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Abstract

This study focuses on indoor localization in Wireless Local Area Net-

works (WLANS). We investigate the unequal contribution of each

ion. The main contribution is

access point ( on loi%ttw@ﬁg{@th
two parts. First, fc_"ﬁ:rovel r}‘let;hamg is pr@g‘gﬁed to measure the de-

sary calculaﬁon%,

in the dlscrlmiba@ v
_‘.} \ . e '

AP placement. S@or@/ﬁhﬁ;l aqceﬁ“fuﬂaher embedded into our

= "bl"

positioning system. Wgﬁoygf‘&wgﬁld kernel function where the

effect of APs is differentiated. That is, the larger weights are assigned
to the more important APs. Moreover, we develop a quasi entropy
function to avoid an abrupt change on the weights. Our positioning
system is developed in a real-world WLAN environment, where the
realistic measurement of receive signal strength (RSS) is collected. Ex-
perimental results show that the positioning accuracy is significantly

improved by taking the different importance into consideration.



Keyword: indoor localization, wireless local area networks, AP se-

lection, location fingerprinting, AP placement
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Chapter 1

Introduction

A xm 2%,

Nowadays wireless local a.iiehln

P, P
T

infrastructures in an indoor g : tlomrﬁg in such an environment
is highly deswable"qu:fm y 1 i Tg;_:bl(‘)gs such as museum tour

guide and fraud &etectl - locat on ﬁmgerprmtmg technique is

developed to prov@;_.eha h ng. Jndoor environments [4—6].
o "?"

|l|. L

This method colleé;ﬁé;:ch%g' el i : ;QRS@) at the sample locations
to build a radio map: j r " éﬁ'&u \A{fh‘én a user wants to estimate

N bk e

his/her location, the posrclo-fmg_, yysﬁe'm I?eq&ul‘es RSS in real-time and estimate
) -"jl
the location by matching the measurements with the previously stored radio map.

In WLAN location fingerprinting, the multi-dimensional measurements are
described by RSSs from the detectable APs [7]. Although signals sent from every
AP deployed in the area are mutually independent, RSS from different AP has
different importance to the estimation of user location. For radio signals, the
long distance they travel, the more time they are influenced by the environmental
noises, and the more uncertainties factors are added in the signal strength received

by the user. Thus, it is believed that some RSSs are strongly relevant, some are



1. INTRODUCTION

weakly relevant and others are irrelevant to the location information [8-10]. In
other words, the RSS from different AP has different contribution to the location
estimation. These importance should be embedded in the positioning algorithm.
However, traditional approaches treat each RSS in an equal way. That is, the
effect of APs on the location computing has not been differentiated. In this
article, we argue that it would be more profitable to take such properties into
consideration while designing a location system. Two questions arise from such
considerations. The first question is how to effectively quantify the importance of
each AP. The second is how the dlfferentr 1rf1})or}ance is embedded in the location
estimation. Ry 1'_*.-. -1"'i’ -t

“ A, Y
4 p, & g
The proposed posﬁmmn& algor].'t

tions. First, a novel mechamsfm' pr sur ﬁ'h'ei:.'ndegrees of the AP

relevancies. The 1mp0rta1:r¢e Is
=

distinct locations throughﬁ,’a hg;a

scr,mﬂhatlon between

ui approach we uti-

lize such numerical 1mportam:e t@‘,s eet rehable A] S a"S’.-'tO .@VOld unnecessary

P *ﬂ ﬁ; 4 N

Next, the importance is further embegxd%d_}nt? qu;“ posmonlng system. Our

calculations. i,

fingerprinting system adopts the kernel-based method which computes the simi-
larity between the online measurements and the training data. The kernel func-
tion in our algorithm is modified by incorporating the previously quantified im-
portance. We assign larger weights to the relevant APs and smaller weights to
the irrelevant APs. This way, RSS from different APs are fused with different
importance and the location computation can be dominated by the more relevant
ones. In the experiments, our localization system is developed by collecting real-

istic RSS data in an indoor WLAN environment. Experimental results indicate



superior performance of our algorithm, as compared to the existing methods.

In the following chapter, we illustrate the location fingerprinting systems and
introduce the kernel approach model. Chapter 3 illustrates the important of AP
selection and reviews the existing AP selection methods. Then we propose our
AP selection method by calculating the discrimination of RSS.

Chapter 4 proposes our positioning system which contains four stages. The
first stage is offline modeling to build the radio map. In the second stage, we

calculate the importance of each AP and select the most important APs for

positioning. The third stage V[E'Lhﬁ'tﬁ?"i the Vf/'@lghts of each AP to the kernel

distance. Finally, the we %s are jhcor%'i’:atmé :gh.the positioning system.

% ?"-?--

more important APS ] i : i . n error, as compared to

the existing algorltﬁins

=
In chapter 6, we lﬁ%Qdﬁ%Jw a{fﬁn of AP selection. That is,
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Chapter 2

Background Description

2.1 Characteristics of Signal Propagation
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Figure 2.1: An example of receive signal strength distribution.
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2. BACKGROUND DESCRIPTION

The IEEE 802.11b standard works over the radio frequencies in the 2.4 GHz
band. It is widespread since the band is license-free in most places around the
world. It is attractive because the RF-based techniques are popular and inexpen-
sive, providing much ubiquitous coverage and requiring little overhead. However,
accurate location estimation using measurements of signal strength is a longstand-
ing difficult task due to the noisy characteristics of signal propagation. Subject
to reflection, refraction, diffraction, and absorption by structures and even hu-
man bodies, signal propagation suffers from severe multipath fading effects in
an indoor environment. As a result, a tran?ml};ted 81gnal can reach the receiver

e o
through different paths, each havmg 1ts “owWn am&!;r_pude-a‘.q__(zi_ phase. These differ-

==

distort

L, e .. .
ent components combine an({ i‘epr(f&u reion of the original signal.

Moreover, even changes in th&.faﬁv' onn al CoFd'N;{ions, ‘ﬂ?@ a‘s temperature or
A \ = =

humidity, also affect the sa_.gnals 0 a l rg‘: mt.| As a consequence, the signal
i - fE
| ! —

strength received from an access it a ﬁed O
a ' gl =

its physical surroundings. T 0

' 1 T 5
Fig. 2.1 gives a typical exagnple.»,dfm%;& hlqltogram of the signal
] B
‘,r |II
strength received from an access porﬁt at }L ﬁxed ].Pezp‘elbn Several hundred mea-
surements were sampled to construct the hlstogram. It is obvious that the signal

strength received from the same AP varies with time, even at a fixed location.

Furthermore, the number of APs covering a location also varies with time.

2.2 Overview of indoor positioning systems

Indoor positioning systems in the wireless networks could provide ubiquitous com-

puting in the indoor environments where the global positioning system (GPS)



2.3 Two stages of Location Fingerprinting

does not work well [11]. In the past years, many developed indoor positioning
systems utilize the location features such as the angle of arrival, time of arrival
(TOA) [12] and time difference of arrival [13]. The mentioned two measurements
need to be precisely measured and require the line-of-sight (LOS) between the
transmitter and the receiver [14]. Meanwhile, such features require specialized
hardware integrated into the existing equipments. Due to the high implemen-
tation cost, using received signal strength (RSS) gets more interests. Since the
WLAN infrastructures are widespread, the RSS-based positioning system is a cost
effective solution and is growing ra !1dlly in commerc1al interest. The most viable

@itk
solution for RSS-based md‘Oor p@sitlon%;'ls IOC@i}'_lﬁO'n fingerprinting which works

==

like the process of pat‘t‘ern’fe’

ing the function be‘bw&g;ia.
"\.i

map [6,15]. In geueral

R 5~ &,
2.3 Two stag’e_s 6f Locatq:on Fingerprmtmg
e JEae
During the offline stage, the received signal strength (RSS) from different APs is

collected different sampling locations to build the databased called ”"radio map”
for the target environment. A radio map thus provides a model of RSS in a
development area. A visual picture of the collected fingerprints is reported in
Fig. 2.2. This figure shows a typical radio map includes 3 information sources,
5 locations and 50 samples RSS at each location. After constructing the radio
map, a wireless client’s is estimated by inspecting currently measured RSS. We

describe several location estimation methods in the next subsection.



2. BACKGROUND DESCRIPTION
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Figure 2.2: A visual picture of the collected WLAN RSS at a fixed indoor location

based on temporal and access point diversity.
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2.4 Kernel Approach (Distance Calculation)

During the online stage, the positioning systems measure the RSS in real-time
and estimates the location by comparing the measured RSS with the pre-recorded
radio map. However, the signals of the indoor environment sufer from noise, inter-
ference, and multipath. The RSS can be considered as a random variable. Thus,
the fundamental objective is seeking a mapping between the radio measurements
to a physical location. One of the most popular mapping function is the proba-
bilistic models [16,17]. The main idea can be regarded as finding p(1,|X), where
X is an observed RSS vector, 1. represents the r-th reference location in the ra-
dio map and p(1,|X) 1ndlcate§ the ?os’terlon probability of location 1, given the

observation X. By means. o% Bayei{ rule, p(l |5%,}»-depends only on the likelihood
7,

p(X|1;) when the prloi‘ pro"g-; ili umfb_r_m distribution. Thus, the

location can be rega"rd-le{él S a ﬁﬁééression problem [18] and
& \ & =

estimated as '-" , =
2 o K (2.)
where R is the number of refe,__ ions A les’d l rep{esents the estimated result.
r - "| __ ': —’_ e e L4 r X
=
In this artitle, we use kernel a:pprqaclrf.'fﬂ8 19} to compute the likelihood func-

#‘ 1
tion p(X|1,) from data. SIS

2.4 Kernel Approach (Distance Calculation)

This section discusses the distance calculation between an observation and radio
maps in the kernel space. It requires that these are decreasing functions of the
distance between an observation vector and the training record. That is, sur-
vey points whose training records closely match the observation should receive

a higher p(X]l,). In particular, the likelihood functions p(X]l,) should satisfy



2. BACKGROUND DESCRIPTION

Zle p(X]l.) = 1. Then using the average normalized inner product as the like-

lihood functions for reasons that will become clear shortly:

Ny )
pXE) TZ X0 22)

where (X, X, (t)) = XX,(t)T denotes the canonical inner product in ®? and D
is the number of APs used for positioning. As seen in Eq. 2.2 the likelihood
function is the average of the cosines between the observed RSS vector and the
training vectors. The minimum value of !qu 2,2 Qccurs when the observed RSS

vector is orthogonal to all trammg xl’ectors,, Hos_xzﬁ-ver th.}s angular measurement

==

S

; '|=

space . - _,j "'1"

IJ" j j
At first glance, the calculation of p(X|l;) in a possibly infinite dimensional

space may seem computationally intractable. Fortunately, the kernel trick can be
used to calculate the inner product in & without the need for explicit evaluation
of the mapping ¢. The kernel trick allows the replacement of inner products in
by a kernel evaluation on the input vectors. In the WLAN context, the kernel is
a function k : RP x RP +— R such that k(x,2’) = (¢(x), ¢(2’)). Since the training
data only enter p(X|l,) throught inner products, the kernel trick can be used to

carry out inner products in & without the need for explicit evaluation of mapping

10



2.4 Kernel Approach (Distance Calculation)

locationl
location2
location3
location4
L : - : location5
e0d. : : T *  location6

: : s location?

A
o
/
< o> o

RSS (AP,)

-100 -
RSS (AP.) 100 RSS (AP,)

Figure 2.3: An example of the RSS measurement space for various locations in
the BL building.

11


2_fingerprinting/figures/WLAN_RSS.eps

2. BACKGROUND DESCRIPTION

¢. The kernelized likelihood function then becomes

i X,(1)
p(Xi) = mans it
(

)

)|
kX, X, (1))
n, Z < /(X X)k(X, (£), X, (£))
- iimx,xr(t))

n
" oi=1

(2.3)

where n, is the number of collected RSS at the r-th location and X,.(¢) is the
t-th collected RSS at the r-th locathm@TEEK@% k() and K(), respectively,
'.J . Tk,

i 1zed\fn@g The widely used

indicate a certain nonlinear kegl,ﬁ ndjﬂ% no

k(X, (2.4)

where o, is an adJustablew‘E{fh i0 )| presents the norm
~a'-‘u i . ' i ','

function. The most commofi L2 nopiinis adepted which represents the

Euclidean distance as (||X]| =

’%}}@mﬁ:ﬂ" L

12



Chapter 3

Access Point (AP) selection

(el DLEE "
In a tipycal WLAN envu:b;iment& f%lgna _%from many APs are detectable here or
there within the aria- OE c : ““}é Slgnals from each AP provide
some information ?I‘ Iqma on esti i éft'ural way to use as many
as possible to im};gov‘e the ac catio estlnmtlon system. However,

] 2
the increase of acg-mracy Loe QQmputatlonal burden to

|l|. 'ﬂ,"

the system. Usmg all ava,], ble APs increases th fcqglputatlonal complexity of

the positioning algomfﬁm ﬁfs;a hce ﬁ}eh,aq l'bcatlon system not only has
poor scalability but also i 1s pe)yer. 1nsufﬁc‘}en]7 When energy is constrained on the
computational unit. Therefore, it is important to only use the number of APs
that a target system can afford while maintaining as high a level of accuracy as

possible.

Furthermore, the geometric configuration of APs in relation to each other can
affect the accuracy of positioning [41]. Since RSS is dependent on the relative
distance of user and each AP, as well as the topology of the environment in terms
of obstacles causing non-light-of-sight (NLOS) propagation, subsets of available

APs may report correlated readings, leading to needless redundancy and possibly

13



3. ACCESS POINT (AP) SELECTION

biased estimates. This motivates the used of AP selection techniques to select a
subset of available APs for positioning. Thus, in order to reduce computational

complexity cost and enhance accuracy, an AP selection method is needed.

More importantly, the results in [29,39] showed that the best positioning ac-
curacy can be produced by using a subset of RSSs in a fingerprinting system.
This occurs because, as the number of RSSs increases, more information is added
whereas more noise is incurred [29]. Kushki et al. [18] pointed out that the dis-
tinct transmitters may produce similar measurements, leading to biased estimates
and redundant computation. These work; L?otyva,}e the use of information selec-

tion techniques from the view p(|)~1ﬂt of perférmag_hze Thea&P selection techniques

section. bt

3.1 Importance -Qwa Nt

3'?:”‘*;’ . g
The importance quantification meth"éd,s a}e ?rlg;mJally deslﬁlgned for AP selection.
In these methods, some importance evaluation function is used to rank the sensed
RSSs according to their estimated importance. Then, the more important APs
are selected for positioning. This way, several advantages can be accomplished
such as improving the speed of positioning, better power efficient, reducing the
storage requirement and avoiding the problem of overfitting. Existing AP selec-
tion methods performed the above advantages in positioning system.
For example, Youssef et al. [38] utilized the strongest RSSs to reduce the

computational complexity of the positioning algorithm. They mentioned that

14



3.2 Proposed AP selection method

the strongest APs provide the highest probability of coverage over time. This
method named MaxMean, assign the higher importance to the stronger RSS.
However, it is also known that the variance measurements from an AP increases
with its mean power at a given location. In cases where the measured RSS
from an AP exhibits a high degree of variance, the survey values may be very
different than the online measurement, degrading the accuracy of estimation [42].
Furthermore, it becomes more difficult to distinguish neighboring points in such
cases. Chen et al. [39] provides a selection method based on the discriminant
power of each AP quantified thro _%‘h fg}le entropy—based InfoGain criterion. The

InfoGain criterion ass1gns. ifqe m‘of;a 1mpdrtance,-‘&0 the more discriminative APs

== E

instead. Thus, InfoGéﬂn r)'é i Hdﬁg or‘a@r of their InfoGain values
which are calculate'ﬂ a§ efo OWS; (:_J *J"
Y - =
= =
_ In (G}A‘P i) (3.1)
-- Pl Sy I"\{.
where H(G) and H ( UiAﬂad) ref L, hes th% “entropy of the reference

locations when AP;’s Vahl.e 1§ unﬁﬁowp” 1a‘,nd t he;’
erence locations given AP;’s vahré“ i T-hejreéent work of Kushki et al. [18] offers
a real-time RSS selection technique which minimizes the correlation between se-
lected RSSs based on different divergence measurements such as Bhattacharyya

distance and information potential.

3.2 Proposed AP selection method

In this article, we propose a novel AP selection method in this section. A subset

of APs is selected throught an importance evaluation function. In our method,

15



3. ACCESS POINT (AP) SELECTION

the importance of each AP is quantified by calculating the signal discrimination
between different locations. The signal discrimination can be regarded as the
signal scatter. The important AP means it has good discrimination. Good dis-
crimination represents the d-th AP has good separation in different location that

it can recognize different locaion accurately. Thus, we define the total scatter of

d-th AP Sp4

- 1n SOS (@ralt) — ma)? (3.2)

where R is the number of reference location, n, is the number of collected RSS

at the r-th location and x, 4(t) is the[‘-t.ht’ﬁ'%gﬁud{ej&ﬂﬁ%at the r-th location. The

3

mg denotes the sample mean Qf"'fh

(3.3)

- However, Eq.

In order to

%&ttérﬁv&lue Sw.a and the

1
Myq = n— Z xr,d(t) (36)

16



3.2 Proposed AP selection method

The within-class scatter value represents the RSS separation of a fixed location
and it can be regarded as the noise of this environment. The between-class scatter
value represents the separetion of m, 4 at all locations and it can be regarded as

the contained signal information. Then the total scatter value Sy 4 follows that

ST,d = — My d + myd — md)2 (37)
r=1 t=1
1 R ny R ny
= R-n Z Z (xr,d(t) my d md (3 8)
Tor=1 t=1 Tor=1 t=1

1
= SW,d + SB\;- (310)
= nois }‘r szgj (3.11)
'-r. fh -

(3.12)

"":l:.1 B v A 4
i = = =N
For all APs, the measuredaRﬁS%,at djlff&:eillt locations are collected at same

time. So we assume that the noise at all locations are the same. That means the
within-class scatter value Sy for all locations are the same. Thus, we treat the
between-class scatter value Sp 4 as the quantified importance of d-th AP.

Let 14 denote the quantified importance for the d-th AP. The larger n, is, the
more important for d-th AP is. The importance of d-th AP should be capable to
distinguish the character of locations distinctly in the signal space. Therefore, the
variance of the d-th AP can be a quantified metric to characterize the relevance of

location prediction since it explicitly shows the separation of RSS over the whole

17



3. ACCESS POINT (AP) SELECTION

localization area. Thus, we define 7,4, which represents the contained information

of the d-th AP.

R
N4 = Spa = %; (my.q — md)2 (3.13)
Eq. 3.13 calculates the separation of each location in the d-th AP, which
indicates how fast the power loss increases with the distance in the target envi-
ronment. If 74 is very small, RSS is hardly used to extract the location imfor-
mation because the signal strength does not change with varying distances. On
the other hand, RSS changing at dlfferenp }qca.twgs is ev1dent with a large value

t L
of ng. That explains why the se,pa"ratlon QE,RSS,@er theﬂ"' Whole localization area

-

can be used to indecate the JakmountJ

1mpn¢\l-
M

the RSS is observed over %‘he target en1v ro

=

by Eq. 3.13, which ranks A-Ps:}n

large variance indecates th:a Ih'o-f’

cending latder o

e.iffy Qur proposal Fig.

Next, we give an experlrﬂent 1}-‘?& al >nvironmer!it

3.1 shows the fifth floor of BL bml'amg ,l.n amd ﬁf'fe tm,langles represent the
measured locations. We measure R’SSE 19 t'hl's ar}:aib§ E: laptop with Windows
XP operating system and NetStumbler network software. We collect 100 samples
per location at different time periods. Our measurements show that 15 APs are
stable in this floor. Then, we use Eq. 3.13 to calculate the importance of each
AP. AP; AP, AP5 denote the best 3 APs and AP, AP5 APg denote the worst 3
APs.

Fig. 3.2(a) and Fig. 3.2(b) show the RSS measurement space for various
locations in the fifth floor of BL building. These figure clearly present the asym-

metric contribution of the best 3 APs (AP;, AP, AP3) and the worst 3 APs

18



3.2 Proposed AP selection method

are more important than

the worst 3 APs o ie bes Ps pres ) discrimination for the
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Figure 3.2: The RSS measurement space for various locations in the BL building.
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3.2 Proposed AP selection method
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Figure 3.3: The RSS measurement space for various locations by using (a)
MaxMean and (b) InfoGain methods to select the most important three APs.
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3. ACCESS POINT (AP) SELECTION
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Figure 3.4: The accuracy of the best APs versus the worst APs.
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Chapter 4

Proposed positioning algorithm

4.1 Overview of'proposed positioning system

Importance
Quantification

Radio Map —»

'[ mn |
I I—L AP Selection

Weighted

i Location
~—=»  Kernel |—» .
Al = Estimation
= || Distance

T

Online measurements

Figure 4.1: Overview of proposed positioning system.

The proposed positioning system contains some stages, as shown in Fig. 4.1.

In the first stage, a site survey performed in the target environment is required

to collect the RSS. The RSS are collected at sampling locations to build the

radio map. A radio map thus provides a model of RSS in a development area.

We usually collect a sequence of RSS, each sequence contains many samples per
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4. PROPOSED POSITIONING ALGORITHM

location to observe its temporal variation. The more reference locations means
the higher density in the radio map at the expense of more collecting effort. After
constructing the radio map, a WLAN client’s is estimated by inspecting currently
measured RSS.

The importance quantification stage is a method to quantify the importance
of each AP. The importance is a value which is quantified by the signal discrim-
ination between distinct locations. Depending on these importance, we select
the more important D APs from the radio map in the AP selection stage. Fur-
thermore, using such importance Value We,fmyca)c;lplate the discriminative gain

through a quasi entropy functlor% 1E[‘he d&‘sélmln&-ﬁ/e gam'ls a weight of a impor-

4 g
tant AP which is added 1nto{_c"he k’g; fien in't ﬁhe weighted kernel
distance stage. Finally, we hse-lth i wel %’:t:'o calculate the final
& Rl

section.

4.2 Incorporatlngjth;}f’l

Estimation Clogage 6 I

This section illustrates how the different importance is incorporated into the
location estimation. If the amount of information of each AP is quantified, we can
gracefully incorporate such physical property into the calculation of positioning
algorithm. Since the location estimation is performed by a kernel function, the

different importance should be embedded into the kernel distance function as

K(X, X, (t —exp{z ~2 [xd—xr,d(t)f} (4.1)
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4.3 Weights determination

where wy represent the weight at d-th AP, Efyd is an adjustable kernel width,
and D represents the number of selected APs. In Eq. 4.1 we incorporate a novel
parameter wy, which represents the unequal contribution of each AP. Therefore,
Eq. 4.1 can be regarded as a weighted kernel function where the effect of APs
is differentiated. In other words, we assign larger weights to the relevant APs
and smaller weights to the irrelevant APs. This way, RSS from different APs are
fused with different importance and the location computation can be dominated

by the more relevant ones. Afterwards, the location can be estimated by

z:Eld(fi—ZfQ{){ﬁX(ﬂ)) (4.2)

From Eq. 4.1 and Eq 4%"/ “thog bt \@ﬁn each distance member X —

ﬁ'gns%rmed kernel to estimate

the user’s locatlon‘l T e hlg ef U] is, t e blgg;er belief we give to this

positioning.

4.3 Weights determination

This section investigates how to determine the weights required in Eq. 4.2. One
practical problem we discover during the experiments is that there exists large
differences of 1y between different signals. That is, some 7, may present several
hundred times larger than the other. To provide a graceful quantitative metric
in calculating the spatial likelihood of the measured signals, we utilize a quasi

entropy function f(-) to determine the weight w, as follows:
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4. PROPOSED POSITIONING ALGORITHM

wg = a+ f(na)
—(1 —n;)log(1 —n;)

= a+ 3

(4.3)

where (3 is the maximum value of the numerator to make the value of f(ny)
smaller than 1 (8 = max(—(1 —nj)log(l1 —n})), d = 1,2---D), and 7} is the

normalized value of 7, as

(4.4)

In Eq. 4.3, 1 — % can be viewed. unerical val robablhty and f(-)

is smaller with the deﬁnitloﬁfrent ¥ 1__;?rved that f(ng)
ﬁ h ﬂ . : . : 3 o,

increases with 7y and rangﬁ bhg’; reen () andy 1 <. %hat means that

ol

« is a constant which cont@‘?fh bias alue 18 fHied to make the

minimum gain larger than a%ﬁ% Ve

N
at the same time to avoid an a%;‘pj‘g
l":'_

the changing scale of wei he parameter

n control the 'ef@ﬁcﬁﬁsagwdga—kl

a@e on th@-wel%ﬁév

ﬁ)}@ @ﬁ:\
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Chapter 5

Experimental Setup And Results

5.1 Experimental Setup.
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50m

Figure 5.1: The fifth floor plane of the BL building, where we had performed the

experiments. The dots represent the reference locations.

The proposed algorithm is evaluated on a realistic indoor environments. The
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5. EXPERIMENTAL SETUP AND RESULTS

measurements are collected on the fifth floor of BL building in NTU, as shown in
5.1. We collect WLAN data in this area by a laptop with Windows XP operating
system and NetStumbler network software. The dimensions of this test-bed are
52 meters times 18 meters. 35 reference locations are selected with a 3.2 meters
space (R=35). We collect 50 samples per location at different time periods for
training data and testing data, respectively (n, = 50). Our measurements show
that over 30 APs can be detected in this floor and 15 APs are stable. We utilize
MaxMean and InfoGain criterion to select the important APs from the 15 stable
APs for comparison. The kernel Wldth is se‘i a. l'ponstant and the bias weight « is

1 in the experiments. Finally, the posmoﬁmg erfo*r is d,éfmed as the Euclidean

==

S

distance between the estlmaté'd re’s’{yﬂf the tr ‘ba;’dlnaf'é

5.2 Experimer;fal es

5.2.1 AP selectlon rd

T’ S ] ey
First, we compare the effects Of _AP-E' selemﬁl“hq performance is eval-
2

uated in terms of the posfc1o111ng--'auéct_).:r_ai:g,-yz Whlc.g-{ﬁ deﬁned as the cumulative
percentage of estimations within specified errors.

Fig. 5.2 shows the accuracy comparison between MaxMean, InfoGain and the
proposed method. This figure clearly shows that our approach outperforms the
traditional methods under the same AP numbers. Using 5 APs, our approach
exceeds 70% while those of MaxMean and InfoGain both are worse than 50%.
That means that our approach has the advantage of using the fewest APs to

achieve the same level accuracy.

Fig. 5.3 reports the mean and standard deviation (std) of error on the number

28



5.2 Experimental results
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Figure 5.2: The accuracy of error distance within 1 meter versus number of APs.
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Figure 5.3: (a) Mean and (b) Standard Deviation of the estimated error versus

number of APs.
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5.2 Experimental results

of involved APs. Fig. 5.3(a) clearly shows that the error distance of our method is
beter than other methods. Also, the error distance in five APs are similar to more
than five APs. Thus, selecting more than five APs can increase the computational
complexity but the decreasing error distance is limited. As seen from Fig. 5.3(b),
the increase in number of APs reduce the std of error because more location-
related information is utilized. More importantly, Fig. 5.3(b) again shows that
our approach outperform traditional approaches. The decrease of error of our
method is larger than that of the existing methods.

e Aol (a2
5.2.2 Performanqe bvaluatlon by’igcorporatmg the impor-

tance of ARS’ - e

shB'VVS the accuracy versus

) ]

'-Irk-thaese figures, the reversed

importance of AP‘S. JFig.

=

error distance undér 39

proposed method ra_lg_ks ) t;l're WQy the proposed algorithm

og pe%’f{)'rmance based on our positioning
‘ 5
algorithm, as compared to existl}lg j,mﬁthlodﬁ VAfter incorporating the different

does. These figures cleaﬂy

-'.

weights, the accuracy is further greatly improved. In the Fig. 5.4(a), the accuracy
within two meters is improved from 60% to 70% if each kernel distance is fused
with different importance. Also, the accuracy within one meter is improved from
48% to 71% by incorporating the weight to the kernel distance in Fig. 5.4(b).
On the contrary, the reversed proposed method performs the worst.

Fig. 5.5(a) and Fig. 5.5(b) reports the mean and std of error while the em-
bedded weights are determined from the 3APs and 5APs by proposed method,

respectively. It is interesting from Fig. 5.5 that the accuracy is not improved if
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Figure 5.4: The cumulative percentage of error for different AP selection methods

and the effect of weights incorporation.
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5.2 Experimental results
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Figure 5.5: Mean and standard deviation of error while the embedded weights

are determined from the selected APs by proposed method.
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5. EXPERIMENTAL SETUP AND RESULTS

the APs are selected by MaxMean. This is because MaxMean is not a suitable
measurement of AP relevancies. Once the APs are not carefully selected, the
weightings may not produce a better result. Fig. 5.5 indicates that the perfor-
mance of InfoGain slightly improves and only the proposed method achieves a 2

I error mean.
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0% SRREE IR T R S
=
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8 IIII I =
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1
10% | | s S MaxMean i
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Theranked APs

Figure 5.6: The cumulative percentage of 1, obtained from MaxMean, InfoGain

and the proposed method.

Finally, Fig. 5.6 shows the cumulative percentage of n; obtained from MaxMean,
InfoGain and the proposed method. From Fig. 5.6, the slope in our method is
steeper than the other methods. This observation agrees fairly well with the

results in Fig. 5.5. That means that n, is a better indication of the quantified
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5.3 Test in different points

importance.

5.3 Test in different points

Figure 5.7: The fi

experiments. The r :

from training points, as shown in Fig. 5.7. In Fig. 5.7, the red stars represent
the testing points and the dots represent the original training points. We follow
the same procedure of Section 5.1 to measure the RSS in this area. We collect
100 samples per training point at different time periods for training data. The
testing samples are collected at 30 testing points. The testing points are selected
between the training points. A total of 50 samples are collected per testing point
at a rate of one sample/sec. We also compare proposed method with MaxMean

and InfoGain criterion to select the important APs from the 15 stable APs. The
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5. EXPERIMENTAL SETUP AND RESULTS

kernel width is set a constant and the bias weight « is 1 in the experiments.
Finally, the positioning error is defined as the Fuclidean distance between the

estimated result and the true coordinate.
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Figure 5.8: The cumulative percentagé of error for different AP selection methods

and the effect of weights incorporation.

In this subsection, we evaluate the performance of our proposed system and
also compare the AP selection method with MaxMean and InfoGain by the differ-
ent testing points. Because all the training points and testing points are different,
the positioning systems need more information to improve the positioning accu-
racy. Thus, selecting the more important APs may increase the accuracy clearly.

The performance is evaluated in terms of the positioning accuracy, which is de-
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5.3 Test in different points
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Figure 5.9: The accuracy of error distance within two meters versus number of
APs.

37


5_experiment/figures/result_diff2.eps

5. EXPERIMENTAL SETUP AND RESULTS

Mean of error (meters)

14 T T T T T T T T T T T T T T

—©— Proposed
—A— MaxMean

% InfoGain

12

=
o
T

(o]
T

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of APs

Figure 5.10: Mean of the estimated error versus number of APs.
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5.3 Test in different points

fined as the cumulative percentage of estimations within specified errors. First,
we compare our proposed AP selection method with MaxMean, InfoGain, and
reversed proposed method, as shown in Fig. 5.8. In Fig. 5.8, the accuracy of error
distance within two meters in proposed method is 48% while those of MaxMean,
InfoGain, reversed proposed method are 30%, 43%, and 20% respectively. Fig.
5.9 shows the accuracy of error distance within two meters versus number of APs.
This figure clearly shows that our approach outperforms the traditional methods
under the same AP numbers. Using 6 APs, our approach exceeds 50% while
those of MaxMean and InfoG n[ b t]%are worse than 40%. Furthermore, Fig.

5.10 shows mean of the es,t:i'rlnated erro

I o

r i&sus "m:}mber of APs. That means that
s

I F

(;Gr 1}/{\re result is presented in
.m,qtrhod has more robustness in
o%r erposed system can further improve

the error distance, as Compared to traditional MaxMean and InfoGain.
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Figure 5.11: Mean of error while the embedded weights are determined from the

selected APs by proposed method.
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Chapter 6

Applications

The main contribution of l};hLS“,z!z (;l ‘ ﬁyggan efficient method to quantify

the importance of ARSI""T?QII, si e qy,:%ntfﬁgd values to select the most

problem. That is, AP',S\Eﬁ,ec!
"":w

J\
problem of AP placemenﬁ-'w hOWr%O ﬁndl’it-he Jlmportant AP’s position. Clearly,

i 7 =)
the values of 7, are efficient measuréné’nt of this problem. Recalling to Sec. 3.2,

phca&lon in AP placement. The

the ny are defined by

R
1
Na = I ; (Mg — md)2 (6.1)

,where the Eq. 6.1 calculates the signal separation of the d-th AP. We denote the
d-th AP’s position by l;. Our method assumes that we know all AP’s positions.
Then, we calculate 7, for all APs and select the larger 7y for positioning AP.

Thus, the selected AP’s positions can be obtain by [4.

41



6. APPLICATIONS

For example, if we want to construct a positioning system in a WLAN en-
vironment and set five APs for positioning AP. We can set some steps of this
example. First, we place many APs around this environment and we know all
AP’s positions. Second, we measure the RSS in this area and build the radio
map. Third, we calculate the 7, of each AP and select the largest five 7y for

positioning AP. Then, the corresponding AP’s positions can obtain by selected

Nd-

This application of AP selection is an efficient method for constructing a
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Chapter 7

Conclusions

The main finding of thi ork 1s't§:(3, inv i‘gate t'ﬁ'@ dlfferent contribution of each
i oSt

..,\ F z{ ~
' "fmat

AP to the location

take such propertms Ly,t

main contribution 1é_ﬁw%*§aa S

First, a nove

e(‘hﬁ‘mqm is proposed to measure
the degrees of the AP ﬁelféa;;mles.. > 111%[30%&1@ of each AP is quantified by
the signal discrimination be‘bwé‘egr d}ﬁtljne} h).C;Lth-HS We utilize such numerical
importance to select important APs to avoid unnecessary calculations. Second,
the importance is further embedded into our positioning system. We provide a
weighted kernel function where the effect of APs is differentiated. That is, the
larger weights are assigned to the more important APs. Moreover, we develop a
quasientropy function to avoid an abrupt change on the weights. Our positioning
system is developed in a real-world WLAN environment, where the realistic mea-

surement of receive signal strength (RSS) is collected. Experimental results show

that the positioning accuracy is significantly improved by taking the different
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7. CONCLUSIONS

importance into consideration.
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