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摘  要 

本研究利用二維有限元素河川形貌動力模式，探討自由沙洲受變寬渠強制效

應之影響。本研究所發展數值模式具有兩個特色：第一是使用流線曲率項來修正

底床拖移載受到水流二次流影響後的運動方向。第二是以流線上風演算法處理泥

沙連續方程式，使數值模式具有模擬強制沙洲(兩側沙洲、中央沙洲)與自由沙洲

共存之能力。數值模擬發現強制沙洲與自由沙洲共存狀態屬於疊加，因此可將自

由沙洲之演變取出討論。研究結果顯示自由沙洲之發展到達平衡狀態時，其波

高、波長與波速受到渠寬變化所影響，會產生穩定的周期性波動，其週期平均值

會隨變寬渠之振幅與波數增大而減小，本研究進一步將變寬渠之振幅與波數整合

為一強制因子，對自由沙洲之影響效應進行量化分析，證明自由沙洲會受渠寬變

化影響而被壓抑。 

 

關鍵字：形貌動力模式、有限元素法、流線上風演算法、自由沙洲、強制效應。 
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Abstract 

In this study a two-dimensional finite-element (2D FE) morphodynamic model is 

developed to investigate the forcing effects of periodic width variation on free bars. 

Two features of the proposed model include: (1) The streamline curvature are used to 

correct the bed load direction effected by secondary flows. (2) The streamline upwind 

Petrov-Galerkin (SUPG) scheme is applied to solve the sediment continuity equation, 

which makes it possible to simulate the coexistence of free bars and forced bars (such 

as side bars and central bars). It is found that the coexistence of free and forced bars is 

a superposition of the two types of bedform. Thus the free-bar component can be 

extracted for our study. The results reveal that the bar height, wavelength and celerity 

of free bars affected by the effect of width variation lead to a periodic wavy pattern 

when the development of free bars reach the equilibrium state. The mean components 

of free bars in a cycle of channels with variable-width are inverse proportioned to the 

amplitude and wave number of width variation. We further derive a forcing factor by 

combining the amplitude with wave number of width variation and quantitatively 

prove that the free bars are suppressed by the forcing factor of channels with variable 

width. 

 

Keywords: Morphodynamic model, finite-element method, streamline-upwind 

Patrov-Galerkin method, free bars, forcing effect. 
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Chapter 1  Introduction 

1.1 Statement of Problem 

The evolution processes of bed configuration in the alluvial rivers are abundant 

and complicated. The bedform of natural rivers may be generated by the forcing effect 

of the channel geometry, e.g., width variation and curvature, and any disturbances that 

trigger free deformation on the riverbed. The former may yield the stationary forced 

bar formation and the latter may induce the free migrating alternate bars, as shown in 

Figure 1-1. In natural rivers, forced and free bars often coexist and interact with each 

other. The flowfield and morphology of a river are unsteady and dynamic, and thus 

affect river management issues such as channel training, flood defense, riverine 

habitat conservation/restoration, and transport of pollutants. In order to accurately 

predict the evolution of dynamic bedform in natural channels, a better understanding 

of the influences of these forcing effects on free migrating alternate bars is necessary. 

The aims of this study are to develop a two-dimensional (2D) finite element (FE) 

morphodynamic model and systematically investigate these problems. The results of 

this study may provide useful information guiding more dynamic and comprehensive 

practices of river engineering. 
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Figure 1-1 (a) Free alternate bars in Shi-hu Creek, Taiwan; (b) Central bars in 

Tai-ping Creek, Taiwan. 

(a) 

(b) 
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1.2 Literature Review  

In natural rivers bars are a kind of general large-scale bed topography which the 

bar height and wavelength are of the order of the flow depth and the channel width, 

respectively. According to the geometry, kinematic characteristics and emergence 

location in the channel, bars are grouped into free and forced bars. It is now well 

established that bars formation can be explained as the results of an instability 

mechanism which come from the channel geometry nonuniformities or the 

perturbation on the planimetric river bed configuration. Recent studies of free and 

forced bars are described as follows. 

1.2.1 Study of free bars 

Free bars migrating downstream in a straight channel belong to an instability 

mechanism induced by the spontaneous perturbation on the planimetric erodible bed 

and are characterized by a sequence of steep consecutive diagonal fronts with deep 

pools at the lee face and gentler riffles along the stoss face. Figure 1-2 displays a top 

view of the free bars which are so called alternate bars due to the diagonal front across 

the transverse direction. Experimental observations support the perturbation on the 

river bed perturbs flow and trigger a series of bar formation downstream [Fujita and 

Muramoto, 1985; Garcia and Nino, 1993; Lanzoni, 2001]. 

 

Figure 1-2 Sketch of alternate-bar structure. [Colombini et al., 1987] 

 



 

1‐4 

In the early stage of studies of free bars, linear instability theory offered a 

convenient tool to investigate a selection of the most unstable wavelength promoting 

free bars to develop [Callander, 1969; Engelund and Skovgaard, 1973; Parker, 1976; 

Fredsoe, 1978; Blondeaux and Seminara, 1985; Nelson and Smith, 1989; Lanzoni, 

2000]. Figure 1-3 shows the representative result of the linear theory, the solid line 

represent the neutral state at which the growth rate of perturbation are eliminated and 

distinguish the stable and unstable conditions to judge the developing of free bars. 

The shortcoming of linear theory appears when the width-to-depth ratio becomes 

significantly large because the nonlinear terms become more important. The nonlinear 

interaction between finite amplitude disturbances of different wavelength of free bars 

may not be ignored. As an overall trend, linear theory underpredicts bar wavelength 

and overpredicted the bar celerity. 

 
Figure 1-3 A typical neutral curve for alternate bar formation. [Colombini et al., 

1987] 

The weakly nonlinear theory developed in the neighborhood of critical 

conditions has been applied to derive the finite amplitude equation for the marginally 

unstable bed forms. The Landau equation derived by Colombini et al. (1987) and 

Fukuoka (1989) have an ability to capture the long-term behavior of a single unstable 

wave. Schielen et al. (1993) based on the Landau equation to obtain the 
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Ginzburg-Landau equation that has the ability to capture the evolution of the envelope 

amplitude of the wave group. The weakly nonlinear theory improves the prediction of 

equilibrium bar height, but not wavelength and celerity, due to that the weakly 

nonlinear theory does not account for the modifying of wavelength of the perturbation 

when the free bars are developing.  

The numerical approach applied to the fully nonlinear perturbation had been 

proposed in the literature [Nelson and Smith, 1989; Colombini and Tubino, 1991; 

Defina, 2003; Bernini et al., 2006]. The perturbations are given artificially in time and 

space trigging bar formation in the numerical simulation. The process of bar evolution 

in the numerical simulation is similar to the experiment observation [Lanzoni, 2001]. 

A fully nonlinear numerical model has the ability to describe the nonlinear interaction 

between free bars in the evolution process in an infinite straight channel. The 

equilibrium bar height, wavelength and celerity are strictly related to one another 

regardless of the type of initial perturbation [Difina, 2003]. Figure 1-4 shows the main 

result of Defina’s numerical experiments, where the bar height and wavelength are 

inversing proportional to the celerity in the equilibrium. 

 

Figure 1-4 Free bars wavelength and height as a function of bar celerity in Defina’s 

numerical experiments. [Defina, 2003] 
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1.2.2 Study of forced bars 

The channel curvature and width variation are two types of channel geometry 

nonuniformities that generate the forced bars. The channel curvature induced point 

bars had been widely studied in the literature [Ikeda and Nishimura, 1985; Blondeaux 

and Seminara, 1985; Seminara and Tubino, 1989; Parker and Johannesson, 1989; 

Whiting and Dietrich, 1993; Seminara et al., 2001].  

The aim of our study is focused on the channels with variable width. According 

to the transverse bed deposition and scour at the wide section, the forced bar in the 

channels with variable width are grouped into central and side bars [Bittner, 1994; 

Repetto et al., 2002; Wu and Yeh, 2005]. Figure 1-5(a) and Figure 1-6(a) display the 

experimental bed configurations of central and side bars [Bittner, 1994; Wu and Yeh, 

2005]. In the numerical models the correction for the effect of secondary helical flow 

is necessary to simulate the forced bars. Figure 1-5 and Figure 1-6 display the model 

without helical flow would not predict the bed forms precisely. Repetto (2002) 

concluded that the wave number of width variation determines the bar type.  
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Figure 1-5 Contour plots showing (a) central bars observed in experiment [Wu and 

Yeh, 2005] and results of (b) 2-D-Cs model [Wu and Yeh, 2005], (c) 2-D 

model [Bittner, 1994], (d) 2-D model [Repetto et al., 2002] 
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Figure 1-6 Contour plots showing (a) side bars observed in experiment [Bittner, 

1994] and results of (b) 2-D-Cs model [Wu and Yeh, 2005], (c) 2-D 

model [Bittner, 1994], (d) 2-D model [Repetto et al., 2002] 
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Wu and Yeh (2005) further concluded that the variable-width induced forced bars 

are a function of width-to-depth ratio, dimensionless wave number of width variation, 

dimensionless shear stress of reference uniform flow and dimensionless grain size. 

The width-to-depth ratio and dimensionless wave number of width variation mainly 

determine the bed form development, however, dimensionless shear stress of 

reference uniform flow and grain size influence the bar height only. Figure 1-7 shows 

that the predictions of Wu and Yeh (2005) studies are in agreement with the 

experimental observations [Bittner, 1994; Wu and Yeh, 2005]. 

 
 

Figure 1-7 Comparisons between observed values of beta and corresponding values 

of BetaC1 and BetaC2. [Wu and Yeh, 2005] 
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1.2.3 Free bars affected by channel geometry 

Kinoshita and Miwa (1974) first observed that the development of alternate bars 

is suppressed by channel curvature in their experiments. In particular, alternate bars 

do not develop when the channel sinuosity exceeds a threshold value. Turbino and 

Seminara (1990) used the perturbation expansion method to interpret this 

phenomenon theoretically with reference to a regular sequence of small-amplitude 

meanders. Their theory has the ability to determine the threshold value of channel 

curvature above which free bars are suppressed as a function of meander wavenumbe 

for given flow and sediment conditions. Whiting and Dietrich (1993) conducted a 

series of experiments to investigate the free bars migrating through channel bends and 

found that free bar migration was constrained by the wavelength of the meander 

channel. In their observations the migration of free bars were non-uniform and 

temporarily stalled when in phase with the curvature-induced topography. Figure 1-8 

shows the experimental results regarding the unsteady migration of free bars through 

meanders. 

 

Figure 1-8 Unsteady migration of bars through meanders. Open squares indicate 

the position of leading edge of bars attached to the left bank; solid 

squares, the leading edge of bars attached to the right bank. 
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Lanzoni and Tubino (2001) conducted a series of flume experiments to study the 

free bars development in channels with variable width. They compared the bar height 

and bar wavelength of free bars in a straight channel and channels with variable width, 

and found that both of them are suppressed when encountering the width variation, as 

shown in Figure 1-9. Tubino et al. (2000) studied analytically the suppression of 

alternate bars exerted by the channel width variation. A perturbation method with 

linear stability theory was used to analyze this issue. As a result, the suppression of 

alternate bars in channels with width variation was characterized by a correction 

factor of growth rate of free bars. However, it is not able to discuss the bar height, 

wavelength and celerity influenced by width variation. Numerical experiments are 

expected to capture the coexistence of free and forced bars and performed in this 

study to investigate the influences of forcing effect on free bars. 

   
 

Figure 1-9 Comparison between measured values of (a) the amplitude and (b) 

dimensionless wavenumber of the leading Fourier component of bed 

topography associated with alternate bars in constant width and variable 

width experiments. [Lanzoni and Tubino, 2001] 
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1.2.4 Morphodynamic model 

While 3D morphodynamic models can be used to study in detail the evolution of 

river morphology, 2D models are more efficient in practical applications. A number of 

researchers have devoted to the development of 2D morphodynamic models. Finite 

difference (FD) schemes have been commonly used to investigate the alluvial bend 

morphology and meandering channels. Koch and Folkstra (1981) applied a simplified 

2D model to curved alluvial flumes of constant circular bends. Struiksma (1985) used 

a 2D FD model to reproduce the observed patterns of scour and deposition along a 

meandering reach of the Waal River. Struiksma et al. (1985) simulated the sour and 

deposition measured in the laboratory curved flumes. Shimizu and Itakura (1989) 

modeled the bed evolution in a sine-generated meandering channel. Kassem and 

Chaudhry (2002) applied a boundary fitted FD model to simulate some of the alluvial 

bend experiments of Koch and Folkstra (1981) and Struiksma et al. (1985). 

The shortcoming of 2D morphodynamic models is that the momentum transport 

by secondary currents of 3D flow structures is neglected [Shimizu et al., 1990]. The 

streamline curvature is employed to reflect the effect of secondary flow for correcting 

the direction of sediment transport. The relation is expressed as follows [Engelund, 

1974; Struiksma et al., 1985]: 

tan w
s

c

D
a

r
    

 
            (1-1) 

where s  is the angle between the bed shear stress and depth-average flow direction, 

wD  is flow depth, cr  is the local radius of curvature of the streamline, and a  is a 

friction coefficient ranging between 5 and 12 [Engelund, 1974]. However, equation 

(1-1) tends to overestimate the effect of secondary flow in the case of strong curvature 

[Blanckaert and de Vriend, 2003; Blanckaert and Graf, 2004]. 

Vasquez (2005) incorporated the VAM model rather than the traditional VA 
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model into a 2D finite element (FE) morphodynamic model. VAM model assumes a 

vertical distribution of the velocity components across the flow depth, thus is by itself 

able to describe the secondary flows with the governing equations. Vasquez (2005) 

carried out numerical simulations on the scour and deposition in curved channels and 

meandering rivers by using VAM equations in the morphodynamic model. However, 

his model failed in the channels with variable width and the convection-dominated 

bed evolution because the streamline upwind Petrov-Galerkin (SUPG) scheme [Hicks 

and Steffler, 1992; Ghamry, 1999] was applied to the flow model but not to the bed 

evolution model [Vasquez, 2005]. The FE model with SUPG scheme has the ability to 

process the convective evolution of bed forms. 

Nelson and Smith (1989) simulated the evolution of alternate bars using a 

standard FD scheme. The model reproduced the generation of free bars downstream 

an initial disturbance and the simulated results were similar to those observed by 

Fujita and Muramoto (1985). Defina (2003) used a 2D FE model to reproduce the 

experimental results of Lanzoni (2000), where migrating alternate bars developed in 

the straight channel from an initial flat bed. The initial disturbance was used in these 

numerical experiments to trigger the generation of free bars. Qualitatively speaking, 

the simulated results are in good agreement with the experimental results [Lanzoni, 

2000] and the weakly nonlinear solutions [Colombini et al., 1987; Schielen et al., 

1993]. However, different types of disturbance would lead to different bar 

characteristics. More recently, Bernini et al. (2006) simulated the generation of free 

bars in a straight, rectangular channel with both supercritical and subcritical uniform 

flows using the ADI scheme. The results were used to study the effect of gravity due 

to the transverse bed slope on the equilibrium geometric and kinematic bar 

characteristics. Although Defina (2003) and Bernini et al. (2006) successfully 

simulated the generation of free bars in straight, rectangular channels and 
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demonstrated qualitatively the agreement with experimental data and analytical 

solutions, none has incorporated the effect of secondary flow and simulated the case 

of variable-width channel. 

1.3 Scope of Study 

The aim of this study is to conduct numerical experiments to investigate the 

influences of the forcing effect on free bars. Wu used a morphodynamic model 

composed of the hydrodynamic and bed evolution equations, both of them belong to 

the hyperbolic equation. The streamline upwind Petrov Galerkin (SUPG) scheme is 

applied to both the hydrodynamic and bed evolution equations to overcome the defect 

for which the traditional Galerkin scheme may fail in the hyperbolic equation. The 

details of the numerical models are described in Chapter 2. The vertically averaged 

(VA) model is used in the hydrodynamic model. The applicability of the VA model in 

the morphodynamic model is validated and their accuracies are examined in Chapter 3. 

In the present study the VA model are chosen to conduct the numerical experiments 

due to its efficiency. 

To investigate the influences of the forcing effect on free bars, a series of 

numerical experiments are conducted with different amplitudes and wave numbers of 

channel width variations. The ratios between the characteristics of the free bars 

developed in the variable-width and straight channels are used to describe the effect of 

channel width variations on free bars. These characteristics include the evolutions of 

bar height, wave length and celerity as the train of alternate bars passes through the 

periodic cycle of width variations. A forcing factor which quantifies the geometry of 

the channel with variable width is proposed to assess the influence of channel forcing 

effect on free bars. The numerical experiments and discussion are described in 

Chapter 4. Finally, overall conclusions are summarized in Chapter 5.
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Chapter 2  Mathematical Model 

In this chapter, the governing equations of hydrodynamics and bed evolution, 

along with their closure relations are described first. Then, the two-dimensional (2D) 

finite element (FE) morphodynamic model and the upwind scheme are presented. 

2.1 Governing Equations of Hydrodynamic Model 

The vertical average (VA) model is used in present study. It is derived from the 

fundamental full three-dimensional (3D) Reynolds equations. The full 3D Reynolds 

equations, including a continuity equation and three momentum equations, are given 

by 

0
U V W

x y z

  
  

  
 (2-1a) 

1 1 xyxx xz
RR RU U U U P

U V W
t x y z x x y z 

      
                

 (2-1b) 

1 1 yx yy yzR R RV V V V P
U V W

t x y z y x y z 
       

                
 (2-1c) 

1 1 wywx wz
RR RW W W W P

U V W
t x y z z x y z 

      
                

 (2-1d) 

where  , ,x y z  are the longitudinal-, transverse-, and vertical-direction coordinates, 

 , ,U V W  are the velocities in the  , ,x y z  directions, P  is the pressure,   is the 

density of fluid, and ijR  is the Reynolds stress, defined as the stress in the j-direction 

acting on a face whose normal is in the i-direction. The VA model is derived from 

integrating equation (2-1) over the flow depth with a constant velocity, as described 

below. The shallow water approximation is adopted here, which implies that the 
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vertical accelerations is negligible compared to the gravity. It is further assumed that 

the pressure is hydrostatically distributed and flow separation is ignored. [Tubino and 

Repetto et al, 2000] 

The velocity distributions across the whole flow depth are given by 

0

0

b w

b

b w

b

z D

z

w

z D

z

w

Udz
U

D

Vdz
V

D





 




 




  (2-2a) 

where  0 0,U V  are the depth average velocity components. To impose the kinematic 

bed and surface boundary condition to W  leads to the following relation: 

0 0
b w

b

z D w w w
z

D D D
Wdz U V

t x y
   

  
  

 (2-2b) 

Integrating (2-1) over the flow depth vertically from the bottom to the flow surface, 

with the relations (2-2a, b) and an assumption that P  is the hydrostatic pressure, 

leads to the following three equations [Molls and Chaudhry, 1995; Ghamry, 1999]: 

0yw x
QD Q

t x y

 
  

  
 (2-3a) 
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w w
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  

     
          
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 (2-3b) 
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w
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Q Q Q QD R gD D R z
gD
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
  

     
         

      
 (2-3c) 

where  ,x yQ Q  and  ,x y   are the unit discharges and bed shear stresses in the 

 ,x y  directions.  , ,w x yD Q Q  need to be solved by equation (2-3). 
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2.2 Governing Equation of Bed Evolution Model 

The governing equation of bed evolution is the sediment continuity equation, i.e., 

Exner equation. The processes involved in the Exner equation are bedform translation 

and diffusion [Lisle et al., 1997, 2001; Cui et al., 2003b], which describe different 

mechanisms of bed evolution. The Exner equation is given by 

 1 0byb bx
p

Qz Q

t x y


 
   

  
 (2-4) 

where  ,bx byQ Q  are sediment transport rates in the  ,x y  directions; p  is the 

bed porosity. 

2.2.1 Closure relations 

Closure relations for ijR ,  ,x y  , and  ,bx byQ Q  are needed. The vertically 

averaged Reynolds stresses ijR  are approximated with the Boussinesq model 

[Ghamry, 1999], i.e., 
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       


       


                 

 (2-5) 

where hV  is the vertically averaged eddy viscosities in the horizontal directions. For 

simplicity, the case of bed-dominated turbulence is assumed, and the values of the 

order of *0.5h wV U D  is used here [Ghamry, 1999], where 
22

4
*

yxU


 
      

   
 is 

the shear velocity,  ,x y   are expressed as  
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 (2-6) 

where fC  is the bed friction coefficient, defined by 

2
11

2.5log w
f

s

D
C

K


     

  
 (2-7) 

where sK  is the roughness height, defined as 2.5 times the grain size [Cui et al., 

1996, 2003a]. The sediment transport rates in the horizontal plane are defined as 

   , cos ,sinbx by bQ Q Q   (2-8) 

where  = angle between the sediment trajectory and x-direction, and is given by 

sin sin bzr

y
 




 


 (2-9) 

where r  is an empirical coefficient reflecting the influence of transverse bed slope, 

and ranges between 0.3 and 1 [Talmon and Struiksma et al, 1995; Wu and Yeh, 2005]; 

 = Shields stress;  = angle between the local bed shear stress and x-direction, 

expressed as 

0

0 0

sin w s

V
aD C

U V
  


  (2-10) 

where a  is the helical flow coefficient; sC  is the dimensionless local curvature of 

streamline [Wu and Yeh, 2005], defined by 

  

0

0
3/ 22

0 01 /
s

V

x U
C

V U

      


 (2-11) 

The angle   accounts for the deviation of the zero-average helical flow from the 
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depth-averaged flow, driven by the bedform or channel variation. 

The Meyer-Peter and Muller formula is suitable for evaluating the sediment 

transport rate of well-sorted grains [Wu and Yeh, 2005], which is given by 

 3/ 2
8 c     (2-12) 

where   is the bed load intensity, and 0.04c   is the dimensionless critical shear 

stress. The sediment transport discharge bQ  could be evaluated by 

  3s
b smQ gD

 



   (2-13) 

where s  and smD  are the density and average grain size of sediment, respectively. 

2.3 Finite Element Method  

2.3.1 Streamline upwind Petrov-Galerkin scheme 

The term ‘upwind’ originates from the manner in which the discretization is 

applied depending on the direction of wave propagation. This wave can be the 

characteristic waves of the conservation laws or disturbance wave [Giraldo, 1995]. 

Godunov (1959) introduced the idea that the information from the exact local solution 

to the Euler equations could be included in the discretization for the purposes of 

computational studies. He applied this method to the finite volume (FV) method. 

Brooks and Hughes (1982) first applied this concept to the finite element (FE) method 

to solve the convection-dominated flow. 

Dendy (1974) and Wahlbin (1974) derived the dissipative Gelerkin scheme to 

solve the first-order hyperbolic equations. Katopodes (1984) applied the dissipative 

Galerkin scheme to the non-conservation form of de St. Venant equations and 

simulated the 1D and 2D hydraulic jumps. The dissipative Galerkin scheme, however, 
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only considered the progressive characteristic velocity of the hydrodynamic equations 

in the upwinding term. The characteristic velocities of the hydrodynamic equations, in 

fact, include the progressive and reprogressive directions. Hughes and Mallet (1986) 

examined the application of the Petrov-Galerkin method to the symmetric systems of 

hyperbolic equations. Based on their work, Hicks and Steffler (1992) developed the 

characteristic dissipative Galerkin (CDG) scheme which used each of the 

characteristic velocities in determination of the upwinding matrix. Both of the above 

studies examined their models using the 1D hydrodynamic equations. Recently, 

Ghamry (1999) succeeded in applying the CDG scheme to solve the 2D vertically 

averaged and moment (VAM) equations. 

The FE method employed in this study is the streamline upwind Petrov-Galerkin 

scheme [Brooks and Hughes, 1982]. The phrase ‘streamline upwind’ implies that the 

direction of advection is incorporated into the discretization, thus it is more suitable 

for hyperbolic equations than the traditional Bubnov-Galerkin scheme [Brooks and 

Hughes, 1982; Giraldo, 1995]. The advantage of using the FE method is that 

boundary conditions can be easily imposed on the discretized domain of natural 

environments with complicated geometry. Throughout this study, triangular elements 

are used for discretization of the computational domain. 

The governing equations of the VA model has a general form that can be 

expressed as 

   
  0yx

tt x y

 


   
  

ff
S  (2-14) 

where   is the solution of the governing equations;  x f  and  y f  are the flux 

vectors in the x- and y-direction;  t S  is the source vector. For the VA model, 

   ; ;w x yD Q Q . The discretization of the computation domain are treated with 
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triangular elements, then the approximate solution of an element is given by 

 3

1

e e e
i i

i
N 


   (2-15) 

where e
iN  is the shape function of node i, the Lagrange interpolation function is 

used in this study; i  is the solution of node i. Substituting (2-15) into (2-14), 

multiplying the resulting equation with a specified weighting function and integrating 

it over an element domain e  leads to the general form of the equation for 

streamline upwind Petrov-Galerkin scheme [Hicks and Steffler, 1992]: 

      ˆ 0
e

eee
eye x

i t ed
t x y

 
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ff
N S  for 1,2,3i   (2-16a) 

where ˆ e
iN  is the weighting function matrix of node i in an element, which is defined 

as : 

0 0
ˆ 0 0

0 0

e
e ei

e e e e e ei i
i i i i x y

e
i

N
N x y

x yN
 

                 

N N
N N W W W  (2-16b) 

where e
iN  is a diagonal matrix of e

iN ;   is an upwind coefficient ranging from 

0.25 to 0.75, in this study a value of 0.5 is used (Note that (2-16) would reduce to the 

traditional Bubnov-Galerkin scheme if 0  ); the element sizes 
2

eA
x y   , 

with eA  element area [Ghamry, 1999]; e
xW  and e

yW  are the upwind matrices in 

the x- and y-direction, which characterize the advection mechanism and are the key 

terms in (2-16). To specify e
xW  and e

yW , a characteristic dissipative Galerkin 

(CDG) scheme is adopted here [Hicks and Steffler, 1992; Ghamry, 1999], which gives 



 

2‐8 

 

 

1
2 2

1
2 2

e
x x x y

e
y y x y





  

  

W A A A

W A A A

 (2-17) 

where xA  and yA  are the advection matrices in the x- and y-direction, respectively, 

which are derived from (2-14) and expressed as follows: 

  0x y tt x y

     
   

  
A A S  (2-18) 

The details regarding the applications of the CDG scheme to the flow dynamics and 

bed evolution models are described below. The general forms of xA  and yA  are 

defined as 
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A  (2-19b) 

where the subscripts c, mx, my refer to the continuity equation, momentum equations 

in the x- and y-direction, respectively. The specific forms of xA  and yA  can be 

derived from (2-3), and are given by 
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The eigenvalues of (2-20) are the characteristic celerity of the system of equations 

(2-3) [Hicks and Steffler, 1992], the reason why it is called ‘characteristic dissipative 

Gelerkin’ scheme. The eigenvalues of the advection matrices of the VA model, 0U , 

0 wU gD , and 0 wU gD , are the characteristic celerity of (2-3). To calculate the 

inverse of 2 2
x yA A  in (2-17), the numerical procedure based on the 

Cayley-Hamilton theorem is employed [Hoger and Carlson, 1984]. 

2.3.2 Applying CDG scheme to bed evolution model 

While the CDG scheme has been successfully applied to flow dynamics models, 

to date applying the CDG scheme to solve the sediment continuity equation has never 

been carried out due to the complexities involved in the formulation [Vasquez, 2005]. 

In the river morphology model of Vasques (2005) only the hydrodynamic model 

applied the CDG scheme and the bed evolution model was treated with a hybrid 

method. As a results, the point bars in the bend were successfully simulated but the 

free bars and the force bars in the channels with variable width were not reproduced. 

It is demonstrated that applying the CDG scheme to the bed evolution may overcome 

such defects. Because the morphodynamic model is unable to capture the advection 

mechanism of bed evolution without incorporating an upwind scheme, some 

simplifications must be made in the formulation. As such, equations (2-3) and (2-4) 

are modified as 
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t x y y D




   
    

   
 (2-21c) 

 1 cos sin 0b b b
p

z Q Q

t x y
    

   
  

 (2-21d) 

Since bQ  is a function of bed shear stress  , the gradients of bQ  in the x- and 

y-direction may be rewritten as 

0 0
0 02b b b

f

Q Q Q U V
C U V

x x x x

 
 

         
      

 (2-22a) 

0 0
0 02b b b

f

Q Q Q U V
C U V

y y y y

 
 

               
 (2-22b) 

Multiplying equations (2-21b) and (2-21c) by 0U  and 0V , respectively, and then 

summing up the resulting equations leads to 

0 0 0 0
0 0 0 0 0 0 0 0 ' 0b b

t

U V U V z z
U U V V U V gU gV S

x x y y x y

                         
 (2-23) 

Substituting equation (2-23) into equation (2-22) gives 

0 0
1

0 0

2b b b b
f t

Q Q U z V z
gC S

x U x U y



           

 (2-24a) 

0 0
2

0 0

2b b b b
f t

Q Q U z V z
gC S

y V x V y



           

 (2-24b) 

where 1tS  and 2tS  are the source terms, whose values do not affect the final results. 

Substituting equation (2-24) into equation (2-21d) gives 

0 0
0 0

cos sin
cos ,  sin 2 ,  b b b b

f

Q Q z z
gC U V

x y U V x y

                      
 (2-25) 

Equation (2-25) implies that flow dynamics is the main driving force for the advection 

of bed deformations, while the contributions of bed slope and gravity are categorized 
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as the diffusion mechanism. Substituting equations (2-24) and (2-25) into (2-21d) 

would result in 

  0 0 31 ' 0b b b
p t

z z z
C U V S

t x y
            

 (2-26) 

where 'C  is a constant; 3tS  is the source term. Equation (2-25) is similar to (2-18), 

however, the upwind matrices become two upwind components, which are given by 

   0 0
, , 2 2 2 2

0 0 0 0

,  , cos ,sin
b bz x z y

U V
W W

U V U V
       

 (2-27) 

2.4 Model implementation 

To implement the morphodynamic model, the flow is assumed to be quasi-steady. 

The time derivative terms in the governing equations of the VA model can be 

neglected, implying that the flow adapts to the altering bed topography immediately. 

Such a morphodynamic model is essentially a decoupled one. The flow, sediment, and 

bed topography computations are executed iteratively with the following procedure: 

Step 1: Solve the flow dynamics model with the given bed topography. 

Step 2: Evaluate the sediment transport rates with the calculated bed shear stress. 

Step 3: Compute the bed topography at the next time using the bed evolution model. 

Step 4: Go back to step 1 with the updated bed topography. 

Implementations of the flow dynamics and bed evolution models are described below. 

Implementing the flow dynamics model with the CDG scheme is described here. 

The weak form of the finite element equation and boundary conditions are introduced 

first. The Newton-Raphson algorithm is then adopted to solve the resulting system of 

equations. 

Equation (2-3) may be rewritten in the form of (2-16a) as the following: 
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 
 
 

 
 
 

 
 
 

cc c

m, mx mx mx

my mymy

ˆ 0
e

ee e

yx t
e e ee

i x y t e
e ee

x ty

ff S

f f S d
x y

f Sf

 
  
 



     
                      
          

N , 1,2,3i   (2-28) 

Given (2-16b) and (2-17), the expansion of the weighting function matrix m,
ˆ e

iN  is 

c-c     c-mx     c-my  

m, mx-c   mx-mx   mx-my

my-c   my-mx   my-my 

0 0
ˆ 0 0

0 0

e
i

e e
i i

e
i

N W W W
N W W W

W W WN

   
    
      

N  (2-29a) 

where each element of the upwind matrix, denoted as eq1-eq2W , represents the 

weighted contribution of equation 2 on upwinding of equation 1. For example, c-mxW  

represents the weighted contribution of the momentum equation in the x-direction on 

upwinding of the continuity equation. 

Equations (2-28) and (2-29) may be combined and expressed as the following 

system of equations: 

        0
e

e e ee e
i i x y t ed

x y
  

                   
N W f f S  (2-30) 

where 

2 2 2 2

e e
ye x i i

i

x y x y

x y
x y


  

      

AA N N
W

A A A A
   (2-30a) 

 
 
 
 

c 2 2

mx

my

2

e
e

x
ex e e e

e e xxx w w
x x e

e w
ee ex e

yxx y w
e

w

Q
f

Q gD D R
f

D
f

Q Q D R

D


 






  
  
       
       

f


   

   


 (2-30b) 

 
 
 
 

c

mx

2 2my

2

e
e y

ey e e e
e e xyx y w

y y e
e w

eey e e
yyy w w

e
w

Q
f

Q Q D R
f

D
f

Q gD D R

D



 






                    
 

f


   


   


 (2-30c) 
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 
 
 
 

c

mx

my

0e

t e e
e e e b x

t t w
e

eet ye b
w

S
z

S gD
x

S z
gD

y


 


 


   
          
       

S




 (2-30d) 

To impose the boundary conditions, the weak form of (2-30) is used, as expressed by 

     
     

     0

e

e

e e
e e ee i i

i t x y

ee e ee
i x y t

e ee
i x x y y e

x y d

x y

n n d

  

  

 





                                      

   

N N
N S f f

W f f S

N f f

 (2-31) 

where e  is the segment of the boundary element; xn  and yn  denote the x- and 

y-component of the outward vector normal to e . The fluid flux across the boundary 

segment is expressed as    
c c

e e

n x x y yQ f n f n   which is given by 

0 x x y yq Q n Q n   (2-32) 

where 0q  is the unit discharge. 0q  is a specified unit discharge at the upstream. The 

values of 0q  equal to zero at the wall boundary but treated as unknowns at the 

downstream boundary [Ghamry, 1999; Vasquez, 2005]. 

The Newton-Raphson algorithm is used to solve the system of equations (2-31). 

The general form of this algorithm is given by 

m m  J R  (2-33) 

where the superscript m  is the iteration index; mR  is the global residual vector in 

m th iteration, for example,   
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     
     

             

e

e

me e
e e ee i i

i t x yme
i ee e ee

i x y t

m
e ee

i x x y y e

x y d

x y

n n d

  

  

 





                                          

  

N N
N S f f

R
W f f S

N f f

 (2-34) 

where e
iR  is the residual vector of element e respect to the node i in (2-31). As a 

result, R is the assembly of e
iR . J  is the global Jacobian matrix of (2-34), and is 

the result from the combination of local element Jacobian matrix which is defined as 

follows : 

, ,
me e e

me
i e e e

w x yD Q Q

           

R R R
J     (2-35) 

;   is the difference between the solutions from consecutive iterations. After each 

iteration the solution   is modified until 0  : 

11 ; ;
mm m m

w x yD Q Q  
      

     (2-36) 

Finally, when the error norm 
 

1

1
2

m
m

m 







     




is   a user specified tolerance 

(typically 10-6), the solution are convergent and 1m   are the solution of fluid 

dynamic model.  

Once the flow equations are solved, the bed shear stress and sediment transport 

rate can be evaluated. The bed evolution equation in the weak form is given by 

   1
, ,

,1

b b
e e

be e

e e t e e t
i z i e b i z i e b

ee e e
bye e e e ei i bx

bx by z i e i b e
p

d z d z

QQt
Q Q d Q d

x y x y



 

 

        
      

    
                

N W N W

N N
W N



 (2-37) 
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where , , ,b b b

e e
e ei i

z i z x z yxW yW
x y


  

    

N N
W   . The bed elevation at the next time 

step 1t
bz   is directly obtained by solving (2-37). 
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Chapter 3  Model Validation 

In this chapter, the simulation results of the flow dynamics and morphodynamic 

models are validated. The flow dynamics model is validated with the experimental 

data of a variable-width channel. The morphodynamics model is validated with the 

data of force bars (side bars and central bars), free migrating alternate bars and a 

simulation case of coexistence of free and forced bars. 

3.1 Validation of Hydrodynamics Model 

3.1.1 Channel with variable width 

Bittner (1994) conducted a series of experiments in channels with variable width. 

One of these experiments, run C1-11, in which depths of flow were measured over the 

developed bedforms (side bars), was used here to validate the flow dynamics models. 

The sidewall of the channel was sinusoidal, with its width variation described by 

0 0

2
* sin

c

B B b x



    
 

 (3-1) 

where *B  channel half-width at x , here x  longitudinal coordinate; 0B mean 

half-width = 0.2 m; 0b width perturbation = 0.075 m; c wavelength of channel 

width variation = 1.6 m. 

The simultaneously measured final bed topography and flow depth in the four 

cycles of the channel width variations are shown in Figure 3-1, where both the bed 

deformation and flow depth exhibit repeated patterns. To compute the flow, the final 

bed deformations in these four cycles were averaged and used as the input fixed-bed 

topography to the flow dynamics models (Figure 3-2), leading to the repeated flow 

patterns in the four cycles. 
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The computation domain is shown in Figure 3-3a, where 1,326 nodes and 2,400 

elements are contained in the six cycles. The zoomed-in element mesh in a cycle of 

width variation is demonstrated in Figure 3-3b. The boundary condition imposed at 

the upstream is the unit discharge 0q  0.0073 m2/s. No boundary condition was 

specified at the downstream. No-penetration was used at the sidewall, where the 

streamline is parallel with the channel wall. The bed roughness height sK 0.0013 m 

was used. 

The computed results of flow depth are shown in Figure 3-4, where the results of 

the VA models are similar to the measured results shown in Figure 3-1b, i.e., greater 

flow depths at the narrower sections and smaller depths at the wider sections, 

especially over the side bars. Detailed comparisons of the computed and measured 

results at the four specified sections of a cycle (indicated in Figure 3-3b) are shown in 

Figure 3-5, where good agreement between the computed and measured results are 

demonstrated. Only at the 3/4πsection, the VA models slightly under predicts the flow 

depth. The under predicted flow depth at the 3/4π section is attributed to the flow 

separation occurring at the 2/4π section, resulting in decreasing the pressure and 

raising the flow depth. Failing in the flow separation are attributed to the assumption 

that pressure has a hydrostatic distribution. 
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Figure 3-1 Measured results of (a) bed deformation, and (b) flow depth in Run 

C1-11 [Bittner, 1994] 

 

 

 

 

 

Figure 3-2 Averaged bed deformation of Run C1-11 [Bittner, 1994] used as the 

fixed-bed topography in the validation of the flow dynamics models 

(a) 

(b) 
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Figure 3-3 (a) Computation domain of Run C1-11 [Bittner, 1994] used in the 

validation of the hydrodynamics models; (b) zoomed-in element mesh in 

a cycle of width variation, the wavelength of a cycle (π) is 1.6m 

 

 

 

Figure 3-4 Computed Run C1-11 [Bittner, 1994] results of flow depth by the VA 

models 

(a) 

(b) 
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Figure 3-5 Comparison of measured and computed Run C1-11’s [Bittner, 1994] 

results of flow depth at four specified sections of a cycle of width 

variation 
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3.2 Validation of Bed Evolution Model 

The bed evolution model is validated with five types of bedforms, including two 

of forced bars (side bars and central bars), one of free migrating alternate bars and two 

of coexistence of free and forced bars. These results suggest that the CDG scheme 

may be applied to the sediment continuity equation without incorporating any 

artificial smoothing [Vasquez et al., 2007]. 

3.2.1 Forced bars – side bars 

The bed topography measured in run C1-11 of Bittner (1994) is used to validate 

the bedform of side bars. The geometry of the channel has been described in 3.1.1, but 

the computational domain is changed as shown in Figure 3-6a, which consists of a 

total of 3,192 nodes and 5,460 elements. The zoomed-in element mesh in a cycle of 

width variation is demonstrated in Figure 3-6b. There are totally 19 cycles included in 

this domain, the upstream and downstream reaches are extended, where the bed 

elevations remain fixed. This ensures the conservation of sediment in the channel and 

that bed evolutions at the upstream and downstream ends would not be affected by 

unstable flows [Defina, 2003; Zech et al., 2006]. 

The VA model is used for the computation of flow dynamics. The boundary 

condition imposed at the upstream is the specified unit discharge 0q  0.0073 m2/s. 

No-penetration condition is used at the sidewalls. Initially, flow depths are all set as 

0.022 m, the bed is flat with a slope of 0.004. The helical flow coefficient a 3. The 

sediment influx is calculated with the flow conditions at the extended upstream reach. 

The upwind coefficient ( ) used in flow dynamics model and bed evolution model 

are 0.75 and 0.5, respectively. 

The experimental results compared with the linear solution [Wu and Yeh, 2005] 

and the computed bed topography of side bars are shown in Figure 3-7, the measured 
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bed deformations have a pile of deposition along the near-wall regions at the widest 

channel width section of a cycle and V-shape scour at the narrowest section of a cycle, 

where satisfactory agreement is demonstrated. To further compare the bed 

deformation patterns at different locations, the cycle-averaged measurements and the 

computed bed topography at four specified sections of a width-variation cycle are 

shown in Figure 3-8, where the linear solution and numerical results agree well with 

the measurements. Both linear solution and numerical computation slightly under 

predict the depth of scour at 1/4π and 2/4π of the width-variation cycle and slightly 

over predict the depth of scour at 0/4π and 3/4π of the width-variation cycle. However, 

the numerical computations are more close to the measured than linear solution. 

 

 

 

Figure 3-6 (a) Computation domain of Run C1-11 [Bittner, 1994] used in the 

validation of the bed evolution model; (b) zoomed-in element mesh in a 

cycle of width variation, the wavelength of cycle (π) is 1.6m 

(a) 

(b) 
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Figure 3-7 Experimental results of Run C1-11 [Bittner, 1994] are compared with the 

linear solution and computed numerical bed topography of side bars 
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Figure 3-8 Comparison of measured and computed Run C1-11’s [Bittner, 1994] 

results of bed topography at four specified sections of a width-variation 

cycle 
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3.2.2 Forced bars – central bars 

A series of experiments were conducted in a variable-width channel by Wu and 

Yeh (2005). One of the experiments, S6, is used here to validate the simulated result 

of central bars. The sinusoidal variation of the channel width is described by 

0

2
* 1 sin

c

B B A x



     
  

 (3-2) 

where *B  is the channel half-width; 0B  is the mean channel half-width whose 

value was 0.16 m; A  is the perturbation amplitude whose value was 0.156; c  is 

the wavelength of the channel whose value was 3.351 m; x  is the coordinate in the 

longitudinal direction. The computational domain is shown in Figure 3-9a, which 

consists of a total of 2,457 nodes and 4,200 elements. The zoomed-in element mesh in 

a cycle of width variation is demonstrated in Figure 3-9b. There are totally 6 cycles 

included in this domain 

The VA model is used for flow computations and compared with the result from 

linear solution. The boundary condition imposed at the upstream is the inflow unit 

discharge 0q   0.0197 m2/s. No-penetration of water flow is imposed at the 

sidewalls. The roughness height sK  is 0.004; the helical flow coefficient a  is 5. 

The initial flow depth is given by wD  0.0049 m, the unit discharge xQ  is set equal 

to 0q . The initial flat bed has a slope of 0.003. In both the upstream and downstream 

extended reaches the fixed-bed condition is imposed, the sediment transport rate in 

the upstream extended reach is used as the sediment influx to the variable-width 

channel. The upwind coefficient ( ) used in flow dynamics model and bed evolution 

model are 0.75 and 0.5, respectively. 

The computed bed topography of central bars and the experimental result are 

shown in Figure 3-10, where satisfactory agreement between the experimental and 
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computed results is demonstrated. The measured central bars have bullet-shape fronts, 

which are captured more successfully by the linear solution and the numerical models. 

To further demonstrate this, the lateral bed profiles at the widest and narrowest 

sections are shown in Figure 3-11. At the widest section of a cycle the linear solution 

and numerical computation successfully predict the bed elevation in the central region 

of variation-width channel, but under predict the scour in the near-wall region. At the 

widest section of a cycle both the linear solution and numerical computation under 

predict the depth of scour in the central region of variation-width channel, but over 

predict the scour in the near-wall region. However, the numerical computation model 

slightly outperforms the linear solution.  

 

 

 

 

 

Figure 3-9  (a) Computation domain of Run S6 [Wu and Yeh, 2005] used in the bed 

evolution model; (b) Zoomed-in element mesh in a cycle of width 

variation, the wavelength of a cycle is 3.351m 

 

(a) 

(b) 
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Figure 3-10 Experimental result of Run S6 [Wu and Yeh, 2005] are compared with 

the linear solution and computed numerical bed topography of central 

bars 

 

Figure 3-11 Experimental result and computed lateral bed profiles of Run S6 [Wu 

and Yeh, 2005] at the wide and narrow sections 
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3.2.3 Free migrating alternate bars 

Migrating alternate bars belong to the advection-dominated bed evolution. The 

traditional Gelerkin method is numerically unstable when used to simulate such cases. 

Defina (2003) performed a series of numerical experiments on the alternate bars 

migration using the streamline upwind scheme. In Defina’s flow dynamics model, 

some empirical parameters were used and the sediment transport rate was assumed 

constant in order to avoid the numerical instability. In our study the CDG scheme is 

for the first time applied to solve the Exner equation. It is thus of our interest to see if 

the advection-dominated bed evolution can be simulated reasonably well without 

degrading the accuracy of sediment transport dynamics. 

The numerical simulation performed here follows the numerical experiment of 

Defina (2003) that is based on the flume experiment of alternate bars conducted by 

Lanzoni (2000). In the numerical experiment of Defina (2003), an initial disturbance 

with a single bump was created at the upstream end inducing a train of alternate bars. 

It should be noted here that even with the same hydraulic condition, different initial 

disturbances may induce different characteristics of alternate bars in terms of the 

wavelength, bar height, and celerity. Thus our simulated result of migrating alternate 

bars is only compared qualitatively with the result of Defina (2003) to validate the bed 

evolution model. 

The parameters used in the numerical simulation are based on the hydraulic 

condition of the experimental run P1505 [Lanzoni, 2000]. The flume is 1.5 m wide by 

55 m long; a length of 120 m is used in the numerical simulation to offer a sufficient 

space for the alternate bar development. The fixed-bed reaches are extended in both 

the upstream and downstream of the flume. The computational domain is discretized 

with a total of 9  481 nodes and 7,680 elements, as shown in Figure 3-12. The initial 

disturbance is given by the following expression [Defina, 2003] : 
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     0, cos / 2 sin 2 /b b bz x y A y B x     (3-3) 

where bz  bed disturbance; bA  perturbation amplitude; 0B  half-channel width; 

b wavelength of bed disturbance. The values of bA  and b  are 0.4 cm and 7 m, 

respectively. Equation (3-3) was used by Defina (2003) to create a single bump that 

only covered half the channel width, but an initial disturbance covering the whole 

width (shown in Figure 3-13) is used in this study to accelerate the bar growth. 

The VA model is used here for the flow computation. The boundary condition at 

the upstream is the inflow unit discharge 0q  0.002 m2/s. The inflow sediment 

transport rate is calculated with Equation (2-16) using the hydraulic condition in the 

extended upstream fixed-bed reach, with the roughness height sK 0.0048 m. The 

calculated sediment transport rate is 2.9110-5 m2 /s, which is slightly greater than 

2.610-5 m2 /s measured in the flume. The no-penetration condition is imposed at the 

sidewalls. The initial bed is flat with a slope of 0.00452. The initial flow depth is 

assumed equal to 0.044 m; the unit discharge in the x-direction is 0.002 m2/s; the unit 

discharge in the y-direction is zero. The upwind coefficient ( ) used in flow 

dynamics model and bed evolution model are 0.75 and 0.75, respectively. 

The simulated evolution of the alternate bars is shown in Figure 3-14. In the first 

two hours, the initial disturbance migrates downstream and triggers the formation of 

alternate bars. The upstream alternate bars continue to grow, migrate downstream, and 

trigger the alternate bars further downstream. After three hours, the diagonal fronts of 

the alternate bars become more obvious. The bed returns to flat after the train of 

alternate bars passes by. The bar height, defined as the difference between the extreme 

elevations in the left and right halves of a cross section, grows with time, as shown in 

Figure 3-15. The growth rates are steep in the first two hours, and then become mild. 

The height of the first generated bar, denoted as bar No.1, almost reaches a steady 
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value after 7 hours. A comparison between the calculated and observed longitudinal 

profiles of bar height is shown in Figure 3-16. The simulation results are in agreement 

with the observed bar height and wavelength. The simulated wavelength of the free 

bars is 12 m, which is slightly greater than 10 m that was observed in the experiment 

of Lanzoni (2000). The quasi-steady bar height is approximately 6 cm, close to the bar 

height of 7 cm observed by Lanzoni (2000). The average migration speed is 4 m/hr, 

greater than 2 and 2.8 m/hr obtained by Defina (2003) and Lanzoni (2000). 

The morphodynamic model developed in this study is validated with the forced 

and free bars. The results indicate that both the linear solution and numerical models 

would simulate the flowfield reasonably well. However, the numerical model 

generally outperforms the linear solution. The numerical simulation of free migrating 

alternate bars reveals that the CDG scheme is applicable to solving the Exner 

equation. 

 

 

 

 

Figure 3-12 (a) Computation domain of Run P1505 [Lanzoni, 2000] used in bed 

evolution model; (b) zoomed-in element mesh 

(a) 

(b) 
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Figure 3-13 Initial disturbance used to trigger the formation of alternate bars in the 

simulation of Run P1505 [Lanzoni, 2000] 

 

 

 

 

 

 

Figure 3-14 Development and migration of alternate bar trains in the simulation of 

Run P1505 [Lanzoni, 2000] 
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Figure 3-15 Growth of bar height with time in the simulation of Run P1505 

[Lanzoni, 2000]. The height of bar No.1 almost reaches a steady value. 

 

 

 

 

 

Figure 3-16 Comparison between the calculated and measured Run P1505’s 

[Lanzoni, 2000] longitudinal profiles of bar height. (Bar height is 

defined as the difference between the extreme elevations in the left and 

right halves of a cross section.) 
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3.2.4 Coexistence of free and forced bars 

The validated case of coexistence of free and forced bars is chosen from two of a 

series of experiments conducted in a variable-width channel by Wu and Yeh (2005), 

labeled as F2 and F7. The experimental bed topography of F2 is central bar paved by 

an alternative pattern in the channel, as shown in Figure 3-17, thus deduced that the 

distorted central bar is result of coexistence of free and forced bars. In the experiment 

of F7, the order of free bars are larger than the force bars, as showed in Figure 3-19, 

as the results the experimental and simulated topography display a free bars 

dominated bed forms. The dominated bed deformation of forced bar or free bars in the 

case of coexistence is attributed to the aspect ratio β [Lanzoni, 2000], which are 

aspect ratio of F2 and F7 are 5.1 and 13.5, respectively. Higher aspect ratio results in 

free bars dominated bed forms. 

The sinusoidal variation of the channel width is described by Eq. 3-2 with A  

equal to 0.156 and c  equal to 3.35m. The geometry of the channel of F2 and F7 is 

the same as prescribed in S6 case, and the computation domain is the same as shown 

in Figure 3-9 which consists of a total of 2,457 nodes and 4,200 elements. 

The VA model is used for flow dynamic model. Required computation condition 

include the roughness height sK  is 0.004, the helical flow coefficient a  is 5 and a 

slope of the initial flat bed is 0.005. The boundary condition imposed at the upstream 

is the inflow unit discharge ( 0q ) equal to 0.0137 and 0.005 m2/s in F2 and F7, 

respectively. No-penetration of water flow is imposed at the sidewalls. The initial 

flow depth ( wD ) is given by 0.00313 m, the unit discharge xQ  is set equal to 0q . In 

both the upstream and downstream extended reaches the fixed-bed condition is 

imposed, the sediment transport rate in the upstream extended reach is used as the 

sediment influx to the variable-width channel. The upwind coefficient ( ) used in 

flow dynamics model and bed evolution model are 1.25 and 0.75, respectively. 
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The computed bed topography and the experimental result of F2 and F7 are 

shown in Figure 3-17 and 3-19, respectively, where satisfactory agreement between 

the experimental and computed results is demonstrated. In Figure 3-17 the measured 

bed topography have distorted bullet-shape fronts, which are similar to central bars 

superposed by an alternative pattern and are captured more successfully by the 

numerical models. To further demonstrate this, the comparison of experimental 

measurement and numerical computation result are made with the lateral bed profiles 

at four specified sections of a width-variation cycle, as shown in Figure 3-18. The 

elevation of bed forms are predicted by numerical model exactly. The numerical 

results agree well with the measurements, except that at 2/4π of the width-variation 

cycle numerical results under predict the scour depth of the right side of the channel. 

In Figure 3-19 the measured bed topography have an alternative scour and 

deposition pattern, which are similar to free bars are the dominate bed forms in the 

channels with variable-width and are captured more successfully by the numerical 

models. The comparison of experimental measurement and numerical computation 

result are made with the lateral bed profiles at four specified sections of a 

width-variation cycle, as shown in Figure 3-20, where the computed results agree well 

with the measurements, except that at 1/4π and 2/4π of the width-variation cycle the 

model over predicts the deposition of bed elevation.  
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Figure 3-17 Experimental result and computed bed topography of coexistence of 

forced bar dominated case in Run F2 [Wu and Yeh, 2005]. 

 

 

 

Figure 3-18 Comparison of measured and computed results of bed topography at 

four specified sections of a width-variation cycle in the case of 

coexistence of forced bars dominated case in Run F2 [Wu and Yeh, 

2005]. 
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Figure 3-19 Experimental result and computed bed topography of coexistence of 

free bar dominated case in Run F7 [Wu and Yeh, 2005]. 

 

 

 

 

Figure 3-20 Comparison of measured and computed results of bed topography at 

four specified sections of a width-variation cycle in the case of 

coexistence of free bars dominated case in Run F7 [Wu and Yeh, 2005]. 
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Chapter 4 

Forcing Effect of Width Variation on Free Bars 

4.1 Numerical Experiments 

A 2D FE morphodynamic model with the VA equation is used to perform the 

numerical experiments. A series of experiments in which the reference conditions are 

based on Bernini’s numerical experiments [Bernini et al., 2006], named B15 series, were 

conducted. All conditions remain the same except the channel geometry in each numerical 

experiment varies. The half-width of the straight channel and mean half-width of the 

variable-width channel are 0.15 m in B15 series. The wall of the sinusoidal channel was 

determined by Equation (3-2). Table 4-1 lists the simulation conditions of the numerical 

experiments. A00W00 represents the reference straight channel, which is used to compare 

with the variable-width channels. 

An upstream disturbance was imposed to trigger the free bars. Prior to imposing the 

initial disturbance, the bed evolution model was run for sufficiently long time such that 

equilibrium forced bedform was reached in all channels, as shown in Figure 4-1. The 

dimensions of the forced bars are proportional to the amplitude of width variation. Most 

forced bars in B15 series are side bars, except in B15W02 series central bars were 

observed. Central bars would turn to side bars when the wavelength of the width variation 

decreases. 

A bed disturbance produced by Equation (3-3) was imposed to the upstream extended 

reach, as shown in Figure 4-2. The width of the upstream extended reach was equal to that 

of the reference straight channel such that identical disturbances were introduced to all 

experiments in the same series. The length of the disturbance was 1.6 m, the amplitude 

was 3 mm. The simulation time was 16 hours. 
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Table 4-1  Run number and simulation conditions used in B15 numerical experiments  

cA bλ  0.2 0.4 0.6 0.8 

0.1 A01W02 A01W04 A01W06 A01W08 

0.2 A02W02 A02W04 A02W06 A02W08 

0.3 A03W02 A03W04 A03W06 A03W08 

0.4 A04W02 A04W04 A04W06 A04W08 

A00W00 represent the straight channel ( cA = 0, bλ  = 0) 

 

β   Fr 0θ 0S sd 0q

15.0 0.80 0.07 0.005 0.43 0.005

 

cA  : dimensionless amplitude of width variation 

bλ  : dimensionless wave number of width variation 

β   : ratio of mean half-width to reference flow depth 

Fr  : Froude number in reference straight channel 

0θ  : dimensionless bed shear stress 

0S  : slope of channel 

sd  : grain size [mm] 

0q  : unit discharge [m2/s] 
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Figure 4-1  Dimensionless bedforms in B15 series. Bedforms are side bars in most cases 

of B15 series, except in W02 series are central bars. The dimensions of 

bedforms are proportional to the amplitude of channels with variable-wdith 

 

 

 

 

 

Figure 4-2  A bed disturbance imposed at the upstream extended reach 
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4.2 Numerical Results 

4.2.1 Coexistence of free and forced bars 

The coexistence of free and forced bars in the variable-width channels is shown in 

Figures 4-3(a). In the case of B15A01W06, the height of free bars is much greater than 

that of forced bars. Numerical simulations revealed that as the train of free bars moved 

over the forced bars and then migrated downstream, the original characteristics of the 

forced bars that were left behind would recover. 

 

 

 

 

 

Figure 4-3  In B15A01W06 (a) Coexistence of free and forced bars; (b) Free bar 

components 

(a) 

(b) 



 

  4‐5

The coexistence of free and forced bars gives rise to the nonlinear interactions 

[Blondeaux and Seminara, 1985; Tubino and Seminara, 1990; Whiting and Dietrich, 1993]. 

Such interactions may suppress the development of free bars [Kinoshita and Miwa, 1974; 

Tubino and Seminara, 1990]. To quantify this forcing effect on free bars, the equilibrium 

forced bar components were subtracted from the mixed free-forced bar patterns (Figure 

4-3 (b)). The resulting free-bar components were compared with those forming in the 

straight channels. The discussions here include the height, wavelength, and celerity of the 

free bars. The bar height is defined as the difference between the extreme bed elevations in 

the left and right halves of a cross section, the profile of bar height is shown in Figure 4-4. 

Downstream of the initial disturbance area, peaks of the bar height profile are labeled as 

Bar01, Bar02, and so on. The first five peaks were used as the target bars in the present 

study because they emerged at early stages of the numerical simulations and exhibited 

sufficient temporal and spatial evolutions. The wavelength is defined as the distance 

between the negative peaks immediately up- and down-stream of a target bar. These 

definitions offer an advantage of translating the 3D bar configurations into 2D bar 

characteristics. 

 
Figure 4-4  Definition sketch of bar height profile 
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4.2.2 Evolution of free bars in channels with variable width 

To investigate the forcing effect of width variation on free bars, the feature of the free 

bars in the straight channel was first captured as a reference state for comparison. Shown 

in Figure 4-5 are the free bar component in channels with variable-width. In Figure 4-5(a) 

the distribution of free bars relate to the wave number of channels with variable width. 

The peaks of bar height obviously appear in the narrow section of channels and much 

milder in the wide section. It represents that the variation of channel width have ability to 

compress and slacken the formation of free bars. Fixed the wave number of channels with 

variable-width, the deformation of free bars are proportional to the amplitude of channels, 

as shown in Figure 4-5(b). Observed the free bars patterns at 10m in Figure 4-5(b), the 

degree of bar height decrease when the amplitude of channels increasing. It implies that 

amplifying the amplitude of channels result in the suppression of free bars.  

The evolution of the characteristic of free bars, ex: the bar height, wave length and 

celerity, in straight channel (A00W00) reach to the equilibrium stage after 10 hours, as 

shown in Figure 4-6. The equilibrium bar height, wave length and celerity are 1.18cm, 

3.2m and 1.8 cm/min, respectively, which are mostly equal to Bernini’s simulation. The 

bar height reach to the equilibrium stage first, then wave length and celerity achieve. 

Defina (2003) described the analogous phenomena in her numerical simulation. 

Evolutions of free bars in the variable-width channels, however, exhibited wavy patterns 

of bar growth in response to the local variations of channel width. The trends of bar 

growth in the variable-width channels are similar to those in the straight ones when the 

forcing effects are small.  

To quantify the effect of width variation on free bars, the bar height (BH) and 

wavelength (BL) of the target bars were normalized by the corresponding values in the 

straight channels such that the ratios represent the relative effect of width variation. 

Moreover, the evolution is expressed using the number of cycles experienced by the target 
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bars given that the variation of channel width is periodic. These treatments are used in the 

subsequent analyses. For example, in Figure 4-7 the bar height of target bar in A02W06 

was divided by the same target bar in straight channel, as a result the Y-axis in Figure 4-7 

represent the ratio of bar height at the same moment. The location of the target bar can be 

transformed from the corresponding time axis, thus the X-axis in Figure 4-7 was labeled 

by the number of cycle. The maximum bar height of target bar in each cycle become 

convergent when the development of target bars reaches equilibrium. It is worthwhile to 

mention that shifting the target bar by cycle the equilibrium stage of all target bars will 

overlap in sequence, just like a resonant. It implies that all target bars in channels with 

variable-width have the same characteristic in the equilibrium stage.  

The train of free bars migrates downstream meanwhile induces new bars further 

downstream. The induced free bars have characteristics similar to upstream ones and 

transmit those characteristics to downstream. Shown in Figures 4-8 are the evolutions of 

bar characteristic ratio as a function of the number of width variation cycles, where the 

number of cycles experienced by each target bar is shifted such that the resonant stages are 

all overlapped. In Figure 4-8 (a), for example, all bars in B15A01W06 reached the final 

resonant stages. The resonant state of Bar01 is the longest, indicating that Bar01 reached 

the resonant stage first, followed by Bar02, and so on. Variations of the bar height (BH) 

and wavelength (BL) of the free bars are highly related to the wave length of channels with 

variable-width. The sensitivities of the wavelength and celerity to the forcing effect are, 

however, different. In Figures 4-8, for example, the bar height ratios range between 

0.85~1.15 in A02W02 while in A02W08 range between 0.9~1.0. The variation of bar 

height ratio is inversely proportional to the wave number of channels with variable-width. 

There is minimum variation of bar wavelength ratio when the wave number of channels is 

0.6 (W06 series). It may be due to that the wave length of free bars in straight channel 

which is equal to 3.2m, which is twice of the wave length of W06 series (1.6m). The 
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variation of channel width and wave length of free bars in W06 series are in phase, as a 

result bar wave length ratio in W06 are nearly equal to unity. 

 

 

 

 

 

 

Figure 4-5  Free bar component in (a) A04 which the amplitude of channels is fixed and 

the wave number is altered and (b) W04 series at 8 hour. W00 and A00 

represent the same straight channel run. 

(a) 

(b) 
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Figure 4-6  Bar height (BH), celerity (BC) and wavelength (BL) evolves with time in B15 

series. 
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Figure 4-6 (continued) 
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Figure 4-6 (continued) 
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Figure 4-6  (continued) 
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Figure 4-7  Acquire the equilibrium stage of target bars.  

 

 

 

 

 

 

 

 

Figure 4-8  Bar height (BH), wavelength (BL) and celerity (BC) reach to the equilibrium 

state. 
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Figure 4-8  (continued) 
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Figure 4-8  (continued) 
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Figure 4-8  (continued) 
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4.2.3 Quantitative forcing effect on equilibrium stage 

The forcing effect of width variation can be quantified using the amplitude and 

wavelength of the wall sinuosity. The forcing effect of the variable-width channel can be 

represented by two factors. The first is the wavy factor (WN), defined as the 

dimensionless wave number of the variable-width channel, representing the waviness 

frequency of the channel wall. The second is the amplitude factor (Amp), defined as the 

ratio of amplitude to channel width, representing the degree of width perturbation. Shown 

in Figure 4-9 are the ratios of equilibrium bar characteristics varying as a function of wavy 

and amplitude factor, which display a suppression trend. The combination of the wavy 

factor and amplitude factor defines the forcing factor. The expression of forcing factor FF 

is taken to be : 

WNFF Amp e   (4-1) 

 The equilibrium bar heights in B15 series are used as the outcomes corresponding to 

the forcing effect of width variation. The regression relation between the ratios of 

equilibrium bar height (BH), wavelength (BL) and celerity (BC) and the forcing factor are  

2.16
HRB 0.38FF 1    (4-2a) 

2.16
LRB 0.13FF 1    (4-2b) 

2.16
CRB 0.16FF 1.041    (4-2c) 

Figure 4-10 shows a satisfactory coefficient of determination R2=0.95, 0.93, and 0.87, 

respectively. The power of the forcing factor is 2.16 in all regression which implies the 

defined forcing factor is consistent with bar evolution. Figure 4-10 also demonstrates the 

suppression of free bars by the forcing effect as the equilibrium bar characteristics 

declines with the increasing forcing factor.  
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Figure 4-9  Ratio of equilibrium (a) bar height, (c) wavelength and (e) celerity vs. Amp. 

factor, (b) bar height, (d) wavelength and (f) celerity vs. WN factor. 
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Figure 4-10 Ratio of equilibrium (a) bar height, (b) wavelength and (c) celerity vs. 

forcing factor 
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Chapter 5  Conclusions 

5.1 Conclusions 

5.1.1 2D morphodynamic model 

1. A general 2D morphodynamic model was developed here. The most important 

improvement made in this study is applying the Streamline Upwind Petrov 

Galerkin (SUPG) scheme to the sediment continuity equation. The resulting bed 

evolution model has the ability to simulate the translation dominated bedform, 

such as the free migrating alternate bars. 

2. The Vertical Average model (VA) was used in the morphodynamic model and 

compared with the linear theory of regular perturbation method [Wu and Yeh, 

2005]. A comparison between numerical model and linear theory reveals that 

both of them have similar results, but the numerical model obtained more 

accurate results in the simulation. 

3. We are the first to successfully simulate the evolution of free bars using the FE 

scheme without degrading the revolution of sediment transport in a unit discrete 

element, attributable to the application of SUPG scheme in solving the sediment 

continuity equation. The translation and dispersion of the bedform are captured 

and validated with the cases of forced bars (side bar and central bar), free bars in 

straight channel, coexistence of free and forced bar (low and high average aspect 

ratio) which involve the general cases of bed deformation. 
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5.1.2 Influences of forcing effect on free bars 

1. Numerical simulations revealed that as the train of free bars moved over the 

forced bars and then migrated downstream, the original characteristics of the 

forced bars that were left behind would recover. Evolution of free bars will reach 

an equilibrium state, which are the same as those developing in a straight. 

2. The time evolutions of bar characteristic (bar height, wavelength, and celerity) 

reach a equilibrium state during a sufficient period. Shifting the target bar by 

cycle the equilibrium stage of all target bars will overlap in sequence, just like a 

resonant. It is implies that all target bars in channels with variable-width have the 

same characteristic in equilibrium stage. 

3. Evolutions of free bars in the variable-width channels, however, exhibited wavy 

patterns of bar height, wavelength, and celerity in response to the local variations 

of channel width. The trends of bar characteristic (height, wavelength, and 

celerity) in the variable-width channels are similar to those in the straight ones 

when the forcing effects are small. 

4. The variation of bar height ratio is inverse proportion to the wave number of 

channels with variable-width. There is minimum variation of bar wavelength 

ratio when the wave number of channels is 0.6 (W06 series). It may be due to 

that the wave length of free bars in straight channel which is equal to 3.2m is 

twice of the wave length of W06 series (1.6m). The variation of channel width 

and wave length of free bars in W06 series are in phase, as the result bar wave 

length ratio in W06 are nearly equal to unity. 
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5. The forcing effect of the variable-width channel can be represented by two 

factors, which are the wavy factor (WN) and the amplitude factor (Amp). the 

ratio of equilibrium bar characteristics varying as a function of wavy and 

amplitude factor and display a suppression trend. 

6. The expression of forcing factor is defined as: FF = Amp x eWN. The regression 

relation between the ratio of equilibrium bar height (BH), wavelength (BL) and 

celerity (BC) and the forcing factor have a satisfactory coefficient of 

determination R2=0.95, 0.93, and 0.87, respectively. The free bars suppressed by 

the forcing effect with the power of 2.16 demonstrate the equilibrium bar 

characteristics declines with the increasing forcing factor. 
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5.2 Suggestions 

1. The ranges of flow conditions (e.g., average aspect ratio) may be expanded to 

obtain more general and broadly validated conclusions regarding the influences 

of forcing effect on free bars. 

2. To explain the suppression of free bars in channels with periodic width variations, 

theoretical models that employ the perturbation [Murdock, 1999] theory may be 

developed in the future. 

3. The channel forcing effects include the width variation and channel curvature. 

Only the effect of width variation is investigated in this study. The forcing effect 

of channel curvature on free bars, such as the effect of point bars in river bends 

on alternate bars, may be included in future work. 
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