstacle determination, the edge connection can be done

by sorting those vertices according to (x-coor,y-coor) and (y-coor, x-coor), respectively.

To conclude, we have the following theorem.

Theorem 5.3 An OAVG can be constructed in O(n log n) time, and has both O(n) ver-

tices and edges.

5.2.3.2 Steiner Point Selection

We attempt to select good Steiner points from the OAVG. To minimize the wirelength, it

is natural to find the closest pin-vertex from an existing connected component. This is also

the concept of the well-known minimum spanning tree (MST) algorithm, Prim’s algorithm

[6]. In [21], Li’s maze routing also takes the similar concept. Therefore, there are some
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Figure 5.5: P1 has been reached by source s1. The stripe region is SPR(s1,P1). (a) P2 must not

be inside SPR(s1,P1). (b) P3 must not be reached from s2.

similar behaviors between Li’s maze routing and our Steiner point selection, while the

motivations and foundations are quite different. We will discuss the main differences in

Section 5.2.5.

For the MST problem, Prim’s algorithm can start from any pin-vertex to achieve the

same wirelength. However, since the OARSMT problem is NP-complete, a starting vertex

will affect the resulting wirelength. In general, the longest connection often significantly

affects the final result. Therefore, we select the pin-vertex which is the farthest from the

other pin-vertices as a starting vertex since connecting such a pin-vertex more possibly

causes the longest connection than the others. Below, we define the farthest pin-vertex

formally.

Definition 5.4 For a set of pin-vertices, a pin-vertex p is the farthest pin-verrex if p has

the longest distance to its neighbor pin-vertex, which is the closest pin-vertex to p.

Similar to the reasoning in the Voronoi diagram in [17], a pin-vertex p1 has at least

one neighbor pin-vertex p2 such that an SPM has two adjacent regions belonging to v1

and v2, respectively, and the nearest pin-vertices of v1 and v2 are p1 and p2, respectively.

Therefore, since an SPM has O(n) pairs of adjacent regions, finding the farthest pin-

vertex takes O(n) time after the SPM construction . Experimental results in Section 5.3

will show the effectiveness of starting at the farthest pin-vertex.
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Based on Prim’s concept, our Steiner point selection first sets the farthest pin-vertex

as a source, and then repeats the following steps to include Steiner points:

1. Find the closest pin-vertex p from those existing sources.

2. Include the corresponding source s as a Steiner point if s /∈ P , and construct

SPR(s,p).

3. Set the boundary vertices of SPR(s,p) as new sources.

The first step is to find the closest pin-vertex from an existing connected component, and

the last two steps are to update the connected component. Unlike the MST problem, there

are a lot of non-pin-vertices in the OAVG, i.e., s and p are probably not adjacent to each

other. Under this circumstance, we construct SPR(s,p) as a new part of the connected

component, instead.

The usage of SPRs is the foundation of our Steiner point selection and very efficient

since all vertices inside a constructed SPR must not be a pin-vertex or a source. Take

Figure 5.5 for example. In Figure 5.5(a), P2 must not be inside SPR(s1,P1); otherwise, P2

should be first reached from s1. In Figure 5.5(b), P3 must not be reached from s2 since

|(s3, P3)| is smaller than |(s2, P3)|.

The Steiner point selection algorithm is summarized in Figure 5.6, and mainly ex-

tends Dijkstra’s algorithm [6] to propagate vertices to find the current closest pin-vertex.

Figure 5.7 shows the procedure of Figure 5.6 on Figure 5.3(b), where P3 is the farthest

pin-vertex in Figure 5.3(a). Below, we first introduce the pseudo code in Figure 5.6, and

then use Figure 5.7 to trace the corresponding procedure.

For a vertex, “sr”, “dis”, and “pi” represent its source, the distance to its source, and

its predecessor on the path to its source, respectively. Lines 1–4 are the initialization,
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Algorithm: Steiner Point Selection(P, V, E, fp, S)

Input: P /* the set of pin-vertices */

V /* the set of vertices in OAVG */

E /* the set of edges in OAVG */

fp /* the farthest pin-vertiex */

Output: S /* the set of Steiner points */

1 for each vertex v ∈ V

2 (v.dis, v.pi, v.sr) ← (∞, ∅, ∅)
3 (fp.dis, fp.pi, fp.sr) ← (0, ∅, fp)

4 Insert fp into Min-Heap H whose key is dis

5 while ∃p ∈ P, p.dis �= 0

6 v ← Extra-Min(H)

7 if v /∈ P or v.dis = 0

8 for each (v, u) ∈ E

9 if (v.dis + |(v, u)|, v.sr.id) < (u.dis, u.sr.id)

/* The first element is the primary key.*/

10 (u.dis, u.pi, u.sr) ← (v.dis + |(v, u)|, v, v.sr)

11 if u is not in H

12 Insert u into H

13 else

14 if v.sr /∈ P

15 S ← S ∪ {v.sr}
16 Q ← {v}
17 while Q is nonempty

18 u1=Pop(Q)

19 for each (u1, u2) ∈ E

20 if u1.sr = u2.sr and u2.dis + |(u1, u2)| = u1.dis

21 Q ← Q ∪ {u2}
22 (u1.dis, u1.pi, u1.sr) ← (0, ∅, u1)

23 Insert u1 into H

Figure 5.6: The Steiner point selection Algorithm.
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Figure 5.7: The Steiner point selection (Figure 5.6) on Figure 5.3(b). Arrow segments are from

vertices to their “pi”. Blue segments are boundaries of constructed SPRs.
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“∃p ∈ P, p.dis �= 0” (Line 5) means that at least one pin-vertex has not been reached,

and “v /∈ P or v.dis = 0” (Line 7) means that v is not an unreached pin-vertex. Lines 8–

12 propagate vertices to reach pin-vertices. Lines 14–23 select Steiner points, construct

SPRs, and set new sources. In detail, Lines 14–15 select Steiner points, Lines 16–21 build

a SPR by backtracking, and Lines 22–23 set new sources. Since there could be more than

one source, we use “sr” to record the current source of a vertex.

Since more than one source could have the same distance to a vertex, we compare

both distance and source ID in Line 9 to ensure the correctness of the backtracking SPR

construction in Lines 16–21. Although Lines 22–23 may insert internal vertices of a

constructed SPR into H , they will not be propagated (Lines 10–12 won’t perform) since

the distances of their adjacent vertices, i.e. vertices on the boundary of the SPR, will also

be 0. In other words, only vertices on the boundary of a constructed SPR will be real

sources.

As shown in Figure 5.7(a), in the first 11 iterations, Lines 5–12 (Figure 5.6) are per-

formed to propagate P3 to find the closest pin-vertex P2. In Figure 5.7(b), P2 has been

reached, SPR(P2,P3) has been constructed (Lines 16–21), and vertices of SPR(P2,P3)

have been inserted into H (Lines 22–23). Noticeably, only vertices on the boundary

of an constructed SPR, e.g. v6 in Figure 5.7(b), will be propagated (Lines 10–12). In

Figure 5.7(c), P1 has been reached from v6, and v6 has been selected as a Steiner point

(Lines 14–15). By repeating the above process, in Figure 5.7(d) and Figure 5.7(e), P4

and P5 have been reached from v7 and v8 respectively, which have also been selected as

Steiner points. Figure 5.7(f) shows pin-vertices and those selected Steiner points.
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5.2.3.3 Initial OARST Construction

An OARST is constructed based on those selected Steiner points in Section 5.2.3.2. Ac-

cording to the idea in Section 5.2.1, we should construct an MTST on the OAVG by

specifying both all the pin-vertices and all the selected Steiner points as terminals.

Long et al. [28] proposed an O(n log n)-time 2-step MTST algorithm for an O(n)-

space graph: (1) terminal path generation and (2) MST construction based on those gen-

erated terminal paths. Liu et al. [26] claimed that the second step of Long’s MTST con-

struction does not consider the overlapping between different paths, which can lead to

better solutions, and proposed an O(n log n)-time path-overlapping scheme. Noticeably,

Liu’s scheme does not generate terminal paths from a graph since Liu’s OARST construc-

tion directly generates critical paths.

Therefore, we integrate Long’s MTST construction and Liu’s path-overlapping scheme

into an improved MTST construction. Since some Steiner points may be leafs of the con-

structed OARST, after the improved MTST construction, non-pin-vertex leafs will be

recursively removed . By Theorem 5.3, [28], and [26], our initial OARST construction

takes O(n log n) time.

5.2.3.4 Refinement

A refinement scheme is performed to reduce the redundant segments of the constructed

OARST in Section 5.2.3.4. Liu et al. [26] proposed an O(n log n)-time effective refine-

ment scheme. We directly use Liu’s refinement scheme.
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Figure 5.8: The probability of an update operation of v1 after its first extraction, where s1 is the

original source of v1. (a) v1 is updated from v2 of SPR(P1,s1). (b)–(c) P1 must be in the stripe

region. (d) the area of the stripe region.

5.2.4 Time Complexity Analysis

As discussed in Section 5.1, from practical viewpoint, for the OARST construction, the

Θ(n log n) empirical time complexity is sufficient. To achieve Θ(n log n) empirical time

complexity, the average-case time complexity of an algorithm tends to be O(n log n) .

Therefore, we analyze the average-case time complexity of our algorithm

Since the OAVG construction, the initial OARST construction, and the refinement

scheme have been proved to take

O(n log n) time in the worst case, it is sufficient to analyze the Steiner point selection. The

Steiner point selection is extended from Dijkstra’s algorithm, and Dijkstra’s algorithm

takes

O(|E| log |V |) time using heap structure [6]. This is because in Dijkstra’s algorithm, a

vertex is extracted from the heap at most once. However, in the Steiner point selection, a

vertex can be extracted more than once. Below, we give an intuitive but informal analysis

to show that the average number of extract operations for a vertex seems O(1), which

implies that the average-case time complexity of our algorithm seems O(n log n).

If a vertex has been extracted i times, it must have also been inserted into the heap

i times. According to the pseudo-code in Figure 5.6 (Lines 10–12 and Lines 22–23), if
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a vertex has be inserted i + 1 times, its distance must be updated after its i-th extract

operation. It is clear that those update operations result from the construction of SPRs

since the boundary vertices of constructed SPRs will become new sources (Line 22–23).

Supposing that s1 is the source of v1 at the first extraction of v1, if v1 will be updated from

SPR(s1, P1), the distance between v1 and SPR(s1, P1) must be shorter than that between

s1 and v1 (Lines 9–10). For example, as shown in Figure 5.8(a), when pin-vertex P1 has

been reached by s1, v1 will be updated from v2 on the boundary of SPR(P1, s1) since

|(v1, v2)| is smaller than |(v1, s1)|. Since P1 is reached after the first extraction of v1, the

distance between s1 and v1 is at most that between s1 and p1.

We first assume there is no obstacle. Considering rectilinear distance (L1 metric), a

concentric circle has become a square whose boundary slopes are 1 or -1, e.g. the dash

square in Figure 5.8(a). Since |(s1, P1)| is not smaller than |(v1, s1)|, P1 must be outside

the dash square except the boundaries in Figure 5.8. Furthermore, if v1 will be updated

from SPR(s1, P1), the distance between them must be smaller than |(v1, s1)|. As a result,

if v1 is at the middle of the right-upper boundary of that dash square, P1 must be located

at the stripe region in Figure 5.8(b); if v1 is at the right corner of the dash square, P1 must

be located at the stripe region in Figure 5.8(c). Since the stripe region in Figure 5.8(c) is

smaller than that in Figure 5.8(b), we use Figure 5.8(b) to compute the expected area of

the stripe region.

Supposing the whole routing region to be an l × w rectangle, if s1 is located at (x,y)

according to the left-lower corner of the rectangle, as shown in Figure 5.8(d), the area of

the stripe region is smaller than (l ∗w − x ∗ y). Therefore, the expected area of the stripe

region is smaller than ((
∫ l

0

∫ w

0
(l ∗ w − x ∗ y) ∗ dy ∗ dx)/(l ∗ w)) = ((l ∗ w)2 − 1

4
∗ (l ∗
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Table 5.1: Comparison between Figure 5.6 and [21].

Our Steiner point selection Liang’s maze routing

motivation Select Steiner points Generate paths

start pin The farthest one Nearest to the boundary

propagation Boundaries of SPRs Generated paths

w)2)/(l ∗ w)=3
4
∗ l ∗ w, implying that the probability of the second insertion of v1 is 3

4
.

With the similar reasoning, supposing Pri to be the probability of the i-th insertion, we

have Pri+1 ≤ 3
4
Pri. Since the SPR construction performs at most n-1 times, the expected

number of insertions for a vertex is 1 + 3
4

+ 3
42 + · · · 3

4n−2 ≤ 4.

In presence of obstacles, the number of valid paths among vertices will be reduced.

Therefore, we believe that the probability of the i-th insertion for a vertex will on average

be not more than that without considering obstacles although there are still a number of

exceptions. To conclude, the above analysis shows that the expected number of insertions

(extractions) for a vertex seems O(1), and thus the average-case time complexity of our

algorithm seems O(n log n).

5.2.5 Discussion

In summary, our algorithm is mainly based on the Steiner-point based framework (Sec-

tion 5.2.1 and the new concept of Steiner point locations (Section 5.2.2). The Steiner-

point based framework makes our algorithm close to the essence of the OARSMT prob-

lem (Definition 5.1). The integration of Prim’s concept [6] and SPRs (Definition 5.2) in

Section 5.2.3.2 select good Steiner points to support the framework.

The new concept of Steiner point locations raises the proposal of an OAVG, which

contains desirable Steiner points and has both only O(n) vertices and edges. All these

help our algorithm to achieve the best practical performance in both wirelength and run
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time, which will be supported by experimental results later. More importantly, duo to

their simplicity, both the Steiner-point based framework and the new concept of Steiner

point locations can be naturally extended to the ML-OARSMT problem, the OA-PDST

problem, and other RSMT generations

Below, we compare our algorithm with a rectilinear-graph method [21] and spanning-

graph methods [22, 26, 28] respectively on (1) routing graph and (2) Steiner tree genera-

tion.

Li’s extended Hanan grid [21] contains the OARSMT, but has both O(n2) edges and

vertices, which significantly lowers the efficiency. Although an OAVG cannot guarantee

the existence of an OARSMT, based on the concept of Steiner point locations, the solution

quality of an OAVG will be close to that of Li’s extended Hanan grid, which will also be

supported by experimental results. Furthermore, an OAVG has only O(n) vertices and

edges, which significantly increases the efficiency.

Our Steiner tree construction (steps 2–3) first selects Steiner points and then constructs

an OARST based on those Steiner points, while Li’s first use maze routing to generate

paths as solution components and then constructs an OARST based on those paths, i.e.,

their solution is limited on those paths. Although Li’s maze routing also generates Steiner

points, it does not generate all the paths between the pin-vertices and the Steiner points,

and there probably exist some other ungenerated paths leading to better solutions. There-

fore, since their solution is limited on their generated paths, the solution quality of our

Steiner tree construction would be better.

Furthermore, the differences between our Steiner point selection (Figure 5.6) and Li’s

maze routing are summarized in Table 5.1. In fact, for two vertices, Li’s maze routing
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may generate more than two paths. Backtracking those paths is a critical step of Li’s

maze routing and very time-consuming. However, according to Figure 5.5, it is sufficient

to only propagate from the boundaries of constructed SPRs. In other words, our Steiner

point selection is more efficient since it only backtracks the vertices in a constructed SPR

instead of multiple paths.

[22, 26, 28] construct a routing graph or generate paths only considering pin-vertices

and obstacle corners, while our OAVG further includes desirable Steiner points. There-

fore, although all [28], [26], and the OAVG use O(n) edges, the OAVG would contain bet-

ter solutions. Furthermore, [22, 26, 28] construct an MTST only based on paths between

pin-vertices, while our Steiner tree construction considers paths among pin-vertices and

selected Steiner points. As a results, the solution quality of our algorithm will be better.

Although the difference in the solution quality will probably be reduced after refinement

process, the solution quality of our algorithm is still much closer to the optimal. This is

very important and meaningful for an NP-complete problem, especially for evaluating a

fast heuristic.

5.3 Experimental Results

We have implemented our algorithm in C language, and conducted all the experiments

on a Linux server with 8 2.5-GHz AMD processors and 16-GB memory. There are 22

commonly used benchmark circuits, 5 industrial test cases (ind1–ind5) from Synopsys,

12 test cases used in [8] (rc01–rc12), and 5 randomly generated test cases from [22]

(rt01–rt05).

We compare our algorithm with those presented in [22], [28], [21] and [26]. To the
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best of our knowledge, the approaches in [26,28] achieve the best speed performance, and

the approach in [21] achieves the best solution quality. We have obtained the executable

file in [21], and run their program on our platform. The results of [22, 26, 28] are directly

quoted from those papers, and those algorithms were conducted on a Redhat Linux server

with two 2.1-GHz AMD processors and 2-GB memory, a Ubuntu 6.06 server with one 2-

GHz AMD-64 CPU and 8-GB memory, a Debian Linux 2.6.18 server with two 2.4-GHz

Dual Core Intel processors and 8-GB memory, respectively.

Table 5.2 lists the total wirelengths of these algorithms, and Table 5.3 lists the CPU

times, where “speedup” compares the run time of [21] and our algorithm. Since those

results might have already been close to the optimal, for an NP-complete problem, it is

very meaningful to compare the differences from the optimal solution. Since the RSMT is

definitely a lower bound of an OARSMT instance, we list the wirelengths of the RSMTs

without considering the obstacles in the second column of Table 5.2, which were gener-

ated by GeoSteiner [43].

Compared with [21], which achieves the best solution quality, our algorithm obtains

the same solution quality, but runs much faster. As shown in Table 5.3, across all the 22

benchmarks, our algorithm achieves 26.67 times speedup on average over that in [21].

For rc12, which contains up to 10 000 obstacles, our algorithm takes only 1.565 seconds,

while that in [21] takes about 142 seconds. The improvement in run time is very signifi-

cant considering the large and increasing number of obstacles and signal nets in a modern

IC design.

Furthermore, since the extended Hanan grid [21] contains the optimal solution, those

wirelength results show that the solution quality of our proposed OAVG is very close to the
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optimal. From another viewpoint, since the OAVG cannot guarantee the existence of the

optimal solution, those wirelength results reflect that our Steiner-point based framework

seems more effective. In particular, our algorithm achieves the lower bound of “ind1,”

i.e., obtains the optimal solution. This also gives another strong evidence to figure out the

high effectiveness of our algorithm.

Compared with [26, 28], which achieve the best speed performance, our algorithm

achieves the same speed performance since the ratios of their CPU times to ours do not

increase with the problem size, and even improves 3.76% and 1.15% in wirelength on

average, respectively. Furthermore, considering the differences from the lower bound of

the optimal solution, the respective average improvements are up to 35.28% and 15.70%

compared with [28] and [26], respectively These improvements are very important and

meaningful for an NP-complete problem, especially for evaluating a fast heuristic. To

conclude, all the above results support the discussion in Section 5.2.5.

As shown in Figure 5.9, the CPU time of our algorithm is plotted as a function of

the input size n. By the least squares fitting on the log-log-axes, the respective slope

of the fitting line is 1.17, implying that the empirical time complexity of our algorithm is

Θ(n1.17). To obtain the empirical time complexity of a Θ(n log n) algorithm, we generates

22 vertices whose x-coordinates are n of those 22 test cases and whose y-coordinates are

n log n. Therefore, using the least squares fitting on the log-log-axes of those vertices,

we conclude that the empirical time complexity of an Θ(n log n) algorithm is Θ(n1.15),

implying that the empirical time complexity of our algorithm can be viewed as Θ(n log n).

This analysis strongly supports our time complexity analysis in Section 5.2.4 that the

average-case time complexity of our algorithm seems O(n log n).
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Table 5.3: Comparison on the CPU time.

Test
m / k n

CPU Time (sec.) speedup

Cases [22] [28] [26] [21] (E) ours (F) ( E

F
)

ind1 10/32 138 <0.01 0.01 0.001 0.008 0.001 8.00x

ind2 10/43 182 <0.01 0.01 0.001 0.029 0.001 29.00x

ind3 10/50 210 <0.01 0.01 0.001 0.008 0.001 8.00x

ind4 25/79 341 <0.01 0.02 0.002 0.009 0.002 4.50x

ind5 33/71 317 0.01 0.02 0.002 0.010 0.003 3.33x

rc01 10/10 50 <0.01 0.01 <0.001 0.038 0.001 38.00x

rc02 30/10 70 <0.01 0.01 0.001 0.089 0.001 89.00x

rc03 50/10 90 <0.01 0.01 0.001 0.077 0.001 77.00x

rc04 70/10 110 <0.01 0.02 0.001 0.098 0.002 49.00x

rc05 100/10 140 0.01 0.02 0.001 0.080 0.002 40.00x

rc06 100/500 2,100 0.24 0.13 0.017 0.521 0.032 16.28x

rc07 200/500 2,200 0.43 0.15 0.026 0.667 0.039 17.10x

rc08 200/800 3,400 0.83 0.27 0.043 1.175 0.063 18.65x

rc09 200/1,000 4,200 0.91 0.36 0.049 1.445 0.084 17.20x

rc10 500/100 900 0.62 0.08 0.016 0.258 0.021 12.29x

rc11 1,000/100 1,400 3.15 0.14 0.021 0.760 0.038 20.00x

rc12 1,000/10,000 41,000 118.52 5.88 0.681 142.393 1.565 90.99x

rt01 10/500 2,010 0.06 0.12 0.017 0.190 0.028 6.79x

rt02 50/500 2,050 0.11 0.11 0.018 0.559 0.035 15.97x

rt03 100/500 2,100 0.47 0.13 0.020 0.180 0.039 4.62x

rt04 100/1,000 4,100 0.95 0.42 0.040 0.322 0.062 5.19x

rt05 200/2,000 8,200 2.06 1.43 0.078 2.603 0.164 15.87x

Average 26.67x
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Figure 5.9: The CPU time is plotted as a function of n.

To show the effectiveness of starting at the farthest pin-vertex, we start our Steiner

point selection at each pin-vertex for each test case, and list the best results in the 8th

column, “ours*(H)”, of Table 5.2. As shown in the 13th column of Table 5.2, starting

at the farthest pin-vertex causes only 0.44% more wirelength on average than starting

at the best one, which supports the discussion in Section 5.2.3.2. Besides, compared

with [21,22,26,28], the results of “ours*(H)” are the best for 17 benchmarks. Since those

22 test cases are commonly used benchmarks, these extensive experimental results can

help the future researches for the OARSMT problem.
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Chapter 6

Preferred Direction Evading Graph

and Approximation Guarantee

As the first work for the OAPD-ST problem, this chapter attempts to analyze the struc-

ture of the optimal solution, and proposes an approximation guarantee, both of which

very probably help the development of future algorithms. For the structure of the optimal

solution, we propose preferred direction evading graph (PDEG), and prove that at least

one optimal solution exists in PDEG. The theoretical optimality proof provides a way to

analyze the solution quality, which significantly help the development of algorithms, es-

pecially for approximation ones. For the approximation guarantee, we analyze the Steiner

ratio of an OAPD-MST (Definition 2.11) based on PDEG. The analysis results in a factor

2 approximation algorithm for the OAPD-ST problem, and gives important features to

support strong heuristics. Experimental results show that our algorithm improves 43.53%

on average in total cost compared with a construction-and-correction method when the

cost of routing resource doubles between layers, and performs more stably.
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6.1 Motivation

As the technology advances into nanometer era, there are more and more constraints at

the routing stage such as multiple routing layers, obstacles, preferred directions, different

routing resources, and via costs. However, none of existing approaches catches all the

mentioned constraints since each of those constraints is hard to handle. Therefore, it is

desired to give a comprehensive study of the OAPD-ST problem such as the structure

of the optimal solution and the approximation guarantee. The structure of the optimal

solution can provides a way to analyze the solution quality, which is critical for the devel-

opment of algorithms, especially for approximation ones. The approximation guarantee

can give important features to support the development of strong heuristics. For example,

since an OARSMT can approximate an OARSMT, MTST-based algorithms perform well

for the OARSMT problem.

6.2 Preferred Direction Evading Graph

In this section, we propose a new routing graph, called preferred direction evading graph

(PDEG), for the OAPD-ST problem. Then, we prove that PDEG contains at least one

optimal solution, and discuss the contributions of our proofs.

6.2.1 Procedure of PDEG Construction

Definition 6.1 Given an instance of the OAPD-ST problem, PDEG is an undirected con-

nected graph connecting all the pin-vertices and some other vertices, where no edges

intersect any obstacle or violate the PD constraints.
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pin-vertex obstacleintermediate-vertex via

V1 V2

Figure 6.1: Observations for the OAPD-ST problem. (a) an OAPD-ST problem instance.

(b) vertex projections. (c) edge construction (primitive PDEG). (d) the optimal solution

of primitive PDEG. (e) the optimal solution of (a). (Cv = 1 and UCi = 1, 1 ≤ i ≤ Nl.)

6.2.1.1 Observation

To attack the OAPD-ST problem, we typically generate a routing graph. First, we re-

cursively project pin-vertices and obstacle corners to adjacent layers until the projection is

blocked by an obstacle as shown in Figure 6.1(b). Second, we extend line segments from

pin-vertices, obstacle corners and those projection vertices to meet the PD constraints.

Finally, we construct vias on intersections of the extending line segments between layers,

and a routing graph, called primitive PDEG, is constructed in Figure 6.1(c).

Although primitive PDEG is applicable to the OAPD-ST problem, it cannot guarantee

the optimality. For example, assuming Cv and UCi (1 ≤ i ≤ Nl) to be 1, Figure 6.1(d)
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Algorithm: Vertex-Generation(P , O, Nl, G)
Input: P /* the set of pin-vertices */

O /* the set of obstacles */

Nl /* the number of routing layers */

G = (V, E) /* the PDEG */

1 C = the set of the corners of O

2 V
′ = P

⋃
C

3 X = the set of distinct x-coordinates of V
′

4 Y = the set of distinct y-coordinates of V
′

5 U = ∅
6 for i = 1 to Nl

7 for each x ∈ X and each y ∈ Y

8 U ← (x, y, i)

9 V = V
′

⋃
U

10 for each obstacle o ∈ O

11 remove all vertices inside o from V

Figure 6.2: The Vertex-Generation algorithm.

layer 2

layer 1

layer 2

layer 1

layer 2

layer 1

layer 2

layer 1

(a) (b)

(c) (d)

pin-vertex obstacleintermediate-vertex via

Figure 6.3: Vertex generation. (a) a problem instance. (b) possible candidates of essential

vertices. (c) the union of those vertices. (d) the vertices of PDEG.

shows the optimal solution of primitive PDEG in Figure 6.1(c) with cost of 11. However,

the optimal solution to the instance in Figure 6.1(a) is shown in Figure 6.1(e) and has a

cost of 7, which implies that primitive PDEG cannot guarantee the existence of an optimal

solution. This is because the primitive PDEG loses some essential vertices, such as V1 and

V2 in Figure 6.1(e).

From the above analysis, we observe that vertices with the same x-coordinate and

y-coordinate as pin-vertices and obstacle corners are possible candidates of essential ver-

tices of an optimal solution. To guarantee an optimal solution, PDEG construction should

contains all the possible candidates.
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Algorithm:PDEG-Construction(P , O, Nl, G)
Input: P /* the set of pin-vertices */

O /* the set of obstacles */

Nl /* the number of routing layers */

G = (V, E) /* the PDEG */

1 V = ∅
2 E = ∅
3 Vertex-Generation(P , O, Nl, G)
/* V can be represented by a matrix, and*/

/* V [i][j][k] denotes a vertex of PDEG having*/

/* the i/j-th x/y-coordinate in k layer.*/

/* In Figure 6.5(b), z represents V [4][5][1].*/

4 for k=1 to Nl

5 for i=1 to the number of distinct x-coordinates of PDEG
6 for j=1 to the number of distinct y-coordinates of PDEG
7 if layer k only allows horizontal line
8 if (V [i][j][k], V [i + 1][j][k]) is valid
9 E ← (V [i][j][k], V [i + 1][j][k])

10 else
11 if (V [i][j][k], V [i][j + 1][k]) is valid
12 E ← (V [i][j][k], V [i][j + 1][k])

13 for k=1 to Nl − 1

14 for i=1 to the number of distinct x-coordinates of PDEG
15 for j=1 to the number of distinct y-coordinates of PDEG
16 if (V [i][j][k], V [i][j][k + 1]) is valid
17 E ← (V [i][j][k], V [i][j][k + 1])

Figure 6.4: The PDEG-Construction algorithm.

6.2.1.2 Vertex Generation

The vertex generation algorithm of PDEG is summarized in Figure 6.2, and Figure 6.3

shows an example. Since PDEG should contain all possible candidates of essential ver-

tices, x-coordinates and y-coordinates from pin-vertices and obstacle corners are collected

(lines 1–4); then all possible candidates are generated from those coordinates (lines 5–8)

as shown in Figure 6.3(b). After that, pin-vertices, obstacle corners, and possible candi-

dates are combined to be a vertex set (line 9) as shown in Figure 6.3(c). Finally, invalid

vertices of the vertex set, which locate inside obstacles, are removed (lines 10–11), and

then the vertices of PDEG have been generated as shown in Figure 6.3(d).
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layer 2 layer 2

layer 1

(b)

pin-vertex obstacleintermediate-vertex via

layer 1

(a)

x

y

z

Figure 6.5: PDEG construction. (a) line segment construction. (b) via connection con-

struction (the resulting PDEG).

6.2.1.3 PDEG Construction

The whole process of PDEG construction is summarized in Figure 6.4, and Figure 6.5

is an example of the remaining parts, which succeeds Figure 6.3. To connect these vertices

completely after vertex generation (lines 1–3), there are two steps for constructing edges:

one is within a layer, and the other is between layers. Figure 6.5(a) shows the result for

connecting edges within a layer considering the PD constraints (lines 4–12). Then, edges

(vias) between layers have been connected (lines 13–17) as shown in Figure 6.5(b). To

conclude, Figure 6.3 and Figure 6.5 show the whole process of PDEG construction for a

2-layer example, and Figure 6.5(b) shows the resulting PDEG.

Since Nl is a small number in practice, we conclude the following complexity from

the algorithms in Figure 6.2 and Figure 6.4.

Theorem 6.1 The space complexity of PDEG is O(n2), and the time complexity of the

PDEG construction is O(n2).

We make definitions to formally describe PDEG. A line segment (via connection) is

a rectilinear edge connecting two vertices in the same layer (in different layers). A line

segment (via connection) can span more than two vertices. See layer 1 of Figure 6.5(b),
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each of {(x, y), (y, z), (x, z)} is a line segment.

Definition 6.2 An evading line segment (ELS) is a maximal line segment of PDEG, and

an evading via connection (EVC) is a maximal via connection of PDEG. In Figure 6.5(b),

(x, y) is not an ELS since (x, y) is not maximal, while (x, z) is one.

By Definition 6.2, PDEG is a union of evading line segments, evading via connections,

and the intersections of them.

6.2.2 The Optimality of PDEG

We will prove the optimality of PDEG, i.e., if there exists an OAPD-SMT for the OAPD-

ST problem, at least one must exist in PDEG. The key idea of our proof is to move an

OAPD-SMT to PDEG without increasing the cost. Since PDEG is a union of ELSs and

EVCs, it is equivalent to moving all the line segments and via connections of an OAPD-

SMT to ELSs and EVCs respectively without increasing the cost.

We develop two mathematic skills for our proof: (1) a two-stage movement: move

line segments first and then move via connections (supported by Lemma 6.2) and (2) an

informative structure: preferred direction component (defined in Definition 6.4). Since we

want to move all line segments and all via connections to ELSs and EVCs respectively,

we define the states of a line segment and a via connection as follows.

Definition 6.3 A line segment (via connection) is evaded if and only if an ELS (EVC)

contains it.

When moving an OAPD-SMT, the first question is the order of movement. Figure 6.6

shows an invalid movement for a via connection. In Figure 6.6(a), line segments con-

nected to the unevaded maximal via connection s, union of v1 and v2, have different
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(a)

layer 4

layer 3

layer 2
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(b)

layer 4

layer 3

layer 2

layer 1

v1

v2

v3

v1
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Figure 6.6: An invalid movement for a via connection. (a) a maximal via connection, i.e.

v1 ∪ v2, connected to line segments with different directions. (b) movement of (a) will

increase the cost.

directions. As shown in Figure 6.6(b), moving s will increase the cost because another

via connection, v3, must be inserted to connect all the elements. In other words, for an

OAPD-SMT, if line segments connected to a via connection have different directions, this

via connection cannot be moved without increasing the cost. However, it will be clear in

Lemma 6.2 that if all the line segments are evaded, i.e., all the line segments have been

moved to ELSs, line segments connected to an unevaded via connection have the same

direction. Therefore, our two-stage movement is applicable.

Lemma 6.2 For an unevaded maximal via connection s, if all the line segments con-

nected to s are evaded, those line segments have the same direction (horizontal or verti-

cal).

Proof: Assume the line segments connected to s have different directions. Since all

the line segments connected to s are evaded, s is intersected by ELSs with different

directions. According to PDEG construction in Figure 6.4, s must be contained by an

EVC, contradicting that s is unevaded. Therefore, all the line segments connected to s

have the same direction.
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Figure 6.7: An example for the definition and movement of a PDC. (a) an OAPD-ST. (b)

a horizontal PDC of (a). (c) an OAPD-ST which is generated from (a) by moving (b) up.

(UC1 = 1 and UC3 = 2.)

Furthermore, the OAPD-ST problem deals with multiple routing layers, preferred di-

rections, and different routing resources such that it is more complicated than the OA-

RSMT problem. As a result, we need to propose a novel and informative structure to

simultaneously move line segments both within a layer and between layers, and via con-

nections.

Definition 6.4 A preferred direction component (PDC) is a maximal connected sub-

graph whose elements have the same either x-coordinate or y-coordinate. A PDC with

the same x-coordinate is vertical; otherwise, one with the same y-coordinate is horizontal.

Figure 6.7(a) shows an OAPD-ST (not an OAPD-SMT), and Figure 6.7(b) shows

a horizontal PDC of (a). All elements of the PDC in Figure 6.7(b) have the same x-

coordainte. Lemma 6.3 will clarify that PDCs are useful for moving an OAPD-SMT.

Definition 6.5 For a PDC s, Ucost(s) is the total unit cost of line segments which are

connected to s in the up side. Similarly, we can define Dcost(s), Lcost(s), Rcost(s).
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We use Figure 6.7 to explain Definition 6.5 and illustrate a movement. For the hor-

izontal PDC s in Figure 6.7(b), as shown in Figure 6.7(a), {e1, e2, e3} are line seg-

ments connected to s in the up side, and {e4, e5} are in the down side. We assume that

UC1 = 1 and UC3 = 2; hence we have Ucost(s) = 5 and Dcost(s) = 2. Since s con-

tains no pin-vertices and leans against no obstacles, s can be freely moved. Moreover,

Ucost(s) is larger than Dcost(s), implying that we can move s up 2 units to reduce the cost

as shown in Figure 6.7(c), and the cost reduction is 6 (by 2 ∗ (Ucost(s) − Dcost(s))).

Since one of Ucost(s) ≤ Dcost(s) and Ucost(s) ≥ Dcost(s) (Rcost(s) ≤ Lcost(s) and

Lcost(s) ≥ Rcost(s)) must be true for a horizontal (vertical) PDC, we have the follow-

ing lemma.

Lemma 6.3 For a PDC s of an OAPD-ST, if s contains no pin-vertices and leans against

no obstacles, s can be moved without increasing the cost.

By Lemma 6.2 and Lemma 6.3, in the proof of Theorem6.4, we will first use PDCS

to move all the line segments to PDEG, and then move via connections.

Theorem 6.4 If there exists an OAPD-SMT for an OAPD-ST problem instance, at least

one exists in PDEG.

Proof: Suppose there exists an OAPD-SMT T such that T contains a minimal total num-

ber of unevaded line segments and unevaded via connections among all OAPD-SMTs.

Without loss of generality, suppose l is an unevaded horizontal line segment of T and

contained by a horizontal PDC s of T . For example, Figure 6.8(a) shows an OAPD-SMT

T and an unevaded line segment l; Figure 6.8(b) shows a PDC s of T which contains l in

Figure 6.8(a). According to PDEG construction in Figure 6.4, if a PDC contains a pin-

vertex or leans gainst an obstacle, all line segments of this PDC must be evaded. Hence,
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in order to move l to be evaded, we attempt to move s to contain a pin-vertex or lean

against an obstacle.

By Lemma 6.3, s can be moved without increasing the cost; otherwise, s contains

a pin-vertex or leans against an obstacle, implying that the line segments of s including

l are evaded. Since our movement would change the topology of T , during the move-

ment, s would not be a maximal connected subgraph with the same x-coordinate, i.e., a

horizontal PDC. For example, Figure 6.8(c) shows another OAPD-ST generated from Fig-

ure 6.8(a) by moving Figure 6.8(b) up. In Figure 6.8(c), Figure 6.8(b) is not a PDC since

Figure 6.8(d) contains Figure 6.8(b), i.e., Figure 6.8(b) is a maximal connected subgraph

with the same x-coordinate.

Since Lemma 6.3 holds only for a PDC, if s has become not a PDC, moving s could

increase the cost. At that time, we extend s to be a PDC again and then continue the

movement. For example, we extend Figure 6.8(b) of Figure 6.8(c) to Figure 6.8(d) and

then move Figure 6.8(d) up to obtain Figure 6.8(e) without increasing the cost. At last,

we have moved s to contain a pin-vertex or lean against an obstacle without increasing

the cost. In other words, we can move line segments of s including l to be evaded without

increasing the cost.

For the same reason, we can move all the unevaded line segments of T to be evaded

using PDCs without increasing the cost. Now, we only need to move all the unevaded via

connections of T to be evaded without increasing the cost.

Let t be an unevaded maximal via connection of T . By Lemma 6.2, all the line seg-

ments connected to t have the same direction. Without loss of generality, assume that

the line segments connected to t are horizontal. For example, Figure 6.8(e) shows an un-
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evaded maximal via connection t, and all the line segments connected to t are horizontal.

It is clear that t contains no pin-vertex or horizontally leans against no obstacles;

otherwise, t must be evaded according to the PDEG construction in Figure 6.4. Hence,

we try to move t to contain a pin-vertex or horizontally lean against an obstacle. Similar to

the reasoning in Lemma 6.3, we can move t without increasing the cost and then extend

t when t is not maximal. For example, we can move t in Figure 6.8(e) left and obtain

Figure 6.8(f). Finally, we have moved t to be evaded without increasing the cost.

Similarly, we can move all the unevaded maximal via connections of T to be evaded

without increasing the cost. The resulting OAPD-ST has all the line segments and all the

via connections to be evaded, and has the same cost with the original OAPD-SMT. To

conclude, if there exists an OAPD-SMT, at least one exists in PDEG.

6.2.3 Theoretical Contribution

Theorem 6.4 proves that even if the OAPD-ST problem has many constraints, the optimal

solution can be restricted in a simple graph. By Theorem 6.4, the OAPD-ST problem can

be reduced to the Steiner tree problem in PDEG. In other words, Theorem 6.4 reduces the

infinite geometry solution space of the OAPD-ST problem to O(n2) graph. Hence, using

PDEG as the solution space, more efficient methods could be generated.

Although PDEG could be used intuitively, Theorem 6.4 still has theoretical contribu-

tions. The direct theoretical contribution is to make solutions generated from PDEG more

convincing. In general, brute-force solutions are not convincing. Since Theorem 6.4 sup-

ports that PDEG contains an OAPD-SMT, solutions generated from PDEG seem more

111



convincing.

The main theoretical contribution of Theorem 6.4 is to help the design of future al-

gorithms for the OAPD-ST problem, especially for approximation algorithms. Solution

quality is the most important element of an algorithm. Comparison with the optimal solu-

tion is a general method to evaluate solution quality. For an approximation algorithm, the

key step is to find the upper (lower) bound of the approximation solution to the optimal

solution. Since PDEG contains an optimal solution, PDEG provides a way to analyze

solution quality. In other words, through PDEG, we can evaluate the solution quality

to help the design of future algorithms, especially for approximation algorithms. Our

approximation algorithm in Section 6.3 is one example.

6.3 Approximation Algorithm

In this section, we propose a factor 2 approximation algorithm for the OAPD-ST prob-

lem, which constructs an OAPD-MST in O(n2logn) time. The critical step to design an

approximation algorithm is to compare the approximation solution and the optimal so-

lution. To compare an OAPD-MST and an OAPD-SMT, we first prove that at least one

OAPD-MST exists in PDEG in Section 6.3.1. Then, we describe the approximation al-

gorithm and derive the approximation guarantee in Section 6.3.2. Finally, we discuss the

contributions of the approximation guarantee in Section 6.3.3.

6.3.1 Existence of OAPD-MST in PDEG

Theorem 6.5 If there exists an OAPD-MST for an instance of the OAPD-ST problem, at

least one must exist in PDEG.
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Figure 6.9: Procedure of our approximation algorithm. (a) an instance. (b) PDEG con-

struction. (c) OAPD-MST construction. (UCi=1, 1≤ i≤Nl and Cv=1.)

.

Proof: By Definition 2.11, a graph including all OAPD-SPs among pin-vertices contains

at least one OAPD-MST. Therefore, we only need to prove that for any two pin-vertices,

at least one OAPD-SP between them exists in PDEG. Assume s is an OAPD-SP between

two pin-vertices. Using the method of proving the optimality of PDEG in Theorem 6.4,

we can move all the line segments and all the via connections of s to be evaded without

increasing the cost. That is, we can construct an OAPD-SP between the two pin-vertices

in PDEG with the same cost as s.

Therefore, for any two pin-vertices, at least one OAPD-SP between them exists in

PDEG. To conclude, if there exists an OAPD-MST, at least one must exist in PDEG.

6.3.2 Approximation Guarantee

Our approximation algorithm consists of two steps: (1) PDEG construction. (2) OAPD-

MST construction.

PDEG construction has been shown in Section 6.2.1. See Figure 6.9(b) for instance.
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After PDEG construction, we weight edges as follows to transform practical costs to

PDEG:

1. An edge e within a layer i: Cost(e) = length(e) ∗ UCi.

2. An edge e between two adjacent layers: Cost(e) = Cv.

By the weight assignment, Theorem 6.4, and Theorem 6.5, an SMT and an MTST (Defi-

nition 2.9) in PDEG are an OAPD-SMT and an OAPD-MST respectively.

As a result, OAPD-MST construction can be done by applying an MTST algorithm on

PDEG. In [31], Mehlhorn proposed an algorithm to find an MTST in O(|E|+ |V | log |V |)

time. By Theorem 6.1, finding an MTST on PDEG takes O(n2 log n) time, implying the

following.

Theorem 6.6 The time complexity of our approximation algorithm is O(n2 log n).

Finally, we prove the approximation guarantee of our approximation algorithm.

Theorem 6.7 For an OAPD-ST problem instance, the cost of an OAPD-MST is no more

than twice the cost of an OAPD-SMT.

Proof: The above discussion directly infers the two equations:

Cost(OAPD-MST) = Cost(MTST-PDEG). (1)

Cost(OAPD-SMT) = Cost(SMT-PDEG). (2)

In [41], for a graph with terminals and nonterminals,

Cost(MTST) ≤ 2*Cost(SMT) (3)

By (1)–(3), we conclude the following inequality equations:
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Cost(OAPD-MST) = Cost(MTST-PDEG)

≤

2*Cost(SMT-PDEG) = 2*Cost(OAPD-SMT).

Therefore, Cost(OAPD-MST) ≤ 2*Cost(OAPD-SMT).

6.3.3 Discussion

It is clear that applying an MTST algorithm on PDEG is directly a factor 2 approximation

algorithm for the OAPD-ST problem. The proof for the approximation guarantee of an

OAPD-MST (Theorem 6.7) has further contributions.

First, Theorem 6.7 gives a strong motivation to develop more efficient OAPD-MST al-

gorithms. Our algorithm generates an OAPD-MST from PDEG, but generating an OAPD-

MST does not necessarily use PDEG. That is, there could be other more efficient OAPD-

MST algorithms. If we develop an O(n log n)-time OAPD-MST algorithm, we will have

an O(n log n)-time factor 2 approximation algorithm for the OAPD-ST problem.

Second, Theorem 6.7 gives critical features to support strong heuristic methods, e.g.,

MST-based methods. That is, a solution with similar properties or topology to an OAPD-

MST could be a good solution for the OAPD-ST problem.

6.4 Experimental Results

We implemented our algorithm in C language on a PC-based machine with 3GHz Pentium

processor and 2GB memory under Linux operation system. All testcases are randomly

generated; obstacles are rectangles. Each kind of testcases has 100 samples; the reported

results (wirelength, number of vias, and time) are average results.
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Since there is no existing work targeting on the OAPD-ST problem, we compared our

algorithm with another method, which is extended from the construction-by-correction

approach. The construction-by-correction approach is one of major methods for the

OARSMT problem. Generally, the construction-by-correction approach consists of fol-

lowing two major steps:

1. Construction: Construct a minimum spanning tree as an initial Steiner tree without

considering obstacles.

2. Correction: Replace edges which intersect obstacles with edges around the obsta-

cles.

However, the construction-by-correction approach can not be directly extended to the

OAPD-ST problem. First, for the OARSMT or ML-OARSMT problem, the cost of the

rectilinear shortest path without considering obstacles between two pin-vertices can be

measured directly by their coordinates. But, for the OAPD-ST problem, the PD con-

straints and different routing resources among layers must be considered, which increases

the difficulty. Second, replacing invalid edges is not easy due to the PD constraints. That

is, the invalid edges can not be replaced with edges around the obstacles since each layer

only allows either horizontal or vertical edges. In order to make a fair comparison, we ex-

tended the construction-by-correction approach to match the OAPD-ST problem by more

complicated modifications, and denote this approach as CC.

Table 6.1 lists the total cost and running time of these algorithm under the conditions

where routing resource is the same (UCi = 1 for 1 ≤ i ≤ Nl, Nl = 6, and Cv = 3).

Considering the total cost, the average improvement over CC is 15.65 %. Furthermore,

our method also has comparable speed with CC method. Our algorithm achieves such
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Table 6.1: The Comparison under the same routing resource where UCi = 1 for 1 ≤ i ≤

Nl, Cv = 3, and Nl=6.

m k
Total Cost Time (sec.)

CC our imp(%) CC our
20 4 4540672 3905891 13.98 0.005 0.005
40 8 6380169 5489595 13.96 0.023 0.025
60 12 7982803 6741823 15.55 0.059 0.063
80 16 9281025 7768205 16.30 0.106 0.122

100 20 10157322 8617818 15.16 0.164 0.203
200 40 14259141 12083500 15.26 0.682 1.009
400 80 19939542 16927531 15.11 2.869 4.978
600 120 24595604 20683857 15.90 7.117 12.772
800 160 29017940 23726589 18.23 13.236 18.253
1000 200 31723317 26301914 17.09 20.923 30.977

Average 15.65 -

improvements because it constructs an OAPD-MST which can approximate an OAPD-

SMT by our proof. The difference in wirelength also results from that the construction

step of CC method does not consider obstacles.

We also perform experiments under different routing resources, which is an important

part of our new proposed routing model, OAPD-ST model. Table 6.2 shows the wirelenth,

number of vias, and total cost. Table 6.3 compares the CPU time of these algorithms. To

make a fair comparison, we use the weighted model from experiments in [48] to model

the difference in routing resource between layers. The weighted model is based on a

multiple-factor mf such that UCi = mfNl−i. In this paper, we set mf= 1.1 or 2 the same

as [48].

When mf = 1.1, our algorithm achieves 33.33% average improvement in total cost

compared with CC method. Then, when mf increases to 2, the average improvement

significantly increases to 43.53%, which is very major. Obviously, our method is more

suitable for the OAPD-ST problem than CC method, especially for difference routing re-

sources. This is also another evidence to figure out that CC method lacks of the global

view of obstacles. On the other hand, the running time of our method keeps stable when

117



T
ab

le
6

.2
:

E
x

p
erim

en
ts

fo
r

th
e

effects
o

f
d

ifferen
t

ro
u

tin
g

reso
u

rces.
C

v =
3

an
d

N
l =

6
.

p
g

m
k

m
u
ltip

le-facto
r=

1
.1

m
u
ltip

le-facto
r=

2
C

C
o
u
r

Im
p
.

C
C

o
u
r

Im
p
.

W
L

/#
v
ia

co
st

W
L

/#
v
ia

co
st

(%
)

W
L

/#
v
ia

co
st

W
L

/#
v
ia

co
st

(%
)

2
0

4
5
8
9
0
4
8
5
/1

0
6

5
8
9
0
8
0
3

4
2
5
4
5
3
4
/6

2
4
2
5
4
7
1
9

2
7
.7

7
1
4
8
6
4
7
6
3
/1

0
6

1
4
8
6
5
0
8
2

9
2
2
1
7
3
2
/6

1
9
2
2
1
9
1
4

3
7
.9

6

4
0

8
8
6
2
8
7
2
3
/2

2
7

8
6
2
9
4
0
5

5
9
9
5
3
8
7
/1

2
9

5
9
9
5
7
7
4

3
0
.5

2
2
2
4
8
6
0
2
5
/2

2
8

2
2
4
8
6
7
0
9

1
3
3
0
0
8
4
9
/1

2
6

1
3
3
0
1
2
2
5

4
0
.8

5

6
0

1
2

1
0
9
0
2
0
8
9
/3

4
3

1
0
9
0
3
1
1
9

7
4
0
5
7
3
5
/1

9
2

7
4
0
6
3
1
1

3
2
.0

7
3
1
7
7
3
4
4
0
/3

4
5

3
1
7
7
4
4
7
3

1
8
0
2
1
4
6
4
/1

8
8

1
8
0
2
2
0
2
8

4
3
.2

8

8
0

1
6

1
2
8
2
8
4
8
4
/4

6
4

1
2
8
2
9
8
7
7

8
5
3
0
3
2
3
/2

5
7

8
5
3
1
0
9
5

3
3
.5

1
3
7
7
7
1
1
5
5
/4

6
9

3
7
7
7
2
5
6
1

2
1
1
4
5
5
6
8
/2

5
2

2
1
1
4
6
3
2
3

4
4
.0

2

1
0
0

2
0

1
4
2
0
3
2
6
6
/5

7
9

1
4
2
0
5
0
0
3

9
4
9
0
6
7
1
/3

2
1

9
4
9
1
6
3
4

3
3
.1

8
4
1
6
3
2
1
9
2
/5

8
2

4
1
6
3
3
9
3
8

2
3
5
9
6
2
8
6
/3

1
4

2
3
5
9
7
2
3
0

4
3
.3

2

2
0
0

4
0

2
0
2
4
3
7
2
2
/1

1
6
3

2
0
2
4
7
2
1
1

1
3
2
8
1
9
7
4
/6

4
5

1
3
2
8
3
9
1
0

3
4
.3

9
5
8
6
5
7
7
6
1
/1

1
6
9

5
8
6
6
1
2
6
8

3
2
8
9
4
8
9
8
/6

3
1

3
2
8
9
6
7
9
2

4
3
.9

2

4
0
0

8
0

2
8
3
9
6
7
8
2
/2

3
3
4

2
8
4
0
3
7
8
4

1
8
6
0
9
6
4
6
/1

2
9
3

1
8
6
1
3
5
2
5

3
4
.4

7
8
2
7
2
7
8
4
3
/2

3
4
7

8
2
7
3
4
8
8
6

4
6
3
2
0
9
2
9
/1

2
6
8

4
6
3
2
4
7
3
4

4
4
.0

1

6
0
0

1
2
0

3
4
8
1
4
7
6
2
/3

5
2
1

3
4
8
2
5
3
2
6

2
2
7
4
9
7
5
3
/1

9
5
5

2
2
7
5
5
6
1
8

3
4
.6

6
1
0
2
3
2
3
5
1
4
/3

5
3
8

1
0
2
3
3
4
1
2
8

5
7
4
4
0
2
1
7
/1

9
1
6

5
7
4
4
5
9
6
6

4
3
.8

6

8
0
0

1
6
0

3
9
4
0
9
9
2
9
/4

6
4
8

3
9
4
2
3
8
7
1

2
5
6
1
8
1
6
6
/2

6
7
6

2
5
6
2
6
1
9
3

3
5
.0

0
1
2
4
0
0
8
7
5
5
/4

6
2
2

1
2
4
0
2
2
6
2
1

6
7
3
4
5
7
3
3
/2

6
2
1

6
7
3
5
3
5
9
6

4
5
.6

9

1
0
0
0

2
0
0

4
7
9
2
7
9
6
9
/6

3
2
7

4
7
9
4
6
9
5
0

2
9
8
2
6
5
8
8
/3

3
9
5

2
9
8
3
6
7
7
3

3
7
.7

7
1
5
0
3
3
9
5
4
4
/6

3
4
4

1
5
0
3
5
8
5
7
6

7
7
5
6
6
8
7
5
/3

3
8
3

7
7
5
6
6
8
7
5

4
8
.4

1

A
v
erag

e
3
3
.3

3
A

v
erag

e
4
3
.5

3

118



Table 6.3: The comparison on CPU time in second for Table 6.2.

m k
multi-factor= 1.1 multi-factor= 2

CC our CC our

20 4 0.007 0.005 0.009 0.005

40 8 0.032 0.027 0.045 0.028

60 12 0.083 0.069 0.128 0.07

80 16 0.155 0.134 0.266 0.134

100 20 0.239 0.223 0.424 0.223

200 40 1.066 1.100 2.261 1.098

400 80 5.117 5.436 12.78 5.416

600 120 13.034 14.048 35.264 13.816

800 160 17.692 20.401 44.263 19.839

1000 200 31.991 33.993 75.823 32.24

the difference in routing resource between layers increases, but that of CC method signifi-

cantly increases. We observe that the correction step of CC method takes more expensive

running time to find feasible replacements for invalid edges when the difference in routing

resource between layers increases. It also shows that our method can work more efficient,

effective, and stable than CC method for the OAPD-ST problem.
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Chapter 7

Time Complexity Bottleneck and Local

Minimal Heuristic

For the OAPD-ST problem, this chapter attempts to analyze the time complexity bot-

tleneck and to develop an efficient local minimal heuristic. We first prove that the time

complexity of OAPD-MST construction is Ω(n2). Considering the efficiency, the proof

gives a strong motivation to develop more efficient algorithms instead of OAPD-MST

construction. Therefore, we attempts develop a local minimal heuristic to approximate

an OAPD-MST. Since MTST-based algorithms are usually feasible for the Steiner tree

related problems, we analyze the essence of an MTST-based algorithm. Based on the

analysis, we propose an preferred direction visibility graph (PDVG), and develop an

O(n log2 n) MTST-based algorithm. For MTST-based algorithms, PDVG has three ad-

vantages: (1) high efficiency, (2) high possibility of path overlapping (Section 7.3.2), and

(3) high solution quality (Section 7.3.2). Experimental results show that the algorithm is

more efficient than the OAPD-MST construction and has comparable solution quality.
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7.1 Motivation

As mentioned in Section 1.3, there are a huge number of obstacles in modern IC design.

According to ITRS [19], the hard IP count per chip will be more than one thousand in

the future. Therefore, it is necessary to develop close to O(n log n) algorithm for the

OAPD-ST construction. Besides, from practical viewpoints, the input size also changes

the requirements of an algorithm. In detail, large test cases require the higher efficiency,

while small test cases require the higher solution quality. Hence, it is also interesting if

there exists an approach handling those variable requirements.

According to Chapter 6, since an OAPD-MST is an approximation solution to the

OAPD-ST problem, it is desirable to develop faster OAPD-ST algorithms. From theoret-

ical aspects, we should first analyze the time complexity of the OAPD-MST construction.

If the worst-case lower bound is Ω(n2), we should find another way to approximate an

OAPD-MST. It is natural to study some local minimal guarantees, which probably help

to obtain close to global minimal solutions. Since MTST-based algorithms perform well

for the OARSMT problem, we may analyze the essence of an MTST algorithm.

7.2 Space Complexity of An OAPD-MST

In this section, we prove that the space complexity of an OAPD-MST is Ω(n2). Liu et

al. [25] proved Cost(OAPD-MST) ≤ 2*Cost(OA-PDSMT), which implies that an OAPD-

MST is a good approximation solution for the OAPD-ST problem. However, since the

space complexity of an OAPD-MST is Ω(n2), the running time complexity of OAPD-

MST construction is at least Ω(n2). Considering efficiency, our proof provides a strong
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Figure 7.1: Example for failure of the alignment property in preferred direction model.

(a) an OAPDSP between s and t must include (a, b). (b) an example for the lower bound

of space complexity of an OAPD-MST.

motivation to develop more efficient algorithms for the OAPD-ST problem instead of

OAPD-MST construction. Please first recall Definition 2.11.

Since the definition of an OAPD-MST is based on OAPDSPs, we discuss the space

complexity of an OAPD-MST from the viewpoint of OAPDSPs.

Definition 7.1 A path optimization problem is said to have the alignment property if

there exists an optimal path consisting of line segments (edges) that are aligned with

either one of the two endpoints or boundaries of the obstacles [20].

In [20], Lee et al. studied rectilinear path problems in a two-layer preferred direc-

tion model and claimed that those problems have the alignment property. Thus, through

their method, an OAPDSP in a two-layer preferred direction model can be computed in

O(k log k) running time. However, in preferred direction model, the OAPDSP problem

does not have the alignment property even when Nl ≥ 4. For instance, Figure 7.1 (a)

shows an OAPDSP between s and t when Nl ≥ 4. It is clear that each OAPDSP between
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s and t must include the line segment (a,b), but (a,b) is aligned neither one of the two

endpoints nor edges of the obstacles. Hence, for finding an OAPDSP, we should consider

many possibilities such as a and b, which significantly increases the complexity. We use

this observation to make an example for proving the lower bound of space complexity of

an OAPD-MST.

In Figure 7.1(b), there are 2e pin-vertices ({s1,· · · ,se,t1, · · · ,te}) and 4e rectangles

({A1,· · · , Ae,B1,· · · ,Be,C1,· · · ,Ce,D1,· · · ,De}) such that m=2e, k=16e and n=18e. For

1 ≤ i ≤ e, there exists only one OAPDSP between si and ti, and this path consists at

least e line segments (edges). Furthermore, it is clear that those OAPDSPs between si

and ti where 1 ≤ i ≤ e are pairwise disjoint. Suppose that |sisj|distance (|titj|distance)

for 1 ≤ i < j ≤ e is larger than |sltl|distance for 1 ≤ l ≤ e, which also implies that

|sitj|distance for 1 ≤ i, j ≤ e and i �= j is larger than |sltl|distance for 1 ≤ l ≤ e. That

is, |siti|distance for 1 ≤ i ≤ e is smaller than the distance of any other pin-vertex pairs.

Since an OAPDSP between two pin-vertices is regarded as an edge between them, we

regard OAPDSPs, (si, tj), (si, sj) and (ti, tj) where 1 ≤ i, j ≤ e, as edges between those

pin-vertices with weight being their distances.

According to the cut property of minimum spanning trees [6], a light edge crossing

a cut with minimum cost must be included in a minimum spanning tree. Therefore, in

Figure 7.1(b), (si,ti) where 1 ≤ i ≤ e must be included in an OAPD-MST connecting

those pin-vertices. Since all line segments (edges) of (si,ti) where 1 ≤ i ≤ e are pairwise

disjoint and there are at least e2 line segments, the space complexity of (si,ti) where

1 ≤ i ≤ e is Ω(e2), which implies that the space complexity of an OAPD-MST in Figure

7.1(b) is Ω(e2). Since e is Ω(n), we have the following important theorem.
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Theorem 7.1 The space complexity of an OAPD-MST is Ω(n2).

Since the running time complexity of OAPD-MST construction is at least the space

complexity of an OAPD-MST, we have the following corollary:

Corollary 7.1.1 The running time complexity of OAPD-MST construction is Ω(n2).

Since an OAPD-MST consist of a set of OAPDSPs among pin-vertices, a routing

graph preserving all OAPDSPs between pin-vertices contains at least one OAPD-MST,

which implies the following corollary:

Corollary 7.1.2 The space complexity of a routing graph preserving all OAPDSPs among

pin-vertices is Ω(n2).

In the following of this paper, a lot of words are related to shortest paths and multi-

layer models. To simplify descriptions, we make some assumptions as follow:

1. In 2 dimensions (2D), a shortest path means an obstacle-avoiding rectilinear short-

est path.

2. In preferred direction model, a shortest path means an obstacle-avoiding preferred

direction shortest path.

3. A multi-layer model means a preferred direction model even when Nl = 2 (e.g. a

two-layer model).

7.3 Algorithm

Since OAPD-MST construction takes Ω(n2) time, considering efficiency, we propose an

O(nlog2n) MTST-based algorithm for the OAPD-ST problem instead of OAPD-MST
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construction. We develop a routing graph, called preferred direction visibility graph

(PDVG), with both O(nlogn) vertices and edges. Based on PDEG, we generate an MTST

as our solution in O(nlog2n) running time. In the following subsections, we analyze prop-

erties of MTST-based algorithms in Section 7.3.1, and describe the basic ideas of PDVG

in Section 7.3.2. Then, we show the details of PDVG construction in Section 7.3.3 and

Section 7.3.4. Finally, we discuss our MTST-based algorithm in Section 7.3.5.

7.3.1 MTST-based Algorithms

In this section, we analyze properties of MTST-based algorithms and infer that it is pos-

sible to construct a smaller graph with high solution quality such that an MTST-based

algorithm could perform more efficiently than OAPD-MST construction and generate

comparable solutions. This is the backbone of our algorithm.

MTST-based algorithms are widely used in routing for Steiner tree problems [8, 22,

24, 25, 44]. An MTST-based algorithm is typically divided into two steps:

1. Construct a routing graph for a Steiner tree instance

2. Generate an MTST of the routing graph as a solution.

Routing graphs for Steiner tree problems often contain two kinds of vertices, terminal

(pin-vertices) and nonterminals, such that the definition of an MTST is different from a

general one. Similar to preferred direction model, a shortest path between two pin-vertices

is regarded as an edge between them, and thus an MTST of a routing graph is defined as

follows:

For simplifying descriptions, we denote the set of shortest paths which composes an

MTST as SPs-MTST, and the sum of costs of those shortest paths as Cost(SPs-MTST). In
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Figure 7.2: Example for the path selection problem. (a) Hanan Graph for three pin-

vertices. (b) a minimum spanning tree with cost being 21. (c) another minimum spanning

tree with lower cost.

addition, in a routing graph, the lower bound of cost of a shortest path between two pin-

vertices is cost of an OAPDSP between them. Since PDEG [25] preserves all OAPDSPs

and an OAPD-MST, Cost(SPs-MTST) in PDEG is minimum.

MTST-based algorithms often confront with the path selection problem. Take Hanan

Graph [12] for instance. Fig 7.2(a) shows Hanan Graph for three pin-vertices; distances

of (P1, P2), (P1, P3) and (P2, P3) are 12, 9 and 13 respectively. Hence, as shown in

Figure 7.2(b), an MTST connecting the three pin-vertices consists of (P1, P2), (P1, P3)

and has 21 total cost. That is, SPs-MTST are (P1, P2) and (P1, P3); Cost(SPs-MTST) is

21. However, since shortest paths in Hanan graph are not unique, there is another MTST

with lower cost shown in Fig 7.2(c). In the MTST of Fig 7.2(c), Cost(SPs-MTST) is still

21 the same as the MTST of Figure 7.2(b), but Cost(MTST) decreases to 17. This is

because that (P1, P2) and (P1, P3) in the MTST of Fig 7.2(c) overlap with each other, and

cost of the overlap is 4. Thus, we have the following equation.

Equation 7.2 For a routing graph, Cost(MTST) = Cost(SPs-MTST) - Cost(overlap of

SPs-MTST).

Therefore, overlap of SPs-MTST could help Cost(MTST). However, since the num-
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ber of combinations of shortest paths is exponential, to maximize overlap of SPs-MTST

is intractable, resulting that MTST construction usually does not consider overlap of

SPs-MTST. Hence, most MTST-based algorithms do not take account of overlap of SPs-

MTST. But, we believe that overlap of SPs-MTST is crucial for MTST-based algorithm in

some situations, e.g, a small instance.

To conclude, Cost(MTST) depends on both Cost(SPs-MTST) and Cost(overlap of SPs-

MTST). Hence, minimum Cost(SPs-MTST) does not guarantee minimum Cost(MTST),

and higher Cost(SPs-MTST) possibly leads to lower Cost(MTST). Through the above

analysis, we naturally define Cost(SPs-MTST) as the solution quality of a routing

graph and Cost(MTST) as the solution quality of an MTST-based algorithm. There-

fore, the solution quality (Cost(MTST)) of an MTST-based algorithm on a routing graph

with the best solution quality (Cost(SPs-MTST)) does not guarantee to be the best.

Now, we review the MTST-based algorithm in [25] and its routing graph, PDEG from

the viewpoints of MTST-based algorithms. Although PDEG has minimum Cost(SPs-

MTST), the MTST-based algorithm in [25] has the following two drawbacks due to the

large space complexity.

The first drawback is low efficiency. Since the space complexity of PDEG is O(n2),

the running time complexity of the MTST-based algorithm is at least O(n2). Considering

increasing obstacles and signal nets, the MTST-based algorithm in [25] is not sufficiently

efficient.

The second drawback is low possibility of paths overlapping. Since the space com-

plexity of PDEG is O(n2), the number of combinations of shortest paths significantly

increases. Therefore, the possibility of paths overlapping is lower, and thus the overlap of
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SPs-MTST would be relatively low.

As a result, considering efficiency, the MTST-based algorithm in [25] is not entirely

suitable to the OAPD-ST construction. There could and should be another MTST-based

algorithm on another routing graph for practical usage.

Through all discussion in this subsection, we infer that it is possible to construct a

routing with smaller size (high efficiency), high solution quality (low Cost(SPs-MTST))

and high possibility of paths overlapping (high Cost(overlap of SPs-MTST)). Based on

this graph, an MTST-based algorithm will perform more efficiently than OAPD-MST

construction (recall Corollary 7.1.1) and generate comparable solutions.

Possible ideas are listed below. We can use a smaller graph to improve efficiency.

Through delicate design of graph structure, the solution quality of a graph could be higher.

The possibility of paths overlapping in a smaller graph will be higher since the number of

combinations of shortest paths is lower. The simple topology of a graph would help the

overlap of paths.

Finally, we make the following strong claim to be the backbone of our MTST-based

algorithm.

Claim 7.3 We can develop a routing graph with smaller size, high possibility of paths

overlapping, and high solution quality. Based on those advantages, an MTST-based algo-

rithm will preform more efficiently than OAPD-MST construction and generate compara-

ble solutions.
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7.3.2 Basic Ideas

In this subsection, we will show the basic ideas of our routing graph, PDVG. For achieving

Claim 7.3, PDVG should have high efficiency, high solution quality and high possibility

of paths overlapping. Below, we classify our ideas into two parts, graph topology and so-

lution quality, to consider high possibility of paths overlapping and high solution quality

respectively. Both the two parts are correlated with efficiency and related to each other.

7.3.2.1 Graph Topology

Considering efficiency and high possibility of paths overlapping, a routing graph

should have the following properties:

1. Small Size: A small graph increase efficiency of MTST construction and has high

possibility of paths overlapping.

2. Simple Topology: Aside from graph size, the topology of a routing graph also

influences overlap of SPs-MTST. A simple topology could have higher overlap of

SPs-MTST.

For those properties, we introduce an idea of graph construction called Steiner points

which has been widely used for shortest problems among obstacles in computational ge-

ometry area. Clarkson et al. [5] introduced Steiner points to construct a routing graph

called visibility graph in 2D within O(n log n) running time. Their visibility graph pre-

serves all shortest paths and has both O(n log n) edges and vertices. Thus, a shortest path

can be computed in O(n log2 n) time.
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Figure 7.3: Example for Steiner points. (a) an instance. (b) projecting pin-vertices to L.

(c) the resulting visibility graph for (a). (d) a visibility graph for three pin-vertices which

has high overlap of SPs-MTST.

The idea of Steiner points is to use additional vertices to reduce graph size and is

typically viewed as a 3-step procedure. We take Fig 7.3 for example.

1. Select a cutting line passing through the median vertex of all vertices according to

their x-coordinates as shown in Figure 7.3(a).

2. Project vertices to the cutting line, connect vertices with their projections, and con-

nect vertices in the cutting line as shown in Figure 7.3(b). Those projections are

called Steiner points.

3. Recursively perform 1–2 on left and right parts. Figure 7.3(c) shows the resulting

visibility graph for Figure 7.3(a).

Clearly, the depth of recursion is O(log n), and each vertex generates at most one

Steiner point in each recursive level. Hence, space complexity of such a visibility graph

is O(n log n) which is much smaller than O(n2).

Furthermore, the topology of a graph constructed by the idea of Steiner points could

help overlap of SPs-MTST. For instance, Figure 7.3(d) shows a visibility graph for three

pin-vertices. There is no path selection problem in this instance because the overlap
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of SPs-MTST is highest. Hence, using the idea of Steiner points, the topology of a

routing graph could probably help overlap of SPs-MTST in local, especially for small

instances.

As a result, we select the idea of Steiner points to be the basis of our graph construc-

tion. In Section 7.3.4, we develop algorithmic techniques to apply the idea of Steiner

points to preferred direction model.

7.3.2.2 Solution Quality

For efficiency and solution quality, we correlate PDVG with OAPDSPs which are

possible components of an OAPD-MST. Recall that Cost(OAPD-MST) ≤ 2*Cost(OAPD-

SMT) [25]; thus, an OAPD-MST is a good solution for the OAPD-ST construction. Since

an OAPD-MST consists of OAPDSPs, a routing graph preserving all OAPDSPs will have

best solution quality (the lowest Cost(SPs-MTST)). However, by Theorem 7.1 and Corol-

lary 7.1.2, the space complexity of a graph preserving an OAPD-MST or all OAPD-STs

is Ω(n2), which is too expensive. Hence, we generate below concepts to collate PDVG

with OAPDSPs:

• Preserve partial OAPDSPs instead of all OAPDSPs.

• Enhance the possibility of existence of OAPDSPs.

• Lower costs of shortest paths among pin-vertices.

For those concepts, we further develop two features for PDVG:

• Local Minimum Guarantee: PDVG preserves partial OAPDSPs, which are possi-

ble components of an OAPD-MST.
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• Delicate Vertices Inclusion PDVG construction includes possible candidates of ver-

tices of OAPDSPs to improve the solution quality.

According to our ideas for graph topology and solution quality, preferred direction

visibility graph (PDVG) construction is divided into two steps:

1. Vertex Generation: We add delicate vertices to build relations between layers;

those vertices are possible candidates of vertices of OAPDSPs. Through the delicate

vertices inclusion, the solution quality in PDVG could be higher. For efficiency

considerations, number of those delicate vertices is limited to O(n).

2. Graph Construction: We develop delicate algorithmic techniques to apply the idea

of Steiner points to preferred direction model. Using those algorithmic techniques,

PDVG is constructed in O(n log2 n) running time, and has both O(n log n) vertices

and edges. In addition, PDVG preserves OAPD-STs in each two adjacent layers

considering wirelength, which is the local minimal guarantee of PDVG.

7.3.3 Vertex Generation

Below, we first discuss those delicate vertices which are possible candidates of vertices of

OAPDSPs.

Definition 7.2 For a vertex v, a vertex u in an adjacent layer to v is called sibling of v

if u has the same coordinates with v and locates inside no obstacle. Since a layer has at

most two adjacent layers, a vertex has at most two siblings.

If not considering obstacles, a shortest path from a vertex in layer i to layer i + 1 is an

edge connecting this vertex with its sibling in layer i + 1. As a result, we must consider
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Figure 7.4: Examples for crossings. (a) a shortest path between v1 and v2 through a

crossing u2. (b) two crossings between v and o.

siblings of pin-vertices and obstacle corners as well as their siblings. Aside from siblings,

due to the presence of obstacles, we also consider other two kinds of vertices.

We first define a relation between a vertex and an obstacle.

Definition 7.3 For a vertex v, if a rectilinear projecting line from v to another layer is

blocked by an obstacle o, o is a blocked obstacle of v. As shown in Figure 7.4(a), o is a

blocked obstacle of v1. Clearly, a vertex has at most two blocked obstacles.

In Figure 7.4(a), the shortest path between v1 and v2 will go through u2. We define u2

as a crossing between v1 and o.

Definition 7.4 For a vertex v locates in a vertical (horizontal) layer, if o is a blocked ob-

stacle of v, crossings between v and o are two vertices on the boundaries of o with their

coordinates being (xv, min y(o)) and (xv,max y(o)) ((min x(o),yv) and (max x(o),yv)).

In Figure 7.4(b), the two crossings between v and o are u1 and u2.

Since a vertex has at most two blocked obstacles (Definition 7.3), a vertex has at most

four crossings. Besides, if a vertex has crossings in layer i, this vertex has no sibling in

layer i, and vice versus.
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Figure 7.5: Examples for neighbors. (a) a shortest path between v1 and v2 through a

neighbor u1. (b) two neighbors of v.

In Figure 7.5(a), the shortest path between v1 and v2 will go through u1. We define u1

as a neighbor of v1.

Definition 7.5 For a vertex v in a vertical (horizontal) layer, a neighbor is a projection

from v to one of adjacent obstacles in its up and down (left and right) directions. In

Figure 7.5(b), the neighbors of v is u1 and u2.

The algorithm for vertex generation is summarized in Figure 7.6. Lines 2–7 repeat-

edly generate siblings for pin-vertices and obstacle-corners by bottom-up and top-down

procedures. This siblings generation is the same as recursively projecting each vertex to

adjacent layers until blocked by obstacles. Since the number of pin-vertices and obstacle

corners is n, the size of V at Line 9 is O(n). Lines 9–11 generate crossings and neighbors

to U for each v in V . Since each vertex has at most 2 neighbors and 4 crossings, |U | is

O(n), implying that |V | at Line 12 is O(n). Lines 13–18 generate vertices for V similar

to Lines 2–7. Thus, we directly have the following two lemmas.

Lemma 7.4 The size of vertices generated by the Vertex-Generation algorithm is O(n).

Lemma 7.5 The running time complexity of the Vertex-Generation algorithm is O(n log n).
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Algorithm: Vertex-Generation(P , O, N
l
)

Input: P /* the set of pin-vertices */

O /* the set of obstacles */

Nl /* the number of routing layers */

Output: V /* the set of generated vertices*/

1 V ← P
⋃
{corners of O}

2 for i = 1 to Nl − 1

3 for each vertex v ∈ V in layer i

4 add the sibling of v in layer i + 1 to V

5 for i = Nl to 2

6 for each vertex v ∈ V in layer i

7 add the sibling of v in layer i − 1 to V

8 U ← ∅
9 for each vertex v ∈ V

10 add crossings of v to U

11 add neighbors of v to U

12 V ← V
⋃

U

13 for i = 1 to Nl − 1

14 for each vertex v ∈ V in layer i

15 add the sibling of v in layer i + 1 to V

16 for i = Nl to 2

17 for each vertex v ∈ V in layer i

18 add the sibling of v in layer i − 1 to V

19 return V

Figure 7.6: The Vertex-Generation algorithm
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7.3.4 Graph Construction

Here, we use the idea of Steiner points to complete PDVG construction on vertices gen-

erated by the Vertex-Generation algorithm.

The idea of Steiner points has been used for shortest path problems in 2D [5] and a

two-layer preferred direction model [20]. As mentioned in Section 7.2, the shortest path

problem in a two-layer preferred direction model has alignment property. Hence, a two-

layer preferred is viewed as a special 2D instance [20], and the idea of Steiner points is

applied similar to [5]. However, Figure 7.1(a) shows that the shortest problem in preferred

direction model has no alignment property, implying that the methods in [5,20] cannot be

directly applied. As a result, we develop delicate algorithmic techniques to apply the idea

of Steiner points to preferred direction model.

For applying the idea of Steiner points to preferred direction model, we have three

perspectives:

1. Since a preferred direction instance cannot be viewed as a 2D instance, a cutting

line should be replaced with a cutting plane.

2. Due to preferred direction constraints, operations for vertices in vertical and hori-

zontal layers should be different.

3. Since there are multiple layers, operations on a cutting plane should make relations

between layers.

Based on the three perspectives, we develop PDVG construction.

Definition 7.6 For two vertices v1 and v2, v1 and v2 are adjacent if there exists a rec-

tilinear edge e connecting v1 and v2 such that e intersects no obstacle, violates no PD
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Algorithm: PDVG-Construction(P , O, Nl)

Input: P /* the set of pin-vertices */

O /* the set of obstacles */

Nl /* the number of routing layers*/

Output: G(V, E) /* PDVG */

V /* the set of vertices */

E /* the set of edges*/

1 E ← ∅
2 V =Vertex-Generation(P ,O,Nl)

3 U ← ∅
4 for each vertex v ∈ V in vertical layers

5 add siblings of v to U

6 add crossings of v in its two adjacent layers to U

7 V ← V
⋃

U

8 S ← Steiner-Point-Generation(V , E, O, ∅, Nl)

9 V ← V
⋃

S

10 for each two adjacent vertices v1 and v2 ∈ V

in horizontal layers

11 E ← E
⋃
{(v1, v2)}

12 return G(V, E)

Figure 7.7: The PDVG-Construction algorithm.

constraints and crosses no other vertices.

The procedure of PDVG construction is summarized in Figure 7.7, and the main part

is Steiner point generation. Figure 7.8 shows the Steiner-Point-Generation algorithm, and

Figure 7.9 gives an example for one recursive routine. For clearly introducing the algo-

rithm in Figure 7.8, the instance in Figure 7.9(a) only includes pin-vertices and obstacle

corners. (i.e, Lines 2–7 in Figure 7.7 is not performed.)

We set cutting planes to be vertical, and PDVG construction is divided in four steps:

1. The Vertex-Generation algorithm is performed to build a set V (lines 1–2 in Figure

7.7), and the details have been discussed in Section 7.3.3.

2. Since cutting planes are vertical, only vertices in horizontal layers will be projected.

Hence, considering vertices in vertical layers, we generate siblings and crossings of

those vertices to adjacent layers (lines 4–7 in Figure 7.7). As shown in Figure 7.9
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Algorithm: Steiner-Point-Generation(V , E, O, SB , Nl)

Input: V /* the set of vertices */

E /* the set of edges */

O /* the set of obstacles */

SB /* the boundary Steiner points */

Output: S /* the set of Steiner points */

1 xmedian ← the median of x-coordinates in V

2 Plane ← a plane perpendicular to routing layers

with x-coordinate being xmedian

3 S ← ∅
4 for each vertex v ∈ V

5 if a projecting line from v to Plane intersects no obstacle

6 s ← the projection from v to Plane

7 S = S
⋃
{s}

8 U ← vertices in V
⋃

S
⋃

SB with x-coordinate = Xmedian

9 for each vertex u ∈ U

10 projecting u to other layers to create siblings

until projecting lines are blocked by obstacles

11 add those siblings to U

12 for each blocked obstacle o of u

13 add crossings between u and o to SB

14 for each two adjacent vertices u1 and u2 ∈ U

15 E ← E
⋃
{(u1, u2)}

16 Vl ← vertices in V with x-coordinate < Xmedian

17 SBl
← vertices in SB with x-coordinate < Xmedian

18 if |Vl| + |SBl
| ≥ 0

19 S = S
⋃

Steiner-Point-Generation(Vl, E, O, SBl
, Nl)

20 Vr ← vertices in V with x-coordinate > Xmedian

21 SBr
← vertices in SB with x-coordinate > Xmedian

22 if |Vr| + |SBr
| ≥ 0

23 S = S
⋃

Steiner-Point-Generation(Vr , E, O, SBr
, Nl)

24 return S
⋃

SB

⋃
U

Figure 7.8: The Steiner-Point-Generation algorithm.
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(b), two crossings between P1 and O1 (i.e. C1 and C2) are generated, and eight

siblings of four corners of O2 are also generated.

3. As shown in Figure 7.8, the Steiner-Point-Generation algorithm is performed in the

following steps:

(a) Lines 1–2 select a vertical cutting plane passing through the median vertex

of all vertices according to their x-coordinates. As shown in Figure 7.9(c), a

cutting plane passes through P2.

(b) Lines 4–7 project vertices to the cutting plane to generate Steiner points also

shown in Figure 7.9(c).

(c) Lines 9–15 make connections on the cutting plane. Lines 10–11 project vertex

to other layers to generate siblings as shown in Figure 7.9(d). If a vertex on

the cutting plane is blocked by an obstacle, lines 12–13 generate crossings be-

tween them and call those crossings boundary Steiner points. For instances,

as shown in Figure 7.9(d), a vertex in layer 2, v, is blocked by O2; thus, S1

and S2, crossings between v and O2, are generated in layer 3 shown in Figure

7.9(c). Lines 14-15 connect adjacent vertices on the cutting plane as shown in

Figure 7.9(e).

(d) Lines 16–23 recursively perform steps a)–c) on the two parts divided by the

cutting plane.

4. Lines 10–11 connect each adjacent vertices in horizontal layers.

Now, we analyze the space complexity of PDVG. Clearly, in PDVG, the number of

edges is linear to that of vertices; thus, we only discuss the number of vertices. By Lemma
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7.4, lines 4–6 in Figure 7.7 generate siblings and crossings for O(n) vertices, implying

that |U | is O(n). Hence, the Steiner-Point-Generation algorithm is perform on O(n) ver-

tices. Since there are O(n) vertices, depth of the recursion is O(log n). In each recursive

level, each vertex is projected to the cutting plane once such that the projection gener-

ates O(n) Steiner points (lines 4–7 in Figure 7.8). Hence, in each recursive level, there

are O(n) vertices on those cutting planes. Since Nl is a small constant, there are both

O(n) siblings and boundary Steiner points generated (lines 9–13 in Figure 7.8) in each

recursive level. Hence, in each recursive level, there are O(n) vertices to be generated.

To conclude, since there are O(log n) recursive levels, the number of generated vertices

is O(n log n). Therefore, we have the following lemma about the space complexity of

PDVG.

Lemma 7.6 PDVG has both O(n log n) vertices and edges.

Lemma 7.7 The running time of PDVG construction is O(n log2 n).

Proof: By Lemma 7.5, the running time of the Vertex-Generation algorithm is O(n log n).

Then, there are O(log n) recursive levels in the Steiner-Point-Generation algorithm. In

each recursive level, we can use a sweep-line algorithm to project vertices to cutting

planes. Similarly, siblings and boundary Steiner points could also be generated by sweep-

line algorithms. The running time of a sweep algorithm is typically limited to sorting and

the number of events (here, generating a vertex is an event). Since there are O(n) ver-

tices to be operated by sweep-line algorithms and O(n) generated vertices, the running

time complexity in each recursive level is O(n log n). Therefore, due to O(logn) recur-

sive levels, the running time of the Steiner-Point-Generation algorithm is O(n log2 n).

Finally, lines 10–11 in Figure 7.7 can also be performed by sweep-line algorithms. Since
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|V | = O(n log n) in lines 10-11 (by Lemma 7.6, lines 10–11 take O(n log2 n) running

time. To conclude, the running time of PDVG construction is O(n log2 n).

Theorem 7.8 PDVG preserves OAPDSPs between two adjacent layers considering wire-

length.

Proof: Lee et al. [20] proposed a routing graph in a two-layer preferred direction model,

and their graph preserves OAPDSPs considering wirelength. In any two adjacent layers

of PDVG, the subgraph contains the properties of the routing graph in [20]. Therefore,

PDVG preserves OAPDSPs between two adjacent layers considering wirelength.

Theorem 7.8 strongly supports the local minimal guarantee of PDVG. By the local

minimal guarantee and delicate vertices inclusion, the solution quality (Cost(SPs-MTST))

of PDVG is very close to that of PDEG (recall that Cost(SPs-MTST) in PDEG is mini-

mum). Experimental results will justify our claims.

7.3.5 MTST Construction and Discussion

After PDVG construction, we perform MTST construction on PDVG to generate an

MTST as an OAPD-ST to be our solution. Mehlhorn [31] proposed an MTST construc-

tion method to generate an approximation solution for the Steiner tree prolbem. The

running time complexity of his MTST construction method is O(E +V log V ). We apply

his method on PDVG and obtain the following time complexity from Lemma 7.6.

Lemma 7.9 MTST construction on PDVG takes O(n log2 n) time.

By Lemma 7.7 and Lemma 7.9, we conclude the running time complexity of our

OAPD-ST construction.
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Theorem 7.10 The running time complexity of our OAPD-ST construction is O(n2 log n)

.

To conclude, based on advantages of PDVG, our OAPD-ST construction performs

more efficiently than OAPD-MST construction and generates an OAPD-ST with compa-

rable cost. First, the space complexity of PDVG is much smaller than PDEG [25]; thus

MTST construction on PDVG performs more efficiently than the OAPD-MST construc-

tion [25]. Second, the local minimal guarantee and delicate vertices inclusion of PDVG

make the solution quality of PDVG is very close to that of PDEG. In addition, the small

size and simple topology of PDVG help the overlap of SPs-MTST and thus lower cost of

the OAPD-ST. All advantages of PDVG originate from novel ideas in Section 7.3.2, and

those novel ideas are inspired from the penetrating analysis of MTST-based algorithms in

Section 7.3.1.

7.4 Experimental Results

We implemented our algorithms in the C/C++ language on a 3.0 Ghz Intel Pentium 4

PC with 2 GB memory under Linux 2.6 operating system. We obtained the program

and the testcase generator from [25] to perform experiments. All testcases are randomly

generated, and obstacles are rectangles. Each kind of testcases has 100 samples; the

reported results are average results. As same as [25], we use a multi-factor mf to control

different routing resources, i.e, UCi = mfNl−i. Experimental results in [25] show

that their method completely outperforms an extension of traditional methods when the

routing cost doubles between layers. Hence, we set mf to be 2 in our experiments; the

related parameters (m, k, Cv and Nl) are also as same as [25]. Note that all experiments
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were performed in the same machine.

Table 7.1 shows comparison between our algorithm and [25] on wirelength (WL),

number of vias (# of vias), total cost, time and Cost(overlap of SPs-MTST). Note that

[25] is an OAPD-MST construction algorithm. Since our algorithm and [25] are both

MTST-based algorithms, the total cost is Cost(MTST). By Equation 7.2, Cost(MTST)=

Cost(SPs-MTST)-Cost(overlap of SPs-MTST). As shown in Table 7.1, our algorithm

performs more efficiently than [25] and generates comparable solutions, i.e, our algorithm

improves 1.46 % total cost on average over [25]. In details, when testcases are small, the

solution quality is relatively important. At that time, our algorithm outperforms [25]

in total cost. For instance, when testcases consist of 20 terminals and 4 obstacles, our

algorithm improves 6.01 % total cost over [25], which is crucial. This is because that when

testcases are small, possibility of paths overlapping in PDVG has become more higher due

to the simple topology and small graph size of PDVG. Therefore, Cost(overlap of SPs-

MTST) will be much higher such that Cost(MTST) would be lower. This also supports

our belief that Cost(overlap of SPs-MTST) is crucial for a small instance. Besides, when

testcases are large, the efficiency has become more important. At that time, our algorithm

performs much faster than [25]. For instances, when testcases consists of 1000 terminals

and 200 obstacles, our algorithm takes 1.338 seconds, but [25] takes 41.98 seconds. The

above results indicate that our algorithm meets performance requirements for both small

and large instances.

Table 7.2 shows comparison between PDVG and PDEG [25] on Cost(SPs-MTST),

number of vertices and number of edges. Since PDEG preserves OAPDSPs [25], Cost(SPs-

MTST) is minimum. Table 7.1 shows that the space complexity of PDVG is much smaller
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Table 7.2: Comparison between PDVG and PDEG [25] where Cv=3, Nl=6, and mf = 2.

m k
Cost(SPs-MST) Increase (%) Number of Vertex Number of Edge

PDEG (A) PDVG (B) B−A

A
PDEG PDVG PDEG PDVG

20 4 9635514 9669078 0.35 4316 1306 7401 2131
40 8 13968292 14002668 0.25 16926 3424 29146 5639
60 12 18687970 18723727 0.19 37502 5985 64575 9901
80 16 22103033 22157870 0.25 66302 8878 114020 14708
100 20 24358661 24409740 0.21 103116 12149 177542 20217

200 40 34011891 34087664 0.22 411224 31218 708379 52188
400 80 48250817 48351916 0.21 1633001 79484 2811558 133276
600 120 59612527 59721859 0.18 3666070 135229 6305959 226768
800 160 67577718 67722963 0.21 6510892 197141 11204196 330703
1000 200 77694866 77861031 0.21 10162367 265075 17478127 445027

Average Increase 0.23 -

than PDEG, but Cost(SPs-MTST) of PDVG is very close to that in PDEG (only increases

0.23 % on average). For instance, when testcases consists of 1000 terminals and 200 ob-

stacles, PDVG has 265075 vertices and 445027 edges, but PDEG has 10162367 vertices

and 17478127 edges. Those results indicate that PDVG is very competitive. Those re-

sults also support high solution quality of PDVG, i.e., by the local minimal guarantee and

delicate vertices inclusion, the solution quality (Cost(SPs-MTST)) of PDVG is very close

to that of PDEG.

To conclude, Table 7.1 and Table 7.2 justify Claim 7.3: we can develop a routing graph

(PDVG) with smaller size, high possibility of paths overlapping, and high solution quality.

Based on those advantages, an MTST-based algorithm will preform more efficiently than

OAPD-MST construction and generate comparable solutions.
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Chapter 8

Concluding Remarks

As the technology advances into nanometer era, routing has been much more important

since it has the most direct impact on the final design performance. Under these circum-

stances, routing-related operations need to function across all the physical design flow to

handle the timing delay, timing skew, and crosstalk of all the signal nets. In particular,

the routing tree construction is an essential step of routing and plays a crucial role for

the routing results. However, in modern IC design, there are much more routing con-

straints such as multiple routing layers, obstacles, preferred directions, different routing

resources, and via costs. To cope with these constraints, we comprehensively study the

OARSMT problem and the OAPD-ST problem in this dissertation.

8.1 The OARSMT Problem

The study of the OARSMT problem attempts to give more accurate interconnect esti-

mation at the floorplanning and placement stages. However, there exists a big trade-off

between all the-state-of-art works in the efficiency (run time) and the effectiveness (wire-
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length). Therefore, to resolve the bottleneck, we develop a series of strategies including

appropriate mechanics, frameworks, algorithm skills. Overall, in this dissertation, we de-

velop three excellent algorithms, and successfully achieve the best practical performance

in both wirelength and run time. Behind those approaches, we also build many theoretical

foundations, which will contribute to the future researches for the OARSMT problem as

well as its important generations such as the ML-OARSMT problem [24] and the OAPD-

ST problem [25]. Below, we give concluding remarks on those three approaches.

In Chapter 3, we propose an advanced spanning graph, called OARG, and develop a

3-step MTST-based algorithm as well as an efficient local refinement scheme. Compared

to those spanning graphs in [22, 28, 36], the OARG either contains better solutions or has

higher efficiency. Experimental results show that our MTST-based algorithms outperform

other spanning-graph based algorithm [22,28,36]. Although the OARG cannot guarantees

the existence of an OARMST, the solution quality is very close to that of Lin’s OASG [22],

which guarantees the existence of an OARMST. In other words, the local OARMSTs of

the OARG can approximate an OARMST.

In Chapter 4, we propose a path-based framework to guarantee a specific theoretical

optimality in O(n log n) time, which original required O(n3) time in [22]. Compared with

previous works, the framework directly generates critical paths as essential solution com-

ponents instead of generating invalid initial solutions or constructing connected routing

graphs. Overall, the framework has a global view of obstacles, guarantees the existence

of desired solutions, and keeps only O(n) solution components in O(n) space. Therefore,

the framework provides an efficient as well as effective way to develop more desirable

OARSMT algorithms. Experimental results have shown that the path-based algorithm
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achieves the best speed performance, while the average wirelength of the resulting solu-

tions is only 1.1% longer than that of the best existing solutions.

In Chapter 5, we analyze the essence of the OARSMT problem, and propose the idea

of Steiner point selection to achieve the best practical performance in both wirelength and

run time. The idea consists of two major components, the Steiner-point based framework

and and the concept of Steiner point locations. Unlike many previous works, the Steiner-

based framework is more focused on the usage of Steiner points instead of the handling

of obstacles, and seems closer to the essence of the OARSMT problem, which leads to

better solutions. The concept of Steiner point locations reflects the nature of Steiner points

from another viewpoint, and thus provides an effective as well as efficient way to generate

desirable Steiner point candidates. Experimental results show that our algorithm achieves

the best solution quality in Θ(n log n) empirical time, which was originally generated

by applying a maze-routing based method on an Ω(n2)-space extended Hanan grid [21].

More importantly, both the Steiner-point based framework and the new concept of Steiner

point locations gives critical insight into the OARSMT problem, and probably contribute

to the development of future algorithms for the OARSMT problem, and can be naturally

extended to its important generations, such as the ML-OARSMT problem [24] and the

OA-PDST problem [25].

8.2 The OAPD-ST Problem

The study for the OAPD-ST problem attempts to provide better tree topologies at the

routing stage for the succeeding interconnect optimization. However, none of existing

works catches all the mentioned constraints including multiple routing layers, obstacles,
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preferred directions, different routing resources, and via costs since each of those con-

straints is difficult to handle. Therefore, we formulate the OAPD-ST problem to catch all

the mentioned constraints, and give a comprehensive study on it. As a first study on the

OAPD-ST problem, for development of future algorithms, we build essential theoretical

foundations such as the structure of the optimal solution, the approximation algorithm,

the bottleneck of complexity, and the local minimal heuristic, all of which are critical in

the study of Steiner tree problem [18].

In Chapter 6 we analyze the structure of the optimal solution and propose an approx-

imation algorithm. For the structure of the optimal solution, we propose preferred direc-

tion evading graph (PDEG), and prove that at least one optimal solution exists in PDEG.

The theoretical optimality proof provides a way to analyze the solution quality, which

significantly help the development of algorithms, especially for approximation ones. For

the approximation algorithm, based on PDEG, we prove that the approximation factor

of an obstacle-avoiding preferred direction minimum spanning tree (OAPD-MST) to the

OAPD-ST problem is 2, and thus the OAPD-MST construction is a factor 2 approximation

algorithm for the OAPD-ST problem. The approximation guarantee of an OAPD-MST

gives important features to support the development of strong heuristics, especially for

MST-like heuristics.

In Chapter 7, We first analyze the worst-case complexity of the OAPD-MST construc-

tion, and then develop a local minimal heuristic based on a local minimal guarantee and

an MTST-based concept. We first prove that the space complexity of an OAPD-MST

is Ω(n2), which gives a strong motivation to develop more efficient algorithms for the

OAPD-ST problem instead of the OAPD-MST construction. Then, we analyze the prop-
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erties of MTST-based algorithm and make critical inference. Based on the inference and

other computational geometry skills, we propose a routing graph, preferred direction vis-

ibility graph (PDVG) with a local minimal guarantee, and develop an O(n log2 n)-time

MTST-based heuristic. Experimental results shows that our algorithm performs more

efficiently than OAPD-MST construction and can generate comparable solutions. Exper-

imental results also show the high competitiveness of PDVG and justify all our claims

about PDVG and our algorithm.

8.3 Future Works

In this dissertation, for the OARSMT problem and the OAPD-ST problem, we progres-

sively propose desirable strategies and build basic theoretical foundations. Based on those

excellent strategies and essential theoretical foundations, we want to give future contribu-

tions to the routing tree construction and its practical applications in diverse aspects. We

mainly consider the two important topics: (1) multiple-pin net, and (2) multi-criteria.

First, in modern IC design, there millions of signal nets, and the current methodology

is mainly the global and detailed routing framework [13,34,49]. In general, global routing

assigns routing regions and layers to each net, and detailed routing takes solutions from

global routing to complete the whole routing process. Since the global-to-detailed routing

flow attempts to completely route millions of signal nets, it may not focus on the perfor-

mance of routing specific nets. However, there are more and more constraints in current

routing process. Therefore, under the global-to-detailed routing flow, several critical nets

may not meet the performance requirements, cause overhead in routing resources, or take

more time for correction behind the flow. Under this circumstance, since the OAPD-ST
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problem considers many constraints across the global and detailed routing, we attempt to

apply the OAPD-ST construction to deal with critical nets beyond the global-to-detailed

routing. We also want to study the multiple-nt OAPD-ST problem, and build a new flow

for critical signal nets or integrate the study into existing methodologies.

Second, aside from wirelength, there are other objectives for routing a signal net such

as timing skew. There have already existed a number of works to cover the multi-criteria

objective such as the integration of wirelength and timing skew. However, in the presence

of obstacles, there still exist no significant work. Very recently, Synopsys in Taiwan raised

a multi-criteria OPAD-ST problem including wirelength and timing skew objectives for

no more than 10,000 nets [40]. Since the optimization on multi-criteria objectives gives a

strong potential to achieve the best performance for signal nets, we attempt to apply our

strategies and theoretical foundations on multi-criteria routing topics, and want to give

further contributions for interconnect optimizations.
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