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Abstract

In this study a two-dimensional finite-element (2D FE) morphodynamic model is
developed to investigate the forcing effects of periodic width variation on free bars.
Two features of the proposed model include: (1) The streamline curvature are used to
correct the bed load direction effected by secondary flows. (2) The streamline upwind
Petrov-Galerkin (SUPG) scheme is applied to solve the sediment continuity equation,
which makes it possible to simulate the coexistence of free bars and forced bars (such
as side bars and central bars). It is found that the coexistence of free and forced bars is
a superposition of the two types of bedform. Thus the free-bar component can be
extracted for our study. The results reveal that the bar height, wavelength and celerity
of free bars affected by the effect _of width variation:lead to a periodic wavy pattern
when the development of free bars reach‘ the __equilibrium state. The mean components
of free bars in a cycle of channels witl{ {}éj‘;iéb.le-width are inverse proportioned to the
amplitude and wave number of widtﬁ Ivaril':i"[ion_.'We further derive a forcing factor by
combining the amplitude with .wave.: nurn_ber_of width variation and quantitatively

prove that the free bars are suppressed by the forcing factor of channels with variable

width.

Keywords: Morphodynamic model, finite-element method, streamline-upwind

Patrov-Galerkin method, free bars, forcing effect.
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Chapter 1 Introduction

1.1 Statement of Problem

The evolution processes of bed configuration in the alluvial rivers are abundant
and complicated. The bedform of natural rivers may be generated by the forcing effect
of the channel geometry, e.g., width variation and curvature, and any disturbances that
trigger free deformation on the riverbed. The former may yield the stationary forced
bar formation and the latter may induce the free migrating alternate bars, as shown in
Figure 1-1. In natural rivers, forced and free bars often coexist and interact with each
other. The flowfield and morphology of a river are unsteady and dynamic, and thus
affect river management issues_such-as ch_annel training, flood defense, riverine
habitat conservation/restoration, and transport of pollutants. In order to accurately
predict the evolution of dynamic bedf;;)rt%_l:‘;i?.'_fléltural cﬁannels, a better understanding
of the influences of these forcing efféqts ;ﬁ -free migrating alternate bars is necessary.
The aims of this study are to dével:op a two-.dimensional (2D) finite element (FE)
morphodynamic model and systematically.inV.estigate these problems. The results of

this study may provide useful information guiding more dynamic and comprehensive

practices of river engineering.
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(b)

Figure 1-1 (a) Free alternate bars in Shi-hu Creek, Taiwan; (b) Central bars in
Tai-ping Creek, Taiwan.
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1.2 Literature Review

In natural rivers bars are a kind of general large-scale bed topography which the
bar height and wavelength are of the order of the flow depth and the channel width,
respectively. According to the geometry, kinematic characteristics and emergence
location in the channel, bars are grouped into free and forced bars. It is now well
established that bars formation can be explained as the results of an instability
mechanism which come from the channel geometry nonuniformities or the
perturbation on the planimetric river bed configuration. Recent studies of free and

forced bars are described as follows.

1.2.1 Study of free bars

Free bars migrating downstréam.in a étfaight channel belong to an instability
mechanism induced by the spontaneoii}s_;per‘_t-pfbation on the planimetric erodible bed
and are characterized by a sequence,(l)f Et;lef) .consecqtive diagonal fronts with deep
pools at the lee face and gentler,rifﬂc.es'I alo-r:;g tll;é stoss face. Figure 1-2 displays a top
view of the free bars which are so called alternate {)ars due to the diagonal front across
the transverse direction. Experimental observations support the perturbation on the

river bed perturbs flow and trigger a series of bar formation downstream [Fujita and

Muramoto, 1985; Garcia and Nino, 1993; Lanzoni, 2001].

Pool

Figure 1-2  Sketch of alternate-bar structure. [Colombini et al., 1987]
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In the early stage of studies of free bars, linear instability theory offered a
convenient tool to investigate a selection of the most unstable wavelength promoting
free bars to develop [Callander, 1969; Engelund and Skovgaard, 1973; Parker, 1976;
Fredsoe, 1978; Blondeaux and Seminara, 1985; Nelson and Smith, 1989; Lanzoni,
2000]. Figure 1-3 shows the representative result of the linear theory, the solid line
represent the neutral state at which the growth rate of perturbation are eliminated and
distinguish the stable and unstable conditions to judge the developing of free bars.
The shortcoming of linear theory appears when the width-to-depth ratio becomes
significantly large because the nonlinear terms become more important. The nonlinear
interaction between finite amplitude disturbances of different wavelength of free bars
may not be ignored. As an overallitrend, lin_egr theory underpredicts bar wavelength

and overpredicted the bar celerity. )

unstable

stable

1
1
i
1
1
] A ) \
A 05 1.0 1.5
A

Figure 1-3 A typical neutral curve for alternate bar formation. [Colombini et al.,
1987]

The weakly nonlinear theory developed in the neighborhood of critical
conditions has been applied to derive the finite amplitude equation for the marginally
unstable bed forms. The Landau equation derived by Colombini et al. (1987) and
Fukuoka (1989) have an ability to capture the long-term behavior of a single unstable

wave. Schielen et al. (1993) based on the Landau equation to obtain the
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Ginzburg-Landau equation that has the ability to capture the evolution of the envelope
amplitude of the wave group. The weakly nonlinear theory improves the prediction of
equilibrium bar height, but not wavelength and celerity, due to that the weakly
nonlinear theory does not account for the modifying of wavelength of the perturbation
when the free bars are developing.

The numerical approach applied to the fully nonlinear perturbation had been
proposed in the literature [Nelson and Smith, 1989; Colombini and Tubino, 1991;
Defina, 2003; Bernini et al., 2006]. The perturbations are given artificially in time and
space trigging bar formation in the numerical simulation. The process of bar evolution
in the numerical simulation is similar to the experiment observation [Lanzoni, 2001].
A fully nonlinear numerical model has the ab__il_ity to.describe the nonlinear interaction

between free bars in the evolutionl process im an infinite straight channel. The

Ty
f

equilibrium bar height, wavelength arfd:'_gqlletit:y are strictly related to one another

regardless of the type of initial perturi):?tio_fi}[Diﬁna, 2003]. Figure 1-4 shows the main

. 3% A 1 .
result of Defina’s numerical experiments, where:the bar height and wavelength are

inversing proportional to the celerity in the equilibrium.

16 — 9 :
4 v."— : E*° :
a._:"'lz "('-' E 7
) ‘ S Wl
L 10+ h=10m =~ _}g E 6 !
g ¥ 5]
s o] 5
cp=2.8m'h - op=2.8mh - 4

2 . - 1+ B

: e
0 ; T ! 0 ; T . . —
0 1 2 3 4 ¢p(mhy 6 0 1 2 3 4 epimihy 6

Figure 1-4  Free bars wavelength and height as a function of bar celerity in Defina’s
numerical experiments. [Defina, 2003]
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1.2.2 Study of forced bars

The channel curvature and width variation are two types of channel geometry
nonuniformities that generate the forced bars. The channel curvature induced point
bars had been widely studied in the literature [Ikeda and Nishimura, 1985; Blondeaux
and Seminara, 1985; Seminara and Tubino, 1989; Parker and Johannesson, 1989;
Whiting and Dietrich, 1993; Seminara et al., 2001].

The aim of our study is focused on the channels with variable width. According
to the transverse bed deposition and scour at the wide section, the forced bar in the
channels with variable width are grouped into central and side bars [Bittner, 1994;
Repetto et al., 2002; Wu and Yeh, 2005]. Figure 1-5(a) and Figure 1-6(a) display the
experimental bed configurations oflcentral anc_i side.bars [Bittner, 1994; Wu and Yeh,
2005]. In the numerical models the edrrection for the effect of secondary helical flow
is necessary to simulate the forced barsli-lmgure 1-5 and Figure 1-6 display the model
without helical flow would -not prédic::'_'%.t_h-é bed forms precisely. Repetto (2002)

concluded that the wave number 'of widtheVariation-determines the bar type.
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(a) Experimental result
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(c) 2D model (without helical flow) [Bittner, 1994]
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Figure 1-5 Contour plots showing (a) central bars observed in experiment [Wu and
Yeh, 2005] and results of (b) 2-D-Cs model [Wu and Yeh, 2005], (c) 2-D
model [Bittner, 1994], (d) 2-D model [Repetto et al., 2002]
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(a) Experimental result
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Figure 1-6  Contour plots showing (a) side bars observed in experiment [Bittner,
1994] and results of (b) 2-D-Cs model [Wu and Yeh, 2005], (c) 2-D
model [Bittner, 1994], (d) 2-D model [Repetto et al., 2002]



Wu and Yeh (2005) further concluded that the variable-width induced forced bars

are a function of width-to-depth ratio, dimensionless wave number of width variation,

dimensionless shear stress of reference uniform flow and dimensionless grain size.

The width-to-depth ratio and dimensionless wave number of width variation mainly

determine the bed form development, however, dimensionless shear stress of

reference uniform flow and grain size influence the bar height only. Figure 1-7 shows

that the predictions of Wu and Yeh (2005) studies are in agreement with the

experimental observations [Bittner, 1994; Wu and Yeh, 2005].
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Figure 1-7 Comparisons between observed values of beta and corresponding values
of BetaC1l and BetaC2. [Wu and Yeh, 2005]
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1.2.3 Free bars affected by channel geometry

Kinoshita and Miwa (1974) first observed that the development of alternate bars
is suppressed by channel curvature in their experiments. In particular, alternate bars
do not develop when the channel sinuosity exceeds a threshold value. Turbino and
Seminara (1990) used the perturbation expansion method to interpret this
phenomenon theoretically with reference to a regular sequence of small-amplitude
meanders. Their theory has the ability to determine the threshold value of channel
curvature above which free bars are suppressed as a function of meander wavenumbe
for given flow and sediment conditions. Whiting and Dietrich (1993) conducted a
series of experiments to investigate the free bars migrating through channel bends and
found that free bar migration was constraingd by. the wavelength of the meander
channel. In their observations thxe migration, of - free ‘bars were non-uniform and
temporarily stalled when in phase Wit.I.I txkj}_gnffl__nrvature-iﬁduced topography. Figure 1-8
shows the experimental results.regardimgrﬂ.;e- unsteady migration of free bars through

meanders.

Elapsed time (min)

8 8 8 8 8 e
90 T T T T T o
g le
g ol 17 g
2 5] S g
=1 (=
2 - .‘mg
5. g i s Ei
3 T t
ég' 1 L g

Figure 1-8 Unsteady migration of bars through meanders. Open squares indicate
the position of leading edge of bars attached to the left bank; solid
squares, the leading edge of bars attached to the right bank.
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Lanzoni and Tubino (2001) conducted a series of flume experiments to study the
free bars development in channels with variable width. They compared the bar height
and bar wavelength of free bars in a straight channel and channels with variable width,
and found that both of them are suppressed when encountering the width variation, as
shown in Figure 1-9. Tubino et al. (2000) studied analytically the suppression of
alternate bars exerted by the channel width variation. A perturbation method with
linear stability theory was used to analyze this issue. As a result, the suppression of
alternate bars in channels with width variation was characterized by a correction
factor of growth rate of free bars. However, it is not able to discuss the bar height,
wavelength and celerity influenced by width variation. Numerical experiments are
expected to capture the coexistence of free. e_md forced bars and performed in this

study to investigate the influences offforcing effeet on free bars.
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Figure 1-9 Comparison between measured values of (a) the amplitude and (b)
dimensionless wavenumber of the leading Fourier component of bed
topography associated with alternate bars in constant width and variable
width experiments. [Lanzoni and Tubino, 2001]
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1.2.4 Morphodynamic model

While 3D morphodynamic models can be used to study in detail the evolution of
river morphology, 2D models are more efficient in practical applications. A number of
researchers have devoted to the development of 2D morphodynamic models. Finite
difference (FD) schemes have been commonly used to investigate the alluvial bend
morphology and meandering channels. Koch and Folkstra (1981) applied a simplified
2D model to curved alluvial flumes of constant circular bends. Struiksma (1985) used
a 2D FD model to reproduce the observed patterns of scour and deposition along a
meandering reach of the Waal River. Struiksma et al. (1985) simulated the sour and
deposition measured in the laboratory curved flumes. Shimizu and Itakura (1989)
modeled the bed evolution in a sine-gener_a_ted meandering channel. Kassem and
Chaudhry (2002) applied a boundafy fitted FD medel to'simulate some of the alluvial
bend experiments of Koch and Folkstrér (1%81) .and Strﬁiksma et al. (1985).

The shortcoming of 2D morphodyn;ﬁ.l_-i-c. models;is that the momentum transport
by secondary currents of 3D flow stl:'uctures is neglected [Shimizu et al., 1990]. The
streamline curvature is employed to reﬂect.the.effect of secondary flow for correcting
the direction of sediment transport. The relation is expressed as follows [Engelund,

1974; Struiksma et al., 1985]:

tan o, =a(%) (1-1)

c

where O, is the angle between the bed shear stress and depth-average flow direction,

D, is flow depth, r, is the local radius of curvature of the streamline, and a is a

friction coefficient ranging between 5 and 12 [Engelund, 1974]. However, equation
(1-1) tends to overestimate the effect of secondary flow in the case of strong curvature
[Blanckaert and de Vriend, 2003; Blanckaert and Graf, 2004].

Vasquez (2005) incorporated the VAM model rather than the traditional VA
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model into a 2D finite element (FE) morphodynamic model. VAM model assumes a
vertical distribution of the velocity components across the flow depth, thus is by itself
able to describe the secondary flows with the governing equations. Vasquez (2005)
carried out numerical simulations on the scour and deposition in curved channels and
meandering rivers by using VAM equations in the morphodynamic model. However,
his model failed in the channels with variable width and the convection-dominated
bed evolution because the streamline upwind Petrov-Galerkin (SUPG) scheme [Hicks
and Steffler, 1992; Ghamry, 1999] was applied to the flow model but not to the bed
evolution model [Vasquez, 2005]. The FE model with SUPG scheme has the ability to
process the convective evolution of bed forms.

Nelson and Smith (1989) simulated th_e evolution of alternate bars using a
standard FD scheme. The model réproduced thesgeneration of free bars downstream
an initial disturbance and the simulal’;eci_:h-_;r;efé}il.ts Were. similar to those observed by
Fujita and Muramoto (1985).-Defina (2(;-63) used a 2D FE model to reproduce the
experimental results of Lanzoni'?('200:0), where migrating alternate bars developed in
the straight channel from an initial flat bed. The tnitial disturbance was used in these
numerical experiments to trigger the generation of free bars. Qualitatively speaking,
the simulated results are in good agreement with the experimental results [Lanzoni,
2000] and the weakly nonlinear solutions [Colombini et al., 1987; Schielen et al.,
1993]. However, different types of disturbance would lead to different bar
characteristics. More recently, Bernini et al. (2006) simulated the generation of free
bars in a straight, rectangular channel with both supercritical and subcritical uniform
flows using the ADI scheme. The results were used to study the effect of gravity due
to the transverse bed slope on the equilibrium geometric and kinematic bar
characteristics. Although Defina (2003) and Bernini et al. (2006) successfully

simulated the generation of free bars in straight, rectangular channels and

1-13



demonstrated qualitatively the agreement with experimental data and analytical
solutions, none has incorporated the effect of secondary flow and simulated the case

of variable-width channel.

1.3 Scope of Study

The aim of this study is to conduct numerical experiments to investigate the
influences of the forcing effect on free bars. Wu used a morphodynamic model
composed of the hydrodynamic and bed evolution equations, both of them belong to
the hyperbolic equation. The streamline upwind Petrov Galerkin (SUPG) scheme is
applied to both the hydrodynamic and bed evolution equations to overcome the defect
for which the traditional Galerkin scheme may. fail in the hyperbolic equation. The
details of the numerical models are describe& in. Chapter 2. The vertically averaged
(VA) model is used in the hydrodynaﬂijggod_el. The ‘applicability of the VA model in
the morphodynamic model is validated anﬁﬂthelr accura_lcies are examined in Chapter 3.
In the present study the VA model are ch-(;-sen-to conduct the numerical experiments
due to its efficiency. ..

To investigate the influences of the forcing effect on free bars, a series of
numerical experiments are conducted with different amplitudes and wave numbers of
channel width variations. The ratios between the characteristics of the free bars
developed in the variable-width and straight channels are used to describe the effect of
channel width variations on free bars. These characteristics include the evolutions of
bar height, wave length and celerity as the train of alternate bars passes through the
periodic cycle of width variations. A forcing factor which quantifies the geometry of
the channel with variable width is proposed to assess the influence of channel forcing
effect on free bars. The numerical experiments and discussion are described in

Chapter 4. Finally, overall conclusions are summarized in Chapter 5.
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Chapter 2 Mathematical Model

In this chapter, the governing equations of hydrodynamics and bed evolution,
along with their closure relations are described first. Then, the two-dimensional (2D)

finite element (FE) morphodynamic model and the upwind scheme are presented.

2.1 Governing Equations of Hydrodynamic Model
The vertical average (VA) model is used in present study. It is derived from the
fundamental full three-dimensional (3D) Reynolds equations. The full 3D Reynolds

equations, including a continuity equation and three momentum equations, are given

by
W N MW, -1
oXx oy oz : : .
Y gV U Wl _125 E Ry (2-1b)
ot OX oy OIA 7T N 8x JoR e 82
OR;: "aR oR
8V Uﬂ Vﬁ Wﬂ:_l@_Fl L ) AT L (2-1¢)
o OX oy 0z p oy pl oX oy 0z
OR
ow +U ow +V w +W ow =—l@+l R, +—2L 4 R, (2-1d)
ot OX oy 0z p 0z OX oy oz

where (X, Y, Z) are the longitudinal-, transverse-, and vertical-direction coordinates,
(U ,V,W) are the velocities in the (X, Y, Z) directions, P is the pressure, p is the

density of fluid, and R; is the Reynolds stress, defined as the stress in the j-direction

acting on a face whose normal is in the i-direction. The VA model is derived from
integrating equation (2-1) over the flow depth with a constant velocity, as described

below. The shallow water approximation is adopted here, which implies that the
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vertical accelerations is negligible compared to the gravity. It is further assumed that
the pressure is hydrostatically distributed and flow separation is ignored. [Tubino and

Repetto et al, 2000]

The velocity distributions across the whole flow depth are given by

[2"™Udz
0 DW
(2-2a)
[>Vdz
0 DW

where (U,,V,) are the depth average velocity components. To impose the kinematic

bed and surface boundary condition to. W leads to the following relation:

D, +U, D, +V, o, ' (2-2b)
ot OX of , —~ .

[P Wdz =

e
Sl

Integrating (2-1) over the flow depth Veﬁ;ﬁly from the bottom to the flow surface,
with the relations (2-2a, b) and‘an aésumptiop that”P. is the hydrostatic pressure,

leads to the following three equations [Molls and Chaudhry, 1995; Ghamry, 1999]:

0
D, , Q, , R _

=0 (2-3a)
o x oy
2 2 D D
GQX +i Qx n gDW . DWRxx +£ Qny . DW ny + gDW%‘i‘i: 0 (2-3b)
ot ox\ D, 2 yo, oy D, oX p

&4_2 %_Dw—ﬁ}“]_{_i((}yz + gDW2 — Dwﬁyy

6Zb Ty
+9D,—+—=+=0 (2-3¢)
ot ox\ D yo, D 2 P oy p

where (Q,,Q,) and (7,,7,) are the unit discharges and bed shear stresses in the

(x,y) directions. (D,,Q,,Q,) need to be solved by equation (2-3).
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2.2 Governing Equation of Bed Evolution Model

The governing equation of bed evolution is the sediment continuity equation, i.e.,
Exner equation. The processes involved in the Exner equation are bedform translation
and diffusion [Lisle et al., 1997, 2001; Cui et al., 2003b], which describe different

mechanisms of bed evolution. The Exner equation is given by

0
(1_,1p)%+aQ_bx+&:o (2-4)
ot ox oy

where (QbX,Qby) are sediment transport rates in the (X,y) directions; A, is the

bed porosity.

2.2.1 Closure relations

Closure relations for ﬁij, (z"x,z'y), and (be,Qby) are needed. The vertically

averaged Reynolds stresses Rj ard "@'r'.o_.ximated with the Boussinesq model

[Ghamry, 1999], i.e.,

_ o(Q
Rxxzzv— X
ph@x(DW]
= o(Q
Ry =2pV. —| =~ 2-5
%% phﬁY[DWJ (2-5)

ﬁxy :ﬁyx = pVh [2(&j+i(&jj
ox\ D, ) oy\D,

where V, is the vertically averaged eddy viscosities in the horizontal directions. For
simplicity, the case of bed-dominated turbulence is assumed, and the values of the

2 2
order of V, =0.5U.D,, 1is used here [Ghamry, 1999], where U, =3 (ij +[T—VJ is

P P

the shear velocity, (7,,7,) are expressed as
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7. = pC U JUS 4V,
7, = pCVyy U, +V,’

where C, is the bed friction coefficient, defined by

C, 2[2.510g[1LDW D_ (2-7)

where K, is the roughness height, defined as 2.5 times the grain size [Cui et al.,

(2-6)

1996, 2003a]. The sediment transport rates in the horizontal plane are defined as
(Qp>Qyy ) =(cosar,sina)Q, (2-8)

where « = angle between the sediment trajectory and x-direction, and is given by

sina = sin;(—L% L\ ' (2-9)

where 1 is an empirical coefficient refleeting the influence of transverse bed slope,
and ranges between 0.3 and 1 [Talmon and_Stmiké:ma et al, 1995; Wu and Yeh, 2005];

0= Shields stress; y = angle between the local bed shear stress and x-direction,

expressed as

sin y = N ab,C, (2-10)
U, +V,

where a is the helical flow coefficient; C, is the dimensionless local curvature of

streamline [Wu and Yeh, 2005], defined by

_G(Voj
C - ox\ U,

s 3/2 (2'11)
(1+(v, 10, ))

The angle y accounts for the deviation of the zero-average helical flow from the
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depth-averaged flow, driven by the bedform or channel variation.
The Meyer-Peter and Muller formula is suitable for evaluating the sediment

transport rate of well-sorted grains [Wu and Yeh, 2005], which is given by
»=8(6-6,)" (2-12)
where @ is the bed load intensity, and 6, ~0.04 is the dimensionless critical shear
stress. The sediment transport discharge Q, could be evaluated by

p.—p)

Q=2 ( gD,,’ (2-13)
o,

sm

where p, and D, are the density and-average grain size of sediment, respectively.

2.3 Finite Element Method

N
-
_—"

2.3.1 Streamline upwindPetrOy-ééIerkin scheme

The term ‘upwind’ originates from the ﬁianner im which the discretization is
applied depending on the direction of Wavé propagation. This wave can be the
characteristic waves of the conservation laws or disturbance wave [Giraldo, 1995].
Godunov (1959) introduced the idea that the information from the exact local solution
to the Euler equations could be included in the discretization for the purposes of
computational studies. He applied this method to the finite volume (FV) method.
Brooks and Hughes (1982) first applied this concept to the finite element (FE) method
to solve the convection-dominated flow.

Dendy (1974) and Wahlbin (1974) derived the dissipative Gelerkin scheme to
solve the first-order hyperbolic equations. Katopodes (1984) applied the dissipative
Galerkin scheme to the non-conservation form of de St. Venant equations and

simulated the 1D and 2D hydraulic jumps. The dissipative Galerkin scheme, however,
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only considered the progressive characteristic velocity of the hydrodynamic equations
in the upwinding term. The characteristic velocities of the hydrodynamic equations, in
fact, include the progressive and reprogressive directions. Hughes and Mallet (1986)
examined the application of the Petrov-Galerkin method to the symmetric systems of
hyperbolic equations. Based on their work, Hicks and Steftler (1992) developed the
characteristic dissipative Galerkin (CDG) scheme which used each of the
characteristic velocities in determination of the upwinding matrix. Both of the above
studies examined their models using the 1D hydrodynamic equations. Recently,
Ghamry (1999) succeeded in applying the CDG scheme to solve the 2D vertically
averaged and moment (VAM) equations.

The FE method employed in this study is_ the streamline upwind Petrov-Galerkin
scheme [Brooks and Hughes; 1982]. The phrase ‘streamline upwind’ implies that the
direction of advection is incorporated .initgz-ht_l:{e.discreti.zation, thus it is more suitable
for hyperbolic equations than-the trac.liti.(.:'_'ﬁe;l. Bubnov-Galerkin scheme [Brooks and
Hughes, 1982; Giraldo, 1995].'? 'Th:e advantége.; of wusing the FE method is that
boundary conditions can be easily imposéd .on the discretized domain of natural
environments with complicated geometry. Throughout this study, triangular elements
are used for discretization of the computational domain.

The governing equations of the VA model has a general form that can be

expressed as

6_¢ afx((o) 8fy((0) _ -
8t+ ™ + o +S,(p)=0 (2-14)

where ¢ is the solution of the governing equations; f,(¢) and f, (¢) are the flux
vectors in the x- and y-direction; S, (@) is the source vector. For the VA model,

Q= {DW;QX;Qy}. The discretization of the computation domain are treated with
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triangular elements, then the approximate solution of an element is given by

W

¢ =3 N* (2-15)

i=1

where N.° is the shape function of node i, the Lagrange interpolation function is

used in this study; ¢ is the solution of node i. Substituting (2-15) into (2-14),

multiplying the resulting equation with a specified weighting function and integrating

it over an element domain €, leads to the general form of the equation for

streamline upwind Petrov-Galerkin scheme [Hicks and Steffler, 1992]:

~e

erNi{ag +afxa(xg~”e)+afya(y¢ )+St((~oe)]dQe —0 for i=1,2,3 (2-162)

where Nie is the weighting functien'matrix of' nede i-in an element, which is defined

as .

=W

N,

A

Nie — Nie _I_Vvie —

coZL o

0 ey N e | e
0N°O |+ COAXWXe%-Fd)AyWye% (2-16b)
0 e ' OX*, oy

where N,° is a diagonal matrix of N,°; @ is an upwind coefficient ranging from

0.25 to 0.75, in this study a value of 0.5 is used (Note that (2-16) would reduce to the

JA

traditional Bubnov-Galerkin scheme if @ =0); the element sizes aX=ay= 5

b

with A, =element area [Ghamry, 1999]; W.* and Wye are the upwind matrices in

the x- and y-direction, which characterize the advection mechanism and are the key
terms in (2-16). To specify W,° and W, °, a characteristic dissipative Galerkin

y 2

(CDG) scheme is adopted here [Hicks and Steffler, 1992; Ghamry, 1999], which gives
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(2-17)

where A

X

and A, are the advection matrices in the x- and y-direction, respectively,

which are derived from (2-14) and expressed as follows:

op op op
—+A —+A —+S.(p)=0 2-18
a T Ty (o) (2-18)

The details regarding the applications of the CDG scheme to the flow dynamics and

bed evolution models are described below. The general forms of A, and A, are

defined as
o (), (). & () ]
oD, 0Q, 8Qy _
() (@) U@l s
A = D, aQ, R AW (2-19a)
|
8f)( (w)my an ((D)my af)(--(w)rirly
ab, Q. aQ,
Lo, (), of, (), o (p), ]
oD, 0Q, 8Qy
8fy (¢)mx 8fy (w)mx 61:)/ (q))mx
A,=| oD, Q, aQ, (2-19b)
6fy (¢)my ny (q))my 6fy (go)my
oD, 0Q, 6Qy

where the subscripts ¢, mx, my refer to the continuity equation, momentum equations

in the x- and y-direction, respectively. The specific forms of A, and A, can be

derived from (2-3), and are given by
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0 1 0 |
2
A, = gb,-U, 2U, 0 (2-20a)
_Uovo Vo Uo_
0 0 1 ]
A =| YV Vo U (2-20b)
gD, -V, 0 2V, |

The eigenvalues of (2-20) are the characteristic celerity of the system of equations
(2-3) [Hicks and Steffler, 1992], the reason why it is called ‘characteristic dissipative

Gelerkin’ scheme. The eigenvalues of the advection matrices of the VA model, U,

U,+49D, ,and U,—-,/gD, , are the characteristic celerity of (2-3). To calculate the

inverse of 1/AX2+Ay2 in (2-17); “the “numerical procedure based on the

Cayley-Hamilton theorem is employed [Hog@r and'Carlson, 1984].
2.3.2 Applying CDG scheme to béd evolution model

While the CDG scheme has ‘bee:n successﬁﬂly applied to flow dynamics models,
to date applying the CDG scheme to solve fhe gediment continuity equation has never
been carried out due to the complexities involved in the formulation [Vasquez, 2005].
In the river morphology model of Vasques (2005) only the hydrodynamic model
applied the CDG scheme and the bed evolution model was treated with a hybrid
method. As a results, the point bars in the bend were successfully simulated but the
free bars and the force bars in the channels with variable width were not reproduced.
It is demonstrated that applying the CDG scheme to the bed evolution may overcome
such defects. Because the morphodynamic model is unable to capture the advection
mechanism of bed evolution without incorporating an upwind scheme, some
simplifications must be made in the formulation. As such, equations (2-3) and (2-4)

are modified as
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Y, N _ (2-21a)
ox oy

o(D,+z
WYy gy, Yoy, Yo g 20B) 5 (2-21b)
ot OX oy OX pD,

o(Db,+z
8V°+U08V0 +V08V°+g (O, b)+ ST, (2-21c)
ot X oy oy pD,
(1-2 )6 +cosa Qb+sma Qb:O (2-21d)

ot ox oy

Since Q, is a function of bed shear stress 7, the gradients of Q, in the x- and

y-direction may be rewritten as

%:%&%mf@ow Vﬂj (222
OX or OXx Ot OX
Q29,01 _0Q, o (y Mo,y Vo (2-22b)
&y or oy or P,

Multiplying equations (2-21b) and (2-21c) by U, and V,, respectively, and then

summing up the resulting equations leads _tp
_u_."

UO(UOGU +V ﬂj +V, u0—6U°+,\1'06—\}°' +-" azb+gv B ys50=0 (2-23)
x o ERUIE VA oy

Substituting equation (2-23) into equation (2-22) gives

Q2 (Ui Ve o 220
ox ot U, ox U, oy
9% Ny e, (ﬁ%ﬂi%gwj (2-24b)
oy or V, ox V, oy

where S, and S, are the source terms, whose values do not affect the final results.

Substituting equation (2-24) into equation (2-21d) gives

cosa%, sina% =2p9C, cos | Sma UO%, VO% (2-25)
OX oy U, V, OX oy

Equation (2-25) implies that flow dynamics is the main driving force for the advection

of bed deformations, while the contributions of bed slope and gravity are categorized
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as the diffusion mechanism. Substituting equations (2-24) and (2-25) into (2-21d)

would result in

(1- ;t)azb clu, Py Plis —o (2-26)
ot 0ok O oy t3

where C' is a constant; S, is the source term. Equation (2-25) is similar to (2-18),

however, the upwind matrices become two upwind components, which are given by

Y, Yo =(cos y,sin y) (2-27)
JUZ+V,2 U2+,

(W, , W, )= (

2.4 Model implementation
To implement the morphodynamic model, the flow is assumed to be quasi-steady.

The time derivative terms in the govermng equatlons of the VA model can be
neglected, implying that the flow adapts to the alterlng bed topography immediately.
Such a morphodynamic model-is essen'tlallgl a decoupled one. The flow, sediment, and
bed topography computations are executed 1terat1vely with the following procedure:

Step 1: Solve the flow dynamics model with tile given bed topography.

Step 2: Evaluate the sediment transport rates with the calculated bed shear stress.

Step 3: Compute the bed topography at the next time using the bed evolution model.

Step 4: Go back to step 1 with the updated bed topography.
Implementations of the flow dynamics and bed evolution models are described below.
Implementing the flow dynamics model with the CDG scheme is described here.
The weak form of the finite element equation and boundary conditions are introduced
first. The Newton-Raphson algorithm is then adopted to solve the resulting system of
equations.

Equation (2-3) may be rewritten in the form of (2-16a) as the following:
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o N S 10 o= £, (0),, o] 8ul0) | o =0, 1123 28

~ N i ) 0 0 Wc—c Wc—mx Wc-my
N leTl,i 0N ie 0 |+ me»c me»mx me—my (2'293)
O O N i ) me-c me-mx my-my

where each element of the upwind matrix, denoted as W, represents the

ql-eq2 2
weighted contribution of equation 2 on upwinding of equation 1. For example, W___
represents the weighted contribution of the momentum equation in the x-direction on
upwinding of the continuity equation.

Equations (2-28) and (2-29) hlay be combined and expressed as the following

system of equations:

(v W) 2L 6 2 ()[4 G e -0 (230
where 4
We = of ax B 0N Ay ONS (2-30a)
AZ+A7 X AZ+A; Oy
0] &
i (o°)=|1,(p") |= %2 +gD2W2—DW R (2-30b)
~e " . /z
fx (¢ my Q”XeQ”ye B [~)We ﬁyx
. b P
oG]l L
f,(¢7)= fyy((ﬁe)mx = QBQJ DRy (2-30¢)
~e w P
g (¢ )my Q~y62 n gljw62 _ ijeﬁyye
| DS 2 P




) St(f)e)c | 2,
s.(¢)=|5.(¢"),, |=| 9B, Lo+ T (2-30d)
(~e) oXx p
P iy gD e@Zb fe
L (?y P

To impose the boundary conditions, the weak form of (2-30) is used, as expressed by

' Nie[sxa o) e ;}W 1,66 )J@de “
E+Wf[—[fx(ébe B j

OX
(2-31)

+.[re Nie (fx (& )nx +fy ((; )ny)dre =0
where I'; is the segment of the boundary element; n, and n, denote the x- and

y-component of the outward vectorynormal to. I, + The fluid flux across the boundary

segment is expressed as Q, = f, (g~oe )c AN (g;e )C n, which is given by
G = QN +Qyn, = (2-32)

S
where ¢, is the unit discharge. ‘g, .is" a specifiedunit discharge at the upstream. The
values of @, equal to zero at the wall boundafy but treated as unknowns at the
downstream boundary [Ghamry, 1999; Vasquez, 2005].

The Newton-Raphson algorithm is used to solve the system of equations (2-31).

The general form of this algorithm is given by

J"5¢ =-R" (2-33)

where the superscript m is the iteration index; R™ is the global residual vector in

m th iteration, for example,
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N[ (6], (672 - [, ()]

" _ OX 5'y
I:R,] .[Qe +\Nie [i[fx (%e [ :|+ St J dQe
) (2-34)
i NC (7 (670, +8,(6°)n, ) ar,

where R; is the residual vector of element € respect to the node i in (2-31). As a

result, Ris the assembly of RY. J is the global Jacobian matrix of (2-34), and is

the result from the combination of local element Jacobian matrix which is defined as

follows :

[Jf]m = 6I?e , 83 , 852 (2-35)
ab,” aQ, aQf

; 0@ 1s the difference between the solutions from consecutive iterations. After each

P

iteration the solution ¢ ismodified untlr,:é‘(B 04
~m+1 ~m ~m S x| AT | 'I | .
¢" =¢" +0p" =| D,:Q0,;Q, |7 |V (2-36)

m-+1
Finally, when the error norm &™"' :L Zéé‘iﬁz )J is < a user specified tolerance
@

"I are the solution of fluid

(typically 10), the solution are convergent and @"
dynamic model.

Once the flow equations are solved, the bed shear stress and sediment transport

rate can be evaluated. The bed evolution equation in the weak form is given by
[ J(NS+ Wzb,ie)dQe} 2, = [ J(N +wzh,f)d9e} 2,!
Q Q.

ON® ON® [ 0Q,° Q) o o
[jg Q=+ Q) 5 ~W, | (&+ﬁJdQG+IFeNi Q, dreJ

OX

(2-37)
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where W, ;= a)(AXWzb,Xe%h; yw, ,° %) The bed elevation at the next time

1

step z,'""' is directly obtained by solving (2-37).
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Chapter 3 Model Validation

In this chapter, the simulation results of the flow dynamics and morphodynamic
models are validated. The flow dynamics model is validated with the experimental
data of a variable-width channel. The morphodynamics model is validated with the
data of force bars (side bars and central bars), free migrating alternate bars and a

simulation case of coexistence of free and forced bars.

3.1 Validation of Hydrodynamics Model

3.1.1 Channel with variable width

Bittner (1994) conducted a series of expéﬁments in channels with variable width.
One of these experiments, run C1-11, 1n Yvhic__h depths-of flow were measured over the
developed bedforms (side bars), was usec‘.:."here to validate the flow dynamics models.

I
(]

The sidewall of the channel was sinusloidaIE'Wit_h its width variation described by

B*=B, +h, sin[zﬂ—ﬂxj g F = (3-1)
where B*=channel half-width at X, here X=longitudinal coordinate; B, =mean
half-width = 0.2 m; b, =width perturbation = 0.075 m; A, =wavelength of channel
width variation = 1.6 m.

The simultaneously measured final bed topography and flow depth in the four
cycles of the channel width variations are shown in Figure 3-1, where both the bed
deformation and flow depth exhibit repeated patterns. To compute the flow, the final
bed deformations in these four cycles were averaged and used as the input fixed-bed

topography to the flow dynamics models (Figure 3-2), leading to the repeated flow

patterns in the four cycles.
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The computation domain is shown in Figure 3-3a, where 1,326 nodes and 2,400
elements are contained in the six cycles. The zoomed-in element mesh in a cycle of
width variation is demonstrated in Figure 3-3b. The boundary condition imposed at
the upstream is the unit discharge g, =0.0073 m?/s. No boundary condition was
specified at the downstream. No-penetration was used at the sidewall, where the
streamline is parallel with the channel wall. The bed roughness height K =0.0013 m
was used.

The computed results of flow depth are shown in Figure 3-4, where the results of
the VA models are similar to the measured results shown in Figure 3-1b, i.e., greater
flow depths at the narrower sections and smaller depths at the wider sections,
especially over the side bars. Detailed compe_lrisons of the computed and measured
results at the four specified sectionsof a cycle (indicated in Figure 3-3b) are shown in
Figure 3-5, where good agreement beﬂ)ve_gnthe compﬁted and measured results are
demonstrated. Only at the 3/47tsectior'1,i th;VA models:slightly under predicts the flow
depth. The under predicted ﬂoviz'de;;th at the.3/_47r section is attributed to the flow
separation occurring at the 2/4m section; .res.ulting in decreasing the pressure and
raising the flow depth. Failing in the flow separation are attributed to the assumption

that pressure has a hydrostatic distribution.
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Figure 3-1 Measured results of (a) bed deformation, and (b) flow depth in Run
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Figure 3-2 Averaged bed deformation of Run CI-11 [Bittner, 1994] used as the
fixed-bed topography in the validation of the flow dynamics models
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3.2 Validation of Bed Evolution Model

The bed evolution model is validated with five types of bedforms, including two
of forced bars (side bars and central bars), one of free migrating alternate bars and two
of coexistence of free and forced bars. These results suggest that the CDG scheme
may be applied to the sediment continuity equation without incorporating any

artificial smoothing [Vasquez et al., 2007].

3.2.1 Forced bars — side bars

The bed topography measured in run C1-11 of Bittner (1994) is used to validate
the bedform of side bars. The geometry of the channel has been described in 3.1.1, but
the computational domain is changed as'shown in Figure 3-6a, which consists of a
total of 3,192 nodes and 5,460 elements: Th.e.zoomed-in element mesh in a cycle of
width variation is demonstrated 1n Figi%rg §—6b There'ate totally 19 cycles included in
this domain, the upstream and dowr}stfggr.h? reaches_ are extended, where the bed
elevations remain fixed. This ensures the (-::(-)nservation of sediment in the channel and
that bed evolutions at the upstream and down’str..eam ends would not be affected by
unstable flows [Defina, 2003; Zech et al., 2006].

The VA model is used for the computation of flow dynamics. The boundary
condition imposed at the upstream is the specified unit discharge ¢, =0.0073 m?/s.
No-penetration condition is used at the sidewalls. Initially, flow depths are all set as
0.022 m, the bed is flat with a slope of 0.004. The helical flow coefficient a=3. The
sediment influx is calculated with the flow conditions at the extended upstream reach.
The upwind coefficient (@) used in flow dynamics model and bed evolution model
are 0.75 and 0.5, respectively.

The experimental results compared with the linear solution [Wu and Yeh, 2005]

and the computed bed topography of side bars are shown in Figure 3-7, the measured
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bed deformations have a pile of deposition along the near-wall regions at the widest
channel width section of a cycle and V-shape scour at the narrowest section of a cycle,
where satisfactory agreement is demonstrated. To further compare the bed
deformation patterns at different locations, the cycle-averaged measurements and the
computed bed topography at four specified sections of a width-variation cycle are
shown in Figure 3-8, where the linear solution and numerical results agree well with
the measurements. Both linear solution and numerical computation slightly under
predict the depth of scour at 1/4n and 2/4n of the width-variation cycle and slightly
over predict the depth of scour at 0/4x and 3/4n of the width-variation cycle. However,

the numerical computations are more close to the measured than linear solution.

(a) A X2
N VAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV,V
§ o
P A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV A e
2 0 2 4 6 8 10 12 14 16 18 20
© (1.6m)
(b)
30
§ o
g v =
_38;’4 1/4 2/4 3/4 4/4
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Figure 3-6 (a) Computation domain of Run CI-11 [Bittner, 1994] used in the
validation of the bed evolution model; (b) zoomed-in element mesh in a

cycle of width variation, the wavelength of cycle (m) is 1.6m
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3.2.2 Forced bars — central bars
A series of experiments were conducted in a variable-width channel by Wu and
Yeh (2005). One of the experiments, S6, is used here to validate the simulated result

of central bars. The sinusoidal variation of the channel width is described by

B* =B, (1 — Asin (2/1—” XD (3-2)

where B* is the channel half-width; B, is the mean channel half-width whose
value was 0.16 m; A is the perturbation amplitude whose value was 0.156; A, is
the wavelength of the channel whose value was 3.351 m; X is the coordinate in the
longitudinal direction. The computational domain is shown in Figure 3-9a, which
consists of a total of 2,457 nodes and 4,200 eiéments. The zoomed-in element mesh in
a cycle of width variation 18 demonstfg‘_[.e:d('l. in Eigure'3-9b. There are totally 6 cycles
included in this domain :f

The VA model is used for flow cémf;l:l-tations and compared with the result from
linear solution. The boundary condition impo'seci at the upstream is the inflow unit
discharge q,= 0.0197 m?/s. No-penetration of water flow is imposed at the
sidewalls. The roughness height K_ is 0.004; the helical flow coefficient a is 5.

The initial flow depth is given by D, =0.0049 m, the unit discharge Q, is set equal

to (,. The initial flat bed has a slope of 0.003. In both the upstream and downstream
extended reaches the fixed-bed condition is imposed, the sediment transport rate in
the upstream extended reach is used as the sediment influx to the variable-width
channel. The upwind coefficient (@ ) used in flow dynamics model and bed evolution
model are 0.75 and 0.5, respectively.

The computed bed topography of central bars and the experimental result are

shown in Figure 3-10, where satisfactory agreement between the experimental and
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computed results is demonstrated. The measured central bars have bullet-shape fronts,
which are captured more successfully by the linear solution and the numerical models.
To further demonstrate this, the lateral bed profiles at the widest and narrowest
sections are shown in Figure 3-11. At the widest section of a cycle the linear solution
and numerical computation successfully predict the bed elevation in the central region
of variation-width channel, but under predict the scour in the near-wall region. At the
widest section of a cycle both the linear solution and numerical computation under
predict the depth of scour in the central region of variation-width channel, but over
predict the scour in the near-wall region. However, the numerical computation model

slightly outperforms the linear solution.

(a)
=
£ 0
>_ _/‘Wv‘vw
'0:8.5 0 1 2 3 4 5 6 65
n (3.351m)
(b)
0.2
;5 0
033 1/4 2/4 3/4 4/4
7 (3.351m)

Figure 3-9 (a) Computation domain of Run S6 [Wu and Yeh, 2005] used in the bed
evolution model; (b) Zoomed-in element mesh in a cycle of width

variation, the wavelength of a cycle is 3.351m
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3.2.3 Free migrating alternate bars

Migrating alternate bars belong to the advection-dominated bed evolution. The
traditional Gelerkin method is numerically unstable when used to simulate such cases.
Defina (2003) performed a series of numerical experiments on the alternate bars
migration using the streamline upwind scheme. In Defina’s flow dynamics model,
some empirical parameters were used and the sediment transport rate was assumed
constant in order to avoid the numerical instability. In our study the CDG scheme is
for the first time applied to solve the Exner equation. It is thus of our interest to see if
the advection-dominated bed evolution can be simulated reasonably well without
degrading the accuracy of sediment transport dynamics.

The numerical simulation performed her_e follows the numerical experiment of
Defina (2003) that is based on the flime experimient of alternate bars conducted by
Lanzoni (2000). In the numerical experlng‘gnt 'c;f Deﬁn.;a (2003), an initial disturbance
with a single bump was created-at the pp:&p-am ‘end 1nducing a train of alternate bars.
It should be noted here that even wi:th thesanic hydraulic condition, different initial
disturbances may induce different characferiétics of alternate bars in terms of the
wavelength, bar height, and celerity. Thus our simulated result of migrating alternate
bars is only compared qualitatively with the result of Defina (2003) to validate the bed
evolution model.

The parameters used in the numerical simulation are based on the hydraulic
condition of the experimental run P1505 [Lanzoni, 2000]. The flume is 1.5 m wide by
55 m long; a length of 120 m is used in the numerical simulation to offer a sufficient
space for the alternate bar development. The fixed-bed reaches are extended in both
the upstream and downstream of the flume. The computational domain is discretized
with a total of 9 x 481 nodes and 7,680 elements, as shown in Figure 3-12. The initial

disturbance is given by the following expression [Defina, 2003] :
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52, (X, y) = A cos(zy/2B,)sin(27x/ 4,) (3-3)

where 07, =bed disturbance; A =perturbation amplitude; B, =half-channel width;
A, =wavelength of bed disturbance. The values of A and A, are 0.4 cm and 7 m,
respectively. Equation (3-3) was used by Defina (2003) to create a single bump that
only covered half the channel width, but an initial disturbance covering the whole
width (shown in Figure 3-13) is used in this study to accelerate the bar growth.

The VA model is used here for the flow computation. The boundary condition at
the upstream is the inflow unit discharge ¢, =0.002 m*/s. The inflow sediment
transport rate is calculated with Equation (2-16) using the hydraulic condition in the
extended upstream fixed-bed reach, with the.roughness height K =0.0048 m. The
calculated sediment transport:rateyis 2.91><1.O.'5 m?/s, -which is slightly greater than
2.6x10” m”/s measured in thé ﬂume.'ThE _n(_)-_penetration condition is imposed at the
sidewalls. The initial bed i flathwith a";sféiie 0f 0000452, The initial flow depth is
assumed equal to 0.044 m; the unit disbha-rée in fthe %=direction is 0.002 m*/s; the unit
discharge in the y-direction is zero.“The u'pw..ind coefficient (@) used in flow
dynamics model and bed evolution model are 0.75 and 0.75, respectively.

The simulated evolution of the alternate bars is shown in Figure 3-14. In the first
two hours, the initial disturbance migrates downstream and triggers the formation of
alternate bars. The upstream alternate bars continue to grow, migrate downstream, and
trigger the alternate bars further downstream. After three hours, the diagonal fronts of
the alternate bars become more obvious. The bed returns to flat after the train of
alternate bars passes by. The bar height, defined as the difference between the extreme
elevations in the left and right halves of a cross section, grows with time, as shown in
Figure 3-15. The growth rates are steep in the first two hours, and then become mild.

The height of the first generated bar, denoted as bar No.l, almost reaches a steady
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value after 7 hours. A comparison between the calculated and observed longitudinal
profiles of bar height is shown in Figure 3-16. The simulation results are in agreement
with the observed bar height and wavelength. The simulated wavelength of the free
bars is 12 m, which is slightly greater than 10 m that was observed in the experiment
of Lanzoni (2000). The quasi-steady bar height is approximately 6 cm, close to the bar
height of 7 cm observed by Lanzoni (2000). The average migration speed is 4 m/hr,
greater than 2 and 2.8 m/hr obtained by Defina (2003) and Lanzoni (2000).

The morphodynamic model developed in this study is validated with the forced
and free bars. The results indicate that both the linear solution and numerical models
would simulate the flowfield reasonably well. However, the numerical model
generally outperforms the linear solution. The numerical simulation of free migrating

alternate bars reveals that the CD@ schem@lis applicable to solving the Exner

equation. 3
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Figure 3-12 (a) Computation domain of Run P1505 [Lanzoni, 2000] used in bed

evolution model; (b) zoomed-in element mesh
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3.2.4 Coexistence of free and forced bars

The validated case of coexistence of free and forced bars is chosen from two of a
series of experiments conducted in a variable-width channel by Wu and Yeh (2005),
labeled as F2 and F7. The experimental bed topography of F2 is central bar paved by
an alternative pattern in the channel, as shown in Figure 3-17, thus deduced that the
distorted central bar is result of coexistence of free and forced bars. In the experiment
of F7, the order of free bars are larger than the force bars, as showed in Figure 3-19,
as the results the experimental and simulated topography display a free bars
dominated bed forms. The dominated bed deformation of forced bar or free bars in the
case of coexistence is attributed to the aspect ratio B [Lanzoni, 2000], which are
aspect ratio of F2 and F7 are 5.1 and 13,5, res_pectively. Higher aspect ratio results in
free bars dominated bed forms.

The sinusoidal variation of! the charmel Wldth is descrlbed by Eq. 3-2 with A
equal to 0.156 and A, equal to 3. 35m Tﬁe geometry of the channel of F2 and F7 is
the same as prescribed in S6 case, arid the computation domain is the same as shown
in Figure 3-9 which consists of a total'of 2,457 .nodes and 4,200 elements.

The VA model is used for flow dynamic model. Required computation condition
include the roughness height K. is 0.004, the helical flow coefficient a is 5 and a
slope of the initial flat bed is 0.005. The boundary condition imposed at the upstream
is the inflow unit discharge (q,) equal to 0.0137 and 0.005 m%/s in F2 and F7,
respectively. No-penetration of water flow is imposed at the sidewalls. The initial

flow depth (D,,) is given by 0.00313 m, the unit discharge Q, is set equal to ¢,. In

X
both the upstream and downstream extended reaches the fixed-bed condition is
imposed, the sediment transport rate in the upstream extended reach is used as the

sediment influx to the variable-width channel. The upwind coefficient (@) used in

flow dynamics model and bed evolution model are 1.25 and 0.75, respectively.
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The computed bed topography and the experimental result of F2 and F7 are
shown in Figure 3-17 and 3-19, respectively, where satisfactory agreement between
the experimental and computed results is demonstrated. In Figure 3-17 the measured
bed topography have distorted bullet-shape fronts, which are similar to central bars
superposed by an alternative pattern and are captured more successfully by the
numerical models. To further demonstrate this, the comparison of experimental
measurement and numerical computation result are made with the lateral bed profiles
at four specified sections of a width-variation cycle, as shown in Figure 3-18. The
elevation of bed forms are predicted by numerical model exactly. The numerical
results agree well with the measurements, except that at 2/4n of the width-variation
cycle numerical results under predict the SCOUE: depth of the right side of the channel.

In Figure 3-19 the measureii bed topography have an alternative scour and
deposition pattern, which are similar .‘;0'-~;I:-1:§<?.f-:_la..ars are ‘.[he dominate bed forms in the
channels with variable-width-and ar'ei ca%u-red-_ more;successfully by the numerical
models. The comparison of exﬁérirriéntal meésuxerﬁent and numerical computation
result are made with the lateral bed broﬁles at four specified sections of a
width-variation cycle, as shown in Figure 3-20, where the computed results agree well

with the measurements, except that at 1/4n and 2/4n of the width-variation cycle the

model over predicts the deposition of bed elevation.
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Figure 3-17 Experimental result and computed bed topography of coexistence of
forced bar dominated casq 113 Rup F2 [Wu and Yeh, 2005].
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Figure 3-20 Comparison of measured and computed results of bed topography at
four specified sections of a width-variation cycle in the case of

coexistence of free bars dominated case in Run F7 [Wu and Yeh, 2005].
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Chapter 4

Forcing Effect of Width Variation on Free Bars

4.1 Numerical Experiments

A 2D FE morphodynamic model with the VA equation is used to perform the
numerical experiments. A series of experiments in which the reference conditions are
based on Bernini’s numerical experiments [Bernini et al., 2006], named B15 series, were
conducted. All conditions remain the same except the channel geometry in each numerical
experiment varies. The half-width of the straight channel and mean half-width of the
variable-width channel are 0.15 m in B15 series. The wall of the sinusoidal channel was
determined by Equation (3-2). Table_ 4-1"fists ‘the simulation conditions of the numerical
experiments. AOOWOO represents:the referqnce_st_raight channel, which is used to compare

with the variable-width channels:

> NI

An upstream disturbance was impolsed to trigger the free bars. Prior to imposing the
initial disturbance, the bed evolution model was run’for sufficiently long time such that
equilibrium forced bedform was reached in all channels, as shown in Figure 4-1. The
dimensions of the forced bars are proportional to the amplitude of width variation. Most
forced bars in B15 series are side bars, except in BISWO02 series central bars were
observed. Central bars would turn to side bars when the wavelength of the width variation
decreases.

A bed disturbance produced by Equation (3-3) was imposed to the upstream extended
reach, as shown in Figure 4-2. The width of the upstream extended reach was equal to that
of the reference straight channel such that identical disturbances were introduced to all
experiments in the same series. The length of the disturbance was 1.6 m, the amplitude

was 3 mm. The simulation time was 16 hours.
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Table 4-1

Run number and simulation conditions used in B15 numerical experiments

AN, 0.2 0.4 0.6 0.8

C

0.1 AO0IW02 AO01WO04 A0IWO06 AO01WO08
0.2 AO2W02  A02W04 A02W06  A02WO08
0.3 AO3W02 AO3W04 AO3W06 AO3WO08
0.4 A04W02  A04W04  A04W06  A04WO08

AOOWOO represent the straight channel (A_ =0, A, =0)

B Fr eo So ds 9,
15.0 0.80 0.07 0.005 0.43 0.005

A_ :dimensionless amplitude of width variation

A, :dimensionless wave number of width variation

B :ratio of mean half-width to reference flow depth

Fr : Froude number in reference straight channel

0, :dimensionless bed shear stress

: slope of channel ’ f‘n
i

d, :grain size [mm] : H

q, :unitdischarge [m?/s]
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4.2 Numerical Results

4.2.1 Coexistence of free and forced bars

The coexistence of free and forced bars in the variable-width channels is shown in
Figures 4-3(a). In the case of BISA01WO06, the height of free bars is much greater than
that of forced bars. Numerical simulations revealed that as the train of free bars moved
over the forced bars and then migrated downstream, the original characteristics of the

forced bars that were left behind would recover.
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Figure 4-3 In BI15A01WO06 (a) Coexistence of free and forced bars; (b) Free bar

components
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The coexistence of free and forced bars gives rise to the nonlinear interactions
[Blondeaux and Seminara, 1985; Tubino and Seminara, 1990; Whiting and Dietrich, 1993].
Such interactions may suppress the development of free bars [Kinoshita and Miwa, 1974;
Tubino and Seminara, 1990]. To quantify this forcing effect on free bars, the equilibrium
forced bar components were subtracted from the mixed free-forced bar patterns (Figure
4-3 (b)). The resulting free-bar components were compared with those forming in the
straight channels. The discussions here include the height, wavelength, and celerity of the
free bars. The bar height is defined as the difference between the extreme bed elevations in
the left and right halves of a cross section, the profile of bar height is shown in Figure 4-4.
Downstream of the initial disturbance area, peaks of the bar height profile are labeled as
Bar(O1, Bar(02, and so on. The first five peaks were used as the target bars in the present
study because they emerged at early stages of the numerical simulations and exhibited
sufficient temporal and spatial evoluti;ﬁé_i:;?i}e. waveléngth is defined as the distance
between the negative peaks immediat'ely ul-fp— .and down-stream of a target bar. These
definitions offer an advantage of 'tra:nslating the.; 3D ‘bar configurations into 2D bar

characteristics.

- W "w ™% |
0.1 -_‘_-_‘_A_‘_‘_,

—bar height profile
= = left side bar elevation Bar01 Bar02 Bar03
= 0.0s5H="right side bar elevation ' / / -
I
3
o .
% 0 e
o A
.5 initial disturbance \~"
L influence area
o -0.05} -
E > The wavelenght of Bar02
(]

-0.1 : L
5 10 15 20
X (m)

Figure 4-4  Definition sketch of bar height profile
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4.2.2 Evolution of free bars in channels with variable width

To investigate the forcing effect of width variation on free bars, the feature of the free
bars in the straight channel was first captured as a reference state for comparison. Shown
in Figure 4-5 are the free bar component in channels with variable-width. In Figure 4-5(a)
the distribution of free bars relate to the wave number of channels with variable width.
The peaks of bar height obviously appear in the narrow section of channels and much
milder in the wide section. It represents that the variation of channel width have ability to
compress and slacken the formation of free bars. Fixed the wave number of channels with
variable-width, the deformation of free bars are proportional to the amplitude of channels,
as shown in Figure 4-5(b). Observed the free bars patterns at 10m in Figure 4-5(b), the
degree of bar height decrease when the amplit_u_de of channels increasing. It implies that
amplifying the amplitude of channels ré8ult in the suppression of free bars.

The evolution of the characteristic..()fz%e?é 5ars, ex:.the bar height, wave length and
celerity, in straight channel (AOOWOO) rea::-B to the equilibrium stage after 10 hours, as
shown in Figure 4-6. The equilibfiilm:bar heigﬁt, wave length and celerity are 1.18cm,
3.2m and 1.8 cm/min, respectively, which afe ﬁostly equal to Bernini’s simulation. The
bar height reach to the equilibrium stage first, then wave length and celerity achieve.
Defina (2003) described the analogous phenomena in her numerical simulation.
Evolutions of free bars in the variable-width channels, however, exhibited wavy patterns
of bar growth in response to the local variations of channel width. The trends of bar
growth in the variable-width channels are similar to those in the straight ones when the
forcing effects are small.

To quantify the effect of width variation on free bars, the bar height (By) and
wavelength (Bir) of the target bars were normalized by the corresponding values in the
straight channels such that the ratios represent the relative effect of width variation.

Moreover, the evolution is expressed using the number of cycles experienced by the target
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bars given that the variation of channel width is periodic. These treatments are used in the
subsequent analyses. For example, in Figure 4-7 the bar height of target bar in A02W06
was divided by the same target bar in straight channel, as a result the Y-axis in Figure 4-7
represent the ratio of bar height at the same moment. The location of the target bar can be
transformed from the corresponding time axis, thus the X-axis in Figure 4-7 was labeled
by the number of cycle. The maximum bar height of target bar in each cycle become
convergent when the development of target bars reaches equilibrium. It is worthwhile to
mention that shifting the target bar by cycle the equilibrium stage of all target bars will
overlap in sequence, just like a resonant. It implies that all target bars in channels with
variable-width have the same characteristic in the equilibrium stage.

The train of free bars migrates downstree_lm meanwhile induces new bars further
downstream. The induced free bars didve charaGteristics: similar to upstream ones and
transmit those characteristics to downst.r.eaxl_g;;éh.own in Figures 4-8 are the evolutions of
bar characteristic ratio as a funetion of thewilumber of width variation cycles, where the
number of cycles experienced by each t:arget bag.is shifted such that the resonant stages are
all overlapped. In Figure 4-8 (a), for exampie, ail bars in BISAO1IWO06 reached the final
resonant stages. The resonant state of BarO1 is the longest, indicating that Bar0O1 reached
the resonant stage first, followed by Bar02, and so on. Variations of the bar height (Bp)
and wavelength (By) of the free bars are highly related to the wave length of channels with
variable-width. The sensitivities of the wavelength and celerity to the forcing effect are,
however, different. In Figures 4-8, for example, the bar height ratios range between
0.85~1.15 in A0O2WO02 while in A02WO08 range between 0.9~1.0. The variation of bar
height ratio is inversely proportional to the wave number of channels with variable-width.
There is minimum variation of bar wavelength ratio when the wave number of channels is
0.6 (W06 series). It may be due to that the wave length of free bars in straight channel

which is equal to 3.2m, which is twice of the wave length of W06 series (1.6m). The
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variation of channel width and wave length of free bars in W06 series are in phase, as a

result bar wave length ratio in W06 are nearly equal to unity.

()
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Figure 4-5 Free bar component in (a) A04 which the amplitude of channels is fixed and
the wave number is altered and (b) W04 series at 8 hour. W00 and A00

represent the same straight channel run.
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4.2.3 Quantitative forcing effect on equilibrium stage

The forcing effect of width variation can be quantified using the amplitude and
wavelength of the wall sinuosity. The forcing effect of the variable-width channel can be
represented by two factors. The first is the wavy factor (WN), defined as the
dimensionless wave number of the variable-width channel, representing the waviness
frequency of the channel wall. The second is the amplitude factor (Amp), defined as the
ratio of amplitude to channel width, representing the degree of width perturbation. Shown
in Figure 4-9 are the ratios of equilibrium bar characteristics varying as a function of wavy
and amplitude factor, which display a suppression trend. The combination of the wavy
factor and amplitude factor defines the forcing factor. The expression of forcing factor FF

is taken to be :
FF = Ampx e"™ 4-1
p

The equilibrium bar heights in B15 55%5‘.-are used as the outcomes corresponding to

I
(]

the forcing effect of width Vafiation: ‘The regression” relation between the ratios of

equilibrium bar height (By), wavelength (B) and cé:lerity (Bc) and the forcing factor are

RB,, = —0.38FF*'° +1 (4-2a)
RB, =-0.13FF*'"° +1 (4-2b)
RB. =-0.16FF*"° +1.041 (4-2¢)

Figure 4-10 shows a satisfactory coefficient of determination R?=0.95, 0.93, and 0.87,
respectively. The power of the forcing factor is 2.16 in all regression which implies the
defined forcing factor is consistent with bar evolution. Figure 4-10 also demonstrates the
suppression of free bars by the forcing effect as the equilibrium bar characteristics

declines with the increasing forcing factor.
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Chapter 5 Conclusions

5.1 Conclusions
5.1.1 2D morphodynamic model

1. A general 2D morphodynamic model was developed here. The most important
improvement made in this study is applying the Streamline Upwind Petrov
Galerkin (SUPG) scheme to the sediment continuity equation. The resulting bed
evolution model has the ability to simulate the translation dominated bedform,

such as the free migrating alternate bars.

2. The Vertical Average model .(VA) was used in the morphodynamic model and
compared with the linear theory. .o‘t%ﬁﬁ_g:}ﬂ.ar pertﬁrbation method [Wu and Yeh,
2005]. A comparison between numue-hcal model and linear theory reveals that
both of them have similar’ res:ults, but .the numerical model obtained more

accurate results in the simulation.

3. We are the first to successfully simulate the evolution of free bars using the FE
scheme without degrading the revolution of sediment transport in a unit discrete
element, attributable to the application of SUPG scheme in solving the sediment
continuity equation. The translation and dispersion of the bedform are captured
and validated with the cases of forced bars (side bar and central bar), free bars in
straight channel, coexistence of free and forced bar (low and high average aspect

ratio) which involve the general cases of bed deformation.
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5.1.2 Influences of forcing effect on free bars

1. Numerical simulations revealed that as the train of free bars moved over the
forced bars and then migrated downstream, the original characteristics of the
forced bars that were left behind would recover. Evolution of free bars will reach

an equilibrium state, which are the same as those developing in a straight.

2. The time evolutions of bar characteristic (bar height, wavelength, and celerity)
reach a equilibrium state during a sufficient period. Shifting the target bar by
cycle the equilibrium stage of all target bars will overlap in sequence, just like a
resonant. It is implies that all target bars in channels with variable-width have the

same characteristic in equilibrium stage.

3.  Evolutions of free bars in the Variachlgq\;yidth channels, however, exhibited wavy
patterns of bar height, wavelength, and.celerity in‘response to the local variations
of channel width. The treénds. of.bat characteristic (height, wavelength, and

celerity) in the variable-width channels are similar to those in the straight ones

when the forcing effects are small.

4. The variation of bar height ratio is inverse proportion to the wave number of
channels with variable-width. There is minimum variation of bar wavelength
ratio when the wave number of channels is 0.6 (W06 series). It may be due to
that the wave length of free bars in straight channel which is equal to 3.2m is
twice of the wave length of W06 series (1.6m). The variation of channel width
and wave length of free bars in W06 series are in phase, as the result bar wave

length ratio in W06 are nearly equal to unity.
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The forcing effect of the variable-width channel can be represented by two
factors, which are the wavy factor (WN) and the amplitude factor (Amp). the
ratio of equilibrium bar characteristics varying as a function of wavy and

amplitude factor and display a suppression trend.

The expression of forcing factor is defined as: FF = Amp x ¢" . The regression
relation between the ratio of equilibrium bar height (By), wavelength (Br) and
celerity (Bc) and the forcing factor have a satisfactory coefficient of
determination R*=0.95, 0.93, and 0.87, respectively. The free bars suppressed by
the forcing effect with the power of 2.16 demonstrate the equilibrium bar

characteristics declines with the inereasing forcing factor.

< ALY
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5.2 Suggestions

1. The ranges of flow conditions (e.g., average aspect ratio) may be expanded to
obtain more general and broadly validated conclusions regarding the influences

of forcing effect on free bars.

2. To explain the suppression of free bars in channels with periodic width variations,
theoretical models that employ the perturbation [Murdock, 1999] theory may be

developed in the future.

3. The channel forcing effects include the width variation and channel curvature.
Only the effect of width variation;is invéétigated in this study. The forcing effect
of channel curvature on fiee bars, such as the.effect of point bars in river bends

on alternate bars, may be in¢luded iﬁijﬁ,{tﬁre work.
L R
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