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Abstract

The whereabouts of a person not only indicates her schedule, but also reflects her

lifestyle. The transportation taken and the places visited indicate the habit and prefer-

ence of the user. With the growing popularity of commercial GPS loggers and GPS-

enabled mobile phones, the positions of a person could be obtained and logged, and

further analyzed to infer the transportation taken and places visited. Moreover, some

places are more significant than others in one’s daily life. These significant places

shapes the life of the person.

In this thesis, we created a prototype of a trajectory management service to annotate

and visualize the trajectories. We adopted machine learning techniques to segment

the trajectories and extract their features, and used supervised learning approach to

train probabilistic models. We modeled the transportation mode learning problem as

a sequence labeling problem using linear-chain conditional random fields (CRF). We

compared the CRF model with support vector machines (SVM), and our results show

that CRF outperforms SVM, when temporal relationship is considered.

In addition, we adopted OPTICS clustering to find the places visited by the user.

Results show that, among ten measures we used, visit frequency and stay duration

predict the most significant places more accurately.
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Chapter 1

Introduction

1.1 Motivation

Recently, there has been a wide interest in location-based services (LBS), a subset

of context-aware services and geographical information system, such as the “search

nearby” function and geo-tagging of photos and notes. Aiming at better user experi-

ence without less explicit user intervention, the location-based services provide suit-

able information and functions according to a user’s current position and visit history.

For instance, CityVoyager [22], a shop recommendation system, learns the shop pref-

erences on the basis of the past visiting frequency of the user, and recommends similar

shops close to the user’s current position. This adaptability enables the systems to

provide personalized services and react to changes of a user’s location context.

One central component in location-based services is the location profile of the user.

A location profile includes a set of identified locations, user’s visit behaviors among

these locations, and some measures as a summary of the user’s mobility. It is com-
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2 CHAPTER 1. INTRODUCTION

monly believed that everyone’s location profile is unique and the visiting behaviors

may follow some patterns. The location profile should be derived from the visit history

of a user. In particular, the trajectories, sequences of logged user positions associated

with the timestamps, are used as the data source. Figure 1.1 is one trajectory example.

In this example, the user started the day by taking bus to one bus station and waited for

the bus to National Taiwan University. After arriving at the university, the user walked

to the parking lot and ride the bike to the building, the destination of the trajectory. To

automatically extract the information like the description above from trajectories re-

quires the identification of places and transportation modes. With the description, the

services could obtain more information about the users and provide suitable services.

Hence, trajectory analysis has become one of the most popular topics in the field.

A (07:17:04)

↓ Car/Bus

B (07:28:30)

↓ Walk

C (07:29:31)

↓ Transit

D (07:34:12)

↓ Car/Bus

E (08:17:09)

↓ Walk

F (08:23:24)

↓ Bike

G (08:28:51)

Figure 1.1: A trajectory example with annotated transportation modes.
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1.2 Objective

Most of the current analysis focus on absolute locations and transition intervals; how-

ever, it is important to consider the semantics of the locations and the visiting contexts.

For example, people may go to Starbucks at different branch stores. The branch stores

are often viewed as different locations in spatial domain, but they should be viewed as

similar locations since they share the same semantic: coffee shops. With the semantic

information, it is possible to generalize the trajectory patterns from “visiting branch A”

to “visiting coffee shop.” On the other hand, people may go to the same place but at

different time or under different weather conditions. The contexts affects the behavior

of users and should be captured in the trajectory for analysis. In addition, visiting fre-

quency should not be the only measure to profile the user and the location. Measures

such as moving speeds, staying durations, and variety of whereabouts provide more

information to profile a person and understand the behavior pattern of the person.

The main purpose of this research is to propose a more general and powerful tra-

jectory model and the semantically meaningful and statistically significant measures

of the trajectories so that the other location-based services may better understand the

users via the summary of the trajectories.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 summarizes the back-

ground and related work about location-based services and trajectory analysis researches.

In Chapter 3, the problem formulation is presented and the proposed solution is briefly
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described. Following the definition, Chapter 4 and Chapter 5 details the approaches to

model the trajectories and profile users with the significant places. Next, the experi-

ments, including the dataset and implementation, and results are explained in Chapter

6. Finally, concluding remarks and future directions are stated in Chapter 7.



Chapter 2

Background

2.1 Related Work

2.1.1 Location-Based Services

Location-based services are becoming more and more popular, and the research field

of location-based services and user profiling attracts people’s attention [8]. Common

applications include pre-destination [2, 12, 34], life-logging and whereabouts genera-

tion [20, 3, 30], spatial pattern mining [25, 31, 27] trajectory-based user-user similarity

[16] and other assist utilities. Transportation mode learning [17, 29] and significance

place mining [33, 28, 19] are the bases of these applications to provide personalized

services. Knowing the places and transitions among them, service providers could

help users summarize their trips, prepare related information to their next destination,

and suggest similar users to form communities and social networks. Before extracting

information from location data, location models and trajectory models are necessary

5



6 CHAPTER 2. BACKGROUND

to represent the trajectories users taken. The following paragraphs summarize related

researches toward modeling the location and trajectory and learning the transportation

modes and significant places.

Location Models

In the field of geographic information systems, data are separated into two categories:

the geographic feature and the attributes. The geographic feature of a location includes

the reference coordinate system and its geometry. Each location may be associated

with several attributes, including the syntactic labels like names and addresses and

numerical measurements like area and height.

Open Geospatial Consortium, Inc. (OGC)1 defines the OpenGIS R©Simple Features

Interface Standard (SFS) 2 to represent geographical features in relational databases

such as MySQL3 and PostgreSQL4. The two most common open source databases

both support storing, retrieving, and manipulating the geographic features.

In order to operate the locations in the information systems, Ye et al. [26] proposed

a general spatial model for representing the locations. This model allows both syntactic

and semantic labels on a location, and provides both absolute and relative references

for geographic positions. In this model, containment relationships are organized in a

lattice model and connection relationships a graph model.

1http://www.opengeospatial.org/
2http://www.opengeospatial.org/standards/sfa
3http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html
4http://postgis.refractions.net/
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Trajectory Models

Built on location models, trajectories connect locations with additional temporal di-

mension. Giannotti et al. [10] proposed the spatio-temporal annotation sequence to

represent the visiting sequences and relative transition time between consecutive stops.

In this representation, the sequential order and the duration of transition provide more

features to estimate the similarity of two trajectories and detect the moving patterns.

However, this representation ignores the absolute time context and lacks the expres-

sions about the moves between stops. Brosset et al. [4] proposed using an ordered

sequence of route segments as location-action-location triples to represent the entire

trajectory. A sample triple is “from the main gate, walk east, and arrive at the library.”

Each action is further characterized by its cardinal orientation (walk east), relative

direction (turn left), and elevation direction (go downstairs). Kulyukin et al. [14]

focused on verbal descriptions of routes, and segmented route descriptions into envi-

ronment features, delimiters, verb of movements, and state-of-being statements. Verbs

of movements are like actions and transportation mode, while the other three compo-

nents are mainly for characterizing the reference locations. These models provide us

the direction to formalize trajectories, but the approaches to automatically derive these

descriptions are not well-established.

Representation Specifications

While there are still researches investigating more general location models, some spec-

ifications already exist to meet the requirement for different applications. Different

representations are used by different sensor devices and applications for different pur-
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poses. For exchanging GPS logs among different hardwares and softwares, some pop-

ular specifications are commonly used as the interfaces, including NMEA 0183, GML,

KML, and GPX.

NMEA (NMEA 0183) 5 is an interface standard defined by U.S.-based National Ma-

rine Electronics Association. This standard defines the communication proto-

col and sentence formats between marine electronic devices; GPS receiver is

one of the devices using this standard. This specification is commonly used for

real-time data transferring among Bluetooth GPS receivers and other portable

devices, such as mobile phones, but for most off-line services, like trajectory

pattern mining, NMEA 0183 is not the most preferred one.

GPX (GPS Exchange Format) 6 is a light-weight data format for exchanging GPS data

among GPS devices, applications, and web services. Initially released in 2002 on

the basis of XML standard with capability of extensions, GPX has been adopted

by several programs and services, including most of Garmin GPS devices. The

main components of a GPX file are metadata, waypoints, routes, and tracks.

GML (Geography Markup Language) 7 is an XML tag-based Open Geospatial Con-

sortium (OGC) standard for expressing geographical features. GML serves as a

modeling language for geographic systems, and it can describe the geographic

data in the form of points, polylines and polygons.

KML (Keyhole Markup Language) 8 serves as an XML tag-based standard for express-

5http://www.nmea.org/content/nmea_standards/nmea_083_v_301.asp
6http://www.topografix.com/gpx.asp
7http://www.opengeospatial.org/standards/gml
8http://www.opengeospatial.org/standards/kml
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ing geographic annotation and visualization. KML follows the GML specifica-

tion to describe the geographic shape; in addition, it specify the metadata anno-

tation and visualization properties for web services like Google Maps. KML is

now a standard of Open Geospatial Consortium (OGC).

2.1.2 Transportation Mode Learning

Among the research fields about location-based services, transportation mode learning

is becoming an interesting topic. Liao et al. [17] used hierarchical conditional ran-

dom fields, a discriminative probabilistic model in machine learning, to label the most

likely activities and places associated to the GPS trace. Besides statistical features of

the velocity, they considered contextual features such as the proximity to known land-

marks and the temporal information at the time (morning, afternoon, etc.) Zheng et al.

[29] found three other features which may increase the inference performance: pause

rate, velocity change rate, and heading change rate. They observed that in different

transportation mode, the frequencies of being in slow speed, of changing the velocity,

and of changing the heading direction are different. For example, when a person walk

along a street, more pauses may be detected and the heading change rate may be large

than driving or biking.

2.1.3 Significant Location Mining

To tell apart the stops from moving trajectories collected by the GPS signal, a num-

ber of researchers have developed different approaches. Marmasse and Schmandt [18]
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observed that most buildings are GPS opaque, thus the loss of the GPS signal for a

period of time can be used to infer indoor locations. Ashbrook and Starner [2] further

adapted the K-means clustering method to group individually detected nearby loca-

tions into one representative location, compensating for the redundancy caused by the

imprecision of the GPS signal when the user enters the same building several times. To

identify the outdoor locations where a user stays for a long period of time, Zhou et al.

[33] applied a density-based clustering method, DB-SCAN, on the trajectory to find

the locations. Compared with to K-means, DB-SCAN discovers clusters of arbitrary

shapes, and is less sensitive to noises and outliers. Zhang et al. [28] later indicated

that these off-line methods rely on the data collected in advance to extract locations.

In [28], Zhang et al. modeled the locations as a mixture of Gaussians, and proposed an

on-line learning method to dynamically update the parameters of the mixed Gaussian

distributions. This formulation reduces the response time to extract the latest where-

abouts of an user, but at the same time loses the precise location of the significant

places. In [17], Liao et al. not only learns the transportation mode but some visiting

behaviours to detect locations such as home, offices, and parking lots.

However, not all places play the same role in one’s daily life. Some are more

important and attract the user to visit more often. As a result, some researchers pro-

posed different measures to estimate the relative importance of places. Zhou et al. [32]

partitioned the locations into four categories: important and frequent, important but

infrequent, unimportant but frequent, and unimportant and infrequent. They used the

total visit count, number of unique days visiting, total record count (including pass-by

records), and number of unique days having records as features and apply K-NN (K-
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nearest neighbors) to classify the locations. In [9], Froehlich et al. hypothesized that

the visiting frequency and travel effort of a person to one location reflects the impor-

tance of the location and the level of interest the person to the location. From the idea

of PageRank in estimating the importance of an URL, Sabbata et al. [21] proposed the

SpaceRank, a similar mechanism to PageRank, to model the possibilities of visiting

one place on the basis of the adjacency of locations and past movements of the users.

They consider the geographical properties of locations and history records of users to

form the SpaceRank matrix and simulate random walk on the Markov chain with the

SpaceRank matrix. The dominant eigenvector decides the relative importance of the

places.

2.2 Related Technology

2.2.1 Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised learning methods commonly

used for classification problems. Viewing data of two classes as two sets of vectors

in an n-dimensional space, an SVM construct a separating hyperplane in the space,

which maximizes the margin between the two sets of vectors. With additional ker-

nel functions, an SVM may transform the data points in the n-dimensional space to a

higher dimensional space. The transformation may be non-linear; thus though the clas-

sifier is a hyperplane in the high-dimensional feature space it may be non-linear in the

original input space. Radial basis function is a commonly used kernel for SVM model.

Figure 2.1(a) is an example with data points of 2 classes in a 2-dimensional space, and
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Figure 2.1(b) shows a separating hyperplane which may be used to distinguish the 2

classes.

(a) Data points of 2 classes

in a 2-dimensional space

(b) A separating hyperplane

of the 2 classes

Figure 2.1: An example of separating hyperplane learned by SVM. This hyperplane

can distinguish two classes in the n-dimensional space.

2.2.2 Linear Conditional Random Fields

Conditional Random Fields (CRFs) [15] provide a probabilistic framework for labeling

structured data. In particular, linear CRFs have been extensively applied to sequence

labeling problems in many fields. Unlike generative models which capture the joint

probability of labels and observations, CRFs model the conditional probability dis-

tribution over labels given one particular set of observations. With the conditional

nature, CRFs result in the relaxation of the independence assumptions required by

HMMs. Additionally, CRFs avoid the label bias problem exhibited by conditional

Markov models based on directed graphical models.

To define the CRF model, let G = (V,E) be an undirected graph structure con-

sisting of two vertex sets X ⊆ V and Y ⊆ V , where X represents the vertex set of
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Figure 2.2: An example of linear-chain CRF structure. In this structure, the hidden

nodes Y are connected as a chain and each Yt is connected to the previous, current,

and next observations.

observation nodes and Y represents the vertex set of hidden nodes. Figure 2.2.2 is

an example of CRF graph structure, in which the the hidden nodes Y are connected

as a chain and each Yt is connected to the previous, current, and next observations.

This kind of structure is commonly seen in sequence labeling problems. Let C be

the set of the fully connected subgraphs, called cliques, in a CRF, where each clique

c is composed of vertices Xc ⊆ X and Yc ⊆ Y . Then, a CRF factorizes the condi-

tional probability distribution into a product of non-negative clique potential functions

Φc(Xc, Yc). Clique potential functions map the variable configuration to a real num-

ber to capture the compatibility among the variables; the higher the potential function

value, the more likely the configuration of the hidden nodes and the observations. Us-

ing potential functions, the conditional probability distribution over the hidden nodes

given the observations is written as

P (Y |X = x) =
1

Z(x)

∏
c∈C

Φc(xc, Yc) (2.1)

where x denotes the observation values assigned to X and Z(x) =
∑

y

∏
c∈C Φc(xc, yc)

is the normalization term.

Without loss of generality, the potential functions Φc(Xc, Yc) can be described by



14 CHAPTER 2. BACKGROUND

log-linear combinations of feature functions fc(Xc, Yc). That is,

Φc(xc, Yc) = exp {wT
c fc(xc, Yc)} (2.2)

where wT
c is the transpose of a weight vector. Combining Equation 2.1 and 2.2, the

conditional probability distribution could be expressed as the following form.

P (Y |X = x) =
1

Z(x)
exp

∑
c∈C

wT
c fc(xc, Yc) (2.3)

Suppose the feature functions are pre-determined. The learning phase of CRF

model is to estimate the weight vector w which maximize the conditional probability

P (y|x) given the training data with labels y and observations x, while the predicting

phase of CRF is to find the probability distribution of P (Y |x,w).

2.2.3 OPTICS

OPTICS (Ordering Points To Identify the Clustering Structure) [1] is a density-based

clustering algorithm. Modified from DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) [6], OPTICS not only finds the dense parts the data point

distributed but also provides a mechanism to derive the hierarchy of clusters at different

level of granularity. In DBSCAN, a spatial distance threshold ε is used to define the

proximity of two points. If the number of proximity of a specific point exceeds a

predefined parameter MinPts, the point is regarded as in the core of one cluster, and

its proximity belongs to the same cluster it is in. Adapting from DBSCAN, OPTICS

defines the core-distance and reachability distance for each data point. The core-

distance of a data point p is the distance to its (MinPts − 1)-th neighbor. In the
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other word, the core-distance records the minimum distance threshold under which

the data point is a core object. If the distance to its (MinPts−1)-th neighbor is larger

than the given threshold ε, the core-distance is set to UNDEFINED . The reachability-

distance of a data point p with respect to another data point o is the smallest distance

threshold such that p is directly reachable from o if o is a core object. During the

clustering process, only the smallest reachability-distance is recorded for generating

the order and determining the boundaries of clusters.

With the two definition, OPTICS generates the order of points by incrementally

picking a data point, calculating the core-distance, updating the reachability-distance

of unprocessed data objects, and picking the next data point with smallest reachability-

distance to be processed. The algorithm is shown in Algorithm 1 and 2.

After generating the order, by ploting the reachability-distance along the order of

data points to form the reachability-plot, the hierarchical cluster structure can be ob-

tained easily. Since points belonging to a cluster have a low reachability distance to

their nearest neighbor, the clusters show up as valleys in the reachability plot. How-

ever, setting different thresholds may extracted clusters with different boundaries. An

automatical way to determine the boundary of clusters is to detect the difference on

reachability-distance between consecutive data points. If the difference is greater than

ξ%, the points may be the local boundary to cut the clusters.



16 CHAPTER 2. BACKGROUND

Algorithm 1 OPTICS(objects, ε, MinPts)

inputs: objects, the set of data points

ε, the maximum distance threshold

MinPts, the minimum size to be called dense

returns: order, the ordered objects

1: order← {}
2: for i = 0 to sizeof(objects) do
3: object← objects(i)
4: if object has not been processed then
5: object.reachability-distance← UNDEFINED
6: ExpandOrder(objects, object, ε, MinPts, order)

7: end if
8: end for
9: return order

Algorithm 2 ExpandOrder(objects, object, ε, MinPts, order)

inputs: objects, the set of data points

object, the data point to be expanded

ε, the maximum distance threshold

MinPts, the minimum size to be called dense

order, the set to records the order

1: object.processed = true
2: neighbors← neighbors(objects, object, ε)
3: SetCoreDistance(object, neighbors, ε, MinPts)

4: order.append(object)
5: if object.core-distance �= UNDEFINED then
6: UpdateReachabilityDistance(object, neighbors)

7: while exists unprocessed data points with real-value reachability-distance do
8: next← the unprocessed data point with smallest reachability-distance
9: ExpandOrder(objects, next, ε, MinPts, order)

10: end while
11: end if



Chapter 3

GPS Trajectory Analysis

3.1 Problem Definition

With advanced location tracking technologies using global satellites and local wireless

access points, the accuracy and precision of positioning are getting better and better.

In addition, with the growing popularity of GPS-enabled mobile devices for general

people, users can locate themselves on the map and enjoy location-based services such

as real-time navigation and local POI search. Moreover, users can log their positions all

the time for latter reference, such as travel route sharing and photo geo-tagging. Thus,

personal daily trajectories are more available nowadays. However, these trajectories

are mostly only used for visualizing the whereabouts on map services, and seldom

location-based services consider the whole trajectory to provide services. In order to

utilize the whole trajectory, a model to describe the trajectory is necessary. As a result,

it brings out the two questions:

1. What information could be retrieved from the trajectories?

17
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2. How to use the information to describe a person’s trajectories?

Two main elements in the trajectories are the visiting locations and the transporta-

tion modes taken. With these information, the significant locations in one person’s

daily life and how the person move among them could be inferred. As a result, we

proposed two models to describe a user’s trajectories: Location-Transportation Se-

quence and Significant Place Set.

3.1.1 Location-Transportation Sequence

To utilize the trajectory data, an appropriate model is necessary for easy understanding

and manipulation. Observing how people communicate and understand one’s moving

trajectory helps us define what are the important elements in one trajectory. In our

experiences of having conversations with others about travel, there are two popular

questions people care about: where the person has been and how the person trav-

els. Similar concept has been proposed by Brosset et al. in [4] using location-action-

location triples to represent a trajectory segment. They have shown that this model

can fit several sentences people used in describing their trajectories. Hence, we pro-

pose a location-transportation sequence to describe where the person has been and how

the person travels, and the technical problem is to generate the location-transportation

sequence from the position logs.
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3.1.2 Significant Place Set

After abstracting the trajectories into location-transportation sequences, a set of visited

place could be obtained by union all the stops in the trajectories. Among these stops,

some plays more important roles in the trajectory, such as home and office, while some

are less meaningful, such as crossroads. For each place, some measures could be used

as features, like the visit frequency and the length of staying duration, to estimate the

significance of each place to the user. Generally speaking, significant places are those

where user visits often and regularly and stays for a long period of time. With the

estimated significances of each place, the importance order of places to the user could

be retrieved and the most important places the user visits in daily lives could be used

to describe the user.

3.2 Notations

Trajectory data are temporally-ordered logs of user position, which may be retrieved

from tracking systems such as GPS. Positions from outdoor tracking devices are rep-

resented in the latitudes and longitudes.

Definition 1 Position Log

A position log g =< t, φ, λ > is a record at time t ∈ T at latitude φ ∈ [−90, 90] and

longitude λ ∈ [−180, 180].

Definition 2 Trajectory

A trajectory Traj (tb, te) between time tb and te is a temporally-ordered sequence of
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position logs during the given duration.

Traj (tb, te) = (g1, g2, · · · , gn) (3.1)

where tb ≤ gi.t < gj.t ≤ te, for all 1 ≤ i < j ≤ n.

A person may move on foot or with other transportations, such as bikes, cars,

metros, and other vehicles. And at any particular time, a person can only move with one

transportation mode. A transit happens when a person changes from one transportation

mode to another.

Definition 3 Transportation Mode Function

Let the set of transportation modes be denoted as TM. The transportation mode

function ftm : T→ TM maps any particular time to one transportation mode.

Definition 4 Transit Event

A transit event (c) changes from transportation mode tmc,b to tmc,e during time [tc,b, tc,e]

if ftm(tc,b) = tmc,b, ftm(tc,e) = tmc,e, tmc,b �= tmc,e and there is no other logs except

the boundary logs; that is, |Traj (tc,b, tc,e)| = 2.

A place is a location or region where users may stay for a period of time for some

purposes such as working, eating, having fun, resting, and other means. Homes, of-

fices, restaurants, tourist spots are all kinds of places. The collection of all places are

denoted as P, and the instances could be obtained from existing commercial datasets

or from user generated contents. At a particular time, a person can visit at most one

place; that is, the person may not visiting any place if the user is just passing by the

location without intention to make a visit.
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Definition 5 Visiting Status

The visiting status of a user at a particular time is indicated by the place the user being

visiting or a “not visiting” status if the user is just passing by the location without

intention to make a visit. The mapping function is denoted as fvs : T→ P ∪ {null}

Definition 6 Stop Event

A stop event (s) is a trajectory within a time interval [ts,b, ts,e] which satisfies the con-

dition that there exist a place p ∈ P such that the visiting status during the whole time

interval is p; that is, fvs(t′) = p for all ts,b ≤ t′ ≤ ts,e. A transit event c is a special

kind of stop event.

As a result, a trajectory could be simplified as a sequence of stop events and the

transportation mode taken between two events. In this way, the trajectory is more

understandable than the sequence of log points.

Definition 7 Location-Transportation Sequence

A Location-Transportation Sequence (LTS) of trajectory in [tb, te] is a concatenation

of stop events and the transportation modes.

LTS (tb, te) = (s1, tm1, s2, tm2, · · · , sm−1, tmm−1, sm) (3.2)

where tb ≤ tsi,b < tsi,e < tsj ,b < tsj ,e ≤ te, for all 1 ≤ i < j ≤ m, ftm(t′) = tmi if

tsi,e < t′ < tsi+1,b and fvs(t
′) = null if tsi,e < t′ < tsi+1,b.

Definition 8 Significant Place Set

A Significant Place Set of a person is a fuzzy set SPS = (P, Sig) where P is the place
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set and Sig : P→ [0, 1] is the significance function. An α-Significant Place Set is the

α-cut of the fuzzy set which contains the places with significance value larger than α.

As a result, the task of significant place mining is to find the significance function

of the person.

3.3 Proposed Solution

With the definitions above, the core problem to find the location-transportation se-

quence of a trajectory is to find the transportation mode function and visiting status

function from the raw GPS logs. In other words, given the trajectory Traj (tb, te) =

(g1, g2, · · · , gn), the task is to find the corresponding functions ftm and fvs of trans-

portation mode and visiting status.

Since one person can only have at most one record at a given time, it is impossible

to directly learn ftm and fvs on time domain; instead, we extracted features from the

observations O : T → R
l where l is the number of features, and learn the f∗

tm : R
l →

TM and f ∗
vs : R

l → P ∪ {null}.

Moreover, the assumption is made that when a person intend to visit one place, the

person will approach the place on foot. With this assumption, we could combine f ∗
tm

and f∗
vs into one f∗ : Rl → TM ∪P as the following definition.

f ∗(Ot) =

⎧⎪⎪⎨
⎪⎪⎩

f∗
vs(Ot), if f∗

vs(Ot) �= null

f∗
tm(Ot), otherwise

(3.3)

Then, we only have to learn one function instead of two.
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Figure 3.1: The proposed solution flow.

The learning process consists of segmentation, feature selection, and model learn-

ing, while the testing process uses the learned model to label the trajectory. As to

segmentation, the trajectory can be chunked into segments in respect to unit time or

unit distance. Features related to speed, heading direction, and other contextual infor-

mation will be extracted for each segment. Support Vector Machine (SVM) and Linear

Conditional Random Field (LCRF) models [15] could be used to train the correspond-

ing classifier or labeler. Details of the transportation learning process are described in

Chapter 4.

For the significant place set problem, we assume zero-significance to places the

user has never been to. Then the domain of significant function shrinks to only the

visited places of the user. If the place set P is pre-defined from existing sources, and

user generated contents are not dynamically inserted into the set, the stop locations

are associate to one place by choosing the nearest neighbor; if user generated contents

are considered, clustering algorithm is applied on the stop locations to group nearby

locations, and check if it is an existing place or a new place. After associating the stop

events to places, measures such as the visit frequency, total stayed time, average stayed
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time were calculated and the significances are derived from these measures. Details of

the significance estimation are described in Chapter 5.



Chapter 4

Location-transportation Sequence

People may visit several places in their daily lives at different time. When visiting a

place, people stayed at the location of the place for a period of time depending on the

purpose of the visit. For example, people may stay in their office buildings for whole

afternoon, go to a restaurant for dinner for around 30 minutes, then go home to rest

until next morning. Where a person has been, when the person was there, and how

long the person has stayed shapes the life of the person.

In addition, people may take different transportation modes in their daily lives.

When traveling long distance crossing counties, people may utilize the rails or high

speed roads. Inside a city, cars and motorcycles are common choices to move from

one place to another place. Sometimes, when time permits and haste is unnecessary,

people would ride bikes or walk on foot instead. Understanding the transportation

mode people choose may give more information on how people feel the travel experi-

ence.

As defined in Equation 3.2, the location-transportation sequence, a concatenation

25
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of stop events and transportation modes, could be used to summarize the trajectory

during a time period. The sequence is constructed based on the output of the general

mode function described in Equation 3.3. In this chapter, the problem of learning the

transportation mode and visiting status from GPS trajectories is tackled.

4.1 Preprocessing

4.1.1 Trajectory Segmentation

Most of the time, people do not change transportation mode frequently; people will

utilize the transportation taken for some amount of time and travel some amount of

distance. As result, we can first partition the trajectories into segments, and learn the

transportation mode for each segment instead of for each position log. The advantages

of using segments instead of logs in learning are two-fold. On one hand, moving is a

continuous behavior, and more features could be extracted from the segments to help

judge the transportation mode. On the other hand, some position logs may be noisy

due to uncontrollable reasons such as sensor errors, and the incorrect logs may cause

inference error. By observing the whole segments and extracting statistics features, the

effect of noisy logs may reduced. Figure 4.1.1 illustrates the concept of segmenting

the positions logs into chunks and further forms the chain of segments.

Intuitively, there are two kinds of segmentation methods: uniform duration seg-

mentation and uniform length segmentation. The assumption is that people do not

change activities during a short period of time and a short travel distance. The uni-
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Figure 4.1: Trajectory segmentation process. Position logs are segmented into small

chunks as the units in transportation mode and visiting status learning.

form duration segmentation partition the trajectories every θt seconds, and the uniform

length segmentation partition the trajectories at every θd meters of moving. The differ-

ence of both methods is that uniform duration segmentation produces segments with

the same duration, one minute for example, while the uniform length segmentation

produces segments with the same length, 50 meters for example. Once segmented into

several short trajectories, features could be extracted, and the general mode could be

learned.

In addition to uniform duration segmentation and uniform length segmentation, we

tried another grid-based segmentation approach to chunk the trajectories, which we

called uniform grid segmentation. The concept behind the uniform grid segmentation

is that people seldom change activities when they stay at a small region. The Algorithm
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Algorithm 3 UniformGridSegmentation(trajectory, θg)

inputs: trajectory, a sequence of position logs

θg, the length threshold of the grid side

returns: segments, a sequence of segments

1: segments← {}
2: segment← {}
3: ResetBound(bound, trajectory(0)) {reset bounds according to first log}
4: for i = 0 to sizeof(trajectory) do
5: log← trajectory(i)
6: UpdateBounds(bound, log) {extend bounds to cover log}
7: if bounds.side > θg then
8: segments.append(segment)
9: segment← {}

10: ResetBound(bound, log) {reset bounds according to log}
11: end if
12: segment.append(log)

13: end for
14: segments.append(segment)
15: return segments

3 describes the steps to generate segments by uniform grid segmentation. For each

new segment, the bound of the grid is incrementally extended with the next position

log until the side length is larger than a given threshold. Thus, the algorithm produces

segments all within a square with side length θg.

In the training phase, we annotate each segment as the majority transportation mode

or visiting status of the position logs containing in the segment. As a result, each

segment has only one annotation representing the transportation mode and visiting

status to remove the ambiguity at the boundary of different transportation mode and

visiting status.
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4.1.2 Feature Extraction

After partition the trajectory into segments, features including the duration and dis-

tance traveled, the average of instantaneous speed, the change of heading direction,

and other measures of observed evidences. The features considered in this research are

listed in Table 4.1, and details explanations are given in the following paragraphs.

A position log contains the information of time, latitude and longitude. While some

loggers may record additional information such as instantaneous speed and heading

direction (or bearing), some loggers do not have these data. As a result, we apply

formulas to calculate distance and bearing between two positions and further derive

the instantaneous speed. The most common distance measure of two points on the

map is the Euclidean distance. However, the earth is roughly a great sphere, and the

latitude and longitude are defined globally in respect to the earth surface instead of

a plane; that means, the Euclidean distance is not an accurate measure and the scal-

ing parameter depends on the latitude value. We modified Vicenty’s formulas [23] to

approximate the distance and heading direction between two positions when the in-

formation is not available from sensors. Vincenty’s formulas [23] were designed to

calculate the distance between two points on an ellipsoid. In this work, the formulas

are simplified assuming that the Earth is a sphere with radius 6372.795 kilometers,

and the geodesic distance between two points in meters is the radius times the angular

distance Δσ̂ which is given in the Equation 4.1; the heading direction is given in the

Equation 4.2. In consequence, we estimate the value concerning the distance to the

next position log as in the Equation 4.3. In addition, we calculate the speed change

ratio using the Equation 4.4.
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Table 4.1: Features extracted from trajectory segments.

Category Notation Description

Duration Δt The total duration traveled (Δt = te − tb)

Distance Δd The total distance traveled (Δd =
∑

dist(gi, gi+1))

Position Rφ, Rλ The range of latitude and longitude

σφ, σλ The standard deviation of latitude and longitude

σφ,λ The co-variance of latitude and longitude

L2C The mean of L2C (length to center)

σL2C The standard deviation of L2C (length to center)

G2,L2C The kurtosis of L2C

Speed v̄ The average speed (v̄ = Δd/Δt)

E[v] The average of instantaneous speeds (E[v] =
∑

vi/n)

vmaxi
The i-th largest speed, i = 1, 2, 3

vmini
The i-th smallest speed, i = 1, 2, 3

vpi
The i-th percentile of speed i = 10, 90

SR(α) The portion of speed below α over the duration

Speed v′
The average of instantaneous speed change

Change SCR(β) The portion of speed change greater than β percent

Direction h′
The average of heading direction change in degrees

Change DCR(γ) The portion of heading direction change greater than γ

Temporal TMor([tb, te]) The membership of morning over the segment

Context TNoo([tb, te]) The membership of noon over the segment

TAft([tb, te]) The membership of afternoon over the segment

TEve([tb, te]) The membership of evening over the segment

TNig([tb, te]) The membership of night over the segment

WDi([tb, te]) Whether it is the i-th day of week. (Sun, Mon, . . . , Sat)
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φi = gi.φ

φj = gj.φ

Δλ = gj.λ− gi.λ

dist(gi, gj) = 6372795× arctan (ϑ1(gi, gj)) (4.1)

ϑ1(gi, gj) =

√
(cosφj sin(Δλ))2 + (cosφi sinφj − sinφi cosφj cos(Δλ))2

sin(φi) sin(φj) + cos(φi) cos(φj) cos(Δλ)

heading(gi, gj) = arctan (ϑ2(gi, gj)) (4.2)

ϑ2(gi, gj) =
cos(φj) sin(Δλ)

cos(φi) sin(φj)− sin(φi) cos(φj) cos(Δλ)

vi = dist(gi, gi+1)/(gi+1.t− gi.t) (4.3)

v
′
i = |vi+1 − vi|/vi (4.4)

hi = heading(gi, gi+1) (4.5)

h
′
i = hi+1 − hi (4.6)

After estimating the speed and heading direction, we can extract features from the

segments. For a trajectory segment during the interval [tb, te], the duration is the length

of the interval in seconds (Δt = te − tb) and the total distance is the summation of the

distance between two consecutive position logs. The ranges and standard deviations of

latitude and longitude are used to estimate the spatial span of the segment. The mean

of latitude and longitude is regarded as the center of the segment, and L2C is the length

from the log position to the center. To measure whether the trajectory is on a straight

line or nearly randomly around the center, the correlation coefficient and the Kurtosis

of L2C are used to capture this characteristic.
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The average speed over the segment and the average of instantaneous speed are

both used to represent the pace. In addition, we picked the largest three, the 9 decile,

the smallest three, and the 1 decile of speed to estimate the range. Other statistical

features about speed change and heading direction change are also used. Moreover,

we adopted the stop rate (SR), speed change rate (SCR), and direction change rate

(DCR) from [29].

Temporal contextual features are expected to enhance classification results. For

each time period of a day, a discrete membership function is defined on the domain

of seconds. For each position log, the membership function tells how likely the time

belongs to the time period. For a trajectory with n logs, the membership value is

defined as the average of the membership values for each log.

In total, there are 37 features extracted for each segments. Most statistic measures,

including average, standard deviation, variance, and kurtosis, are calculated using the

Apache Commons Math package [7].

4.2 Classification and Sequence Labeling

There are two different ways to solve the transportation mode learning problem. In one

way, the segments could be viewed as independent instance given all the observed evi-

dences. General classifiers such as Decision Tree and Support Vector Machine (SVM)

could be used for inference. In the other way, trajectories are sequential data, and dif-

ferent transportation modes taken for previous segments may bring different transition

probabilities for the following segments. From this viewpoint, the transportation mode
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learning problem is a sequence labeling problem, and probabilistic models like Hidden

Markov Chain (HMM) and linear chain Conditional Random Field (LCRF) [15] could

be adopted to perform the inference. In this research, we compared SVM and LCRF

in experiment, and we use libSVM [5] and CRF++ [13] as the inference tool.

4.2.1 SVM

Support vector machine (SVM) solves the classification problem by learning the sep-

arating hyperplanes in the n-dimension feature space. In this thesis, we viewed each

segment as a vector in the 37-dimension feature space, where each dimension rep-

resents one feature listed in Table 4.1. We use libSVM [5] as the inference tool to

classify these vectors. As the parameter selection, we used radial basis function as

the basic function, and we tested 5 values, 0.1, 0.5, 1.0, 5.0, and 10.0, as the cost of

misclassification penalty.

4.2.2 LCRF

A Conditional Random Field (CRF) uses an undirected graph to model the dependency

structure among hidden nodes and the observation nodes, and learns the conditional

probability distribution over the hidden nodes given the observations. In this thesis,

we viewed each label of transportation mode and visiting status of segments as the

hidden nodes, and the representing features as the observations. Figure 4.2 shows

the dependency structure between the labels and the observations. Each segment is

represented by the 37 features. Without loss of generality, we use X1
i , X2

i , . . . , X37
i
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Figure 4.2: The CRF model used in this thesis. The assumption is that the transporta-

tion mode and visiting status of segment i depends on the 37 features of observations

of segment i1, i, and i+ 1.

to represent the features respectively. The assumption is that the transportation mode

and visiting status of segment i (Yi) depends on the label of previous and next segment

(Yi−1, Yi+1) and the 111 features of observations of the previous segment, the current

segment, and the next segment (X1
i−1, . . . , X37

i−1, X1
i , . . . , X37

i , X1
i+1, . . . , X37

i+1).

CRF uses feature functions to calculate the conditional probability distribution

(Equation 2.3). The feature functions compose of two parts: the temporal relation-

ship between two consecutive labels and the uni-gram functions between the label and

a feature of one segment.

For each combination of consecutive hidden nodes and two label values, the in-

dicative feature function is defined as

fa1,a2(Yi−1, Yi) =

⎧⎪⎪⎨
⎪⎪⎩
1, if Yi−1 = a1 and Yi = a2

0, otherwise

where a1, a2 ∈ TM ∪P.

For each combination of a hidden node and its surrounding 111 features, a set of
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feature functions is defined for every transportation mode and visiting status value as

fa,j,k(Xi+j, Yi) =

⎧⎪⎪⎨
⎪⎪⎩

x, if Yi = a and Xk
i+j = x

0, otherwise

where a ∈ TM ∪ P, j = −1, 0, 1, and k = 1 . . . 37. The value is rounded to seven

places after decimal separator.

In this research, we use CRF++ [13] for the implementation. CRF++ is an open

source implementation for labeling sequential data. One advantage of CRF++ is that

it allows flexible definition of the graph structure and the cliques. CRF++ uses for-

ward/backward algorithms for computing the marginal probabilities and the normal-

ization constant. Its training process is based on L-BFGS, a quasi-newton algorithm

for large scale numerical optimization problem.

In training phase, given the training data D = (D1, D2, . . . , DN) where Di =

(Ai, Xi), the learning criteria is to find the weight vector w that maximizes the log-

likelihood of the training data. In prediction phase, given the observation of segments

X = X1, X2, . . . , XN , we picked the label sequence Y = Y1, Y2, . . . , YN with the

maximum conditional probability as the output.

The primary difference between a CRF model and an SVM model is that CRF can

consider the temporal relationship of transportation mode and visiting status between

segments, while SVM views all segments as independent observations without tem-

poral relationship. However, trajectories are sequential data. It is commonly believed

that the transporation mode and visiting status of current segment has relation to the

ones of previous and next segments. As a result, we expect that CRF model should be

more capable than SVM model of dealing the transportation mode learning problem.
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4.3 Performance Measures

For a trajectory Traj (tb, te) = (g1, g2, . . . , gn) of n position logs, the ground truth A =

(A1, A2, . . . , An) is the annotated visiting status or transportation mode. The segmen-

tation process partitioned the trajectory into a segmented trajectory Ts = (T1, T2, . . . , Tk)

of k segments, and the corresponding ground truth A
′
= (A

′
1, A

′
2, . . . , A

′
k) is reassigned

to the segments. And we denoted the inference result as Y
′
= (Y

′
1 , Y

′
2 , . . . , Y

′
k ).

To evaluate the performance of the learning algorithm, the accuracy per segment

(APS) is used. The accuracy per segment (APS) is the rate of matching labels be-

tween the inference result and the ground truth. Thus, it is defined as

APS(Y
′
, A

′
) =

∑k
i=1 δ(Y

′
i , A

′
i)

k
(4.7)

δ(Y
′
i , A

′
i) =

⎧⎪⎪⎨
⎪⎪⎩
1, if Y

′
i = A

′
i

0, otherwise

However, the accuracy per segment is easily affected by the segmentation method.

As a result, the accuracy per log (APL), the rate of matching labels between the

inference result and the ground truth on the log granularity, is measured. To mea-

sure the per log accuracy, we mapped the learned labels Y
′

on segments to logs as

Y = (Y1, Y2, . . . , Yn), where Yi = Y
′
j if gi ∈ Tj . Thus, the accuracy per log (APL) is

defined as

APL(Y,A) =

∑n
i=1 δ(Yi, Ai)

n
(4.8)

The accuracy per segment and accuracy per log measure the overall inference per-

formance. However, these measures may be affected by the dominant transportation
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mode and visiting status. For example, to a person who walk a lot, a system that always

predicts the transportation mode as “walk” can get higher accuracy than random guess

due to the high coverage of “walk”. As a result, we compare the recall value of each

class to determine the performance on each category. The measure is defined as

Recall(Y
′
, A

′
, a) =

∑k
i=1 δ(Y

′
i , A

′
i, a)∑k

i=1 δ(A
′
i, a)

(4.9)

δ(Y
′
i , A

′
i, a) =

⎧⎪⎪⎨
⎪⎪⎩
1, if Y

′
i = A

′
i = a

0, otherwise

where a ∈ TM ∪P is the category we want to measure.
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Chapter 5

Significant Place Set

In this chapter, the problem of mining personal significant places from GPS trajectories

is tackled. After generating the location-transportation sequences using features and

algorithms mentioned in Chapter 4, we obtain a collection of stop events S from the

sequences. The places of these stop events form the place set for the user. Since there

may be shifts on position log between each visiting to one place, clustering is applied to

avoid redundancy. Features like visiting frequency, staying duration and travel efforts

are extracted for each place in the place set. Then significances are estimated on the

basis of the features.

5.1 Location Clustering

Since people may visit a place at different entrances at different time, it is possible

that the locations identified in visiting events may be slightly shifted around the real

position of the place. Hence, after identifying the stop locations, we cluster the nearby

39
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locations into places. We adapted OPTICS (Ordering Points To Identify the Clustering

Structure) [1] as the clustering algorithm, which is briefly described in Section 2.2.3.

In implementation, we used WEKA 3.6 [24] as the tool to generate the ordering.

5.2 Significance Estimation

Among the places people visit in their daily lives, some places are more important

and carry more semantic information to the person than other places. For example,

the convenient store which was visited every day may play important role in one’s

life, while the restaurant visited once a month may be not that important. Generally

speaking, significant places are those where user visits often and regularly and stays

for a long period of time. In addition, the places where people may take longer travel

time and distance to visit are potentially important.

5.2.1 Feature Selection

To estimate the significance of a place, we use the features listed in Table 5.1. The

following paragraph explains the features extracted from the location-transportation

sequences.

• Visit frequency The visit frequency (frv) counts the rate of visiting a place

during the given interval. General speaking, places where people visit often, like

convenient stores, are more important and significant than those seldom visited,

like supermarkets. But the significance may be biased due to intensive visiting
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Table 5.1: Features describing the visits of a place p.

Notation Description

frv The number of all stop events at the place

frvd The number of days when more than one stop event occurred

frvid The average number of visits in a day when more than

one stop event occurred at that day

drs The total length of stay duration

drs The average stay duration per stop event

drsd The average stay duration per day

drb The average duration between two visit to the place

drbd The average duration (in days) between two days when

visiting to the place

tfd The average travel distance from previous location

tft The average travel time from previous location

in particular day. For example, when moving house, people may travel back

and forth between the old and the new houses. In this case, the trajectory will

be summarized with a location-transportation sequence with several short stop

events at the two places, hence increasing the frequency of both places. To

capture the characteristic of this kind of situation, the number of visiting days

(frvd) and the average frequency of visits per day (frvid) are used. Number of

visiting days (frvd) views visits happened at the same day as one occurrence

and ignores the frequency of visits during a day, while frequency of visits per

day (frvid) estimates the amount of visit happened during a day.

• Stay duration Another intuitive measure of significance is the total duration

spent at a place (drS). General speaking, places where the person spent more



42 CHAPTER 5. SIGNIFICANT PLACE SET

time are more important and significant. However, duration may be affected by

visit frequency, and the average stay duration (drs) could reduce the effect of

visit frequency. Similar to frequency measure, the stay duration may be biased

due to intensive visiting in particular day. Hence, we accumulate the stay dura-

tions of a place of a day when more than one visits occurred, and calculate the

average stay duration per visiting day (drsd).

• Interval between two visits

In contrast to stay duration, the interval between two visits captures how possi-

bly the user will return to the place again. The shorter the interval between two

visits, the more significance the place plays in one’s life. Similar to stay dura-

tion, intensive visiting in particular day may affect the average value of interval

length. Hence, in addition to the average interval length (drb) we also calculate

the average day length (drbd) between two stop events and visiting days.

• Travel efforts

Some places are substitutable, such as convenient stores. Most people prefer go

to the convenient store with the least travel effort instead of spending hours to

reach one specific store miles away. Real significant places are those people will

visit even with much travel effort. In our work, we use the travel distance and

travel time from previous stop location as the travel efforts, and average of travel

efforts of distance (tfd) and time (tft) are used.
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5.3 Performance Measures

To measure the performance of significance estimation, we ask users to annotate the

significant places from their viewpoints in the decreasing order. The user assigns an

ordered list of significance places SPA = (SPA,1, SPA,2, . . . , SPA,k) as the ground

truth where each place is represented by a point position and the relative significance

is in decreasing order. That is, from the user’s own viewpoint, SPA,1 is more signif-

icant than SPA,2. Places not listed in the ground truth list are regarded as insignifi-

cant places to the user. We denoted the α-cut significant place set derived from the

location-transportation sequences as SPY (α) = (SPY,1, SPY,2, . . . , SPY,k′ ). Noted

that the derived place list may not be total ordered by the significance. Take Figure

5.1 for example. The user assigns five significant places as (A,B,C,D,E) while the

system finds six places represented in BOPOMOFO alphabets.

Figure 5.1: Example result of significant place set mining.
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5.3.1 Precision and Recall

Given the annotated places by the user as the ground truth (SPA) and the inferred

places as prediction (SPY ), we use precision and recall to measure the prediction ac-

curacy. An inferred place SPY,i is regarded as the same as a place in the ground truth

list SPA,j if the distance between the two place positions are within ζ meters and they

are mutually the closest neighborhood. We use the delta function to define the match-

ing between two places.

δ(SPY,i, SPA,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if dist(SPY,i, SPA,j) < ζ and

dist(SPY,i, SPA,j) ≤ dist(SPY,i′ , SPA,j) and

dist(SPY,i, SPA,j) ≤ dist(SPY,i, SPA,j′ )

0, otherwise

Take Figure 5.1 for example. The pairs of places linked with dashed lines match

each other because they are mutually closest to each other and the distance is smaller

than the threshold ζ. Thus, the precision and recall are defined as follows.

Precision(SPY , SPA) =

∑k
′

i=1

∑k
j=1 δ(SPY,i, SPA,j)

k′ (5.1)

Recall(SPY , SPA) =

∑k
j=1

∑k
′

i=1 δ(SPY,i, SPA,j)

k
(5.2)

5.3.2 Significance Ordering

People can compare the relative significance order of two places easily, but can hardly

estimate a real value as the significance. Therefore, we evaluate the significant function
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by pairwise comparison of the places. Given two derived places SPY,i and SPY,j and

their corresponding significance Sig(SPY,i) and Sig(SPY,j), the comparison function

is defined as

sgn(SPY,i, SPY,j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if Sig(SPY,i) < Sig(SPY,j)

−1, if Sig(SPY,i) > Sig(SPY,j)

0, otherwise

(5.3)

If the ground truth is given, the real order of two derived places SPY,i and SPY,j should

be the order of corresponding places in the ground truth list. Hence, the comparison

function is defined as

C(SPY,i, SPY,j, SPA) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if δ(SPY,i, SPA,i′ ) = δ(SPY,j, SPA,j′ ) = 1 and i
′
< j

′

−1, if δ(SPY,i, SPA,i′ ) = δ(SPY,j, SPA,j′ ) = 1 and i
′
> j

′

0, otherwise

(5.4)

The strict ordering accuracy (OAstr) is defined as portion of pairwise comparison

which is consistent with the ground truth list. In the definition, Hα[x] is the Heaviside

step function which defines H[0] as α.

OAstr(SPY , SPA) =

∑k
′

i=1

∑k
′

j=i+1 H0[sgn(SPY,i, SPY,j)C(SPY,i, SPY,j, SPA)]∑k′

i=1

∑k′

j=i+1 |C(SPY,i, SPY,j, SPA)|
(5.5)

Hα[x] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if x > 0

α, if x = 0

0, if x < 0
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5.3.3 NDCG

NDCG (normalized discounted cumulative gain) [11] is a common measure of effec-

tiveness in information retrieval when items have different relevance to the users and

highly relevant items are expected to appear early in the the ranked result. In our prob-

lem, the relevance of each place is represented by the significance given by the user,

and an ideal significant measure should ranked the places in accordance with the sig-

nificance values. Figure 5.2 illustrates the calculation of NDCG. First, each significant

place on the list of user’s annotation receives a score as the length of the list plus one

minus the order of the place. That is, the n-th least significant place annotated by the

user has score of n. For each place in the result list, the gain value is set as the score

of its corresponding matched place. Then, the NDCG value of a ranked result list can

be calculated.

Figure 5.2: Example of NDCG calculation.



Chapter 6

Experiment and Evaluation

To evaluate the capability of the proposed trajectory model, we invited some partici-

pants to collect their trajectories with commercial GPS loggers. The participants car-

ried the GPS loggers, and their positions were automatically recorded without manual

operation. The ground truth of trajectory segments were manually labeled off-line

either with a separate record sheet or on the experiment website.

6.1 The Dataset

6.1.1 Data Collection

In most previous work, researchers adopted the solution of connecting a Bluetooth

GPS receiver to the smart phone or PDA to record the GPS signals and display the

position immediately on the screen with the demo applications. In this research, two

commercial GPS loggers, Holux 241 (Figure 6.1(a)) and NCSNavi R150+ (Figure

6.1(b)), were used to collect the user trajectory.

47
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(a) Holux 241 (b) NCSNavi R150+

Figure 6.1: GPS loggers used in the experiments.

We invited 12 individuals to carry the GPS log with them for a long period of time.

Each person was asked to open the log when they are traveling among different places

in the city. For reducing the power consumption and increasing the time between

charges, participants were allowed to turn off the loggers when they entered indoor

environments and the GPS signals were lost. Due to different personal schedules and

willingnesses to reveal the schedules, different participants had different length of log-

ging period. But all participants recorded their trajectories for at least one week. Table

6.1 shows the data collection period and actual logged length for each participant.

6.1.2 Data Annotation

After collecting the logs, participants were asked to annotate the ground truth with the

annotation web page (See Figure 6.2). The page contains 3 parts: a map showing the

spatial part of trajectory, a time line showing the speed and heading direction change

along the time, and the annotation utilities. The annotatation labels are: “HOME”,

“WORK”, “DINING”, “STORE”, “HAVING FUN”, “TRANSIT”, “STOP”, “WALK”,



6.1. THE DATASET 49

Table 6.1: Statistics of dataset, including data collection period, logged length of tra-

jectories, annotated length of trajectories, and number of significant places. (a) Num-

ber of collected trajectories. (b) Number of annotated trajectories. (c) Users with “*”

sign are selected in the experiment of visiting status and transportation mode learning.

(d) Number of significant places annotated by user.

user begins ends (a) logged (b) annotated (c) (d)

mm/dd/yy mm/dd/yy length length

user01 08/12/08 03/06/09 426 546:14:05 63 87:27:19 * 9

user02 02/07/09 03/05/09 11 11:36:40 10 10:23:56 * 5

user03 11/12/08 03/05/09 130 42:55:09 38 06:50:16 * 9

user04 01/04/09 03/31/09 74 129:44:57 1 04:00:14 —

user05 01/21/09 02/05/09 15 27:21:35 12 25:04:28 * 6

user06 12/25/08 03/06/09 38 32:34:31 0 — 4

user07 02/16/09 03/06/09 8 11:12:43 0 — 18

user08 01/21/09 03/05/09 39 80:01:20 38 72:01:20 * 5

user09 03/18/09 04/03/09 32 74:25:17 0 — —

user10 12/31/08 01/14/09 29 25:12:18 2 01:37:42 5

user11 01/21/09 03/05/09 39 69:44:32 37 36:35:53 * 10

user12 11/14/08 01/09/09 21 05:45:52 0 — —

“BIKE”, “SCOOTER”, “CAR”, “METRO”, “MOVE”, “UNKNOWN”, and “NOISE”.

The label “STOP” and “MOVE” stand for a place or a transportation not listed in the

available selection, while the label “UNKNOWN” and “NOISE” are used to get rid

of unsure or noisy data. We use Google Maps API and Google Visualization API to

implement the map and time line.

The annotation process is as follows. Participants use the time line to select an

interval of time, and the trajectory during that interval is highlighted on the map. Then

participants select the corresponding labels from the label list and annotate the inter-

val. After annotating the whole trajectory, participants can save their annotations. If

the participants cannot recall any information about the trajectory, they can skip the tra-
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Figure 6.2: A screen shot of the off-line annotation web page.

Figure 6.3: A screen shot of the significant place annotation web page.
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jectory without annotation. Four of the 12 participants annotated all their trajectories,

while two of other eight participants annotated more than 30 trajectories. Their anno-

tated trajectories were used in the experiment of transportation mode and visiting status

learning. Table 6.1 shows the portion of annotated trajectories for each participant, and

those marked with a “*” sign at the last column are the ones whose trajectories were

used in the following experiment.

In addition to annotating the trajectories, participants were asked to mark their

significant places in their mind. On the labeling web page (See Figure 6.3), participants

first select the corresponding icon of the place at the upper-left corner and a new marker

will be generated. These icons respectively, from left to right, represent “Home or

Office”, “Restaurants”, “Stores”, “Fun places”, “Parking lots/Transit Stop” and “Other

places.” Participants can drag the markers to the position of the place and enter a

name for the place. As a consequence, a list item will be generated at the right side,

and a significant place is successfully created. After creating the significant place set,

participants can re-order the places by dragging the list items at the right side. Thus,

we obtained the ordered significant place set from the participants’ viewpoints.

6.2 Transportation Mode Learning

6.2.1 Experiment Steps

In our experiment, we compared nine segmentation methods: uniform duration seg-

mentation with 60 seconds, 90 seconds and 120 seconds, uniform length segmentation
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with 10 meters, 50 meters and 100 meters, and uniform grid segmentation with 10

meters, 50 meters, and 100 meters as the side length. For each trajectory segments

obtained, we extracted the features listed in Table 4.1, and we used CRF++ [13] and

libSVM [5] as the tools to implement the CRF and SVM model. For each participant

in the test group and each segmentation method, we first chronicled their trajectories

and divided the trajectories into 5 non-overlapping sets one-by-one to run 5-fold cross

validation. Figure 6.4 illustrates the composition of each fold. In addition, we ran cross

subject validation, which use trajectories of 5 participants to train the model and use

the other one’s trajectories to test.

Figure 6.4: Process of dividing trajectories into 5 folds.

6.2.2 Example Result

Table 6.2 and Table 6.3 show the accuracy per segment (APS) of 5-fold cross valida-

tion using CRF and SVM for different users and segmentation methods. From these

two tables, we found that when we choose uniform duration segmentation, CRF out-

performs SVM in all cases; when we choose uniform length segmentation and uniform
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grid segmentation, CRF outperforms SVM in most cases. And in general, using the

uniform grid segmentation achieves the best accuracy per segment. Table 6.4 shows

the accuracy per log (APL) of 5-fold cross validation using CRF for different users and

segmentation methods. However, different from the results of accuracy by segment,

the dominance on accuracy by log of uniform grid segmentation is not obvious.

Since the ultimate goal of transportation learning is to automatically identify the

transportation modes without bothering users to make annotations, we used leave-one-

subject-out validation to test whether the model trained by other users could be used on

a new user without any annotations. For each user, we learned the model from trajec-

tories of other five users and used the learned model to test the accuracy of the specific

user. Table 6.5 and Table 6.6 show the accuracy per segment (APS) of leave-one-

subject-out cross validation using CRF and SVM for different users and segmentation

methods. From these two tables, we found that CRF model is more capable of labeling

sequences from unseen users than SVM. Table 6.7 shows the accuracy per log (APL) of

leave-one-subject-out cross validation using CRF for different users and segmentation

methods.

However, the accuracy may be affected by the distribution of each transportation

mode and visiting status and their corresponding recall. In Table 6.8 and Table 6.9, we

list the confusion matrix of 5-fold cross-validation using CRF model on trajectories

of user11 with uniform length segmentation with 100 meters and uniform duration

segmentation with 60 seconds respectively. Due to display limitation on paper, the

rows and columns with labels not in the ground truth or inference result are removed.

From the rows of both tables, clearly that the lengths of different transportation modes
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Table 6.2: Accuracy per segment of 5-fold cross validation using CRF.

APS (%) Uniform Length (m) Uniform Duration (s) Uniform Grid (m)

10 50 100 60 90 120 10 50 100

user01 41.78 39.05 40.80 37.02 36.49 35.81 46.71 39.02 40.83

user02 66.17 67.24 65.88 38.57 39.64 37.60 70.04 70.78 68.28

user03 76.33 78.24 79.07 61.46 61.40 66.99 80.23 82.20 81.75

user05 40.52 51.39 60.04 27.16 27.31 26.21 49.08 54.82 61.98
user08 38.24 43.73 45.14 42.74 43.28 43.99 37.82 47.12 48.52
user11 82.64 83.84 85.87 81.03 81.21 79.34 83.01 81.53 85.59

average 57.62 60.58 62.80 48.00 48.22 48.32 61.15 62.58 64.49

Table 6.3: Accuracy per segment of 5-fold cross validation using SVM.

APS (%) Uniform Length (m) Uniform Duration (s) Uniform Grid (m)

10 50 100 60 90 120 10 50 100

user01 16.04 10.78 8.10 25.31 24.51 23.58 14.15 7.14 5.74

user02 72.69 72.98 72.14 37.84 29.97 24.80 75.17 73.23 69.67

user03 78.54 80.79 80.00 58.99 60.96 59.14 79.37 82.07 80.79

user05 43.51 50.46 51.94 22.33 27.31 26.21 45.60 50.76 50.88

user08 36.11 41.93 37.08 24.24 22.55 22.89 39.05 46.16 41.09

user11 81.86 85.05 85.33 72.38 70.15 67.68 82.40 85.53 85.78
average 54.79 57.00 55.76 40.18 38.17 35.85 55.96 57.48 55.66

Table 6.4: Accuracy per log of 5-fold cross validation using CRF.

APL (%) Uniform Length (m) Uniform Duration (s) Uniform Grid (m)

10 50 100 60 90 120 10 50 100

user01 33.17 41.86 43.94 37.28 36.83 36.16 34.67 30.19 27.23

user02 46.73 45.73 43.08 39.22 40.00 38.07 50.07 45.65 40.36

user03 57.66 58.17 61.10 62.21 62.49 68.43 60.58 61.50 63.13

user05 34.19 40.94 35.61 26.90 26.90 26.10 39.70 45.92 39.92

user08 41.19 45.25 40.02 43.11 43.46 44.22 42.22 36.93 29.38

user11 75.98 77.27 77.29 82.07 81.46 79.84 75.14 75.52 76.25

average 48.15 51.54 50.18 48.46 48.52 48.80 50.40 49.29 46.05
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Table 6.5: Accuracy per segment of cross subject validation using CRF.

APS (%) Uniform Length (m) Uniform Duration (s) Uniform Grid (m)

10 50 100 60 90 120 10 50 100

user01 35.27 63.18 34.58 14.85 12.72 11.07 40.84 72.66 57.79

user02 55.81 62.08 59.37 41.63 43.24 46.80 55.78 72.16 70.55

user03 7.89 8.52 9.40 39.29 28.31 28.71 10.35 9.45 10.02

user05 45.81 28.54 36.77 39.14 40.16 37.73 49.34 27.90 48.98

user08 30.61 38.12 33.81 17.34 20.33 21.06 32.51 43.67 39.32

user11 59.26 63.32 67.82 65.11 68.39 67.29 63.12 64.47 69.34

average 39.11 43.96 40.29 36.23 35.53 35.44 41.99 48.38 49.33

Table 6.6: Accuracy per segment of cross subject validation using SVM.

APS (%) Uniform Length (m) Uniform Duration (s) Uniform Grid (m)

10 50 100 60 90 120 10 50 100

user01 3.79 3.01 2.49 4.10 3.64 3.77 3.78 2.08 1.73

user02 0.05 0.18 0.00 0.24 0.00 0.00 0.12 0.00 0.00

user03 36.41 36.76 34.60 8.21 4.49 0.57 32.69 43.69 26.23

user05 30.45 38.81 34.56 21.77 19.21 14.12 32.65 40.20 36.55

user08 1.46 1.93 1.89 0.91 0.94 1.20 1.53 2.21 2.47
user11 4.30 3.33 3.20 3.32 3.31 3.19 4.13 3.37 3.19

average 12.74 14.00 12.79 6.43 5.27 3.81 12.48 15.26 11.69

Table 6.7: Accuracy per log of cross subject validation using CRF.

APL (%) Uniform Length (m) Uniform Duration (s) Uniform Length (m)

10 50 100 60 90 120 10 50 100

user01 17.94 18.14 16.47 14.68 12.32 10.93 18.89 19.90 16.80

user02 46.79 51.37 46.18 42.14 43.58 47.29 46.05 54.06 49.78

user03 16.23 16.71 16.09 38.66 28.31 27.80 18.83 19.86 17.23

user05 38.57 32.30 33.88 39.03 40.11 38.10 46.38 32.63 37.44

user08 22.75 27.33 26.86 17.41 19.93 20.43 22.82 26.51 26.53

user11 60.31 62.64 66.16 68.60 70.19 69.98 65.31 65.07 66.10

average 33.77 34.75 34.27 36.75 35.74 35.76 36.38 36.34 35.65
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Table 6.8: Confusion matrix of 5-fold cross-validation using uniform length segmen-

tation with 100 meters and CRF model on trajectories of user11.

#seg WALK BIKE SCOOTER CAR METRO Recall (%)

STOP 3 0 0 0 0 0

WALK 505 4 3 66 0 87.37

BIKE 51 9 0 28 0 10.23

SCOOTER 0 0 0 349 0 0

CAR 15 3 157 8884 141 96.57

METRO 4 0 0 598 0 0

HOME 3 0 0 0 0 0

WORK 26 0 0 0 0 0

DINING 16 0 0 0 0 0

STORE 2 0 0 4 0 0

TRANSIT 22 0 2 33 0 0

Table 6.9: Confusion matrix of 5-fold cross-validation using uniform duration segmen-

tation with 60 seconds and CRF model on trajectories of user11.

#seg WALK BIKE CAR TRANSIT Recall (%)

STOP 4 0 0 0 0

WALK 810 0 42 19 93.00

BIKE 18 5 31 0 9.26

SCOOTER 0 0 96 0 0

CAR 37 0 1542 7 97.23

METRO 8 0 62 0 0

HOME 10 0 1 0 0

WORK 27 0 0 0 0

DINING 35 0 0 0 0

STORE 6 0 0 0 0

TRANSIT 124 0 28 61 28.64
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were not balanced, and the user was in car for most of the time. In addition, except

transits, most of stop events were classified as walking instead of corresponding stop

events. There are two reasons to explain the difficulty to correctly label the visiting

status. On one hand, most of the visited places are indoor and few position logs were

recorded due to GPS opacity. However, when moving between places, users is in the

outdoor environment and plenty position logs were recorded. As a result, the data are

unbalanced. On the other hand, when users enter an indoor location, the GPS signal

is lost in a short response time. Hence, the position logs of stop events may only

last a short period. Moreover, when users stay at one location, the travel distances

between position logs are short. As a result, when segmenting the trajectories with

large time and distance interval, the position logs of stop events may be segmented

together with some logs labeled with transportation modes. In this case, the annotation

for the segment may be dominated by the other transportation mode, and the data are

even more unbalanced.

6.3 Significant Location Mining

6.3.1 Experiment Steps

The mining of significant place includes four steps: detecting the stop events, cluster-

ing the stop positions into places, calculating features, and estimating the significance.

In our experiment, we detected three kinds of stop events: the stop segments in

the location-transportation sequences, ends of trajectories, and losses of GPS signals.
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The stop events detected by the three conditions are respectively denoted as SElts,

SEend, SElost. And the union of the three sets are denoted as SEall. The last two

conditions deal with the indoor visits and the first one deals with the outdoor visits.

However, temporary signal losses may be due to factors other than indoor-opacity. In

our experiment, we directly use the annotations on the trajectories given by the users

to construct the location-transportation sequences, and extracted the location parts and

the transit events as the stop events. As to the detection of signal losses, we only

considered the last positions before the signal being lost for more than 5 minutes as the

stop events. After detecting the stop events, we calculated the length of stay duration

and the distance and time effort from the last detected stop event. However, at the end

of trajectory, the information of the stay duration is not provided. In these cases, we

use 4 hours as the default setting when the information is not available.

We use OPTICS in the clustering process, and we set the Eps as 1000 meters and

MinPts as 2 to generate the clustering ordering. Because the clustering process is

to group nearby stops into places, a small MinPts is enough. After generating the

ordering, we choose ξ = 0.3 to detect steep areas in the sequence and find the possible

clusters. After some trials, we observed that the granularity of detected clusters at

the region where user frequently visits may be too small, and more than one clusters

may be created for one place. As a result, we added a 10-meter filter in the clustering

process that steep areas with reachability less than 10-meter are omitted. Although

OPTICS can generate clusters of different size into a hierarchical structure, we only

considered the leaf clusters as the places.
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6.3.2 Example Result

In Figure 6.5, parts of the significant places annotated by user11 and the ones inferred

from the stop events detected by all three conditions are shown on the map. When

calculating the location accuracy, we set ζ as 100 meters. The precision and recall of

inferred places without pruning by significance are organized in Table 6.10. Since there

may be some significant places users do not notice when annotating the ground truth,

and the places user explicitly pointed out should be really significant, the precision is

more important than recall in the analysis. From the results in Table 6.10, we found that

end points are more representative than stop segments and signal losses in predicting

the significant places, and combing all the three sets of stop events gives higher recall.

Table 6.11 shows the strict ordering accuracy (OAstr) of the inferred significant

places using exactly one of the ten features. From the results, we found that the or-

dering of interval in days between two visit days and the average time effort best fit

the ordering in the user’s mind. The average NDCG (Figure 6.6), however, shows that

visit frequency and stay duration predict the most significant places more accurately.
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(a) Ground truth

(b) Inferred places

Figure 6.5: The ground truth and inferred significant places of user11.
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Table 6.10: Precision and recall of inferred significant places using the parameters

(Eps = 1000 meters, MinPts = 2, ξ = 0.3, ζ = 100 meters, α = 0)
Precision / Recall SElts SEend SElost SEall

user01 75.00 / 33.33 30.77 / 44.44 33.33 / 33.33 27.27 / 100.00

user02 66.67 / 40.00 100.00 / 40.00 — / 0.00 42.86 / 60.00

user03 — / 0.00 40.00 / 22.22 100.00 / 11.11 50.00 / 33.33

user05 0.00 / 0.00 60.00 / 50.00 — / 0.00 57.14 / 66.67

user08 0.00 / 0.00 0.00 / 0.00 50.00 / 20.00 7.69 / 20.00

user11 42.86 / 30.00 57.14 / 40.00 33.33 / 10.00 12.50 / 20.00

Table 6.11: Strict Ordering Accuracy (OAstr) of the inferred significant places using

exactly one of the ten features.

OAstr (%) frv frvd frvid drs drs drsd drb drbd tfd tft
user01 30.6 38.9 25.0 36.1 50.0 44.4 36.1 75.0 50.0 63.9

user02 33.3 33.3 0.0 66.7 66.7 66.7 33.3 66.7 66.7 66.7

user03 0.0 0.0 0.0 0.0 0.0 0.0 33.3 33.3 0.0 66.7

user05 66.7 0.0 83.3 50.0 50.0 50.0 33.3 16.7 50.0 66.7

user08 — — — — — — — — — —

user11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0

Figure 6.6: Average NDCG values of ten measures.
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Chapter 7

Conclusion

The objective of this thesis is to translate a user’s raw position logs collected by GPS

loggers into human-understandable location-transportation sequences, the concatena-

tion of visited places and transportation mode taken between consecutive stays. To

achieve this goal, we have to lean the visiting status and transportation mode at each

particular time. In this work, we formulated the inference of transportation mode and

visiting status from the trajectories as a sequence labeling problem. We compared three

segmentation methods, uniform length segmentation, uniform duration segmentation

and uniform grid segmentation to partition the position logs into short segments. As

to the inference model, we compared two state-of-the-art models, SVM and LCRF, by

the accuracy per segment. We also proposed representative features, including spa-

tial features and temporal context features, to capture the characteristics of trajectory

segments. As to the significanct places mining, we considered the stop segments, the

ends of trajectories, and the losses of GPS signals as the stop events. To reduce the

redundancy of stop positions, we used OPTICS as the clustering tools to group nearby
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stop positions into places. The stregnth of OPTICS is the capability to generate dense

clusters at different granularities. For each place, we calculated 10 measures about the

visit frequency, stay duration, visit interval and travel effort. For each measure, we

compared the ordering accuracy in respect to annotations given by the users.

In this research, we collected our own dataset. We used commercial GPS loggers

to record trajectories of 12 participants without distracting user’s attention to annotate

the change of status immediately. In contrast, we created an independent trajectory

managing website for the users to archive their trajectories, view the trajectories, and

annotate the trajectories when they have time. From the experiment results, we showed

that CRF outperforms SVM in the transportation mode and visiting status mining prob-

lem. As to the segmentation method, uniform grid segmentation resulted in the highest

accuracy per segment among the three approaches. And from detailed examination of

the results, we found that visiting status is more difficult to be learned than transporta-

tion mode. About significant location mining, we found that the ordering of interval in

days between two visit days and the average time effort are accurate predictions to fit

the ordering in the user’s mind. However, with discout considered, visit frequency and

stay duration predict the most significant places more accurately.
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