
國立臺灣大學電機資訊學院電信工程學研究所 

碩士論文 

Graduate Institute of Communication Engineering 

College of Electrical Engineering and Computer Science 

National Taiwan University 

Master thesis 

 

 

無線網路下藉由混和網路存取點的重要性之精準的室

內定位技術 

Accurate Indoor Location Estimation by Incorporating 

the Importance of Access Points in Wireless Local Area 

Networks 

 

黃浩儒 

Hao-Ru Huang 

 

指導教授：林宗男 博士 

Advisor: Tsung-Nan Lin, Ph.D. 

 

中華民國 98 年 7 月 

July, 2009 



 



 



 



 

 

誌謝 

 

 這篇論文首先要感謝我的指導教授林宗男博士，在老師的指導下，不論是課

業研究或是生活上都有很大的啟發，尤其在研究上的嚴謹的態度以及邏輯思考的

指正使我能夠順利完成我的研究。其次也要感謝口試委員蔡子傑以及陳俊良教授

給我良好的研究意見，使論文更加完善。 

 接下來要感謝實驗室的學長方士豪，從碩一剛進來一直到畢業都給予我很多

的指導以及意見。感謝伯江學長在網路領域的指導。感謝同屆的大頭以及震謙使

我在碩士班的生活不無聊。感謝實驗室的學弟書銘，育宏，武億與琮訓，在課餘

之間帶動研究室的氣氛。感謝承先在最後的量測以及整理資料幫了我很大的忙。 

感謝研究所籃球隊的所有隊友，在研究之於一起揮灑汗水。最後感謝我的家人，

感謝老爸老媽支持，感謝老姊老哥在各方面給我意見，感謝純綺，感謝每位曾幫

助過我的人，因為有你們我才能順利的完成學業。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

摘要 

 

 本篇論文的焦點是無線網路的是內定位。我們觀察到在做定位估算時，每個

無線網路存取點(AP)的貢獻度是不同的。這篇論文的主要貢獻可以分為兩個部

分。第一，我們提供一個新的方法去量測 AP 階級的重要性。在不同的地方利用

訊號的鑑別度量化每一個 AP 的重要性。我們利用如此的數值關連來選擇重要的

AP 來避免不必要的計算。選擇重要的 AP 意味著佈建 AP 在較有鑑別度的位置。

我們的方法可以有效的應用在 AP 的佈建。第二，這些重要性進一步地嵌入我們

的定位系統。我們提供一個加權重的零核函數這些權重影響的 AP 是有區別的。

那就是愈重要的 AP 分配愈大的權重。此外，我們發展一個概似熵的函數來避免

突然劇烈改變的權重。我們的定位系統是發展在一個真實的無線網路環境，我們

蒐集真實量測到的訊號強度(RSS)。實驗結果顯示考慮這些不同的重要性在定位

的精準度有重大的提升。 

 

 

關鍵字:室內定位，無線網路，選擇無線網路存取點，特徵指紋定位，無線網路

存取點的布建 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



Abstract

This study focuses on indoor localization in Wireless Local Area Net-

works (WLANs). We investigate the unequal contribution of each

access point (AP) on location estimation. The main contribution is

two parts. First, a novel mechanism is proposed to measure the de-

grees of the AP importance. The importance of each AP is quantified

by the signal discrimination between distinct locations. We utilize

such numerical relevancies to select important APs to avoid unneces-

sary calculations. To select the important AP means place the AP

in the discriminative positions. Our method can efficiently apply to

AP placement. Second, the importance is further embedded into our

positioning system. We provide a weighted kernel function where the

effect of APs is differentiated. That is, the larger weights are assigned

to the more important APs. Moreover, we develop a quasi entropy

function to avoid an abrupt change on the weights. Our positioning

system is developed in a real-world WLAN environment, where the

realistic measurement of receive signal strength (RSS) is collected. Ex-

perimental results show that the positioning accuracy is significantly

improved by taking the different importance into consideration.



Keyword: indoor localization, wireless local area networks, AP se-

lection, location fingerprinting, AP placement
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Chapter 1

Introduction

Nowadays wireless local area network (WLAN) is one of the most popular wireless

infrastructures in an indoor environment. Positioning in such an environment

is highly desirable for many location aware applications such as museum tour

guide and fraud detection [1–3]. Thus, the location fingerprinting technique is

developed to provide a high accuracy in a challenging indoor environments [4–6].

This method collects the received signal strength (RSS) at the sample locations

to build a radio map for the target environment. When a user wants to estimate

his/her location, the positioning system measures RSS in real-time and estimate

the location by matching the measurements with the previously stored radio map.

In WLAN location fingerprinting, the multi-dimensional measurements are

described by RSSs from the detectable APs [7]. Although signals sent from every

AP deployed in the area are mutually independent, RSS from different AP has

different importance to the estimation of user location. For radio signals, the

long distance they travel, the more time they are influenced by the environmental

noises, and the more uncertainties factors are added in the signal strength received

by the user. Thus, it is believed that some RSSs are strongly relevant, some are
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1. INTRODUCTION

weakly relevant and others are irrelevant to the location information [8–10]. In

other words, the RSS from different AP has different contribution to the location

estimation. These importance should be embedded in the positioning algorithm.

However, traditional approaches treat each RSS in an equal way. That is, the

effect of APs on the location computing has not been differentiated. In this

article, we argue that it would be more profitable to take such properties into

consideration while designing a location system. Two questions arise from such

considerations. The first question is how to effectively quantify the importance of

each AP. The second is how the different importance is embedded in the location

estimation.

The proposed positioning algorithm contains the answers to these two ques-

tions. First, a novel mechanism is proposed to measure the degrees of the AP

relevancies. The importance is quantified by the signal discrimination between

distinct locations through a quasi entropy function. In our approach, we uti-

lize such numerical importance to select reliable APs so as to avoid unnecessary

calculations.

Next, the importance is further embedded into our positioning system. Our

fingerprinting system adopts the kernel-based method which computes the simi-

larity between the online measurements and the training data. The kernel func-

tion in our algorithm is modified by incorporating the previously quantified im-

portance. We assign larger weights to the relevant APs and smaller weights to

the irrelevant APs. This way, RSS from different APs are fused with different

importance and the location computation can be dominated by the more relevant

ones. In the experiments, our localization system is developed by collecting real-

istic RSS data in an indoor WLAN environment. Experimental results indicate

2



superior performance of our algorithm, as compared to the existing methods.

In the following chapter, we illustrate the location fingerprinting systems and

introduce the kernel approach model. Chapter 3 illustrates the important of AP

selection and reviews the existing AP selection methods. Then we propose our

AP selection method by calculating the discrimination of RSS.

Chapter 4 proposes our positioning system which contains four stages. The

first stage is offline modeling to build the radio map. In the second stage, we

calculate the importance of each AP and select the most important APs for

positioning. The third stage evaluates the weights of each AP to the kernel

distance. Finally, the weights are incorporating in the positioning system.

In chapter 5, we implemented our algorithms in an indoor environment. All

experiments are conducted in realistic environment of fifth floor of BL building

in NTU. The results show that our AP selection method can correctly select the

more important APs. The significant reduction of mean error, as compared to

the existing algorithms.

In chapter 6, we introduce a significant application of AP selection. That is,

AP selection is an efficient application in AP placement.

3
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Chapter 2

Background Description

2.1 Characteristics of Signal Propagation
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Figure 2.1: An example of receive signal strength distribution.

5

2_fingerprinting/figures/RSS.eps


2. BACKGROUND DESCRIPTION

The IEEE 802.11b standard works over the radio frequencies in the 2.4 GHz

band. It is widespread since the band is license-free in most places around the

world. It is attractive because the RF-based techniques are popular and inexpen-

sive, providing much ubiquitous coverage and requiring little overhead. However,

accurate location estimation using measurements of signal strength is a longstand-

ing difficult task due to the noisy characteristics of signal propagation. Subject

to reflection, refraction, diffraction, and absorption by structures and even hu-

man bodies, signal propagation suffers from severe multipath fading effects in

an indoor environment. As a result, a transmitted signal can reach the receiver

through different paths, each having its own amplitude and phase. These differ-

ent components combine and reproduce a distorted version of the original signal.

Moreover, even changes in the environmental conditions, such as temperature or

humidity, also affect the signals to a large extent. As a consequence, the signal

strength received from an access point at a fixed location varies with time and

its physical surroundings.

Fig. 2.1 gives a typical example of the normalized histogram of the signal

strength received from an access point at a fixed location. Several hundred mea-

surements were sampled to construct the histogram. It is obvious that the signal

strength received from the same AP varies with time, even at a fixed location.

Furthermore, the number of APs covering a location also varies with time.

2.2 Overview of indoor positioning systems

Indoor positioning systems in the wireless networks could provide ubiquitous com-

puting in the indoor environments where the global positioning system (GPS)

6



2.3 Two stages of Location Fingerprinting

does not work well [11]. In the past years, many developed indoor positioning

systems utilize the location features such as the angle of arrival, time of arrival

(TOA) [12] and time difference of arrival [13]. The mentioned two measurements

need to be precisely measured and require the line-of-sight (LOS) between the

transmitter and the receiver [14]. Meanwhile, such features require specialized

hardware integrated into the existing equipments. Due to the high implemen-

tation cost, using received signal strength (RSS) gets more interests. Since the

WLAN infrastructures are widespread, the RSS-based positioning system is a cost

effective solution and is growing rapidly in commercial interest. The most viable

solution for RSS-based indoor positioning is location fingerprinting which works

like the process of pattern recognition. A user’s location is estimated by exploit-

ing the function between currently measured RSS pattern and a pre-stored radio

map [6, 15]. In general, two stages of the fingerprinting are the offline modeling

and the online positioning [4] and they are presented as follows.

2.3 Two stages of Location Fingerprinting

During the offline stage, the received signal strength (RSS) from different APs is

collected different sampling locations to build the databased called ”radio map”

for the target environment. A radio map thus provides a model of RSS in a

development area. A visual picture of the collected fingerprints is reported in

Fig. 2.2. This figure shows a typical radio map includes 3 information sources,

5 locations and 50 samples RSS at each location. After constructing the radio

map, a wireless client’s is estimated by inspecting currently measured RSS. We

describe several location estimation methods in the next subsection.

7



2. BACKGROUND DESCRIPTION

Figure 2.2: A visual picture of the collected WLAN RSS at a fixed indoor location

based on temporal and access point diversity.
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2.4 Kernel Approach (Distance Calculation)

During the online stage, the positioning systems measure the RSS in real-time

and estimates the location by comparing the measured RSS with the pre-recorded

radio map. However, the signals of the indoor environment sufer from noise, inter-

ference, and multipath. The RSS can be considered as a random variable. Thus,

the fundamental objective is seeking a mapping between the radio measurements

to a physical location. One of the most popular mapping function is the proba-

bilistic models [16, 17]. The main idea can be regarded as finding p(l
r
|X), where

X is an observed RSS vector, l
r

represents the r-th reference location in the ra-

dio map and p(l
r
|X) indicates the posteriori probability of location lr given the

observation X. By means of Bayes’ rule, p(l
r
|X) depends only on the likelihood

p(X|l
r
) when the prior probability p(l

r
) follows a uniform distribution. Thus, the

location can be regarded as a multivariate multiple regression problem [18] and

estimated as

l̂ =
R∑

r=1

l
r
· p(X|l

r
) (2.1)

where R is the number of reference locations and l̂ represents the estimated result.

In this artitle, we use kernel approach [18,19] to compute the likelihood func-

tion p(X|l
r
) from data.

2.4 Kernel Approach (Distance Calculation)

This section discusses the distance calculation between an observation and radio

maps in the kernel space. It requires that these are decreasing functions of the

distance between an observation vector and the training record. That is, sur-

vey points whose training records closely match the observation should receive

a higher p(X|l
r
). In particular, the likelihood functions p(X|l

r
) should satisfy

9



2. BACKGROUND DESCRIPTION

∑R

r=1
p(X|lr) = 1. Then using the average normalized inner product as the like-

lihood functions for reasons that will become clear shortly:

p(X|lr) =
1

nr

nr∑

t=1

〈X, Xr(t)〉

‖X‖ ‖Xr(t)‖
(2.2)

where 〈X, Xr(t)〉 = XXr(t)
T denotes the canonical inner product in <D and D

is the number of APs used for positioning. As seen in Eq. 2.2 the likelihood

function is the average of the cosines between the observed RSS vector and the

training vectors. The minimum value of Eq. 2.2 occurs when the observed RSS

vector is orthogonal to all training vectors. However, this angular measurement

can not recognize similarity measurement effictively between two RSS vectors

as the maximum angle between them is very small in <D. Furthermore, the

presence of users and non-line-of-sight (NLOS) propagation results in various

RSS distributions for a given survey poins, as shown in Fig. 2.3. In order to

improve the complexity of RSS patterns, it can be achieved by using the nonlinear

mapping φ : X ∈ <D 7→ φ(X) ∈ = to map the input data to a higher dimensional

space =.

At first glance, the calculation of p(X|l
r
) in a possibly infinite dimensional

space may seem computationally intractable. Fortunately, the kernel trick can be

used to calculate the inner product in = without the need for explicit evaluation

of the mapping φ. The kernel trick allows the replacement of inner products in =

by a kernel evaluation on the input vectors. In the WLAN context, the kernel is

a function k : <D ×<D 7→ < such that k(x, x′) = 〈φ(x), φ(x′)〉. Since the training

data only enter p(X|l
r
) throught inner products, the kernel trick can be used to

carry out inner products in = without the need for explicit evaluation of mapping

10



2.4 Kernel Approach (Distance Calculation)
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2. BACKGROUND DESCRIPTION

φ. The kernelized likelihood function then becomes

p(X|lr) =
1

nr

nr∑

t=1

〈φ(X), φ(Xr(t))〉

‖φ(X)‖ ‖φ(Xr(t))‖

=
1

nr

nr∑

t=1

k(X,Xr(t))√
k(X,X)k(Xr(t),Xr(t))

=
1

nr

nr∑

t=1

K̂(X,Xr(t))

(2.3)

where nr is the number of collected RSS at the r-th location and Xr(t) is the

t-th collected RSS at the r-th location. The function k() and K̂(), respectively,

indicate a certain nonlinear kernel and its normalized form. The widely used

Gaussian Radial Basis Function (RBF) is defined as

k(X,Xr(t)) = exp

(
−1

2σ2
r

||X− Xr(t)||
2

)
(2.4)

where σr is an adjustable width and the operation ‖(·)‖ represents the norm

function. The most commonly used L2 norm is adopted which represents the

Euclidean distance as (||X|| =
√

x2

1
+ · · ·+ x2

D).

12



Chapter 3

Access Point (AP) selection

In a tipycal WLAN environment, signals from many APs are detectable here or

there within the area of concern. For example, Signals from each AP provide

some information for location estimation, and it is a natural way to use as many

as possible to improve the accuracy in a location estimation system. However,

the increase of accuracy is at the cost of adding mroe computational burden to

the system. Using all availiable APs increases the computational complexity of

the positioning algorithm. As a consequence, such a location system not only has

poor scalability but also is power-insufficient when energy is constrained on the

computational unit. Therefore, it is important to only use the number of APs

that a target system can afford while maintaining as high a level of accuracy as

possible.

Furthermore, the geometric configuration of APs in relation to each other can

affect the accuracy of positioning [41]. Since RSS is dependent on the relative

distance of user and each AP, as well as the topology of the environment in terms

of obstacles causing non-light-of-sight (NLOS) propagation, subsets of available

APs may report correlated readings, leading to needless redundancy and possibly

13



3. ACCESS POINT (AP) SELECTION

biased estimates. This motivates the used of AP selection techniques to select a

subset of available APs for positioning. Thus, in order to reduce computational

complexity cost and enhance accuracy, an AP selection method is needed.

More importantly, the results in [29, 39] showed that the best positioning ac-

curacy can be produced by using a subset of RSSs in a fingerprinting system.

This occurs because, as the number of RSSs increases, more information is added

whereas more noise is incurred [29]. Kushki et al. [18] pointed out that the dis-

tinct transmitters may produce similar measurements, leading to biased estimates

and redundant computation. These works motivate the use of information selec-

tion techniques from the view point of performance. The AP selection techniques

choose the subset of APs for positioning depend on the value of quantified im-

portance. We introduce the importance quantification method for the following

section.

3.1 Importance Quantification for AP selection

The importance quantification methods are originally designed for AP selection.

In these methods, some importance evaluation function is used to rank the sensed

RSSs according to their estimated importance. Then, the more important APs

are selected for positioning. This way, several advantages can be accomplished

such as improving the speed of positioning, better power efficient, reducing the

storage requirement and avoiding the problem of overfitting. Existing AP selec-

tion methods performed the above advantages in positioning system.

For example, Youssef et al. [38] utilized the strongest RSSs to reduce the

computational complexity of the positioning algorithm. They mentioned that

14



3.2 Proposed AP selection method

the strongest APs provide the highest probability of coverage over time. This

method named MaxMean, assign the higher importance to the stronger RSS.

However, it is also known that the variance measurements from an AP increases

with its mean power at a given location. In cases where the measured RSS

from an AP exhibits a high degree of variance, the survey values may be very

different than the online measurement, degrading the accuracy of estimation [42].

Furthermore, it becomes more difficult to distinguish neighboring points in such

cases. Chen et al. [39] provides a selection method based on the discriminant

power of each AP quantified through the entropy-based InfoGain criterion. The

InfoGain criterion assigns the more importance to the more discriminative APs

instead. Thus, InfoGain ranks APs in descending order of their InfoGain values

which are calculated as follows:

InfoGain(APd) = H(G) − H(G|APd) (3.1)

where H(G) and H(G|APd), referred to [39], implies the “entropy of the reference

locations when APd’s value is unknown”, and the “conditional entropy of the ref-

erence locations given APd’s value”. The recent work of Kushki et al. [18] offers

a real-time RSS selection technique which minimizes the correlation between se-

lected RSSs based on different divergence measurements such as Bhattacharyya

distance and information potential.

3.2 Proposed AP selection method

In this article, we propose a novel AP selection method in this section. A subset

of APs is selected throught an importance evaluation function. In our method,

15



3. ACCESS POINT (AP) SELECTION

the importance of each AP is quantified by calculating the signal discrimination

between different locations. The signal discrimination can be regarded as the

signal scatter. The important AP means it has good discrimination. Good dis-

crimination represents the d-th AP has good separation in different location that

it can recognize different locaion accurately. Thus, we define the total scatter of

d-th AP ST,d

ST,d =
1

R · nr

R∑

r=1

nr∑

t=1

(xr,d(t) − md)
2 (3.2)

where R is the number of reference location, nr is the number of collected RSS

at the r-th location and xr,d(t) is the t-th collected RSS at the r-th location. The

md denotes the sample mean of the d-th AP.

md =
1

R · nr

R∑

r=1

nr∑

t=1

xr,d(t) (3.3)

The ST,d is the separation of all measured RSS in all locations. However, Eq.

3.2 can not show the relation between different locations clearly. In order to

further analysis the ST,d, we define the within-class scatter value SW,d and the

between-class scatter value SB,d.

SW,d =
1

R · nr

R∑

r=1

nr∑

t=1

(xr,d(t) − mr,d)
2 (3.4)

SB,d =
1

R

R∑

r=1

(mr,d − md)
2 (3.5)

where, mr,d represents the sample mean of d-th AP at the r-th location.

mr,d =
1

nr

nr∑

t=1

xr,d(t) (3.6)

16



3.2 Proposed AP selection method

The within-class scatter value represents the RSS separation of a fixed location

and it can be regarded as the noise of this environment. The between-class scatter

value represents the separetion of mr,d at all locations and it can be regarded as

the contained signal information. Then the total scatter value ST,d follows that

ST,d =
1

R · nr

R∑

r=1

nr∑

t=1

(xr,d(t) − mr,d + mr,d − md)
2 (3.7)

=
1

R · nr

R∑

r=1

nr∑

t=1

(xr,d(t) − mr,d)
2 +

1

R · nr

R∑

r=1

nr∑

t=1

(mr,d − md)
2 (3.8)

= SW,d +
1

R

R∑

r=1

(mr,d − md)
2 (3.9)

= SW,d + SB,d (3.10)

= noise + signal (3.11)

Eq. 3.7 means that the total scatter is the sum of the within-class scatter and

the between-class scatter. We select the important AP which has the maximum

signal to noise ratio. Thus, we define the criterion function at d-th AP

Jd =
signal

noise
=

SB,d

SW,d

(3.12)

For all APs, the measured RSSs at different locations are collected at same

time. So we assume that the noise at all locations are the same. That means the

within-class scatter value SW,d for all locations are the same. Thus, we treat the

between-class scatter value SB,d as the quantified importance of d-th AP.

Let ηd denote the quantified importance for the d-th AP. The larger ηd is, the

more important for d-th AP is. The importance of d-th AP should be capable to

distinguish the character of locations distinctly in the signal space. Therefore, the

variance of the d-th AP can be a quantified metric to characterize the relevance of

location prediction since it explicitly shows the separation of RSS over the whole
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3. ACCESS POINT (AP) SELECTION

localization area. Thus, we define ηd, which represents the contained information

of the d-th AP.

ηd = SB,d =
1

R

R∑

r=1

(mr,d − md)
2 (3.13)

Eq. 3.13 calculates the separation of each location in the d-th AP, which

indicates how fast the power loss increases with the distance in the target envi-

ronment. If ηd is very small, RSS is hardly used to extract the location imfor-

mation because the signal strength does not change with varying distances. On

the other hand, RSS changing at different locations is evident with a large value

of ηd. That explains why the separation of RSS over the whole localization area

can be used to indecate the amount of information to estimate the location. The

large variance indecates the more importance because the greater variability of

the RSS is observed over the target environment. We select D importance APs

by Eq. 3.13, which ranks APs in descending order of the value of ηd.

Next, we give an experiment in real environment to verify our proposal. Fig.

3.1 shows the fifth floor of BL building in NTU and the triangles represent the

measured locations. We measure RSSs in this area by a laptop with Windows

XP operating system and NetStumbler network software. We collect 100 samples

per location at different time periods. Our measurements show that 15 APs are

stable in this floor. Then, we use Eq. 3.13 to calculate the importance of each

AP. AP1 AP2 AP3 denote the best 3 APs and AP4 AP5 AP6 denote the worst 3

APs.

Fig. 3.2(a) and Fig. 3.2(b) show the RSS measurement space for various

locations in the fifth floor of BL building. These figure clearly present the asym-

metric contribution of the best 3 APs (AP1, AP2, AP3) and the worst 3 APs

18



3.2 Proposed AP selection method

Figure 3.1: BL building.

(AP13, AP14, AP15). As can be seen, the best 3 APs are more important than

the worst 3 APs because the best 3 APs present beter RSS discrimination for the

changing distance in this indoor environment.
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Figure 3.2: The RSS measurement space for various locations in the BL building.
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Figure 3.3: The RSS measurement space for various locations by using (a)

MaxMean and (b) InfoGain methods to select the most important three APs.
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Figure 3.4: The accuracy of the best APs versus the worst APs.
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Chapter 4

Proposed positioning algorithm

4.1 Overview of proposed positioning system

Importance

Quantification

AP Selection

Weighted

Kernel 

Distance 

Location

Estimation
Radio Map

Online measurements

Figure 4.1: Overview of proposed positioning system.

The proposed positioning system contains some stages, as shown in Fig. 4.1.

In the first stage, a site survey performed in the target environment is required

to collect the RSS. The RSS are collected at sampling locations to build the

radio map. A radio map thus provides a model of RSS in a development area.

We usually collect a sequence of RSS, each sequence contains many samples per
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4. PROPOSED POSITIONING ALGORITHM

location to observe its temporal variation. The more reference locations means

the higher density in the radio map at the expense of more collecting effort. After

constructing the radio map, a WLAN client’s is estimated by inspecting currently

measured RSS.

The importance quantification stage is a method to quantify the importance

of each AP. The importance is a value which is quantified by the signal discrim-

ination between distinct locations. Depending on these importance, we select

the more important D APs from the radio map in the AP selection stage. Fur-

thermore, using such importance value, we can calculate the discriminative gain

through a quasi entropy function. The discriminative gain is a weight of a impor-

tant AP which is added into the kernel distance function in the weighted kernel

distance stage. Finally, we use the mentioned kernel weight to calculate the final

estimation result. We clearly introduce our positioning algorithm in the next

section.

4.2 Incorporating the Importance into Location

Estimation

This section illustrates how the different importance is incorporated into the

location estimation. If the amount of information of each AP is quantified, we can

gracefully incorporate such physical property into the calculation of positioning

algorithm. Since the location estimation is performed by a kernel function, the

different importance should be embedded into the kernel distance function as

K̂(X, Xr(t)) = exp{
D∑

d=1

−w2

d

2σ̃2

r,d

· [xd − xr,d(t)]
2} (4.1)
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4.3 Weights determination

where wd represent the weight at d-th AP, σ̃2

r,d is an adjustable kernel width,

and D represents the number of selected APs. In Eq. 4.1 we incorporate a novel

parameter wd, which represents the unequal contribution of each AP. Therefore,

Eq. 4.1 can be regarded as a weighted kernel function where the effect of APs

is differentiated. In other words, we assign larger weights to the relevant APs

and smaller weights to the irrelevant APs. This way, RSS from different APs are

fused with different importance and the location computation can be dominated

by the more relevant ones. Afterwards, the location can be estimated by

l̂ =

R∑

r=1

lr

(
1

nr

nr∑

t=1

K(X, Xr(t))

)
(4.2)

From Eq. 4.1 and Eq. 4.2 the comtribution from each distance member X −

X − r(t) is fused with different weights wd in the transformed kernel to estimate

the user’s location l̂. The higher the weight is, the bigger belief we give to this

component which dominates the computation. To our knowledge, such physical

proporty has not been exploited in designing a location system. When the weights

are all equal (wd = 1, d = 1 · · ·D), this method is reduced to the traditional kernel

positioning.

4.3 Weights determination

This section investigates how to determine the weights required in Eq. 4.2. One

practical problem we discover during the experiments is that there exists large

differences of ηd between different signals. That is, some ηd may present several

hundred times larger than the other. To provide a graceful quantitative metric

in calculating the spatial likelihood of the measured signals, we utilize a quasi

entropy function f(·) to determine the weight wd as follows:
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4. PROPOSED POSITIONING ALGORITHM

wd = α + f(ηd)

= α +
−(1 − η∗

d) log(1 − η∗

d)

β
(4.3)

where β is the maximum value of the numerator to make the value of f(ηd)

smaller than 1 (β = max(−(1 − η∗

d) log(1 − η∗

d)), d = 1, 2 · · ·D), and η∗

d is the

normalized value of ηd as

η∗

d = ηd/

D∑

d=1

ηd (4.4)

In Eq. 4.3, 1 − η∗

d can be viewed as a numerical value of probability and f(·)

is smaller with the definition of entropy function. It can be observed that f(ηd)

increases with ηd and ranges between 0 and 1 (0 ≤ f(ηd) ≤ 1). That means that

the changing scale of weights is constrained in a resonable range. The parameter

α is a constant which controls the bias gain. This value is adjusted to make the

minimum gain larger than α. Thus, we can control the weights as α ≤ wd ≤ α+1

at the same time to avoid an abrupt change on the weights.
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Chapter 5

Experimental Setup And Results

5.1 Experimental Setup

507506505504503502

518521524527530 515
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509
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50m

11m

Figure 5.1: The fifth floor plane of the BL building, where we had performed the

experiments. The dots represent the reference locations.

The proposed algorithm is evaluated on a realistic indoor environments. The
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measurements are collected on the fifth floor of BL building in NTU, as shown in

5.1. We collect WLAN data in this area by a laptop with Windows XP operating

system and NetStumbler network software. The dimensions of this test-bed are

52 meters times 18 meters. 35 reference locations are selected with a 3.2 meters

space (R=35). We collect 50 samples per location at different time periods for

training data and testing data, respectively (nr = 50). Our measurements show

that over 30 APs can be detected in this floor and 15 APs are stable. We utilize

MaxMean and InfoGain criterion to select the important APs from the 15 stable

APs for comparison. The kernel width is set a constant and the bias weight α is

1 in the experiments. Finally, the positioning error is defined as the Euclidean

distance between the estimated result and the true coordinate.

5.2 Experimental results

5.2.1 AP selection

First, we compare the effects of AP selection methods. The performance is eval-

uated in terms of the positioning accuracy, which is defined as the cumulative

percentage of estimations within specified errors.

Fig. 5.2 shows the accuracy comparison between MaxMean, InfoGain and the

proposed method. This figure clearly shows that our approach outperforms the

traditional methods under the same AP numbers. Using 5 APs, our approach

exceeds 70% while those of MaxMean and InfoGain both are worse than 50%.

That means that our approach has the advantage of using the fewest APs to

achieve the same level accuracy.

Fig. 5.3 reports the mean and standard deviation (std) of error on the number
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Figure 5.2: The accuracy of error distance within 1 meter versus number of APs.
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Figure 5.3: (a) Mean and (b) Standard Deviation of the estimated error versus

number of APs.
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5.2 Experimental results

of involved APs. Fig. 5.3(a) clearly shows that the error distance of our method is

beter than other methods. Also, the error distance in five APs are similar to more

than five APs. Thus, selecting more than five APs can increase the computational

complexity but the decreasing error distance is limited. As seen from Fig. 5.3(b),

the increase in number of APs reduce the std of error because more location-

related information is utilized. More importantly, Fig. 5.3(b) again shows that

our approach outperform traditional approaches. The decrease of error of our

method is larger than that of the existing methods.

5.2.2 Performance evaluation by incorporating the impor-

tance of APs

In this subsection, we evaluate the performance after incorporating the different

importance of APs. Fig. 5.4(a) and Fig. 5.4(b) shows the accuracy versus

error distance under 3APs and 5APs, respectively. In these figures, the reversed

proposed method ranks APs in reverse order of the way the proposed algorithm

does. These figures clearly indicate superior performance based on our positioning

algorithm, as compared to existing methods. After incorporating the different

weights, the accuracy is further greatly improved. In the Fig. 5.4(a), the accuracy

within two meters is improved from 60% to 70% if each kernel distance is fused

with different importance. Also, the accuracy within one meter is improved from

48% to 71% by incorporating the weight to the kernel distance in Fig. 5.4(b).

On the contrary, the reversed proposed method performs the worst.

Fig. 5.5(a) and Fig. 5.5(b) reports the mean and std of error while the em-

bedded weights are determined from the 3APs and 5APs by proposed method,

respectively. It is interesting from Fig. 5.5 that the accuracy is not improved if

31



5. EXPERIMENTAL SETUP AND RESULTS

0 1 2 3 4 5 6 7 8
0  

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Error distance (meters)

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f 
er

ro
r 

(%
)

Proposed with weight
Proposed without weight
InfoGain
MaxMean
Reversed proposed without weight

(a) 3APs

0 1 2 3 4 5 6 7 8
10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Error distance (meters)

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f 
er

ro
r 

(%
)

Proposed with weight

Proposed without weight

InfoGain

MaxMean

Reversed proposed without weight

(b) 5APs

Figure 5.4: The cumulative percentage of error for different AP selection methods

and the effect of weights incorporation.
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Figure 5.5: Mean and standard deviation of error while the embedded weights

are determined from the selected APs by proposed method.
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the APs are selected by MaxMean. This is because MaxMean is not a suitable

measurement of AP relevancies. Once the APs are not carefully selected, the

weightings may not produce a better result. Fig. 5.5 indicates that the perfor-

mance of InfoGain slightly improves and only the proposed method achieves a 2

m error mean.
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Figure 5.6: The cumulative percentage of ηd obtained from MaxMean, InfoGain

and the proposed method.

Finally, Fig. 5.6 shows the cumulative percentage of ηd obtained from MaxMean,

InfoGain and the proposed method. From Fig. 5.6, the slope in our method is

steeper than the other methods. This observation agrees fairly well with the

results in Fig. 5.5. That means that ηd is a better indication of the quantified
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importance.

5.3 Test in different points

Figure 5.7: The fifth floor plane of the BL building, where we had performed the

experiments. The red stars represent the testing locations.

In this section, we measure the additional testing points which are different

from training points, as shown in Fig. 5.7. In Fig. 5.7, the red stars represent

the testing points and the dots represent the original training points. We follow

the same procedure of Section 5.1 to measure the RSS in this area. We collect

100 samples per training point at different time periods for training data. The

testing samples are collected at 30 testing points. The testing points are selected

between the training points. A total of 50 samples are collected per testing point

at a rate of one sample/sec. We also compare proposed method with MaxMean

and InfoGain criterion to select the important APs from the 15 stable APs. The
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kernel width is set a constant and the bias weight α is 1 in the experiments.

Finally, the positioning error is defined as the Euclidean distance between the

estimated result and the true coordinate.
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Figure 5.8: The cumulative percentage of error for different AP selection methods

and the effect of weights incorporation.

In this subsection, we evaluate the performance of our proposed system and

also compare the AP selection method with MaxMean and InfoGain by the differ-

ent testing points. Because all the training points and testing points are different,

the positioning systems need more information to improve the positioning accu-

racy. Thus, selecting the more important APs may increase the accuracy clearly.

The performance is evaluated in terms of the positioning accuracy, which is de-
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Figure 5.9: The accuracy of error distance within two meters versus number of

APs.
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Figure 5.10: Mean of the estimated error versus number of APs.
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fined as the cumulative percentage of estimations within specified errors. First,

we compare our proposed AP selection method with MaxMean, InfoGain, and

reversed proposed method, as shown in Fig. 5.8. In Fig. 5.8, the accuracy of error

distance within two meters in proposed method is 48% while those of MaxMean,

InfoGain, reversed proposed method are 30%, 43%, and 20% respectively. Fig.

5.9 shows the accuracy of error distance within two meters versus number of APs.

This figure clearly shows that our approach outperforms the traditional methods

under the same AP numbers. Using 6 APs, our approach exceeds 50% while

those of MaxMean and InfoGain both are worse than 40%. Furthermore, Fig.

5.10 shows mean of the estimated error versus number of APs. That means that

our approach has the advantage of using the fewest APs to achieve the same level

accuracy.

Moreover, the improvement of incorporating the kernel weight is shown in

Fig. 5.8. The accuracy within three meters is improved from 48% to 58% if each

kernel distance is fused with different importance. More result is presented in

Fig. 5.11. As seem to Fig. 5.11, the proposed method has more robustness in

different number of APs. In this figure, our proposed system can further improve

the error distance, as compared to traditional MaxMean and InfoGain.
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Figure 5.11: Mean of error while the embedded weights are determined from the

selected APs by proposed method.
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Chapter 6

Applications

The main contribution of this article is to provide an efficient method to quantify

the importance of APs. Then, using these quantified values to select the most

important APs for positioning. The positioning accuracy is further improved by

using such method to select important APs. However, such technique dose not

know the AP’s location. A significant question is where are the important APs.

Our method can solve not only an AP selection problem but also an AP placement

problem. That is, AP selection is an efficient application in AP placement. The

problem of AP placement is how to find the important AP’s position. Clearly,

the values of ηd are efficient measurement of this problem. Recalling to Sec. 3.2,

the ηd are defined by

ηd =
1

R

R∑

r=1

(mr,d − md)
2 (6.1)

,where the Eq. 6.1 calculates the signal separation of the d-th AP. We denote the

d-th AP’s position by ld. Our method assumes that we know all AP’s positions.

Then, we calculate ηd for all APs and select the larger ηd for positioning AP.

Thus, the selected AP’s positions can be obtain by ld.
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6. APPLICATIONS

For example, if we want to construct a positioning system in a WLAN en-

vironment and set five APs for positioning AP. We can set some steps of this

example. First, we place many APs around this environment and we know all

AP’s positions. Second, we measure the RSS in this area and build the radio

map. Third, we calculate the ηd of each AP and select the largest five ηd for

positioning AP. Then, the corresponding AP’s positions can obtain by selected

ηd.

This application of AP selection is an efficient method for constructing a

positioning system. In a WLAN environment, the only one different of each AP

is position so to select the important AP means place the AP in the discriminative

positions. The results of this application can refer to Ch. 5.
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Chapter 7

Conclusions

The main finding of this work is to investigate the different contribution of each

AP to the location estimation in WLANs. We argue that the importance should

be embedded in the positioning algorithm. However, traditional approaches treat

each RSS in an equal way. This article shows that it would be more profitable to

take such properties into consideration while designing a location system. The

main contribution is two parts. First, a novel mechanism is proposed to measure

the degrees of the AP relevancies. The importance of each AP is quantified by

the signal discrimination between distinct locations. We utilize such numerical

importance to select important APs to avoid unnecessary calculations. Second,

the importance is further embedded into our positioning system. We provide a

weighted kernel function where the effect of APs is differentiated. That is, the

larger weights are assigned to the more important APs. Moreover, we develop a

quasientropy function to avoid an abrupt change on the weights. Our positioning

system is developed in a real-world WLAN environment, where the realistic mea-

surement of receive signal strength (RSS) is collected. Experimental results show

that the positioning accuracy is significantly improved by taking the different
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7. CONCLUSIONS

importance into consideration.
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