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摘要 

 

    實現元宇宙的主要研究議題之一是量體視訊的串流，其需要極高的頻寬消耗、

極低的延遲要求以及顯著的解碼負擔。本研究探索利用邊緣渲染  (edge 

rendering) 的串流系統，系統中根據視野預測結果對量體視訊 2D 視角進行轉

碼。然而，視野預測的不準確性可能會因為其在偏移視點上降產生畫面而降低轉

碼影像的品質。在最先進的邊緣輔助量體視訊串流系統中，選擇生成多個轉碼視

角的位置是根據均勻步長移動預測位置，這種方法沒有將視野預測模型不同的準

確性納入考慮，可能會顯著降低預渲染視圖的品質。本研究將虛擬視角合成技術

納入串流系統並建立分析轉碼畫面的品質模型，該模型代表畫面品質與位置偏移

之間的關係。基於充分的模擬結果，將模擬結果得到的品質模型作為目標，本研

究提出建立在最佳量化問題之上的最佳化框架，用於選擇生成多個轉碼視角的位

置，以最佳化期望品質，考慮了實證模擬結果而非僅依賴歐氏距離。基於這個最

佳化框架，本研究設計了一種結合無梯度最佳化方法與競爭性學習向量量化的演

算法，該演算法考慮用戶位置的機率分佈和品質模擬結果，動態地決定最佳的視

角轉碼位置。我們的模擬結果顯示，我們提出的演算法相比最先進的量體視訊串

流系統方法，在影片串流過程中可以在 55%至 83% 的時間帶來畫面品質的提升。 
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ABSTRACT

One of the major research topics to enable the metaverse is the streaming of

volumetric video, which comes with ultra-high bandwidth consumption, ultra-low

latency requirement, and significant decoding overhead. This work explores the

utilization of a streaming system with edge rendering, where 2D views of volumet-

ric video are transcoded at the edge server according to the viewport prediction re-

sult. However, inherent inaccuracy of viewport prediction may degrade the quality

of transcoded frames that are rendered at a deviated viewpoint. In the state-of-

the-art edge-assisted volumetric streaming system, positions to generate multiple

transcoded views are selected by shifting predicted position with uniform step size,

in which a multiview generation approach without considering varying viewport

prediction accuracy could significantly degrade the quality of pre-rendered views.

This work incorporates virtual view synthesis techniques into the streaming sys-

tem and establishes a quality model representing the relation between quality and

position deviation based on thorough simulation results. With the quality model

as a target, an optimization framework built upon the optimal quantization prob-

lem is formulated to select the positions for generating multiple transcoded views

that optimize expected quality, taking into account empirical simulation results

instead of relying solely on Euclidean distance. We propose an algorithm inte-

grating concepts of gradient-free optimization with competitive learning vector

quantization process to achieve maximal expected quality. The algorithm judi-

ciously determines the best positions to transcode the views in consideration of

the probability distribution of user’s position and empirical simulation results.

Our evaluations indicate that our proposed algorithms outperform baseline meth-

ods proposed by state-of-the-art transcoded volumetric streaming system with an

improvement ratio ranging from 55% to 83% on a segment-by-segment basis.
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CHAPTER 1

INTRODUCTION

With the proposal of the metaverse by Facebook, along with changes in hu-

man lifestyles owing to covid-19 pandemic, it is expected that a new version of

immersive experience is going to become ubiquitous in our data lives in areas of

commerce, education, and entertainment. Virtual reality (VR), augmented reality

(AR), and mixed reality (MR) are the key technology to create the digital world

of the metaverse, enabling multisensory interactions with virtual environments,

digital objects, and people [4]. Various domains of knowledge should be leveraged

to facilitate VR and AR. High-end display device, namely head-mounted display

(HMD), and high-quality sensors are crucial to showcase the experience to users for

the ultimate goal of reaching retina resolution. In addition, Deep learning for com-

puter vision has been well-developed in recent years and contributes significantly

to the development of VR and AR. Also, high-speed networking technologies, such

as millimeter wave (mmWave) and TeraHertz communication, are necessary for

the transmission of enormous amounts of data in immersive applications. Other

than the mentioned research trajectories, optimization of the streaming process

is also indispensable for providing a smooth experience since oscillating quality,

prolonged latency, or stalling may greatly affect the user when taking pleasure in

the virtual world.

The streaming techniques for 2D videos have been established for a long time.

Adaptive bitrate streaming (ABS) methods, such as dynamic adaptive streaming

over HTTP (DASH) and HTTP live streaming (HLS), are widely employed as

the video streaming framework on Netflix, YouTube, or other media platforms.

In adaptive bitrate streaming, videos are segmented into small chunks (e.g., 4

seconds) and encoded with several bitrates to generate versions of different quality.

Then the server provides clients with a file containing streaming information about

the video. For example, a DASH server sends an XML-based media presentation

description (MPD) to clients with a list of available video streams and details such

as codecs and resolutions used. Clients hold the key logic in the streaming system

by choosing an adequate quality rate to download video segments matching the

instant bandwidth of the wireless channel. Adaptive bitrate streaming aims to

consistently provide the best video quality to users while maintaining continued

video playback even with poor bandwidth by alternating to sub-optimal video

versions with lower data rate requirement.

1
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(a) Example of point cloud data (b) Example of mesh data

Figure 1: Example of volumetric data from PyVista library [1]

Immersive videos come in formats including 360-degree video and volumetric

video in VR and AR applications. 360-degree video allows users to rotate and

view different angles, allowing them to focus on specific portions of the video

that capture their interest. Volumetric video captures real objects or scenes with

multiple cameras placed at different positions and pointing at different angles,

creating a 3D representation of people or objects in the digital space. The user is

enabled to move in 3D space along six degrees of freedom (6DoF), namely three

rotational axes (roll, pitch, and yaw) and three translational axes (surge, sway,

and heave). In other words, a user can view and interact with the objects by freely

walking and viewing them as if the virtual objects were really there. Point cloud

and mesh are two major representations of volumetric video. Point cloud data is

composed of a great number of 3D points with texture and position information.

Mesh data formulates 3D objects with multiple interconnected polygons, such

as triangles and quadrangles, to form the object’s surface. Fig. 1(a) and 1(b)

demonstrate example images of point cloud data and mesh data respectively.

The concept of adaptive bitrate streaming, commonly used in conventional 2D

videos, is extended to immersive video streaming. The challenges of streaming

immersive content consist of two major items: ultra-large data volume and ultra-

low latency constraint. The data size of 360-degree videos is estimated to be 16

times that of 2D videos, and the size of point cloud is about 2.5 times compared

to 360-degree video [5]. Motion-to-photon (MTP) latency, the delay between user

movement and video playback, has to be limited when streaming immersive video

as users may easily encounter motion sickness when the MTP latency is too long.

Much research has proposed methods to refine adaptive bitrate streaming tech-

niques to overcome the obstacles for streaming 360-degree videos [6]. Nevertheless,

innovating streaming volumetric video is challenging due to the massive amount of
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data it requires, which exceeds the bandwidth limitations of current wireless com-

munication technology. Additionally, the image processing involved in volumetric

video consumes more energy and increases latency on the user’s mobile device.

Currently, many unexplored problems remain due to the limited research focused

on designing a dedicated streaming system for volumetric video that is practical

within the constraints of existing networking techniques and the capabilities of

mobile display devices.

Existing solutions for volumetric video systems can be categorized into two

main groups: direct streaming and transcoded streaming. When employing di-

rect transmission, clients receive data in point cloud or mesh format and ensure a

satisfactory QoE by rendering the viewport corresponding to user’s viewpoint dur-

ing playback. However, streaming 3D content directly can lead to high bandwidth

consumption. Furthermore, long decoding overhead brought about by complicated

decoding process such as kd-tree [7] may surpass the limitation of MTP latency.

In transcoded streaming, the edge server transcodes the 3D content into 2D video

frames in real-time based on viewport prediction results and transmits encoded

2D video to the clients. Single-view transcoding is introduced in [8, 9], where

the edge server pre-renders a single view from point cloud data so as to meet up

with the playback time and satisfy the MTP delay constraint. In [3], multi-view

transcoding for a single user is proposed. The authors recommend that inaccuracy

of viewport prediction model can significantly affect the quality of pre-rendered

view when applying single-view transcoding, since the actual viewport of users

may displace a lot from the predicted result. Transcoded streaming allows for

significant conservation of bandwidth even with multiple transcoded views. Fig.

2 presents the approximated values of required bandwidth for point cloud and

transcoded views1.

While Vues [3] provides a comprehensive blueprint for designing an edge-

assisted volumetric streaming system with multiview transcoding, there are still

areas where further improvements can be made. In Vues, the method proposed to

select positions to render the transcoded views is based on simple heuristics, where

limitations on the searching space may lead to degraded quality of pre-rendered

views. This work aims to boost the QoE of clients by conducting thorough re-

search on the relationship between the quality of transcoded 2D frames and the

variations in viewport prediction results. Additionally, the virtual view synthesis

1The data volume of point cloud is estimated with a compression ratio of Draco library [10]
indicated in [7]. As for transcoded views, the data volume of a single view is approximated with
simulated result encoded with H.264 and 25 views of 720p (1280 × 720) are applied in total in
the calculation. The bandwidth is simulated under a video frame rate of 30 FPS.
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Figure 2: Comparison between required bandwidth of point cloud and transcoded
views

approach is incorporated into the system on client side to generate a view of en-

hanced quality fitting to the actual viewport of users. With an in-depth analysis

of the similarity between pre-rendered views and the actual view seen by users, we

formulate the multiview generation problem into an optimal quantization prob-

lem with a distortion function built upon our empirical simulation results. Also,

an effective algorithm gradient-free competitive learning vector quantization (GF-

CLVQ), enhanced from a well-established high-dimensional quantization solution,

is proposed for the minimization of expected distortion function. The proposed

solution searches the optimal set of reference positions for transcoded views, ex-

tending the searching space with an effective process. Furthermore, our method

could dynamically adapt to varying levels of viewport prediction accuracy and is

compatible with all kinds of underlying virtual view synthesis techniques. The

results of exhaustive simulations manifest that quality can be improved with iden-

tical required number of views, which means that the required bandwidth remains

at the same level when applying optimized transcoding.

We summarize the contributions of this work as follows:

1. We apply virtual view synthesis technique to transcoded volumetric stream-

ing system, which enhances the quality of transcoded views, and establish

a quality model based on empirical simulation of the quality of transcoded

views.

2. We formulate the decision of multiview generation on the edge server into

an optimization framework based on optimal quantization problem that dy-

namically adapts to the distribution of viewport prediction error to maximize
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the expected value of user’s perceived quality.

3. We propose gradient-free competitive learning vector quantization (GF-CLVQ)

algorithm, revised from a well-established quantization solution for high-

dimensional probability distribution to accommodate empirical simulation

results. The proposed algorithms outperform baseline methods proposed by

state-of-the-art transcoded volumetric streaming system with improvement

ranging from 55% to 83% on a segment-by-segment basis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Virtual View Synthesis

Virtual view synthesis is a process of generating novel views of an object or a

scene from a given set of images and corresponding camera orientation information.

In other words, the process renders virtual views that are not actually captured

by cameras, which may be useful concerning increasing frame rate by rendering

additional frames [11] or creating additional views from originally captured images

for 3D TV system [12–14] or even free-viewpoint video [15,16] and virtual reality.

This work seeks to incorporate a virtual view synthesis technique into a volumetric

video streaming system to create high-quality views with limited communication

and computation resource demand for the user devices and the entire system. This

section first gives a general overview of virtual view synthesis techniques and then

explains the preliminary multiple view geometry model used in this work.

2.1.1 Depth Image

A depth image, also known as a depth map, is an image in which each pixel

stores distance information relative to the camera as 8-bit gray values. In this

representation, a gray value of 0 indicates the closest distance, while a value of

255 corresponds to the furthest distance. For each depth image, with the nearest

clipping plane defined by the value Zmin and the furthest clipping plane specified

with the value Zmax, the depth value of each pixel is normalized with the two

main clipping planes. In the case of linear quantization, the relation between the

absolute depth value Z and the pixel intensity can be given as

Z = Zmin +
I

255
(Zmax − Zmin), (2.1)

where I represents the intensity of the pixel. Depth maps can be captured by

sensors such as structured light sensors or time-of-flight sensors. Also, depth

maps can be rendered directly from 3D models. An example of depth map of a

volumetric object is demonstrated in Fig. 3 with the corresponding texture image.

2.1.2 Depth Image Based Rendering

Depth-image-based rendering (DIBR) is a long-standing approach of virtual

view synthesis. The process generates virtual views that are not actually captured

6
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(a) Depth map (b) Texture image

Figure 3: Example of depth map and corresponding texture image

from neighboring color images and associated per-pixel depth maps [12]. Here

we refer to the input images of DIBR as reference images. Performing a 3D

transform to synthesize new images is also called 3D warping in computer graphics

literature [11], which is applicable to increasing frame rate by rendering additional

frames [11] or creating a left and right view for 3D TV system from originally

captured images [12–14].

Multiple challenges must be confronted when adopting DIBR for virtual view

synthesis, including occlusion handling, ghosting effects, and dealing with non-

Lambertian surfaces, which occurs when the color of an object changes with dif-

ferent viewing directions. A lot of researchers [17–20] have been working on these

problems to improve the quality of rendered images.

Figure 4: Illustration of pihole camera model [2]

2.1.3 Pinhole Camera Model

A general camera is modeled as a pinhole in DIBR, defining how a 3D world

coordinate point is projected onto a 2D image plane. The extrinsic matrix and
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intrinsic matrix contain the essential parameters for a pinhole camera. The ex-

trinsic matrix E contains rotation and translation information depending on its

location and orientation; the intrinsic matrix K contains internal details. Given a

point P = [x, y, z, 1]T in world coordinates and a point P̃ = [u, v, 1]T on 2D image

plane using homogeneous coordinates, where x, y, z are used for world coordinates

and u, v are used for 2D image coordinates,the relation between projected pixel

point P̃ on image plane and P can be expressed as [21]

DP̃ = KEP, (2.2)

with intrinsic matrix and extrinsic matrix being

K =


f 0 px

0 f py

0 0 1


3×3

, (2.3)

E =

R T

0T 1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


4×4

, (2.4)

where f is the focal length, px and py are the principal points (center of image

plane), R and T are the world-to-camera rotation matrix and translation offset

respectively. Given α, β, γ representing roll, yaw, and pitch with z-axis pointing

forward and y-axis pointing up, rotation matrix R can be obtained from

R = Rz(α)Ry(β)Rx(γ)

=


cosα − sinα 0

sinα cosα 0

0 0 1




cos β 0 sin β

0 1 0

− sin β 0 cos β



1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 , (2.5)

and T represents the coordinates of the origin of the world coordinate system in

the 3-dimensional coordinates of the camera, i.e., [tx, ty, tz]
T .

2.1.4 3D Image Warping

In general, 3D warping can be understood as a two-step procedure: deprojec-

tion of 2D pixels in the reference image into 3D world coordinates and, secondly,

reprojection of the 3D points onto the 2D image plane of the target view. These

two processes can also be represented in the matrix-form formula based on the pin-

hole camera model [19, 20]. Let Dr be the depth of pixel in the reference image,
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Kr and Er be the intrinsic and extrinsic matrix of reference view, the deprojection

process is given as

P = DrE
−1
r K−1

r P̃r. (2.6)

Let Dt be the depth of pixel in the target image, Kt and Et be the intrinsic and

extrinsic matrix of target view, the reprojection process can be written as

P̃t =
1

Dt

KtEtP =
Dr

Dt

KtEtE
−1
r K−1

r P̃r, (2.7)

where inverse of extrinsic matrix E can be proofed to be

E−1 =

R T

0T 1

−1

=

RT −RTT

0T 1

 . (2.8)

2.1.5 Deep Learning-Based Method

Deep learning-based approaches have gained great attention for virtual view

synthesis. In [22–24], deep learning models assist with DIBR impainting and hole-

filling process. In [25,26], convolutional networks are presented to predict images

from arbitrary views given images of different views seeing the same object as

training data. Recently, the method of neural radiance fields (NeRF) [27, 28] has

been proposed as a new branch of view synthesis techniques. Fully connected deep

networks are utilized in NeRF, taking 3D coordinates and two viewing angles as

input data, which generates volume density and view-dependent emitted radiance

at specific spatial locations.

This work applies DIBR with forward warping and bilinear splatting as a vir-

tual view synthesis module. However, it is important to note that the algorithm

proposed remains flexible and adaptable to different virtual view synthesis algo-

rithms. The proposed algorithm is adapted to the quality distribution of rendered

images from variant virtual view synthesis algorithms, allowing for a versatile

approach.

2.2 Related Work

As people seeking a more absorbing experience of entertainment rather than

merely watching 2D videos, a number of researches regarding immersive video

have been proposed by the academia. One of the major topics is the streaming

of immersive video since it takes more communication and computation resource

to process data formats such as 360-degree video and volumetric video. Despite

the abundance of research about streaming 360-degree videos, exploration for effi-

ciently streaming volumetric video in the form of point cloud or mesh is still in its

pioneering state. Proposed as a promising approach, edge-assisted systems with
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(a) 360 video segmentation (b) Point cloud segmentation

Figure 5: Segmentation of immersive video

transcoding techniques have been introduced to facilitate volumetric video stream-

ing within the limitations of current wireless communication technology. We first

introduce the basic concept of streaming 360-degree video and then present related

work about volumetric video streaming. Subsequently, we delve into the existing

methods of edge-assisted volumetric streaming systems. In particular, our sim-

ulation results pinpoint that there is much room for improvement regarding the

multiview generation method in the current volumetric video streaming system.

2.2.1 360-Degree Video Streaming

Techniques of 360-degree video streaming involve two innovations compared

with conventional 2D videos: tiling and viewport prediction. Streaming entire

video to the users may cause undesirable resource wastage since human’s field of

view (FoV) is limited, and it is impossible to watch the whole 360-degree view at

the same time. To compensate for the inefficiency and maintain the same quality

of experience (QoE) of users simultaneously, researchers have proposed to divide

the video into tiles spatially [29–31], as shown in Fig. 5(a). Accompanied by

a model to predict users’ future viewport, the tiles which are predicted within

users’ viewport are transmitted at high quality, with the remaining tiles being

discarded or delivered at lower quality. However, viewport prediction is not always

accurate, and this may result in a quality drop. Solutions introduced to deal with

prediction inaccuracy include fetching additional tiles with ranking of perceptually

importance [32] or with reinforcement learning [33], and so on.

2.2.2 Direct Volumetric Video Streaming

Research on volumetric video streaming also follows the concept of 360-degree

video streaming. [34] and [35] incorporated dynamic rate adaptation into point

cloud streaming, proposing approaches to spatially segment point cloud objects
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into cells and refine DASH representation format for point cloud data. An ex-

ample of point cloud segmentation is shown in Fig. 5(b). In [34], the authors

first introduce methods of point cloud sub-sampling and compare rendering per-

formance along with the objective visual quality of different point densities while

not applying the concept to a practical streaming system. In [35], simple heuris-

tics of adaptive streaming with the DASH framework are applied to point cloud

data by greedily or uniformly allocating bit rate to high-ranking cells, whereas

this approach lacks consideration of prolonged decoding time for point cloud data.

In [36], a practical volumetric streaming system named after ViVo is put forward.

Three visibility-aware optimizations are proposed, namely viewport visibility, oc-

clusion visibility, and distance visibility, where depth information is taken into

account to lower resource usage when transmitting point cloud data. In detail,

video content that falls into a user’s viewport yet occluded by others is eliminated

and video quality is adjusted with distance from a user’s viewpoint and cell of

point cloud as reducing point cloud density of faraway objects may bring little dif-

ference. Nevertheless, encoded bitrate of point cloud after optimization is still at

the order of about 100 Mbps, even with point cloud data of moderate data volume.

When it comes to streaming point cloud to multiple users, the huge bandwidth

requirement may overwhelm the wireless channel without further refinements.

2.2.3 Transcoded Volumetric Video Streaming

A volumetric video streaming system with cloud/edge-rendering is first sug-

gested in [8] and [9]. The burdensome rendering workload is offloaded to a powerful

cloud or edge server to save the computation power of the mobile display device

with the help of viewport prediction techniques. Meanwhile, communication re-

source consumption and delay time of data transmission can be reduced since

rendered 2D views are delivered instead of full volumetric content. In [9], a single

viewport is pre-rendered on the cloud server based on the viewport prediction

result. Nevertheless, rendering only a single view may lead to poor video quality

performance when prediction results are drifted away from the actual user’s view-

port. In [3], the authors further extend the concept of single-view transcoding and

develop Vues, an edge-assisted streaming system, that transcodes the volumetric

content into multiple viewports on the edge server. A practical QoE model and

adaptive streaming algorithm are proposed, cutting down 95% of bandwidth usage

compared to directly transmitting volumetric videos while retaining similar video

quality.
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2.2.4 Multiview Generation Method in Transcoded Volumetric Stream-
ing System

In the transcoded streaming system proposed in [3], one of the most important

modules is the one to generate multiview data. The multiview generation module

selects appropriate viewpoints to render candidate 2D views to deliver to the

users and allows the user to decide which view is the best at the playback time in

accordance with the actual viewpoint. In [3], rotational movements are handled

by broadening the field of view from default 90◦ × 45◦ to 180◦ × 90◦. As for

translational movements, positions for multiple views are determined by enlarging

the convex hull of three predicted positions with three prediction models, which

always creates a 0.4 meters×0.4 meters coverage with 21 candidate positions. The

transmitted views are then chosen heuristically from all the candidate views and

the number of views is decided with the difference between results given by three

simple viewport prediction models. The selected positions for creating candidate

views are the green points sketched in Fig. 6, where value of step size ∆S is

designated to 0.1 meters.

Figure 6: Multivew Generation System Proposed in [3]

Despite the usage of multiview transcoding technique, the inaccuracy and in-

stability of viewport prediction may lead to high displacement of the presented

views and actual views. Our simulation of viewport prediction result on a dataset

of 14 users [37], presented in Fig. 7(a), implies that the same viewport predic-

tion model may exhibit inconstant accuracy on different user traces. Applying

an identical method to generate multiview on every case may result in inferior

QoE. For example, when there is a significant viewport prediction error and the

coverage area of selected positions is insufficient, the similarity between candidate

views and the actual view during playback diminishes, resulting in substantial

degradation of the user’s QoE. In addition, implementing Vues’ method leads to

varying levels of quality, as indicated by the fluctuating SSIM values observed

across 14 user traces with our simulated results of the SSIM over 14 users shown



doi:10.6342/NTU202303932

2.2. RELATED WORK 13

(a) Error bar of viewport prediction error
with linear regression on dataset provided
by [37]

(b) Results of method proposed in Vues [3]

Figure 7: Simulation results for motivation

in Fig. 7(b). Furthermore, the median values of SSIM fall within the range of 0.90

to 0.92. When compared to the outcomes of the dynamic volumetric streaming

strategy suggested in [36], where the SSIM value exceeds 0.99, it becomes evi-

dent that there is still significant potential for enhancing the performance of the

transcoded streaming system. While Vues has considerably reduced bandwidth

usage, there is still an opportunity to enhance the user’s experience through ad-

ditional design in multiview generation. These design considerations can address

challenges such as dynamic fluctuations in viewport prediction and variations in

viewport prediction accuracy across multiple users. As outlined in the future work

of Vues, this work intends to apply virtual view synthesis approach and propose

an algorithm to render a set of views with better quality in accordance with user’s

actual viewport.
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CHAPTER 3

SYSTEM MODEL

3.1 System Architecture

The overall system architecture is presented in Fig. 8. It is important to men-

tion that while our focus in this work is on the point cloud format, the proposed

streaming system can be adapted to accommodate other volumetric video formats

such as mesh-based video with minor adjustments to the rendering process. Build-

ing upon a holistic adaptive video streaming system with a client-server framework,

an edge server is added to make possible efficient volumetric video streaming under

the constraint of motion-to-photon delay and communication resources and even

concurrent volumetric video streaming to multiple users. The system consists of

a content provider, an edge server, and clients. Three entities are respectively in

charge of:

• The content provider is the server storing volumetric video data. In the

DASH framework, the server generates the MPD files containing metadata of

video and sends requested video segments on user’s demand. The underlying

design of the server and format of MPD files need not be changed in the

proposed system so that no additional effort will be involved when putting

the system into practice.

• The edge server proactively sends requests to the content provider on be-

half of the client for volumetric video segments before playback time. After

receiving the volumetric video segments, the edge server transcodes the vol-

umetric video into 2D multiview frames including texture images and depth

maps before delivering video data to clients. Modules inside the edge server

include viewport prediction, bandwidth estimation, multiview generation,

and multiview image renderer. To reduce the adverse effects caused by inac-

curate viewport prediction, the multiview generation module finds the best

set of reference positions to generate reference views in order to minimize dis-

tortion caused by viewport drift based on the results of viewport prediction

and bandwidth estimation. Details of viewport prediction and bandwidth

estimation will be covered in the rest of this chapter and the design of mul-

tiview generation method is elaborated in the following chapters. Also, the

process of offline simulation is explained in Chapter 4.

14
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• The client is the user’s display device, which can include head-mounted

displays, as well as other devices like mobile phones and personal computers.

The client-side device first decodes the encoded multiview data. Afterward,

the view selection module identifies the optimal view from the received set

and determines whether virtual view synthesis should be performed. The

best view will be delivered directly to the playback buffer if virtual view

synthesis is not necessary. Conversely, virtual view synthesis is applied to

create a better view with higher similarity to the actual view, adapting to

user’s actual viewpoint reactively. How the decision is made in the view

selection module will be covered in the remaining sections of this chapter.

Lastly, the chosen frames are displayed during playback, meanwhile, user

trace data is collected and sent to the edge server for viewport prediction in

the future.

Figure 8: System Architecture

3.2 Viewport Prediction Model

Viewport prediction in 6DoF includes computing trajectories along three di-

mensions for translation, x, y, z, and three dimensions for rotation, roll, pitch,

and yaw. The objective of viewport prediction is to analyze user’s viewport in
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advance so that the transmission and rendering of future video frames can be ini-

tiated before the playback time to satisfy motion-to-photon delay in an immersive

experience. In this work, we leverage the data of user traces in the past to pre-

dict the future user viewport. In order to preprocess the unevenly sampled data,

following the recommendation of [37], the position data is upsampled using linear

interpolation, and the rotation data, in quaternion format, is interpolated using

spherical linear interpolation (SLERP) up to a frequency of 200Hz. Formula for

SLERP on quaternions q1 and q2 with parameter u is defined as

SLERP (q1, q2;u) =
sin
(
(1− u)Ω

)
sinΩ

q1 +
sin
(
uΩ
)

sinΩ
q2, (3.1)

where q1 · q2 = Ω.

Then a lightweight linear regression model is applied as the viewport prediction

module in the edge server in this work, which is also utilized in [3, 36]. Although

more complicated models can be exploited here, linear regression serves as a suit-

able baseline model of viewport prediction. Our proposed algorithm is designed to

dynamically adapt to the underlying accuracy of viewport prediction. The effect

of linear regression is tested with 6DoF user trace data provided by [37]. The posi-

tion data is with the z-axis pointing forward and the y-axis pointing up. Given the

relatively low frequency of squatting movements in humans, we place particular

emphasis on the results of viewport prediction for the x and z coordinates (i.e.,

the coordinates of the 2D plane). An illustration of viewport prediction result

in comparison with the ground truth is shown in Fig. 9(a) and the cumulative

distribution function (CDF) of the overall viewport prediction error is shown in

Fig. 9(b). The viewport drift prediction error over 14 user traces is about 0.27

meters.

The following paragraph describes the method used for predicting the x and z

coordinates in detail. Linear regression is applied to x and z coordinates separately

with a history window of 0.5 seconds and a prediction window of 1.0 seconds. That

is, at timestamp t seconds, we use data between [t−0.5, t] seconds to find the linear

relationship between position (x or z coordinates) and time. Afterward, the fitted

line is used to predict the coordinate at time t + 1.0 seconds. Given 100 sample

points of past user trace along x or z direction, the process of viewport prediction

involves calculating the coefficients ax, bx for a linear equation x̂ = axt + bx

that represents the relationship between the predicted x coordinate and the time

samples, with equations

ax,t =
(
∑t

k=t−99 xk)(
∑t

k=t−99 k
2)− (

∑t
k=t−99 k)(

∑t
k=t−99 kxk)

100× (
∑t

k=t−99 k
2)− (

∑t
k=t−99 k)

2
, (3.2)
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(a) Viewport prediction result using linear
regression on Z coordinate

(b) CDF of viewport prediction error on
x-z plane

Figure 9: Results of viewport prediction

bx,t =
m(
∑t

k=t−99 kxk)− (
∑t

k=t−99 k)(
∑t

k=t−99 xk)

100× (
∑t

k=t−99 k
2)− (

∑t
k=t−99 k)

2
. (3.3)

Similarly, the z coordinate can be obtained with the same approach.

3.2.1 Probability Distribution of User’s Position

Due to the inherent inaccuracy of the viewport prediction model, the actual

viewpoint of the user in the playback time should not be regarded as a determin-

istic value. Alternatively, user’s actual viewpoint in an x-z place can be treated

as a 2-dimension random variable with certain probability distribution formed by

viewport prediction results and prior viewport prediction error. In 360-degree

streaming problem, Gaussian distribution [38, 39] and Laplace distribution [40]

are two probability models commonly used in the approximation of viewport pre-

diction error of rotation. In this work, we determine the fitting results of both

Gaussian and Laplace distributions for prediction results on user’s translation.

Fig. 10 presents the sample points of prediction error of x and z axis and the fit-

ting curve following Gaussian and Laplace distributions. Results of normality tests

including D’Agostino’s K-squared test and Jarque–Bera test indicate that view-

port prediction error on x and z direction of almost every user in the tested dataset

rejects the null hypothesis of normally distributed. However, based on graphical

observations, it is without confidence to assert that prediction error bears a closer

resemblance to the Laplace distribution. In consequence, in this work we first uti-

lize Gaussian distribution for its simulation simplicity, then compare the results of

using Gaussian distribution and Laplace distribution to model user’s trace of posi-

tion. That is, for 1-dimensional trace data, the predicted position of x coordinate

x can be written in the form of Gaussian distribution

f(x|µ, σ) = 1

σ
√
2π

exp
(
− 1

2
(
x− µ
σ

)2
)
, (3.4)
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(a) Prediction error distribution of x axis

(b) Prediction error distribution of z axis

Figure 10: Prediction error distribution of x and z axis

where µ is the mean and σ is the standard deviation of the distribution or Laplace

distribution

f(x|µ, b) = 1

2b
exp

(
−|x− µ|

b

)
, (3.5)

where µ is the location parameter and b is the scale parameter with variance eqaul

to 2b2. We assume that x and z coordinates are independent, so that, with regard

to 2-dimensional distribution, it becomes bivariate Gaussian distribution and bi-

variate Laplace distribution. Parameters of probability distribution such as µ and

σ for Gaussian distribution and µ and b for Laplace distribution can be derived

from prior information about viewport prediction error in practice. Evaluations of

results using Gaussian and Laplace probability models will be shown in Chapter

7.

3.3 Multiview Generation

The quality of 2D frames transcoded from volumetric video may suffer from

the inaccuracy of viewport prediction. When there is a significant position de-

viation, it can result in high distortion between the pre-rendered views and the

actual views, thereby impacting the overall quality. To eliminate the influence
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of viewport prediction error on quality of transcoded views, multiview transcod-

ing is incorporated into the streaming system. That is, the multiview generation

module in the edge server selects a number of reference positions based on the

viewport prediction result as well as the viewport prediction error prior to time

t. Transcoded views are then rendered from these reference positions. We refer

to the selected position as reference positions since views generated from those

positions are functioned as the reference views to virtual view synthesis module.

Moreover, as mentioned in the previous section, users are less prone to move

in the direction of the y-axis and it is assumed that the viewport prediction error

on rotation is rather less significant in this work. This assumption is based on the

observation that the prediction error for roll, pitch, and yaw angles is generally

less than 10◦ on average [3]. Any such error can be compensated by increasing

the field of view angle for pre-rendered frames, resulting in a minor increase in

resource consumption. In addition, numerous studies [30,32] have been introduced

to deal with viewport prediction error on 3DoF data, which is also applicable to

volumetric video streaming. Thus, we consider only the displacement on the x-

z plane and generate additional views by shifting viewpoints from the predicted

position in the direction of forward and backward (z-axis) and the direction of left

and right (x-axis).

The ultimate objective of the multiview generation module is to design an ef-

ficient approach to choose the reference positions to optimize user’s quality with

the least number of required views. More specifically, based on the probabilistic

model on user position and simulation results on the quality of transcoded views,

the expected value of SSIM between actual viewport and the pre-rendered view-

port should be optimized with the selected reference positions. Details including

problem formulation, proposed algorithms, and result evaluation will be covered

in Chapter 5, 6, and 7 respectively.

3.4 View Selection

According to the observations, view selection modules can decide which view

is the best view among all the reference views. Instead of choosing the best view

simply based on the distance between the actual position of users during playback

and the reference position, the view selection module compares the quality of all

the reference views based on the SSIM map for neighbor views and the SSIM

map for synthesized views, which will be covered in Chapter 4. The best view

is determined by comparing achievable SSIM values among the neighbor views

and synthesized views. If the synthesized views can achieve a higher SSIM value,

virtual view synthesis is applied accordingly. In this way, we can attain a higher
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level of similarity between the pre-rendered view and the actual view by integrating

the benefits of neighbor views and synthesized views. Afterward, the best view

is delivered to playback to promise the best similarity between the reference view

and the actual view.

3.5 Virtual View Synthesis Model

The virtual view synthesis model on the client side helps with generating the

final video frame closely matching the actual user’s viewpoint just before playback

time in an attempt to further boost the quality of transcoded frames. This process

is only necessary when virtual views can reach a higher similarity with actual

views. In this work, we implement a virtual view synthesis module with the DIBR

technique mentioned in Chapter 2 as a baseline model. Texture image and depth

map captured from the reference viewpoint and parameters of reference viewpoint

and target viewpoint are fed into the module, then DIBR model outputs an image

from target viewpoint through projection to 3D space and re-projection to target

2D plane, which is the plane the user is looking at during playback. Although

our baseline model for virtual view synthesis does not address possible issues

such as cracks, ghosts, disocclusion regions, and non-Lambertian surface, it is still

valuable to analyze the effects and phenomena observed with the implemented

DIBR model. Fig 11 illustrates the flow of performing virtual view synthesis.

Figure 11: Illustration of virtual view synthesis model
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CHAPTER 4

OBSERVATION ON REALISTIC

SIMULATION FOR TRANSCODING

The objective of applying transcoding with an edge server is to generate a set

of 2D images based on viewport prediction results in advance, ensuring a seamless

playback experience for the user. This approach aims to produce transcoded views

that closely resemble the actual views observed by users during playback, ideally

rendering an indistinguishable representation. However, there is an inherent de-

viation between the predicted position and the actual position of the user at the

playback time. That is, we are using a view that is rendered from a neighboring

position to represent the view that should be rendered from the actual position.

In order to enhance the quality of transcoded views, virtual view synthesis is ex-

ploited in this work. To facilitate optimization on transcoded views, it is essential

to inspect the relation between the quality of neighbor views as well as synthesized

views and position deviation. In this chapter, we provide a detailed explanation of

our simulation process. Additionally, we present our observations on the simula-

tion results, which serve as the foundation for the design of the proposed multiview

generation algorithm.

4.1 Quality Metric

In this work, we use structural similarity (SSIM) index [41] as the quality

metric to evaluate the similarity between reference images, synthesized images,

and actual images seen from the target position. SSIM index is a full reference

metric, which is used to measure the quality of tested images based on distortion-

free images as reference. The SSIM index between two signals x and y is defined

as

SSIM(x, y) =
(2µxµy + (c1L)

2)(2σxy + (c2L)
2)

(µ2
x + µ2

y + (c1L)2(σ2
x + σ2

y + (c2L)2)
, (4.1)

where µx, µy are means of x and y, σ2
x, σ

2
y are variances of x and y, σxy is covariance

of x and y, c1, c2 are adjustable constants, L is the dynamic range of pixel values.

The SSIM value ranges from 0 to 1, where higher values indicate better image

quality. Instead of measuring the pixel-by-pixel difference between a tested image

and a reference image, the SSIM index identifies and compares the structural

information. It operates by assuming that human perception is highly sensitive to

21
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(a) Generation of SSIM map for neighbor views

(b) Generation of SSIM map for synthesized views

Figure 12: Procedure of simulation

extracting structural information from a scene.

4.2 Simulation Flow

To gain a comprehensive understanding of the quality of transcoded images,

we conduct a thorough simulation to reproduce the process carried out in the

edge server in practice. In addition, to evaluate the benefit brought about by the

virtual view synthesis technique, we compare the quality outcomes obtained when

employing virtual view synthesis versus its absence. In this section, the overall

procedures of simulation are explained in order of neighbor views and synthesized

views, which are also summarized in Fig. 12 respectively. At the end of the

simulation, an SSIM map is generated to facilitate the analysis of the relationship

between quality and position deviation. As for the simulation environment, neigh-

bor images and depth maps are rendered with PyVista library [1] by changing the

translation information in the extrinsic matrix. Implementation of virtual view

synthesis is developed based on source code provided with [42].

4.2.1 Generation of SSIM Map for Neighbor Views

To inspect the effect of position deviation on a similarity of images, we create

an SSIM map that manifests the value of SSIM between a given center view and

neighbor views rendered from neighboring positions. Throughout this study, we

consider a coordinate system where the z-axis points forward and the y-axis points

up. To begin, we select a coordinate on the x-z plane to be the center position

and render the corresponding view as the center view. The center view servers as

the target view for reference in computing the SSIM index throughout the process

of creating the SSIM map. Subsequently, a number of neighbor views are gener-

ated by rendering views at positions that are shifted from the center view in four

directions on the x-z plane with identical viewpoint angles. The center view and

the neighbor views may also be considered as the views rendered at the predicted
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position and the neighboring position respectively. Also, we denote position de-

viation as the distance between the center position and the nearest neighboring

position, which represents the spatial gap between the positions where center views

and best neighbor views are rendered. Then SSIM values between each neighbor

view and the center view are computed. Lastly, the SSIM map is constructed by

mapping the corresponding SSIM value onto the sample positions and performing

2-dimensional linear interpolation to estimate SSIM values between the discrete

data samples.

Fig. 13 illustrates the process of generating an SSIM map where the green

point and orange point are the position of the volumetric object and the user’s

position respectively. The yellow box with a dashed line sketches the boundary of

neighboring positions and the blue points are examples of neighboring positions

where neighbor views are rendered. The red line represents the calculation of

SSIM between the associated neighbor view and the center view. We use point

cloud data provided by [43] as the volumetric object in our simulation. On the

horizontal axis of the SSIM map, moving toward the right indicates a position

that is more toward the right. On the vertical axis, moving upwards represents a

position that is more toward the object. To clarify further, assuming the center

position is at (3, 3) on the x-z plane, the SSIM of coordinates (4, 2) given in the

SSIM map (i.e. Fig. 15(a)) denotes the SSIM computed with a center view and

the neighbor view rendered from the position shifted from the center position 1m

right and 1m backward to the object.

4.2.2 Generation of SSIM Map for Synthesized Views

To evaluate quality distribution when applying virtual view synthesis, we gen-

erate a counterpart version of the SSIM map demonstrating the relation between

SSIM of synthesized views and position deviation. The procedure of creating the

SSIM map for synthesized views is similar to that for neighbor views. Once the

center position is selected and the center view is rendered, we proceed to gener-

ate multiple texture images by displacing the users’ positions along the x and z

directions. Additionally, depth maps are also rendered specifically for the virtual

view synthesis process. Next, the DIBR model generates images projected to the

plane viewed from the center location. These projected images are created us-

ing neighbor views, including texture images and depth maps viewed from shifted

positions, along with camera parameters such as each position and the center lo-

cation. Lastly, SSIM indices between the center view and each synthesized view

are computed and sketched onto the corresponding position on the heap map.

2-dimensional linear interpolation is also leveraged to generate SSIM between the
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Figure 13: Process of generating SSIM map for neighbor views
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discrete data samples. The process of generating SSIM maps for neighbor views

and synthesized views differs in a few key aspects. In the case of synthesized views,

depth maps are rendered in addition to the texture images, and a DIBR model is

utilized to generate the synthesized view based on the neighbor views. The general

procedure for constructing the SSIM map for synthesized views is outlined in Fig.

14. The blue arrows in the diagram represent the DIBR process, which combines

the texture image, depth map, and relevant camera parameters to synthesize the

virtual view.

Figure 14: Process of generating SSIM map for synthesized views

4.3 Observation on SSIM Maps

In this section, we elaborate on the characteristics of both the SSIM map for

neighbor views and the SSIM map for synthesized views. Intuitively, it may be
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(a) SSIM map for neighbor images (b) SSIM map for synthesized image

Figure 15: SSIM distribution

Figure 16: SSIM analysis of neighbor views

expected that a shorter distance between the center position and the neighbor

position would bring about a higher SSIM value. Nonetheless, both of these maps

reveal a unique pattern of high SSIM that is not solely determined by distance

alone. Delving into the factors and attributes of the feature can provide valuable

insights for designing the multiview generation approach which considers the op-

timization of empirical quality metrics. The two maps are presented side by side

in Fig. 15 to make easy comparison and analysis.

4.3.1 Observation on SSIM Maps for Neighbor Views

It can be seen from Fig. 15(a) that for SSIM map with neighbor views, moving

backward (z direction; vertical axis in the figure) has a minor influence on the

quality of synthesized images while small sideways movements from the center

viewpoint (x direction; horizontal axis in the figure) degrade much the quality
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of candidate views. The observed phenomenon can be attributed to the effect of

moving backward, which leads to an increased viewing distance. As the viewing

distance becomes greater, it becomes more challenging to perceive the details of

distant objects. Consequently, the similarity between the distant view and the

center view is higher, reflecting the reduced visibility of fine details at greater

distances, as shown in the middle image in Fig. 16. Likewise, all neighbor views

rendered at a considerable distance from the object exhibit a certain level of SSIM

even with a large spatial displacement with an example displayed in the bottom

image in Fig. 16. On the contrary, the dissimilarity (i.e., the blue region in the

heatmap) observed in SSIM maps for neighbor views occurs when the user is in

close proximity to the object. This is because even slight movements by the user

near the volumetric object can result in a significant variation in the field of view.

In addition, the object may be cropped in the field of view when one is too close

to it. An example of cropped image is shown in the top image in Fig. 16, where

the upper head of the soldier is trimmed out of view.

Figure 17: Illustration of neighbor view and synthesized view
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Figure 18: SSIM analysis of synthesized views

4.3.2 Observation on SSIM Maps for Synthesized Views

In contrast, the SSIM map with synthesized images reveals a distinct pattern

where the highest SSIM values are maintained when moving forward and to the

left. Implementing virtual view synthesis boosts the similarity of views from some

neighboring positions. However, some synthesized views exhibit inferior SSIM

values compared with neighbor views. As presented in the upper images in Fig.

17, when the neighbor position is located to the left and in front of the center

position, the application of DIBR process brings about higher similarity with the

center view. Nevertheless, when the neighbor position is directly behind the center

position, utilizing virtual view synthesis unexpectedly reduces the SSIM value,

which is demonstrated in the lower images of Fig. 17. This is due to the fact that

applying virtual view synthesis may induce unexpected pixel-wise translation at

specific viewpoints.

Upon careful examination of the attribute of the SSIM map for synthesized

views, it can be pointed out that the distinctive pattern arises from the slight

translation brought about by the virtual view synthesis process. Based on our

observation, translation is less noticeable in synthesized views rendered with po-

sitions with direction from left-front to right-rear, hence leading to a higher SSIM

value (i.e., the red region in Fig.15(b)). Furthermore, the problem that high dis-

similarity emerges when the user is too close to the object is mitigated through

virtual view synthesis. The top image in Fig. 18 reveals that exploitation of the

DIBR technique results in a higher-quality view that exhibits greater similarity to

the center view, despite the inability to recover the cropped portion. The lower

image in Fig. 18 displays an example of a synthesized view with high translation.
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Despite the translation issue, the SSIM values of synthesized views generally show

improvement compared to the SSIM map for neighbor views.

4.3.3 Observation on Different Center Views

Moreover, we perform a similar experiment using different center views to vali-

date the reliability of SSIMmaps for neighbor views and synthesized views. Fig. 19

demonstrates three instances of center views rendered from different viewpoints,

along with their corresponding SSIM maps for neighbor views and synthesized

views. It is evident that although the characteristics of both SSIM maps would

be affected by different center views, the SSIM maps exhibit similar patterns as

the SSIM maps depicted in Fig. 15. The SSIM maps for synthesized views all

follow the shape where the strip along the direction from left-front to right-rear

demonstrates higher SSIM value over other parts.

4.3.4 Observation on Different Distance to the Object

Furthermore, we examine the effects of utilizing center views rendered at vary-

ing distances between the user and the volumetric object, which is shown in Fig.

20. Left-hand side of Fig. 20 presents the center view with the distance between

user and the object being 1.5, 2.5, 0.5 meters from the top to bottom. The de-

crease in SSIM is less pronounced when the center view is located at a greater

distance, as the change of the viewpoint has a minimal impact on the perspective

when the target object is far away. Also, it can be seen that SSIM maps generated

with different center views follow a similar pattern, where areas with high SSIM

(i.e. the red area) and low SSIM (i.e. the blue area) have comparable shapes

in Fig. 20(c), 20(f), and 20(i). This observation recommends that optimization

built upon one of the SSIM distributions may also be practiced on other SSIM

distributions of different distances to the object.

4.4 Insight on SSIM Maps for Optimization

In previous sections, we have examined the attributes of SSIM distribution

of synthesized views and neighbor views. It is shown that these two SSIM maps

display distinct patterns and exhibit different advantages in terms of the similarity

between pre-rendered views and actual views. Therefore, in order to make the

most of the strengths offered by both kinds of views, it is logical to integrate the

advantages of two SSIM maps. In particular, if the synthesized views have a higher

SSIM value, the view selection module in the client side will pass the best reference

view to the virtual view synthesis model; in opposition, if neighbor views exhibit

better similarity, the view selection module sends the reference view directly to
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(a) Center view (case 1) (b) SSIM distribution for
neighbor views using cen-
ter view of case 1

(c) SSIM distribution for
synthesized views using
center view of case 1

(d) Center view (case 2) (e) SSIM distribution for
neighbor views using cen-
ter view of case 2

(f) SSIM distribution for
synthesized views using
center view of case 2

(g) Center view (case 3) (h) SSIM distribution for
neighbor views using cen-
ter view of case 3

(i) SSIM distribution for
synthesized views using
center view of case 3

Figure 19: SSIM distribution of center views of different distance to the object
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(a) Center view with distance 1.5 m
between user and object

(b) SSIM map for neigh-
bor views using center
view with distance 1.5 m
between user and object

(c) SSIM distribution for
synthesized views using
center view with distance
1.5 m between user and ob-
ject

(d) Center view with distance 2.5 m
between user and object

(e) SSIM map for neighbor
views using center view
with distance 2.5 m be-
tween user and object

(f) SSIM distribution for
synthesized views using
center view with distance
2.5 m between user and ob-
ject

(g) Center view with distance 0.5 m
between user and object

(h) SSIM map for neigh-
bor views using center
view with distance 0.5 m
between user and object

(i) SSIM distribution for
synthesized views using
center view with distance
0.5 m between user and ob-
ject

Figure 20: SSIM distribution of center views of different distance to the object
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playback. In essence, this is identical to taking the point-wise maximum operation

of the two SSIM maps, which is shown in Fig. 21(a). We will refer to Fig. 21(a) as

the mixed SSIM map in the rest of the document. The mixed SSIM map can also

be thought of as expanding the region of high SSIM values by implementing virtual

view synthesis on the client side. Although it is mentioned that instances such as

different center views and distance between the user and the object could influence

the distribution of SSIM, here we use the version of the SSIM map shown in Fig.

15 to represent the target optimization function. This choice is made because

extensive simulations could be performed offline to generate a database containing

information on quality distribution. Furthermore, our proposed approach will be

independent of the specific pattern of SSIM distribution.

To evaluate the loss of similarity between the actual view and transcoded view

of the user, we employ structural dissimilarity (DSSIM) to represent the distortion

of synthesized images or neighbor images caused by position deviation. In this

work, value of DSSIM between two signals x and y is defined as

DSSIM(x, y) =
1− SSIM(x, y)

2
. (4.2)

DSSIM map is illustrated in Fig. 21(b), which is in opposite color compared to

the SSIM map.

The distribution map of the L2 norm, the most common distortion function

applied in general optimal quantization problems, is also shown in Fig. 21(c). It

is evident that the distortion maps obtained through DSSIM and L2 norm display

notable differences in several aspects. Firstly, the area of minor distortion (i.e. the

blue part in the heatmap) in the distortion map of DSSIM is smaller, indicating

that position deviation must be rather modest to achieve low distortion in regards

to DSSIM. In contrast to the L2 norm where the value of distortion follows the

shape of concentric circles, DSSIM in reality demonstrates a special shape, where

the value is relatively low along a valley-shaped region. In addition, the escalation

of distortion converges in the DSSIM map, whereas in the case of the L2 norm,

the distortion keeps increasing with distance.

Based on the above observation, we are motivated by the distinctive attribu-

tions of DSSIM to revise the objective function used in problem formulation and

modify the optimization algorithm for the purpose of minimizing the distortion of

synthesized views in terms of DSSIM and thus enhance user’s quality of experi-

ence. It is important to note that while this work considers SSIM as the quality

metric, other evaluation standards including the self-defined QoE model can be

applied as the objective function in the proposed optimization frame.
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(a) Mixed SSIM map (b) Mixed DSSIM map

(c) L2 norm

Figure 21: Mixed SSIM map and DSSIM map
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CHAPTER 5

PROBLEM FORMULATION

In this chapter, we first introduce fundamental properties and general problem

formulation of optimal quantization for probability distributions. Then we clar-

ify that multiview generation problem considered in this work can be essentially

viewed as an optimal quantization problem with certain adjustments. Finally, we

formulate the multiview generation problem into three phases of the quantization

sub-problem.

5.1 Optimal Quantization Problem

Quantization for probability distributions targets finding the best approxima-

tion of a d-dimensional probability distribution P by a discrete probability with a

set of n points, so-called vector quantizers. Vector quantizers a ∈ α partition the

whole space into Voronoi regions, which is defined as [44]

W (a|α) = {x ∈ Rd : ∥x− a∥ = min
b∈α
∥x− b∥}, (5.1)

and Voronoi diagram is referred to as

{W (a|α) : a ∈ α}. (5.2)

A Voronoi regionW (a|α) consists of all the points that are nearest to point a in the

set α and a Voronoi diagram is formed by multiple Voronoi regions. Illustrations

of Voronoi diagram in 1 and 2-dimension are shown in Fig. 22(a) and 22(b)

respectively. Star-shaped dots in Fig. 22(a) and blues dots in Fig. 22(b) represent

the vector quantizers; red dash lines in Fig. 22(a) and orange lines in Fig. 22(b)

depicts the boundary of Voronoi regions.

Generally, the quantization error is evaluated with the norm function. Lr norm

of vector x = (x1, ..., xk) is defined as

∥x∥r =
( k∑

i=1

|xi|p
) 1

p . (5.3)

For r = 2, we get the Euclidean norm. The minimal quantization error of a given

probability P and n ∈ N can be defined as

Vn,r(P ) = inf{E∥X − q(X)∥r : q : Rd → Rd measurable, |f(Rd)| ≤ n}, (5.4)

34
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(a) Voronoi diagram for 1-dimension (b) Voronoi diagram for 2-dimension

Figure 22: Voronoi diagram

where ∥ · ∥ is the Lr norm on Rd and q is the quantization function attaining

the inf, which is the objective for optimization in this problem. In other words,

the target vector quantizers achieve minimal distortion in terms of expectation.

The quantization problem as a whole can be conceptualized as the placement of n

quantizers at appropriate positions in order to minimize the expected value of the

distance between the target random variable and selected quantization points.

Overall quantization problem of finding n quantizers for d-dimensional random

variable X with probability density function fX(x) can be formulated as [44,45]

Find best n-tuple α∗ = (a∗1, a
∗
2, ..., a

∗
n)

s.t. Dn,r(a
∗
1, ..., a

∗
n) ≤ Dn,r(a1, ..., an),∀(a1, ..., an) = α ∈ (Rd)n,

(5.5)

where Dn,r(α) : (Rd)n → R+, considering distortion of Euclidean norm, distortion

function given set of quantization points, is defined as

Dn,r(α) =

∫
Rd

min
1≤i≤n

|ai − τ |2fX(τ)dτ =
n∑

i=1

∫
W (ai|α)

|ai − τ |2fX(τ)dτ. (5.6)

Above formulation states that no vector quantizer α performs better that the

optimal one α∗ with regard to the distortion function Dn,r(α).

Define the function of finding optimal vector quantizers as

ψn,r : (Rd)n → R+, ψn,r(a1, ..., an) = E min
1≤i≤n

∥X − ai∥r. (5.7)

A theorem for the existence of the optimal quantizers is stated as

Theorem 1. (Existence, see [44]) We have Vn,r < Vn−1,r. The level set {Ψn,r ≤ c}
is compact for every 0 ≤ c < Vn−1,r, hence the optimal set of centers exist and lies

in a bounded set.
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Let ∥h∥p =
( ∫
|h|pdλd

) 1
p
for Borel measurable function h : Rd → R and

0 < p <∞. A theorem for asymptotic quantization error is developed as follows.

Theorem 2. (Asymptotic quantization error; Zador’s theorem, see [46] and [44])

Suppose E∥X∥r+δ for some δ > 0. Let Pa be the absolutely continuous part of P

and

Qd
r ≜ inf

n≥1
n

r
dVn,r

(
U[0,1]d

)
. (5.8)

Then Qd
r > 0 and

limn→∞n
r
dVn,r(P ) = Qd

r

∥∥∥dPa

dλd

∥∥∥
d

d+r

. (5.9)

With Theorem 1, it is ensured that n-optimal quantizers exist when using norm

functions as quantization distortion functions. The optimal solution of quantiza-

tion for 1-dimensional probability distribution can be solved straightforwardly with

mathematical methods. However, followed by Theorem 2, for dimension d ≥ 2,

the target function of optimization problem becomes typically nonconvex, posing

a challenge for its solution. In detail, The n
r
d rate in equation (5.9) may be referred

to as curse of dimensionality [47]. That is to say, the dimension of searching space

may grow rapidly with the value of n of d which becomes too demanding to solve

in practice. Therefore, sub-optimal methods that are easier to compute are pro-

posed to find asymptotically reasonable solutions. Popular algorithms for solving

high-dimensional quantization problems include the Lloyd-Max algorithm [48,49]

and competitive learning vector quantization [50].

5.2 Formulation of Multiview Generation Problem

In this work, we aim to minimize the distortion of transcoded 2D frames by

finding the optimal set of reference viewpoints considering the viewport predic-

tion error under the constraint of the number of total views. Given the probability

model for user position as target distribution and mixed SSIM map as objective

distortion function, the multiview generation problem is essentially an optimal

quantization problem with a special design of probability distribution and dis-

tortion function. The selection of reference positions can be deemed as placing

the quantization points at the proper location to minimize the distortion between

the actual position of user during playback and the nearest reference position, as

measured by DSSIM. With an examination of the distribution of viewport predic-

tion error and quality distribution of synthesized images, we can uncover how the

problem of reference position selection reflects the characteristics of the optimal

quantization problem with specific modifications.
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To draw a comparison with the method proposed in Vues [3], we divide the

multi-view generation problem into three sub-problems and introduce a corre-

sponding algorithm to solve each sub-problem.

5.2.1 1-Dimensional Quantization with Uniform Interval

First of all, motivated by the method proposed in Vues [3], we choose the

positions to create reference views by moving the prediction position toward four

directions on the x-z plane with uniform step size s. In Vues, the authors set

the step size s to a fixed value of 0.1 meters. The total number of views n is

selected heuristically with the difference between prediction results given by three

prediction models, which are chosen from a range from 1 to 7. As recommended

in the motivation of this work, using preset values of s and n can substantially

degrade the quality of user’s view when the viewport prediction error is large. It

also limits the opportunity to further enhance the similarity between the actual

view and transcoded view.

As a result, we intend to identify an optimal value for step size s for the quan-

tization problem given the number of views n in the x and z directions indepen-

dently. This problem is sometimes referred to as the uniform quantization problem

in certain manuscripts. With a given constant value of step size s, the coordinates

of the quantization points in the x and z directions form an arithmetic sequence.

Subsequently, the grid points of two 1-dimensional vector quantizers are selected

as the final quantization points. Let αx = (x1, x2, ..., xL) and αz = (z1, z2, ..., zL)

be the two set of 1-dimensional vector quantizers such that xk = x1 + (k − 1) · sx
and zk = z1 + (k − 1) · sz where L is the number of views along one direction

(i.e., there are L2 = n quantization points in total), sx and sz are the distances

between two quantizers along x and z direction respectively. Let fPx(px) : R→ R
and fPz(pz) : R → R be the probability density function representing user posi-

tion’s x and z coordinates. Given distortion function g(y, ŷ) : (R,R) → R+, we

can formulate the quantization problem with uniform interval as follows,

min
x1,sx

DL

(
x1, x2, ..., xL

)
=
∫
R min1≤i≤L g

(
xi, τ

)
fPx(τ)dτ

s.t. xk = x1 + (k − 1) · sx,
(5.10)

min
z1,sz

DL

(
z1, z2, ..., zL

)
=
∫
R min1≤i≤L g

(
zi, τ

)
fPz(τ)dτ

s.t. zk = z1 + (k − 1) · sz.
(5.11)

There are only 4 parameters to be optimized if we assumed that distances between

every two of the quantizers are identical. In this way, the solution can be attained

in a short period of time while the performance is doomed to be inferior to other

optimal approaches.
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5.2.2 Independent Optimal 1-Dimensional Quantization

In general, quantization with uniform intervals does not give the most effective

solution for a specific probability distribution. When considering a fixed number of

quantization points, nonuniform spacing of quantizers can yield lower quantization

distortion and less sensitivity to variations in input statistics. Therefore, we en-

large the solution space in an attempt to search for optimal quantization points in

the two directions on the x-z plane independently. Similarly, we generate final 2D

quantization points by creating the grid points with two sets of 1-dimensional vec-

tor quantizers. Using the same notation as mentioned in the previous subsection,

we can formulate an independent optimal 1-dimensional quantization problem as

min
αx=(x1,x2,...,xL)

DL

(
x1, x2, ..., xL

)
=
∫
R min1≤i≤L g

(
xi, τ

)
fPx(τ)dτ, (5.12)

min
αz=(z1,z2,...,zL)

DL

(
z1, z2, ..., zL

)
=
∫
R min1≤i≤L g

(
zi, τ

)
fPz(τ)dτ. (5.13)

It may be noticed that (5.12) and (5.13) are essentially (5.10) and (5.11) without

the constraint of uniform step size. By removing the constraint, smaller distortion

is achievable while optimization on 2L parameters is required.

5.2.3 2-Dimensional Quantization

Last but not least, we formulate and solve directly the 2-dimensional quan-

tization problem. Given probability density function of user’s actual viewpoint

fP (p) : R2 → R2 and quality distortion function g(p, p̂) : (R2,R2) → R+, the op-

timization problem for reference view selection can be written in form of optimal

quantization problem,

min
α=(x1,z1),(x2,z2),...,(xn,zn)

Dn(α)

where Dn(α) =
∫
R2 min1≤i≤n g

(
(xi, zi), τ

)
fP (τ)dτ

(5.14)

The solution to 2-dimensional quantization problems takes into consideration the

relation between position distribution between x and z direction and dissimilarity

caused by viewport drift with the cost of extensive searching space. However, this

approach comes at the expense of a large searching space, and it is important

to recall that Theorem 2 highlights the challenges in achieving optimality for

dimensions higher than two (d > 2). One may notice that the only difference

between general optimal quantization and the proposed reference view selection

problem is that the distortion function considered here is the SSIM loss rather

than the norm function and that target probability distribution is designed to

follow the pattern of viewport prediction error. Due to the intricate pattern of
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(a) 1D quantization with uniform interval (b) Optimal 1D quantization

(c) 2D quantization

Figure 23: Illustration of quantization points of different methods

SSIM distribution, it is necessary to conceive a specific algorithm to maintain high

quality in terms of SSIM with a limited number of views.

Fig. 23 demonstrates the quantization points obtained with different methods.

Quantizers in the x and z direction in 23(b) are acquired with Gaussian probability

distribution with 0 mean and standard deviation 0.1 (i.e. N (0, 0.1)). Quantizers in

23(c) are generated with bivariate Gaussian probability distribution with 0 means

in both directions, standard deviation σx = σz = 0.1, and covariance cov(x, z) = 0.

Three types of optimization problems and corresponding optimized variables are

summarized in Table. 1.

Optimization problems Optimized variables

1D quantization with uniform interval x1, sx, z1, sz

1D optimal quantization (x1, ..., xL), (z1, ..., xL)

2D quantization
(
(x1, z1), ...., (xn, zn)

)
Table 1: Proposed optimization problems and corresponding optimization vari-
ables
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CHAPTER 6

OPTIMAL MULTIVIEW GENERATION

ALGORITHMS

Algorithms for vector quantization have been developed for decades. To effec-

tively address multiview generation to appropriately select the reference positions,

we first explore the user of two independent quantizers for 1-dimensional distribu-

tion. In this work, we apply Newton’s method to find optimal solutions of quan-

tizers for 1-dimensional distribution. Subsequently, competitive learning vector

quantization (CLVQ) algorithm, also known as the Kohonen algorithm, is lever-

aged to further boost the expected value of viewport similarity. This approach is

chosen to ensure optimal adaptation to the reference position selection problem.

Finally, a concept borrowed from simulation-based optimization is incorporated

into the CLVQ process to attain optimality on SSIM simulation results.

6.1 1D Quantization Method

To simplify the process of achieving an optimal solution, we first determine

the quantization points independently for the x and z directions. Then we gen-

erate the final reference positions by taking the grid points from these two sets

of 1-dimensional quantization points. In [45], authors describe in detail the steps

to solve the 1D quantization problem for Gaussian distribution and L2 norm dis-

tortion function with Newton’s method. To summarize, the target is to find the

vector quantizers obtaining the minimum of expected L2 distortion. Due to the

convexity of the L2 norm, the goal is identical to finding the zero of derivative of

the distortion function. With the derivative and second derivative of the distortion

function in hand, we can reach the optimal quantizers by implementing Newton’s

method iteratively, which can be expressed as

αn+1 = αn −
(
H(Dn(α))

)−1

· ∇Dn(α), (6.1)

where H and ∇ represents Hessian matrix and gradient respectively; αn is the

vector quantizers in the nth iteration.

In particular, analytical forms of distortion function concerning 1-dimensional

standard Normal distribution and Laplace distribution with L2 norm distortion

function are derived. Let α be the set of vector quantizers and α = (a1, ..., an), a1 <

a2 < ... < an. Set aj+ 1
2
=

aj+aj+1

2
and aj− 1

2
:=

aj+aj−1

2
, j = 2, ...n − 1, a 1

2
=

40
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−∞, an+ 1
2

= ∞. Denote CDF function of Gaussian distribution as Φ(γ) =
1√
2π

∫ γ

−∞ exp (− τ2

2
)dτ . The distortion of vector quantizers α for N (0, 1) is shown

to be computed as [45]

Dn(α) =
n∑

j=1

∫ a
j+1

2

a
j− 1

2

(aj − τ)2 exp (−
τ 2

2
)
dτ√
2π

=
n∑

j=1

(
(1 + a2j)

(
Φ(aj+ 1

2
)− Φ(aj− 1

2
)
)

− 1√
2π

(
aj+ 1

2
exp (−

a2
j+ 1

2

2
)− aj− 1

2
exp (−

a2
j− 1

2

2
)
)

+
2√
2π
aj

(
exp (−

a2
j+ 1

2

2
)− exp (−

a2
j− 1

2

2
)
))

.

(6.2)

6.1.1 1D Quantization with Uniform Interval

To manifest the importance of choosing adequate reference positions even with

uniform intervals, we first introduce the method to choose the optimal distance

between selected positions to compare with the method proposed in [3]. In the 1-

dimensional quantization problem with uniform interval, which is also introduced

in chapter 4.4.1, we assume that the distance between each two quantizers is

constant. Let αx = (x1, x2, ..., xn) be the vector quantizers in x direction such

that xk = x1 + (k − 1) · sx where sx is the interval between two quantizers. In

this manner, optimization terms remain only x1 and sx. The repeating process of

Newton’s method becomes

xk+1
1

sk+1
x

 =

xk1
skx

−
∂2Dn(α)

(∂xk
1)

2

∂2Dn(α)

∂xk
1∂s

k
x

∂2Dn(α)

∂skx∂x
k
1

∂2Dn(α)
(∂skx)

2

−1 ∂Dn(α)

∂xk
1

∂Dn(α)
∂skx

 , (6.3)

where −1 in the exponential term means the inverse of a matrix.

Executing process of Newton’s method iteratively yields the optimized quanti-

zation points with a uniform interval in the x direction by moving toward the zero

of the first derivative of the distortion function. The overall procedure is shown in

Algorithm 1. For computation simplicity, we first calculate the vector quantizers

α for standard Normal distribution (i.e. N (0, 1)) and then get the quantizers of

specific Normal distribution N (µ, σ) by shifting with formula ασ + µ. To effec-

tively adapt to the viewport prediction error of each user, we compute σ based

on the viewport prediction error in the history trace. To clarify, for quantization

at time t, we use the L1 norm and L2 norm of viewport prediction error in (0, t)

to represent for a standard deviation of target probability distribution. Computa-

tions for derivatives of above formula concerning 1-dimensional standard Normal
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(a) Optimization steps of 1D quantizers with
uniform distance

(b) Expected L2-norm distortion on each
epoch of 1D quantizers with uniform dis-
tance

Figure 24: Results of 1D quantization with uniform interval

distribution and L2 norm distortion function are shown in Appendix B. It is clear

that vector quantizers along the z direction can be solved with similar operations.

Fig. 24 presents example results of 1-dimensional quantization with a uniform

interval for standard Gaussian probability distribution. Vector quantizers in dif-

ferent epochs of optimization over iteration of Newton’s method are shown in Fig.

24(a). The value of expected distortion computed in each epoch is plotted in Fig.

24(b).

Algorithm 1 1D Quantization with Uniform Interval

Input: P: 1-dimensional Gaussian probability distribution N (µ, σ), ϵn: dis-
tortion criteria, ν: limit of epochs

Initialization: Set α0
x = (x01, x

0
2, ..., x

0
L) where x01 = −2 + 2

L
, s0x = 2

L
, x0j =

x01 + (j − 1)sx, 1 ≤ j ≤ L

1: repeat
2: Update xk+1

1 and sk+1
x with equation (6.3)

3: Compute distortion DL with equation (5.10)
4: until Dn ≤ ϵn is met or the number of epochs exceeds the limit

Output: σαx + µ: set of 1-dimensional vector quantizers

6.1.2 Independent 1D Optimal Quantization Method

Next, we aim to explore 1-dimensional optimal vector quantizers without the

constraint of uniform step size so as to further reduce expected distortion. Optimal

quantization points for 1-dimensional distribution can be derived by applying a

similar approach. The explicit formula used in Newton’s method can be written
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(a) Optimization steps of optimal 1D quan-
tizers

(b) Expected L2-norm distortion on each
epoch of optimal 1D quantizers

Figure 25: Results of optimal 1D quantization

as 
ak+1
1

...

ak+1
n

 =


ak1
...

akn

−


∂2Dn(α)

(∂ak1)
2 · · · ∂2Dn(α)

∂ak1∂a
k
n

...
. . .

...

∂2Dn(α)

∂akn∂a
k
1
· · · ∂2Dn(α)

(∂akn)
2


−1 

∂Dn(α)

∂ak1

...

∂Dn(α)
∂akn

 (6.4)

The overall procedure is summarized in Algorithm 2, which is similar to Algorithm

1 except for the update equation. With some calculation, the analytical form of

the derivative and second derivative of distortion function can also be determined

for 1D Gaussian distribution with L2 norm distortion function, which is provided

in [45] and also shown in Appendix C.

Fig. 25 shows example results of optimal 1D quantization on standard Gaus-

sian distribution (i.e. N (0, 1)). Given that the probability is higher around the

mean, the points closer to the mean are more concentrated. The spacing between

points with higher probability is reduced and larger spacing is allocated to points

with lower occurence. Moreover, it can be observed that the process of Newton’s

method on 1-dimensional quantization converges rapidly, where the expected value

of distortion reaches stability in 3 epochs whether or not considering the constraint

of uniform interval. Since Newton’s method updates all the variables in a single

iteration, the number of variables to be optimized does not affect the speed of con-

vergence. In addition, with the same number of quantizers and the same target

probability distribution, optimal 1D quantization gives a lower expected distortion

value compared to 1D quantization with uniform intervals.
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Algorithm 2 1D Optimal Quantization

Input: P: 1-dimensional Gaussian probability distribution N (µ, σ), ϵn: dis-
tortion criteria, ν: limit of epochs

Initialization: Set α0
x = (x01, x

0
2, ..., x

0
L) where x

0
j = −2 +

2(2j−1)
L

, 1 ≤ j ≤ L

1: repeat
2: Update αk+1

x = (xk+1
1 , ..., xk+1

L ) with equation (6.4)
3: Compute distortion DL with equation (5.12)
4: until Dn ≤ ϵn is met or the number of epochs exceeds the limit

Output: σαx + µ: set of 1-dimensional vector quantizers

6.2 2D Quantization Method

In the edge-assisted volumetric video streaming system introduced in this work,

the multiview generation module makes a decision on choosing appropriate posi-

tions in R2 space to best represent the distribution of user’s future position con-

cerning the similarity between synthesized view and the actual view seen at the

actual viewpoint. This process resembles the optimal quantization problem on

a 2-dimensional plane. Although vector quantizers for 1D Gaussian distribution

with L2 norm distortion function can be obtained directly with Newton’s method,

improvement of user-perceived quality requires further innovation to completely

fit into the distribution of user’s position and similarity loss. Therefore, it is

necessary to develop an efficient approach to quantization for a 2-dimensional

probability distribution. We first introduce the well-known stochastic approach,

competitive learning vector quantization (CLVQ), for solving high dimensional

quantization problems, then propose a new version of CLVQ which embodies the

concept of simulation-based optimization to resolve the intricate pattern of SSIM

distribution.

6.2.1 Competitive Learning Vector Quantization (CLVQ)

Competitive learning vector quantization procedure [51], which is proposed in

the 1980s, emerges as a stochastic gradient method in machine learning nowadays.

In this work, we apply the CLVQ algorithm to deal with vector quantization

for 2-dimension distribution, where optimal quantization points are difficult to

solve. The essence of the CLVQ algorithm is to update the vector quantizers

stochastically by updating a selected quantizer at one time. The key formula used

in CLVQ to update the quantizers is

αk+1 = αk − γk∇g(αk), (6.5)

where αk is the quantization points at kth update, γk is the gain parameter for

kth update, and g(·) is the loss function. When considering Euclidean distortion,
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the update function for the winning point becomes

a∗k+1 = a∗k + γk · (y − a∗k). (6.6)

The selection of gain parameter γ holds great significance and requires careful

consideration. Considering the convergence of stochastic gradient descent, it is

required that the value of γ satisfies following constraints,

∑
k≥1

γk = +∞, and
∑
k≥1

γ2k < +∞. (6.7)

Here for CVLQ process, we follow [45] to set the gain parameter for kth update

to

γk = γ0
a

a+ γ0bk
, a = 4k

1
d , b = π2k−

2
d , (6.8)

for d-dimensional Gaussian distribution. The choice borrows the step size from a

uniform distribution that is proved to satisfy the condition of convergence by the

Central Limit Theorem.

The overall procedure of the CLVQ algorithm is presented in Algorithm 3. The

third line in Algorithm 3 is called the competitive phase that selects the best point

(i.e. the quantizer closest to the sample point) and the fourth line is the learning

phase that updates the winning quantization point by moving toward the sample

point. Fig. 26 illustrates the operation in the learning phase, where the winning

point (light blue point) moves toward the sample point (orange point) with a given

step size. By iteratively applying the procedure of competing and learning with

decreasing gain parameters, the vector quantizers converge to a final estimation

of the optimized, albeit not optimal, quantization set.

Algorithm 3 Competitive Learning Vector Quantization (CLVQ)

Input: P: probability distribution, n: number of quantization points, ν: limit
of epochs, γ0: initial gain parameter

Initialization: Set α = {a1, a2, ..., an} to be a set of n quantizers by sampling
n points from distribution P
1: for k ∈ {1, 2, ..., ν} do
2: Take a sample y from P
3: Find quantizer ai that is closest to y
4: Compute gain parameter γk with equation (6.8)
5: Update ai with equation ai ← ai + γk · (y − ai)
6: end for

Output: α: set of optimized vector quantizers

Fig. 27 demonstrates the results of 25 quantizers and transition of expected

distortion of running CLVQ 10000 epochs for bivariate Gaussian distribution with

both mean equal to 0 and variance equal to 1 and L2 norm distortion function.
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Quantization points resemble the shape of concentric circles with the origin as

centers. It may be seen again that due to the higher probability distribution

around the mean, there is a greater concentration of points in proximity to the

mean. Fig. 28 shows the counterpart figures for bivariate Laplace distribution

with both mean equal to 0 and variance equal to 1. Under identical values of

mean and variance, quantization points are more concentrated around the center

and more dispersed on the margin for Laplace distribution; while quantization

points are more average distributed for Gaussian distribution.

Figure 26: Illustration of learning phase in CLVQ

(a) Optimization result of quantizers on 2D
Gaussian distribution

(b) Expected L2-norm distortion of quantiz-
ers on 2D Gaussian distribution

Figure 27: Results of quantization on 2D Gaussian distribution

6.2.2 Gradient-Free Competitive Learning Vector Quantization

Although classical quantization solutions mentioned above provide an effective

algorithm to find the vector quantizers, it should be emphasized that established
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(a) Optimization result of quantizers on 2D
Laplace distribution

(b) Expected L2-norm distortion of quantiz-
ers on 2D Laplace distribution

Figure 28: Results of 2D quantization on 2D Laplace distribution

quantization algorithms are built upon Euclidean distance distortion function.

In the multiview generation problem considered in our system, the goal is to

maximize the expected SSIM value (or minimize expected DSSIM) with a given

number of views. Based on our analysis of the SSIM map in previous chapters, it is

apparent that Euclidean distance and SSIMmap exhibit distinctive characteristics.

Moreover, different virtual view synthesis techniques applied on the client side

can result in diverse patterns of SSIM and there would be other quality metrics

considered in the future. Therefore, it is necessary to develop a framework that

takes into account the diverse patterns observed in the quality map.

We draw inspiration from solution solving simulation-based optimization [52],

where only zeroth-order information about the objective function g(·) rather than
its gradient is available. Also, it remains unknown whether the objective function

g(·) is convex or not. Our problem settings inherently belong to the domain of

simulation-based optimization as a closed-form function expressing the SSIM map

is not accessible. Hence, it is impossible for us to obtain the first-order gradient

of the objective function in terms of DSSIM value.

Accordingly, we have made appropriate revisions to the original version of

the CLVQ algorithm in order to fit our solution to the SSIM map considered in

this work. The overall gradient-free CLVQ (GF-CLVQ) algorithm is outlined in

Algorithm 4. With SSIM map and DSSIM function g(x, x̂) in hand, we can get

the DSSIM value given coordinates of reference point x and center point x̂. The

first modification we made is in the competition phase of the CLVQ procedure,

where we choose the winning point based on the distortion measured with DSSIM

instead of Euclidean distance. Subsequently, in the learning phase, we borrow the

formula applied in simulation-based optimization proposed in [52] and make some

adaptations for the CLVQ process. Applying the updating formula utilized in the
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zeroth-order method, we replace equation (6.6) with

a∗k+1 = a∗k − γk ·G(a∗k, y, γk),

G(a∗k, y, γk) =
g(a∗k + γk · (y − a∗k), y)− g(a∗k, y)

∥y − a∗k∥
· (y − a∗k),

(6.9)

where ∥ ·∥ denotes the Euclidean distance and, in our case, the distortion function

g(x, x̂) is the DSSIM value when center position is at x̂ and reference position is at

x. The function G(a∗k, y, γk) can be regarded as an estimation of gradient based on

the zeroth-order SSIM simulation results associated with the winning point and

sample point. When updating the winning point toward the input sample, moving

toward the negative direction of the gradient ensures an effective optimization

step. This approach is named gradient-free since it allows for optimization in

scenarios where first-order gradient information is not available. In this way, we

can effectively optimize the quantization points for different distributions of quality

maps. This is made possible by obtaining the distortion value at various position

deviations using the available simulation results. For GF-CLVQ, we adopt a linear

decay scheme for scheduling of gain parameters. That is, the gain parameter γk

for kth update is determined by

γk = γ0
(
1− k

ν

)
. (6.10)

Algorithm 4 Gradient-Free Competitive Learning Vector Quantization (GF-
CLVQ)

Input: P: probability distribution, n: number of quantization points, g(x, x̂):
DSSIM function, ν: limit of epochs, γ0: initial gain parameter

Initialization: Set α = {a1, a2, ..., an} to be a set of n quantizers by sampling
n points from distribution P
1: for k ∈ {1, 2, ..., ν} do
2: Take a sample y from P
3: Find quantizer ai that attains the lowest DSSIM g(ai, y)
4: Compute gain parameter γk with equation (6.10)
5: Update ai with equation (6.9)
6: end for

Output: α: set of optimized vector quantizers

6.2.3 Cross-frame Optimization

In consideration of a practical multiview generation algorithm that can opti-

mize the reference positions for transcoded views in real-time, 2D quantization

may not be suitable due to the extended convergence time. Compared with 1D

quantization optimization with Newton’s method which yields vector quantizers
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within 10 epochs of updates, the 2D quantization algorithm may take up to 10000

epochs to reach optimized quantization points. Required computation time for the

2D quantization algorithm including CLVQ and GF-CLVQ may exceed the limita-

tion for MTP delay when the prediction window is fixed. Therefore, it is essential

to revise the overall procedure of optimal 2D quantization that can complete the

computation in time at the edge server.

Recall that the objective of the optimization problem is to mitigate viewport

prediction error when selecting the positions to transcode volumetric video. The

accuracy of viewport prediction model applied is expected to remain relatively

stable in the short term. On the other hand, initialization of the 2D quantization

algorithm remains a challenge, as inadequate initialization can result in subopti-

mal outcomes. Hence, it is reasonable to optimize the quantization points based

on previous results. The advantages include reducing the time required for con-

vergence in 2D quantization and achieving a more solid set of vector quantizers

against variation of viewport prediction results.

Algorithm 5 Cross-frame Optimization

Input: n: number of quantization points, g(x, x̂): DSSIM function, ν: limit
of epochs

Initialization:

1: for t ∈ {1, 2, ..., K} do ▷ Cold-start
2: Update parameters of Pt

3: Initialize αt with 1D quantization
4: for k ∈ {1, 2, ..., ν} do
5: Take a sample y from Pt

6: Find quantizer ati that attains the lowest DSSIM g(ati, y)
7: Compute gain parameter γk with equation (6.10)
8: Update ati with equation (6.9)
9: end for
10: end for
11: Initialize αc with 1D quantization
12: for t ∈ {K + 1, ..., T} do ▷ Cycle optimization
13: Update parameters of Pt

14: Update γ0 with equation (6.12)
15: αt = αc

16: for k ∈ {1, 2, ..., ν} do
17: Take a sample y from Pt

18: Find quantizer ati that attains the lowest DSSIM g(ati, y)
19: Compute gain parameter γk with equation (6.10)
20: Update ati with equation (6.9)
21: end for
22: αc = αt

23: end for
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The implementation of the proposed multiview generation problem is demon-

strated in Algorithm 5. The overall procedure can be split into two stages: cold-

start and cycle optimization. On a segment-by-segment basis, the GF-CLVQ

algorithm is applied to find the quantization points to determine the positions

of pre-rendered segments. Before the iteration process of GF-CLVQ, the target

probability distribution is updated with prior information on viewport prediction

accuracy, and the initial set of quantizers is chosen differently in two distinct

phases.

At the beginning of the process (i.e., time before K segments), when there

is no prior information available about the accuracy of viewport prediction, our

confidence in the optimization during the initial phase is relatively low. As a result,

during the cold-start stage, the initialization is based on optimal 1D quantization

results with acceptable performance. After the initialization of vector quantizers,

the quantization set αt at segment t is passed through the GF-CLVQ process.

Related code to the cold-start stage is specified from line 1 to line 10 in Algorithm

5.

From K+1 segments to the end of the streaming process, the algorithm enters

the phase of cycle optimization. After we get a better grasp of the accuracy of

viewport prediction, we can reuse the results obtained before as an initial set

of quantizers since the chosen set of quantization points, corresponding to the

positions for pre-rendering 2D images, is getting stable when we can better model

the viewport prediction error with probability density function P.
The parameters for the probability distribution P are updated in every itera-

tion, which is specified in line 5 and 17 in Algorithm 5. We make the assumption

that the viewport prediction is unbiased, thus setting the mean µ to be 0. Addi-

tionally, we utilize the L1-norm of the viewport prediction error up to time t as

the standard deviation σ at that time. In our case with a sampling rate of 200Hz,

the standard deviation σx,t of the distribution used to model the x coordinate of

the user at time t can be calculated as

σx,t =
1

200t

200t∑
i=1

|ei| =
1

200t

200t∑
i=1

|x̂i − xi|, (6.11)

where ei is the viewport prediction error of ith sample. Computation on the value

of standard deviation is applied to Gaussian distribution on Laplace distribution

alike.

Nevertheless, the value of the gain parameter should be determined with ad-

ditional attention to ensure the stability of the quantization points. Between the
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optimization between each segment, we update the initial value of the gain pa-

rameter for segment t with equation

γt0 = exp
(
− 0.05× (t−K)

)
+ 0.1. (6.12)

By setting the initial value of gain parameter to a decaying value, we make certain

that the variation of quantization points during the optimization process does not

change significantly.
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CHAPTER 7

EVALUATION AND ANALYSIS

Extensive experiments are conducted based on the real-world 6DoF traces of

14 users provided by [37] along with 8i voxelized point cloud dataset [43]. We

focus on evaluating the results of quantization approaches elaborated in Chapter

6 and compare the results with the state-of-the-art multiview generation method

proposed in Vues [3]. We would demonstrate the benefit of applying optimal quan-

tization solution on the multiview generation module and analyze the effectiveness

by delving into the details when choosing reference positions for pre-rendering 2D

views at the edge server.

7.1 Simulation Setup

We develop a simulation platform for evaluation of the performance of different

multiview generation algorithms. It is assumed that users can freely roam in a

room to explore the volumetric object placed in the virtual world. Meanwhile,

translation and rotation traces are recorded and delivered to the edge server in

real-time. Also, the SSIM map is generated offline for real-time evaluation. In the

simulation process at time t seconds, viewport prediction with linear regression is

first exploited to compute the predicted position of user at time t+1 seconds, with

a prediction window of 1 second. Next, the multiview generation module selects

the final reference positions on a segment-by-segment basis. Finally, the achievable

similarity between transcoded views and actual views is computed by taking the

maximal value of SSIM indices among all the reference views according to the SSIM

map that indicates the relation between SSIM value and the position deviation.

The performance evaluation of each approach primarily relies on the average SSIM

value across 14 user traces, with additional insights provided through box plots

depicting the median and quartiles of the SSIM value, ensuring a comprehensive

assessment. We compare the performance of each method across varying numbers

of views to assess the flexibility and adaptability of each algorithm when the

number of views used in transcoding fluctuates. In a practical streaming system,

the total number of views would be determined based on estimated bandwidth to

attain optimal quality by fully utilizing the communication resource.

52
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(a) Results comparing with and without vir-
tual view synthesis

(b) Box plot comparing with and without
virtual view synthesis

Figure 29: Results comparing with and without virtual view synthesis

7.2 Performance of Incorporating Virtual View Synthe-
sis

In this section, we showcase the benefit of employing virtual view synthesis

technique within the volumetric video streaming system. As mentioned in Chap-

ter. 4, incorporating a virtual view synthesis module on the client side addresses

the limitations of directly using neighbor view, effectively mitigating the substan-

tial variation that may arise between the pre-rendered views and the actual views

experienced by users. Fig. 29 presents the impact on SSIM values when com-

paring the use of virtual view synthesis approach with its absence. The reference

points are selected using a fixed interval of 0.1m, which aligns with the method

employed in Vues [3]. Simulation results with and without the virtual view syn-

thesis process are calculated based on the SSIM map shown in Fig. 21(a) and

Fig. 15(a) respectively. Recall that Fig. 21(a) depicts the results obtained using

both neighbor views and synthesized views, while Fig. 15(a) represents the results

obtained solely with neighbor views. The results indicate that the utilization of

virtual view synthesis enhances the SSIM value by approximately 0.2, regardless

of the number of views. Therefore, it is confirmed that implementing virtual view

synthesis before playback on client devices does bring an advantage to the overall

streaming system.

7.3 Performance of Multiview Generation Algorithms

In this section, we compare and analyze the performance of different multiview

generation algorithms. The multiview generation approach proposed by the state-

of-the-art volumetric streaming system, Vues [3], acts as the baseline method to

be compared with classical quantization solutions as well as proposed solutions
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for multiview generation problem. In order to better capture the performance of

each approach, the performance is compared over different numbers of views or

the number of quantizers utilized in the quantization problem.

7.3.1 Baseline Algorithm for Comparison

In Vues [3], a state-of-the-art transcoding-based edge-assisted volumetric stream-

ing system, the multiview generation module selects reference positions by expand-

ing the viewport prediction results with a fixed step size of 0.1m and the number of

views are set to 1, 3, 5, or 7 in Vues. To facilitate a fair comparison between the

methods employed in Vues and the proposed algorithms, a consistent approach

of setting a fixed step size of 0.1m is applied across varying numbers of views.

Although virtual view synthesis is not utilized in Vues, we simulate its effect by

employing a mixed SSIM map to evaluate the performance of the multiview gen-

eration methods.

7.3.2 Performance of Proposed Methods

7.3.2.1 Average SSIM over users

Summaries of simulation results applying different multiview generation ap-

proaches are demonstrated in Fig. 30, in which performances are compared across

baseline method proposed by Vues, optimal 1D quantization with Gaussian dis-

tribution, and 2D quantization with GF-CLVQ algorithm. The number of quan-

tization points n is set to an identical value to ensure a fair comparison. It is

evident that the proposed methods outperform baseline Vues’ method in terms

of average SSIM values regardless of the number of views applied. Additionally,

the average SSIM values achieved with GF-CLVQ are slightly higher than those

of other methods. When considering the DSSIM values, the GF-CLVQ method

shows an improvement of approximately 6.5% compared to the Vues method when

the number of views is 4 and 100. The improvement is less effective when num-

ber of views is around 20 to 40. This is because the optimal value of interval in

quantization with fixed interval coincides with the value of 0.1 meters applied in

Vues.

Although the improvement appears modest, it is worth noting that achieving

reference views with an SSIM higher than 0.95 proves to be challenging based on

the experimental findings from the SSIM map. Also, the following example serves

as justification for the benefits of the progress made. In the case of the number

of views being 4, the SSIM value is improved from 0.9198 to 0.9252 comparing

Vues’ method and GF-CLVQ. Fig. 31 showcases examples of transcoded views

with SSIM values of 0.9197 and 0.9253 as well as the reference view. As can be
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seen, views of SSIM value 0.9197 have lower quality in comparison to the one

with SSIM value 0.9253, particularly in the region highlighted by the red boxes,

where some cracks of the soldier are noticeable. In addition, we compute the

equivalent value of position deviation of transcoded views along x direction which

leads to the average SSIM value achieved in the simulation for different numbers

of views, which is shown in Fig. 30(c). It can be seen that the GF-CLVQ method

corresponds to the lowest value of position deviation Therefore, it is reasonable to

conclude that the advancement in quality of transcoded view is still advantageous

and distinguishable by humans.

Fig. 30(d) displays the average ratio of improvement when compared segment-

by-segment with the method used in Vues, across all users. The improvement

ratio is computed by dividing the total number of improved segments by the total

number of segments. It is clear that the GF-CLVQ algorithm has better outcomes

compared with other quantization methods and also the baseline multiview gen-

eration method proposed in Vues. Generally, utilization of optimal 1-dimensional

quantization method and 2D quantization with CLVQ except for the number of

views is 16, 25, or 36. The application of GF-CLVQ leads to the highest im-

provement ratio when the number of views is 4 with 83.33%. Despite modest

enhancement, when the number of views is 25 or 36, GF-CLVQ brings about an

improvement ratio of 55.26% compared to the method applied in Vues.

Furthermore, an approximate number of views required to attain certain values

of the SSIM index are summarized in Fig. 30(e). It is evident that the application

of proposed method effectively saves computation and communication resources

while ensuring the quality of transcoded views. In particular, 19.2% of views can

be saved when targeting an SSIM value of 0.945. Also, Vues’ method cannot attain

an SSIM value of 0.95 even with 100 views while 2D quantization with GF-CLVQ

yields the target result with 61 views.

7.3.2.2 SSIM of individual user

To gain a deeper understanding of the system performance, we evaluate the

quality of transcoded views for individual users. Fig. 32 illustrates the SSIM

values obtained by three multiview generation methods over each user when using

9 and 81 views, arranged in ascending order of viewport prediction error. It can

be observed that there is an inverse relationship between the SSIM values and

the average viewport prediction error. This is logical since a higher deviation

between the predicted position and the actual user position results in inferior

quality of transcoded views. Also, a higher standard deviation over the quality

is introduced with a larger viewport prediction error. Upon examining the SSIM
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(a) SSIM (b) DSSIM

(c) Distance to center view (d) Improvement rate

(e) Required number of views

Figure 30: Results of different methods
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(a) Reference view

(b) SSIM=0.9253

(c) SSIM=0.9197

Figure 31: Examples of transcoded views
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(a) n=9

(b) n=81

Figure 32: Results of each user

values obtained by the three methods, it is confirmed that our proposed algorithms

outperform Vues’ method for the majority of individual user traces, irrespective of

the accuracy of the viewport prediction and the number of views applied. However,

the outcomes of optimal 1D quantization and 2D quantization with GF-CVLQ

vary for each user trace. This variation can be attributed to the randomness

of position deviation, which is challenging to model using a single probability

distribution.

To further investigate, we choose two users with varying levels of viewport

prediction accuracy to verify that our proposed algorithm could dynamically adapt

the reference positions to the information of prior viewport prediction errors in the

multiview generation model. Tested with a lightweight linear regression viewport

prediction model, the viewport trace of user7 and user8 yield the lowest and highest
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(a) Average and standard deviation (b) Segment-by-segment improvement ratio

Figure 33: Results of user7

(a) Average and standard deviation (b) Segment-by-segment improvement ratio

Figure 34: Results of user8

average viewport prediction error of values 0.207 and 0.470 meters. Fig. 33 and

34 present the simulation results of two users comparing the performance of the

Vues method, 1D quantization, and GF-CLVQ method. As shown, there is an

improvement in the average values of the SSIM index, and in some cases, the

improvement can reach up to 0.2. It could be validated that the proposed GF-

CLVQ algorithm is capable of boosting the SSIM values regardless of the viewport

prediction accuracy and number of views.

7.4 Analysis of System Performance

In this section, we compare the performance of different methods in detail and

further verify the reason for various outcomes achieved by different algorithms.

Through in-depth analysis, we seek to uncover the underlying factors that con-

tribute to the observed differences in performance.
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7.4.1 Observation on Step Size in 1D Quantization

7.4.1.1 Observation on step size in 1D quantization with fixed interval

Figure 35: Results of quantization with the uniform interval setting difference
values of step size (Vues method)

We present the performance of finding reference positions with a fixed value of

spacing between each two quantizers in order to gain insight into how the number

of views impacts the decision on the reference positions. Here we test with step

size values of 0.05m, 0.1m, and 0.2m. Results of a different decision on the value

of step size s are compared in Fig. 35.

In Fig. 35, it can be noted that no specific step size value consistently outper-

forms all the other choices over different numbers of views, where L is the number

of quantization points along a 1-dimensional direction and n = L2 is the total

number of views used. In other words, the optimal value of step size is dependent

on the number of views. While using the fixed step size of 0.1m, similar to Vues,

can achieve an approximately ideal result, there is still significant potential for

improvement in selecting optimal reference positions compared to this simplistic

approach. In addition, imposing a maximum limit of 7 views as Vues does would

significantly limit the enhancement of the user’s QoE, especially when the avail-

able bandwidth has not been fully utilized, as higher SSIM can be achieved with

more views.

The objective of the multiview generation problem is to minimize the distance

between the actual user position and the nearest reference position when deciding

positions to create transcoded views so as to increase the SSIM value (decrease

the DSSIM) of pre-rendered viewports. Intuitively, it is apparent that the average

SSIM value increases as the number of views used grows since we devote more
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(a) L=3 (b) L=9

Figure 36: Illustrations of reference positions with fixed interval

resources to transcoding the 2D views and transmitting the data. To provide fur-

ther insight into the results, we explore the specific factors contributing to the

positive performance. When employing a limited number of views (e.g., L = 3), a

larger step size s leads to better performance as it allows for greater coverage by

expanding the distance between two reference positions. By enlarging the span of

chosen points, the probability of the actual user position being encompassed by

the coverage of reference positions is increased, thereby enhancing the SSIM value.

Conversely, when the number of views is large (e.g., L = 9), a smaller value of step

size s yields a superior result since concentration matters more given that the cri-

teria of coverage is automatically met with a larger number of reference positions.

That is, when the coverage provided by the reference positions is already sufficient

to encompass most of the deviation in viewport prediction results, increasing the

density of reference positions can further augment the overall quality. Examples

of reference positions determined with different values of step size s are illustrated

in Fig. 36. For L = 3, the green point representing the actual user’s position is

closer to the nearest reference positions when a step size of 0.2m is applied. On

the other hand, for L = 9, a step size of 0.05m results in higher SSIM values.

Additionally, using a smaller step size s results in a higher standard deviation.

This is because extreme SSIM index values occur more frequently when the actual

user position is very close to or significantly far from any of the reference positions.

These situations are more likely to happen when a smaller step size is set in the

multiview generation model.

7.4.1.2 Observation on step size in optimal 1D quantization with uniform
interval

Next, we evaluate the performance of acquiring optimal step size with New-

ton’s method for the 1-dimensional quantization problem with uniform interval.
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(a) Optimal step size for 1D quantization with
uniform interval

(b) Step size for 1D quantization with uni-
form interval of each user

Figure 37: Simulation results of 1D quantization with uniform interval

Following the process outlined in Algorithm 1, we can obtain the optimal step size

for Normal distribution N (µ, σ).

In particular, for 1-dimensional standard Normal distribution (i.e., N (0, 1)),

the value of optimal step size is shown in Fig. 37(a) and summarized in Table 2. It

is evident that the optimal step size decreases as the number of quantizers increases

since more concentrated quantization points can lower the expected distortion of

target probability distribution with an increased number of points. On the other

hand, Fig. 37(b) illustrates values of step size obtained with the proposed 1D

quantization with a uniform interval algorithm. Due to the different viewport

prediction accuracy of each user, the values of step size should be adjusted to

accommodate the different probability distributions of user position. The results

once again highlight the significance of selecting an appropriate step size based on

the number of points and the parameters of the probability distribution, rather

than using a fixed step size.

Fig. 38 displays the results of optimized quantization with a uniform interval

in contrast with quantization with a fixed interval. It is evident that the optimized

version of quantization with uniform interval exhibits a finer performance under

average SSIM value compared with the approach employing fixed interval except

for the particular testing case of s = 0.1m,L = 6. The deviation in performance

for these cases could be attributed to the randomization of users’ traces, and

the average SSIM values remain comparable to the results obtained using a fixed

interval approach. The advantage of applying optimal quantization with uniform

interval is its ability to dynamically adapt the step size s based on varying numbers

of views, ensuring consistent optimization of quality regardless of the number of

views used.
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(a) Average and standard deviation compar-
ing with fixed interval of s = 0.05m

(b) Box plot comparing with fixed interval of
s = 0.05m

(c) Average and standard deviation compar-
ing with fixed interval of s = 0.1m

(d) Box plot comparing with fixed interval of
s = 0.1m

(e) Average and standard deviation compar-
ing with fixed interval of s = 0.2m

(f) Box plot comparing with fixed interval of
s = 0.2m

Figure 38: Performance of optimized quantization with uniform interval
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Number of quantizers 2 3 4 5 6 7 8 9 10

Optimal step size 1.5958 1.2240 0.9957 0.8430 0.7334 0.6508 0.5860 0.5338 0.4908

Table 2: Optimal value of step size for 1D quantization with uniform interval

(a) Average and standard deviation (b) Box plot

Figure 39: Results comparing optimized quantization with uniform interval and
optimal 1D quantization

7.4.1.3 Observation on step size in optimal 1D quantization

We can obtain a more precise set of quantization points with Newton’s process

stated in Algorithm 2 by removing the constraint of the uniform interval when

modeling the user’s x and z coordinates with two 1-dimensional probability dis-

tributions. We use 1-dimensional Normal distribution N (µ, σ) to model user’s

x and z coordinates here. Similarly, the parameters µ and σ are set to 0 and

the L1-norm of the prediction error, respectively. Results comparing optimal 1D

quantization and quantization with fixed interval are demonstrated in Fig. 39.

It can be observed that optimized quantization with uniform interval and opti-

mal 1D quantization yield comparable performance. The reason may lie in the

resemblance in the selection of the reference position between the two approaches,

which is shown in Fig. 40. These two methods yield identical reference positions

when L = 3, and the selected points are very close together when L = 9.

7.4.2 Comparison between Different Probability Distributions

We evaluate the performance of applying the CLVQ algorithm on 2-dimensional

Gaussian distribution and Laplace distribution. Based on the graphical analysis

for the distribution of viewport prediction error, it is indicated that neither the

Gaussian nor the Laplace probability model can fully capture the distribution.

The objective of this section is to identify a more suitable probability distribution

to model user position in a 6DoF scenario for our streaming system. Fig. 41

sketches the comparison between results on two distributions. According to our
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(a) L=3 (b) L=9

Figure 40: Reference positions selected with optimized quantization with uniform
interval and optimal 1D quantization

(a) Average and standard deviation (b) Box plot

Figure 41: Results comparing 2D quantization with CLVQ on Gaussian distribu-
tion and Laplace distribution

simulation results, it can be seen that exploiting Gaussian distribution leads to

higher SSIM, suggesting that Gaussian distribution is a more suitable model for

representing the position of user in a 6DoF scenario.

7.4.3 Observation on Algorithm Design

7.4.3.1 Comparison between CLVQ and GF-CLVQ

Fig. 42 presents the results comparing 2D quantization with CVLQ and GF-

CLVQ. It is evident that additional innovations, including the integration of the

simulation-based optimization approach in CLVQ and careful consideration in the

initialization of the quantization set, do enhance the SSIM results in terms of the

average value. To further investigate the impact of incorporating the gradient-free

concept into the CLVQ algorithm, we examine the quantization points selected

by these two methods. Fig. 43(a) illustrates the reference positions selected with
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(a) Average and standard deviation (b) Box plot

Figure 42: Results of 2D quantization with CLVQ and GF-CLVQ

CLVQ and GF-CLVQ methods when using 9 views (n=9). The reference positions

selected with the proposed algorithm can be seen to be distributed in the upper-

right to lower-left direction, which complements the pattern of the SSIMmap. This

phenomenon can be attributed to the application of GF-CLVQ, which takes into

account the gradient of the SSIM map. The size of the updating step depends on

the magnitude of the gradient. When the gradient is steeper, the point takes larger

strides in the updating process. Fig. 43(b) and 43(c) portray the contour lines of

SSIM values achieved by reference positions selected with respective methods. It

can be observed that reference positions selected with GF-CLVQ result in SSIM

values that distribute more evenly around the predicted position. This example

manifests the underlying reason for the superior performance of the GF-CLVQ

method.

7.4.3.2 Observation on cross-frame optimization

In this subsection, we focus on the effect of applying cross-frame optimiza-

tion. We first perform simulations on GF-CLVQ methods using different maximal

update values ν. The results are illustrated in Fig. 44. As can be seen, the in-

creasing number of updates can lead to a higher SSIM value, particularly when

the number of quantization points is increased. The improvement becomes more

pronounced as the number of views increases, as a greater number of updates are

needed to reach optimality. This can be thought up as the trade-off between com-

putation resources and optimization performance. Fig. 45 shows the performance

compared between the original GF-CVLQ of 100 maximal updates and GF-CLVQ

with cross-frame optimization of 100 maximal updates. In addition to the slight

improvement in quality, the utilization of cross-frame optimization can result in

a reduction of approximately 90% of the computation resource as well as compu-

tation time. It is important to mention that the computation time required for
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(a)

(b)

(c)

Figure 43: (a)Reference positions selected with CLVQ and GF-CLVQ when n=9
(b)Contour lines of achievable SSIM of reference positions selected with CLVQ
(c)Contour lines of achievable SSIM of reference positions selected with GF-CLVQ
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(a) Average and standard deviation (b) Box plot

Figure 44: Results of GF-CLVQ with different number of maximal updates ν

(a) Average and standard deviation (b) Box plot

Figure 45: Results of cross-frame optimization

1000 updates is shorter than the duration of a single segment, which meets the

practical implementation constraints. However, it is always a benefit in reducing

the computational energy consumed by the edge server.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Streaming of volumetric video is an unsolved problem to facilitate the immer-

sive experience and formation of the metaverse. This work proposes to leverage

edge rendering on point cloud data for streaming high-quality video frames under

the bandwidth constraint of current networking technology. To solve the problem,

the overall system design is built upon a holistic adaptive video streaming system

with the incorporation of optimization on multiview generation as well as virtual

view synthesis techniques. We formulate the multiview generation problem into

an optimal quantization problem. Conventional algorithms, including Newton’s

method and competitive learning vector quantization, to solve quantization prob-

lems are tested. In addition, concepts of gradient-free stochastic gradient descent

for simulation-based optimization are employed in the CLVQ algorithm.

With a thorough evaluation of real-world VR user traces and the SSIM map

generated with real-world volumetric data, we confirm that the application of the

virtual view synthesis technique can bring a 0.2 improvement in average SSIM

value. Also, we validate that the proposed multiview generation algorithm could

improve the average SSIM value by 0.05. In addition, the proposed algorithms

outperform baseline methods proposed by state-of-the-art edge-assisted volumetric

streaming system with improvement ranging from 55% to 83% on a segment-

by-segment basis. The proposed optimization framework could better select the

transcoded views to save computation and communication resources as well as

enhance the quality of pre-rendered images.

8.2 Future Work

8.2.1 Optimality Analysis

In this work, the proposed multiview generation algorithm determines the ref-

erence positions with the GF-CLVQ process along with careful consideration of

gain parameters. Although the procedure applied in this work could achieve a

great improvement compared with the baseline method, the optimality and con-

vergence of the proposed algorithm are not guaranteed. The derivation of proof

for optimal solutions and convergence conditions for the stochastic process could

be a new research direction.

69
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8.2.2 Practical Implementation and Experiment

While extensive simulations have been conducted, this work does not include

practical implementation of the proposed streaming system using off-the-shelf de-

vices and real-world networks. Advanced techniques for virtual view synthesis

could be exploited to further enhance the quality of transcoded views. Also, Dif-

ferent quality evaluation metrics can be applied to the optimization framework

to attain better QoE for users in real-world scenarios. Additionally, a user study

could be conducted to provide an objective evaluation of the streaming system.

8.2.3 Multi-user scenario

In this study, the streaming process is simulated individually for each user.

However, in real-world scenarios, multiple users often engage in immersive expe-

riences simultaneously. In such cases, streaming for multiple users concurrently

is necessary. Optimizing the reference positions of transcoded views for multiple

users adds an additional dimension to the optimization process, including consid-

erations for the similarity of viewports between users.
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APPENDIX A

PROOF OF EQUATION (6.2)

Let α = (a1, ..., an), a1 < a2 < ... < an, aj± 1
2
=
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2
, j = 2, ..., n − 1,

a 1
2
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2
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We then solve three parts of equation (A.1) separately,
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, with integration by parts,
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(A.6)

By combining the three parts of integral, one can get equation (6.2).
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APPENDIX B

COMPUTATION OF EQUATION (6.3)

In optimal quantization problem with uniform interval, distance between each

two quantizers is equal to a constant s. Let the set of quantizers α = (a1, a1 +

s, ..., a1+(n−1) · · · ). The elements for performing Newton’s method (i.e. Equation

(6.3) with 1-dimensional standard Normal distribution and L2 norm distortion

function are calculated with basic calculus as follows,
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APPENDIX C

COMPUTATION OF EQUATION (6.4)

Let α be the set of vector quantizers and α = (a1, ..., an), a1 < a2 < ... < an. Set
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2
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2
and aj− 1

2
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2
, j = 2, ...n− 1, a 1

2
= −∞, an+ 1

2
=∞. Denote

CDF function of Gaussian distribution as Φ(γ) = 1√
2π

∫ γ

−∞ exp (− τ2

2
)dτ . The

elements for performing Newton’s method (i.e. Equation (6.4) with 1-dimensional

standard Normal distribution and L2 norm distortion function are calculated with

basic calculus as follows [45],
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