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ABSTRACT

Recently, a new type of amplifier, called the Josephson bifurcation amplifier
(JBA), to read out the state of a superconducting quantum bit (qubit), has
been proposed and constructed. This JBA has solved the annoying dissipation
problem of voltage switching to the normal state in traditional superconduct-
ing Josephson junction based qubit measurement devices. This thesis aims to
model the qubit readout process by the JBA, and to provide the essential in-
put toward the understanding of the quantum measurement problem. We first
review some basic elements of superconducting quantum circuit, and introduce
two different types of qubits: flux qubits and charge qubits. Due to the non-
linear inductance of a Josephson junction, the mathematical model of the JBA
can be linked to a driven non-linear oscillator, known as the Duffing oscillator.
So we focus on the properties of the quantum Duffing oscillator and present
the operation principles of the JBA. The qubit readout process is itself an open
quantum system problem. To describe its dynamics, we derive the quantum
master equation for the reduced density matrix of the combined driven quan-
tum Duffing oscillator and qubit system. We distinguish the influence of the
thermal environment on the combined system from that of the measurement
device, and use the Floquet formalism to tackle the time-periodical driven
problem. Simulation results of the Duffing oscillator and qubit measurement

will be presented.
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Chapter 1

Introduction

The quantum information science has developed for decades. In the beginning, it
didn’t draw much attention, because no quantum algorithms that had practical use
and outperformed their classical counterparts were found. Not only it has great dif-
ficulties to realize a quantum computer, but also researchers even thought that the
calculating speed of a quantum computer is much slower than the speed of a classical
computer. This situation remained until Shor’s algorithm [1,2] and Grover’s algo-
rithm [3-5] were proposed. Shor’s algorithm makes it possible to efficiently factorize
large semi-prime integers and Grover’s algorithm enables searches within a large un-
sorted database. Those two problems are impossible solved or very time-consuming
for a classical computer. People recognized a problem difficult for a classical com-
puter to solve may be easy to solve for a quantum computer. Because of those key
motivations, people pay more and more attention on the field of quantum information

science.

"Is it possible to realize a quantum computer?”, many people may ask this ques-

tion. In fact, it is still a very long distance for people to realize a practical quantum



computer. However, regardless whether a quantum computer can be built ultimately,
people will still benefit much on the road to the final goal of implement a quantum
computer. Researchers have been trying to find methods to control quantum systems
precisely, and to develop controllable quantum systems to construct universal quan-
tum gates [6], which can be used to implement arbitrary unitary operations. Those
methods and devices developed may be used in other purposes. Although few-qubit
controls and manipulations are still a challenge, it is believed that one day the quan-

tum computer will be realized.

There are three stages in quantum computation : preparation, manipulation, and
readout. In this thesis, we focus on the readout process. At the end of quantum-
state manipulation, we need to read out the final results. Or even in the middle
of manipulation, we read out the qubit’s state for the purpose of error correction.
Many traditional schemes to read out the states of superconducting Josephson junc-
tion qubits, such as the phase qubit, quantronium etc., are involved with the voltage
switching of a readout Josephson junction to the dissipative normal state under the
direct measurement. A new type of amplifier, the Josephson bifurcaiton amplifier
(JBA) [7], to read out the states of a qubit, constructed by I. Siddiqi et al. in 2004,
has solved the annoying dissipation problem. The mathematical model of the JBA is

a driven non-linear oscillator, known as the Duffing oscillator in classical physics [8,9].

This thesis investigates the quantum Duffing oscillator and some basic super-
conducting quantum information devices. First we review some basic elements of
quantum circuits: Josephson junctions, superconducting Cooper-pair boxes (SCB’s),
and superconducting quantum interference devices (SQUID’s). The property of be-

having like a nonlinear inductance makes the Josephson junction play a crucial role



in a quantum circuit. The discrete Cooper-pair number in SCB and the magnetic
flux quantum number make, respectively, the SCB and the SQUID ideal candidates
as qubits. Then we introduce basic types of quantum bits, flux qubits and charge
qubits, and a special kind of qubit in charge-phase regime, called the quantronium.
After that, we present an introduction of the working principle of a JBA and how a

JBA can be modeled as a driven quantum Duffing oscillation.

Second, we describe a mathematical technique, the Floquet formalism, usually
used to deal with time-periodic problems. Analogous to the Bloch theory, the princi-
ple of the Floquet formalism is to expanse ,besides the space domain, the time domain

inwt -~ Next, we introduce the concept of a mas-

function by a time-periodic basis, e
ter equation. In an open system, the Schrodinger equation is no longer sufficient to
describe the dynamics of the system of interest. The density matrix and the master
equation is thus required. Then, we present the master equation for a driven system,
which differ form the ordinary master equation, that is usually in the Lindblad form.

There are time-ordering operators inside the time-dependent master equation, which

could be very troublesome.

Finally, we present a master equation with Floquet states as a basis. In the Floquet
picture, the problem of the time-ordering operators is readily solved. Consequently,
the dynamics of the driven quantum Duffing oscillator can be described more easily
by using this improved master equation. Then we describe how to use a JBA to
measure a qubit, present some numerical results and discuss the dynamical behavior

of the combined system of JBA and the measured qubit.



Chapter 2

Introduction to superconducting

quantum bits

A bit is the most fundamental unit of classical computation and information. A bit in
a classic computer has only two possible states, either 0 or 1. Besides |0) or |1), a quan-
tum bit, or qubit, can have superposition of states, « [0) + 3|1) with |a|* + |5]? = 1.
Furthermore, there are many useful quantum effects , such as quantized energy levels
and entanglement, in qubits. Researchers try to take advantage of quantum effects
and hope to ultimately create quantum computers to solve time-consumsing prob-
lems or problems which are impossible to be solved in classical computers, such as

factoring large numbers and simulating large quantum systems.

A quantum superconducting Josephson-junction circuit may contain a large num-
bers of energy levels, while for qubit operations only two levels are required. Moreover,
these two qubit levels must be well decoupled from the other levels. Typically, that
means that a qubit should involve a low-lying pair of levels, well separated from the

spectrum of higher levels, and not being close to resonance with any other levels.



There are three stages in quantum computation : preparation, manipulation, and
readout. Although any quantum two-state system can be considered as a qubit, to
be able to be isolated from other energy levels and environment and to be prepared,

manipulated, and read out determine whether it is a good qubit or bad one.

Relaxation and decoherence caused by coupling to environment make most physi-
cal systems behave like classical systems, except microscopic systems, such as atoms.
However, superconducting circuits maintain quantum properties with macroscopic
or mesoscopic size. The size is not the only difference between atoms and super-
conducting circuits. Parameter-controlling in superconducting circuits is easier than
in atoms, and coupling between two superconducting circuits can be turned on and
turned off at will. Well-designed superconducting circuits may have better coherence
time than atoms do, providing more time for quantum computing. Preparing initial
states and measuring final states are also easier in superconducting circuits. Because
of those advantages, although there are still many obstacles in the way to practical
application, studying superconducting circuits is one of the main streams in quantum

information processing. [10-14]

In this chapter, I will start from the basics of a Josephson junction, an important
element of superconducting circuits, and introduce two fundamental types of super-

conducting qubits and some advanced types of qubits.
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2.1 Josephson junctions

The fundamental structure of a Josephson junction consists of a sandwich of two su-
perconductors separated by an insulating layer, typically fabricated from oxidation of
the superconductors, and thin enough to allow tunneling of discrete charges through
the barrier. That is why a Josephson junction is also called a superconducting tunnel

junction or a Josephson tunnel junction.

For the purposes of creating a two-level system which is isolated from and not
by external excitation resonant with other energy levels, the harmonic system is not
suitable, in which all of energy gaps are the same. A nonlinear system is required.
A Josephson junction [15,16] is the electronic circuit element that has nonlinear and
non-dissipative properties at arbitrarily low temperatures. Because of the properties
of nonlinearity, when the driving frequency w is detuned from the natural oscillation
frequency wy, the system is very sensitive between two possible oscillation states that
differ in amplitude and phase. So, a Josephson junction is an important element not

only of creating a qubit but also of quantum readout measurement.

2.1.1 The Josephson effect

As stated above, a junction consists two strongly superconducting electrodes con-
nected by a weak link. The weak link can be an insulating layer as Josephson origi-
nally proposed, or a normal metal layer made weakly superconductive by the so-called
proximity effect, or simply a short, narrow constriction in otherwise continuous su-
perconducting material [16]. According to quantum mechanics, the electrons would
tunnel through the weak link or barrier layer. There are two effects of pair tunneling,

DC and AC Josephson effects [15].
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DC Josephson effect: a dc current flows across the junction in the absence of any
electric or magnetic field. The relationship between the phase difference § and the

current I of superconducting pairs across the junction is
I;=1.sind. (2.1)

The critical current I. is the maximum zero-voltage superconducting current that can
pass through the junction above which the superconducting state will become normal
state. It is proportional to the transfer interaction. Because no voltage apply, the
phase difference ¢ is a constant. For finite voltage situations involving the ac Joseph-

son effect, a more complete description is required.

AC Josephson effect: when a dc voltage is applied across the junction, an ac
current flows across the junction. The phase difference ¢ is no longer a constant. The

relationship between voltage and phase difference is

d=—2eV/h (2.2)

or
2¢ [*
o(t)=—— [ Vdt+4(0). (2.3)
hJo
and the superconducting current is

I; = Lsin (5(0) — 2eVt/h) . (2.4)

Furthermore, considering more general cases, we can apply a time-dependent voltage,

and write down the function in some significant symbols,

) = I.sind(t) , (2.5)
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where the generalized flux is defined by ®; = ffoo V(t")dt and @g = h/2e is the re-

duced flux quantum, or ¢y = ®y/2m, where ®q, h/2e, is the magnetic flux quantum.

Actually, phase difference is not a gauge-invariant quantity; for a given physical
situation, there is not only one unique value of phase difference. Hence it cannot
in general determine the current I;, which is a well-defined gauge-invariant physical
quantity. The phase difference mentioned before is not the real phase difference

between two superconductor [16], defined by

656’—(21)1/A-d1. (2.6)
0

where 0’ is the real phase difference and the integration over the vector potential A
is from one electrode of the weak link to the other. Thus, the difficulty is cured. In
addition to curing the conceptual problem, the introduction of the gauge-invariant
phase difference is the key to working out the effects in a magnetic field, which cannot

be treated without introducing the vector potential A.

2.1.2 A Josephson junction with a nonlinear inductance
At first, let’s take a short review of a conventional inductance.
L=3&/ or I=¢/L,

where L is the inductance, ® is the magnetic flux, and I is the current.

We thus expand Eq. (2.5)

D5(t) — @ (1) + O[@5(1) 2.7)

L) =  6Lyp
0

or simplely

0%(1)
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Figure 2.1 The current-biased josephson junciton and its equivlent circuit.

By comparing the functions of a Josephson junction and a conventional inductance, it
is very easy to find that besides the linear term in the relation of current and magnetic
flux, there are additional nonlinear high-order terms in a Josephson junction. A

Josephson junction, therefore, can be considered having a nonlinear inductance.

2.1.3 The current-biased Josephson junction

A Josephson junction schematically shown in Fig. 2.1 as a sandwich structure can be
modeled as a parallel circuit which consists of a nonlinear inductance, a resistance,

and a capacitance.

According to Kirchhoff’s rule and some relationships, I = CV = (9,6 = 2—;@,

and [; = I.sind, the equation of the circuit is

ho  hoo
%06 + ﬁé + ]c sind = Ie s (29)

where C is the capacitance, R is the resistance, and V is the voltage across the

(2¢)°

5 and

capacitance. Then, it is useful to define some meaningful parameters, Fc =
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U

Figure 2.2 The ”tilted-washboard” effective potential versus phase differ-
ence of a current-biased Josephson junction.

E; = Q—ZIC. The kinetic energy of the quasi-partical of phase ¢ is

. B2
K(§) = — 2.10
the potential energy of it is
h
U()=E;(1—cosé)— 2——7@5 , (2.11)
e
and the Hamiltonian has the form
9 h
H=FE-n"— Ejcosd — 2—165 . (2.12)
e

The relationship of potential versus phase is shown in Fig. (2.2). It is obvious that
nonlinear inductance, cos d, makes potential oscillate and bias current makes it slope.
When current bias is applied, the pendulum potential becomes tilted. By the way, a
current-biased Josephson junction can be considered as a qubit, because the potential

is cosine function, making energy gaps different.
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m—
NG
Figure 2.3 The single Cooper pair box. One side of a small superconducting

island is connected via a Josephson tunnel junction to a large superconduct-
ing reservoir, and another side is coupled capacitively to a voltage source.

2.2 The Cooper-pair box and the SQUID

2.2.1 The single cooper-pair box device

There is a small superconducting island in a superconducting Cooper-pair box (SCB)
device as shown in Fig. 2.3. One side of the island is connected via a Josephson
tunnel junction to a large superconducting reservoir, and the other side is coupled
capacitively to a voltage source. Cooper pairs can only transfer to the island one by
one in the device. The number of electrons on the island is controlled by the bias

voltage.

The Hamiltonian of the cooper-pair box is
H=E¢ (ﬁ—ng)z—EJcos5, (2.13)

where n, = C,V,/2e is the offset Cooper pair number caused by the gate voltage V,
through gate capacitance Cj, and n is the number of extra Cooper pairs between the
two capacitances, the gate capacitance and the capacitance in the Josephson junc-

tion. Therefore, the first term, E¢o (n — ng)2, represents the electrostatic energy of
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Figure 2.4 The superconducting quantum interference device, SQUID, and
its equivalent circuit.

| R

®

“;_U_'---'

A A,

the island, where Fo = (2¢)° /2(C 4 C,). Due to the nonlinear inductance of the

Josephson junction, the second term, E; cos b} , appears.

2.2.2 The SQUID device

A superconducting quantum interference device (SQUID) is a device involved with

quantum interference.

A rf-SQUID, shown in Fig. 2.4, consists of a superconducting loop interrupted
by a tunnel junction. a external magnetic flux is sent through the loop, inducing
quantum interference.

According to the Meissner effect, we have

2

1) = R | Lvae) - L Aw)] | (2.14)

m* m*c

where A is the vector potential and ¢ = —2e for a Cooper pair. Inside a supercon-

ductor, the current vanlishs,

VO(r) = —CA(r) . (2.15)
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Choosing a contour inside the superconducting loop, with Eq. (2.6) we can get

As Aq
@t:j{A-dl: A -dl+ A -dl

A1 A2
2¢ A2 A
— v a+ [ A-a
hec Ay Ao
2e
=—90 2.16
x5, 216)

where @, is total magnetic flux and Eq. (2.6) has been used.

With magnetic flux & = &, — &, where P, is external magnetic flux and the
inductance energy %, the Hamiltonian of a rf-SQUID is given by

(5 - 56)2

H:chﬂ—EJCOSg—FEL 5 ,

(2.17)

where 0, = %@e. The first term Ecn? is electrostatic energy of the capacitance in
the Josephson junction, and the second term is related to the Josephson energy. The

2
last term corresponds to the inductance energy of the loop, and E; = 47?—20]:. In the
next part, another device, a de-SQUID, and a very important concept related to it

will be introduced.

A de-SQUID is a device which consists of two tunnel junctions in a supercon-
ducting loop and is biased by an external current. It is similar to a current-biased
Josephson junction with a two-junction loop, as shown in Fig. 2.5, instead of a single

junction.

Two superconducting phases, d; 9, is involved, and according to Eq. (2.5), the
external current is

Iqsindl — Iosind2 =1, . (2.18)
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| ®,

Figure 2.5 The dc-SQUID. A superconducting loop with two Josephson
junctions replaces the single junction in the current-biased Josephson junc-
tion circuit.

It is convenient to define some new variables,

EX

5:|: 9 ;

(2.19)

and in a symmetric case, which the two Josephson junction are the same I.; = I,

Eq. (2.18) reduces to the form
21.cos (0./2)sind_ = I . (2.20)

Comparing Eq. (2.20) with Eq. (2.5), we can find that 21, cos (d./2) is the effective
critical current. Most importantly, it can be tuned by the external magnetic flux
and consequently the effective Josephson energy, F; = 2—22]c cos (0./2) is tunable too.
The Hamiltonian can be written by generalizing Eqs. (2.12),(2.17) for the phases 0.

“ 2
E%E;;%2—+~EL5_, (2.21)

H = Eci? + Egin® — 2B cos by cosd_ + By, 5 :
(&

where ny and n_ are the conjugate momentum of 3+ and 0_. According to quan-

tum mechanics-just like the familiar position and momentum operators & and p,-the
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operators 0 and Cooper-pair number operator n on the capacitor are canonically

conjugate, as expressed by the commutator braket, [5 N =1.

2.3 Charge qubits and flux qubits

2.3.1 Charge qubits

A superconducting Josephson junction qubit in which the charging energy is much
large than the Josephson coupling, Ex > Ej, is called a charge qubit. In this regime,
a convenient basis is formed by the charge states, and the phase terms can be consid-
ered as perturbation. This is why this kind of qubits are called charge qubits. The
necessary of one-qubit and two-qubit gates can be performed by controlling applied
gate voltages and magnetic fields. Different designs will be presented that not only

in complexity, but also in flexibility of manipulations.

In this subsection, the simplest charge qubit, cooper-pair box, Fig. 2.3, is pre-
sented in details. This example illustrates how charge qubits provide two energy

states, which satisfy the requirements of qubits.

In charge regime, at first we expand all operators in the basis of the charge states

{|n)}. The Hamiltonian of a cooper-pair box, Eq. (2.13), is

A

H = Ec (i —ny)* — Eycosd .

Then by using the properties of orthonomal and complete set, (n | 1 | n') = 0,,,,» and

I =75 |n)(n|, the first term is rewritten as

> Ec(n—ng)*In){n| (2.22)
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and by using the commutator relation,

S,ﬁ} =1,
= 5m,A}:im5m1,m>0,
) (ié) )
= i, eﬂ = |a, — ¢ (2.23)
m!

The commutator relation Eq. (2.23) is similar to the commutator relation of number

operator a*a and the creation operator a*, [ata,a*] = a*. So, ¥ and e

can be

presented in charge basis,

="+ 1)n|, e =3 |n)n+1], (2.24)

and the second term of Eq. (2.13) is
1
EEJZ (In)(n + 1| + [n 4 1)(n]) . (2.25)

By combining Eq. (2.22) and Eq. (2.25), in this basis the Hamiltonian reads

H=>" {EC (n —ngy)?|n)(n| — %EJ (In)(n+ 1|+ |n + 1><ny)} . (2.26)

The energy spectrum of Eq. (2.26) is shown in Fig. 2.6a.

Under suitable conditions, when charge number on a gate capacitor n, controlled
by gate voltage V, equals half integers, the lowest two energy states are well-isolated
from other states, shown in Fig. 2.6b. Because of that, near n, = 1/2, the Hamilto-

nian can be reduced to

~ 1
H= ) (€0, + Aoy) (2.27)

where € = E¢ (1 — 2n,), and A = E;. The qubit eigenenergies are then given by the

equation

|
By — ;5\/153 (1—2n,)° + E2 . (2.28)
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0.5 n

@ (b)

Figure 2.6 (a) The energy spectrum of a charge qubit versus gate voltage.
(b) The lowest two energy levels near V, = 0.5, the part of (a) circumscribed
by dashed lines.

So, under suitable conditions charge qubits provide physical realizations of qubits
with two charge states differing by one cooper-pair charge on a small island. For
quantum computation, it is required to have the ability to rotate a state on the Bloch
sphere to any position at will, and consequently o, and o, rotation are necessary. In
a cooper-pair box, pure o, rotation is acquirable, as n, = 1/2, but pure o, rotation
is not, since E; is fixed. In previous section, an important concept is mentioned. A
two-junction loop can substitute for the single Josephson junction, creating a SQUID-
controlled qubit, Fig. 2.7. Thus, the effective Josephson energy E; is tunable and

pure o, rotations can be performed.

2.3.2 Advanced charge qubits

Operated in E;/Ec < 1 regime, basic charge qubits have good anharmonicity to form
two-level systems but their energy bands shown in Fig. 2.6 have slopes, making them

very sensitive to low-frequency charge noise. The magnitudes of charge dispersion and
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«

W)

Figure 2.7 The single Cooper pair transistor. A superconducting loop with
two Josephson junctions replaces the single junction in a SCB for a tunable
E;.

anharmonicity are both determined by the ratio E;/Eq. The low value of the ratio
of E;/E¢ brings not only good manipulations of qubits but also serious decoherence.
Many researchers keep trying to find solutions for this problem. A famous example
is the transmon [17], Fig. 2.8. The fundamental idea of the transmon is to shunt
the Josephson junction of a small Cooper-pair box with a large external capacitor
to increase the charging energy F¢ and to increase the gate capacitor to the same
size. This make the charge dispersion reduces exponentially in E;/FE¢s, while the

anharmonicity only decreases algebraically with a slow power law in E;/FE¢.

2.3.3 Flux qubits

In the previous section, we describe the quantum dynamics of low-capacitance Joseph-
son devices where the charging energy dominates over the Josephson energy, Eo >

E;, and the relevant quantum degree of freedom is the charge on superconducting
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mn C

Figure 2.8 The equivalent circuit of a transmon.

island. We now talk about another quantum regime, the phase regime, FE; > E¢,

in which the flux states are the better basis. This kind of qubits are called flux qubits.

A rf-SQUID is the simplest example of a flux qubit. The Hamiltonian, Eq. (2.17),
1s
: by
H = EcTAlQ — EJCOS(S—F EL% s

and in the phase regime, the potential energy is given by

(5 — 56)2

U((S):—EJCOS(S—FEL 5

(2.29)

The potential energy is cosine function added a second power function. d. in a flux
qubit play as the same role as n, do in a charge qubit. The lowest area can be
approximated to a double-well. When §, equals 7 or odd 7, a symmetric double-well
potential energy appears. It is similar to that of n, equal 1/2 in a charge qubit.
Because of the tunneling through center barrier, the lowest two energy level split

with a gap A, which depends on the height of the barrier. When ¢, doesn’t equal 7
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or odd 7, the potential energy becomes unsymmetric, the probability of the lowest
energy pair is not half in each well. This situation is like when n, is near 1/2, in a
charge qubit, the probability is not the same in |0) and |1). The Hamiltonian of a

flux qubit can be truncated to the lowest two energy states in a simple form of

A

1
H= ) (€0, + Aoy) (2.30)

where A depends on E; and € is given by

e:4m/6(§—2—1)EJ (%—%) . (2.31)

In this form, the pure operator X-rotation can be performed by setting ®/®, = 1/2,
but the pure Z-rotation can not. In order to solve this problem, we can replace the
single junction with a two-junciton loop that introduces an additional external flux
®, as another control variable. Therefore, the effective Josephson energy becomes

tunable.

2.3.4 Advanced flux qubits

The main idea in a SQUID is to create a double-well potential, requiring large enough
inductance. This implies that the qubit contains a large qubit loop, making itself
influenced by magnetic fluctuations of environment seriously. One way to overcoming
this difficulty is using a three-junction device pointed out by Mooij et al. [18]. In a
three-junction-loop qubit, as shown in Fig. 2.9, £} is not the only element to creating
a double-well potential. The loop, therefore, can be much small than a rf-SQUID and

the qubit is relatively free from charge and magnetic environment fluctuations.
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®

Figure 2.9 The three-junction SQUID.
2.4 The quantronium

With device parameters locating between charge qubits and flux qubits, the quantro-
nium [19,20] is a very special kind of qubits. Neither 7 nor ¢ is a good quantum
number since the quantronium is operated in E; = FEo regime. The circuit of a
quantronium is shown in Fig. 2.10. the island connected to two Josephson junc-
tions and a voltage is applied to it through a capacitance. The two small Josephson
junctions and a large Josephson junction with a higher critical current E;y ~ 20E;,
form a closed loop, and an external magnetic flux is applied to it. The two small
junctions define the superconducting island of the box, and the phase 4 of the large
junciton, so-called read-out junciton, coupled to the qubit. A readout pulse current
I,(t), with a peak value approaching the large junciton’s critical current, is applied to
the parallel combination of the large junction and the small junctions. If the state of
the qubit is |1), the supercurrent adds the readout pulse will make the large junction
switch to a finite voltage state. If the state of the qubit is |0), the large junciton will

stay in the superconducting zero voltage state.

When the qubit operates in the charge-flux regime, E; = FE¢, no matter charge

or flux noise decoherence can be reduced to higher order, because the slope of energy
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Figure 2.10 The circuit diagram of the quantronium with preparation, tun-
ing, readout blocks.

levels in the charge degree of freedom and in the flux degree of freedom are both flatter
than simple charge qubits and flux qubits. Moreover, if the qubit is maintained at
the double degeneracy point, n, = 1/2 and ¢ = 0, the influence of both flux and

charge noise sources vanishes to first order.

2.5 The Josephson bifurcation amplifier

In this section, we will introduce briefly the Josephson bifurcation amplifier designed
to measure the states of charge qubits. In order to measure the state of a charge
qubit, the number of Cooper-pairs, we need a very sensitive device and the accuracy
of it must much bigger than 2e. Before the Josephson bifurcation amplifier, there are
many measurement devices such as the single-electron transistor (SET) or the read-
out junction of quantronium, but in those devices, the dissipation problem is usually
serious, because they are involved with switching to finite voltage states. This flaw

was conquered by the introduction of the Josephson bifurcation amplifier (JBA). 1.
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Siddiqi et al. [7] constructed a new type of amplifiers based on the transition of a
rf-driven Josephson junction between two distinct oscillation states near a dynami-
cal bifurcation point. The main advantages of JBA are speed, high secsitivity, low
backaction, and the most special character is the absence of on-chip dissipation. The
measurement of quantronium with JBA [21] was published by I. Siddiqi et al. some
years later and quantum nondemolition readout using a JBA [22,23] was also pub-

lished by I. Siddiqi et al. soon.

The central element of a JBA is a Josephson junction whose critical current I
can be modulated by an input signal, i.e. states of a qubit. Another sinusoidal signal
drives this Joseson junction. An output port is connected to this circuit to measure
the reflected component of the drive signal. Simply, a JBA is a driven Josephson
junction with a tunable critical current. The anharmonic potential of the Joseph-
son junction and the sinusoidal driving make up a famous mathematical model, the
Duffing oscillator, which have two distinct possible oscillation states that differ in

amplitude and phase.

2.5.1 The quantronium with a JBA readout

Figure 2.11 is a quantronium circuit with preparation and readout ports [22]. The
middle part is a quantronium qubit. The two parallel Josephson junctions have
capacitances C;/2 and Josephson energies E;(1 &+ d)/2, where d is the asymmetry
factor quantifying the difference between the two junctions (0 < d < 1), and E; =
woly, where I is the sum of critical currents of the junctions. The island is biased

by a voltage source Vy in series with a gate capacitance C,. The Hamiltonian of the
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preparation “quantronium” circuit JBA readout
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Figure 2.11 Quantronium circuit with JBA readout port. A JBA readout
port replaces the voltage-switching measurement in the original design of the
quantronium.

quantronium is
. 2 o 4 .0
H=FEcp(n—ny)" —E; COS§COSQ—dSIH§SHl¢9 : (2.32)

where Ecp = (2¢)%/2(C, + Cy), 6 is the superconducting operator (”conjugate” to
n—i.e., [é, n| =), and 4 is the superconducting phase across the series combination
of the two small junctions. ng, and 0 can be tuned by biased voltage and external
flux, respectively, and the energy spectrum is sufficiently anharmonic, i.e. the gaps
between any two energy levels are strongly unequal. This suggests that the first two

energy states can form a qubit.

For the purpose of measurement, a JBA readout device is coupled to the quantro-
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nium. The total Hamiltonian with the external flux ® = 0 is

A~ A

N ) X )
H,; = Ecp (ﬁ—ng)2 — By COS@@COS§ —dsin@@sin§

)2 . U@l -
+ QQ_C — Ej9cosd — %gpoé, (2.33)

where Ejq is the Josephson energy of the readout junction and U(t) is a time-
dependent driving potential. To study a measurement problem, it is very convenient

to rewrite the Hamiltonian in the following form,
Hi = Hs+ H;+ Hp (2.34)

where Hg is the Hamiltonian of system, i.e. the quantronium, Hp is the Hamiltonian
of the probe, i.e. the JBA, and H; is their interaction Hamiltonian. So Eq. (2.33) is

rewritten as

Hyyw = Hs+ H;r + Hp

= Ecp (ﬁ—ng)Q _EJCOSé

—Fy {COSé@ cos%—l] —dsiné@sing}
)? . U(t) -
+ ;2—0 — Ej9cos — %@05 ) (2.35)

To approximate a two-level system, the Hamiltonian at the optimum n, = 1/2 is
truncated to

. thl

HS: 9 Oz,
HI:—{omZ(X) 0055—1] —Bay®sin§} ,
Q? . Ul -
Hp = 20~ Ejocosd — %@05 , (2.36)

where a = E;({0| cos 0]0) — (1| cos0|1))/2 and 3 = idE,;({0|sin f|1) — (1] sin §]0)) /2.

With d = 0, the requirement [Hg, H;| = 0 of a quantum non-demolition (QND) is
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fulfilled. The qubit in this case is coupled to the JBA through only a o, operator.

If cos d in Hp is expanded to the order of 54, we then have a system of a nonlinear
driven quantum Duffing oscillator. In the following chapters, we will discuss the
properties of a driven quantum Duffing oscillator in order to understand the behavior
of the JBA. The time-dependent driving, U(t) in Eq. (2.36), is a generally a periodic
in time function. So, we will describe in the next chapter a formalism, known as the

Floquet formalism, to deal with the periodic in time problem.



Chapter 3

The Floquet formalism

Originally, the Flouqet theory is a mathematical theory dealing with differential equa-
tions. In 1965, Jon H. Shirley introduced this method to solve the Schrodinger
equation with periodic in time [24]. By using the method of separation variables,
a time-independent Schrodinger equation becomes an eigenvalue-eigenfunction equa-
tion, H [0g) = Eq|tha). After getting the eigenenergies and eigenvectors, the time
evolution of states is easily solved, |W,(t)) = > Che Fel |4h,). However, there is no
well-defined eigenenergy and eigenvector with a time-dependent Hamiltionian, which
means there is no stationary state, and a time-ordered integral form, T[ef Hdt) g
always involved in the time evolution of states. According to the Flouqet theorem,
if a time-periodic system is expanded in a time-space Hilber space, the time-periodic
Schrodinger equation becomes an eigenvalue-eigenfunction equation, too. Therefore,
the knowledge of the time-independent Schrodinger equation can be used in time-

dependent one. Besides, there are many advantages for different cases using the

Floquet theory [25,26].

In this chapter, we try to introduce the basic concepts of the Flouget theory and

27
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show two examples, a two-level system and a nonlinear oscillator, with periodic in time
driving. First, a general form of the solution in the Floquet theory is introduced and
determined. Besides, any operator with either time-dependent or time-independent
terms, is presented in the Floquet picture as a time-indenpendent operator. As a re-
sult, the time-dependent Hamiltonian can be transformed to a time-independent ma-
trix in the Floquet picture. Therefore, how to solve the time-dependent Schrodinger
equation becomes a pure eigenvalue-eigenvector question. Finally, the time evolution

of states can be obtained.

3.1 The Flouqget theory

3.1.1 General form of the solution

Suppose there is a Schrédinger equation with a periodic Hamiltonian,

. d A
i (W) = H(#)[¥() , (3.1)

where H is a Hermitian matrix of period functions of t with a period 7, H (t — 7) =
H (t) . The general form of the solution of a differential equation with periodic
coefficients is given by Floquet’s theorem. So, the Floquet theorem asserts that the
solutions of the Schrodinger equation (3.1) in a time-periodic potential with a period
7, can be described as a linear combination of the qusienergy states (QES) |¢, (1)),

That is [ (t)) which satisfies Eq. (3.1) can be written as

W (1) = Z Colta ), [va(t)) = O 0a () (3.2)

where ¢, (t)) is a periodic state, |¢o (t + 7)) = |¢a (1)), and € is a real parameter
called the quasienergy. The Floquet theorem for time-periodic problems is similar to

the Bloch theorem for a space-periodic problems in Solid-state physics. The role of
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the quasienergy € in the Floquet theorem is therefore similar to that of the quasimo-

mentum in the Bloch theorem.

Now, the next goal is to find a equation for the QES |¢, (t)). Defining

W d
F=H—i 3.3
i (3.3)

and substituting Eq. (3.2) into Eq. (3.1) reveals that

F(t)[¢a (1)) =0
= F(t)e " [¢o (1) =0
de—ieat

S ()]0 (1) ¢ b () — b ()i

= E(t) |6a (t)) = €alda (1)) - (3.4)

=0

Equation (3.4) seems like an eigenvalue-eigenfunction equation. If a suitable basis
can be found, it is just required to solve an eigenvalue-eigenfunction equation instead
of a time-dependent Schrodinger equation. In this case, using the eigenvalue €, the

eigenvector |¢, (t)) and Eq. (3.2), we can get the evolution of all states.

3.1.2 Some properties of quasienergy and QES

If €, is one of the quasienergies and |¢,, (t)) is the corresponding quasieigenvector,

considering the follow transform,

€qm = €a + MW , (3.5)

|00 (1)) = €™ |¢a (1)) (3.6)

where w = 27 /7. This can be checked by substituting them into Eq. (3.2). We

then can find that the QES ¢, (t)) is unchanged upon this transformation, and so is

|W (¢)). This means if ¢, is one of the quasienergies, so is €, + mw, and the Floquet
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states are physically equivalent if their quasienergies differ by mw.

Because of the time-periodic properties, the Floquet states |¢, (t)) can be ex-
panded in Fourier series,

60 @) = 3 |Gap) e, (3.7)

n=—oo

with the Fourier components of the Floquet states

1 ! inwt
ar) = 7 [t 10 1) (39
and the QES
Yo (1)) = et Z [ et (3.9)

Finally, the total state |¥ (t)), Eq. (3.2),
U (1) =Y Cae ™) g ) (3.10)

Thus a state can be considered as a superposition of stationary states with energies

equal to (€4 + nw). This is why we call €, quasienergy.

The time-periodic Hamiltonian H (t) can also be expanded in Fourier series,

H(t)= Y Hye ™", (3.11)
and thus
, <. d
F(t) = Hye it —j— 12
(t) n:zoo e i (3.12)

For the Hermitian oprator F', one can introduce the composite Hilbert space which
contains time-periodic wave fuction. The eigenvectors of F satisfy the orthonormality

condition

<¢a(t)|¢ﬁ(t)> = 5a,ﬂ ) (3'13>
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and form a complete set
PCNONCNGIEYS (3.14)

After using Eq. (3.12) and Eq. (3.7), another form of Eq.(3.4) is given,

[e.9]

N -, d ) )
—in’'wt . —tnwt o —tnwt
5 <Hn/e — l%) e |Gan) = €a E e |ban)

n',n n=-—00

- Z ([_A‘In/e—i(n/—&-n)wt . nwe—inwt) ’¢a,n> =c, Z e—inwt ’¢a,n> ) (315)

n’,n n=-—00
For the mth component,

Z <5m,n'+an' - nw5m,n> |Pan) = €a|Pam)

!

n'n

= Y (ﬁfm,n - nw(sm,n) ban) = € |dam) - (3.16)
Now, we can define ]:[n/_n = Anzﬁn and get

S (i = 11 ) [€00) = 00 (3.17)

n

3.2 The extended Hilbert space

The above equation is formally equivalent to a time-independent Schrodinger equation
and F is the Hermitian operator which determines the quasienergies and the Floquet
states. The corresponding Hilbert space is the direct product T'® R of the original
Hilbert space R and the Hilbert space of the time-periodic functions 7". The inner

product in T is defined by

(n|m) = % / " dtn* (Hym(t) (3.18)

0
The most simple basis {|n)} of orthonormalized vectors for this space is the set of

vectors defined by (t|n) = exp[—inwt], and the spatial orthonormalized basis {|3)} is
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chosen arbitrarily for convenience,
1 ! imwt | —inwt
(am | fn) =(a | )= [ ™€ dt = 30 30nm , (3.19)
7 Jo
and a time-periodic function is given by
(@ (6) =D fame™ ™ @) =Y fam [am) (3.20)

where

fam —/ eimwtfadt- (321)
0

3.2.1 Operators in the extended Hilbert space

In matrix form, any time-indepandent operator A in the extended Hilbert space T'® R

1s written as

A0 00 0 n o= 2
00A 00 0 n = 1
I®A= 00 A0 0 n = 0 (3:22)
00 0 A0 n = -1
0000 A n o= -2

For a time-periodic operator with exp[—iwt] term, B(t) = Ae~™! the matrix element

of time doman is given by

<m‘e—iwt|n> — 1 /T eimwte—iwte—mwtdt = Opnt - (323)
0

T

For a time-periodic operator C(t), C(t) = Ae™*, the matrix element of time doman

is given by
<m|6iwt|n> — 1 /T eimwteiwte—inwtdt _ 5m,n—1 ' (324)
0

T
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B(t) and C(t) are written respectively as

01 000 0 00 0O
001 0O 10 0 0O
Bt)=|..- 00010 ---|®A and C)=| ... 01 0 0 0 ®A .
0 00 01 001 0O
00000 00010
- ; ) (3.25)

A simple concept here is that a e™? term would ”shift up” the spatial part a ”block”,
a e~ ! term would ”shift down” the spatial part a "block”. Furthermore a e?**! term

‘shifts up’ two block and so on.

Besides those operators, there is still another term, id/dt in operator F. Through

the similar method, the matrix element of id/dt is given by

<m.d

71—

dt

1 [ . d .
n> = ;/0 e’m“ti%e_m“’tdt = Wl , (3.26)

and in matrix form id/dt is written as

2 0 0 0 0
0w 0 0 0

d

— — 3.27

i 0 00w 0 0 (3.27)
00 0 —w 0
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3.2.2 The Floquet Hamiltonian

Matrix elements of Hamiltonian, H(t) = 3 Hye ™% are

A .y
<m‘Hn,€—zn wt

Hy H;
H_, H,
H(t) = H_, H_,
H 3 H,
H , H

A

and by defining [:[n,m =Hppn

Hsp  Hyy  Hap
Hip Hiyp  Hip
H(t)=| ... Hyy Hy: Hop
Ho H.1 Hop
H 2o H o1 H g

Hy, Hj
H, H,
Hy H,
H , H,
H, H,
Hy 4
Hy
Hy .y
H_ 4
H 5 4

n> = E Hn’(sm,n—i—n’ =Hpn
n/

(3.28)

(3.29)

(3.30)

Thus, the operator F can be expanded to an infinite time-indepandent matrix, called

the Floquet Hamiltonian Hp,
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. - d
H2,2 — 2w H2,1 HQ,O H2,71 H2,72
H1,2 Hl,l —Ww Hl,o Hl,fl Hl,f2
= [ HO,Q H071 HU,O _'_ Ow HO —1 HO,*Q

H_, H_i, H_ H., 1 +w H_
H_5, H_5, H_ 5, H.o 1 H_ o+2w

(3.31)

Equation (3.31) is the matrix form of Eq. (3.17). A time-dependent Hamiltonian
(3.12) transforms to an infinite dimensional time-independent matrix, and its eigen-
values and eigenvectors are the quasienergies ¢, and the quasivectors |@,), respec-

tively.

3.3 Driven two-level systems and oscillators in the

Floquet picture

3.3.1 Driven two-level systems

Considering a quantum system with two discrete states and letting an oscillating in
time interaction connect these states with a matrix element 2B coswt, where B is a

real number, we have the Hamiltonian,

. 1 %A 2B coswt
H(t) = -Ao, + 2B coswto, = : (3.32)

2 2B coswt —%A
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The fourier expansion of H is

. %A 0 0  Be™t 0 Be it
H(t) = + ‘ + ‘ (3.33)
0 —%A Be*t 0 Be~ ™t 0
and
. . 0
F=H({) —i—
L 4o, + ¢ Bo, + ¢ B 9 (3.34)
=-Ao,+e oy +e Op —1— . .
2 ot

Then, the Floquet Hamiltonian is

fIF:%AI(X)aZ
00000 01000
10000 00100
+B| ... 01000 oz +B| ... 00010 - |®o0y
00100 00001
00010 00000

2w 0 0 0 0
0 lw 0 0 0

- 0 0 Ow O 0 ® 1
0
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1A-w 0 0 B 0 0
0 —-$i4-w B 0 0 0
0 B $A+ 0w 0 0 B
- B 0 0 —3A+0w B 0
0 0 0 B 1A+w 0
0 0 B 0 0 —3A+w

3.3.2 Driven oscillators

The Hamiltonian of an oscillator with an external driving Z coswt can be written as

H(t) = Ho+2A(a+a")cos(wt) (3.35)

= Ho+A(a+a%)e* +A(a+a*)e ™, (3.36)

where a and a™ are respective the creation and annihilation operators of the system.

The corresponding Floquet Hamiltonian is

F:Ho—Z'Q+A(d—|—&+)ei‘”t+A(d+d+)e‘m.

ot
10000 200 0 0
01000 010 0 0
F = 00100 ® Hp — w 000 0 0 ---|®I
00010 000 -1 0
00001 000 0 =2
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00 00O 01 000
100 00 00100
+A|l .- 01000 - |®(a+a”)+A| ... 00010 ® (a+a')

00100 00 0O01
00010 00 00O
Hy—2w A(a+at) 0 0 0
A(a+a™) Hy—w A(a+a™) 0 0
= 0 A(a+a™) Hy A(a+a™) 0

0 0 A(a+a") Hp+w A(a+a™)

0 0 0 A(a+a™) Hy+2w

Take a driven non-linear oscillator, which will be used in the following section, as
an example. The Hamiltonian has the form

52 2
H(t) = 2]?_m + %ﬁ + %i4 + & f coswt (3.37)

where m and wy are the mass and the harmonic frequency of the oscillator respectively,
and « represents the strength of the non-linearity. Figure 3.1 shows the quasienergy
spectrum of Eq. (3.37). Dashed lines show the quasienergy spectrum for a vanish-
ing driving force, and the quasienergy lines cross as the driving frequency increases.
When the driving force exists, the quasienergy lines (in solid lines), show anti-crossing
behavior. This implies the multiphoton resonance process. In the following chapter,

we will discuss this in more details.
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Figure 3.1 The quasienergy spectrum, €, versus w. Solid lines: f = 0.001
and o = 0.001. Dashed lines: f =0 and a = 0.001.

3.3.3 The rotating wave approximation

In this subsection, we introduce a method to reduce the dimension of the Floquet
Hamiltonian using the rotating wave approximation. For example, the Hamiltonian
of a driven two-level system under the RWA can be written as
1 —iwt
~ §A Be ™

1 , ,
H(t) = S Ao, + Be™lo_ + Be g, = | : (3.38)
Bezwt _%A
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and the Floquet Hamiltonian is

1A—w 0 0 B 0 0
0 —i4A-w 0 0 0 0
. 0 0 SA+ Ow 0 0 B
Hp =
B 0 0 —3A+0w 0 0
0 0 0 0 A+ w 0
0 0 B 0 0 —itA+w

We can find that the state ||, n) is only involved in |T,n + 1), where ||) and |]) are
the lower and the higher eigenstate of the two-level system, respectively. In other
words, if we rearrange the basis, the Floquet Hamiltonian will be block diagonal.

Furthermore, the effective Floquet Hamiltonian for an initial state ||, 0) is thus only

%A +w B
) (3.39)
1
B —5A
and other states will not couple to it under the RWA. Thus, solving an infinite matrix
becomes solving a two-by-two matrix. No matter a driven two-level system or a driven

multi-level oscillator, both of their Floquet Hamiltonians can be reduced to smaller

ones under the RWA.

3.4 Time evolution operators

If we want to evaluate the dynamics of a driven periodic system using the Floquet
formalism, the first step is to project an initial state in the Schrodinger picture to the

extended Hilbert space. The choice is not unique. Because the condition is that after
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we trace over the time domain, probability in the original Hilbert space is conserved.
For example, for an initail state in |a) at ¢ = 0, the possible choices of the state in

the extended Floquet Hilbert space could be

) = |0, 0, Ja) — i2[|a,o> +la,1)], Ja) — %Ha, 2) + o, 1)], or ...

V2 V2

For convenience, we always choose
la) — |a, 0) . (3.40)

Another important step is projecting final states into a specific state |3) to get
probability in this state. Obviously, We need to sum all |3, n) state in the extended

space and add the time evolution e back, i.e.

(Bl = > (Bn|em™" . (3.41)

n

The dynamics of the system state is given by Eq. (3.2). With the system being in
an initial state |a), the probability amplitude of finding the system in a state (/| is

given by
(Bl (1)) = (5] Z e 9 (1)) {Dalt)|)

= Z (Bn] it Z [Ga (£)) (Ga(t)]a0) €™

_ ; < ﬁn’ o—illrt

where the identity property has been used. Now we have the time evolution operator

a0> einet (3.42)

A

Uas(t te) = <ﬁ‘U(t,to)‘a>

= Z <ﬁn’€_iHF (t—to)

a0> et (3.43)
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3.5 Conclusions

In analogy with quasimomenta in the Bloch theory, quasienergies ¢, are defined up
to a multiple integer of w in the Floquet Hamiltonian. States differing by e corre-
spond to the same solution. The Floquet theory makes a Fourier expansion in time

domain, and this is in analogy with the Bloch theory in real space domain.

Observing the end of previous section, Eq. (3.43), we can understand that when
facing a time-periodic problem, we transfer initial states to an extended Hilbert space,
and then the states evolve with the Floquet Hamiltonian as if evolving with a Hamil-
tonian in a time-independent problem. Finally we transfer the final states back to the
original Hilbert space. Thus a time-dependent problem effectively becomes a time-
independent problem. Although the matrix F'is an infinite dimensional matrix, we
can truncate it to particular needed dimensions. The spreading speed in the extended

Hilbert space depends on the strength of the driving amplitude.



Chapter 4

Quantum dissipation

4.1 The Density Matrix

Quantum mechanical state vectors |1)) convey the total information about a system.
If there are two possible states, [¢)1) and [i5), and they are orthogonal, we may say
their superposition

[V3) = c1 |[1) + ca [tha) (4.1)

present some probability of |¢);) and some of |¢)5). Despite of this, [i3) is still another
possible pure state. In other words, a system in [¢)3) is exactly in the state |¢3) not
in a mixed state in which the system has a probability |c;|* in the |i;) state and a
probability |cy|* in the |t)9) state. In fact there are frequent situations where the state
vector is not precisely known. For example, we can’t describe a system of interest
alone by a state vector, if the system is entangled through interaction with some
other systems or its environment. We may write down the state vectors for the total
composite system but not for the subsystem we are interested in. There is a famous

example, the singlet state of two spin-1/2 particle systems,

1
¥) = EHTM |2 =101 114] - (4.2)
43
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It is impossible to factor this entangled state into a product of states of the two
subsystems and, of course, impossible to describes each subsystem separately with a

state vector.

4.1.1 Pure states and mixed states

Quantum states can be described by state vectors are said to be pure states; if not,

are said to be mixed states. Mixed states are described by density matrixes,

p= Zpi i) (il (4.3)

where the sum is over an ensemble (in the sense of statistical mechanics) and p;
is the probability of the system being in the ith state |¢;) of the ensemble, where

(1;]1h;) = 1. Consequently, the probabilities satisfy the relations,

0<p <1, > p=1, Y pI<1. (4.4)
Pure states are a special case of mixed states with p; = d;; whose all probability

concentrates on one of the ensemble,

p = |v;) (Wl - (4.5)

A density matrix is a sum of the projection operators over the ensemble, weighted

with the probability of each member of the ensemble.

Now, we introduce a complete, orthogonal, basis |¢,). Then for the ith member

of the ensemble, we may write
(i) = D 10n) (daltre) = Y eV [én) (4.6)

where ¢ = (¢,1;). The density matrix is written as

p= Zzpz : ‘an <¢n” ) (4'7>

i n,n
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and

Trp=1. (4.8)

Note that the number of the summation for ¢ is unlimited, because it sums over the
ensemble, but the number of the summation for n depends on the dimension of the

system.

It is difficult to distinguish whether a density matrix contains only one projection
operator or not. Now, we introduce a useful criteria for pure states and mixed states.

For a pure state ,

p° =) (W) (W] = 1v) (¥l = p (4.9)
and thus
Trp? =Trp=1. (4.10)
For a mixed states
P = Zpipj |ha) {hilbs) (] (4.11)

and obviously

Tep® = D (ul 5 |60)
= Zpipj|<wz’|¢j>|2

< [Zpi] =1. (4.12)
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4.1.2 Ensemble average

For state vectors, the expectation value of some operator O is given by

(0) = (| OY) . (4.13)

Mixed states is an ensemble of many pure states |¢;) (¢;| with probability p;. So, to
evaluate the ensemble average of a mixed state is to sum over all members’ expectation

values weighted with probabilities p;, which is given by

<O> = Zpi <¢Z|O|¢z> : (4.14)
Formally we may write
(O) = Tr (pé) , (4.15)

since

T (p0) = D (6alpOlsn)

n

- Z Zpi (On|ths) (Ui O |n)

n

= S b (] O 16) (Gt

= Zpi Wil O ) . (4.16)

4.2 Derivation of the Master equation

4.2.1 Equations of motion of the density matrix of closed

systems

For a closed quantum system, the Schrodinger equation describes the dynamics of

each possible microstate |1;) with the Hamiltonian H,

0 7 A
e Vi) = _i_zH i) (4.17)
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Taking the time derivative of p and then using Eq. (4.17), we have
p= Zpi <|¢z> (il + i) <¢z|>
(S ) ~
=D _p (—ﬁH i) Gl + < o) (i) H)

= —% <H Zpi i) (il — Zpi |i) (i H)

e

~ i) (419

where p; is probability of the total system in the ith state |¢;). Eq. (4.18) is called the
Liouville-Von Neumann equation of motion for the density matrix, which is only valid
for a closed system. We can expect that besides the commutator of the Hamiltonian
and the density matrix, other dissipative terms will get involved in a master (evolu-
tion) equation of the system density matrix of an open system, a system coupled to
other systems or its bath. Usually, we are interested in one subsystem of a closed
system or, in other words, a system influenced by its environment. The following
sections will discuss how to write down the equation of motion for the subsystem in

which we are interested without knowing the details of the rest of the total system.

4.2.2 Integro-differential form of the equation of motion for

the density matrix

Trying to solve the dynamics of an open system, we divide the total system into two
parts; the first part is the subsystem which we are interested in with Hamiltonian
Hg, and the other part is the rest of the total system, also referred to as a bath,

having Hamiltonian Hp. Since the two subsystems couple to each other, there is also
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interaction Hamiltonian Hgg. T hen, the total Hamiltonian can be written as
H(t)= Hs+ Hp + Hsp , (4.19)
and the Hilbert space of the total system is defined by
H=Hs®Hp. (4.20)

Because the total world is always a closed system, the total density matrix x(¢) obeys

the Liouville-Von Neumann equation, Eq. (4.18). Thus we obtain

() =~ A0, x(0)] (1.21)

where H is defined by Eq. (4.19). If coupling between the system and the bath is
very weak relatively to the rest of the Hamiltonian, it is very suitable to transform
the equation into the interaction picture in order to freeze out the time evolution of
the density matrix generated by Hp + Hg. This is standard method to freeze out the

dominant terms first, and then treat the weak terms as perturbation. Let us define

S(4) — o (Hs+Hp)t —4(Hs+Hp)t
X(t) =e x(t)e

I

x(t) = e~ i s By ) erHstip)t (4.22)

Taking the time derivative and substituting the result into Eq. (4.21), we have

!
h

+ e—%(I?S-&-f[B)t);((t)e%(ﬁs-&-ﬁB)t

Y= (ﬁs + [—i]'B)67%(HS+HB)t>~<(t)€%(HSJFHB)t

7
h
i . .
- FL[HS + Hp + Hgp, x(t)]
7 i

= h(HS+HB+}:\{SB)e_%(Hs—i_ﬁB)tX(t)eﬁ(HS‘i'ﬁB)t

l

h

e RIS TR ()= (Hg + Hp)er st 110

+ —e i Hs B (e s HHB (Fro 4 fI 4 Hop) .
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Therefore, we obtain
e —L(As+Hp)t X(t)G%(HSJrﬁB)t

— _ﬁHSBe h(Hs-i-HB)tX(t)eh(Hs-i-HB)t + 1e—%(Hs-FFIB)t)Z(t)e%(Hs-i-ffB)t[:[SB . (4.23)

Defining

Hgp(t) = enFsTHB) fro o ()e— i (HsHHp) (4.24)

we can rewrite Eq. (4.23) as

~.

X(t) = —— [e%(ﬁs+ﬁ3)tH BE —Li(Hs+Hp)t X(t) _ X(t)eé(ﬁs-&-flg)tHSBe L(Hs+Hp)t ]

St

[HSB, X (t )] : (4.25)

:ﬂs.

Integrating Eq. (4.25), we get the integral form written as
~ ~ i ! /i ] N (!
U =%0) + 7 [ avs | Hss(t) %) - (4.26)
0
and we insert it back into Eq. (4.25) to obtain
() = [fanto). 2 + £ [ v [ane), ~<t>]
X\t) = L |sB » X h 5| 1sB X
1 [~ . 1
=7 [HSB(t)a)((O)] - ﬁ/ [HSB [ H : (4.27)

Now we define the reduced density matrix of the system as p which has the

property,
p(t) = Troaen [x(8)] = Trp [x(1)] - (4.28)

What we want is to obtain the equation which describe the dynamics of the system

without the bath and to understand how p(t) get involved with the interaction, so we
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take the trace over bath variables. At first, we have
Trp[R(1)] = Trp [ef (At (p)e s o]

— e AstTy [G%Hth(t)e_%HBt] o~ i Hst

= i1t | (9P| er Ity (t)em it gF) | et

i

= et st | N (@B ef By (t)e zt\¢B> e fist

7

= ettt | S (6P (1) |¢?>] i

i

R NG
— el stpe — Hst =p(t), (4.29)

where EP and |¢P) correspond to the eigenvalue and the eigenstate of Hp, respec-

tively, and p is the reduced density matrix of the system in the interaction picture,
p(t) = enflst pe=nHst (4.30)

Note that the transformation between p and p involves only the free system Hamil-
tonian Hg. Taking the trace of Eq. (4.27) over the bath degrees of freedom, we

have

X

t ~ ~
= T { [Hsn(t), RO} - 15 / At Tep{ [ Hsn(t), [Hs(t), X(1)] ]}

0

(4.31)

In order to solve this equation (4.31), we must know the details of the bath since
there is the term x in it. As a result, it is hard to utilize this equation until some
approximation is performed to get rid of the bath. Up to now, Eq. (4.31) is exact
without any approximation, and in this form, it is more convenient for us to perform

some reasonable approximations on Eq. (4.31) in the following sections.
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4.2.3 The Born approximation

One can assume that before ¢ = 0 there is no interaction and correlation between

systems and baths. Then x(0) = x(0) is separable,
x(0) = p(0) ® Ry , (4.32)

where Ry is an initial reservoir density operator. If the bath are very big and the
coupling Hgp is very weak, the feedback from the system to the bath can be neglected.

So when ¢t > 0 the bath still stays in the initial density operator,
X(t) = p(t) @ Ry , (4.33)

called the Born approximation. Furthermore, we usually assume that the bath stays

in thermal equilibrium,
e_ﬂﬁB
Ho Tre—AHs (4.34)
With Eq. (4.31), (4.32) and (4.33), a closed integro-diffrential equation for the reduced

density matrix of the system in the interaction picture is obtained,

(t) = 1wy { [Hsp(0). (0) © Ro) )
1

— o [t {[fsato), [t o) o )]} )

4.2.4 The Markovian approximation and bath correlation func-

tions

Obviously, Eq. (4.35) is a complicated equation. The term p(t') inside the integral
equation reveals that the future not only depends on its present state but also in-
fluenced by its past history. In the following, another important approximation, the

Markovian approximation, will be introduced.
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Denoting system operators by S, and bath operators by By, the most general form
of coupling Hgp is

Hsp =Y S, @ By . (4.36)
k

Inserting Eq. (4.36) into Eq. (4.35), we have
(1) = — 3" T {180(t) @ By(1). p(0) @ Ry} }
h < ’

- % Ot dt"y " Trp { [Ska) ® B(t), [Sz(t’) ® Bi(t'), p(t') ® RoH } - (4.37)

It is usually assumed that the reservoir operators coupling to the system have zero

mean in the thermal equilibrium state Ry,
Tr [Bk(t)Ro] —0. (4.38)

This is true for thermal equilibrium bath. So, the first term on the right side of Eq.

(4.35) vanishes. We will also encounter the bath correlation functions,

Cu(t —t)=Trg |Br(t)Bi(t) Ry | (4.39)

in the second term. Those mean two different time average and will approach to
a delta function if the decay rate of the bath, comparing with the dynamics of the
system, is relatively fast,

Ckl (06 (S(t — t/) . (440)

Under this condition, p(t') can be replaced by p(t), called the Markovian approx-
imation. This means that because the decay of the bath is very fast, the history
of the system can’t be memorized in the bath. Therefore, the future of the system
just depends on its present state. Besides, because the bath correlation function is
strongly peaked around ¢ — ¢’ = 0, the integral over ¢’ can be carried out to t = co.

With above assumptions, we get the Born-Markov master equation in the interaction
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picture from Eq. (4.35),

(t) = —% OOO At/ Trp { [ﬁSB(t), [ﬁSB(t'), () ® ROH } . (4.41)

Now we try to transform it back into the Schrédinger picture by using the following

relation

p(t) = eﬁiﬁstpe_%ﬁst

d.\ 1 - it & ipg
= Ep(t) 7 [Hsap(t)] termope T
d T [ A _iga,d _oip
= o) = =1 [Ho,p(t)] + e RIS T et st (4.42)

The Born-Markov master equation in the Schrédinger picture is given by

H(t) = —% [ﬁs, p(t)] . % /0 ATy { [FJSB, [ﬁsg(t’ 1), pt) ® ROH } . (4.43)

4.3 Master equations of driven systems

4.3.1 The derivation of master equations

In the previous section, the Hamiltonian of the system is time-independent in the
Schrodinger picture. In this section, a damped system with driving will be discussed.
The derivation of the master equation in the interaction picture is analogous to that
of a time-independent system. The only difference is that the unitary operator trans-
forming Liouville-Von Neumann equations (4.21) from the Schrédinger picture into

the interaction picture is defined by

. t
Up(t, 1) = Texp <—% / dt"[ﬁs(t")+ﬁ3]> : (4.44)
t/

and operators in the interaction picture are defined by

O(t,t') = Uy (t, 1) OUy(t, ') (4.45)
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where 7 is Wick’s time-ordering operator. Making the change of variable for conve-

nience,
T=t—1t", (4.46)
we can restate Eq. (4.41) as
5 1 > g ] ~
p(t) = —73 | drlip { [HSB(ta 0), [HSB(t —7,0),0(t) ® ROH } ; (4.47)
0
and by using
: i A <
pl) = =3 | Hs(t), p(t)| + Uolt, 0)5(H) U (1,0) (4.48)

the master equation of a time-dependent system in the Schrodinger picture is given

~ 5 | @ {Uo(e.0) [Hsn(t.0). [Frsn(t = .00, 5(0) & R | U (2.0)}
_ _% [I:[S(t),,o(t)] — %/OOO drTrp { [I:ISB, [ﬁ]SB(t —7,t),p(t) ® RO”} :

(4.49)

Note that the term Hgp(t — 7,t) in Eq. (4.49) is different form the term Hgp(t — t)
in Eq. (4.43). In a time-independent system, operators in the interaction picture
Hg p(t' —t) can be easily transformed back into the Schrédinger picture by using the
commutator relation and we just focus on how big the time difference interval is.
But it is difficult to transform operators in a time-dependent system with the time-
ordering operator and we must be very careful about when the time interval starts

and when it ends. For example, Hgp(t — 7,t) is different from Hgp(—7,0).
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4.3.2 Microscopic models of dissipation

Now an explicit model is adopted [27]. The total Hamiltonian in the composite Hilbert

space is
H(t) = Hg(t) + Hsp + Hp (4.50)
where the bath,
N 52 m
4 S v V2.2
HB = ; <2_’rn,V + TWV‘TV) s (451)

is modeled as a collection of N oscillators with masses m,,, frequencies w,, momenta

operators p,, and position operators x,. The system is coupled to the bath bilinearly

via
N N e
Hsp =~y  g,i, + i° v 4.52
SB QJ;Q Ty + T = 2mng ) ( )

where g, is the coupling strength of the vth oscillator coupled to the system. The
second term of Eq. (4.52) is just to cancel the renormalization energy due to the
coupling to the bath, and is neglected in the following. The bath is fully characterized

by the spectral density of the coupling energy,

A

N 2
9y
Iw)=m7 g ST d(w—wy) . (4.53)
o—1 vWy

Then, we substitute Eq. (4.51) and (4.52) into Eq. (4.49). The trace of double

commutator inside the integration of Eq. (4.49) is

Try { [FISB, [FISB(t — ), p(t) ® ROH } _
Try { HspHsn(t —7,0)p(t) © RO} — Trg {ﬁ[SBp(t) ® RoHsp(t — T, t)}

~Trp {ﬁfSB(t —rplt) @ ROﬁSB} + Trg {p(t) ® RoHsp(t — T, t)ﬂSB} . (4.54)
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We deal with each term separately. The first term of Eq. (4.54) is
TTB {]:ISBf{SB(t - T, t)p(t) & Rg}
N N
=Trpg { —iZgl,:i’l,] [—x t—,t) Zgua:“
v=1 p=1

N
=Trg {ii(t —T7,t) Z G GuZuZp(t — 7, 1)p(t) ® Ro}

)| p(t) ® Ro}

lqu*l
=2T(t—T,t)p Z Trp{9,9,2,%,(t — 7,t)Ro}
vu=1
=zz(t—T,t)p ZTTB {g22,2,(t — T,t)Ro} | (4.55)

where Trp{2,2,Ro} = 0 if v # p is used. Transforming position operators of the

bath into creation and annihilation operators a;f and a,, we have

TTB {HSBgSB(t — T, t)p(t) X Ro}

:ij(t—T,t)p(t)Zgg h Trp{(a, +a)) (@t —7,t)+a (t —7,t)) Ro} ,

2m,w,

(4.56)

and from Eq. (4.51), creation and annihilation operators in the interaction picture

are

ot —7,1) = U (t — 7, )a, Up(t — 7, 8) = evitn(-q emiwndlan(-7) — g ciwrt
ar(t—r,t)=Us(t — 1, t)atUs(t — 7,t) = eiw”&m”(*T)dje*i“’”dm”(”) =afeT .

(4.57)

Then Eq. (4.56) becomes

TT’B {FISBﬁSB<t - T, t)p(t) ® Ro} =

t—Tt ZgVQ TT’B {aya e leTR +a+A zwy‘rRO} 7 (458)
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where the properties have been used, Trp {aaRy} = 0 and Trp{ata™ Ry} = 0.
With the mean photon number for an oscillator with frequency w, in thermal equi-
librium at temperature 7,

Gi’gm"

iy =Trp{aja,Ro} = 5 (4.59)

we get

Trp {HSB[:ISB(t — 7, 0)p(t) ® Ro} =

coth B tl coth Zlwr=1

t—7‘ t Zngmqu ( 5 2 e_inT+T2€in7—> ‘ (460)

Likewise, the second term, the third term and the fourth term of Eq. (4.54) are

Trp {ﬁSBp@) ® ROﬁSB(t o t)} -

A coth Bhwvtl coth Bhen=1
2 t ~ 2 Wy T 2 — Wy T 461
TTB {[:ISB(t - T, t)p(t) & Roﬁsg} =
N Bhwufl /Bmu‘i’l
h coth &&v— coth 2>
7t — t t - 2 2 Wy T o2 —wwT 4.62

Trg {p(t) ® RoHgp(t — T, t)ﬁSB} =

B coth Bhwvtl coth Bhen=1
p(t)i(t — 7,02 > g ( 2T 2 T ) (4.63)
= 2myw,

2 2
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With Eq. (4.60)—(4.63) and Eq. (4.49), the master equation is
N
(A 1 [ h
- ——|H } R 2
o) =~ [0, 0] 5 [ ar > g
hw, :
{i‘i(t —7,t)p(t) (coth p 5 COSWLT — isin wl,7'>
+2p(t)Z(t — T,1) <— coth fiw, cosw, T — i sin wl,T)
- . Bhw, .
+z(t — 7,t)p(t)z | — coth COS W, T + i sinw, T
+ p(t)z(t — 7, )2 (— coth fhw, COS W, T + % sin wm’)} . (4.64)
This can be further re-arranged into
i 1 [ a
) =~ [Asteo®)] - 35 [ ar > gix
h n? J, —
{S ( ) ['fi. [:Z‘(t - T, t)? p(t)“ + ZAV(T) ['%7 [:Z‘(t - T, t)? p(t)]Jr] } ) (465)
where [A, B], = AB + BA, and
h Tuw,,
S,(t) = STy coth <2k:BT> COS W, , (4.66)
A (t)=— h sinw,t (4.67)
v - 2meV vl .

are, respectively, the symmetrically ordered and antisymmetrically ordered correlation

functions of the bath oscillator v.



Chapter 5

The quantum Duffing oscillator

The Duffing oscillator is a very well-known non-linear oscillator in classical physics
[appendix A]. The bistable property is very sensitive to the driving frequency, forming
a very cusior ingredient for implementing a device which detects the states of qubits.
In this chapter, we introduce the Floquet master equation [27-29] for solving the

dynamics of the quantum Duffing oscillator and some simulation results are presented.

5.1 Hamiltonian of quantum Duffing oscillator

Both the SQUID and the Josephson junciton presented before have non-linear prop-
erties. Their dynamics can be described by a quantum Duffing oscillator model. The
Hamiltonian of the quantum Duffing oscillator model is

~2 2
2 p mwy .o

Hg = % + TLL’ + %j34 +af COS(We:Et) ) (5.1)

where m and wy are the mass and the nature frequency of the oscillator, respectively,
a gives the strength of the non-linearity, and f and w denote the amplitude and the
frequency of the external force. In our discussion, the parameter « is bigger than zero

and the potential is single-well.
59
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5.2 The Floquet-Born-Markovian master equation

A master equation describes an evolution equation of an quantum open system, and
the Floquet formalism is a powerful tool to investigate the dynamical behavior of a
driven periodic system. In this section, a technique to combine the master equation
with the Floquet formalism, called the Floquet master equation, will be introduced.
The Floquet master equation is a master equation using Floquet states as the basis

states. This treatment is appropriate for driven periodic quantum open system.

5.2.1 The driven weak-coupling master equation

We start from the expression of a master equation in the weak-coupling limit,

o) = 3l 0.00]+— [ " ol () nap (@)
X /Ooo dre™T[z (t — 7,t) p(t), 2] + H.c. (5.2)

and assume an Ohmic spectral density with an exponential cutoff at w,. for the bath

as

N 2
I(w) = WZ QTfijvw 6 (w — w,) = mywe “/“ (5.3)
v=1 v¥v

where v is the damping constant. One can always find Z(¢ — 7,¢) in a driven master
equation, as

z(t,t")y = Uy (t,t)2Us(t, 1), (5.4)

.,
i . .
Uo(t,t") = Texp <_ﬁ/ dt"[Hgs(t") + HB]> . (5.5)
tl
The time-ordering operator 7 makes the integration almost impossible to be solved
numerically. However, S. Kohler proposed an idea of combining the master equa-
tion approach with the Floquet Formalism. Choosing the Floquet states as the basis

states [27], and using the fact that the Floquet states of the undamped central system
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solve the Schrodinger equation, one can simplify the driven periodic master equation.

5.2.2 Complete set property of Floquet states

There are infinite numbers of Floquet states, because the Floquet formalism projects
a real Hilbert space R to a bigger one T'® R. Besides, if |¢,(t)) is an eigenstate of
the Floquet Hamiltonian, e™“=!|¢,(¢)) with any integer number n is an eigenstate
too. However, they correspond to the same physical state in the Schrédinger picture.
Like the Bloch theory, we just need the states in one of ”Brillouin zone” in the time
domain and a complete set basis contains N states, where N is the dimension of the
original Hilbert space. A complete set of Floquet states contains the identity property

in the Hilbert space R,

Z [@a(t)) (@a(t)] = In (5.6)

Note that the choice is not unique. The basis always can be selected in another

Brillouin zone, or even select them in many Brillouin zones at the same time.

5.2.3 The Floquet master equation

Now, we represent the density matrix and position operator in the floquet picture,

pag (t) = (¢a (B)|p (t)|¢5 (1)) (5.7)

Xag (1) = (ba ()] 2[5 (1) Zemw”tXaﬂ, (5-8)

Xop,n is the Fourier component of # in floquet picture and is given by

1

Xa,@,n = T
Wex

| ateme g, 012 (015 0 (5.9)
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Although the time-ordering operator seems like a trouble problem, fortunately, Uy (¢, ')

is the time evolution operator of QES, Uy(t —7,t) |¢a(t)) = €T/ |¢(t — 7)). There-

fore, we have

(fa (DIZ(t = 7,8)|s (1)) = (Pa ()|UG"(t — 7,)2Ts(t — 7,1)[ 05 (1))

= e (g, (¢ — 7)|E|)s (t — 7))

= eii(ﬁ@ieﬁ)T/thg(t — 7).
We also need

s (1) = 5 ({6 ()]0 (1165 (1))
= L [(6a (D10 (105 () + (0 (] 2(0) 165 (1)
{6 (015 (1165 (1)

and the Floquet properties,

15(0) it | 160(0) = e lou(e)

Using Egs. (5.2), (5.7), (5.8), and (5.10)—(5.12), we obtain

Pap(t) = —%(ea — €5)Pas(t) + 7Tih /_OO dwl (w) ny, (w) /000 dre™™

o0

y Z {ef(mfea/)‘r/tha/ (t —7) parg () X5 (1)
a/ﬁ/

o ef(ea/feﬁ/)‘r/h Xaﬁ/ (t) Xﬂ’a’ (t _ 7—) po/ﬁ(t)} + H.c. .

With the Fourier expansion, Eq. (5.8), we then have

pap(t) = —%(ea — €3)pap(t) + % /OO dwl (w) e, (w) /000 dre™T

—00

x N " erimineet Lomiaat )T ot () X g

o'B !

—e_i(Aa,B,’7"/)T/th/@’m,XB’O/,n/pa/ﬁ<t>} + H.C. ;

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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where Agg, = €4 — €5 4 nhwe,. Using the identity [J° dre™™ = w6(w) + P(i/w), we
arrive at the explicit equation of motion. Here we neglect the principal part.

) )
Pap = —;L(ffa — €8)Pas(t)

N % SN e et AN XaarmPars X g

'8 nn!
—Nﬂ/a’,fn’Xaﬁ’,nXﬂ/a/,n’pa’ﬁ + Nﬁﬁ’,n’ aa’,npo/ﬂ’Xﬂ/ﬁ,n/

— Na’ﬁ’,n’PaB’Xﬂ’a’,n’Xa’ﬁ,n} y (515)

where Nogn = I (Aapn/h) i (Dapn/h).

5.2.4 The rotating wave approximation

We have derived the master equation using the Floquet states as the basis, but there
is another difficulty. There are functions of time inside. This makes the calculation
hard. For the purpose to create a time-independent master equation, we perform
rotating-wave approximation here. In Eq. (5.16), e"("*")wet doesn’t vanish only if
n = n', yielding
Pag = —%(Ea — €g)pap(t) + % zﬁ: > {Naw—nXoanporp Xgrg—n
o'fon

_Nﬁ’a’,—nXaﬁ’,—nXB’a’,npa’B + N,@B’,—nXaa’,npa’ﬁ’Xﬁ’ﬁ,—n

— No/ﬁ’,fnpaﬁ’Xﬁ/o/,ana’ﬁ,n} . (516)

Thus, a time-independent master equation appears.

5.2.5 Dynamics of the quantum Duffing oscillator

The most general form of mapping from matrix to matrix is

Aap = Magag Barp (5.17)
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Because M maps operator B to operator A, M is called a superoperator.

With the help of delta functions, Eq. (5.16) can be rewritten into the following

form,
fop (1) =Y Mapappas (t) (5.18)
Oé/ﬁl
where
)
Moég@/ﬁ/ = _ﬁ (€a — 55) 5aa’5ﬁﬁ’ —+ Eaﬂ7alﬁl . (519)

The first term on the r.h.s. describes the coherent time evolution of the pure system
while the second term, £, contains transition rates describing the influence of the
dissipative environment [30],

Laﬂ,a’ﬁ’ = Z (Naa’,fn + N,B,B’,fn) Xaa’,nXﬁ’ﬁ,fn

n

— 5ﬁﬁ/ Z Nﬁ”a’,anaﬁ”,anﬁ”a’,n
8" n

— (50“1/ Z Na”[g”,7nXﬁ/o//,ano/',3,n . (520)

a''n

Here the coefficients are

Nopn = N (eq — g5 + nhw)

MYE 1
N(e) = B2 ee/ksT—1°
W 27w

dte™ " (¢a () 12]05 (1))

abn =50 |

where ~ is the damping rate. Furthermore, steady states are the eigenstates of su-
peroperator M with zero eigenvalues, since the derivative of a density state is zero,

p=0.
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5.2.6 Expectation value of z(t)

We are interested in calculating the asymptotic expectation value (z(t)) of the po-
sition operator. This is the quantity which can directly be compared to its classical

counterpart that is the solution of the classical Duffing equation.
(1) = Trp(0)i] = 3 paslt) Xsalt) (5.21)
af

We assume (Z(t)) = A cos(we,t + ), and the amplitude and the phase are given by

A=2>" papXpas1| . (5.22)
ap
¢ = arctan I ) g PasXo. i1
Re Zaﬂ paﬁXﬁa,Jrl
+ 7O (—Re ZpaﬁXﬁa,_i_l ) ) (Im [Z paﬁXﬁa,H])
L af J ap
) <—Re ZpaﬁXﬁa,H ) S (—Im [Z paﬁXﬁa,—H]) , (5.23)
L af J ap

where © is the Heaviside function. The range of phase ¢ is from —x to 7, but the
range of the arctangent funciton is from —7/2 to 7/2. So, we add Heaviside functions
into Eq. (5.23), i.e., the second and the third terms on the right hand side of Eq.

(5.23), to extend the range for the phase.

5.3 Numerical simulation

We calculate Eq. (5.18) to obtain the time evolution of the density matrix, and ob-
tain the expectation value of the response amplitude using Eq. (5.22). Furthermore,
to obtain the steady state, we could ,as a fast method, calculate the eigenvector of

superoperator M in Eq. (5.18) that has a zero eigenvalue, and guarantees p = 0 with
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a nontrivial eigenvector. We have also checked the time evolution result of Eq. (5.18)
to a long sufficiently final time at which the expectation value of the response value is
already stable to make sure the result is the same as the steady-state result obtained

from the zero-eigenvalue method.

The mathematical model of a JBA is a quantum Duffing oscillator, Eq. (2.36).
Understanding the behavior of a driven quantum Duffing oscillator enables us to un-
derstand the behavior of a JBA and understand how to detect the state of a qubit
through a readout JBA. An amplitude response curve versus the driving frequency is
shown in Fig. 5.1. The shoulder-like curve suggests that a driven JBA has a larger
response amplitude state and a smaller response amplitude state corresponding to
different ratios of we, /wo, respectively, and the JBA transits between these two states
when a a slight change of the value of w,,/wy is made. Coupled to the JBA, a qubit
will change the nature frequency wy of the JBA, and we can use the sensitive property
of the JBA transiting between the larger and the smaller response amplitude states

to detect the state of the qubit.

5.3.1 Amplitude response

A nonlinear oscillator with the nonlinearity coefficient o being zero becomes a har-
monic oscillator, of which energy levels’ spacings are all the same. This means all
multiphoton resonances concentrate at we,/wy = 1. As the nonlinearity coefficient
increases, the resonance values of the driving frequency spread out. Additionally, the
width of lower N-photon resonances is broader than that of higher ones. In other
words, the resonance peak centering on higher driving frequency, which correspond

to higher N-photon resonance, is narrower. An amplitude response curve versus the
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Figure 5.1 Quasienergy spectrum and response amplitude as a function of
the driving frequency. Every avoided crossing in the quasienergy spectrum
corresponds to a N-photon excitation. Parameters are kg1 = 0.1hwgy, o =
0.1ag, f = 0.1fy and v = 0.005wy.

driving frequency is shown in Fig. 5.1, a shoulder-like curve with many peaks at
some particular frequency spacings. Each peak corresponds to a certain multiphoton
resonance process. Because the resonance values spread out and the amplitude peaks
have different widths, at some critical value, for example at we,/wy = 1.165 in Fig.
5.1, the two nearest neighboring peaks do not overlap, creating a very slope curve. In
addition, the neighboring peaks at the values less than w,, /wy = 1.165 mix, resulting

the formation of the high ”shoulder” behavior.

The N-photon excitation happens when N-photon’s energy, NhAw,,, matches the

energy difference between a certain energy level and the ground state. Two quasienergy
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levels cross at this point when the driving amplitude vanishes. As driving amplitude
increase, the crossing splits more, and the two Floquet states no longer degenerate.

Every avoided quasienergy level crossing corresponds to a N-photon excitation.

5.3.2 Varying temperatures and the nonlinearity coefficients

Due to fluctuation caused by temperature, the higher the temperature is, the broader
the widths of the peaks are. Additionally, the heights of the peaks are suppressed at
high temperature. In Fig. 5.2(a), it is obvious that at a hight temperature of T' = Ty,

the shoulder-like shape behavior disappears and the peaks also diminish significantly.

The role of the nonlinearity coefficient « is a little different from others. It controls
the anharmonic energy spacings. In other words, it controls the values of the driving
frequency for N-photon resonant. The values where the N-photon’s energy matches
the quasienergy spacing strongly depend on the nonlinearity coefficient. As the value
of a increases, every N-photon peak shifts, as shown in Fig. 5.2(b), resulting in the
whole curve shift and flatten a little bit toward larger driving frequencies. Moreover,

the heights of the peaks decrease for increasing «.

5.3.3 Varying driving amplitudes

We can expect the N-photon peaks will grow higher and broader with the increase
of driving amplitude f. In Fig. 5.3(a), we observe that increasing f leads to a shift
of the critical point (i.e., the most slope region,) towards larger driving frequencies
of the next excitation, which is labeled by the two arrows. Note that the values of

the driving frequency for N-photon resonances remain unchanged and just the critical
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Figure 5.2 (a)Response amplitude for different values of temperature T,
kgT = 0.1, 0.5, and 1.0Awy, with @ = 0.1y. (b)Response amplitude for
different value of the nonlinearity o, o = 0.095, 0.1, and 0.105¢ with kgT =
0.1Awg. The remaining parameters are f = 0.1f; and v = 0.005wy.

point moves.

If we fix the driving frequency, we can observe a shoulder-like profile shown in the
curve of the response amplitude versus the driving amplitude in Fig. 5.3(b). This
behavior is also predicted by classical physics. However, there is no resonance peak

appearing and the whole curve is very smooth.

5.3.4 Expansion in x space

In the numerical simulations, we write down the Hamiltonian of the anharmonic
oscillator in the number basis, {|«a)}, transfer it into the extended Hilbert space T® R,
then calculate the Floquet states, and finally use the master equation in the basis of
the Floquet states to simulate the dynamics of the anharmonic oscillator. After we
obtain the results of the simulations, we transfer them back into the extended Hilbert

space and then into the number basis. We will represent the results in the position
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Figure 5.3 (a) A 3D diagram of the response amplitude versus the driving
frequency and the driving amplitude. The two arrows label a shift of the
critical area. (b) A response amplitude profile versus the driving amplitude
f with we, = 1.4wg. The remaining parameters are kg1 = 0.1hwg, o = 0.1y
and v = 0.005wy.

space in this subsection. The whole process is as follows,

{la)} = {lan)} = {l¢a)} — {l¢a)} = {lan)} = {l)} = {lx)} . (5.24)

With Eq. (5.18), we have the dynamics of the density matrix in the Floquet
picture. We can calculate the expectation value of the respond amplitude directly in
the Floquet picture using Eq. (5.22). However, we try to obtain the dynamics of the
desity matrix in the original Hilbert space R, and the Fourier expansion of it can be

written as
p(t) = po+ pre” et 4 p_yetert 4 poem el 4 p petent ol (5.25)

Now we define 2 |(x| p; |z)| as the amplitude distribution function and normalize it
to 1. In Fig. 5.4, we observe that there are two peaks in the amplitude distribution
function when the driving frequency is near the critical point region. When the driving

frequency is away from the critical region, the weights of the two peaks moves from
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Figure 5.4 The amplitude distribution function. The two peaks concentrate
to one when the driving frequency is away from the critical region. From the
upper left to the upper right and then from the lower left to the lower right,
wr = 1.155, 1.16, 1.165, 1.17, 1.18, 1.195wy. The remaining parameters are
kT = 0.1hwy, a = 0.1ag, f = 0.1fy and v = 0.005wy.

one peak to the other. In classical physics, there are two different stable response
amplitude states near the critical point [appendix A]. The two peaks correspond
to the two different steady state response amplitudes. We can expect that in the
adiabatic condition, with driving frequency increasing from the critical point region
toward a smaller value, the oscillator will stay in the large amplitude state with a
high probability. On the other hand, when the driving frequency increases from the

critical point region to a larger value, the oscillator will mostly stay in the small

amplitude state.
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5.4 Driven quantum Duffing oscillator coupled to
a qubit

From Sec. 2.5, we can image a qubit coupled to a readout JBA, whose nature fre-
quency will be effectively shifted depending on the qubit’s state. If the driving fre-
quency point of the JBA readout is set in the critical region, Fig. 5.1, the state
of the qubit being |1) or |0) will move the value of we,/wy to the left or the right,
respectively, and the expectation value of the stable response amplitude will change

significantly.

We define the Hamiltonian of the system as,

H=H,+ H;+H,

= Ty, @ ) + hwio, @i+ I, ® (mm + %ﬁ +af cos(wext)) . (5.26)

where wgy, wy, and w; are the nature frequency of the qubit, the nature frequency
of the JBA oscillator, and the coupling strength, respectively, I; and fq are identity
of the JBA’s Hilbert space and that of the qubit’s, respectively, and n = ata is the

number operator of the JBA oscillator.

5.4.1 The JBA response

Being coupled to a qubit, the readout JBA oscillator at a fixed driving force and a fixed
driving frequency shows different response amplitudes depending on the state of the
qubit. It is shown in Fig. 5.5(a) that the larger response amplitude state corresponds
to the qubit’s state being |1), while the lower amplitude state corresponds to the qubit
being in |0) state. The distribution functions with the qubit’s state being |0) (dotted

line) or [1) (solid line) for different values of the coupling strength w; are shown in
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Figs. 5.5(c)(d) and (e). As shown in 5.5(d) for w; = 0.024wy, when the qubit’s state
is |1), most of the distribution function stay in the large x regime, but little stay
in the small = regime. The situation for |0) state is however the opposite. Intrinsic
errors in the amplitude distribution function have been found in experiment [22]. In
experiment, for a qubit being in |[0) (or |1)), there is a nonvanishing probability of
finding the JBA oscillator in the large (small) amplitude state. This intrinsic error
may be understood from the amplitude distribution function shown in Figs. 5.5(c)(d)
and (e). For a small coupling strength wy, it is hard to read out the qubit state from
the JBA oscillator amplitude as the distribution function has significant weights in
both the small and large amplitude regimes (see Fig. 5.5(c)). On the other hand, when
the coupling strength is large, the weight of the distribution function moves toward
to the small x regime for qubit state being |0) and to the large x regime for qubit
state being |1). However, the larger coupling strength also causes the broadening of
the distribution functions, resulting in an overlap of the distribution functions that

correponds to two qubit states.

5.4.2 Behaviors of the qubit

In this subsection, we discuss behaviors of the qubit in two situations. First, the
Hamiltonian of the qubit has not only the o, term but also an additional o, term. This
may be caused by the qubit’s or the coupling’s flaw. In the case, the non-demonlition
condition is not fullfilled [23]. Second, the qubit is coupled to an environment so that

it may decohere or relax even without the presence of the JBA readout device.

Even if there is no other environment coupled to the qubit, the JBA readout
device still cause the qubit dephasing because of the o, coupling to the qubit. If the

Hamiltonian of the qubit is not exactly Aw,o, but hw,o, + hwg,0,, the steady-state
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Figure 5.5 The time evolution diagrams of the response amplitude when
qubit’s states are (a) |0) and (b) |1) with w; = 0.024. (c)(d)(e) The amplitude
distribution function with qubit’s state |0) (dotted line) or |1) (solid line).
The driving frequency w., equals 1.17wy.

The remaining parameters are

kgT = 0.1hwgy, a = 0.1ag, f = 0.1fy and v = 0.005wy.
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expectation value of ¢, will no longer in +1 or —1 as the o, term will move the
stationary state value away from that value. If w; > w,, the steady-state (o) will
stay in +1 if the initial qubit state is |1). If w; < wy,, the steady state of (o.) will
move away from +1, depending also on the value of w,. Furthermore, the oscillation
is not very regular, and we can observe some ”"sudden veers” in Fig. 5.6(d). The
JBA’s environment fluctuates the JBA and influences the qubit through the JBA.
We can expect if the coupling strength w; is larger, which results in strong influence
of the JBA on the qubit, decoherence rate of the qubit is larger. The influence of the
damping rate v of the JBA oscillator on the qubit dynamics is a little bit subtle. One
may expect the larger value of 7 (stronger environment influence on JBA) may result
in a larger decohere on the qubit as shown in Figs. 5.6(d)(e) and (f). However, when
the coupling strength is small, if the value of « is increased, the decoherence rate of
the qubit is small instead as shown in Fig. 5.6(a)(b) and (c). This may be because
the JBA is damped to its steady state so fast that the influence on the qubit becomes

small.

Next, we assume an environment is coupled to the qubit through a o, coupling

term. For this purpose, we need to add another dissipative term L] 5 .5 to Eq. (5.19),

/ozﬂ,a’ﬂ’ = Z (N(;a’,fn + Néﬁ’,fn) Zaa’,nzﬁ’ﬁ,fn

n

— 6ﬁﬁ/ Z Né//a/7_n2a6//7_nZﬂ/,a,yn
8" n

—Boar O Nowg _pEpar —nSarsn » (5.27)
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Figure 5.6 The o, expectation value of the qubit. The JBA’s environment
influences the qubit through the JBA. The remaining parameters are w, =
0.01wy, wgz = 0.01, we, = 1.16, kT = 0.1hwy, o = 0.1y, f = 0.1fy. The
initial state of the qubit is |1).

where
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Where the relaxation rate 7, determines the decay rate of the qubit. If the relaxation
rate is very large, the JBA could not reflect the qubit’s state and would not reach
the response amplitude value that it is supposed to reach before the qubit relaxes.
In contrast, if the relaxation rate is small, the JBA can read out the information
of the qubit state before the qubit relaxes. The time evolution of the expectation
value of the response amplitude and the distribution functions in the presence of the

qubit relaxation are shown in Fig. 5.7. The expectation value decays with time and
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Figure 5.7 (a) The amplitude response. The qubit decays from |1) to |0)
caused by its environment, which making the response amplitude can’t main-
tain a higher level. (b) The amplitude distribution function. Solid line:
t=6000. Dashed line: t=4000. v = 0.005, v, = 0.0002, w, = 0.1, and
wy = 0.024.

the response amplitude can’t maintain at a large value. In addition, the distribution
function changing from a single peak centering at a large x value at ¢ = 4000 to a

two-peak structure at ¢ = 6000 in which the peak centering at a small x value gains

considerable weight in small z regime.



Chapter 6

Conclusions

Many kinds of superconducting qubits and readout devices have been proposed, and
many superconducting circuits have been designed based on these qubits and devices.
All these efforts are in order to satisfy the following purposes: high coherence quality,
high readout fidelity, high gate operation fidelity etc.. Until now, no one design can
fulfill all of these good properties. Different designs have different advantages and

disadvantages. So, it is hard to say which is the best one.

In this thesis, we have described briefly three kinds of qubits and concentrated
on a quantronium coupled to a Josephson bifurcation amplifier (JBA) as the read-
out device. The shift of the resonance frequency of the JBA depends on the state
of the measured qubit. As a result, the amplitude response of the JBA reveals the
state of the measured qubit. During the measurement process, the JBA remains in
zero-voltage state, which avoids the dissipation problem caused by voltage switching

to the normal state in other Josephson junction readout schemes.

For the purpose of simulating a driven JBA, we have investigated the Floquet for-
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malism, which is a good tool to deal with a time-periodic problem. The Floquet for-
malism transfers a time-dependent problem in a Hilbert space to a time-independent
problem in an extended Hilbert space. We can truncate the Floquet Hamiltonian
based on the strength of the driving amplitude and the final time of the evolution.
Furthermore, the quasienergy spectrum provides a good picture of muti-photon exci-

tation processes.

We have also studied the Born-Markovian master equation of a driven system. We
find that the difficulty caused by the time-ordering operator, which appears when a
driving force is added to the system, can be overcome by using the Floquet states as
the basis. The combination of the Born-Markovian master equation and the Floquet

states is so-called the Floquet-Born-Markovian master equation.

Finally, we have discussed the behavior of a JBA, whose mathematical model is a
driven quantum Duffing oscillator. We have also presented the dynamical properties
of a JBA coupled to a qubit. A shoulder-like shape in the amplitude response ver-
sus the driving frequency plot is presented accompany with quasienergy spectrum of
multiphoton excitations. We have simulated the measurement process that when a
JBA is coupled to a qubit, the amplitude response of the JBA will evolve to a higher
level or a lower level depending on the state of the qubit. We have also discussed the
dynamics of a qubit subjected to a measurement by a JBA and also coupled to an
extra environment. If the coupling between the qubit and the JBA is much small,
when the damping constant of the JBA’s environment is larger, the influence on the

qubit is instead smaller.

Overall, the JBA is a very good readout device for superconducting qubit as it will
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not induce dissipation as other voltage switching readout devices do. However, some
possible measurement related errors of the devices, discussed in this thesis, should be

overcome or avoided in order to improve the readout fidelity of the device.
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Appendix A

Classical Duffing oscillation

There are many methods for obtaining approximated solutions of nonlinear oscilla-
tor systems in different situations. Those methods can be found in most non-linear
physics text books. In this chapter we take a short review of a useful technique for
obtaining approximated periodic in time solutions of second-order differential equa-

tions with weak nonlinearity and subject to a harmonic forcing term.

Now we consider an equation of motion of a forced nonlinear oscillator,
i+ ki +wlsinr = Fcoswt . (A.1)

With the assumption of small nonlinearity

1
sinx &~ x — éx?’ : (A.2)
Eq. (A.1) becomes, approximately,
. - 2 Lo 3
&+ kt +wjr — GWoT” = F coswt . (A.3)
Let us define some notations for convenience,
1
T=wt, O =wi/? ,80:692, K=k/w, T =F/uw*. (A.4)
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We have

o + Ka' + Q%r —egz® =TcosT, (A.5)

where the primes symbol and double prime symbol are used to represent differentia-

tion with respect to 7. We also assume that I', K and 2 — 1 are very small,
I=cyy, K=cork , P =1+¢/B (7,6>0), (A.6)

which corresponds to weak excitation, small damping and near-resonance of the lin-

earized equation, respectively. Eq. (A.5) becomes
a" +x =¢eo(ycosT — kt' — Bz +2°) . (A7)

Here we introduce the perturbation method, which is similar to the time-independent
perturbation theory in quantum mechanics. We consider the family of differential

equations
o' +x=¢(ycosT — ka' — Bz +2%) | (A.8)

where ¢ is a parameter in an interval I, which includes ¢ = 0. When ¢ = ¢;, we
recover Eq. (A.7). Consequently, the solutions will be the functions of both 7 and ¢,

and the solutions may be represented in the form of a power series in ¢,
z(e,7) = 2o(7) + ex1(7) + 222(T) + ... . (A.9)

We shall be concerned only with periodic solutions having the period, 27, of the

forcing term, which means that
zi(T+2m) = xi(7), i=0,1,2,.... (A.10)

Substituting Eq. (A.9) into Eq. (A.8), we obtain, based on the balance of the
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coefficients of the resultant equation for each power ¢,

ZL‘g—FZEQ:O, (A.ll)
o + 1) =ycosT — kxl — By + 7D (A.12)
Ty + 19 = —KT, — By + 3xiT1 (A.13)

and so on.

The solution of Eq. (A.11) is
xo(T) = agcosT + bysinT . (A.14)
Now substituting Eq. (A.14) into Eq. (A.12), we have
] + @ :{7— Kby + ag [—ﬁ—l— Z (ag—l—bg)]}COST
n {/wo b [—5 + 2 bﬁ)} } sinr
+ a0 (a3~ 303) cos37 + by (303~ 1) sindr . (A1)

4

Since cos T and sin7 terms in Eq. (A.15) will make the solution of z; have the form
of 7 cosT or 7sinT but we concern only the solution of z; that has a period 27, the

coefficients of cos 7 and sin 7 terms should be zero,
3
kao — bo {B—Z(a?ﬁrbg)} _ (A.16)

mb0+ao{@_2(ag+bg)}:7. (A17)

We define ry as the amplitude of the generating solution,

ro =1/ (ad +b3) > 0. (A.18)

By squaring and adding Eq. (A.16) and Eq. (A.17), we obtain the following equation

" {HQ + (ﬁ - Zré) } =7 (A.19)

2
for r¢,
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After ry is solved, ay and by can be also solved from Eq. (A.16) and Eq. (A.17).
Then, putting ag and by, which make the coefficients of cos 7 and sin 7 zero, back into

Eq. (A.15), we have
" 1 2 2 1 2 32\
Ty + 1= Jao (ag — 3b5) cos 3T + Zbo (3ag — bf) sin 37, (A.20)
and the solution is

1 1
x1(7) = a;cosT + by sinT — 3570 (ag — 3b3) cos 3T — 3—260 (3ag — b3) sin37 . (A.21)

If higher order solutions are needed, we can repeat the same steps to get the solu-
tions of xs9, x3, 4 and so on. Besides, all equations to determine a; and b; are linear

equations. That makes the process much less complicated.

Let us go back to the amplitude equation Eq. (A.19) and translate it into the

parameters of Eq. (A.1). We have
1 2
e {k2w2 + <w2 —wi+ gwgrg) } =r?, (A.22)

where ry must be bigger than zero. The solution for w? is

1 1 1

The response amplitude ry as a function of the driving frequency is shown in Fig.

A.1. When the driving amplitude F approach to zero, the response curve is sim-
ilar to a linear response curve. The bigger the driving amplitude F' is, the more
seriously the response curve bends over, as shown in Fig. A.1(b). If F is smaller
than a critical value, the response curve is a single value function. If F' is beyond
the critical value, the oscillator could have three alternative forced responses, two

stable responses and one metastable response, shown in Fig. A.1l, constituting a
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Figure A.1 The response amplitude profile. (a)The arrows indicate where
the response amplitude must jump up to a bigger or a lower response ampli-
tude. wo = 1, k = 0.02 and F = 0.02 (b)The response curve is for different
values of the driving amplitude strength. wy = 1, £ = 0.02 and, from the
bottom to the top, F' = 0.003, 0.006, 0.01, 0.015 and 0.02.

Figure A.2 ¢; determines the direction of the response amplitude’s turning

jump phenomenon. Choosing a fixed F' which is bigger than the critical value, we in-
crease driving frequency w from some value much smaller than wy. When the driving
frequency reaches the reverse point, there is no continue solution and the response
amplitude must jump up to a bigger response amplitude as indicated in Fig. A.1(a).
Now we consider another situation that we decrease the driving frequency from the
other side. When the response amplitude climbs up to the summit, it can’t descend
flatly and must "drop” suddenly to a lower value as shown in Fig. A.1(a). Note
that the reverse point in the first situation and the summit in the second situation

correspond respectively to different driving frequency values.
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Now we consider a more general case,
&+ ki 4+ wiz + €2’ = Fcoswt , (A.24)

where ¢ is independent to wy. We set wy = 1 for convenience. Using the perturbative

method we mentioned before, we have the amplitude response equation,

3 2
e {k2w2 + (w2 -1- Zem‘%) } =7, (A.25)

The nature of the response diagrams in the case of ¢y < 0, ¢g = 0, and ¢y > 0 is shown
in Fig. A.2. The response curves bend over to different sides depending on the sign

of €o-
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